@ -0,0 +1,171 @@
|
||||
# Definiendo la ciencia de datos
|
||||
|
||||
|  ](../../sketchnotes/01-Definitions.png) |
|
||||
| :----------------------------------------------------------------------------------------------------: |
|
||||
| Definiendo la ciencia de datos - Boceto por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
---
|
||||
|
||||
[](https://youtu.be/beZ7Mb_oz9I)
|
||||
|
||||
## [Cuestionario antes de la lección](https://red-water-0103e7a0f.azurestaticapps.net/quiz/0)
|
||||
|
||||
## ¿Qué son los datos?
|
||||
En nuestra vida cotidiana estamos rodeados de datos. El texto que estás leyendo ahora mismo son datos. La lista de tus contactos en tu teléfono móvil son datos, como lo es la hora que muestra tu reloj. Como seres humanos, operamos naturalmente condatos como por ejemplo contando el dinero que tenemos o escribiendo cartas a nuestros amigos.
|
||||
|
||||
Sin embargo, los datos se volvieron mucho más importantes con la creación de los ordenadores. La función principal de los ordenadores es realizar cálculos, pero necesitan datos para operar. Por ello, debemos entender cómo los ordenadores almacenan y procesan estos datos.
|
||||
|
||||
Con la aparición de Internet, aumentó el papel de los ordenadores como dispositivos de tratamiento de datos. Si lo pensamos bien, ahora utilizamos los ordenadores cada vez más para el procesamiento de datos y la comunicación, incluso más que para los cálculos propiamente dichos. Cuando escribimos un correo electrónico a un amigo o buscamos información en Internet, estamos creando, almacenando, transmitiendo y manipulando datos.
|
||||
|
||||
> Te acuerdas de la última vez que utilizaste un ordenador sólo para hacer un cálculo?
|
||||
|
||||
## ¿Qué es la ciencia de datos?
|
||||
|
||||
En [Wikipedia](https://en.wikipedia.org/wiki/Data_science), **la ciencia de datos** se define como *un campo científico que utiliza métodos científicos para extraer conocimientos y percepciones de datos estructurados y no estructurados, y aplicar conocimientos procesables de los datos en una amplia gama de dominios de aplicación*.
|
||||
|
||||
Esta definición destaca los siguientes aspectos importantes de la ciencia de datos:
|
||||
|
||||
* El objetivo principal de la ciencia de datos es **extraer conocimiento** de los datos, es decir, **comprender** los datos, encontrar algunas relaciones ocultas entre ellos y construir un **modelo**.
|
||||
|
||||
* La ciencia de los datos utiliza **métodos científicos**, como la probabilidad y la estadística. De hecho, cuando se introdujo por primera vez el término *ciencia de los datos*, hubo quiens argumentó que la ciencia de los datos no era más que un nuevo nombre elegante para la estadística. Hoy en día es evidente que el campo es mucho más amplio.
|
||||
|
||||
* Los conocimientos obtenidos deben aplicarse para producir algunas **perspectivas aplicables**, es decir, percepciones prácticas que puedan ser aplicadas a situaciones empresariales reales.
|
||||
|
||||
* Deberíamos ser capaces de operar tanto con datos **estructurados** como con datos **no estructurados**. Volveremos a hablar de los diferentes tipos de datos más adelante en el curso.
|
||||
|
||||
* **El dominio de aplicación** es un concepto importante, y los científicos de datos suelen necesitar al menos cierto grado de experiencia en el dominio del problema, por ejemplo: finanzas, medicina, marketing, etc.
|
||||
|
||||
> Otro aspecto importante de la ciencia de los datos es que estudia cómo se pueden recopilar, almacenar y utilizar los datos mediante ordenadores. Mientras que la estadística nos proporciona fundamentos matemáticos, la ciencia de los datos aplica conceptos matemáticos para extraer realmente información de los datos.
|
||||
|
||||
Una de las formas (atribuida a [Jim Gray](https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist))) de ver la ciencia de los datos es considerarla como un paradigma nuevo de la ciencia:
|
||||
* **Empírico**, en el que nos basamos principalmente en las observaciones y los resultados de los experimentos
|
||||
* **Teórico**, donde los nuevos conceptos surgen de los conocimientos científicos existentes
|
||||
* **Computacional**, donde descubrimos nuevos principios basados en algunos experimentos computacionales
|
||||
* **Controlado por los datos**, basado en el descubrimiento de relaciones y patrones en los datos
|
||||
|
||||
## Otros campos relacionados
|
||||
|
||||
Dado que los datos son omnipresentes, la propia ciencia de los datos es también un campo muy amplio, que toca muchas otras disciplinas.
|
||||
|
||||
<dl>
|
||||
<dt>Bases de datos</dt>
|
||||
<dd>
|
||||
Una consideración crítica es **cómo almacenar** los datos, es decir, cómo estructurarlos de forma que permitan un procesamiento más rápido. Hay diferentes tipos de bases de datos que almacenan datos estructurados y no estructurados, que <a href="../../../2-Working-With-Data/README.md">consideraremos en nuestro curso</a>.
|
||||
</dd>
|
||||
<dt>Big Data</dt>
|
||||
<dd>
|
||||
A menudo necesitamos almacenar y procesar cantidades muy grandes de datos con una estructura relativamente sencilla. Existen enfoques y herramientas especiales para almacenar esos datos de forma distribuida en un núcleo de ordenadores, y procesarlos de forma eficiente.
|
||||
</dd>
|
||||
<dt>Machine Learning o Aprendizaje automático</dt>
|
||||
<dd>
|
||||
Una forma de entender los datos es **construir un modelo** que sea capaz de predecir un resultado deseado. El desarrollo de modelos a partir de los datos se denomina **aprendizaje automático**. Quizá quieras echar un vistazo a nuestro curso <a href="https://aka.ms/ml-beginners">Machine Learning for Beginners</a> para aprender más sobre el tema.
|
||||
</dd>
|
||||
<dt>Inteligencia artificial</dt>
|
||||
<dd>
|
||||
Un área del Machine learning llamada inteligencia artificial (IA o AI, por sus siglas en inglés) también está basada en datos, e involucra construir modelos muy complejos que imitan los procesos de pensamiento humanos. Métodos de inteligencia artificial a menudo permiten transformar datos no estructurados (como el lenguaje natural) en descubrimientos estructurados sobre ellos.
|
||||
</dd>
|
||||
<dt>Visualización</dt>
|
||||
<dd>
|
||||
Cantidades muy grandes de datos son incomprensibles para un ser humano, pero una vez que creamos visualizaciones útiles con esos datos, podemos darles más sentido y sacar algunas conclusiones. Por ello, es importante conocer muchas formas de visualizar la información, algo que trataremos en <a href="../../../3-Data-Visualization/README.md">la sección 3</a> de nuestro curso. Campos relacionados también incluyen la **Infografía**, y la **Interacción Persona-Ordenador** en general.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
## Tipos de datos
|
||||
|
||||
Como ya hemos dicho, los datos están en todas partes. Sólo hay que obtenerlos de la forma adecuada. Es útil distinguir entre **datos estructurados** y **datos no estructurados**. Los primeros suelen estar representados de alguna forma bien estructurada, a menudo como una tabla o un número de tablas, mientras que los segundos son simplemente una colección de archivos. A veces también podemos hablar de **datos semiestructurados**, que tienen algún tipo de estructura que puede variar mucho.
|
||||
|
||||
|
||||
| Structured | Semi-structured | Unstructured |
|
||||
| ---------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------- | --------------------------------------- |
|
||||
| List of people with their phone numbers | Wikipedia pages with links | Text of Encyclopaedia Britannica |
|
||||
| Temperature in all rooms of a building at every minute for the last 20 years | Collection of scientific papers in JSON format with authors, data of publication, and abstract | File share with corporate documents |
|
||||
| Data for age and gender of all people entering the building | Internet pages | Raw video feed from surveillance camera |
|
||||
|
||||
## Dónde conseguir datos
|
||||
|
||||
Hay muchas fuentes de datos posibles, y será imposible enumerarlas todas. Sin embargo, vamos a mencionar algunos de los lugares típicos donde se pueden obtener datos:
|
||||
|
||||
* **Estructurados**
|
||||
- **Internet de las cosas** (IoT), que incluye datos de diferentes sensores, como los de temperatura o presión, proporciona muchos datos útiles. Por ejemplo, si un edificio de oficinas está equipado con sensores IoT, podemos controlar automáticamente la calefacción y la iluminación para minimizar los costes.
|
||||
- **Encuestas** que pedimos a los usuarios que completen después de una compra, o después de visitar un sitio web.
|
||||
- **El análisis del comportamiento** puede, por ejemplo, ayudarnos a entender hasta qué punto se adentra un usuario en un sitio, y cuál es el motivo típico por el que lo abandonan.
|
||||
* **No estructurado**
|
||||
- Los textos pueden ser una rica fuente de información, como la puntuación general del sentimiento, o la extracción de palabras clave y el significado semántico.
|
||||
- Imágenes o vídeos. Un vídeo de una cámara de vigilancia puede utilizarse para estimar el tráfico en la carretera e informar a la gente sobre posibles atascos.
|
||||
- Los **registros** del servidor web pueden utilizarse para entender qué páginas de nuestro sitio son las más visitadas, y durante cuánto tiempo.
|
||||
* **Semiestructurados**
|
||||
- Los gráficos de las redes sociales pueden ser una gran fuente de datos sobre la personalidad de los usuarios y su eficacia para difundir información.
|
||||
- Cuando tenemos un montón de fotografías de una fiesta, podemos intentar extraer datos de **dinámica de grupos** construyendo un gráfico de las personas que se hacen fotos entre sí.
|
||||
|
||||
Al conocer las distintas fuentes posibles de datos, se puede intentar pensar en diferentes escenarios en los que se pueden aplicar técnicas de ciencia de datos para conocer mejor la situación y mejorar los procesos empresariales.
|
||||
|
||||
## Qué puedes hacer con los datos
|
||||
|
||||
En Data Science, nos centramos en los siguientes pasos del camino de los datos:
|
||||
|
||||
<dl>
|
||||
<dt>1) Adquisición de datos</dt>
|
||||
<dd>
|
||||
El primer paso es recoger los datos. Aunque en muchos casos puede ser un proceso sencillo, como los datos que llegan a una base de datos desde una aplicación web, a veces necesitamos utilizar técnicas especiales. Por ejemplo, los datos de los sensores de IoT pueden ser abrumadores, y es una buena práctica utilizar puntos finales de almacenamiento en búfer, como IoT Hub, para recoger todos los datos antes de su posterior procesamiento.
|
||||
</dd>
|
||||
<dt>2) Almacenamiento de los datos</dt>
|
||||
<dd>
|
||||
El almacenamiento de datos puede ser un reto, especialmente si hablamos de big data. A la hora de decidir cómo almacenar los datos, tiene sentido anticiparse a la forma en que se consultarán los datos en el futuro. Hay varias formas de almacenar los datos:
|
||||
<ul>
|
||||
<li>Una base de datos relacional almacena una colección de tablas y utiliza un lenguaje especial llamado SQL para consultarlas. Normalmente, las tablas se organizan en diferentes grupos llamados esquemas. En muchos casos hay que convertir los datos de la forma original para que se ajusten al esquema.</li>
|
||||
<li><a href="https://en.wikipedia.org/wiki/NoSQL">una base de datos no SQL</a>, como <a href="https://azure.microsoft.com/services/cosmos-db/?WT.mc_id=academic-31812-dmitryso">CosmosDB</a>, no impone esquemas a los datos y permite almacenar datos más complejos, por ejemplo, documentos JSON jerárquicos o gráficos. Sin embargo, las bases de datos NoSQL no tienen las ricas capacidades de consulta de SQL, y no pueden asegurar la integridad referencial, i.e. reglas sobre cómo se estructuran los datos en las tablas y que rigen las relaciones entre ellas.</li>
|
||||
<li><a href="https://en.wikipedia.org/wiki/Data_lake">Los lagos de datos</a> se utilizan para grandes colecciones de datos en bruto y sin estructurar. Los lagos de datos se utilizan a menudo con big data, donde los datos no caben en una sola máquina, y tienen que ser almacenados y procesados por un clúster de servidores. <a href="https://en.wikipedia.org/wiki/Apache_Parquet">Parquet</a> es el formato de datos que se suele utilizar junto con big data.</li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt>3) Procesamiento de los datos</dt>
|
||||
<dd>
|
||||
Esta es la parte más emocionante del viaje de los datos, que consiste en convertir los datos de su forma original a una forma que pueda utilizarse para la visualización/entrenamiento de modelos. Cuando se trata de datos no estructurados, como texto o imágenes, es posible que tengamos que utilizar algunas técnicas de IA para extraer **características** de los datos, convirtiéndolos así en formato estructurado.
|
||||
</dd>
|
||||
<dt>4) Visualización / Descubrimientos humanos</dt>
|
||||
<dd>
|
||||
A menudo, para entender los datos, necesitamos visualizarlos. Al contar con muchas técnicas de visualización diferentes en nuestra caja de herramientas, podemos encontrar la vista adecuada para hacer una percepción. A menudo, un científico de datos necesita "jugar con los datos", visualizándolos muchas veces y buscando algunas relaciones. También podemos utilizar técnicas estadísticas para probar una hipótesis o demostrar una correlación entre diferentes datos.
|
||||
</dd>
|
||||
<dt>5) Entrenar un modelo predictivo</dt>
|
||||
<dd>
|
||||
Dado que el objetivo final de la ciencia de datos es poder tomar decisiones basadas en los datos, es posible que queramos utilizar las técnicas de <a href="http://github.com/microsoft/ml-for-beginners">Machine Learning</a> para construir un modelo predictivo. A continuación, podemos utilizarlo para hacer predicciones utilizando nuevos conjuntos de datos con estructuras similares.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
Por supuesto, dependiendo de los datos reales, algunos pasos podrían faltar (por ejemplo, cuando ya tenemos los datos en la base de datos, o cuando no necesitamos el entrenamiento del modelo), o algunos pasos podrían repetirse varias veces (como el procesamiento de datos).
|
||||
|
||||
## Digitalización y transformación digital
|
||||
|
||||
En la última década, muchas empresas han empezado a comprender la importancia de los datos a la hora de tomar decisiones empresariales. Para aplicar los principios de la ciencia de los datos a la gestión de una empresa, primero hay que recopilar algunos datos, es decir, traducir los procesos empresariales a formato digital. Esto se conoce como **digitalización**. La aplicación de técnicas de ciencia de datos a estos datos para orientar las decisiones puede conducir a un aumento significativo de la productividad (o incluso al pivote del negocio), lo que se denomina **transformación digital**.
|
||||
|
||||
Veamos un ejemplo. Supongamos que tenemos un curso de ciencia de datos (como éste) que impartimos en línea a los estudiantes, y queremos utilizar la ciencia de datos para mejorarlo. ¿Cómo podemos hacerlo?
|
||||
|
||||
Podemos empezar preguntándonos "¿Qué se puede digitalizar?". La forma más sencilla sería medir el tiempo que tarda cada alumno en completar cada módulo, y medir los conocimientos obtenidos haciendo un examen de opción múltiple al final de cada módulo. Haciendo una media del tiempo que tardan en completarlo todos los alumnos, podemos averiguar qué módulos causan más dificultades a los estudiantes, y trabajar en su simplificación.
|
||||
|
||||
> Se puede argumentar que este enfoque no es ideal, ya que los módulos pueden tener diferentes longitudes. Probablemente sea más justo dividir el tiempo por la longitud del módulo (en número de caracteres), y comparar esos valores en su lugar.
|
||||
|
||||
Cuando empezamos a analizar los resultados de los exámenes de opción múltiple, podemos intentar determinar qué conceptos les cuesta entender a los alumnos y utilizar esa información para mejorar el contenido. Para ello, tenemos que diseñar los exámenes de forma que cada pregunta se corresponda con un determinado concepto o trozo de conocimiento.
|
||||
|
||||
Si queremos complicarnos aún más, podemos representar el tiempo que se tarda en cada módulo en función de la categoría de edad de los alumnos. Podríamos descubrir que para algunas categorías de edad se tarda un tiempo inadecuado en completar el módulo, o que los estudiantes abandonan antes de completarlo. Esto puede ayudarnos a proporcionar recomendaciones de edad para el módulo, y minimizar la insatisfacción de la gente por expectativas erróneas.
|
||||
|
||||
## 🚀 Challenge
|
||||
|
||||
En este reto, trataremos de encontrar conceptos relevantes para el campo de la Ciencia de los Datos a través de textos. Tomaremos un artículo de Wikipedia sobre la Ciencia de los Datos, descargaremos y procesaremos el texto, y luego construiremos una nube de palabras como esta:
|
||||
|
||||

|
||||
|
||||
Visite [`notebook.ipynb`](notebook.ipynb) para leer el código. También puedes ejecutar el código y ver cómo realiza todas las transformaciones de datos en tiempo real.
|
||||
|
||||
> Si no sabe cómo ejecutar código en un "jupyter notebook", eche un vistazo a [este artículo](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
|
||||
|
||||
|
||||
|
||||
## [Cuestionario después de la lección](https://red-water-0103e7a0f.azurestaticapps.net/quiz/1)
|
||||
|
||||
## Tareas
|
||||
|
||||
* **Tarea 1**: Modifica el código anterior para encontrar conceptos relacionados para los campos de **Big Data** y **Machine Learning**.
|
||||
* **Tarea 2**: [Piensa sobre escenarios de la ciencia de datos](assignment.md)
|
||||
|
||||
## Créditos
|
||||
|
||||
Esta lección ha sido escrita con ♥️ por [Dmitry Soshnikov](http://soshnikov.com)
|
@ -0,0 +1,164 @@
|
||||
# Definitie van Data Science
|
||||
|
||||
|  ](../../../sketchnotes/01-Definitions.png) |
|
||||
| :----------------------------------------------------------------------------------------------------: |
|
||||
| Defining Data Science - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
---
|
||||
|
||||
[](https://youtu.be/beZ7Mb_oz9I)
|
||||
|
||||
## [Starttoets data science](https://red-water-0103e7a0f.azurestaticapps.net/quiz/0)
|
||||
|
||||
## Wat is Data?
|
||||
In ons dagelijks leven zijn we voortdurend omringd door data. De tekst die je nu leest is data. De lijst met telefoonnummers van je vrienden op je smartphone is data, evenals de huidige tijd die op je horloge wordt weergegeven. Als mens werken we van nature met data, denk aan het geld dat we moeten tellen of door berichten te schrijven aan onze vrienden.
|
||||
|
||||
Gegevens werden echter veel belangrijker met de introductie van computers. De primaire rol van computers is om berekeningen uit te voeren, maar ze hebben gegevens nodig om mee te werken. We moeten dus begrijpen hoe computers gegevens opslaan en verwerken.
|
||||
|
||||
Met de opkomst van het internet nam de rol van computers als gegevensverwerkingsapparatuur toe. Als je erover nadenkt, gebruiken we computers nu steeds meer voor gegevensverwerking en communicatie, in plaats van echte berekeningen. Wanneer we een e-mail schrijven naar een vriend of zoeken naar informatie op internet, creëren, bewaren, verzenden en manipuleren we in wezen gegevens.
|
||||
> Kan jij je herinneren wanneer jij voor het laatste echte berekeningen door een computer hebt laten uitvoeren?
|
||||
|
||||
## Wat is Data Science?
|
||||
|
||||
[Wikipedia](https://en.wikipedia.org/wiki/Data_science) definieert **Data Science** als *een interdisciplinair onderzoeksveld met betrekking tot wetenschappelijke methoden, processen en systemen om kennis en inzichten te onttrekken uit (zowel gestructureerde als ongestructureerde) data.*
|
||||
|
||||
Deze definitie belicht de volgende belangrijke aspecten van data science:
|
||||
|
||||
* Het belangrijkste doel van data science is om **kennis** uit gegevens te destilleren, in andere woorden - om data **te begrijpen**, verborgen relaties te vinden en een **model** te bouwen.
|
||||
* Data science maakt gebruik van **wetenschappelijke methoden**, zoals waarschijnlijkheid en statistiek. Toen de term *data science* voor het eerst werd geïntroduceerd, beweerden sommige mensen zelfs dat data science slechts een nieuwe mooie naam voor statistiek was. Tegenwoordig is duidelijk geworden dat het veld veel breder is.
|
||||
* Verkregen kennis moet worden toegepast om enkele **bruikbare inzichten** te produceren, d.w.z. praktische inzichten die je kunt toepassen op echte bedrijfssituaties.
|
||||
* We moeten in staat zijn om te werken met zowel **gestructureerde** als **ongestructureerde** data. We komen later in de cursus terug om verschillende soorten gegevens te bespreken.
|
||||
* **Toepassingsdomein** is een belangrijk begrip, en datawetenschappers hebben vaak minstens een zekere mate van expertise nodig in het probleemdomein, bijvoorbeeld: financiën, geneeskunde, marketing, enz.
|
||||
|
||||
> Een ander belangrijk aspect van Data Science is dat het bestudeert hoe gegevens kunnen worden verzameld, opgeslagen en bediend met behulp van computers. Terwijl statistiek ons wiskundige grondslagen geeft, past data science wiskundige concepten toe om daadwerkelijk inzichten uit gegevens te halen.
|
||||
|
||||
|
||||
Een van de manieren (toegeschreven aan [Jim Gray](https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist))) om naar de data science te kijken, is om het te beschouwen als een apart paradigma van de wetenschap:
|
||||
* **Empirisch**, waarbij we vooral vertrouwen op waarnemingen en resultaten van experimenten
|
||||
* **Theoretisch**, waar nieuwe concepten voortkomen uit bestaande wetenschappelijke kennis
|
||||
* **Computational**, waar we nieuwe principes ontdekken op basis van enkele computationele experimenten
|
||||
* **Data-Driven**, gebaseerd op het ontdekken van relaties en patronen in de data
|
||||
|
||||
## Andere gerelateerde vakgebieden
|
||||
|
||||
Omdat data alomtegenwoordig is, is data science zelf ook een breed vakgebied, dat veel andere disciplines raakt.
|
||||
|
||||
<dl>
|
||||
<dt>Databases</dt>
|
||||
<dd>
|
||||
Een kritische overweging is **hoe de gegevens op te slaan**, d.w.z. hoe deze te structureren op een manier die een snellere verwerking mogelijk maakt. Er zijn verschillende soorten databases die gestructureerde en ongestructureerde gegevens opslaan, welke <a href ="../../../2-Working-With-Data/README.md">we in onze cursus zullen overwegen</a>.
|
||||
</dd>
|
||||
<dt>Big Data</dt>
|
||||
<dd>
|
||||
Vaak moeten we zeer grote hoeveelheden gegevens opslaan en verwerken met een relatief eenvoudige structuur. Er zijn speciale benaderingen en hulpmiddelen om die gegevens op een gedistribueerde manier op een computercluster op te slaan en efficiënt te verwerken.
|
||||
</dd>
|
||||
<dt>Machine learning</dt>
|
||||
<dd>
|
||||
Een manier om gegevens te begrijpen is door **een model** te bouwen dat in staat zal zijn om een gewenste uitkomst te voorspellen. Het ontwikkelen van modellen op basis van data wordt **machine learning** genoemd. Misschien wilt u een kijkje nemen op onze <a href = "https://aka.ms/ml-beginners">Machine Learning for Beginners</a> Curriculum om er meer over te weten te komen.
|
||||
</dd>
|
||||
<dt>kunstmatige intelligentie</dt>
|
||||
<dd>
|
||||
Een gebied van machine learning dat bekend staat als Artificial Intelligence (AI) is ook afhankelijk van gegevens en betreft het bouwen van modellen met een hoge complexiteit die menselijke denkprocessen nabootsen. AI-methoden stellen ons vaak in staat om ongestructureerde data (bijvoorbeeld natuurlijke taal) om te zetten in gestructureerde inzichten.
|
||||
</dd>
|
||||
<dt>visualisatie</dt>
|
||||
<dd>
|
||||
Enorme hoeveelheden gegevens zijn onbegrijpelijk voor een mens, maar zodra we nuttige visualisaties maken met behulp van die gegevens, kunnen we de gegevens beter begrijpen en enkele conclusies trekken. Het is dus belangrijk om veel manieren te kennen om informatie te visualiseren - iets dat we zullen behandelen in <a href="../../../3-Data-Visualization/README.md">Sectie 3</a> van onze cursus. Gerelateerde velden omvatten ook **Infographics** en **Mens-computerinteractie** in het algemeen.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
## Typen van Data
|
||||
|
||||
Zoals we al hebben vermeld, zijn gegevens overal te vinden. We moeten het gewoon op de juiste manier vastleggen! Het is handig om onderscheid te maken tussen **gestructureerde** en **ongestructureerde** data. De eerste wordt meestal weergegeven in een goed gestructureerde vorm, vaak als een tabel of een aantal tabellen, terwijl de laatste slechts een verzameling bestanden is. Soms kunnen we het ook hebben over **semigestructureerde** gegevens, die een soort structuur hebben die sterk kan variëren.
|
||||
|
||||
| Gestructureerde | Semi-gestructureerde | Ongestructureerde |
|
||||
| --------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | ------------------------------------------ |
|
||||
| Lijst van mensen met hun telefoonnummer | Wikipedia pagina's met links | Tekst van encyclopaedia Britannica |
|
||||
| Temperatuur in alle kamers van een gebouw op elke minuut gedurende de laatste 20 jaar | Verzameling van wetenschappelijke artikelen in JSON-formaat met auteurs, publicatiegegevens en een abstract | Bestanden opslag met bedrijfsdocumenten |
|
||||
| Gegevens van leeftijd en geslacht van alle mensen die het gebouw betreden | Internet pagina's | Onbewerkte videofeed van bewakingscamera's |
|
||||
|
||||
## Waar data vandaan te halen
|
||||
|
||||
Er zijn veel mogelijke gegevensbronnen en het zal onmogelijk zijn om ze allemaal op te sommen! Laten we echter enkele van de typische plaatsen noemen waar u gegevens kunt krijgen:
|
||||
|
||||
* **Gestructureerd**
|
||||
- **Internet of Things** (IoT), inclusief data van verschillende sensoren, zoals temperatuur- of druksensoren, leveren veel bruikbare data op. Als een kantoorgebouw bijvoorbeeld is uitgerust met IoT-sensoren, kunnen we automatisch verwarming en verlichting regelen om de kosten te minimaliseren.
|
||||
- **Enquêtes** die we gebruikers vragen in te vullen na een aankoop of na een bezoek aan een website.
|
||||
- **Analyse van gedrag** kan ons bijvoorbeeld helpen begrijpen hoe diep een gebruiker in een website gaat en wat de typische reden is om de site te verlaten.
|
||||
* **Ongestructureerd **
|
||||
- **Teksten** kunnen een rijke bron van inzichten zijn, zoals een algemene **sentimentscore**, of het extraheren van trefwoorden en semantische betekenis.
|
||||
- **Afbeeldingen** of **Video**. Een video van een bewakingscamera kan worden gebruikt om het verkeer op de weg in te schatten en mensen te informeren over mogelijke files.
|
||||
- Webserver **Logs** kunnen worden gebruikt om te begrijpen welke pagina's van onze site het vaakst worden bezocht en voor hoe lang.
|
||||
* Semi-gestructureerd
|
||||
- **Social Network** grafieken kunnen geweldige bronnen van gegevens zijn over gebruikerspersoonlijkheden en potentiële effectiviteit bij het verspreiden van informatie.
|
||||
- Wanneer we een heleboel foto's van een feest hebben, kunnen we proberen **Group Dynamics**-gegevens te extraheren door een grafiek te maken van mensen die met elkaar foto's maken.
|
||||
|
||||
Door verschillende mogelijke databronnen te kennen, kun je proberen na te denken over verschillende scenario's waarin data science technieken kunnen worden toegepast om de situatie beter te leren kennen en bedrijfsprocessen te verbeteren.
|
||||
|
||||
## Wat je met Data kunt doen
|
||||
|
||||
In Data Science richten we ons op de volgende stappen van data journey:
|
||||
|
||||
<dl>
|
||||
<dt>1) Data-acquisitie</dt>
|
||||
<dd>
|
||||
De eerste stap is het verzamelen van de gegevens. Hoewel het in veel gevallen een eenvoudig proces kan zijn, zoals gegevens die vanuit een webapplicatie naar een database komen, moeten we soms speciale technieken gebruiken. Gegevens van IoT-sensoren kunnen bijvoorbeeld overweldigend zijn en het is een goede gewoonte om bufferingseindpunten zoals IoT Hub te gebruiken om alle gegevens te verzamelen voordat ze verder worden verwerkt.
|
||||
</dd>
|
||||
<dt>2) Gegevensopslag</dt>
|
||||
<dd>
|
||||
Het opslaan van gegevens kan een uitdaging zijn, vooral als we het hebben over big data. Wanneer u beslist hoe u gegevens wilt opslaan, is het logisch om te anticiperen op de manier waarop u de gegevens in de toekomst zou opvragen. Er zijn verschillende manieren waarop gegevens kunnen worden opgeslagen:
|
||||
<ul>
|
||||
<li>Een relationele database slaat een verzameling tabellen op en gebruikt een speciale taal genaamd SQL om deze op te vragen. Tabellen zijn meestal georganiseerd in verschillene groepen die schema's worden genoemd. In veel gevallen moeten we de gegevens van de oorspronkelijke vorm converteren naar het schema.</li>
|
||||
<li><a href="https://en.wikipedia.org/wiki/NoSQL">A NoSQL</a> database, zoals <a href="https://azure.microsoft.com/services/cosmos-db/?WT.mc_id=academic-31812-dmitryso">CosmosDB</a>, dwingt geen schema's af op gegevens en maakt het opslaan van complexere gegevens mogelijk, bijvoorbeeld hiërarchische JSON-documenten of grafieken. NoSQL-databases hebben echter niet de uitgebreide querymogelijkheden van SQL en kunnen geen referentiële integriteit afdwingen, d.w.z. regels over hoe de gegevens in tabellen zijn gestructureerd en de relaties tussen tabellen regelen.</li>
|
||||
<li><a href="https://en.wikipedia.org/wiki/Data_lake">Data Lake</a> opslag wordt gebruikt voor grote verzamelingen gegevens in ruwe, ongestructureerde vorm. Data lakes worden vaak gebruikt met big data, waarbij alle data niet op één machine past en moet worden opgeslagen en verwerkt door een cluster van servers. <a href="https://en.wikipedia.org/wiki/Apache_Parquet">Parquet</a> is het gegevensformaat dat vaak wordt gebruikt in combinatie met big data.</li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt>3) Gegevensverwerking</dt>
|
||||
<dd>
|
||||
Dit is het meest spannende deel van het gegevenstraject, waarbij de gegevens van de oorspronkelijke vorm worden omgezet in een vorm die kan worden gebruikt voor visualisatie / modeltraining. Bij het omgaan met ongestructureerde gegevens zoals tekst of afbeeldingen, moeten we mogelijk enkele AI-technieken gebruiken om **functies** uit de gegevens te destilleren en deze zo naar gestructureerde vorm te converteren.
|
||||
</dd>
|
||||
<dt>4) Visualisatie / Menselijke inzichten</dt>
|
||||
<dd>
|
||||
Vaak moeten we, om de gegevens te begrijpen, deze visualiseren. Met veel verschillende visualisatietechnieken in onze toolbox kunnen we de juiste weergave vinden om inzicht te krijgen. Vaak moet een data scientist "spelen met data", deze vele malen visualiseren en op zoek gaan naar wat relaties. Ook kunnen we statistische technieken gebruiken om een hypothese te testen of een correlatie tussen verschillende gegevens te bewijzen.
|
||||
</dd>
|
||||
<dt>5) Het trainen van een voorspellend model</dt>
|
||||
<dd>
|
||||
Omdat het uiteindelijke doel van data science is om beslissingen te kunnen nemen op basis van data, willen we misschien de technieken van <a href="http://github.com/microsoft/ml-for-beginners">Machine Learning</a> gebruiken om een voorspellend model te bouwen. We kunnen dit vervolgens gebruiken om voorspellingen te doen met behulp van nieuwe datasets met vergelijkbare structuren.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
Natuurlijk, afhankelijk van de werkelijke gegevens, kunnen sommige stappen ontbreken (bijvoorbeeld wanneer we de gegevens al in de database hebben opgeslagen of wanneer we geen modeltraining nodig hebben), of sommige stappen kunnen meerdere keren worden herhaald (zoals gegevensverwerking).
|
||||
|
||||
## Digitalisering en digitale transformatie
|
||||
|
||||
In het afgelopen decennium begonnen veel bedrijven het belang van gegevens te begrijpen bij het nemen van zakelijke beslissingen. Om data science-principes toe te passen op het opereren van een bedrijf, moet men eerst wat gegevens verzamelen, d.w.z. bedrijfsprocessen vertalen naar digitale vorm. Dit staat bekend als **digitalisering**. Het toepassen van data science-technieken op deze gegevens om beslissingen te sturen, kan leiden tot aanzienlijke productiviteitsstijgingen (of zelfs zakelijke spil), **digitale transformatie** genoemd.
|
||||
|
||||
Laten we een voorbeeld nemen. Stel dat we een data science-cursus hebben (zoals deze) die we online aan studenten geven, en we willen data science gebruiken om het te verbeteren. Hoe kunnen we dat doen?
|
||||
|
||||
We kunnen beginnen met de vraag "Wat kan worden gedigitaliseerd?" De eenvoudigste manier zou zijn om de tijd te meten die elke student nodig heeft om elke module te voltooien en om de verkregen kennis te meten door aan het einde van elke module een meerkeuzetest te geven. Door het gemiddelde te nemen van de time-to-complete over alle studenten, kunnen we erachter komen welke modules de meeste problemen veroorzaken voor studenten en werken aan het vereenvoudigen ervan.
|
||||
|
||||
> Je zou kunnen stellen dat deze aanpak niet ideaal is, omdat modules van verschillende lengtes kunnen zijn. Het is waarschijnlijk eerlijker om de tijd te delen door de lengte van de module (in aantal tekens) en in plaats daarvan die waarden te vergelijken.
|
||||
|
||||
Wanneer we beginnen met het analyseren van resultaten van meerkeuzetoetsen, kunnen we proberen te bepalen welke concepten studenten moeilijk kunnen begrijpen en die informatie gebruiken om de inhoud te verbeteren. Om dat te doen, moeten we tests zo ontwerpen dat elke vraag is toegewezen aan een bepaald concept of een deel van de kennis.
|
||||
|
||||
Als we het nog ingewikkelder willen maken, kunnen we de tijd die voor elke module nodig is, uitzetten tegen de leeftijdscategorie van studenten. We kunnen erachter komen dat het voor sommige leeftijdscategorieën ongepast lang duurt om de module te voltooien, of dat studenten afhaken voordat ze het voltooien. Dit kan ons helpen leeftijdsaanbevelingen voor de module te geven en de ontevredenheid van mensen over verkeerde verwachtingen te minimaliseren.
|
||||
|
||||
## 🚀 Uitdaging
|
||||
|
||||
In deze challenge proberen we concepten te vinden die relevant zijn voor het vakgebied Data Science door te kijken naar teksten. We nemen een Wikipedia-artikel over Data Science, downloaden en verwerken de tekst en bouwen vervolgens een woordwolk zoals deze:
|
||||
|
||||

|
||||
|
||||
Ga naar ['notebook.ipynb'](notebook.ipynb) om de code door te lezen. Je kunt de code ook uitvoeren en zien hoe alle gegevenstransformaties in realtime worden uitgevoerd.
|
||||
|
||||
> Als je niet weet hoe je code in een Jupyter Notebook moet uitvoeren, kijk dan eens naar [dit artikel](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
|
||||
|
||||
## [Post-lecture quiz](https://red-water-0103e7a0f.azurestaticapps.net/quiz/1)
|
||||
|
||||
## Opdrachten
|
||||
|
||||
* **Taak 1**: Wijzig de bovenstaande code om gerelateerde concepten te achterhalen voor de velden **Big Data** en **Machine Learning**
|
||||
* **Taak 2**: [Denk na over Data Science-scenario's] (assignment.md)
|
||||
|
||||
## Credits
|
||||
|
||||
Deze les is geschreven met ♥️ door [Dmitry Soshnikov] (http://soshnikov.com)
|
@ -0,0 +1,165 @@
|
||||
# Definindo Ciências de Dados
|
||||
|
||||
| ](../../../sketchnotes/01-Definitions.png)|
|
||||
|:---:|
|
||||
|Definindo Ciências de Dados - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
---
|
||||
|
||||
[](https://youtu.be/pqqsm5reGvs)
|
||||
|
||||
## [Quiz pré-aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/0)
|
||||
|
||||
## O que são Dados?
|
||||
Na nossa vida cotidiana, nós estamos constantemente cercados por dados. O texto que você está lendo agora é um dado, a lista de telefones dos seus amigos no seu celular é um dado, assim como o horário atual mostrado no seu relógio. Como seres humanos, nós operamos naturalmente com dados. contando o dinheiro que temos ou escrevendo cartas para os nossos amigos.
|
||||
|
||||
No entanto, os dados se tornaram muito mais críticos com a criação de computadores. O papel principal dos computadores é realizar computações, mas eles precisam de dados para operar sobre. Portanto, nós precisamos entender como os computadores armazenam e processam dados.
|
||||
|
||||
Com o surgimento da Internet, o papel dos computadores como dispositivos de manipulação de dados aumentou. Se você parar para pensar, agora nós usamos computadores cada vez mais para processamento de dados e comunicação, ao invés de cálculos reais. Quando escrevemos um e-mail para um amigo ou procuramos por alguma informação na Internet - nós estamos essencialmente criando, armazenando, transmitindo, e manipulando dados.
|
||||
> Você consegue se lembrar da última vez que usou computadores para de fato computar algo?
|
||||
|
||||
## O que é Ciência de Dados?
|
||||
|
||||
Na [Wikipedia (PT-BR)](https://pt.wikipedia.org/wiki/Ci%C3%AAncia_de_dados), **Ciência de Dados** é definida como *uma área interdisciplinar voltada para o estudo e a análise de dados econômicos, financeiros e sociais, estruturados e não-estruturados, que visa a extração de conhecimento, detecção de padrões e/ou obtenção de insights para possíveis tomadas de decisão*.
|
||||
|
||||
Essa definição destaca os seguintes aspectos importantes da ciência de dados:
|
||||
|
||||
* O principal objetivo da ciência de dados é **extrair conhecimento** dos dados, em outras palavras - **entender** os dados, encontrar alguma relação escondida e construir um **modelo**.
|
||||
* Ciência de dados utiliza **métodos científicos**, como probabilidade e estatística. Na verdade, quando o termo *ciência de dados* foi introduzido pela primeira vez, algumas pessoas argumentaram que ciência de dados é apenas um nome chique para estatística. Hoje em dia ficou mais evidente que esse campo é muito mais amplo.
|
||||
* Conhecimento adquirido deve ser aplicado para produzir algum **insight para possível tomada de decisão**.
|
||||
* Nós devemos ser capazes de operar tanto nos dados **estruturados** quanto nos **não estruturados**. Nós voltaremos a discutir diferentes tipos de dados mais para a frente no curso.
|
||||
* **Domínio de aplicação** é um conceito importante, e cientistas de dados frequentemente precisam de pelo menos algum grau de perícia no domínio do problema.
|
||||
|
||||
> Outro importante aspecto da Ciência de Dados é que ela estuda como os dados podem ser coletados, armazenados e operados por meio de computadores. Enquanto estatística nos fornece fundações matemáticas, ciência de dados aplica conceitos matemáticos para de fato desenhar percepções a partir dos dados.
|
||||
|
||||
Uma das formas (atribuída a [Jim Gray](https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist))) para olhar para ciência de dados é considerar que ela é um paradigma separado da ciência:
|
||||
* **Empírico**, onde nos baseamos majoritariamente nas observações e resultados dos experimentos
|
||||
* **Teórico**, onde novos conceitos surgem a partir de conhecimentos cientificos já existentes
|
||||
* **Computacional**, onde nós descobrimos novos princípios baseado em algum experimento computacional
|
||||
* **Orientado por Dados**, baseado na descoberta de relações e padrões nos dados
|
||||
|
||||
## Outros Campos Relacionados
|
||||
|
||||
Já que dados são um conceito difundido, a ciência de dados em si também é um campo amplo, abrangendo muitas outras disciplinas relacionadas.
|
||||
|
||||
<dl>
|
||||
<dt>Banco de Dados</dt>
|
||||
<dd>
|
||||
A coisa mais óbvia a considerar é **como armazenar** os dados, ex. como estruturá-los de uma forma que permite um processamento rápido. Existem diferentes tipos de banco de dados que armazenam dados estruturados e não estruturados, que <a href="../../../2-Working-With-Data/README.md">nós vamos considerar nesse curso</a>.
|
||||
</dd>
|
||||
<dt>Big Data</dt>
|
||||
<dd>
|
||||
Frequentemente precisamos armazenar e processar quantidades muito grandes de dados com estruturas relativamente simples. Existem algumas abordagens e ferramentas especiais para armazenar esses dados de uma forma distribuída em um cluster de computer, e processá-los de forma eficiente.
|
||||
</dd>
|
||||
<dt>Aprendizado de Máquina</dt>
|
||||
<dd>
|
||||
Uma das maneiras de entender dados é **construir um modelo** que será capaz de predizer o resultado esperado. Ser capaz de aprender esses modelos a partir de dados é a área estudada em **aprendizado de máquina**. Você talvez queira olhar o nosso Currículo de <a href="https://aka.ms/ml-beginners">Aprendizado de Máquina para Iniciantes</a> para ir mais a fundo nessa área.
|
||||
</dd>
|
||||
<dt>Inteligência Artificial</dt>
|
||||
<dd>
|
||||
Como aprendizado de máquina, inteligência artificial também se baseia em dados, e envolve construir modelos de alta complexidade que irão exibir um comportamento similar ao dos seres humanos. Além disso, métodos de IA frequentemente nos permite transformar dados não estruturados (ex. linguagem natural) em dados estruturados extraindo algumas percepções.
|
||||
</dd>
|
||||
<dt>Visualização</dt>
|
||||
<dd>
|
||||
Vastas quantidades de dados são incompreensíveis para o ser humano, mas uma vez que criamos visualizações úteis - nós podemos começar a dar muito mais sentido aos dados, e desenhar algumas conclusões. Portanto, é importante conhecer várias formas de visualizar informação - algo que vamos cobrir na <a href="../../../3-Data-Visualization/README.md">Seção 3</a> do nosso curso. Áreas relacionadas também incluem **Infográficos**, e **Interação Humano-Computador** no geral.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
## Tipos de Dados
|
||||
|
||||
Como nós já mencionamos - dados estão em todos os lugares, nós só precisamos coletá-los da maneira certa! É útil distinguir entre dados **estruturados** e **não estruturados**. Os primeiros são tipicamente representados em alguma forma bem estruturado, frequentemente como uma ou várias tabelas, enquanto o segundo é apenas uma coleção de arquivos. Algumas vezes nós também podemos falar de dados **semi estruturados**, que possuem alguma estrutura que pode variar muito.
|
||||
|
||||
| Estruturado | Semi-estruturado | Não estruturado |
|
||||
|----------- |-----------------|--------------|
|
||||
| Lista de pessoas com seus números de telefones | Páginas da Wikipédia com links | Texto da Encyclopædia Britannica |
|
||||
| Temperatura de todos os quartos de um prédio a cada minuto nos últimos 20 anos | Coleções de artigos cientificos em formato JSON com autores, datas de publicação, e abstract | Compartilhamento de arquivos com documentos corporativos |
|
||||
| Dados para idades e gêneros de todas as pessoas entrando em um prédio | Páginas da Internet | Feed de vídeo bruto da câmera de vigilância |
|
||||
|
||||
## Onde conseguir Dados
|
||||
|
||||
Existem muitas fontes possíveis de dados, e será impossível listar todas elas. No entanto, vamos mencionar alguns dos lugares típicos onde você pode obter dados:
|
||||
|
||||
* **Estruturado**
|
||||
- **Internet das Coisas**, incluindo dados de diferentes sensores, como sensores de temperatura ou de pressão, fornece muitos dados úteis. Por exemplo, se um escritório de um prédio é equipado com sensores IoT, nós podemos automaticamente controlar o aquecimento e a iluminação com o objetivo de minimizar custos.
|
||||
- **Pesquisas** que podemos fazer para os usuários depois de uma compra, ou visitar um web site.
|
||||
- **Análise de comportamento** pode, por exemplo, nos ajudar a entender o quão longe um usuário vai dentro de um site, e qual tipicamente é a razão para deixar um site.
|
||||
* **Não estruturado**
|
||||
- **Textos** podem ser uma fonte rica de insights, começando da **pontuação geral de sentimento** (sentiment score), até a extração de palavras chaves e até algum significado semântico.
|
||||
- **Imagens** ou **Vídeo**. Um vídeo de uma câmera de vigilância pode ser usado para estimar o tráfico na rua, e informar as pessoas sobre possíveis engarrafamentos.
|
||||
- **Logs** de servidores web pode ser usado para entender quais páginas do nosso site são mais visitadas, e por quanto tempo.
|
||||
* Semi-estruturado
|
||||
- Grafos das **Redes Sociais** podem ser uma boa fonte de dados sobre a personalidade do usuário e a eficácia potencial em espalhar informações.
|
||||
- Quando nós temos um monte de fotos de uma festa, nós podemos tentar extrair dados sobre **Dinâmicas de Grupo** construindo um grafo de pessoas tirando fotos umas das outras.
|
||||
|
||||
Conhecendo as diferentes fontes possíveis de dados, você pode tentar pensar sobre diferentes cenários onde técnicas de ciência de dados podem ser aplicadas para conhecer a situação melhor, e melhorar o processo de negócio.
|
||||
|
||||
## O que você pode fazer com Dados
|
||||
|
||||
Em Ciência de Dados, nós focamos em seguir os passos da jornada dos dados:
|
||||
|
||||
<dl>
|
||||
<dt>1) Aquisição de Dados</dt>
|
||||
<dd>
|
||||
Primeiro passo é coletar os dados. Enquanto em muitos casos isso pode ser um processo direto, como dados vindo para um banco de dados a partir de uma aplicação web, algumas vezes nós precisamos usar técnicas especiais. Por exemplo, dados de sensores de IoT podem ser muito pesados, e é uma boa prática usar buffering endpoints como Hub de IoT para coletar todos os dados antes de processá-los.
|
||||
</dd>
|
||||
<dt>2) Armazenamento de Dados</dt>
|
||||
<dd>
|
||||
Armazenar os dados pode ser desafiador, especialmente se estamos falando de big data. Enquanto decide como armazenar os dados, faz sentido antecipar a forma como você gostaria de consultá-los mais tarde. Existem diversas formas de como os dados podem ser armazenados:
|
||||
<ul>
|
||||
<li> Bancos de dados relacionais armazenam uma coleção de tabelas, e utilizam uma linguagem especial chamada SQL para consultá-los. Tipicamente, tabelas seriam conectadas umas às outras usando algum schema. Em vários casas nós precisamos converter os dados da forma original para ajustar al schema.</li>
|
||||
<li>Bancos de dados <a href="https://en.wikipedia.org/wiki/NoSQL">NoSQL</a>, como <a href="https://azure.microsoft.com/services/cosmos-db/?WT.mc_id=acad-31812-dmitryso">CosmosDB</a>, não impõe schema nos dados, e permite o armazenamento de dados mais complexos, como por exemplo, documentos hierárquicos JSON ou grafos. No entanto, bancos de dados NoSQL não possuem a capacidade rica de consulta do SQL, e não podem impor integridade referencial entre os dados.</li>
|
||||
<li>Armazenamento em <a href="https://en.wikipedia.org/wiki/Data_lake">Data Lake</a> é usado para grandes coleções de dados na forma bruta. Data lakes são frequentemente usados para big data, onde todos não podem se encaixar em uma máquina, e precisam ser armazenados e processados por um cluster. <a href="https://en.wikipedia.org/wiki/Apache_Parquet">Parquet</a> é o formato de dado que é frequentemente usado em conjunção com big data.</li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt>3) Processamento de Dados</dt>
|
||||
<dd>
|
||||
Esse é a parte mais emocionante da jornada dos dados, que envolve processar os dados de sua forma original para a forma que pode ser usada para visualização/treinamento do modelo. Quando lidando com dados não estruturados como textos ou imagens, nós podemos precisar de algumas técnicas de IA para extrair **features** dos dados, convertendo-os então para a forma estruturada.
|
||||
</dd>
|
||||
<dt>4) Visualização / Percepções Humanas</dt>
|
||||
<dd>
|
||||
Frequentemente para entender os dados precisamos visualizar eles. Tendo várias técnicas de visualização diferentes na nossa caixa de ferramentas, nós podemos encontrar a visualização certa para termos um insight. Frequentemente, cientistas de dados precisam "brincar com dos dados", visualizando-os várias vezes e procurando alguma relação. Também, nós podemos usar algumas técnicas de estatísticas para testar alguma hipótese ou provar uma correlação entre pedaços diferentes de dados.
|
||||
</dd>
|
||||
<dt>5) Treinando modelos preditivos</dt>
|
||||
<dd>
|
||||
Já que o maior objetivo da ciência de dados é ser capaz de tomar decisões baseadas em dados, nós podemos querer usar técnicas de <a href="http://github.com/microsoft/ml-for-beginners">Aprendizando de Máquina</a> para construir modelos preditivos que serão capazes de resolver nosso problema.
|
||||
</dd>
|
||||
</dl>
|
||||
|
||||
Claro, dependendo dos dados em si alguns passos podem ser ignorados (ex., quando já temos os dados em nosso banco de dados, ou quando não precisamos treinar o modelo), ou repetidos várias vezes (como processamento de dados).
|
||||
|
||||
## Digitalização e Transformação Digital
|
||||
|
||||
Na última década, muitos negócios começaram a entender a importância dos dados para fazer uma decisão de negócio. Para aplicar os princípios da ciência de dados para gerenciar um negócio é necessário coletar alguns dados, ex. transformar de alguma forma processos de negócio em formato digital. Isso é conhecido como **digitalização**, seguido pelo uso técnicas de ciência de dados para guiar as decisões frequentemente leva a um aumento significante da produtividade (ou mesmo pivô de negócios), chamado de **transformação digital**.
|
||||
|
||||
Vamos considerar um exemplo. Suponha que temos um curso de ciência de dados (como esse), que é feito online pelos estudantes, e que queremos usar ciência de dados para melhorá-lo. Como podemos fazer isso?
|
||||
|
||||
Nós podemos começar pensando "o que pode ser digitalizado?". A maneira mais simples seria medir o tempo que cada estudante leva para completar cada módulo, e o conhecimento obtido (ex. dando questões de múltipla escolha no final de cada módulo). Tendo a média que todos os estudantes levam para completar, nós podemos descobrir quais módulos causam mais problemas para os estudantes, e trabalhar para simplificá-los.
|
||||
|
||||
> Você pode argumentar que essa abordagem não é ideal, pois os módulos podem ter tamanhos diferentes. Provavelmente seria mais justo dividir o tempo pelo tamanho do módulo (em número de caracteres), e comparar esses valores.
|
||||
|
||||
Quando começamos a analisar os resultados das questões de múltipla escolha, nós podemos tentar descobrir conceitos específicos que os estudantes não entendem muito bem, e melhorar o conteúdo. Para fazer isso nós precisamos fazer questões de uma forma que cada questão mapeia para um certo conteúdo ou conhecimento.
|
||||
|
||||
Se nós quiséssemos complicar ainda mais, nós podemos "plotar" o tempo levado para cada módulo em relação à categoria de idade de cada estudante. Nós podemos descobrir que alguma categoria de idade leva um tempo inapropriadamente longo para completar o módulo, ou os estudantes que abandonam em um certo ponto. Isso pode nos ajudar a fornecer recomendações de idade para o módulo, e minimizar a insatisfação das pessoas para expectativas erradas.
|
||||
|
||||
## 🚀 Desafio
|
||||
|
||||
Nesse desafio, nós vamos tentar encontrar conceitos relevantes para a área de Ciência de Dados olhando textos. Nós vamos pegar um artigo da Wikipedia sobre Ciência de Dados, baixar e processar o texto, e então construir uma nuvem de palavras como essa:
|
||||
|
||||

|
||||
|
||||
Visite [`notebook.ipynb`](../notebook.ipynb) para ler o código. Você também pode rodar esse código, e ver como ele performa toda a transformação de dados em tempo real.
|
||||
|
||||
> Se você não sabe como rodar códigos no Jupyter Notebook, dê uma olhada [nesse artigo](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
|
||||
|
||||
|
||||
|
||||
## [Quiz pós-aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/1)
|
||||
|
||||
## Tarefas
|
||||
|
||||
* **Tarefa 1**: Modifique o código acima para descobrir conceitos relacionados para as áreas de **Big Data** e **Aprendizado de Máquina**
|
||||
* **Tarefa 2**: [Pense Sobre Cenários de Ciência de Dados](assignment.pt-br.md)
|
||||
|
||||
## Créditos
|
||||
|
||||
Essa aula foi autorado com ♥️ por [Dmitry Soshnikov](http://soshnikov.com)
|
@ -0,0 +1,32 @@
|
||||
# Tarea: Escenarios de la ciencia de datos
|
||||
|
||||
En esta primera tarea, os pedimos pensar sobre algún problema o proceso de la vida real en distintos contextos, y como se podrían solucionar o mejorar utilizando procesos de ciencia de datos. Piensa en lo siguiente:
|
||||
|
||||
1. ¿Qué datos puedes obtener?
|
||||
1. ¿Cómo los obtendrías?
|
||||
1. ¿Cómo los almacenarías? ¿Qué tamaño es podemos esperar que tengan los datos?
|
||||
1. ¿Qué información podrías ser capaz de extraer de estos datos? ¿qué decisiones podríamos tomar basándonos en ellos?
|
||||
|
||||
Intenta pensar en 3 diferentes problemas/procesos y describe cada uno de los puntos de arriba para el contexto de cada problema.
|
||||
|
||||
Estos son algunos problemas o contextos que pueden ayudarte a empezar a pensar:
|
||||
|
||||
1. ¿Cómo se pueden usar los datos para mejorar el proceso de educación de niños en los colegios?
|
||||
1. ¿Cómo podemos usar los datos para controlar la vacunación durante la pandemia?
|
||||
1. ¿Cómo se pueden usar los datos para asegurarnos de que somos productivos en nuestro trabajo?
|
||||
|
||||
## Instrucciones
|
||||
|
||||
Rellena la siguiente table (sustituye los problemas sugeridos por los propuestos por tí si es necesario):
|
||||
|
||||
| Contexto del problema | Problema | Qué datos obtener | Cómo almacenar los datos | Qué información/decisiones podemos tomar |
|
||||
|----------------|---------|-----------------------|-----------------------|--------------------------------------|
|
||||
| Educación | | | | |
|
||||
| Vacunación | | | | |
|
||||
| Productividad | | | | |
|
||||
|
||||
## Rúbrica
|
||||
|
||||
Ejemplar | Adecuada | Necesita mejorar
|
||||
--- | --- | -- |
|
||||
Es capaz de indentificar fuentes de datos razonables, formas de almacenarlos y posibles decisiones/información para todos los contextos | Algunos aspectos de la solución no están detallados, no se habla sobre el almacenamiento de los datos, al menos se describen dos contextos distintos | Solo se describen partes de la solución, solo se considera un contexto.
|
@ -0,0 +1,31 @@
|
||||
# असाइनमेंट: डाटा साइंस के परिदृश्य
|
||||
|
||||
इस असाइनमेंट मे हम चाहते हैं कि आप कुछ असल ज़िंदगी की दिक्कतें या क्रिया-कलाप सोचें विभिन्न क्षेत्रों मे, और फिर सोचें कि इसको हम डाटा साइंस के प्रयोग से कैसे सुधार सकते हैं| इन चीजों के बारे मे सोचें:
|
||||
|
||||
1. आप कौनसी डाटा इकट्ठा कर सकते हैं?
|
||||
1. आप उसको कैसे इकट्ठा करेंगे?
|
||||
1. आप उस डाटा को कैसे संग्रहीत करेंगे? वो डाटा कितनी बड़ी होगी?
|
||||
1. अस डाटा से आपको क्या अनुमान मिलेगा? उस डाटा के आधार पर आप क्या निर्णय ले सकते हैं?
|
||||
|
||||
किन्ही 3 अलग दिक्कत या क्रिया-कलाप के बारे मे सोचे का प्रयास करें और ऊपर लिखे हर पॉइंट को अलग कार्यक्षेत्र के लिए वर्णित कीजिए|
|
||||
|
||||
यहा कुछ कार्यक्षेत्र और दिक्कतें लिखी हैं जिनकी मदद से आप सोचना शुरू कर सकते हैं:
|
||||
|
||||
1. आप डाटा का प्रयोग करके विद्यालय जा रहे बच्चों की शिक्षा कैसे सुधार सकते हैं?
|
||||
1. आप डाटा का प्रयोग करके महामारी के समय मे टीकाकरण कैसे नियंत्रित कर सकते हैं?
|
||||
1. आप डाटा का प्रयोग करके अपने काम मे कैसे और उत्पादक बन सकते हैं?
|
||||
## निर्देश:
|
||||
|
||||
निम्नलिखित मेज को भरें (अपने विकल्प सुझावित क्षेत्रों की जगह लिखें अगर जरूरत हो तो):
|
||||
|
||||
| समस्या डोमेन | समस्या | कॉनसी डाटा संग्रहीत करनी है | डाटा को कैसे संग्रहीत करना है | कॉन्से निर्णय ले सकते हैं |
|
||||
|----------------|---------|-----------------------|-----------------------|--------------------------------------|
|
||||
| शिक्षा | | | | |
|
||||
| टीकाकरण | | | | |
|
||||
| उत्पादकता | | | | |
|
||||
|
||||
## सरनामा
|
||||
|
||||
अनुकरणीय | पर्याप्त | सुधार चाहिए
|
||||
--- | --- | -- |
|
||||
डाटा के स्तोत्र को पहचानने मे, उसको भंडारित मे और निर्णय लेने मे सक्षम थे | समाधान के कुछ हिस्से विस्तृत नहीं हैं, डाटा को संग्रहीत करना नहीं बताया गया है, कम से कम दो क्षेत्रों का वर्णन है | समाधान के सिर्फ कुछ ही हिस्सों का वर्णन है, सिर्फ एक क्षेत्र पर विचार किया है|
|
@ -0,0 +1,33 @@
|
||||
# Opdracht: Data Science Scenarios
|
||||
|
||||
In deze eerste opdracht vragen we je na te denken over processen of problemen van verschillende aspecten van het echte leven. Om vervolgens na te denken over hoe je deze kan verbeteren met Data Science. Denk bijvoorbeeld aan;
|
||||
|
||||
1. Welke data kan ik verzamelen
|
||||
2. Hoe kan ik deze data verzamelen?
|
||||
3. Hoe wil ik deze data opslaan? Hoe groot zal de hoeveelheid data worden?
|
||||
4. Wat voor inzichten wil ik krijgen op deze data? Welke beslissingen kan ik gaan maken aan de hand van deze data?
|
||||
|
||||
Probeer 3 verschillende problemen/processen te bedenken, en beschrijf voor elk van deze items het onderwerp van het probleem.
|
||||
|
||||
Hier zijn wat voorbeeld onderwerpen om je in de goede richting te helpen:
|
||||
|
||||
1. Hoe kan ik data gebruiken om het leertraject van kinderen op school te verbeteren?
|
||||
2. Hoe kan ik data gebruiken om controle te krijgen op het vaccinatieprocess tijdens de pandemie?
|
||||
3. Hoe kan ik data gebruiken om inzicht te krijgen in mijn productiviteit op het werk?
|
||||
|
||||
|
||||
## Instructies
|
||||
|
||||
Vul de volgende tabel in (vul je eigen onderwerp in, indien nodig):
|
||||
|
||||
| Probleem Onderwerp | Probleem | Welke data te verzamelen | Hoe de data te verzamelen | Welke inzichten/beslissingen wil ik maken |
|
||||
|----------------|---------|-----------------------|-----------------------|--------------------------------------|
|
||||
| Onderwijs | | | | |
|
||||
| Vaccinaties | | | | |
|
||||
| Productiviteit | | | | |
|
||||
|
||||
## Rubriek
|
||||
|
||||
Uitstekend | Adequaat | Vereist verbetering
|
||||
--- | --- | -- |
|
||||
Men kon voldoende databronnen vinden, deze juist opslaan en hier de juiste inzichten aan ontlenen voor alle probleemstellingen. | Sommige aspecten van de oplssing zijn niet concreet, de data opslag is niet gedefinieerd, tenminste 2 van de probleemstellingen zijn besproken. | Enkel onderdelen vand e oplossing zijn beschreven, slechts een van de probleemstellingen is besproken.
|
@ -0,0 +1,31 @@
|
||||
# Tarefa: Cenários de Ciência de Dados
|
||||
|
||||
Nessa primeira tarefa, nós pedimos que você pense sobre algum processo ou problema da vida real em diferentes domínios de problemas, e como você pode melhorar isso usando o processo de Ciência de Dados: Pense sobre:
|
||||
|
||||
1. Quais dados você pode coletar?
|
||||
1. Como você coletaria os dados?
|
||||
1. Como você armazenaria os dados? O quão grande os dados provavelmente são?
|
||||
1. Quais insights você pode ter a partir desses dados? Quais decisões nós podemos fazer baseando-se nos dados?
|
||||
|
||||
Tente pensar sobre 3 diferentes problemas/processos e descreva cada um dos pontos acimas para cada domínio de problemas.
|
||||
|
||||
Aqui estão alguns dos domínio de problemas e problemas que podem te ajudar a começar a pensar:
|
||||
|
||||
1. Como você usa dados para melhorar o processo de educação para crianças nas escolas?
|
||||
1. Como você usa dados para controlar vacinação em uma pandemia?
|
||||
1. Como você usa dados para garantir que você está sendo produtivo no trabalho?
|
||||
## Instruções
|
||||
|
||||
Preencha a seguinte tabela (substitua os domínios de problemas sugeridos pelos os seus próprios se necessário):
|
||||
|
||||
| Domínio de Problema | Problema | Quais dados a serem coletados | Como armazenar os dados | Quais insights/decisões nós podemos fazer |
|
||||
|----------------|---------|-----------------------|-----------------------|--------------------------------------|
|
||||
| Educação | | | | |
|
||||
| Vacinação | | | | |
|
||||
| Produtividade | | | | |
|
||||
|
||||
## Rubrica
|
||||
|
||||
Exemplar | Adequado | Precisa melhorar
|
||||
--- | --- | -- |
|
||||
Um foi capaz de identificar fontes de dados razoáveis, formas de armazenar dados e possíveis insights/decisões para todos os domínios de problema | Alguns dos aspectos da solução não estão detalhados, armazenamento de dados não é discutido, pelo menos 2 domínios de problemas são descritos | Apenas parte da solução de dados são descritas, apenas um domínio de problema é considerado.
|
@ -0,0 +1,260 @@
|
||||
# डेटा नैतिकता का परिचय
|
||||
|
||||
| ](../../../sketchnotes/02-Ethics.png)|
|
||||
|:---:|
|
||||
| डेटा विज्ञान नैतिकता - _[@nitya](https://twitter.com/nitya) द्वारा स्केचनोट_ |
|
||||
|
||||
---
|
||||
|
||||
हम सब इस डाटा-फाइड दुनिया में रहने वाले डाटा-नागरिक है |
|
||||
|
||||
बाजार के रुझान यह दर्शाते हैं कि २०२२ तक, तीन में से एक बड़ी संस्था अपना डाटा कि खरीद और बेचना ऑनलाइन [दुकानों](https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/) द्वारा करेंगी | **ऐप डेवलपर** के रूप में, हम डेटा-संचालित अंतर्दृष्टि और एल्गोरिथम-चालित स्वचालन को दैनिक उपयोगकर्ता अनुभवों में एकीकृत करना आसान और सस्ता पाएंगे। लेकिन जैसे-जैसे AI व्यापक होता जाएगा, हमें इस तरह के एल्गोरिदम के [हथियारीकरण](https://www.youtube.com/watch?v=TQHs8SA1qpk) से होने वाले संभावित नुकसान को भी समझना होगा ।
|
||||
|
||||
रुझान यह भी संकेत देते हैं कि हम २०२५ तक [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) डेटा का निर्माण और उपभोग करेंगे । **डेटा वैज्ञानिक** के रूप में, यह हमें व्यक्तिगत डेटा तक पहुंचने के लिये अभूतपूर्व स्तर प्रदान करता है । इसका मतलब है कि हम उपयोगकर्ताओं के व्यवहार संबंधी प्रोफाइल बना सकते हैं और निर्णय लेने को इस तरह से प्रभावित कर सकते हैं जो संभावित रूप से एक [मुक्त इच्छा का भ्रम](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) पैदा करता है जब्कि वह उपयोगकर्ताओं को हमारे द्वारा पसंद किए जाने वाले परिणामों की ओर आकर्षित करना । यह डेटा गोपनीयता और उपयोगकर्ता की सुरक्षा पर भी व्यापक प्रश्न उठाता है ।
|
||||
|
||||
डेटा नैतिकता अब डेटा विज्ञान और इंजीनियरिंग का _आवश्यक रक्षक_ हैं, जिससे हमें अपने डेटा-संचालित कार्यों से संभावित नुकसान और अनपेक्षित परिणामों को नीचे रखने में मदद मिलती है । [AI के लिए गार्टनर हाइप साइकिल](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) डिजिटल नैतिकता में उचित रुझानों की पहचान करता है AI के _democratization_ और _industrialization_ के आसपास बड़े मेगाट्रेंड के लिए प्रमुख ड्राइवर के रूप में जिम्मेदार AI की ज़िम्मेदारी और AI शासन ।
|
||||
|
||||
|
||||

|
||||
|
||||
इस पाठ में, हम डेटा नैतिकता के आकर्षक क्षेत्र के बारे में सीखेंगे - मूल अवधारणाओं और चुनौतियों से लेकर केस-स्टडी और शासन जैसी एप्लाइड AI अवधारणाओं तक - जो डेटा और AI के साथ काम करने वाली समूह और संगठनों में नैतिकता संस्कृति स्थापित करने में मदद करते हैं ।
|
||||
|
||||
## [पाठ से पहले की प्रश्नोत्तरी](https://red-water-0103e7a0f.azurestaticapps.net/quiz/2) 🎯
|
||||
|
||||
## मूल परिभाषाएं
|
||||
|
||||
आइए बुनियादी शब्दावली को समझना शुरू करें ।
|
||||
|
||||
"नैतिकता" [ग्रीक शब्द "एथिकोस"](https://en.wikipedia.org/wiki/Ethics) (और इसकी जड़ "एथोस") से आया है जिसका अर्थ _चरित्र या नैतिक प्रकृति_ होता है ।
|
||||
|
||||
**नैतिकता** उन साझा मूल्यों और नैतिक सिद्धांतों के बारे में है जो समाज में हमारे व्यवहार को नियंत्रित करते हैं । नैतिकता कानूनों पर नहीं बल्कि "सही बनाम गलत" के व्यापक रूप से स्वीकृत मानदंड पर आधारित है । लेकिन , नैतिक विचार कॉर्पोरेट प्रशासन की पहल और अनुपालन के लिए अधिक प्रोत्साहन पैदा करने वाले सरकारी नियमों को प्रभावित कर सकते हैं ।
|
||||
|
||||
**डेटा नैतिकता** एक [नैतिकता की नई शाखा](https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0360#sec-1) है जो "_डेटा, एल्गोरिदम और से संबंधित नैतिक समस्याओं का अध्ययन और मूल्यांकन करती है_" । यहां, **"डेटा"** - निर्माण, रिकॉर्डिंग, अवधि, प्रसंस्करण प्रसार, साझाकरण और उपयोग से संबंधित कार्यों पर केंद्रित है, **"एल्गोरिदम"** AI , एजेंटों, मशीन लर्निंग और रोबोटो पर केंद्रित है, और ** "अभ्यास"** जिम्मेदार नवाचार, प्रोग्रामिंग, हैकिंग और नैतिकता कोड जैसे विषयों पर केंद्रित है ।
|
||||
|
||||
**एप्लाइड नैतिकता** [नैतिक विचारों का व्यावहारिक अनुप्रयोग](https://en.wikipedia.org/wiki/Applied_ethics) है । यह _वास्तविक दुनिया की कार्रवाइयों, उत्पादों और प्रक्रियाओं_ के संदर्भ में नैतिक मुद्दों की सक्रिय रूप से जांच करने और सुधारात्मक उपाय करने की प्रक्रिया है ताकि ये हमारे परिभाषित नैतिक मूल्यों के साथ संरेखित रहें ।
|
||||
|
||||
**नैतिकता संस्कृति** यह सुनिश्चित करने के लिए [_operationalizing_ एप्लाइड नैतिकता](https://hbr.org/2019/05/how-to-design-an-ethical-organization) के बारे में है कि हमारे नैतिक सिद्धांतों और प्रथाओं को पूरे संगठन में एक सुसंगत और मापनीय तरीके से अपनाया जाए । सफल नैतिक संस्कृतियाँ संगठन-व्यापी नैतिक सिद्धांतों को परिभाषित करती हैं, अनुपालन के लिए सार्थक प्रोत्साहन प्रदान करती हैं, और संगठन के हर स्तर पर वांछित व्यवहारों को प्रोत्साहित और प्रवर्धित करके नैतिक मानदंडों को सुदृढ़ करती हैं ।
|
||||
|
||||
|
||||
## नैतिकता की अवधारणाएं
|
||||
|
||||
इस खंड में, हम डेटा नैतिकता के लिए साझा मूल्यों (सिद्धांतों) और नैतिक चुनौतियों (समस्याओं) जैसी अवधारणाओं पर चर्चा करेंगे - और मामले के अध्ययन का पता लगाएंगे जो आपको वास्तविक दुनिया के संदर्भों में इन अवधारणाओं को समझने में मदद करते हैं ।
|
||||
|
||||
### 1. नैतिक सिद्धांत
|
||||
|
||||
प्रत्येक डेटा नैतिकता रणनीति _नैतिक सिद्धांतों_ को परिभाषित करके शुरू होती है - "साझा मूल्य" जो स्वीकार्य व्यवहारों का वर्णन करते हैं, और हमारे डेटा और AI परियोजनाओं में अनुपालन कार्यों का मार्गदर्शन करते हैं । लेकिन, अधिकांश बड़े संगठन इन्हें एक _नैतिक AI_ मिशन स्टेटमेंट या फ्रेमवर्क में रेखांकित करते हैं जो कॉर्पोरेट स्तर पर परिभाषित होता है और सभी टीमों में लगातार लागू होता है ।
|
||||
|
||||
**उदाहरण:** माइक्रोसॉफ्ट की [Responsible AI](https://www.microsoft.com/en-us/ai/responsible-ai) मिशन स्टेटमेंट कहती है : _"हम नैतिक सिद्धांतों द्वारा संचालित AI की उन्नति के लिए प्रतिबद्ध हैं जो लोगों को सबसे पहले रखते हैं |"_ - नीचे दिए गए ढांचे में 6 नैतिक सिद्धांतों की वार्ना की गयी है :
|
||||
|
||||

|
||||
|
||||
आइए संक्षेप में इन सिद्धांतों के बारे में सीखे | _पारदर्शिता_ और _जवाबदेही_ वह मूलभूत मूल्य हैं जिन पर अन्य सिद्धांतों का निर्माण किया गया है - तो चलिए वहां शुरु करते हैं :
|
||||
|
||||
* [**जवाबदेही**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) उपयोगकर्ताओं को उनके डेटा और AI संचालन, और इन नैतिक सिद्धांतों के अनुपालन के लिए _जिम्मेदार_ बनाती है ।
|
||||
* [**पारदर्शिता**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) सुनिश्चित करती है कि डेटा और AI क्रियाएं उपयोगकर्ताओं के लिए _समझने योग्य_ (व्याख्या योग्य) हैं, यह बताते हुए कि निर्णयों के पीछे क्या और क्यों है ।
|
||||
* [**निष्पक्षता**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6) - यह सुनिश्चित करने पर ध्यान केंद्रित करती है कि AI डेटा और सिस्टम में किसी भी प्रणालीगत या निहित सामाजिक-तकनीकी पूर्वाग्रहों को संबोधित करते हुए _सभी लोगों_ के साथ उचित व्यवहार करता है ।
|
||||
* [**विश्वसनीयता और अहनिकारकता**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - सुनिश्चित करती है कि AI- संभावित नुकसान या अनपेक्षित परिणामों को कम करते हुए परिभाषित मूल्यों के साथ _लगातार_ काम करता है ।
|
||||
* [**निजता एवं सुरक्षा**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - डेटा वंश को समझने, और उपयोगकर्ताओं को _डेटा गोपनीयता और संबंधित सुरक्षा_ प्रदान करने के बारे में है ।
|
||||
* [**समग्रता**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - AI समाधानों को इरादे से डिजाइन करना एवं उन्हें _मानवीय आवश्यकताओं की एक विस्तृत श्रृंखला_ और क्षमताओं को पूरा करने के लिए अनुकूलित करने के बारे में है ।
|
||||
|
||||
> 🚨 अपने डेटा नैतिकता मिशन वक्तव्य के बारे में सोचें | अन्य संगठनों से नैतिक AI ढांचों का अन्वेषण करें - ये हैं कुछ उदाहरण [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles) ,एवं [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/) | इनके बीच क्या साझा मूल्य हैं? ये सिद्धांत उनके द्वारा संचालित AI उत्पाद या उद्योग से कैसे संबंधित हैं ?
|
||||
|
||||
### 2. नैतिकता से जुडी चुनौतियां
|
||||
|
||||
एक बार जब हमारे पास नैतिक सिद्धांत परिभाषित हो जाते हैं, तो अगला कदम यह देखने के लिए हमारे डेटा और एआई कार्यों का मूल्यांकन करना है कि क्या वे उन साझा मूल्यों के साथ संरेखित हैं । अपने कार्यों के बारे में दो श्रेणियों में सोचें: _डेटा संग्रह_ और _एल्गोरिदम डिज़ाइन_ |
|
||||
|
||||
डेटा संग्रह के साथ, कार्रवाइयों में संभवतः पहचान योग्य जीवित व्यक्तियों के लिए **व्यक्तिगत डेटा** या व्यक्तिगत रूप से पहचान योग्य जानकारी शामिल होगी । इसमें [गैर-व्यक्तिगत डेटा के विविध आइटम](https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en) शामिल हैं, जो _collectively_ किसी व्यक्ति की पहचान करते हैं । नैतिक चुनौतियां _डेटा गोपनीयता_, _डेटा स्वामित्व_, और उपयोगकर्ताओं के लिए _सूचित सहमति_ और _बौद्धिक संपदा अधिकार_ जैसे संबंधित विषयों से संबंधित हो सकती हैं ।
|
||||
|
||||
एल्गोरिथम डिज़ाइन के साथ, क्रियाओं में **डेटासेट** एकत्र करना और क्यूरेट करना शामिल होगा, फिर उनका उपयोग **डेटा मॉडल** को प्रशिक्षित और तैनात करने के लिए किया जाएगा जो वास्तविक दुनिया के संदर्भों में परिणामों की भविष्यवाणी या स्वचालित निर्णय लेते हैं । एल्गोरिथम डिज़ाइन के साथ, क्रियाओं में **डेटासेट** एकत्र करना और क्यूरेट करना शामिल होगा, फिर उनका उपयोग **डेटा मॉडल** को प्रशिक्षित और तैनात करने के लिए किया जाएगा जो वास्तविक दुनिया के संदर्भों में परिणामों की भविष्यवाणी या स्वचालित निर्णय लेते हैं ।
|
||||
|
||||
दोनों ही मामलों में, नैतिकता की चुनौतियाँ उन क्षेत्रों को उजागर करती हैं जहाँ हमारे कार्यों का हमारे साझा मूल्यों के साथ टकराव हो सकता है । इन चिंताओं का पता लगाने, सामना करने, कम करने या समाप्त करने के लिए - हमें अपने कार्यों से संबंधित नैतिक "हां या नहीं" प्रश्न पूछने की जरूरत है, फिर आवश्यकतानुसार सुधारात्मक कार्रवाई करें । आइए कुछ नैतिक चुनौतियों और उनके द्वारा उठाए गए नैतिक प्रश्नों पर एक नज़र डालें :
|
||||
|
||||
|
||||
#### 2.1 डेटा स्वामित्व
|
||||
|
||||
डेटा संग्रह में अक्सर व्यक्तिगत डेटा शामिल होता है जो डेटा विषयों की पहचान कर सकता है । [डेटा स्वामित्व](https://permission.io/blog/data-ownership) _नियंत्रण_ के बारे में और उन [_उपयोगकर्ता अधिकारो_](https://permission.io/blog/data-ownership)के सम्भंदित है जो निर्माण , प्रसंस्करण और से संबंधित है ।
|
||||
|
||||
हमें जो नैतिक प्रश्न पूछने चाहिए, वे हैं :
|
||||
* डेटा का मालिक कौन है ? (उपयोगकर्ता या संगठन)
|
||||
* डेटा विषयों के पास क्या अधिकार हैं ? (उदा: पहुंच, मिटाना, सुवाह्यता)
|
||||
* संगठनों के पास क्या अधिकार हैं ? (उदा: दुर्भावनापूर्ण उपयोगकर्ता समीक्षाओं का सुधार)
|
||||
|
||||
#### 2.2 सूचित सहमति
|
||||
|
||||
[सूचित सहमति](https://legaldictionary.net/informed-consent/) उद्देश्य, संभावित जोखिमों और विकल्पों सहित प्रासंगिक तथ्यों की _पूर्ण समझ_ के साथ कार्रवाई (जैसे डेटा संग्रह) के लिए सहमत होने वाले उपयोगकर्ताओं के कार्य को परिभाषित करता है ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या उपयोगकर्ता (डेटा विषय) ने डेटा कैप्चर और उपयोग के लिए अनुमति दी थी ?
|
||||
* क्या उपयोगकर्ता को वह उद्देश्य समझ में आया जिसके लिए उस डेटा को कैप्चर किया गया था ?
|
||||
* क्या उपयोगकर्ता ने उनकी भागीदारी से संभावित जोखिमों को समझा ?
|
||||
|
||||
#### 2.3 बौद्धिक संपदा
|
||||
|
||||
[बौद्धिक संपदा](https://en.wikipedia.org/wiki/Intellectual_property) मानव पहल से उत्पन्न अमूर्त कृतियों को संदर्भित करता है, जिनका व्यक्तियों या व्यवसायों के लिए _आर्थिक_ महत्व हो सकता है ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या जमा किए गए डेटा का किसी उपयोगकर्ता या व्यवसाय के लिए आर्थिक महत्व है ?
|
||||
* क्या **उपयोगकर्ता** के पास यहां बौद्धिक संपदा है ?
|
||||
* क्या **संगठन** के पास यहां बौद्धिक संपदा है ?
|
||||
* अगर ये अधिकार मौजूद हैं, तो हम उनकी रक्षा कैसे कर रहे हैं ?
|
||||
|
||||
#### 2.4 डाटा गोपनीयता
|
||||
|
||||
[डेटा गोपनीयता](https://www.northeaster.edu/graduate/blog/what-is-data-privacy/) या सूचना गोपनीयता व्यक्तिगत रूप से पहचान योग्य जानकारी के संबंध में उपयोगकर्ता की गोपनीयता के संरक्षण और उपयोगकर्ता की पहचान की सुरक्षा को संदर्भित करता है ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या उपयोगकर्ताओं का (व्यक्तिगत) डेटा हैक और लीक से सुरक्षित है ?
|
||||
* क्या उपयोगकर्ताओं का डेटा केवल अधिकृत उपयोगकर्ताओं और संदर्भों के लिए सुलभ है ?
|
||||
* क्या डेटा साझा या प्रसारित होने पर उपयोगकर्ताओं की गोपनीयता बनी रहती है ?
|
||||
* क्या किसी उपयोगकर्ता की पहचान अज्ञात डेटासेट से की जा सकती है ?
|
||||
|
||||
|
||||
#### 2.5 भूला दिया जाने का अधिकार
|
||||
|
||||
[भूला दिया जाने का अधिकार](https://en.wikipedia.org/wiki/Right_to_be_forgotten) अतिरिक्त सुविधाएं प्रदान करता है उपयोगकर्ताओं के लिए व्यक्तिगत डेटा सुरक्षा। विशेष रूप से, यह उपयोगकर्ताओं को इंटरनेट खोजों और अन्य स्थानों से व्यक्तिगत डेटा को हटाने या हटाने का अनुरोध करने का अधिकार देता है, _विशिष्ट परिस्थितियों में_ - उन्हें उनके खिलाफ पिछली कार्रवाई किए बिना ऑनलाइन एक नई शुरुआत करने की अनुमति देता है ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या सिस्टम डेटा विषयों को अपना डेटा मिटाने का अनुरोध करने की अनुमति देता है ?
|
||||
* क्या उपयोगकर्ता की सहमति वापस लेने से स्वचालित डेटा मिटाना शुरू हो जाएगा ?
|
||||
* क्या डेटा सहमति के बिना या गैरकानूनी तरीके से एकत्र किया गया था ?
|
||||
* क्या हम डेटा गोपनीयता के लिए सरकारी नियमों का अनुपालन करते हैं ?
|
||||
|
||||
|
||||
#### 2.6 डेटासेट पूर्वाग्रह
|
||||
|
||||
डेटासेट या [संग्रह पूर्वाग्रह](http://researcharticles.com/index.php/bias-in-data-collection-in-research/) एल्गोरिथम विकास के लिए डेटा के _गैर-प्रतिनिधि_ सबसेट का चयन करने के बारे में है, जिसमें संभावित अनुचितता पैदा होती है विभिन्न समूहों के लिए भेदभाव । पूर्वाग्रह के प्रकारों में चयन या नमूना पूर्वाग्रह, स्वयंसेवी पूर्वाग्रह और साधन पूर्वाग्रह शामिल हैं ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या हमने डेटा विषयों के प्रतिनिधि सेट की भर्ती की ?
|
||||
* क्या हमने विभिन्न पूर्वाग्रहों के लिए अपने एकत्रित या क्यूरेट किए गए डेटासेट का परीक्षण किय ा?
|
||||
* क्या हम खोजे गए पूर्वाग्रहों को कम कर सकते हैं या हटा सकते हैं ?
|
||||
|
||||
#### 2.7 डेटा की गुणवत्ता
|
||||
|
||||
[डेटा गुणवत्ता](https://lakefs.io/data-quality-testing/) जो हमारे एल्गोरिदम को विकसित करने के लिए उपयोग किए गए क्यूरेट किए गए डेटासेट की वैधता को देखता है, यह देखने के लिए जाँच करता है कि सुविधाएँ और रिकॉर्ड सटीकता और स्थिरता के स्तर की आवश्यकताओं को पूरा करते हैं या नहीं हमारे AI उद्देश्य के लिए आवश्यक है ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या हमने अपने उपयोग के मामले में मान्य _features_ को कैप्चर किया ?
|
||||
* क्या डेटा विविध डेटा स्रोतों से _लगातार_ कैप्चर किया गया था ?
|
||||
* क्या विविध स्थितियों या परिदृश्यों के लिए डेटासेट _पूर्ण_ है ?
|
||||
* क्या वास्तविकता को प्रतिबिंबित करने में जानकारी _सटीक_ रूप से कैप्चर की गई है ?
|
||||
|
||||
#### 2.8 एल्गोरिथम की निष्पक्षता
|
||||
|
||||
[एल्गोरिदम निष्पक्षता](https://towardsdatascience.com/what-is-algorithm-fairness-3182e161cf9f) यह देखने के लिए जांच करता है कि क्या एल्गोरिथम डिज़ाइन व्यवस्थित रूप से डेटा विषयों के विशिष्ट उपसमूहों के साथ भेदभाव करता है जिससे [संभावित नुकसान](https://docs.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml) होते हैं में _allocation_ (जहां संसाधनों को अस्वीकार कर दिया जाता है या उस समूह से रोक दिया जाता है) और _सेवा की गुणवत्ता_ (जहां AI कुछ उपसमूहों के लिए उतना सटीक नहीं है जितना कि यह दूसरों के लिए है) ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या हमने विविध उपसमूहों और स्थितियों के लिए मॉडल सटीकता का मूल्यांकन किया ?
|
||||
* क्या हमने संभावित नुकसान (जैसे, स्टीरियोटाइपिंग) के लिए सिस्टम की जांच की ?
|
||||
* क्या हम पहचाने गए नुकसान को कम करने के लिए डेटा को संशोधित कर सकते हैं या मॉडल को फिर से प्रशिक्षित कर सकते हैं ?
|
||||
|
||||
अधिक जानने के लिए [AI फेयरनेस चेकलिस्ट](https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4t6dA) जैसे संसाधनों का अन्वेषण करें ।
|
||||
|
||||
#### 2.9 मिथ्या निरूपण
|
||||
|
||||
[डेटा मिसरिप्रेजेंटेशन](https://www.sciencedirect.com/topics/computer-science/misrepresentation) यह पूछने के बारे में है कि क्या हम एक वांछित कथा का समर्थन करने के लिए भ्रामक तरीके से ईमानदारी से रिपोर्ट किए गए डेटा से अंतर्दृष्टि का संचार कर रहे हैं ।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या हम अपूर्ण या गलत डेटा की रिपोर्ट कर रहे हैं ?
|
||||
* क्या हम डेटा को इस तरह से देख रहे हैं जिससे भ्रामक निष्कर्ष निकलते हैं ?
|
||||
* क्या हम परिणामों में हेरफेर करने के लिए चुनिंदा सांख्यिकीय तकनीकों का उपयोग कर रहे हैं ?
|
||||
* क्या ऐसे वैकल्पिक स्पष्टीकरण हैं जो एक अलग निष्कर्ष प्रस्तुत कर सकते हैं ?
|
||||
|
||||
#### 2.10 मुक्त चयन
|
||||
[इल्यूज़न ऑफ़ फ्री चॉइस](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) तब होता है जब सिस्टम "चॉइस आर्किटेक्चर" लोगों को पसंदीदा परिणाम लेने के लिए प्रेरित करने के लिए निर्णय लेने वाले एल्गोरिदम का उपयोग करता है। जबकि उन्हें विकल्प और नियंत्रण देना प्रतीत होता है। ये [डार्क पैटर्न](https://www.darkpatterns.org/) उपयोगकर्ताओं को सामाजिक और आर्थिक नुकसान पहुंचा सकते हैं। चूंकि उपयोगकर्ता निर्णय व्यवहार प्रोफाइल को प्रभावित करते हैं, इसलिए ये कार्रवाइयां संभावित रूप से भविष्य के विकल्पों को प्रेरित करती हैं जो इन नुकसानों के प्रभाव को बढ़ा या बढ़ा सकते हैं।
|
||||
|
||||
यहां देखने लायक प्रश्न हैं :
|
||||
* क्या उपयोगकर्ता ने उस विकल्प को बनाने के निहितार्थों को समझा ?
|
||||
* क्या उपयोगकर्ता (वैकल्पिक) विकल्पों और प्रत्येक के पेशेवरों और विपक्षों से अवगत था ?
|
||||
* क्या उपयोगकर्ता किसी स्वचालित या प्रभावित विकल्प को बाद में उलट सकता है ?
|
||||
|
||||
### 3. केस स्टडी
|
||||
|
||||
इन नैतिक चुनौतियों को वास्तविक दुनिया के संदर्भों में रखने के लिए, ऐसे मामलों के अध्ययन को देखने में मदद मिलती है जो व्यक्तियों और समाज को संभावित नुकसान और परिणामों को उजागर करते हैं, जब ऐसे नैतिकता उल्लंघनों की अनदेखी की जाती है ।
|
||||
|
||||
कुछ उदाहरण निम्नलिखित हैं :
|
||||
|
||||
| नैतिकता चुनौती | मामले का अध्ययन |
|
||||
|--- |--- |
|
||||
| **सूचित सहमति** | १९७२ - [टस्केगी सिफलिस अध्ययन](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) - अध्ययन में भाग लेने वाले अफ्रीकी अमेरिकी पुरुषों को उन शोधकर्ताओं द्वारा मुफ्त चिकित्सा देखभाल का वादा किया गया था जो उनके निदान या उपचार की उपलब्धता के बारे में विषयों को सूचित करने में विफल रहे। कई विषयों की मृत्यु हो गई और साथी या बच्चे प्रभावित हुए; अध्ययन 40 साल तक चला । |
|
||||
| **डाटा प्राइवेसी** | २००७ - [नेटफ्लिक्स डेटा प्राइज](https://www.wired.com/2007/12/why-anonymous-data-only-isnt/) ने शोधकर्ताओं को सिफारिश एल्गोरिदम को बेहतर बनाने में मदद करने के लिए 50K ग्राहकों_ से _10M अनाम मूवी रैंकिंग प्रदान की। हालांकि, शोधकर्ता अज्ञात डेटा को व्यक्तिगत रूप से पहचाने जाने योग्य डेटा के साथ _बाहरी डेटासेट_ (उदाहरण के लिए, IMDb टिप्पणियों) में सहसंबंधित करने में सक्षम थे - कुछ नेटफ्लिक्स ग्राहकों को प्रभावी रूप से "डी-अनामीकरण" ।|
|
||||
| **संग्रह पूर्वाग्रह** | २०१३ - द सिटी ऑफ़ बोस्टन [विकसित स्ट्रीट बम्प](https://www.boston.gov/transportation/street-bump), एक ऐप जो नागरिकों को गड्ढों की रिपोर्ट करने देता है, जिससे शहर को समस्याओं को खोजने और ठीक करने के लिए बेहतर रोडवे डेटा मिलता है । हालांकि, [निम्न आय वर्ग के लोगों के पास कारों और फोन तक कम पहुंच थी](https://hbr.org/2013/04/the-hidden-biases-in-big-data), जिससे इस ऐप में उनके सड़क संबंधी मुद्दे अदृश्य हो गए थे। . डेवलपर्स ने शिक्षाविदों के साथ निष्पक्षता के लिए _न्यायसंगत पहुंच और डिजिटल विभाजन_ मुद्दों पर काम किया । |
|
||||
| **एल्गोरिथम निष्पक्षता** | २०१८ - एमआईटी [जेंडर शेड्स स्टडी] (http://gendershades.org/overview.html) ने लिंग वर्गीकरण एआई उत्पादों की सटीकता का मूल्यांकन किया, महिलाओं और रंग के व्यक्तियों के लिए सटीकता में अंतराल को उजागर किया । एक [2019 ऐप्पल कार्ड](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) पुरुषों की तुलना में महिलाओं को कम क्रेडिट प्रदान करता है। दोनों ने एल्गोरिथम पूर्वाग्रह में सचित्र मुद्दों को सामाजिक-आर्थिक नुकसान की ओर अग्रसर किया ।|
|
||||
| **डेटा गलत बयानी** | २०२० - [जॉर्जिया डिपार्टमेंट ऑफ पब्लिक हेल्थ ने जारी किया COVID-19 चार्ट](https://www.vox.com/covid-19-coronavirus-us-response-trump/2020/5/18/21262265/georgia-covid-19-cases-declining-reopening) जो एक्स-अक्ष पर गैर-कालानुक्रमिक क्रम के साथ पुष्टि किए गए मामलों में रुझानों के बारे में नागरिकों को गुमराह करने के लिए प्रकट हुए। यह विज़ुअलाइज़ेशन ट्रिक्स के माध्यम से गलत बयानी दिखाता है । |
|
||||
| **स्वतंत्र चुनाव का भ्रम** | २०२० - लर्निंग ऐप [एबीसीमाउस ने एफटीसी शिकायत को निपटाने के लिए 10 मिलियन डॉलर का भुगतान किया](https://www.washingtonpost.com/business/2020/09/04/abcmouse-10-million-ftc-settlement/) जहां माता-पिता भुगतान करने में फंस गए थे सदस्यता वे रद्द नहीं कर सके । यह पसंद वास्तुकला में काले पैटर्न को दिखाता है, जहां उपयोगकर्ता संभावित रूप से हानिकारक विकल्पों की ओर झुकाव कर रहे थे । |
|
||||
| **डेटा गोपनीयता और उपयोगकर्ता अधिकार** | २०२१ - फेसबुक [डेटा ब्रीच](https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users) 530M उपयोगकर्ताओं के डेटा को उजागर किया, जिसके परिणामस्वरूप FTC को $ 5B का समझौता हुआ । हालांकि इसने डेटा पारदर्शिता और पहुंच के आसपास उपयोगकर्ता अधिकारों का उल्लंघन करने वाले उल्लंघन के उपयोगकर्ताओं को सूचित करने से इनकार कर दिया । |
|
||||
|
||||
अधिक केस स्टडी के बारे में चाहते हैं ? इन संसाधनों की जाँच करें :
|
||||
* [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - विविध उद्योगों में नैतिकता की दुविधा ।
|
||||
* [Data Science Ethics course](https://www.coursera.org/learn/data-science-ethics#syllabus) - ऐतिहासिक मामले का अध्ययन ।
|
||||
* [Where things have gone wrong](https://deon.drivendata.org/examples/) - उदाहरण के साथ डीओन चेकलिस्ट |
|
||||
|
||||
> 🚨 आपके द्वारा देखी गई केस स्टडी के बारे में सोचें - क्या आपने अपने जीवन में इसी तरह की नैतिक चुनौती का अनुभव किया है, या इससे प्रभावित हुए हैं ? क्या आप कम से कम एक अन्य केस स्टडी के बारे में सोच सकते हैं जो इस खंड में चर्चा की गई नैतिक चुनौतियों में से एक को दर्शाती है ?
|
||||
|
||||
## एप्लाइड नैतिकता
|
||||
|
||||
हमने वास्तविक दुनिया के संदर्भों में नैतिक अवधारणाओं, चुनौतियों और केस स्टडी के बारे में बात की है। लेकिन हम अपनी परियोजनाओं में नैतिक सिद्धांतों और प्रथाओं को _लागू करना_ कैसे शुरू करते हैं ? और हम बेहतर शासन के लिए इन प्रथाओं को कैसे _संचालन_कृत करते हैं ? आइए कुछ वास्तविक दुनिया के समाधान देखें :
|
||||
|
||||
### 1. व्यावसायिक कोड
|
||||
|
||||
व्यावसायिक कोड संगठनों के लिए सदस्यों को उनके नैतिक सिद्धांतों और मिशन वक्तव्य का समर्थन करने के लिए "प्रोत्साहित" करने के लिए एक विकल्प प्रदान करते हैं । पेशेवर व्यवहार के लिए कोड _नैतिक दिशानिर्देश_ हैं, जो कर्मचारियों या सदस्यों को उनके संगठन के सिद्धांतों के अनुरूप निर्णय लेने में मदद करते हैं । वे केवल उतने ही अच्छे हैं जितने सदस्यों से स्वैच्छिक अनुपालन; हालांकि, कई संगठन सदस्यों से अनुपालन को प्रेरित करने के लिए अतिरिक्त पुरस्कार और दंड प्रदान करते हैं ।
|
||||
|
||||
उदाहरणों में शामिल :
|
||||
|
||||
* [ऑक्सफोर्ड म्यूनिख](http://www.code-of-ethics.org/code-of-conduct/) आचार संहिता
|
||||
* [डेटा साइंस एसोसिएशन](http://datascienceassn.org/code-of-conduct.html) आचार संहिता (2013 में बनाया गया)
|
||||
* [एसीएम आचार संहिता और व्यावसायिक आचरण](https://www.acm.org/code-of-ethics) (1993 से)
|
||||
|
||||
> 🚨 क्या आप एक पेशेवर इंजीनियरिंग या डेटा विज्ञान संगठन से संबंधित हैं ? यह देखने के लिए कि क्या वे पेशेवर आचार संहिता को परिभाषित करते हैं, उनकी साइट का अन्वेषण करें । यह उनके नैतिक सिद्धांतों के बारे में क्या कहता है ? वे सदस्यों को कोड का पालन करने के लिए "प्रोत्साहित" कैसे कर रहे हैं ?
|
||||
|
||||
### 2. Ethics Checklists
|
||||
|
||||
जबकि पेशेवर कोड चिकित्सकों से आवश्यक _नैतिक व्यवहार_ को परिभाषित करते हैं, वे प्रवर्तन में [विशेष रूप से बड़े पैमाने पर परियोजनाओं में](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md) [ज्ञात सीमाएं हैं] । इसके बजाय, कई डेटा विज्ञान विशेषज्ञ [चेकलिस्ट के वकील](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md), जो **सिद्धांतों को अभ्यासों से जोड़ सकते हैं** अधिक नियतात्मक और कार्रवाई योग्य तरीके ।
|
||||
|
||||
चेकलिस्ट प्रश्नों को "हां/नहीं" कार्यों में परिवर्तित करते हैं जिन्हें संचालित किया जा सकता है, जिससे उन्हें मानक उत्पाद रिलीज वर्कफ़्लो के हिस्से के रूप में ट्रैक किया जा सकता है ।
|
||||
|
||||
उदाहरणों में शामिल :
|
||||
* [Deon](https://deon.drivendata.org/) - आसान एकीकरण के लिए कमांड-लाइन टूल के साथ [उद्योग अनुशंसाओं](https://deon.drivedata.org/#checklist-citations) से बनाई गई एक सामान्य-उद्देश्य डेटा नैतिकता चेकलिस्ट ।
|
||||
* [Privacy Audit Checklist](https://cyber.harvard.edu/ecommerce/privacyaudit.html) - कानूनी और सामाजिक जोखिम के दृष्टिकोण से सूचना प्रबंधन प्रथाओं के लिए सामान्य मार्गदर्शन प्रदान करता है ।
|
||||
* [AI Fairness Checklist](https://www.microsoft.com/en-us/research/project/ai-fairness-checklist/) - एआई विकास चक्रों में निष्पक्षता जांच को अपनाने और एकीकरण का समर्थन करने के लिए एआई चिकित्सकों द्वारा बनाया गया ।
|
||||
* [22 questions for ethics in data and AI](https://medium.com/the-organization/22-questions-for-ethics-in-data-and-ai-efb68fd19429) - डिजाइन, कार्यान्वयन, और संगठनात्मक, संदर्भों में नैतिक मुद्दों की प्रारंभिक खोज के लिए संरचित, अधिक खुला ढांचा ।
|
||||
|
||||
### 3. नैतिकता विनियम
|
||||
|
||||
नैतिकता साझा मूल्यों को परिभाषित करने और _स्वेच्छा_ से सही काम करने के बारे में है । **अनुपालन** _कानून का पालन करने के बारे में है_ यदि और जहां परिभाषित किया गया है । **शासन** मोटे तौर पर उन सभी तरीकों को शामिल करता है जिनमें संगठन नैतिक सिद्धांतों को लागू करने और स्थापित कानूनों का पालन करने के लिए काम करते हैं ।
|
||||
|
||||
आज, संगठनों के भीतर शासन दो रूप लेता है । सबसे पहले, यह **नैतिक एआई** सिद्धांतों को परिभाषित करने और संगठन में सभी एआई-संबंधित परियोजनाओं में गोद लेने के संचालन के लिए प्रथाओं को स्थापित करने के बारे में है । दूसरा, यह उन क्षेत्रों के लिए सरकार द्वारा अनिवार्य सभी **डेटा सुरक्षा नियमों** का अनुपालन करने के बारे में है जहां यह संचालित होता है ।
|
||||
|
||||
डेटा सुरक्षा और गोपनीयता नियमों के उदाहरण :
|
||||
|
||||
* `१९७४`, [US Privacy Act](https://www.justice.gov/opcl/privacy-act-1974) - व्यक्तिगत जानकारी के संग्रह, उपयोग और प्रकटीकरण को नियंत्रित करता है ।
|
||||
* `१९९६`, [US Health Insurance Portability & Accountability Act (HIPAA)](https://www.cdc.gov/phlp/publications/topic/hipaa.html) - व्यक्तिगत स्वास्थ्य डेटा की सुरक्षा करता है ।
|
||||
* `१९९८`, [US Children's Online Privacy Protection Act (COPPA)](https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule) - 13 साल से कम उम्र के बच्चों की डेटा गोपनीयता की रक्षा करता है ।
|
||||
* `२०१८`, [General Data Protection Regulation (GDPR)](https://gdpr-info.eu/) - उपयोगकर्ता अधिकार, डेटा सुरक्षा और गोपनीयता प्रदान करता है ।
|
||||
* `२०१८`, [California Consumer Privacy Act (CCPA)](https://www.oag.ca.gov/privacy/ccpa) उपभोक्ताओं को उनके (व्यक्तिगत) डेटा पर अधिक _अधिकार_ देता है ।
|
||||
* `२०२१`, चीन का [Personal Information Protection Law](https://www.reuters.com/world/china/china-passes-new-personal-data-privacy-law-take-effect-nov-1-2021-08-20/) अभी-अभी पारित हुआ, दुनिया भर में सबसे मजबूत ऑनलाइन डेटा गोपनीयता नियमों में से एक बना ।
|
||||
|
||||
> 🚨 यूरोपीय संघ परिभाषित GDPR (जनरल डेटा प्रोटेक्शन रेगुलेशन) आज सबसे प्रभावशाली डेटा गोपनीयता नियमों में से एक है । क्या आप जानते हैं कि यह नागरिकों की डिजिटल गोपनीयता और व्यक्तिगत डेटा की सुरक्षा के लिए [8 उपयोगकर्ता अधिकार](https://www.freeprivacypolicy.com/blog/8-user-rights-gdpr) को भी परिभाषित करता है ? जानें कि ये क्या हैं, और क्यों मायने रखते हैं ।
|
||||
|
||||
|
||||
### 4. नैतिकता संस्कृति
|
||||
|
||||
ध्यान दें कि _अनुपालन_ ("कानून के पत्र को पूरा करने के लिए पर्याप्त प्रयास करना") और [प्रणालीगत मुद्दों](https://www.coursera.org/learn/data-science-ethics/home/week) को संबोधित करने के बीच एक अमूर्त अंतर है । / 4) (जैसे ossification, सूचना विषमता, और वितरण संबंधी अनुचितता) जो AI के शस्त्रीकरण को गति दे सकता है ।
|
||||
|
||||
बाद वाले को [नैतिक संस्कृतियों को परिभाषित करने के लिए सहयोगात्मक दृष्टिकोण](https://towardsdatascience.com/why-ai-ethics-requires-a-culture-drive-approach-26f451afa29f) की आवश्यकता होती है, जो पूरे संगठनों में भावनात्मक संबंध और सुसंगत साझा मूल्यों का निर्माण करते हैं । यह संगठनों में अधिक [औपचारिक डेटा नैतिकता संस्कृतियों](https://www.codeforamerica.org/news/formalizing-an-ethical-data-culture/) की मांग करता है - _किसी_ को [एंडोन कॉर्ड को खींचने] की अनुमति देता है (https:/ /en.wikipedia.org/wiki/Andon_(manufacturing)) (इस प्रक्रिया में नैतिकता संबंधी चिंताओं को जल्दी उठाने के लिए) और एआई परियोजनाओं में _नैतिक मूल्यांकन_ (उदाहरण के लिए, भर्ती में) एक मुख्य मानदंड टीम गठन करना ।
|
||||
|
||||
---
|
||||
## [व्याख्यान के बाद प्रश्नोत्तरी](https://red-water-0103e7a0f.azurestaticapps.net/quiz/3) 🎯
|
||||
## समीक्षा और स्व अध्ययन
|
||||
|
||||
पाठ्यक्रम और पुस्तकें मूल नैतिकता अवधारणाओं और चुनौतियों को समझने में मदद करती हैं, जबकि केस स्टडी और उपकरण वास्तविक दुनिया के संदर्भों में लागू नैतिकता प्रथाओं के साथ मदद करते हैं। शुरू करने के लिए यहां कुछ संसाधन दिए गए हैं।
|
||||
|
||||
* [Machine Learning For Beginners](https://github.com/microsoft/ML-For-Beginners/blob/main/1-Introduction/3-fairness/README.md) - Microsoft से निष्पक्षता पर पाठ ।
|
||||
* [Principles of Responsible AI](https://docs.microsoft.com/en-us/learn/modules/responsible-ai-principles/) - माइक्रोसॉफ्ट लर्न की ओर से फ्री लर्निंग पाथ ।
|
||||
* [Ethics and Data Science](https://resources.oreilly.com/examples/0636920203964) - O'Reilly EBook (M. Loukides, H. Mason et. al)
|
||||
* [Data Science Ethics](https://www.coursera.org/learn/data-science-ethics#syllabus) - मिशिगन विश्वविद्यालय से ऑनलाइन पाठ्यक्रम ।
|
||||
* [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - टेक्सास विश्वविद्यालय से केस स्टडीज ।
|
||||
|
||||
# कार्यभार
|
||||
<!-- need to change the link once assignment is translated -->
|
||||
[डेटा एथिक्स केस स्टडी लिखें](assignment.md)
|
@ -0,0 +1,262 @@
|
||||
# Introdução a Ética de Dados
|
||||
|
||||
| ](../../../sketchnotes/02-Ethics.png)|
|
||||
|:---:|
|
||||
| Ética em Ciência de Dados - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
---
|
||||
|
||||
Nós somos todos cidadãos dos dados vivendo em um mundo de dados.
|
||||
|
||||
Tendências do mercado nos mostram que até 2022, 1 em 3 grandes organizações irá comprar e vender seus dados através de [Marketplaces e Exchanges](https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/) online. Como **Desenvolvedores de Aplicativos**, nós vamos achar mais fácil e mais barato integrar insights baseados em dados e automações baseadas em algoritmos nas experiências diárias dos usuário. Mas conforme IA se torna mais difundida, nós também vamos precisar entender os danos potenciais causado pelo uso desses algoritmos [como uma arma](https://www.youtube.com/watch?v=TQHs8SA1qpk).
|
||||
|
||||
Tendências também indicam que nós vamos criar e consumir mais de [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) de dados em 2025. Como **Cientistas de Dados**, isso nos dará níveis de acesso sem precedentes à dados pessoais. Isso significa que poderemos construir perfis comportamentais dos usuário e influenciar tomadas de decisão de uma forma que crie a [ilusão da livre escolha](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) enquanto potencialmente direcionando os usuários na direção do resultado que nós preferimos. Isso também levanta questões mais amplas sobre privacidade dos dados e proteção dos usuários.
|
||||
|
||||
Ética dos dados é agora uma _proteção necessário_ para ciẽncia de dados e engenharia, nos ajudando a minimizar potenciais danos e consequências não intencionas das nossas ações realizadas com base em dados. O [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifica tendências relevantes ná ética digital, IAs responsáveis, e governanças de IA como principais impulsionadores para grandes mega tendências sobre _democratização_ e _industrialização_ da IA.
|
||||
|
||||

|
||||
|
||||
Nessa aula, nós vamos explorar a área fascinante de ética dos dados - desde conceitos essenciais e desafios, para estudos de caso e conceitos de IA aplicados como governança - isso ajuda a estabelecer a cultura da ética nos times e organizações que trabalham com dados e IA.
|
||||
|
||||
|
||||
|
||||
|
||||
## [Quiz pré aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/2) 🎯
|
||||
|
||||
## Definição Básica
|
||||
|
||||
Vamos começar entendendo o básico da terminologia.
|
||||
|
||||
A palavra "ética" vem da [palavra Grega "ethikos"](https://en.wikipedia.org/wiki/Ethics) (e sua raíz "ethos") que significa _caráter ou natureza moral_.
|
||||
|
||||
**Ética** é sobre os valores e princípios morais compartilhados que governam o nosso comportamento em sociedade. Ética é baseada não nas leis mas nas normas amplamente aceitas sobre o que é "certo vs. errado". No entanto, considerações éticas podem influenciar iniciativas de governança corporativa e regulamentações governamentais que criam mais incentivos para conformidade (compliance).
|
||||
|
||||
**Ética de Dados** é uma [nova ramificação da ética](https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0360#sec-1) que "estuda e avalia problemas morais relacionados a _dados, algoritmos e práticas correspondentes_". Aqui, **"dados"** focam nas ações relacionadas a geração, gravação, curadoria, disseminação de processamento, compartilhamento, e uso, **"algoritmos"** focam em IA, agentes, aprendizado de máquina, e robôs, e **"práticas"** focam em tópicos como inovação responsável, programação, hacking e códigos de ética.
|
||||
|
||||
**Ética Aplicada** é a [aplicação prática de considerações morais](https://en.wikipedia.org/wiki/Applied_ethics). É o processo de investigar ativamente problemáticas éticas no contexto de _ações do mundo real, produtos e processos_, e tomar medidas corretivas para fazer com que esses permanecam alianhados com o nossos valores éticos definidos.
|
||||
|
||||
**Cultura Ética** é sobre [operacionalizar a ética aplicada](https://hbr.org/2019/05/how-to-design-an-ethical-organization) para garantir que nossos princípios e práticas éticas sejam adotados de maneira consistente e escalável em toda a organização. Culturas éticas de sucesso definem princípios éticos em toda a organização, fornecem incentivos significativos para consistência, e reinforça as normas éticas encorajando e amplificando comportmentos desejados em todos os níveis da organização.
|
||||
|
||||
|
||||
## Conceitos Éticos
|
||||
|
||||
Nessa seção, nós vamos discutir conceitos como **valores compartilhados** (princípios) e **desafios éticos** (problemas) para a ética de dados - e explorar **estudos de caso** que ajudam você a entender esses conceitos em contextos do mundo real.
|
||||
|
||||
### 1. Princípios Éticos
|
||||
|
||||
Toda estratégia de ética de dados começa definindo _pricípios éticos_ - os "valores compartilhados" que descrevem comportamentos aceitáveis, e guia ações complacentes, nos nossos dados e nos projetos de IA. Você pode definir eles individualmente ou com um time. No entando, a maioria das grandes organizações descreve eles em uma declaração de missão ou de estrutura de _IA ética_ que é definida em níveis corporativos e aplicadas consistentemente em todos os times.
|
||||
|
||||
**Exemplo:** a declaração de missão da [IA responsável](https://www.microsoft.com/pt-br/ai/responsible-ai?activetab=pivot1:primaryr6) da Microsoft afirma: _"Estamos comprometidos com o avanço da AI impulsionados por princípios éticos que colocam as pessoas em primeiro lugar."_ - identificando 6 princípios éticos na estrutura abaixo:
|
||||
|
||||

|
||||
|
||||
Vamos explorar brevemente esses princípios. _Transparência_ e _responsabilidade_ são valores fundamentais nos quais outros princípios construíram sobre - então vamos começar aí:
|
||||
|
||||
* [**Responsabilidade**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) torna os profissionais _responsáveis_ pelos seus dados e operações da IA, e conformidade (compliance) com esses princípios éticos.
|
||||
* [**Transparência**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) garante que os dados e as ações da IA são _compreesíveis_ (interpretáveis) para os usuários, explicando o que e o porquê por trás de cada decisão.
|
||||
* [**Justiça**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6) - foca em garantir que a IA _trate_ todas as pessoas de forma justa, abordando quaisquer preconceitos sociotécnicos implícitos ou sistêmicos nos dados e sistemas.
|
||||
* [**Confiabilidade e Segurança**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - garante que a IA comporte de maneira _consistente_ com os valores definidos, minimizando potenciais danos ou consequências não pretendidas.
|
||||
* [**Segurança e Privacidade**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - é sobre compreender as linhagem dos dados, e fornecer _privacidade de dados e proteções relacionadas_ aos usuários.
|
||||
* [**Inclusão**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - é sobre projetar soluções de IA com intenção, adaptando elas para atender uma _vasta game de necessidades humanas_ & capacidades.
|
||||
|
||||
> 🚨 Pense sobre qual poderia ser a frase de missão da sua ética de dados. Explore estruturas éticas de IA de outras organizações - aqui estão alguns exemplos da [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles), e [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/). Quais valores compartilhados vocês tem em comum? Como esses princípios se relacionam ao produto de IA ou à indústria na qual eles operam?
|
||||
|
||||
### 2. Desafios de Ética
|
||||
|
||||
Uma vez que nossos princípios éticos estão definidos, o próximo passo é avaliar nossos dados e ações da IA para ver se eles estão alinhados com aqueles valores compartilhados. Pense sobre suas ações em duas categorias: _coleção de dados_ e _design de algoritmo_.
|
||||
|
||||
Com coleções dados, ações irão, provavelmente, envolver **dados pessoais** ou informação pessoalmente identificável (do Inglês, personally identifiable information, ou PII) para indivíduos vivos identificáveis. Isso inclui [itens diversos de dados não pessoais](https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en) que _coletivamente_ identificam um indivíduo. Desafios éticos podem estar relacionados à _privacidade dos dados_, _qualidade dos dados_, e tópicos relacionados como _consentimento informado_ e _direitos de propriedades intelectuais_ para os usuários.
|
||||
|
||||
Com o design de algoritmo, as ações envolverão coleta e curadoria dos **datasets**, e então o uso deles para treinar e implantar **modelos de dados** que predizem resultados ou automatizam decisões em contextos do mundo real. Desafios éticos podem surgir de _vieses do dataset_ (biases), problemas com a _qualidade de dados_, _injustiça_, e _má representação_ nos algoritmos - incluindo alguns problemas que são sistêmicos na natureza.
|
||||
|
||||
Em ambos os casos, desafios de ética destacam áreas onde nossas ações podem conflitar com nossos valores compartilhados. Para detectar, mitigar, minimizar, ou eliminar, essas preocupações - nós precisamos perguntar questões morais de "sim ou não" relacionadas as nossas ações, e então tomar uma ação corretiva conforme necessário. Vamos olhar alguns desafios éticos e as questões morais que eles levantam:
|
||||
|
||||
|
||||
#### 2.1 Propriedade de Dados
|
||||
|
||||
A coleta de dados geralmente envolve dados pessoais que podem identificar os titulares dos dados. [Propriedade de dados](https://permission.io/blog/data-ownership) é sobre o _controle_ e [_direitos dos usuários_](https://permission.io/blog/data-ownership) relacionados à criação, processamento, e disseminação dos dados.
|
||||
|
||||
As questões morais que precisamos nos perguntar são:
|
||||
* Quem detêm/possui os dados? (usuário ou organização)
|
||||
* Quais direitos os titulares dos dados tem? (ex: acesso, apagar, portabilidade)
|
||||
* Quais direitos as organizações tem? (ex: retificar reviews maliciosas de usuários)
|
||||
|
||||
#### 2.2 Consentimento Informado
|
||||
|
||||
[Consentimento Informado](https://legaldictionary.net/informed-consent/) define o ato dos usuários aceitar uma ação (como a coleta de dados) com um _compreendimento total_ de fatos relevantes incluindo propósito, potenciais riscos, e alternativas.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* O usuário (titular dos dados) deu permissão para a captação e uso dos dados?
|
||||
* O usuário entendeu o propósito para o qual aqueles dados foram coletados?
|
||||
* O usuário entendeu os potenciais riscos de sua participação?
|
||||
|
||||
#### 2.3 Propriedade Intelectual
|
||||
|
||||
[Propriedade intelectual](https://en.wikipedia.org/wiki/Intellectual_property) se refere a criações intangíveis que foram resultados das iniciativas humanas, que podem _ter valor econômico_ para indivíduos ou negócios.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* Os dados coletados tem valor econômicos para um usuário ou negócio?
|
||||
* O **usuário** tem propriedade intelectual aqui?
|
||||
* As **organizações** tem propriedade intelectual aqui?
|
||||
* Se esses direitos existem, como estamos protejendo eles?
|
||||
|
||||
#### 2.4 Privacidade de Dados
|
||||
|
||||
[Privacidade de dados](https://www.northeastern.edu/graduate/blog/what-is-data-privacy/) ou privacidade da informação se refere a preservação da privacidade do usuário e proteção da identidade do usuário com relação as informações de indentificação pessoal.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* Os dados (pessoais) dos usuários estão protegidos contra hacks e vazamentos?
|
||||
* Os dados do usuário são acessíveis somente a usuários e contextos autorizados?
|
||||
* A anonimidade do usuário são preservados quando os dados são compartilhados ou disseminados?
|
||||
* Um usuário podem ser desindentificado de datasets anônimos?
|
||||
|
||||
|
||||
#### 2.5 Direito a Ser Esquecido
|
||||
|
||||
o [Direito a Ser Esquecido](https://en.wikipedia.org/wiki/Right_to_be_forgotten) ou [Direito de Apagar](https://www.gdpreu.org/right-to-be-forgotten/) fornecem proteções de dados adicionais para os usuários. Especificamente, dá aos usuários o direito de pedir deleção ou remoção dos dados pessoais das buscas da Internet e outros locais, _sobre circunstâncias específicas_ - permitindo a eles um novo começo online sem que as ações passadas sejam colocadas contra eles.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* O sistema permite que os titulares dos dados peçam o apagamento dos mesmos?
|
||||
* A retirada do consentimento do usuário deve acionar um apagamento automático?
|
||||
* Dados foram colocados sem o consentimento ou por meios ilegais?
|
||||
* Estamos de acordo com regulações governamentais para a privacidade de dados?
|
||||
|
||||
|
||||
#### 2.6 Viéses dos Datasets
|
||||
|
||||
[Viéses da Coleção ou do Dataset](http://researcharticles.com/index.php/bias-in-data-collection-in-research/) é sobre selecionar um subset de dados _não representativos_ para o desenvolvimento de um algoritmo, criando potenciais injustiças nos resultados para grupos diversos. Os tipos de viéses incluem seleção ou viés da amostra, viés voluntário, e viés do instrumento.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* Recrutamos um conjunto representativo de titulares de dados?
|
||||
* Nós testamos nossos datasets colecionados ou com curadoria para diversos viéses?
|
||||
* Nós podemos mitigar ou remover quaisquer viéses descobertos?
|
||||
|
||||
#### 2.7 Qualidade de Dados
|
||||
|
||||
[Qualidade de Dados](https://lakefs.io/data-quality-testing/) procura pela validade do dataset com curadoria usado para desenvolver nossos algoritmos, checando para ver se recursos e registros atendem os requisitos para o nível de acurácia e consistência necessários para o propósito da nossa IA.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* Nós coletamos _features_ válidos para nosso caso de uso?
|
||||
* Os dados foram coletados _consistentemente_ em diversas fontes de dados?
|
||||
* O dataset é _completo_ para diversas condições e cenários?
|
||||
* As informações capturadas refletem _com precisão_ a realidade?
|
||||
|
||||
#### 2.8 Justiça do Algoritmo
|
||||
|
||||
[Justiça do Algoritmo](https://towardsdatascience.com/what-is-algorithm-fairness-3182e161cf9f) checa para ver se o design do algoritmo discrimina sistematicamente subgrupos específicos dos titulares dos dados levando a [potenciais danos](https://docs.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml) em _alocação_ (onde recursos são negados ou detidos daquele grupo) e _qualidade de serviço_ (onde IA não é tão acurada para alguns subgrupos quanto é para outros).
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* Nós avaliamos a acurácia do modelo para diversos subgrupos e condições?
|
||||
* Nós examinamos o sistema em busca de danos potenciais (ex. estereótipos)?
|
||||
* Nós podemos revisar os dados ou retreinar os modelos para mitigar danos identificados?
|
||||
|
||||
Explore recursos como [Checklist de Justiça de IA](https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4t6dA) para saber mais.
|
||||
|
||||
#### 2.9 Má Representação
|
||||
|
||||
[Má Representação dos Dados](https://www.sciencedirect.com/topics/computer-science/misrepresentation) é sobre perguntar se nós estamos comunicando insights de dados honestamente relatados de uma maneira enganosa para suportar uma narrativa desejada.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* Estamos relatando dados completos ou inacurados?
|
||||
* Estamos visualizando dados de uma maneira que conduz a uma conclusão errada?
|
||||
* Estamos usando técnicas estatísticas seletivas para manipular os resultados?
|
||||
* Existem explicações alternativas que podem oferecer uma conclusão diferente?
|
||||
|
||||
#### 2.10 Livre Escolha
|
||||
A [Ilusão da Livre Escolha](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) ocorre quando as "arquiteturas de escolha" do sistema utiliza algoritmos de tomada de decisão para incentivar as pessoas a obterem um resultado preferido enquanto parece lhe dar opções e controle. Esses [dark patterns](https://www.darkpatterns.org/) podem causar danos sociais e econômicos aos usuários. Já que as decisões do usuário impactam perfis de comportamento, essas ações potencialmente conduzem as escolhas futuras que podem aplificar ou extender o impacto desses danos.
|
||||
|
||||
Questões a se explorar aqui são:
|
||||
* O usuário entende as implicações de fazer aquela escolha?
|
||||
* O usuário estava ciente das escolhas (alternativas) e dos prós e contras de cada uma?
|
||||
* O usuário pode reverter um escolha automatizada ou influenciada depois?
|
||||
|
||||
### 3. Estudo de Casos
|
||||
|
||||
Para colocar esses desafios éticos em contextos do mundo real, ajuda olhar para estudo de casos que destacam potenciais danos e consequências para indivíduos e sociedade, quando essas violações éticas são negligenciadas.
|
||||
|
||||
Aqui estão alguns exemplos:
|
||||
|
||||
| Desafios de Éticas | Estudo de Caso |
|
||||
|--- |--- |
|
||||
| **Consentimento Informado** | 1972 - [Tuskegee Syphillis Study](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) - Homens afro-americanos que participaram no estudo foram prometidos cuidados médicos livres de custo _mas foram enganados_ pelos pesquisadores que não informaram os participantes de seus diagnósticos ou sobre a avaliabilidade de tratamentos. Muitos participantes morreram e parceiros e ciranças foram afetados; oe studo durou por 40 anos. |
|
||||
| **Privacidade de Dados** | 2007 - O [Netflix data prize](https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/) forneceu a pesquisadores _10M de avaliações anônimas de filmes de 50K clientes_ para ajudar a melhorar os algoritmos de recomendação. No entanto, os pesquisadores conseguiram correlacionar os dados anônimos com dados de identificação pessoal em _datasets externos_ (ex. comentários no IMDb) - "desanonimizando" efetivamente alguns assinates da Netflix.|
|
||||
| **Viéses dos Datasets** | 2013 - A Cidade de Boston [desenvolveu Street Bump](https://www.boston.gov/transportation/street-bump), um aplicativo que deixa os usuários relatarem burcos nas ruas, dando à cidade melhores dados rodoviários para encontrar e consertar problemas. No entanto, [pessoas que faziam parte de grupos de baixa renda tinham menos acesso a carros e celulares](https://hbr.org/2013/04/the-hidden-biases-in-big-data), fazendo com que os seus problema rodoviários fossem invisíveis nesse aplicativo. Desenvolvedores trabalharm com acadêmicos para questões de _acesso equitativo e divisões digitais_ para justiça. |
|
||||
| **Justiça do Algoritmo** | 2018 - [O Gender Shades Study do MIT](http://gendershades.org/overview.html) avaliou a acurácia de produtos de IA de classificação de gêneros, expondo lacunas na acurácia para mulheres e pessoas não brancas. Um [Apple Card de 2019](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) parece oferecer menos créditos para mulheres do que oferece para homens. Ambos ilustraram questões de viés algorítmico levando a danos socioeconômicos.|
|
||||
| **Má Representação de Dados** | 2020 - O [Departamento de Sáude Pública da Georgia (Georgia Department of Public Health) liberou gráficos da COVID-19](https://www.vox.com/covid-19-coronavirus-us-response-trump/2020/5/18/21262265/georgia-covid-19-cases-declining-reopening) que aparentam a levar os cidadãos a conclusões errôneas sobre as tendências em casos confirmados em uma ordem não cronológica no eixo x. Isso ilustra a má representação atráves de truques de visualização. |
|
||||
| **Ilusão da Livre Escolha** | 2020 - Aplicativo de aprendizado [ABCmouse pagou $10M para resolver uma reclamação do FTC](https://www.washingtonpost.com/business/2020/09/04/abcmouse-10-million-ftc-settlement/) onde os pais foram enganados a pagar assinaturas que eles não podiam cancelar. Isso ilustra "dark patterns" em arquiteturas de escolha, onde usuários foram direcionados a escolhas potencialmente prejudiciais. |
|
||||
| **Privacidade de Dados & Direitos do Usuário** | 2021 - [Violação de Dados do facebook](https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users) expôs dados de mais de 530M de usuários, resultando em um acordo de $5B com o FTC (Federal Trade Commission). No entanto, o Facebook se recusou a notificar os usuários sobre a violação dos dados violando os direitos dos usuários de transparência e acesso de dados. |
|
||||
|
||||
Gostaria de explorar mais estudos de caso? Confira:
|
||||
* [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - dilemas éticos em indústrias diversas.
|
||||
* [Data Science Ethics course](https://www.coursera.org/learn/data-science-ethics#syllabus) - estudos de caso marcantes explorados.
|
||||
* [Where things have gone wrong](https://deon.drivendata.org/examples/) - checklists da deon com exemplos
|
||||
|
||||
> 🚨 Pense sobre estudos de caso que você ja viu - você ja experienciou, ou foi afetado por, um desafio ético similar em sua vida? Voce consegue pensar em pelo menos um estudo de caso que ilustre um ou mais desafios éticos que discutimos nessa seção?
|
||||
|
||||
## Ética aplicada
|
||||
|
||||
Nós falamos sobre conceitos de éticas, desafios, e casos de estudo em contextos do mundo real. Mas como nós começamos a _aplicar_ esses princípios éticos em nossos projetos? E como nós _operacionalizamos_ essas práticas para melhor governância? Vamos explorar algumas soluções do mundo real:
|
||||
|
||||
### 1. Códigos Profissionais
|
||||
|
||||
Códigos Profisionais oferecem uma opção para organizações para "incentivar" membros a apoiar os princípios éticos e frase de missão. Códigos são _diretrizes morais_ para comportamento profissional, ajudando funcionários ou membros a tomar decisões que alinhem com os princípios da sua organização. Eles são tão bons quanto a conformidade voluntária dos membros; no entanto, muitas organizações oferecem recompensas e penalidades adicionais para motivar a conformidade dos membros.
|
||||
|
||||
Exemplos incluem:
|
||||
|
||||
* [Oxford Munich](http://www.code-of-ethics.org/code-of-conduct/) Código de Ética
|
||||
* [Data Science Association](http://datascienceassn.org/code-of-conduct.html) Código de Conduta (criado em 2013)
|
||||
* [ACM Code of Ethics and Professional Conduct](https://www.acm.org/code-of-ethics) (desde 1993)
|
||||
|
||||
> 🚨 Você faz parte de uma organização profissional de engenharia ou de ciências de dados? Explore o site deles para ver se eles definem um código de ética profissional. O que diz sobre os princípios éticos deles? Como eles estão "incentivando" os membros a seguir o código?
|
||||
|
||||
### 2. Checklists de Éticas
|
||||
|
||||
Enquanto códigos profissionais definem _comportamentos ético_ requiridos de seus praticantes, eles [tem limitações conhecidas](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md) na execução, particularmente em projetos de larga escala. Ao invés disso, muitos experts em Ciência de Dados [defendem as checklists](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md), que podem **conectar princípios a práticas** de maneiras para determinísticas e acionáveis.
|
||||
|
||||
Checklists convertem as questões em tarefas de "sim/não" que podem ser operacionalizadas, permitindo eles serem rastreados como parte dos fluxos de trabalho de liberação de produtos padrão.
|
||||
|
||||
Exemplos incluem:
|
||||
* [Deon](https://deon.drivendata.org/) - uma checklist de propósito gerak criado a partir de [recomendações da insústria](https://deon.drivendata.org/#checklist-citations) com uma ferramenta de linha de comando para fácil integração.
|
||||
* [Privacy Audit Checklist](https://cyber.harvard.edu/ecommerce/privacyaudit.html) - fornece orientação geral para práticas de manipulação de informação a partir de perspectivas de exposição legal e social.
|
||||
* [AI Fairness Checklist](https://www.microsoft.com/en-us/research/project/ai-fairness-checklist/) - criado por praticantes de IA para apoiar a adoção e integração de verificações de justiça dentro dos ciclos de desenvolvimento de IA.
|
||||
* [22 questions for ethics in data and AI](https://medium.com/the-organization/22-questions-for-ethics-in-data-and-ai-efb68fd19429) - estrutura mais aberto-fechado, estrturado para exploração inicial de problemas éticos em contextos de design, implementação, e organizacional.
|
||||
|
||||
### 3. Regulações Éticas
|
||||
|
||||
Ética é sobre definir valores compartilhados e fazer a coisa certa _voluntariamente_. **Compliance (Conformidade)** é sobre _seguir a lei_ se e onde definida. **Governância** abrange amplamente todos as formas de como as organizações operam para garantir princípios éticos e cumprir as leis estabelecidas.
|
||||
|
||||
Hoje, governância assume duas formas dentro das organizações. Primeira, é sobre definir princípios de **IA ética** e estabelecer práticas para operacionalizar a adoção em todos os projetos de IA na organização. Segundo, trata-se de cumprir com todos os **regulamentos de proteção de dados** para as regiões em que operam.
|
||||
|
||||
Exemplos de proteção de dados e regulamentos de privacidade:
|
||||
|
||||
* `1974`, [US Privacy Act](https://www.justice.gov/opcl/privacy-act-1974) - regula a coleta, o uso, e divulgação de informações pessoais por parte do _governo federal_.
|
||||
* `1996`, [US Health Insurance Portability & Accountability Act (HIPAA)](https://www.cdc.gov/phlp/publications/topic/hipaa.html) - protege dados de sáude pessoais.
|
||||
* `1998`, [US Children's Online Privacy Protection Act (COPPA)](https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule) - protege a privacidade de dados de crianças menores de 13 anos de idade.
|
||||
* `2018`, [General Data Protection Regulation (GDPR)](https://gdpr-info.eu/) - fornece direitos aos usuário, proteção de dados, e privacidade.
|
||||
* `2018`, [California Consumer Privacy Act (CCPA)](https://www.oag.ca.gov/privacy/ccpa) dá aos consumidores mais _direitos_ sobre seus dados (pessoais).
|
||||
* `2021`, [A Lei de Proteção de Informação Pessoal](https://www.reuters.com/world/china/china-passes-new-personal-data-privacy-law-take-effect-nov-1-2021-08-20/) da China acabou de ser passado, criando uma das regulações de privacidade de dados online mais forte do mundo.
|
||||
|
||||
> 🚨 A GDPR (General Data Protection Regulation) da União Europia continua sendo umas das regulações de privacidade de dados mais influentes hoje em dia. Você sabia que a mesma também define [8 direitos dos usuário](https://www.freeprivacypolicy.com/blog/8-user-rights-gdpr) para proteger a privacidade dos cidadãos e dados pessoais? Saiba mais sobre o que são e porque eles importam.
|
||||
|
||||
|
||||
### 4. Cultura Ética
|
||||
|
||||
Note que existe uma lacuna intangível entre _compliance_ (fazer o suficiente para cumprir a "a carta da lei") e abordar [problemas sistêmicos](https://www.coursera.org/learn/data-science-ethics/home/week/4) (como ossificação, assimetria informacional, e injustiça distribucional) que podem acelerar o uso da IA como uma arma.
|
||||
|
||||
Este último requere [abordagens colaborativas para definir culturas éticas](https://towardsdatascience.com/why-ai-ethics-requires-a-culture-driven-approach-26f451afa29f) que constrói conexões emocionais e valores compartilhados consistentes _em todas as organizações_ na indústria. Isso requere mais [culturas de ética de dados formalizadas](https://www.codeforamerica.org/news/formalizing-an-ethical-data-culture/) nas organizações - permitindo _qualquer um_ a [puxar o cordão Andom](https://en.wikipedia.org/wiki/Andon_(manufacturing)) (para aumentar as preocupações éticas mais cedo no processo) e fazendo _avaliações éticas_ (ex. na contratação) um critério fundamental na formação de times em projetos de IA.
|
||||
|
||||
---
|
||||
## [Quiz pós aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/3) 🎯
|
||||
## Revisão e Autoestudo
|
||||
|
||||
Cursos e livros ajudam a entender os conceitos essencias da ética, enquanto estudos de caso e ferramentas ajudam com práticas da ética aplicado em contextos do mundo real. Aqui estão alguns recursos para começar.
|
||||
|
||||
* [Machine Learning For Beginners](https://github.com/microsoft/ML-For-Beginners/blob/main/1-Introduction/3-fairness/README.md) - aula sobre Justiça, da Microsoft.
|
||||
* [Principles of Responsible AI](https://docs.microsoft.com/en-us/learn/modules/responsible-ai-principles/) - programa de aprendizado gratuito da Microsoft Learn.
|
||||
* [Ethics and Data Science](https://resources.oreilly.com/examples/0636920203964) - O'Reilly EBook (M. Loukides, H. Mason et. al)
|
||||
* [Data Science Ethics](https://www.coursera.org/learn/data-science-ethics#syllabus) - curso online da Universidade de Michigan.
|
||||
* [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - estudos de caso da Universidade do Texas.
|
||||
|
||||
# Tarefa
|
||||
|
||||
[Escreva um Caso de Uso de Ética de Dados](assignment.pt-br.md)
|
@ -0,0 +1,21 @@
|
||||
## Escreva um Caso de Estudo de Ética de Dados
|
||||
|
||||
## Instruções
|
||||
|
||||
Você aprendeu sobre vários [Desafios da Ética de Dados](README.pt-br.md#2-desafios-de-ética) e viu alguns exemplos de [Estudo de Casos](README.pt-br.md#3-estudo-de-casos) refletindo desafios da ética de dados em contextos do mundo real.
|
||||
|
||||
Nessa tarefa você irá escrever o seu próprio estudo de caso refletindo um desafio da ética de dados de seu própria experiência, ou de um contexto relevante do mundo real que você está familiarizado. Apenas siga esses passos:
|
||||
|
||||
1. `Escolha um Desafio da Ética de Dados`. Olhe [os exemplos da aula](README.pt-br.md#2-desafios-de-ética) ou explore exemplos onlines como [as Checklists da Deon](https://deon.drivendata.org/examples/) para se inspirar.
|
||||
|
||||
2. `Descreva um Exemplo do Mundo Real`. Pense sobre a situação que você ouviu sobre (manchetes, pesquisas etc.) ou experienciou (comunidade local), onde esse desafio em específico aconteceu. Pense sobre as questões de ética de dados relacionadas ao desafio - e discuta os danos potenciais ou consequências não-ntencionais que são levantados por causa desse problema. Pontos bônus: pense sobre potenciais soluções ou precessos que podem ser aplicados aqui para ajuda a eliminar ou mitigar o impacto adverso desse desafio.
|
||||
|
||||
3. `Forneça um Lista de Recursos Relacionados`. Compartilhe um ou mais recursos (links para artigos, posts ou imagens de blogs pessoais, artigos de pesquisa online etc.) para provar que isso acotnece no mundo real. Pontos bônus: compartilhe recursos que também mostrar potenciais danos e consequências de incidentes, ou destacam medidas positivas tomadas para prevenir sua recorrência.
|
||||
|
||||
|
||||
|
||||
## Rubrica
|
||||
|
||||
Exemplar | Adequado | Precisa melhorar
|
||||
--- | --- | -- |
|
||||
Um ou mais desafios de ética de dados são identificados. <br/> <br/> O estudo de caso descreve claramente um incidente do mundo real refletindo aquele desafio, e destaca consequências não desejáveis ou danos que causou. <br/><br/> Existe pelo menos um recurso linkado para provar que isso aconteceu. |Um desafio da ética de dados é identificado. <br/><br/> Pelo menos um dano ou consequência relevante é discutido brevemete. <br/><br/> No entanto a discussão é limitada ou falta provas de uma ocorrência no mundo real. | Um desafio de dados é identificado. <br/><br/> No entanto a descrição ou recursos não refletem adequadamente o desafio ou provam que aconteceu no mundo real. |
|
@ -0,0 +1,69 @@
|
||||
# Definiendo los datos
|
||||
|
||||
| ](../../../sketchnotes/03-DefiningData.png)|
|
||||
|:---:|
|
||||
|Definiendo los datos - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
Los datos son hechos, información, observaciones y mediciones que son usados para realizar descubrimientos y soportar decisiones informadas. Un punto de datos es una unidad simple de datos dentro de un conjunto de datos, lo cual es una colección de puntos de datos. Los conjuntos de datos pueden venir en distintos formatos y estructuras, y comúnmente se basan en su fuente, o de donde provienen los datos. Por ejemplo, las ganancias mensuales de una compañía pueden estar en una hoja de cálculo, pero los datos del ritmo cardiaco por hora de un reloj inteligente pueden estar en un formato [JSON](https://stackoverflow.com/a/383699). Es algo común para los científicos de datos el trabajar con distintos tipos de datos dentro de un conjunto de datos.
|
||||
|
||||
Esta lección se enfoca en la identificación y clasificación de datos por sus características y sus fuentes.
|
||||
|
||||
## [Examen previo a la lección](https://red-water-0103e7a0f.azurestaticapps.net/quiz/4)
|
||||
## Cómo se describen los datos
|
||||
Los **datos en crudo** son datos que provienen de su fuente en su estado inicial y estos no han sido analizados u organizados. Con el fin de que tenga sentido lo que sucede con un conjunto de datos, es necesario organizarlos en un formato que pueda ser entendido tanto por humanos como por la tecnología usada para analizarla a mayor detalle. La estructura de un conjunto de datos describe como está organizado y puede ser clasificado de forma estructurada, no estructurada y semi-estructurada. Estos tipos de estructuras podrían variar, dependiendo de la fuente pero finalmente caerá en una de estas categorías.
|
||||
### Datos cuantitativos
|
||||
Los datos cuantitativos son observaciones numéricas en un conjunto de datos que puede ser típicamente analizados, medidos y usados matemáticamente. Algunos ejemplos de datos cuantitativos son: la población de un país, la altura de una persona o las ganancias trimestrales de una compañía. Con algo de análisis adicional, los datos cuantitativos podrían ser usados para descubrir tendencias de temporada en el índice de calidad del aire (AQI) o estimar la probabilidad la hora pico de embotellamiento vial en un día laboral típico.
|
||||
|
||||
### Datos cualitativos
|
||||
Los datos cualitativos, también conocidos como datos categóricos son datos que no pueden ser medidos de forma objetiva en comparación con los datos cuantitativos. Comúnmente son formatos de datos subjetivos que capturan la calidad de algo, como un producto o un proceso. Algunas veces, los datos cuantitativos son numéricos y no pudiesen ser usados matemáticamente, como números telefónicos o marcas de tiempo. Algunos ejemplos de datos cualitativos son: comentarios en los videos, la marca y modelo de un automóvil o el color favorito de tus amigos más cercanos. Los datos cualitativos pueden ser usados para entender qué productos le gustan más a los usuarios o el identificar las palabras clave populares en solicitudes de empleo.
|
||||
|
||||
### Datos estructurados
|
||||
Los datos estructurados son datos que están organizados en filas y columnas, donde cada fila tendrá el mismo conjunto de columnas. Las columnas representan un valor de un tipo particular y serán identificadas con un nombre que describa el valor que representa, mientras que las filas contienen los valores en cuestión. Las columnas usualmente tendrán un conjunto específico de reglas o restricciones en sus valores, para asegurar que los valores presentan a la columna de forma precisa. Por ejemplo, imagina una hoja de cálculo de clientes donde cada fila debe tener un número telefónico y los números telefónicos nunca contienen caracteres alfabéticos. Habrá que aplicar reglas a la columna de número telefónico para asegurar éste nunca está vacío y contiene únicamente números.
|
||||
|
||||
Un beneficio de los datos estructurados es que estos pueden ser organizados de tal forma que pueden relacionarse con otros datos estructurados. Sin embargo, ya que los datos están diseñados para ser organizados de forma específica, el realizar cambios a su estructura en general puede conllevar un gran esfuerzo. Por ejemplo, agregar una columna de correo a la hoja de cálculo de clientes para que no permita esté vacía significa que necesitas descubrir como agregar estos valores a las filas existentes de clientes en el conjunto de datos.
|
||||
|
||||
Ejemplos de datos estructurados: hojas de cálculo, bases de datos relacionales, número de teléfono, estados de cuenta del banco.
|
||||
|
||||
### Datos no estructurados
|
||||
Los datos no estructurados no pueden ser típicamente categorizados en filas o columnas y no contienen un formato o conjunto de reglas a seguir. Ya que los datos no estructurados tienen menos restricciones en su estructura es más fácil agregar nueva información en comparación con los conjuntos de datos estructurados. Si un sensor captura datos de presión barométrica cada 2 minutos y ha recibido una actualización que ahora permite medir y granar la temperatura, no se requiere la modificación de los datos existentes si estos son no estructurados. Sin embargo, esto puede hacer que el análisis o la investigación de este tipo de datos tomará más tiempo. Por ejemplo, un científico quiere encontrar la temperatura promedio del mes previo desde los sensores de datos, pero descubre que los sensores grabaron una "e" en algunos de sus datos grabados para puntualizar que éste está averiado en lugar de grabar un número, lo cual significa que los datos están incompletos.
|
||||
|
||||
Ejemplos de datos no estructurados: archivos de texto, mensajes de texto, archivos de video.
|
||||
|
||||
### Datos semi-estructurados
|
||||
Los datos semi-estructurados combinan características tanto de datos estructurados como no estructurados. Generalmente no se ajustan a un formato de filas y columnas pero están organizados de tal forma que son considerados estructurados y pueden seguir un formato fijo o conjunto de reglas. La estructura cambiará entre las fuentes, así como también la jerarquía definida para algo más flexible que permite la fácil integración de información nueva. Los metadatos son indicadores que facilitan el decidir como se organizan y almacenan los datos y tendrán varios nombres, basados en los tipos de datos. Algunos nombres comunes para los metadatos son etiquetas, elementos, entidades y atributos. Por ejemplo, un mensaje de correo típico tendrá un asunto, un cuerpo y un conjunto de destinatarios y puede ser organizado por quién o cuando fue enviado.
|
||||
|
||||
Ejemplos de datos no estructurados: HTML, archivos CSV, objetos JSON.
|
||||
|
||||
## Fuentes de datos
|
||||
|
||||
Una fuente de datos es la ubicación inicial en donde los datos son generados, o donde estos "viven" y varían basados en cómo y cuándo fueron recolectados. Los datos generados por sus usuarios con conocidos como información primaria mientras que la información secundaria proviene de una fuente que ha recolectado datos para uso general. Por ejemplo, un grupo de científicos recolectó observaciones en la selva tropical, dicha información es considerada como primaria, pero si deciden compartirla con otros científicos sería considerada como secundaria para aquellos que la usen.
|
||||
|
||||
Las bases de datos son una fuente común y recaen en sistemas de gestión de bases de datos para albergar y mantener los datos donde los usuarios usan comandos llamados consultas (queries) para explorar los datos. Los archivos como fuentes de datos pueden ser archivos de audio, imagen y video también como hojas de cálculo como Excel. Las fuentes de Internet son una ubicación común para albergar datos, donde se pueden encontrar tanto bases de datos como archivos. Las interfaces de programación de aplicaciones, también conocidas como APIs, le permiten a los programadores crear formas para compartir los datos con usuarios externos a través de internet, mientras que los procesos de "web scraping" extraen datos desde una página web. Las [lecciones de trabajando con datos](/2-Working-With-Data) se enfocan en como usar las distintas fuentes de datos.
|
||||
|
||||
## Conclusiones
|
||||
|
||||
En esta lección has aprendido:
|
||||
|
||||
- Qué son los datos
|
||||
- Cómo se describen los datos
|
||||
- Cómo se clasifican y categorizan los datos
|
||||
- Dónde se pueden encontrar los datos
|
||||
|
||||
## 🚀 Desafío
|
||||
|
||||
Kaggle es una fuente excelente de conjuntos de datos abiertos. Usa los [conjuntos de datos de la herramienta de búsqueda](https://www.kaggle.com/datasets) para encontrar algunos conjuntos de datos interesantes y clasifica de 3 a 5 conjuntos de datos con los siguientes criterios:
|
||||
|
||||
- ¿Los datos son cuantitativos o cualitativos?
|
||||
- ¿Los datos son estruturados, no estructurados o semi-estructurados?
|
||||
|
||||
## [Examen posterior a la lección](https://red-water-0103e7a0f.azurestaticapps.net/quiz/5)
|
||||
|
||||
|
||||
|
||||
## Revisión y auto-estudio
|
||||
|
||||
- Esta unidad de Microsoft Learn, titulada [clasifica tus datos](https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data) tiene un desglose detallado de datos estructurados, semi-estructurados y no estructurados.
|
||||
|
||||
## Assignación
|
||||
|
||||
[Clasificación de los conjuntos de datos](../assignment.md)
|
@ -0,0 +1,63 @@
|
||||
# डेटा का अवलोकन
|
||||
| ](../../../sketchnotes/03-DefiningData.png)|
|
||||
|:---:|
|
||||
|डेटा का अवलोकन - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
डेटा मतलब तथ्य, ज्ञान और अनुभव है जिनका इस्तेमाल करके नए खोज और सूचित निर्णयोंका समर्थन किया जाता है।
|
||||
|
||||
डेटा पॉइंट यह डेटासेट का सबसे छोटा प्रमाण है। डेटासेट यह एक डेटा पॉइंट्स का बड़ा संग्रह होता है। डेटासेट बहुत सारे अलगअलग प्रकार और संरचनाका होता है, और बहुत बार किसी स्त्रोत पे आधारित होता है। उदाहरण के लिए, किसी कम्पनी की कमाई स्प्रेडशीट मैं जतन की हो सकती है मगर प्रति घंटे के दिल की धकड़न की गति [JSON](https://stackoverflow.com/questions/383692/what-is-json-and-what-is-it-used-for/383699#383699) रूप मैं हो सकती है। डेटा वैज्ञानिकों केलिए अलग अलग प्रकार के डेटा और डेटासेट के साथ काम करना आम बात होती है।
|
||||
|
||||
यह पाठ डेटा को उसके स्त्रोत के हिसाब से पहचानने और वर्गीकृत करने पर केंद्रित है।
|
||||
|
||||
## [पाठ के पूर्व की परीक्षा](https://red-water-0103e7a0f.azurestaticapps.net/quiz/4)
|
||||
|
||||
## डेटा का वर्णन कैसे किया जाता है
|
||||
**अपरीपक्व डेटा** ऐसे प्रकार का डेटा होता जो उसके स्त्रोत से आते वक्त जिस अवस्था में था वैसे ही है और उसका विश्लेषण या वर्गीकरण नहीं किया गया है। ऐसे डेटासेट से जरूरी जानकारी निकलने के लिए उसे ऐसे प्रकार मे लाना आवश्यक है जो इंसान समझ सके और जिस तंत्रज्ञान का उपयोग डेटा के विश्लेषण में किया जाएगा उसको भी समझ आये। डेटाबेस की संरचना हमें बताती है कि डेटा किस प्रकार से वर्गीकृत किया गया है और उसका संरचित, मिश्र संरचित और असंरचित प्रकार में वर्गीकरण कैसे किया जाता है। संरचना के प्रकार डेटा के स्त्रोत के अनुसार बदल सकते हैं मगर आखिर में इन तीनों में से एक प्रकार के हो सकते हैं।
|
||||
|
||||
### परिमाणात्मक डेटा
|
||||
परिमाणात्मक डेटा मतलब डेटासेट में उपलब्ध होने वाला ऐसा संख्यात्मक डेटा जिसका उपयोग विश्लेषण, मापन और गणितीय चीजों के लिए हो सकता है। परिमाणात्मक डेटा के यह कुछ उदाहरण हैं: देश की जनसंख्या, इंसान की कद या कंपनी की तिमाही कमाई। थोडे अधिक विश्लेषण बाद डेटा की परिस्थिति के अनुसार वायुगुणवत्ता सूचकांक का बदलाव पता करना या फिर किसी सामान्य दिन पर व्यस्त ट्रैफिक की संभावना का अनुमान लगाना मुमकिन है।
|
||||
|
||||
### गुणात्मक डेटा
|
||||
गुणात्मक डेटा, जिसे वर्गीकृत डेटा भी कहा जाता है, यह एक डेटा का ऐसा प्रकार है जिसे परिमाणात्मक डेटा की तरह वस्तुनिष्ठ तरह से नापा नहीं जा सकता। यह आम तौर पर अलग अलग प्रकार का आत्मनिष्ठ डेटा होता है जैसे से किसी उत्पादन या प्रक्रिया की गुणवत्ता। कभी कभी गुणात्मक डेटा सांख्यिक स्वरुप में हो के भी गणितीय कारणों के लिए इस्तेमाल नहीं किया जा सकता, जैसे की फोन नंबर या समय। गुणात्मक डेटा के यह कुछ उदाहरण हो सकते है: विडियो की टिप्पणियाँ, किसी गाड़ी का मॉडल या आपके प्रीय दोस्त का पसंदिदा रंग। गुणात्मक डेटा का इस्तेमाल करके ग्राहकौं को कोनसा उत्पादन सबसे ज्यादा पसंद आता है या फिर नौकरी आवेदन के रिज्यूमे में सबसे ज्यादा इस्तेमाल होने वाले शब्द ढूंढ़ना।
|
||||
|
||||
### संरचित डेटा
|
||||
संरचित डेटा वह डेटा है जो पंक्तियों और स्तंभों में संगठित होता है, जिसके हर पंक्ति में समान स्तंभ होते है। हर स्तंभ एक विशिष्ट प्रकार के मूल्य को बताता है और उस मूल्य को दर्शाने वाले नाम के साथ जाना जाता है। जबकि पंक्तियौं में वास्तविक मूल्य होते है। हर मूल्य सही स्तंभ का प्रतिनिधित्व करते हैं कि नहीं ये निश्चित करने के लिए स्तंभ में अक्सर मूल्यों पर नियमों का प्रतिबन्ध लगा रहता है। उदाहरणार्थ कल्पना कीजिये ग्राहकों की जानकारी होने वाला एक स्प्रेडशीट फ़ाइल जिसके हर पंक्ति में फोन नंबर होना जरुरी है और फोन नंबर में कभी भी अक्षर नहीं रहते। तो फिर फोन नंबर के स्तंभ पर ऐसा नियम लगा होना चाहिए जिससे यह निश्चित हो कि वह कभी भी खाली नहीं रहता है और उसमें सिर्फ आँकडे ही है ।
|
||||
|
||||
सरंचित डेटा का यह फायदा है की उसे स्तंभ और पंक्तियों में संयोजित किया जा सकता है। तथापि, डेटा को एक विशिष्ट प्रकार में संयोजित करने के लिए आयोजित किये जाने के वजह से पुरे संरचना में बदल करना बहुत मुश्किल काम होता है। जैसे की ग्राहकों के जानकारी वाले स्प्रेडशीट फ़ाइलमें अगर हमें ईमेल आयडी खाली ना होने वाला नया स्तंभ जोड़ना हो, तो हमे ये पता करना होगा की पहिले से जो मूल्य इस डेटासेट में है उनका क्या होगा?
|
||||
|
||||
संरचित डेटा के यह कुछ उदाहरण हैं: स्प्रेडशीट, रिलेशनल डेटाबेस, फोन नंबर एवं बैंक स्टेटमेंट ।
|
||||
|
||||
### असंरचित डेटा
|
||||
असंरचित डेटा आम तौर पर स्तंभ और पंक्तियों में वर्गीकृत नहीं किया जा सकता और किसी नियमों से बंधित भी नहीं रहता। संरचित डेटा के तुलना में असंरचित डेटा में कम नियम होने के कारण उसमे नया डेटा जोडना बहुत आसान होता है। अगर कोई सेंसर जो बैरोमीटर के दबाव को हर दो मिनट के बाद दर्ज करता है, जिसकी वजह से वह दाब को माप के दर्ज कर सकता है, तो उसे असंरचित डेटा होने के कारण डेटाबेस में पहलेसे उपलब्ध डेटा को बदलने की आवश्यकता नहीं है। तथापि, ऐसे डेटा का विश्लेषण और जाँच करने में ज्यादा समय लग सकता है।
|
||||
जैसे की, एक वैज्ञानिक जिसे सेंसर के डेटा से पिछले महीने के तापमान का औसत ढूंढ़ना हो, मगर वो देखता है की सेंसर ने कुछ जगह आधे अधूरे डेटा को दर्ज करने के लिए आम क्रमांक के विपरीत 'e' दर्ज किया है, जिसका मतलब है की डेटा अपूर्ण है।
|
||||
असंरचित डेटा के उदाहरण: टेक्स्ट फ़ाइलें, टेक्स्ट मेसेजेस, विडियो फ़ाइलें।
|
||||
|
||||
### मिश्र संरचित डेटा
|
||||
मिश्र संरचित डेटा के ऐसे कुछ गुण है जिसकी वजह से उसे संरचित और असंरचित डेटा का मिश्रण कहा जा सकता हैं। वह हमेशा स्तंभ और पंक्तियों के अनुरूप नहीं रहता मगर ऐसे तरह संयोजित किया गया होता है कि उसे संरचित कहा जा सकता है और शायद अन्य निर्धारित नियमों का पालन भी करता है। डेटा की संरचना उसके स्त्रोत के ऊपर निर्भर होती है जैसे की स्पष्ट अनुक्रम या फिर थोडा परिवर्तनशील होता है जिसमे नया डेटा जोड़ना आसान हो। मेटाडेटा ऐसे संकेतांक होते हैं जिससे डेटा का संयोजन और संग्रह करना आसान होता है, और उन्हें डेटा के प्रकार के अनुरूप नाम भी दिए जा सकते हैं । मेटाडेटा के आम उदाहरण है: टैग्स, एलिमेंट्स, एंटिटीज और एट्रीब्यूट्स.
|
||||
उदाहरणार्थ: एक सामान्य ईमेल को उसका विषय, मायना, और प्राप्तकर्ताओं की सूची होगी और किससे कब भेजना है उसके प्रमाण से संयोजित किया जा सकता है।
|
||||
|
||||
मिश्र संरचित डेटा के उदाहरण: एचटीएमएल, सीइसवी फाइलें, जेसन(JSON)
|
||||
|
||||
## डेटा के स्त्रोत
|
||||
डेटा का स्त्रोत, अर्थात वो जगह जहाँ डेटा सबसे पहिली बार निर्माण हुआ था, और हमेशा कहाँ और कब जमा किया था इसपर आधारित होगा। उपयोगकर्ता के द्वारा निर्माण किये हुए डेटा को प्राथमिक डेटा के नाम से पहचाना जाता है जबकि गौण डेटा ऐसे स्त्रोत से आता है जिसने सामान्य कार्य के लिए डेटा जमा किया था। उदाहरण के लिए, वैज्ञानिकों का समूह वर्षावन में टिप्पणियों और सूचि जमा कर रहे है तो वो प्राथमिक डेटा होगा और यदि उन्होंने उस डेटा को बाकि के वैज्ञनिको के साथ बाँटना चाहा तो वो वह गौण डेटा कहलाया जायेगा।
|
||||
|
||||
डेटाबेस यह एक सामान्य स्त्रोत है और वह होस्टिंग और डेटाबेस मेंटेनन्स सिस्टिम पर निर्भर होता है। डेटाबेस मेंटेनन्स सिस्टिम में उपयोगकर्ता कमांड्स, जिन्हें ‘क्वेरीज़’ कहा जाता है इस्तेमाल करके डेटाबेस का डेटा ढूंढ सकते हैं। डेटा स्त्रोत फ़ाइल स्वरुप में हो, तो आवाज, चित्र, वीडियो, स्प्रेडशीट ऐसे प्रकार में हो सकता है। अंतरजाल के स्त्रोत डेटा होस्ट करने का बहुत आम तरीका है। यहाँ डेटाबेस तथा फाइलें ढूंढी जा सकती है। एप्लीकेशन प्रोग्रामिंग इंटरफेस, जिन्हे 'एपीआय'(API) के नाम से जाना जाता है, उसकी मदद से प्रोग्रामर्स डेटा को बाहर के उपयोगकर्ताओं को अंतरजाल द्वारा इस्तेमाल करने के लिए भेज सकते हैं। जबकि वेब स्क्रैपिंग नामक प्रक्रिया से अंतरजाल के वेब पेज का डेटा अलग किया जा सकता है। [डेटा के साथ काम करना](https://github.com/microsoft/Data-Science-For-Beginners/tree/main/2-Working-With-Data) यह पाठ अलग अलग डेटा का इस्तेमाल करने पर ध्यान देता है।
|
||||
## निष्कर्ष
|
||||
यह पाठ में हमने पढ़ा कि:
|
||||
- डेटा क्या होता है
|
||||
- डेटा का वर्णन कैसे किया जाता है
|
||||
- डेटा का वर्गीकरण कैसे किया जाता है
|
||||
- डेटा कहा मिलता है
|
||||
|
||||
## 🚀 चुनौती
|
||||
Kaggle यह के मुक्त डेटाबेस का बहुत अच्छा स्त्रोत है। [सर्च टूल ](https://www.kaggle.com/datasets) का इस्तेमाल करके कुछ मजेदार डेटासेट ढूंढे और उनमे से तीन-चार डेटाबेस को ऐसे वर्गीकृत करे:
|
||||
- डेटा परिमाणात्मक है या गुणात्मक है?
|
||||
- डेटा संरचित, असंरचित या फिर मिश्र संरचित है?
|
||||
|
||||
## [पाठ के पश्चात परीक्षा](https://red-water-0103e7a0f.azurestaticapps.net/quiz/5)
|
||||
|
||||
## समीक्षा और स्वअध्ययन
|
||||
- माइक्रोसॉफ्ट लर्न का [Classify your data](https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data) पाठ संरचित, असंरचित और मिश्र संरचित डेटा के बारे में और अच्छे से बताता है।
|
||||
|
||||
## अभ्यास
|
||||
[डेटा का वर्गीकरण](../assignment.md)
|
@ -0,0 +1,67 @@
|
||||
# Definindo Dados
|
||||
|
||||
| ](../../../sketchnotes/03-DefiningData.png)|
|
||||
|:---:|
|
||||
|Definindo Dados - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
Dados são fatos, informações, observações e medidas que são usadas para fazer descobertas e apoiar decisões informadas. Um ponto de dado é uma unidade única dentro de um dataset, que é uma coleção de pontos de dados. Datasets podem vir em diferentes formatos e estruturas, e normalmente será baseado em sua fonte, ou de onde os dados vieram. Por exemplo, os ganhos mensais de uma empresa podem estar em uma planilha mas a frequência cardíaca (por hora) de um smartwatch pode estar em formato [JSON](https://stackoverflow.com/a/383699). É comum para cientistas de dados terem que trabalhar com diferentes tipos de dados em um dataset.
|
||||
|
||||
Essa aula irá focar em identificar e classificar dados baseados em sua características e fontes.
|
||||
|
||||
## [Quiz Pré Aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/4)
|
||||
## Como Dados são Descritos
|
||||
**Dados Brutos (Raw data)** são dados que vieram em seu estado inicial de sua fonte e não foram analisados ou organizados. Para entender o que está acontecendo com um conjunto de dados, é necessário organizar os dados em um formato que possa ser entendido pelos humanos e também pela tecnologia que pode ser usada para analisar os mesmos. A estrutura do dataset descreve como estão organizados e pode ser classificada em estruturada, não estruturada e semi estruturada. Esses tipos de estruturas irão variar, dependendo da fonte mas irão ultimamente se encaixar nessas categorias.
|
||||
|
||||
### Dados Qualitativos
|
||||
Dados qualitativos, também conhecidos como dados categóricos são dados que não podem ser medidos objetivamente como observações de dados quantitativos. São geralmente vários formatos de dados subjetivos que coletam a qualidade de algo, como um produto ou processo. Algumas vezes, dados qualitativos são numéricos e tipicamente não seriam usados matematicamente, como números de telefones e marcas de tempo. Alguns exemplos de dados qualitativos são: comentários de vídeos, a marca e modelo de um carro e a cor favorita do seu melhor amigo. Dados qualitativos podem ser usados para entender quais produtos os consumidores mais gostam ou identificar palavras-chaves populares em cúrriculos para aplicação em uma vaga de trabalho.
|
||||
|
||||
### Dados Estruturados
|
||||
Dados estruturados são dados que estão organizados em linhas e colunas, onde cada linha tem a mesma quantidade de colunas. Colunas representam um valor de um tipo particular e são identificadas com um nome descrevendo o que aquele valor representa, enquanto cada linha contém o valor. Colunas geralmente vão possuir um conjunto específico de regras e restrições nesses valores, para garantir que os valores representam precisamente a coluna. Por exemplo, imagine uma planilha de clientes onde cada linha deve ter um número de telefone e o mesmo nunca pode conter caractéres alfabéticos. Podem existir regras aplicadas na coluna do número de telefone para garantir que nunca esteja vazio e contenha apenas números.
|
||||
|
||||
Um benefício de dados estruturados é que podem ser organizados de uma forma que pode ser relacionada a um outro dado estruturado. No entanto, devido ao fato dos dados serem feitos para serem organizados de uma forma específica, fazer mudanças na estrutura em geral pode requerer muito esforço. Por exemplo, adicionar uma coluna de email na planilha de clientes que não pode ser vazia, significa que você terá que decidir como você irá adicionar os valores nas linhas já existentes no dataset.
|
||||
|
||||
Exemplos de dados estruturados: planilhas/spreadsheets, bancos de dados relacionais, números de telefone, extratos bancários
|
||||
|
||||
### Dados Não Estruturados
|
||||
Dados não estruturados tipicamente não podem ser categorizado em linhas e colunas e não possuem um formato ou um conjunto de regras a ser seguido. Devido ao fato de dados não estruturados possuirem menos restrições na sua estrutura é mais fácil adicionar novas informações quando comparados com um dataset estruturado. Se um sensor que coleta dados de pressão bariométrica a cada 2 minutos recebeu uma atualização que agora permite que o mesmo meça e grave a temperatura, não é preciso alterar os dados já existentes se eles são não estruturados. No entanto, isso pode fazer com que a análise ou investigação desses dados leve mais tempo. Por exemplo, um cientista que quer descobrir a temperatura média do mês passado a partir dos dados do sensor, mas descobre que o sensor gravou um "e" em alguns dados gravados indicando que estava quebrado ao invés de um número típico, o que significa que os dados estão incompletos.
|
||||
|
||||
Exemplos de dados não estruturados: arquivos de texto, mensagens de texto, arquivo de vídeo
|
||||
|
||||
### Dados Semi Estruturados
|
||||
Dados semi estruturados possui recursos que o fazem ser uma combinação de dados estruturados e não estruturados. Tipicamente não está em conformidade com linhas e colunas mas estão organizados de uma forma que são considerados estruturados e podem seguir um formato fizo ou um conjunto de regras. A estrutura pode variar entre as fontes, desde uma hierarquia bem definida até algo mais flexível que permite uma fácil integração de novas informação. Metadados são indicadores que ajudam a decidir como os dados são organizados e armazenados e terão vários nomes, baseado no tipo de dado. Alguns nomes comuns para metadados são tags, elementos, entidades e atributos. Por exemplo, uma mensaem de email típica terá um assunto, corpo e um conjunto de recipientes e podem ser organizados por quem ou quando foi mandado.
|
||||
|
||||
Exemplos de dados não estruturados: HTML, arquivos CSV, JavaScript Object Notation (JSON)
|
||||
|
||||
## Fontes de Dados
|
||||
|
||||
Uma fonte de dados é o local inicial onde os dados foram gerados, ou onde "vivem" e irá variar com base em como e quando foram coletados. Dados gerados por seus usuários são conhecidos como dados primários enquanto dados secundários vem de uma fonte que coletou os dados para uso geral. Por exemplo, um grupo de cientistas fazendo observações em uma floresta tropical seriam considerados dados primários e se eles decidirem compartilhar com outros cientistas seriam considerados dados secundários para aqueles que usarem.
|
||||
|
||||
Banco de dados são fontes comuns e dependem de um sistema de gerenciamente de banco de dados para hospedar e manter os dados onde usuários usam comandos chamados de "queries" para explorar os dados. Arquivos como fonte de dados podem ser aúdio, imagens, e arquivos de vídeo assim como planilhas como o Excel. Fontes da internet são lugares comuns para hospedar dados, onde banco de dados e arquivos podem ser encontrados. Application programming interfaces, ou APIs, permitem programadores a criarem formas de compartilhar dados com usuários externos através da interet, enquanto processos de "web scraping" extrai dados de uma página da web. As [tarefas em Trabalhando com Dados](../../../2-Working-With-Data) focam em como usar várias fontes de dados.
|
||||
|
||||
## Conclusão
|
||||
|
||||
Nessa aula nós aprendemos:
|
||||
|
||||
- O que são dados
|
||||
- Como dados são descritos
|
||||
- Como dados são classificados e categorizados
|
||||
- Onde os dados podem ser encontrados
|
||||
|
||||
## 🚀 Desafio
|
||||
|
||||
O Kaggle é uma excelente fonte para datasets abertos. Use a [ferramenta de busca de dataset](https://www.kaggle.com/datasets) para encontrar alguns datasets interessantes e classificar de três a cinco datasets com esses critérios:
|
||||
|
||||
- Os dados são quantitativos ou qualitativos?
|
||||
- Os dados são estruturados, não estruturados, ou semi estruturados?
|
||||
|
||||
## [Quiz Pós Aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/5)
|
||||
|
||||
|
||||
|
||||
## Revisão e Auto Estudo
|
||||
|
||||
- Essa unidade do Microsoft Lean, entitulada [Classifique seus Dados (Classify your Data)](https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data) tem uma análise detalhada de dados estruturados, semi estruturados, e não estruturados.
|
||||
|
||||
## Tarefa
|
||||
|
||||
[Classificando Datasets](assignment.pt-br.md)
|
@ -0,0 +1,65 @@
|
||||
# डाटासेट को वर्गीकृत करना
|
||||
|
||||
## निर्देश
|
||||
|
||||
इस असाइनमेंट मे निम्नलिखित प्रॉम्प्ट को देख कर डाटा को पहचाने व एक या उससे ज्यादा डाटा टाइप मे वर्गीकृत करें:
|
||||
|
||||
**स्ट्रक्चर टाइप**: संरचित, अर्ध्य-संरचित अथवा असंरचित
|
||||
|
||||
**वैल्यू टाइप**: गुणात्मक अथवा मात्रात्मक
|
||||
|
||||
**सोर्स टाइप**: मुख्य अथवा माध्यमिक
|
||||
|
||||
1. एक कंपनी को अधिग्रहित किया गया है और अब उसकी पेरन्ट कंपनी है| डाटा वैज्ञानिकों को पेरन्ट कंपनी से ग्राहकों के फओबने नंबर की सूची प्राप्त हुई है|
|
||||
|
||||
स्ट्रक्चर टाइप:
|
||||
|
||||
वैल्यू टाइप:
|
||||
|
||||
सोर्स टाइप:
|
||||
|
||||
---
|
||||
|
||||
2. एक स्मार्ट वाच उसको पहनने वाले का हृदय दर का माप ले रही है, जो की JSON फॉर्मैट मे है|
|
||||
|
||||
स्ट्रक्चर टाइप:
|
||||
|
||||
वैल्यू टाइप:
|
||||
|
||||
सोर्स टाइप:
|
||||
|
||||
---
|
||||
|
||||
3. कुछ कर्मचारियो का कार्यस्थल सर्वेक्षण जो की एक CSV फाइल मे संग्रहीत है|
|
||||
|
||||
स्ट्रक्चर टाइप:
|
||||
|
||||
वैल्यू टाइप:
|
||||
|
||||
सोर्स टाइप:
|
||||
|
||||
---
|
||||
|
||||
4. कुछ खगोल वैज्ञानिक एक आकाशगंगा के डेटाबेस को जांच रहे हैं जो अंतरिक्ष जांच से मिला है| उसकी डाटा मे हर आकाशगंगा मे स्थित ग्रहों की संख्या है|
|
||||
|
||||
स्ट्रक्चर टाइप:
|
||||
|
||||
वैल्यू टाइप:
|
||||
|
||||
सोर्स टाइप:
|
||||
|
||||
---
|
||||
|
||||
5. एक वयऐक्टिक फाइनैन्स एप कुछ APIs के सहारे एक व्यक्ति के आर्थिक खाते से जुड़ता है व उनकी कुल योग्यता निकलता है| यूजर अपनी सारी लेनदेन को एक स्प्रेड्शीट की तरह पंक्ति और स्तम्भ के रूप मे देख सकते हैं|
|
||||
|
||||
स्ट्रक्चर टाइप:
|
||||
|
||||
वैल्यू टाइप:
|
||||
|
||||
सोर्स टाइप:
|
||||
|
||||
## सरनामा
|
||||
|
||||
अनुकरणीय | पर्याप्त | सुधार चाहिए
|
||||
--- | --- | -- |
|
||||
डाटा के स्तोत्र को पहचानने मे, उसको भंडारित मे और निर्णय लेने मे सक्षम थे | समाधान के कुछ हिस्से विस्तृत नहीं हैं, डाटा को संग्रहीत करना नहीं बताया गया है, कम से कम दो क्षेत्रों का वर्णन है | समाधान के सिर्फ कुछ ही हिस्सों का वर्णन है, सिर्फ एक क्षेत्र पर विचार किया है|
|
@ -0,0 +1,65 @@
|
||||
# Classificando Datasets
|
||||
|
||||
## Instruções
|
||||
|
||||
Siga as instruções nessa tarefa para identificar e classificar os dados como um de cada dos seguintes tipos de dados:
|
||||
|
||||
**Tipos de Estrutura**: Estruturado, Semi Estruturado, ou Não-Estruturado
|
||||
|
||||
**Tipos de Valor**: Qualitativo ou Quantitativo
|
||||
|
||||
**Tipos de Fonte**: Primária ou Secundária
|
||||
|
||||
1. Uma empresa voi adquirida e agora tem uma empresa-mãe. Os cientistas de dados receberam uma planilha com números de telefones dos clientes da empresa-mãe.
|
||||
|
||||
Tipo de Estrutura:
|
||||
|
||||
Tipo de Valor:
|
||||
|
||||
Tipo de Fonte:
|
||||
|
||||
---
|
||||
|
||||
2. Um smart watch vem coletando dados da frequência cardíaca de seu usuário, e os dados brutos estão em formato JSON.
|
||||
|
||||
Tipo de Estrutura:
|
||||
|
||||
Tipo de Valor:
|
||||
|
||||
Tipo de Fonte:
|
||||
|
||||
---
|
||||
|
||||
Uma pesquisa sobre o moral do funcionário no local de trabalho armazenada em um arquivo CSV.
|
||||
|
||||
Tipo de Estrutura:
|
||||
|
||||
Tipo de Valor:
|
||||
|
||||
Tipo de Fonte:
|
||||
|
||||
---
|
||||
|
||||
4. Astrofísicos estão acessando um banco de dados de galáxias que foram coletados por uma sonda espacial. Os dados contém os números de planetas dentro de cada galáxia.
|
||||
|
||||
Tipo de Estrutura:
|
||||
|
||||
Tipo de Valor:
|
||||
|
||||
Tipo de Fonte:
|
||||
|
||||
---
|
||||
|
||||
5. Um aplicativo de finanças pessoas usa APIs para conectar com as contas financeiras dos usuários para calcular seu net worth. Eles podem ver todas as suas transações em um formato de linhas e colunas e são similares com uma planilha.
|
||||
|
||||
Tipo de Estrutura:
|
||||
|
||||
Tipo de Valor:
|
||||
|
||||
Tipo de Fonte:
|
||||
|
||||
## Rubrica
|
||||
|
||||
Exemplar | Adequado | Precisa melhorar
|
||||
--- | --- | -- |
|
||||
Identificou corretamente todas as estruturas, valores, e fontes |Identificou corretamente 3 todas as estruturas, valores e fontes|Correctly Identificou 2 ou menos todas as estruturas, valores, e fontes|
|
@ -0,0 +1,261 @@
|
||||
# Uma Breve Introdução a Estatística e Probabilidade
|
||||
|
||||
| ](../../../sketchnotes/04-Statistics-Probability.png)|
|
||||
|:---:|
|
||||
| Estatística e Probabilidade - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
Teoria da Probabilidade e Estatística são duas áreas altamente relacionadas da Matemática que são altamente relevante para a Ciência de Dados. É possível operar com dados sem um conhecimento aprofundado de matemática, mas ainda é bom saber pelo menos alguns conceitos. Aqui nós vamos apresentar uma breve introdução que ajudará você a começar.
|
||||
|
||||
[](https://youtu.be/Z5Zy85g4Yjw)
|
||||
|
||||
|
||||
## [Quiz Pré Aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/6)
|
||||
|
||||
## Probabilidade e Variáveis Aleatórias
|
||||
|
||||
**Probabilidade** é um número entre 0 e 1 que expressa o quão provável um **evento** é. É definida como um número de resultados positivos (que levam ao evento), divido pelo número possível de resultados, dado que todos os resultados são igualmente prováveis. Por exemplo, quando jogamos um dado, a probabilidade de termos um número par é 3/6 = 0.5.
|
||||
|
||||
Quando falamos de eventos, usamos **variáveis aleatórias**. Por exemplo, a variável aleatória que representa o número obtido quando jogamos um dado assumiria valores entre 1 e 6. O conjunto de números entre 1 a 6 é chamado de **espaço amostral**. Podemos falar sobre a probabilidade de uma variável aleatória ser um certo valor, como por exemplo P(X=3)=1/6.
|
||||
|
||||
A variável aleatória nos exemplos anteriores são chamadas de **discretas**, pois possui um espaço amostral contável, ex. existem valores separados que podem ser numerados. Existem casos onde o espaço amostral é uma gama de valores reais, ou todo o conjunto de números reais. Essas variáveis são chamadas de **contínuas**. Um bom exemplo é a hora em que o ônibus chega.
|
||||
|
||||
## Distribuição de Probabilidade
|
||||
|
||||
No caso de variáveis discretas, é fácil descrever a probabilidade de cada um por uma função P(X). Para cada valor *s* do espaço amostrals *S* vai dar um número entre 0 e 1, de modo que todos os valores P(X=s) para todos os eventos seria 1.
|
||||
|
||||
A distribuição discreta mais conhecida é a **distribuição uniforme**, no qual existe um espaço amostral de N elementos, com probabilidade de 1/N para todos eles.
|
||||
|
||||
É mais difícil descrever a distribuição de probabilidade para uma variável contínua, com valores sorteados dentro de um intervalo [a, b], ou todo o conjunto dos números reais ℝ. Considere o caso da chegado do horário de ônibus. Na verdade, para cada horário de chegada exato $t$, a probabilidade do ônibus chegar exatamente naquele horário é 0!
|
||||
|
||||
> Agora você sabe que eventos com probabilidade 0 acontecem, e muito frequentemente! Pelo menos toda vez que o ônibus chegar!
|
||||
|
||||
Nós só podemos falar da probabilidade de uma variável cair em um determinado intervalo de valores, ex. P(t<sub>1</sub>≤X<t<sub>2</sub>). Nesse caso, a distribuição de probabilidade é descrita por uma **função densidade de probabilidade** p(x), sendo que
|
||||
|
||||

|
||||
|
||||
Um análogo contínuo de distribuição uniforme é chamado de **uniforme contínuo**, o qual é definido em um intervalo finito. Uma probabilidade de que o valor X caia em um intervalo de tamanho l é proporcional a l, e vai até 1.
|
||||
|
||||
Outra distribuição importante é a **distribuição normal**, a qual vamos falar sobre em mais detalhes abaixo.
|
||||
|
||||
## Média, Variância e Desvio Padrão
|
||||
|
||||
Vamos supor que sorteamos um sequência de n amostras da variável aleatória X: x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>. Nós podemos definir o valor da **média** (ou **média aritmética**) da sequência da forma tradicional como (x<sub>1</sub>+x<sub>2</sub>+x<sub>n</sub>)/n. Conforme aumentamos o tamanho da amostra (ex. obter o limite com n→∞), nós vamos obter a média (também chamada de **expectância ou esperança**) da distribuição. Nós vamos denotá-la por **E**(x).
|
||||
|
||||
> Pode ser demonstrado que para qualquer distribuição discreta com valores {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>N</sub>} e probabilidades correspondentes p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>N</sub>, a expectativa seria igual a E(X)=x<sub>1</sub>p<sub>1</sub>+x<sub>2</sub>p<sub>2</sub>+...+x<sub>N</sub>p<sub>N</sub>.
|
||||
|
||||
Para demonstrar o quanto os valores estão espalhados, nós podemos computar a variância σsup>2</sup> = ∑(x<sub>i</sub> - μ)<sup>2</sup>/n, onde μ é a média da sequência. O valor de σ é chamado de **desvio padrão**, e σ<sup>2</sup> é chamado de **variância**.
|
||||
|
||||
## Moda, Média e Quartis
|
||||
|
||||
Algumas vezes, a média não representa adequadamente o valor "típico" para dados. Por exemplo, quando existem poucos valores extremos que estão completamente fora da faixa, eles podem afetar a média. Outra boa indicação é a **mediana**, um valor sendo que metade dos pontos de dados estão abaixo dele, e a outra metade - acima.
|
||||
|
||||
Para nos ajudar a entender a distribuição dos dados, é útil falar de **quartis**:
|
||||
|
||||
* O primeiro quartil, ou Q1, é um valor sendo que 25% dos dados estarão abaixo dele
|
||||
* O terceiro quartil,ou Q3, é um valor sendo que 75% dos dados estarão abaixo dele
|
||||
|
||||
Graficamente nós podemos representar a relação entre mediana e quartis em um diagrama chamado de **box plot**:
|
||||
|
||||
<img src="../images/boxplot_explanation.png" width="50%"/>
|
||||
|
||||
Nós também podemos computar o **intervalo interquartil** IQR=Q3-Q1, e os tão chamados **outliers** - valores que se localizam fora dos limites [Q1-1.5*IQR,Q3+1.5*IQR].
|
||||
|
||||
Para distribuições finitas que contenham um pequeno número de valores positivos, um bom valor "típico" é aquele que aparece mais frequentemente, que é chamado de **moda**. Geralmente é aplicado para dados categóricos, como cores. Considere uma situação onde nós temos dois grupos de pessoas - alguns preferem fortemente vermelho, enquanto outros preferem azul. Se atribuirmos números a cores, o valor médio para uma cor favorita estaria em algum lugar entre o espectro laranja-verde, o que não indica, de fato, a preferência de nenhum grupo. No entanto, a moda seria ou uma das cores, ou ambas as cores, se os números de pessoas que votaram para elas fossem iguais (nesse caso nós chamamos a amostra de **multimodal**).
|
||||
## Dados do Mundo Real
|
||||
|
||||
Quando analisamos dados da vida real, eles normalmente não são variáveis aleatórias como tal, no sentido de que não realizamos experimentos com resultado desconhecido. Por exemplo, considere um time de jogadores de baseball, e os seus dados corporais, como altura, peso e idade. Esses númerps não são exatamente aleatórios, mas nós podemos aplicar os mesmos conceitos matemáticos. Por exemplo, a sequência da altura das pessoas pode ser considerada uma sequência de valores sortidos de alguma variável aleatória. Abaixo está a sequência de pesos de jogadores reais da [Major League Baseball](http://mlb.mlb.com/index.jsp), retirados [desse dataset](http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights) (para a sua conveniência, apenas os primeiros 20 valores são mostrados):
|
||||
|
||||
```
|
||||
[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]
|
||||
```
|
||||
|
||||
> **Nota**: Para ver o exemplo de trabalhar com esse dataset, olhe o [notebook](../notebook.ipynb). Existe também um número de desafios nessa aula, e você pode completá-los adicionando alguns códigos nesse notebook. Se você não tem certeza de como operar os dados, não se preocupe - nós vamos voltar a trabalhar com dados usando Python em um outro momento. Se você não sabe como rodar código no Jupyter Notebook, dê uma olhada [neste artigo](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
|
||||
|
||||
Aqui está o box plot mostrando a média, mediana e quartis para os nossos dados:
|
||||
|
||||

|
||||
|
||||
Já que os nossos dados possuem informação de **posições** diferentes dos jogadores, nós podemos fazer o box plot baseado nas posições - permitirá a gente ter uma ideia de como os valores dos parâmetros mudam conforme diferentes posições. Agora vamos considerar a altura:
|
||||
|
||||

|
||||
|
||||
Esse diagrama sugere que, em média, a altura do jogador na primeira base é maior do que a altura dos jogadores na segunda base. Mais tarde nessa aula nós vamos aprender como podemos testar essa hipótese mais formalmente, e como demonstrar que o nosso dado é estatisticamente significante para mostrar isso.
|
||||
|
||||
> Quando trabalhando com dados do mundo real, nós assumimos que todos os pontos de dados são amostras sortidas de alguma distribuição de probabilidade. Essa suposição permite que a gente aplica técnicas de aprendizado de máquina e contrua modelos preditivos que funcionam.
|
||||
|
||||
Para ver qual a distribuição dos nossos dados é, nós podemos "plotar" um gráfico chamado de **histograma**. O eixo x seria um número de diferentes intervalos de valores para peso (chamados de **grupos** (bins)), e o eixo vertical mostrari o número de vezes que a amostra da nossa variável aleatória estava dentro do intervalo dado.
|
||||
|
||||

|
||||
|
||||
A partir desse histograma você pode ver que todos os valores estão centrados ao redor de uma certa média de peso, e quanto mais longe nós formos - menos pesos desse valor são encotnrados. Ex. é muito improvável que o peso de um jogador de baseball seja muito diferente da média de pesos. Variância dos pesos mostram até que pontos os pesos tendem a diferir da média.
|
||||
|
||||
> Se nós pegarmos os pesos de outras pessoas, não da liga de baseball, a distribuição provavelmente será diferente. No entante, a forma da distribuição será a mesma, mas a média e a variância iria mudar. Então, se treinarmos o modelo nos jogadores de baseball, provavelmente teremos resultados errados quando aplicado em estudantes de uma universidade, pois a distribuição subjacente é diferente.
|
||||
## Distribuição Normal
|
||||
|
||||
A distribuição de pesos que vimos acima é bem típica, e muitas medidas do mundo real seguem o mesmo tipo de distribuição, mas com médias e variâncias diferentes. Essa distribuição é chamada de **distribuição normal**, e possui um papel importante na estatística.
|
||||
|
||||
Usar distribuição normal é uma forma correta de gerar pesos aleatórios para potenciais jogadores de baseball. Uma vez que sabemos a média de pesso `mean` e desvio padrão `std`, nós podemos gerar 1000 amostras de peso da seguinte forma:
|
||||
```python
|
||||
samples = np.random.normal(mean,std,1000)
|
||||
```
|
||||
|
||||
Se "plotarmos" o histograma das amostras geradas nós vamos ver a figura bem similar com a mostrada acima. Se aumentarmos o número de amostrar e o número de grupos (bins), nós podemos gerar a figura de uma distribuição normal que é mais perto do ideal:
|
||||
|
||||

|
||||
|
||||
*Distribuição Normal com mean=0 e std.dev=1*
|
||||
|
||||
## Intervalos de Confiânça
|
||||
|
||||
Quando falamos sobre os pesos de jogadores de baseball, nós assumimos que existem certas **variáveis aleatórias W** que correspondem a distribuição de probabilidade ideal dos pesos de todos os jogadores de baseball (chamados de **população (population)**). Nossa sequência de pesos correspondem a um subset de todos os jogadores que chamamos de **amostra**. Uma questão interessante é, nós podemos saber os parâmetros da distribuição W, ex. média e variância de uma população?
|
||||
|
||||
A resposta mais fácil seria calcular média e variância da nossa amostra. No entante, pode acontecer que nossa amostra aleatória não representa precisamente a população completa. Portanto faz sentido falar sobre **intervalos de confiança**.
|
||||
|
||||
> **Intervalo de confiança** é a estimação da média verdadeira de uma população dada a nossa amostra, que é precisa é uma certa probabilidade (ou **nível de confiança**).
|
||||
|
||||
Suponha que temos uma amostra X<sub>1</sub>, ..., X<sub>n</sub> da nossa distribuição. Cada vez que sorteamos uma amostra da nossa distribuição, nós acabaríamos com diferentes valores de média μ. Portanto μ pode ser considerado uma variável aleatória. Um **intervalo de confiança** com confiança p é um par de valores (L<sub>p</sub>,R<sub>p</sub>), de forma que **P**(L<sub>p</sub>≤μ≤R<sub>p</sub>) = p, ex. a probabilidade da média medida estar dentro do intervalo igual a p.
|
||||
|
||||
Vai além da nossa pequena introdução discutir detalhadamente como esses intervalos de confiança são calculados. Mais detalhes podem ser encontrados [na Wikipedia](https://en.wikipedia.org/wiki/Confidence_interval). Resumidamente, nós definimos a distribuição da média da amostra computada em relação a média verdadeira da população, que é chamada de **distribuiçao student (student distribution)**.
|
||||
|
||||
> **Fato interessante**: distribuição Student é nomeada em homenagem ao matemático William Sealy Gosset, que publicou seu artigo com o pseudônimo "Student". Ele trabalhou na cervejaria Guinness, e, de acordo com uma das versões, seu empregador não queria que o público geral soubesse que eles estavam usando testes estatísticos para determinar a qualidade de materiais brutos.
|
||||
|
||||
Se nós quiséssemos estimar a média μ da nossa população com confiança p, nós precisamos pegar *percentil número (1-p)/2 ((1-p)/2-th percentile)* de uma distribuição Student A, que pode ser coletada de tabelas, ou computadores usando alguma função imbutida de uma software de estatística (ex. Python, R, etc.). Então o intervalo μ seria dados por X±A*D/√n, onde X é a média obtida da amostra, D é o desvio padrão.
|
||||
|
||||
> **Nota**: Nós também omitimos a discussão de um conceito importante de [degrees of freedom (graus de liberdade)](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)), que é importante em relação a distribuição Student. Você pode dar uma olhada em livros mais completos sobre estatísticas para entender esse conceito mais profundadamente.
|
||||
|
||||
Um exemplo para calcular o intervalo de confiança para pesos e alturas é dado no [notebook](../notebook.ipynb).
|
||||
|
||||
| p | Weight mean |
|
||||
|-----|-----------|
|
||||
| 0.85 | 201.73±0.94 |
|
||||
| 0.90 | 201.73±1.08 |
|
||||
| 0.95 | 201.73±1.28 |
|
||||
|
||||
Perceba que quanto maior é a probabilidade da confiança, mais amplo é o intervalo de confiança.
|
||||
|
||||
## Testando Hipóteses
|
||||
No nosso dataset de jogadores de baseball, existem diferentes posições, as quais podem ser sumarizadas abaixo (olhe o [notebook](../notebook.ipynb) para ver como essa tabela pode ser calculada):
|
||||
|
||||
| Role | Height | Weight | Count |
|
||||
|------|--------|--------|-------|
|
||||
| Catcher | 72.723684 | 204.328947 | 76 |
|
||||
| Designated_Hitter | 74.222222 | 220.888889 | 18 |
|
||||
| First_Baseman | 74.000000 | 213.109091 | 55 |
|
||||
| Outfielder | 73.010309 | 199.113402 | 194 |
|
||||
| Relief_Pitcher | 74.374603 | 203.517460 | 315 |
|
||||
| Second_Baseman | 71.362069 | 184.344828 | 58 |
|
||||
| Shortstop | 71.903846 | 182.923077 | 52 |
|
||||
| Starting_Pitcher | 74.719457 | 205.163636 | 221 |
|
||||
| Third_Baseman | 73.044444 | 200.955556 | 45 |
|
||||
|
||||
Nós podemos ver que a média das alturas dos jogadores na primeira base é maior que a dos jogadores na segunda base. Portanto, nós podemos ser tentados a concluir que **jogadores da primeira base é maior que os da segunda base**.
|
||||
|
||||
> Essa afirmação é chamada de **uma hipótese**, pois nós não sabemos se é verdade ou não.
|
||||
|
||||
No entanto, nem sempre é óbvio fazer essa conclusão. A partir da discussão acima nós sabemos que cada média tem um intervalo de confiança associado, e portante esse diferença pode ser apenas um erro estatístico. Nós precisamos de formas mais formais de testar nossa hipótes.
|
||||
|
||||
Vamos computar o intervalo de confiança separadamente para as alturas dos jogadores na primeira base e dos jogadores da segunda base:
|
||||
|
||||
| Confidence | First Basemen | Second Basemen |
|
||||
|------------|---------------|----------------|
|
||||
| 0.85 | 73.62..74.38 | 71.04..71.69 |
|
||||
| 0.90 | 73.56..74.44 | 70.99..71.73 |
|
||||
| 0.95 | 73.47..74.53 | 70.92..71.81 |
|
||||
|
||||
Nós podemos ver que sobre nenhuma confiança os intervalos se sobrepõem. Isso prova a nossa hipótese de que os jogador na primeira base são mais altos que os jogadores da segunda base.
|
||||
|
||||
Mais formalmente, o problema que estamos resolvendo é ver se **duas distribuições de probabilidades são as mesmas**, ou se pelo menos possuem os mesmos parâmetros. Dependendo da distribuição, nós precisamos usar diferentes testes para isso. Se nós soubermos que a nossa distribuição é normal, nós podemos aplicar **[Teste t de Student (Student t-test)](https://en.wikipedia.org/wiki/Student%27s_t-test)**.
|
||||
|
||||
No teste t de Student, nós computamos o **valor t**, que indica a diferença entre a média, levando em conta a variância. É demonstrado que o valor t segue a **distribuição student**, o que nos permite ter o valor limite para um determinado nível de confiança **p** (isso pode ser computado, ou procurado nas tabelas numéricas). Nós então comparamos o valor t para esse limite para aprovar ou rejeitar a hipótese
|
||||
|
||||
Em Python, nós podemos usar o pacote **SciPy**, o qual inclui a função `ttest_ind` (e mais funções estatísticas!). Ela computa o valor t para a gente, e também faz a pesquisa inversa do valor de confiança p, para que podemos apenas olhar para a confiança para chegarmos a uma conclusão.
|
||||
|
||||
Por exemplo, nossa comparação entre alturas dos jogadores da primeira base e da segunda base nos dá o seguinte resultado:
|
||||
```python
|
||||
from scipy.stats import ttest_ind
|
||||
|
||||
tval, pval = ttest_ind(df.loc[df['Role']=='First_Baseman',['Height']], df.loc[df['Role']=='Designated_Hitter',['Height']],equal_var=False)
|
||||
print(f"T-value = {tval[0]:.2f}\nP-value: {pval[0]}")
|
||||
```
|
||||
```
|
||||
T-value = 7.65
|
||||
P-value: 9.137321189738925e-12
|
||||
```
|
||||
No nosso caso, o valor p é bem baixo, o que significa que existem fortes evidências que confirmam que os jogadores da primeira base são maiores.
|
||||
|
||||
Existe também outros tipos diferentes de hipótes que podemos querer testar, por exemplo:
|
||||
* Provar que uma dada amostra segue alguma distribuição. No nosso caso nós assumimos que alturas são normalmente distribuídas, mas isso precisa de verificação estatística formal.
|
||||
* Provar que uma valor média de uma amostra corresponde a algum valor predefinido
|
||||
* Comparar as médias de um número de amostras (ex. qual é a diferença em níveis de felicidade entre diferentes faixas etárias)
|
||||
|
||||
## Lei dos Números Grandes e Teorema do Limite Central
|
||||
|
||||
Uma das razões pelo qual a distribuição normal é tão importante é a tão chamada **teorema do limite central**. Vamos supor que temos uma grande amostra de N valores independentes X<sub>1</sub>, ..., X<sub>N</sub>, amostrado de qualquer distribuição com média μ e variância σ<sup>2</sup>. Então, para N suficientemente grande (em outras palavras, quando N→∞), a média Σ<sub>i</sub>X<sub>i</sub> seria normalmente distribuída, com média μ e variância σ<sup>2</sup>/N.
|
||||
|
||||
> Outra forma de interpretar o teorema do limite central é dizer que independentemente da distribuição, quando você computa a média da soma de quaisquer valores de variável aleatória você acabará com uma distribuição normal.
|
||||
|
||||
A partir do teorema do limite central também segue que, quando when N→∞, a probabilidade da média da amostra ser igual a μ se torna 1. Isso é conhecido como a **lei dos números grandes**.
|
||||
|
||||
## Covariância e Correlação
|
||||
|
||||
Uma das coisas que Ciência dos Dados faz é encontrar relações entre dados. Nós dizemos que duas sequências **correlacionam** quando elas exibem um comportamento similar ao mesmo tempo, ex. eles sobem/caem simultâneamente, ou uma sequência sobe enquanto a outra desce e vice-versa. Em outras palavras, aparenta ter algum tipo de relaçõa entre as duas sequências.
|
||||
|
||||
> Correlação não necessariamente indica uma relação causal entre duas sequências; algumas vezes ambas as variáveis podem depender de alguma causa externa, or pode ser puramente uma coincidência que duas sequências se relacionem. No entanto, uma forte correlaçõe matemática é um bom indício
|
||||
|
||||
Matematicamente, o conceito principal que mostra uma relações entre duas variávies aleatórias é **covariância**, que é computada da seguinte forma: Cov(X,Y) = **E**\[(X-**E**(X))(Y-**E**(Y))\]. Nós computamos o desvio de ambas as variáveis em relação a média, e então o produto desses desvios. Se ambas as variáveis desviam juntas, o produto seria sempre um valor positivo, que resulta em uma covariância positiva. Se ambas as variáveis desviam de forma não sincronizadas (ex. uma está abaixo da média enquanto outra está acima), nós sempre vamos ter números negativos, que resulta em uma covariância negativa. Se os desvios não são dependentes, eles sempre vão resultar em quase zero.
|
||||
|
||||
O valor absoluto da covariância não nos informa o quão grande a correlação é, pois depende da magnitude dos valores reais. Para normalizar isso, nós podemos dividir a covariância pelo desvio padrão de ambas as variáveis, para conseguirmos a **correlação**. O bom é que a correlação sempre vai estar na faixa de [-1, 1], onde 1 indica uma forte correlaçao positiva entre os valores, -1 - forte correlação negativa, e 0 - nenhuma correlação (variáveis são independentes).
|
||||
|
||||
**Exemplo**: Nós podemos computar a correlação entre pesos e alturas de jogadores de baseball do dataset mencionado acima:
|
||||
```python
|
||||
print(np.corrcoef(weights,heights))
|
||||
```
|
||||
Como resultado, temos uma **matriz de correlação** como essa:
|
||||
```
|
||||
array([[1. , 0.52959196],
|
||||
[0.52959196, 1. ]])
|
||||
```
|
||||
|
||||
> Matriz de correlação C pode ser computada para qualquer número de sequências de input S<sub>1</sub>, ..., S<sub>n</sub>. O valor de C <sub>ij</sub> é a correlação entre S<sub>i</sub> e S<sub>j</sub>, e elementos diagonais são sempre 1 (o que também é uma auto-correlação de S<sub>i</sub>).
|
||||
|
||||
No nosso caso, o valor 0.53 indica que existe alguma correlação entre peso e altura de uma pessoa. Nós podemos fazer um gráfico de pontos de um valor contra o outro para ver a relação visualmente:
|
||||
|
||||

|
||||
|
||||
> Mais exemplos de correlação e covariância podem ser encontrados no [notebook](../notebook.ipynb).
|
||||
|
||||
## Conclusão
|
||||
|
||||
Nessa seção nós aprendemos:
|
||||
* propriedades estatísticas básicas dos dados, como média, variância, moda e quartis
|
||||
* diferentes distribuições para variáveis aleatórias, incluindo distribuição normal
|
||||
* como encontrar a correlação entre propriedades diferentes
|
||||
* como usar aparelhos de som de matemática e estatística para provar algumas hipóteses,
|
||||
* como computar intervalos de confiância para variáveis aleatórias dado uma amostra de dados
|
||||
|
||||
Enquanto essa definitivamente não é uma lista exaustiva de tópicos que existem dentro de probabilidade e estatística, deve ser o suficiente para você começar bem esse curso.
|
||||
|
||||
## 🚀 Desafio
|
||||
|
||||
Use o código de exemplo no notebook para testar outras hipóteses que:
|
||||
1. Jogadores na primeira base e mais velhos que jogadores na segunda base
|
||||
2. Jogadores na primeira base e mais altos que jogadores na terceira base
|
||||
3. Interbases (Shortstops) são maiores que jogadores na segunda base
|
||||
|
||||
## [Quis Pós Aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/7)
|
||||
|
||||
## Revisão e Autoestudo
|
||||
|
||||
Probabilidade e estatística é um tópico muito amplo que merece um curso próprio. Se você está interessado em aprofundar a teoria, talvez você queira continuar lendo alguns dos seguintes livros:
|
||||
|
||||
1. [Carlos Fernanderz-Granda](https://cims.nyu.edu/~cfgranda/) da Universidade de Nova Iorque (New York University) tem boas notas de aula [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (disponíveis online)
|
||||
1. [Peter and Andrew Bruce. Estatística prática para Cientistas de Dados (Practical Statistics for Data Scientists).](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)].
|
||||
1. [James D. Miller. Estatística para Ciência de Dados (Statistics for Data Science)](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)]
|
||||
|
||||
## Tarefa
|
||||
|
||||
[Small Diabetes Study (Pequeno Estudo de Diabetes)](assignment.pt-br.md)
|
||||
|
||||
## Créditos
|
||||
|
||||
Essa aula foi autorada com ♥️ por [Dmitry Soshnikov](http://soshnikov.com)
|
@ -0,0 +1,25 @@
|
||||
# Pequeno Estudo de Diabetes
|
||||
|
||||
Nessa tarefa, nós vamos trabalhar com um pequeno dataset de diabetes em pacientes retirados [daqui](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
|
||||
|
||||
| | AGE | SEX | BMI | BP | S1 | S2 | S3 | S4 | S5 | S6 | Y |
|
||||
|---|-----|-----|-----|----|----|----|----|----|----|----|----|
|
||||
| 0 | 59 | 2 | 32.1 | 101. | 157 | 93.2 | 38.0 | 4. | 4.8598 | 87 | 151 |
|
||||
| 1 | 48 | 1 | 21.6 | 87.0 | 183 | 103.2 | 70. | 3. | 3.8918 | 69 | 75 |
|
||||
| 2 | 72 | 2 | 30.5 | 93.0 | 156 | 93.6 | 41.0 | 4.0 | 4. | 85 | 141 |
|
||||
| ... | ... | ... | ... | ...| ...| ...| ...| ...| ...| ...| ... |
|
||||
|
||||
## Instruções
|
||||
|
||||
* Abre o [notebook da tarefa](assignment.ipynb) em um ambiente jupyter notebook
|
||||
* Complete todas as tarefas listadas no notebook, nomeadamente:
|
||||
[ ] Compute os valores de média e variância para todos os valores
|
||||
[ ] "Plote" boxplots para BMI, BP e Y dependendo do gênero
|
||||
[ ] Qual a distribuição das variáveis Age, Sex, BMI e Y?
|
||||
[ ] Teste a correlação entre diferentes variáveis e progressão da doença (Y)
|
||||
[ ] Teste a hipótese que o grau de progressão da diabetes é diferente entre homens e mulheres
|
||||
## Rubrica
|
||||
|
||||
Exemplar | Adequado | Precisa melhorar
|
||||
--- | --- | -- |
|
||||
Todas as tarefas estão completados, graficamente ilustradas e explicadas | A maior para das tarefas estão completadas, explicações ou conclusões a partir de gráficos e/ou valores obtidos estão faltando | Apenas as tarefas básicas como computar a média/variância e "plots" básicos estão completados, nenhuma conclusão é feita a partir dos dados dados.
|
@ -0,0 +1,19 @@
|
||||
# Introducción a la Ciencia de Datos
|
||||
|
||||

|
||||
> Fotografía de <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> en <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
En estas lecciones descubrirás cómo se define la Ciencia de Datos y aprenderás acerca de
|
||||
las cosideraciones éticas que deben ser tomadas por un científico de datos. También aprenderás
|
||||
cómo se definen los datos y un poco de probabilidad y estadística, el núcleo académico de la Ciencia de Datos.
|
||||
|
||||
### Temas
|
||||
|
||||
1. [Definiendo la Ciencia de Datos](../01-defining-data-science/README.md)
|
||||
2. [Ética de la Ciencia de Datos](../02-ethics/README.md)
|
||||
3. [Definición de Datos](../03-defining-data/translations/README.es.md)
|
||||
4. [Introducción a la probabilidad y estadística](../04-stats-and-probability/README.md)
|
||||
|
||||
### Créditos
|
||||
|
||||
Éstas lecciones fueron escritas con ❤️ por [Nitya Narasimhan](https://twitter.com/nitya) y [Dmitry Soshnikov](https://twitter.com/shwars).
|
@ -0,0 +1,17 @@
|
||||
# Introduction à la science des données
|
||||
|
||||

|
||||
> Photo par <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> sur <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
Dans ces leçons, vous découvrirez comment la science des données est définie et apprendrez les considérations éthiques qui doivent être prises en compte par un scientifique des données. Vous apprendrez également comment les données sont définies et vous vous familiariserez avec les statistiques et les probabilités, qui sont les principaux domaines académiques de la science des données.
|
||||
|
||||
### Thèmes
|
||||
|
||||
1. [Définition de la science des données](01-defining-data-science/README.md)
|
||||
2. [Éthique de la science des données](02-ethics/README.md)
|
||||
3. [Définir les données](03-defining-data/README.md)
|
||||
4. [Introduction aux statistiques et aux probabilités](04-stats-and-probability/README.md)
|
||||
|
||||
### Crédits
|
||||
|
||||
Ces leçons ont été rédigées avec ❤️ par [Nitya Narasimhan](https://twitter.com/nitya) et [Dmitry Soshnikov](https://twitter.com/shwars).
|
@ -0,0 +1,16 @@
|
||||
# डाटा विज्ञान को परिचय
|
||||
|
||||

|
||||
> फोटो <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> on <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash द्वारा</a>
|
||||
|
||||
यी पाठहरूमा, तपाईंले डाटा विज्ञानलाई कसरी परिभाषित गरिएको छ भनेर थाहा पाउनुहुनेछ र डेटा वैज्ञानिकले विचार गर्नुपर्ने नैतिक विचारहरूको बारेमा सिक्नुहुनेछ। तपाइँ यो पाठमा कसरी डाटा परिभाषित गरिएको छ र डाटा विज्ञान को मुख्य शैक्षिक डोमेन, statistics र probability पनि केहि मात्रामा जान्नुहुनेछ ।
|
||||
|
||||
### विषयहरु
|
||||
|
||||
१. [डाटा विज्ञान को परिभाषा](01-defining-data-science/README.md)
|
||||
२. [डाटा विज्ञान नैतिकता](02-ethics/README.md)
|
||||
३. [डाटा परिभाषा ](03-defining-data/README.md)
|
||||
४. [Statistics र Probability को परिभाषा](04-stats-and-probability/README.md)
|
||||
|
||||
### विशेष धन्यवाद
|
||||
यी पाठहरु N [नित्य नरसिम्हन](https://twitter.com/nitya) र [दिमित्री सोश्निकोभ](https://twitter.com/shwars) द्वारा ❤️ का साथ लेखिएको हो।
|
@ -0,0 +1,17 @@
|
||||
# Inleiding tot datawetenschap
|
||||
|
||||

|
||||
> Beeld door <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> op <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
In deze lessen ontdek je hoe Data Science wordt gedefinieerd en leer je over ethische overwegingen waarmee een datawetenschapper rekening moet houden. Je leert ook hoe gegevens worden gedefinieerd en leert over statistiek en waarschijnlijkheid, de academische kerndomeinen van Data Science.
|
||||
|
||||
### Onderwerpen
|
||||
|
||||
1. [Data Science definiëren](01-defining-data-science/README.md)
|
||||
2. [Ethiek in Data Science](02-ethics/README.md)
|
||||
3. [Data definiëren](03-defining-data/README.md)
|
||||
4. [Inleiding tot statistiek en kansrekening](04-stats-and-probability/README.md)
|
||||
|
||||
### Credits
|
||||
|
||||
Dit lesmateriaal is met liefde ❤️ geschreven door [Nitya Narasimhan](https://twitter.com/nitya) en [Dmitry Soshnikov](https://twitter.com/shwars).
|
@ -0,0 +1,17 @@
|
||||
# Introdução a Ciência de Dados
|
||||
|
||||

|
||||
> Foto por <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> em <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
Nessas aulas, você irá descobrir como Ciência de Dados é definida e aprender sobre considerações éticas que devem ser consideradas por um cientista de dado. Você também irá aprender como dados são definidos e um pouco sobre estatística e probabilidade, os principais domínios acadêmicos da Ciência de Dados.
|
||||
|
||||
### Tópicos
|
||||
|
||||
1. [Definindo Ciência de Dados](01-defining-data-science/README.md)
|
||||
2. [Ética da Ciência de Dados](02-ethics/README.md)
|
||||
3. [Definindo Dados](03-defining-data/README.md)
|
||||
4. [Introdução a Estatística e Probabilidade](04-stats-and-probability/README.md)
|
||||
|
||||
### Cŕeditos
|
||||
|
||||
Essas aulas foram escritas com ❤️ por [Nitya Narasimhan](https://twitter.com/nitya) e [Dmitry Soshnikov](https://twitter.com/shwars).
|
@ -0,0 +1 @@
|
||||
<!--add translations to this folder-->
|
@ -0,0 +1,19 @@
|
||||
# सोडा लाभ
|
||||
|
||||
## निर्देश
|
||||
|
||||
[कोका कोला कंपनी स्प्रेडशीट](CocaColaCo.xlsx) में कुछ गणनाएं नहीं हैं। आपका कार्य है:
|
||||
|
||||
1. वित्त वर्ष '15, '16, '17, और '18' के सकल लाभ की गणना करें
|
||||
- सकल लाभ = शुद्ध परिचालन राजस्व - बेची गई वस्तुओं की लागत
|
||||
1. सभी सकल लाभ के औसत की गणना करें। इसे एक फ़ंक्शन के साथ करने का प्रयास करें।
|
||||
- औसत = वित्तीय वर्षों की संख्या से विभाजित सकल लाभ का योग (10)
|
||||
- [औसत फ़ंक्शन] पर दस्तावेज़ीकरण(https://support.microsoft.com/en-us/office/average-function-047bac88-d466-426c-a32b-8f33eb960cf6)
|
||||
1. यह एक एक्सेल फाइल है, लेकिन इसे किसी भी स्प्रेडशीट प्लेटफॉर्म में संपादित किया जा सकता है
|
||||
|
||||
[यीयी वांग को डेटा स्रोत क्रेडिट](https://www.kaggle.com/yiyiwang0826/cocacola-excel)
|
||||
|
||||
## रूब्रिक
|
||||
|
||||
अनुकरणीय | पर्याप्त | सुधार की जरूरत
|
||||
--- | --- | -- |
|
@ -0,0 +1,23 @@
|
||||
# पायथन में डाटा प्रोसेसिंग के लिए असाइनमेंट
|
||||
|
||||
इस असाइनमेंट में, हम आपको उस कोड के बारे में विस्तार से बताने के लिए कहेंगे जिसे हमने अपनी चुनौतियों में विकसित करना शुरू किया है। असाइनमेंट में दो भाग होते हैं:
|
||||
|
||||
## COVID-19 स्प्रेड मॉडलिंग
|
||||
|
||||
- [ ] 5-6 अलग-अलग देशों के लिए तुलना के लिए एक प्लॉट पर $R_t$ ग्राफ़ प्लॉट करें, या साथ-साथ कई प्लॉट का उपयोग करें
|
||||
- [ ] देखें कि संक्रमित मामलों की संख्या के साथ मौतों और ठीक होने वालों की संख्या कैसे संबंधित है।
|
||||
- [ ] संक्रमण दर और मृत्यु दर को दृष्टिगत रूप से सहसंबद्ध करके और कुछ विसंगतियों की तलाश करके पता लगाएं कि एक सामान्य बीमारी कितने समय तक चलती है। यह पता लगाने के लिए आपको विभिन्न देशों को देखने की आवश्यकता हो सकती है।
|
||||
- [ ] मृत्यु दर की गणना करें और यह समय के साथ कैसे बदलता है। *आप गणना करने से पहले एक बार श्रृंखला को स्थानांतरित करने के लिए दिनों में रोग की अवधि को ध्यान में रखना चाह सकते हैं*
|
||||
|
||||
## COVID-19 पेपर्स एनालिसिस
|
||||
|
||||
- [] विभिन्न दवाओं के सह-घटना मैट्रिक्स का निर्माण करें, और देखें कि कौन सी दवाएं अक्सर एक साथ होती हैं (अर्थात एक सार में उल्लिखित)। आप दवाओं और निदान के लिए सह-घटना मैट्रिक्स के निर्माण के लिए कोड को संशोधित कर सकते हैं।
|
||||
- [] हीटमैप का उपयोग करके इस मैट्रिक्स की कल्पना करें।
|
||||
- [ ] एक विस्तृत लक्ष्य के रूप में, [कॉर्ड डायग्राम](https://en.wikipedia.org/wiki/Chord_diagram) का उपयोग करके दवाओं की सह-घटना की कल्पना करें। [यह लाइब्रेरी](https://pypi.org/project/chord/) आपको कॉर्ड डायग्राम बनाने में मदद कर सकता है।
|
||||
- [ ] एक और खिंचाव लक्ष्य के रूप में, नियमित अभिव्यक्तियों का उपयोग करके विभिन्न दवाओं (जैसे **400mg** इन *400mg क्लोरोक्वीन दैनिक*) की खुराक निकालें, और डेटाफ़्रेम बनाएं जो विभिन्न दवाओं के लिए अलग-अलग खुराक दिखाता है। **नोट**: उन संख्यात्मक मानों पर विचार करें जो दवा के नाम के निकट पाठ्य-क्षेत्र में हैं।
|
||||
|
||||
## रूब्रिक
|
||||
|
||||
अनुकरणीय | पर्याप्त | सुधार की जरूरत
|
||||
--- | --- | -- |
|
||||
सभी कार्य पूर्ण हैं, ग्राफिक रूप से सचित्र और समझाया गया है, जिसमें दो खिंचाव लक्ष्यों में से कम से कम एक शामिल है | 5 से अधिक कार्य पूरे हो गए हैं, कोई भी लक्ष्य पूरा करने का प्रयास नहीं किया गया है, या परिणाम स्पष्ट नहीं हैं | 5 से कम (लेकिन 3 से अधिक) कार्य पूर्ण हैं, विज़ुअलाइज़ेशन बिंदु को प्रदर्शित करने में मदद नहीं करते हैं
|
@ -0,0 +1 @@
|
||||
<!--add translations to this folder-->
|
@ -0,0 +1,17 @@
|
||||
# Travailler avec les données
|
||||
|
||||

|
||||
> Photo par <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn</a> sur <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
Dans ces leçons, vous découvrirez quelques-unes des façons dont les données peuvent être gérées, manipulées et utilisées dans les applications. Vous découvrirez les bases de données relationnelles et non relationnelles et la manière dont les données peuvent y être stockées. Vous apprendrez les principes fondamentaux de l'utilisation de Python pour gérer les données et vous découvrirez quelques-unes des nombreuses façons de travailler avec Python pour gérer et exploiter les données.
|
||||
|
||||
### Thèmes
|
||||
|
||||
1. [Bases de données relationnelles](05-relational-databases/README.md)
|
||||
2. [Bases de données non relationnelles](06-non-relational/README.md)
|
||||
3. [Travailler avec Python](07-python/README.md)
|
||||
4. [Préparation des données](08-data-preparation/README.md)
|
||||
|
||||
### Crédits
|
||||
|
||||
Ces leçons ont été rédigées avec ❤️ par [Christopher Harrison](https://twitter.com/geektrainer), [Dmitry Soshnikov](https://twitter.com/shwars) et [Jasmine Greenaway](https://twitter.com/paladique)
|
@ -0,0 +1,18 @@
|
||||
# डेटा के साथ काम करना
|
||||
|
||||

|
||||
> तस्वीर <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn</a> द्वारा <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
पर
|
||||
|
||||
|
||||
इन पाठों में, आप कुछ ऐसे तरीके सीखेंगे जिनसे डेटा को प्रबंधित, हेरफेर और अनुप्रयोगों में उपयोग किया जा सकता है। आप रिलेशनल और नॉन-रिलेशनल डेटाबेस के बारे में जानेंगे और उनमें डेटा कैसे स्टोर किया जा सकता है। आप डेटा को प्रबंधित करने के लिए पायथन के साथ काम करने के मूल सिद्धांतों को सीखेंगे, और आप कुछ ऐसे तरीकों की खोज करेंगे जिनसे आप डेटा को प्रबंधित करने और माइन करने के लिए पायथन के साथ काम कर सकते हैं।
|
||||
### विषय
|
||||
|
||||
1. [संबंधपरक डेटाबेस](../05-relational-databases/README.md)
|
||||
2. [[गैर-संबंधपरक डेटाबेस](../06-non-relational/README.md)
|
||||
3. [पायथन के साथ काम करना](../07-python/README.md)
|
||||
4. [डेटा तैयार करना](../08-data-preparation/README.md)
|
||||
|
||||
### क्रेडिट
|
||||
|
||||
ये पाठ [क्रिस्टोफर हैरिसन](https://twitter.com/geektrainer), [दिमित्री सोशनिकोव](https://twitter.com/shwars) और [जैस्मीन ग्रीनवे](https://twitter.com/shwars) द्वारा ❤️ से लिखे गए थे।
|
@ -0,0 +1,15 @@
|
||||
# डाटासँग सहकार्य
|
||||
|
||||

|
||||
> फोटो <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn द्वारा</a> <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash बाट </a>
|
||||
|
||||
यी पाठहरुमा, तपाइँ केहि तरिकाहरु डाटा को प्रबंधन, हेरफेर, र अनुप्रयोगहरुमा प्रयोग गर्न सकिन्छ को बारे मा जान्न सक्नुहुन्छ। तपाइँ रिलेशनल र नन-रिलेशनल डाटाबेस को बारे मा र कसरी डाटा उनीहरुमा भण्डारण गर्न सकिन्छ जान्नुहुनेछ। तपाइँ डेटा को प्रबन्ध गर्न को लागी Python संग काम गर्ने आधारभूत कुराहरु सिक्नुहुनेछ, र तपाइँ Python द्वारा डाटा माइन साथै म्यानेज गर्ने धेरै मध्य केहि तरिकाहरु पत्ता लगाउन सक्नुहुनेछ ।
|
||||
### बिषयहरु
|
||||
|
||||
१. [रेलशनल डाटाबेस](05-relational-databases/README.md)
|
||||
२. [नन रेलशनल डाटाबेस](06-non-relational/README.md)
|
||||
३. [Python सँग सहकार्य](07-python/README.md)
|
||||
४. [डाटा को तयारी](08-data-preparation/README.md)
|
||||
|
||||
### बिषेष धन्यवाद
|
||||
यी पाठहरू ❤️ का साथ [Christopher Harrison](https://twitter.com/geektrainer), [Dmitry Soshnikov](https://twitter.com/shwars) र [Jasmine Greenaway](https://twitter.com/paladique) द्वारा लेखिएको हो ।
|
@ -0,0 +1,16 @@
|
||||
# Werken met gegevens
|
||||
|
||||

|
||||
> Beeld door <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn</a> op <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
Leer over de manieren waarop gegevens kunnen worden beheerd, gemanipuleerd en gebruikt in applicaties. Leer meer over relationele en niet-relationele databases en hoe gegevens daarin kunnen worden opgeslagen. Lees over de basisprincipes van het werken met Python om gegevens te beheren, en ontdek enkele van de vele manieren waarop je met Python kunt werken om gegevens te beheren en te ontginnen.
|
||||
### Onderwerpen
|
||||
|
||||
1. [Relationele databases](05-relational-databases/README.md)
|
||||
2. [Niet-relationale databases](06-non-relational/README.md)
|
||||
3. [Aan de slag met Python](07-python/README.md)
|
||||
4. [Data voorbereiden](08-data-preparation/README.md)
|
||||
|
||||
### Credits
|
||||
|
||||
Dit materiaal is met ❤️ geschreven door [Christopher Harrison](https://twitter.com/geektrainer), [Dmitry Soshnikov](https://twitter.com/shwars) en [Jasmine Greenaway](https://twitter.com/paladique)
|
After Width: | Height: | Size: 72 KiB |
After Width: | Height: | Size: 72 KiB |
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 72 KiB |
@ -0,0 +1,206 @@
|
||||
# Visualización de Cantidades
|
||||
|
||||
| ](../../../sketchnotes/09-Visualizing-Quantities.png)|
|
||||
|:---:|
|
||||
| Visualización de cantidades - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
En esta lección explorarás cómo utilizar una de las muchas librerías de Python disponibles para aprender a crear interesantes visualizaciones relacionadas al concepto de cantidad. Utilizando un conjunto de datos limpios sobre las aves de Minnesota, podrás aprender muchos datos interesantes sobre la vida silvestre local.
|
||||
## [Cuestionario previo](https://red-water-0103e7a0f.azurestaticapps.net/quiz/16)
|
||||
|
||||
## Observar la envergadura con Matplotlib
|
||||
|
||||
Una excelente librería para crear gráficos tanto simples como sofisticados de varios tipos es [Matplotlib](https://matplotlib.org/stable/index.html). En términos generales, el proceso de ploteamiento de datos utilizando estas librerías incluye la identificación de las partes del dataframe que desea enfocar, la realización de cualquier transformación en los datos necesarios, la asignación de los valores de los ejes x e y, la decisión de qué tipo de gráfico mostrar, y luego mostrar el gráfico. Matplotlib ofrece una gran variedad de visualizaciones, pero para esta lección, vamos a concentrarnos en las más apropiadas para visualizar cantidad: gráficos de líneas, gráficos de dispersión y gráficos de barras.
|
||||
|
||||
> ✅ Usa el gráfico que mejor se adapte a la estructura de tus datos y a la historia que quieres contar.
|
||||
> - Para analizar tendencias a lo largo del tiempo: línea
|
||||
> - Para comparar valores: barra, columna, pastel, diagrama de dispersión
|
||||
> - Para mostrar cómo se relacionan las partes con un todo: pastel
|
||||
> - Para mostrar la distribución de los datos: gráfico de dispersión, barra
|
||||
> - Para mostrar tendencias: línea, columna
|
||||
> - Para mostrar relaciones entre valores: línea, gráfico de dispersión, burbuja
|
||||
|
||||
Si tienes un conjunto de datos y necesitas descubrir qué cantidad de un elemento determinado está incluido, una de las primeras tareas que tienes que hacer será inspeccionar sus valores.
|
||||
|
||||
✅ Hay muy buenas "hojas de trucos" disponibles para Matplotlib [aquí](https://matplotlib.org/cheatsheets/cheatsheets.pdf).
|
||||
|
||||
## Construir un gráfico de líneas sobre los valores de la envergadura de las aves
|
||||
|
||||
Abre el archivo `notebook.ipynb` en la raíz de la carpeta de esta lección y añada una celda.
|
||||
|
||||
> Nota: los datos están almacenados en la raíz de este repositorio en la carpeta `/data`.
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
Estos datos son una mezcla de texto y números:
|
||||
|
||||
|
||||
| | Name | ScientificName | Category | Order | Family | Genus | ConservationStatus | MinLength | MaxLength | MinBodyMass | MaxBodyMass | MinWingspan | MaxWingspan |
|
||||
| ---: | :--------------------------- | :--------------------- | :-------------------- | :----------- | :------- | :---------- | :----------------- | --------: | --------: | ----------: | ----------: | ----------: | ----------: |
|
||||
| 0 | Black-bellied whistling-duck | Dendrocygna autumnalis | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 47 | 56 | 652 | 1020 | 76 | 94 |
|
||||
| 1 | Fulvous whistling-duck | Dendrocygna bicolor | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 45 | 53 | 712 | 1050 | 85 | 93 |
|
||||
| 2 | Snow goose | Anser caerulescens | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 79 | 2050 | 4050 | 135 | 165 |
|
||||
| 3 | Ross's goose | Anser rossii | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 57.3 | 64 | 1066 | 1567 | 113 | 116 |
|
||||
| 4 | Greater white-fronted goose | Anser albifrons | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 81 | 1930 | 3310 | 130 | 165 |
|
||||
|
||||
Empecemos por graficar algunos de los datos numéricos utilizando un gráfico de líneas básico. Supongamos que queremos ver la envergadura máxima de estas interesantes aves.
|
||||
|
||||
```python
|
||||
wingspan = birds['MaxWingspan']
|
||||
wingspan.plot()
|
||||
```
|
||||

|
||||
|
||||
¿Qué nota inmediatamente? Parece que hay al menos un valor atípico: ¡esa es una gran envergadura! Una envergadura de 2.300 centímetros equivale a 23 metros: ¿hay pterodáctilos vagando por Minnesota? Vamos a investigar.
|
||||
|
||||
Aunque podrías hacer una ordenación rápida en Excel para encontrar esos valores atípicos, que probablemente sean errores tipográficos, continúa el proceso de visualización trabajando desde el gráfico.
|
||||
|
||||
Añade etiquetas al eje x para mostrar qué tipo de aves hay en cuestión:
|
||||
|
||||
```
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.xticks(rotation=45)
|
||||
x = birds['Name']
|
||||
y = birds['MaxWingspan']
|
||||
|
||||
plt.plot(x, y)
|
||||
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Incluso con la rotación de las etiquetas ajustada a 45 grados, hay demasiado para leer. Vamos a probar una estrategia diferente: etiquetar sólo los valores atípicos y poner las etiquetas dentro del gráfico. Puedes utilizar un gráfico de dispersión para tener más espacio para el etiquetado:
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
plt.plot(x, y, 'bo')
|
||||
if birds['MaxWingspan'][i] > 500:
|
||||
plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
¿Qué está pasando aquí? Has utilizado `tick_params` para ocultar las etiquetas inferiores y luego has creado un bucle sobre tu conjunto de datos de aves. Al trazar el gráfico con pequeños puntos azules redondos utilizando `bo`, has comprobado si hay algún pájaro con una envergadura máxima superior a 500 y has mostrado su etiqueta junto al punto si es así. Desplazaste las etiquetas un poco en el eje Y (`y * (1 - 0.05)`) y utilizaste el nombre del ave como etiqueta.
|
||||
|
||||
¿Qué descubrimos?
|
||||
|
||||

|
||||
## Filtra tus datos
|
||||
|
||||
Tanto el águila calva como el halcón de las praderas, aunque probablemente sean aves muy grandes, parecen estar mal etiquetadas, con un "0" adicional a su envergadura máxima. Es poco probable que te encuentres con un águila calva de 25 metros de envergadura, pero si es así, ¡háznoslo saber! Vamos a crear un nuevo marco de datos sin esos dos valores atípicos:
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:
|
||||
plt.plot(x, y, 'bo')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
Al filtrar los valores atípicos, sus datos son ahora más coherentes y comprensibles.
|
||||
|
||||

|
||||
|
||||
Ahora que tenemos un conjunto de datos más limpio, al menos en lo que respecta a la envergadura, vamos a descubrir más cosas sobre estas aves.
|
||||
|
||||
Aunque los gráficos de líneas y de dispersión pueden mostrar información sobre los valores de los datos y sus distribuciones, queremos pensar en los valores inherentes a este conjunto de datos. Podrías crear visualizaciones para responder a las siguientes preguntas sobre la cantidad:
|
||||
|
||||
> ¿Cuántas categorías de aves hay y cuál es su número?
|
||||
> ¿Cuántas aves están extinguidas, en peligro de extinción, son raras o comunes?
|
||||
> ¿Cuántos hay de los distintos géneros y tipos en la terminología de Linneo?
|
||||
## Explorar los gráficos de barras
|
||||
|
||||
Los gráficos de barras son prácticos cuando se necesita mostrar agrupaciones de datos. Exploremos las categorías de aves que existen en este conjunto de datos para ver cuál es la más común por número.
|
||||
|
||||
En el archivo del cuaderno, crea un gráfico de barras básico
|
||||
|
||||
✅ Nota, puedes filtrar las dos aves atípicas que identificamos en la sección anterior, editar la errata de su envergadura, o déjalas para estos ejercicios que no dependen de los valores de envergadura.
|
||||
|
||||
Si desea crear un gráfico de barras, puede seleccionar los datos en los que desea centrarse. Los gráficos de barras se pueden crear a partir de datos sin procesar:
|
||||
|
||||
```python
|
||||
birds.plot(x='Category',
|
||||
kind='bar',
|
||||
stacked=True,
|
||||
title='Birds of Minnesota')
|
||||
|
||||
```
|
||||

|
||||
|
||||
Este gráfico de barras, sin embargo, es ilegible porque hay demasiados datos no agrupados. Necesitas seleccionar sólo los datos que quieres graficar, así que veamos la longitud de las aves según su categoría.
|
||||
|
||||
Filtra tus datos para incluir sólo la categoría del pájaro.
|
||||
|
||||
✅ Observa que usas Pandas para manejar los datos, y luego dejas que Matplotlib haga el gráfico.
|
||||
|
||||
Como hay muchas categorías, puedes mostrar este gráfico verticalmente y ajustar su altura para tener en cuenta todos los datos:
|
||||
|
||||
```python
|
||||
category_count = birds.value_counts(birds['Category'].values, sort=True)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
category_count.plot.barh()
|
||||
```
|
||||

|
||||
|
||||
Este gráfico de barras muestra una buena visión del número de aves en cada categoría. En un abrir y cerrar de ojos, se ve que el mayor número de aves de esta región se encuentra en la categoría de patos/gatos/aves acuáticas. Minnesota es el "país de los 10.000 lagos", así que no es de extrañar.
|
||||
|
||||
✅ Prueba otros conteos en este conjunto de datos. ¿Le sorprende algo?
|
||||
|
||||
## Comparación de datos
|
||||
|
||||
Puedes probar diferentes comparaciones de datos agrupados creando nuevos ejes. Intenta una comparación de la longitud máxima de un pájaro, basada en su categoría:
|
||||
|
||||
```python
|
||||
maxlength = birds['MaxLength']
|
||||
plt.barh(y=birds['Category'], width=maxlength)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Aquí no hay nada sorprendente: los colibríes tienen la menor longitud máxima en comparación con los pelícanos o los gansos. ¡Es bueno cuando los datos tienen un sentido lógico!
|
||||
|
||||
Puede crear visualizaciones más interesantes de los gráficos de barras superponiendo los datos. Superpongamos la longitud mínima y máxima en una categoría de aves determinada:
|
||||
|
||||
```python
|
||||
minLength = birds['MinLength']
|
||||
maxLength = birds['MaxLength']
|
||||
category = birds['Category']
|
||||
|
||||
plt.barh(category, maxLength)
|
||||
plt.barh(category, minLength)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
En este gráfico, puedes ver el rango por categoría de ave de la longitud mínima y la longitud máxima. Se puede decir con seguridad que, dados estos datos, cuanto más grande es el ave, mayor es su rango de longitud. ¡Fascinante!
|
||||
|
||||

|
||||
|
||||
## 🚀 Desafío
|
||||
|
||||
Este conjunto de datos sobre aves ofrece una gran cantidad de información sobre diferentes tipos de aves dentro de un ecosistema concreto. Busca en Internet y comprueba si puedes encontrar otros conjuntos de datos orientados a las aves. Practica la construcción de tablas y gráficos en torno a estas aves para descubrir datos que no conocías.
|
||||
|
||||
## [Cuestionario posterior a la clase](https://red-water-0103e7a0f.azurestaticapps.net/quiz/17)
|
||||
|
||||
## Repaso y Autoestudio
|
||||
|
||||
Esta primera lección has recibido alguna información sobre cómo utilizar Matplotlib para visualizar cantidades. Investiga sobre otras formas de trabajar con conjuntos de datos para su visualización. [Plotly](https://github.com/plotly/plotly.py) es otra forma que no cubriremos en estas lecciones, así que echa un vistazo a lo que puede ofrecer.
|
||||
## Asignación
|
||||
|
||||
[Líneas, dispersiones y barras](assignment.es.md)
|
@ -0,0 +1,204 @@
|
||||
# विज़ुअलाइज़िंग मात्रा
|
||||
|
||||
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
|
||||
|:---:|
|
||||
| विज़ुअलाइज़िंग मात्रा - _सकेटच्नोते करने वाला [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
इस पाठ में आप यह पता लगाएंगे कि मात्रा की अवधारणा के चारों ओर दिलचस्प विज़ुअलाइज़ेशन कैसे बनाएं, यह जानने के लिए कई उपलब्ध पायथन पुस्तकालयों में से एक का उपयोग कैसे करें। मिनेसोटा के पक्षियों के बारे में साफ किए गए डेटासेट का उपयोग करके, आप स्थानीय वन्यजीवों के बारे में कई रोचक तथ्य जान सकते हैं।
|
||||
## [प्री-रीडिंग क्विज](https://red-water-0103e7a0f.azurestaticapps.net/quiz/16)
|
||||
|
||||
## माटप्लोटलिब के साथ पंखों का निरीक्षण करें
|
||||
|
||||
सरल और परिष्कृत दोनों प्रकार के प्लॉट और विभिन्न प्रकार के चार्ट बनाने के लिए एक उत्कृष्ट पुस्तकालय है [माटप्लोटलिब](https://matplotlib.org/stable/index.html)। सामान्य शब्दों में, इन पुस्तकालयों का उपयोग करके डेटा को प्लॉट करने की प्रक्रिया में आपके डेटाफ़्रेम के उन हिस्सों की पहचान करना शामिल है जिन्हें आप लक्षित करना चाहते हैं, उस डेटा पर कोई भी आवश्यक परिवर्तन करना, इसके x और y अक्ष मान निर्दिष्ट करना, यह तय करना कि किस प्रकार का प्लॉट दिखाना है, और फिर साजिश दिखा रहा है। माटप्लोटलिब विज़ुअलाइज़ेशन की एक विशाल विविधता प्रदान करता है, लेकिन इस पाठ के लिए, आइए उन पर ध्यान केंद्रित करें जो मात्रा को देखने के लिए सबसे उपयुक्त हैं: लाइन चार्ट, स्कैटरप्लॉट और बार प्लॉट।
|
||||
|
||||
> ✅ अपने डेटा की संरचना और जो कहानी आप बताना चाहते हैं, उसके अनुरूप सर्वोत्तम चार्ट का उपयोग करें।
|
||||
> - समय के साथ रुझानों का विश्लेषण करने के लिए: लाइन
|
||||
> - मानों की तुलना करने के लिए: बार, कॉलम, पाई, स्कैटरप्लॉट
|
||||
> - यह दिखाने के लिए कि भाग किस प्रकार संपूर्ण से संबंधित हैं: पाई
|
||||
> - डेटा का वितरण दिखाने के लिए: स्कैटरप्लॉट, बार
|
||||
> - रुझान दिखाने के लिए: लाइन, कॉलम
|
||||
> - मानों के बीच संबंध दिखाने के लिए: लाइन, स्कैटरप्लॉट, बबल
|
||||
|
||||
यदि आपके पास एक डेटासेट है और यह पता लगाने की आवश्यकता है कि किसी दिए गए आइटम में से कितना शामिल है, तो आपके पास सबसे पहले कार्यों में से एक इसके मूल्यों का निरीक्षण करना होगा।
|
||||
|
||||
✅ माटप्लोटलिब के लिए बहुत अच्छी 'चीट शीट' उपलब्ध हैं [here](https://matplotlib.org/cheatsheets/cheatsheets.pdf).
|
||||
|
||||
## बर्ड विंगस्पैन मूल्यों के बारे में एक लाइन प्लॉट बनाएं
|
||||
|
||||
इस पाठ फ़ोल्डर के मूल में `नोटबुक.आईपीएनबी` फ़ाइल खोलें और एक सेल जोड़ें।
|
||||
|
||||
> नोट: डेटा इस रेपो की जड़ में `/आंकड़े` फ़ोल्डर में संग्रहीत है।
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
यह डेटा टेक्स्ट और संख्याओं का मिश्रण है:
|
||||
|
||||
|
||||
| | नाम | वैज्ञानिक नाम | श्रेणी | आदेश | परिवार | जाति | संरक्षण की स्थिति | न्यूनतम लंबाई | अधिकतम लंबाई | मिनबॉडीमास | मैक्सबॉडीमास | मिनविंगस्पैन | मैक्सविंगस्पैन |
|
||||
| ---: | :--------------------------- | :--------------------- | :-------------------- | :----------- | :------- | :---------- | :----------------- | --------: | --------: | ----------: | ----------: | ----------: | ----------: |
|
||||
| 0 | ब्लैक-बेल्ड सीटी-बतख | डेंड्रोसाइग्ना ऑटमलिस | बतख / गीज़ / जलपक्षी | अंसेरी फॉर्म्स | अनाटिडे | डेंड्रोसाइग्ना | एल सी | 47 | 56 | 652 | 1020 | 76 | 94 |
|
||||
| 1 | फुल्वस सीटी-बतख | डेंड्रोसाइग्ना बाइकलर | बतख / गीज़ / जलपक्षी | अंसेरी फॉर्म्स | अनाटिडे | डेंड्रोसाइग्ना | एल सी | 45 | 53 | 712 | 1050 | 85 | 93 |
|
||||
| 2 | हिम हंस | Anser caerulescens | बतख / गीज़ / जलपक्षी | अंसेरी फॉर्म्स | अनाटिडे | Anser | एल सी | 64 | 79 | 2050 | 4050 | 135 | 165 |
|
||||
| 3 | रॉस हंस | Anser rossii | बतख / गीज़ / जलपक्षी | अंसेरी फॉर्म्स | अनाटिडे | Anser | एल सी | 57.3 | 64 | 1066 | 1567 | 113 | 116 |
|
||||
| 4 | ग्रेटर व्हाइट-फ्रंटेड गूज | Anser albifrons | बतख / गीज़ / जलपक्षी | अंसेरी फॉर्म्स | अनाटिडे | Anser | एल सी | 64 | 81 | 1930 | 3310 | 130 | 165 |
|
||||
|
||||
आइए बुनियादी लाइन प्लॉट का उपयोग करके कुछ संख्यात्मक डेटा को प्लॉट करके शुरू करें। मान लीजिए आप इन दिलचस्प पक्षियों के लिए अधिकतम पंखों का दृश्य चाहते हैं।
|
||||
|
||||
```python
|
||||
wingspan = birds['MaxWingspan']
|
||||
wingspan.plot()
|
||||
```
|
||||

|
||||
|
||||
आप तुरंत क्या नोटिस करते हैं? ऐसा लगता है कि कम से कम एक बाहरी है - वह काफी पंख है! एक २३०० सेंटीमीटर पंखों का फैलाव २३ मीटर के बराबर होता है - क्या मिनेसोटा में पटरोडैक्टाइल घूम रहे हैं? आइए जांच करते हैं।
|
||||
|
||||
जबकि आप उन आउटलेर्स को खोजने के लिए एक्सेल में एक त्वरित सॉर्ट कर सकते हैं, जो शायद टाइपो हैं, प्लॉट के भीतर से काम करके विज़ुअलाइज़ेशन प्रक्रिया जारी रखें।
|
||||
|
||||
प्रश्न में किस प्रकार के पक्षी हैं, यह दिखाने के लिए x-अक्ष में लेबल जोड़ें:
|
||||
|
||||
```
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.xticks(rotation=45)
|
||||
x = birds['Name']
|
||||
y = birds['MaxWingspan']
|
||||
|
||||
plt.plot(x, y)
|
||||
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
यहां तक कि लेबल के रोटेशन को 45 डिग्री पर सेट करने के बाद भी, पढ़ने के लिए बहुत कुछ है। आइए एक अलग रणनीति का प्रयास करें: केवल उन आउटलेर्स को लेबल करें और चार्ट के भीतर लेबल सेट करें। लेबलिंग के लिए अधिक जगह बनाने के लिए आप स्कैटर चार्ट का उपयोग कर सकते हैं:
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
plt.plot(x, y, 'bo')
|
||||
if birds['MaxWingspan'][i] > 500:
|
||||
plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
यहाँ क्या चल रहा है? आपने निचले लेबल को छिपाने के लिए `tick_params` का उपयोग किया और फिर अपने पक्षियों के डेटासेट पर एक लूप बनाया। 'बो' का उपयोग करके छोटे गोल नीले डॉट्स वाले चार्ट को प्लॉट करते हुए, आपने 500 से अधिक पंखों वाले किसी भी पक्षी की जाँच की और यदि ऐसा है तो डॉट के बगल में उनका लेबल प्रदर्शित किया। आप y अक्ष (`वाई * (1 - 0.05)`) पर लेबल को थोड़ा सा ऑफसेट करते हैं और एक लेबल के रूप में पक्षी के नाम का उपयोग करते हैं।
|
||||
|
||||
आपने क्या खोजा?
|
||||
|
||||

|
||||
## अपना डेटा फ़िल्टर करें
|
||||
|
||||
बाल्ड ईगल और प्रेयरी फाल्कन दोनों, जबकि शायद बहुत बड़े पक्षी, गलत लेबल वाले प्रतीत होते हैं, उनके अधिकतम पंखों में अतिरिक्त `0` जोड़ा जाता है। यह संभावना नहीं है कि आप 25 मीटर पंखों वाले बाल्ड ईगल से मिलेंगे, लेकिन यदि ऐसा है, तो कृपया हमें बताएं! आइए उन दो आउटलेर्स के बिना एक नया डेटाफ़्रेम बनाएं:
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:
|
||||
plt.plot(x, y, 'bo')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
आउटलेर्स को फ़िल्टर करके, आपका डेटा अब अधिक सुसंगत और समझने योग्य है।
|
||||
|
||||

|
||||
|
||||
अब जबकि हमारे पास कम से कम पंखों के मामले में एक क्लीनर डेटासेट है, तो आइए इन पक्षियों के बारे में और जानें।
|
||||
|
||||
जबकि लाइन और स्कैटर प्लॉट डेटा मानों और उनके वितरण के बारे में जानकारी प्रदर्शित कर सकते हैं, हम इस डेटासेट में निहित मूल्यों के बारे में सोचना चाहते हैं। आप मात्रा के बारे में निम्नलिखित प्रश्नों के उत्तर देने के लिए विज़ुअलाइज़ेशन बना सकते हैं:
|
||||
|
||||
> पक्षियों की कितनी श्रेणियां हैं और उनकी संख्या क्या है?
|
||||
> कितने पक्षी विलुप्त, संकटग्रस्त, दुर्लभ या सामान्य हैं?
|
||||
> लिनिअस की शब्दावली में विभिन्न जीनस और आदेश कितने हैं?
|
||||
## बार चार्ट का अन्वेषण करें
|
||||
|
||||
बार चार्ट व्यावहारिक होते हैं जब आपको डेटा के समूह दिखाने की आवश्यकता होती है। आइए इस डेटासेट में मौजूद पक्षियों की श्रेणियों का पता लगाएं, यह देखने के लिए कि संख्या के हिसाब से कौन सा सबसे आम है।
|
||||
|
||||
नोटबुक फ़ाइल में, एक मूल बार चार्ट बनाएं
|
||||
|
||||
✅ ध्यान दें, आप या तो पिछले अनुभाग में पहचाने गए दो बाहरी पक्षियों को फ़िल्टर कर सकते हैं, उनके पंखों में टाइपो को संपादित कर सकते हैं, या उन्हें इन अभ्यासों के लिए छोड़ सकते हैं जो पंखों के मूल्यों पर निर्भर नहीं करते हैं।
|
||||
|
||||
यदि आप एक बार चार्ट बनाना चाहते हैं, तो आप उस डेटा का चयन कर सकते हैं जिस पर आप ध्यान केंद्रित करना चाहते हैं। कच्चे डेटा से बार चार्ट बनाए जा सकते हैं:
|
||||
|
||||
```python
|
||||
birds.plot(x='Category',
|
||||
kind='bar',
|
||||
stacked=True,
|
||||
title='Birds of Minnesota')
|
||||
|
||||
```
|
||||

|
||||
|
||||
हालांकि, यह बार चार्ट अपठनीय है क्योंकि इसमें बहुत अधिक गैर-समूहीकृत डेटा है। आपको केवल उस डेटा का चयन करने की आवश्यकता है जिसे आप प्लॉट करना चाहते हैं, तो आइए उनकी श्रेणी के आधार पर पक्षियों की लंबाई देखें।
|
||||
|
||||
केवल पक्षी की श्रेणी को शामिल करने के लिए अपना डेटा फ़िल्टर करें।
|
||||
|
||||
✅ ध्यान दें कि आप डेटा को प्रबंधित करने के लिए पंडों का उपयोग करते हैं, और फिर माटप्लोटलिब को चार्टिंग करने दें।
|
||||
|
||||
चूंकि कई श्रेणियां हैं, आप इस चार्ट को लंबवत रूप से प्रदर्शित कर सकते हैं और सभी डेटा के हिसाब से इसकी ऊंचाई को बदल सकते हैं:
|
||||
|
||||
```python
|
||||
category_count = birds.value_counts(birds['Category'].values, sort=True)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
category_count.plot.barh()
|
||||
```
|
||||

|
||||
|
||||
यह बार चार्ट प्रत्येक श्रेणी में पक्षियों की संख्या का एक अच्छा दृश्य दिखाता है। पलक झपकते ही, आप देखते हैं कि इस क्षेत्र में पक्षियों की सबसे बड़ी संख्या बतख/गीज़/जलपक्षी श्रेणी में है। मिनेसोटा '10,000 झीलों की भूमि' है इसलिए यह आश्चर्य की बात नहीं है!
|
||||
|
||||
✅ इस डेटासेट पर कुछ और मायने रखने की कोशिश करें। क्या आपको कुछ आश्चर्य होता है?
|
||||
|
||||
## डेटा की तुलना करना
|
||||
|
||||
आप नए अक्ष बनाकर समूहीकृत डेटा की विभिन्न तुलनाओं को आज़मा सकते हैं। किसी पक्षी की श्रेणी के आधार पर उसकी अधिकतम लंबाई की तुलना करने का प्रयास करें:
|
||||
|
||||
```python
|
||||
maxlength = birds['MaxLength']
|
||||
plt.barh(y=birds['Category'], width=maxlength)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
यहां कुछ भी आश्चर्य की बात नहीं है: हमिंगबर्ड में पेलिकन या गीज़ की तुलना में कम से कम अधिकतम लंबाई होती है। यह अच्छा है जब डेटा तार्किक समझ में आता है!
|
||||
|
||||
आप डेटा को सुपरइम्पोज़ करके बार चार्ट के अधिक दिलचस्प विज़ुअलाइज़ेशन बना सकते हैं। आइए किसी दी गई पक्षी श्रेणी पर न्यूनतम और अधिकतम लंबाई को सुपरइम्पोज़ करें:
|
||||
|
||||
```python
|
||||
minLength = birds['MinLength']
|
||||
maxLength = birds['MaxLength']
|
||||
category = birds['Category']
|
||||
|
||||
plt.barh(category, maxLength)
|
||||
plt.barh(category, minLength)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
इस प्लॉट में आप न्यूनतम लंबाई और अधिकतम लंबाई की प्रति पक्षी श्रेणी की सीमा देख सकते हैं। आप सुरक्षित रूप से कह सकते हैं कि, इस डेटा को देखते हुए, पक्षी जितना बड़ा होगा, उसकी लंबाई सीमा उतनी ही बड़ी होगी। चित्ताकर्षक!
|
||||
|
||||

|
||||
|
||||
## 🚀 चुनौती
|
||||
|
||||
यह पक्षी डेटासेट एक विशेष पारिस्थितिकी तंत्र के भीतर विभिन्न प्रकार के पक्षियों के बारे में जानकारी का खजाना प्रदान करता है। इंटरनेट के चारों ओर खोजें और देखें कि क्या आप अन्य पक्षी-उन्मुख डेटासेट पा सकते हैं। उन तथ्यों की खोज करने के लिए इन पक्षियों के चारों ओर चार्ट और ग्राफ़ बनाने का अभ्यास करें जिन्हें आपने महसूस नहीं किया है।
|
||||
## [व्याख्यान के बाद प्रश्नोत्तरी](https://red-water-0103e7a0f.azurestaticapps.net/quiz/17)
|
||||
|
||||
## समीक्षा और स्व अध्ययन
|
||||
|
||||
इस पहले पाठ ने आपको मात्राओं की कल्पना करने के लिए Matplotlib का उपयोग करने के तरीके के बारे में कुछ जानकारी दी है। विज़ुअलाइज़ेशन के लिए डेटासेट के साथ काम करने के अन्य तरीकों के बारे में कुछ शोध करें। [प्लॉटली](https://github.com/plotly/plotly.py) प्वह है जिसे हम इन पाठों में शामिल नहीं करेंगे, इसलिए देखें कि यह क्या पेशकश कर सकता है।
|
||||
## कार्यभार
|
||||
|
||||
[लाइन्स, स्कैटर, और बार्स](assignment.md)
|
@ -0,0 +1,203 @@
|
||||
# 수량 시각화
|
||||
|
||||
| ](../../../sketchnotes/09-Visualizing-Quantities.png)|
|
||||
|:---:|
|
||||
| 수량 시각화 - _제작자 : [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
이 강의에서는 사용할 수 있는 많은 파이썬 라이브러리 중에 하나를 사용하여 수량 개념과 관련된 흥미로운 시각화를 만드는 방법을 알아봅니다. 여러분은 미네소타의 새들에 대한 정리된 데이터 세트를 사용하여, 지역 야생동물에 대한 많은 흥미로운 사실들을 배울 수 있습니다.
|
||||
## [강의 전 퀴즈](https://red-water-0103e7a0f.azurestaticapps.net/quiz/16)
|
||||
|
||||
## Matplotlib으로 날개 길이 관찰하기
|
||||
|
||||
다양한 종류의 간단하고 정교한 플롯과 차트를 모두 생성할 수 있는 훌륭한 라이브러리는 [Matplotlib](https://matplotlib.org/stable/index.html) 입니다. 일반적으로 이러한 라이브러리를 사용하여 데이터를 그리는 프로세스에는 대상으로 지정하려는 데이터 프레임 부분 식별, 필요한 해당 데이터에 대한 변환 수행, x 및 y축 값 할당, 표시할 플롯 종류를 결정한 다음 그림을 표시하는 작업이 포함됩니다. Matplotlib은 다양한 시각화를 제공하지만, 이 강의에서는 수량 시각화에 가장 적합한 선형 차트, 산점도 및 막대그래프에 중점을 두겠습니다.
|
||||
|
||||
> ✅ 데이터 구조와 전달하려는 내용에 가장 적합한 차트를 사용하세요.
|
||||
> - 시간 경과에 따른 추세 분석: 선
|
||||
> - 값을 비교하기: 막대, 세로 막대형, 파이, 산점도
|
||||
> - 부분이 전체와 어떻게 관련되어 있는지 보여주기: 파이
|
||||
> - 데이터 분포 표시: 산점도, 막대
|
||||
> - 추세 표시: 선, 세로 막대형
|
||||
> - 값 사이의 관계 표시: 선, 산점도, 버블
|
||||
|
||||
데이터 세트가 있고 주어진 항목이 얼마나 포함되어 있는지 확인해야 하는 경우에, 가장 먼저 처리해야 하는 작업 중 하나는 해당 값을 검사하는 것입니다.
|
||||
|
||||
✅ Matplotlib에 사용할 수 있는 매우 좋은 '치트 시트'가 있습니다. [here](https://matplotlib.org/cheatsheets/cheatsheets.pdf).
|
||||
|
||||
## 새 날개 길이 값에 대한 선 그래프 작성하기
|
||||
|
||||
이 강의 폴더의 루트에 있는 `notebook.ipynb` 파일을 열고 셀을 추가합니다.
|
||||
|
||||
> 참고: 데이터는 '/데이터'폴더의 이 repo 루트에 저장됩니다.
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
이 데이터는 텍스트와 숫자의 혼합으로 이루어져있습니다:
|
||||
|
||||
|
||||
| | Name | ScientificName | Category | Order | Family | Genus | ConservationStatus | MinLength | MaxLength | MinBodyMass | MaxBodyMass | MinWingspan | MaxWingspan |
|
||||
| ---: | :--------------------------- | :--------------------- | :-------------------- | :----------- | :------- | :---------- | :----------------- | --------: | --------: | ----------: | ----------: | ----------: | ----------: |
|
||||
| 0 | Black-bellied whistling-duck | Dendrocygna autumnalis | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 47 | 56 | 652 | 1020 | 76 | 94 |
|
||||
| 1 | Fulvous whistling-duck | Dendrocygna bicolor | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 45 | 53 | 712 | 1050 | 85 | 93 |
|
||||
| 2 | Snow goose | Anser caerulescens | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 79 | 2050 | 4050 | 135 | 165 |
|
||||
| 3 | Ross's goose | Anser rossii | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 57.3 | 64 | 1066 | 1567 | 113 | 116 |
|
||||
| 4 | Greater white-fronted goose | Anser albifrons | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 81 | 1930 | 3310 | 130 | 165 |
|
||||
|
||||
먼저 기본 선 그래프을 사용하여 숫자 데이터 중 일부를 표시해 보겠습니다. 여러분이 이 흥미로운 새들의 최대 날개 길이를 보고싶다고 가정해 보겠습니다.
|
||||
|
||||
```python
|
||||
wingspan = birds['MaxWingspan']
|
||||
wingspan.plot()
|
||||
```
|
||||

|
||||
|
||||
여러분은 바로 무언가를 알아차리셨나요? 적어도 하나의 이상값이 있는 것 같은데, 날개 폭이 꽤 넓군요! 2300센티미터의 날개 폭은 23미터와 같습니다. 미네소타를 배회하는 익룡이 있는 걸까요? 조사해 봅시다.
|
||||
|
||||
Excel에서 빠른 정렬을 수행하여 오타일 가능성이 있는 이상값을 찾을 수 있지만, 플롯 내에서 작업하여 시각화 프로세스를 계속합니다.
|
||||
|
||||
x축에 label을 추가하여 문제의 새 종류를 표시합니다.
|
||||
|
||||
```
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.xticks(rotation=45)
|
||||
x = birds['Name']
|
||||
y = birds['MaxWingspan']
|
||||
|
||||
plt.plot(x, y)
|
||||
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
label의 회전을 45도로 설정해도 읽기에는 너무 많습니다. 다른 전략을 시도해 보겠습니다. 해당 이상값에만 label을 지정하고 차트 내에 label을 설정합니다. 분산형 차트를 사용하여 labeling을 위한 더 많은 공간을 만들 수 있습니다.
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
plt.plot(x, y, 'bo')
|
||||
if birds['MaxWingspan'][i] > 500:
|
||||
plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
무슨 일이 일어나고 있는 거죠? `tick_params`를 사용하여 하단 레이블을 숨긴 다음 새 데이터(bird data) 에 루프를 만들었습니다. 'bo'를 이용해 작고 동그란 파란 점으로 차트를 표시하면 최대 날개 길이가 500을 초과하는 새가 있는지 확인하고 점 옆에 label을 표시했습니다. label을 y축에서 약간 오프셋(`y * (1 - 0.05)`)하고 새 이름을 레이블로 사용했습니다.
|
||||
What did you discover?
|
||||
|
||||

|
||||
## 데이터 필터링
|
||||
|
||||
대머리 독수리(Bald eagle)와 대머리 매(Prairie falcon)은 아마도 매우 큰 새일 것이지만, 이들의 최대 날개 길이에 '0'이 추가되어 잘못 표기된 것으로 보입니다. 여러분이 25미터의 날개폭을 가진 흰머리 독수리를 만날 것 같지는 않지만, 만약 만난다면 우리에게 알려주세요! 이제 이 두 가지 이상치를 제외하고 새 데이터 프레임을 생성해 보겠습니다.
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:
|
||||
plt.plot(x, y, 'bo')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
이상치를 필터링함으로써 이제 데이터의 응집력이 높아지고 이해하기 쉬워졌습니다.
|
||||
|
||||

|
||||
|
||||
이제 우리는 적어도 날개 길이 측면에서 더 깨끗한 데이터 셋를 얻었으므로 이 새들에 대해 더 자세히 알아보겠습니다.
|
||||
|
||||
선 그래프 및 산점도 그래프는 데이터 값과 그 분포에 대한 정보를 표시할 수 있지만, 이 데이터 셋에 내재된 값에 대해 고려하려고 합니다. 수량에 대한 다음 질문에 답하기 위해 시각화를 만들 수 있습니다.
|
||||
|
||||
> 새의 종류는 몇 가지이며 그 수는 얼마인가요?
|
||||
> 얼마나 많은 새들이 멸종했고, 멸종위기에 처해있고, 희귀하거나 흔할까요?
|
||||
> Linnaeus의 용어에는 얼마나 많은 다양한 속과 목들이 있나요?
|
||||
## 막대 차트 탐색
|
||||
|
||||
막대형 차트는 데이터 그룹화를 보여줘야 할 때 유용합니다. 이 데이터셋에 있는 새들의 를 탐색하여 숫자로 가장 흔한 새가 무엇인지 알아보겠습니다.
|
||||
|
||||
노트북 파일에서 기본 막대 차트를 만듭니다.
|
||||
|
||||
✅ 참고, 앞 섹션에서 식별한 두 개의 이상값 새를 필터링하거나, 날개 폭의 오타를 편집하거나, 날개 폭 값에 의존하지 않는 연습에 사용할 수 있습니다.
|
||||
|
||||
막대 차트를 만들고 싶다면 초점을 맞출 데이터를 선택하면 됩니다. 원시 데이터로 막대 차트를 만들 수 있습니다.
|
||||
|
||||
```python
|
||||
birds.plot(x='Category',
|
||||
kind='bar',
|
||||
stacked=True,
|
||||
title='Birds of Minnesota')
|
||||
|
||||
```
|
||||

|
||||
|
||||
그러나 그룹화되지 않은 데이터가 너무 많기 때문에 이 막대 차트를 읽을 수 없습니다. 표시할 데이터만 선택해야 하므로 카테고리를 기준으로 새의 길이를 살펴보겠습니다.
|
||||
|
||||
새 카테고리만 포함하도록 데이터를 필터링합니다.
|
||||
|
||||
✅ Pandas를 사용하여 데이터를 관리한 다음 Matplotlib으로 차트 작성을 합니다.
|
||||
|
||||
카테고리가 많으므로 이 차트를 세로로 표시하고 모든 데이터를 설명하도록 높이를 조정할 수 있습니다.
|
||||
|
||||
```python
|
||||
category_count = birds.value_counts(birds['Category'].values, sort=True)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
category_count.plot.barh()
|
||||
```
|
||||

|
||||
|
||||
이 막대 차트는 각 카테고리의 새의 수를 잘 보여줍니다. 눈 깜짝할 사이에 이 지역에서 가장 많은 수의 새가 오리(Ducks)/거위(Geese)/물새(Waterfowl) 카테고리에 있음을 알 수 있습니다. 미네소타는 '10,000개의 호수의 땅'이므로 이것은 놀라운 일이 아닙니다!
|
||||
|
||||
✅ 이 데이터 세트에서 다른 수를 시도하세요. 여러분을 놀라게 하는 것이 있나요?
|
||||
|
||||
## 데이터 비교
|
||||
|
||||
새로운 축을 만들어 그룹화된 데이터의 다양한 비교를 시도할 수 있습니다. 카테고리에 따라 새의 MaxLength를 비교하세요.
|
||||
|
||||
```python
|
||||
maxlength = birds['MaxLength']
|
||||
plt.barh(y=birds['Category'], width=maxlength)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
여기서 놀라운 것은 없습니다. 벌새(hummingbirds)는 펠리컨(Pelicans)이나 기러기(Geese)에 비해 MaxLength가 가장 짧습니다. 데이터가 논리적으로 타당할 때 좋습니다!
|
||||
|
||||
데이터를 중첩하여 막대 차트에 대한 더 흥미로운 시각화를 만들 수 있습니다. 주어진 새 카테고리에 최소 및 최대 길이를 중첩해 보겠습니다.
|
||||
|
||||
```python
|
||||
minLength = birds['MinLength']
|
||||
maxLength = birds['MaxLength']
|
||||
category = birds['Category']
|
||||
|
||||
plt.barh(category, maxLength)
|
||||
plt.barh(category, minLength)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
이 플롯에서는 최소 길이 및 최대 길이의 새 카테고리당 범위를 볼 수 있습니다. 이 데이터를 고려할 때, 새의 몸길이가 클수록 새의 몸길이는 더 넓어진다고 해도 무방할 것입니다. 신기하지 않나요!
|
||||
|
||||

|
||||
|
||||
## 🚀 도전
|
||||
|
||||
이 새 데이터 셋은 특정 생태계 내의 다양한 종류의 새에 대한 풍부한 정보를 제공합니다. 인터넷을 검색하여 다른 조류 지향 데이터 셋을 찾을 수 있는지 확인해 보세요. 여러분이 깨닫지 못한 사실을 발견하기 위해 이 새들에 대한 차트와 그래프를 만드는 연습을 하세요.
|
||||
## [이전 강의 퀴즈](https://red-water-0103e7a0f.azurestaticapps.net/quiz/17)
|
||||
|
||||
## 복습 & 자기주도학습
|
||||
|
||||
이번 첫번째 강의에서는 Matplotlib을 사용하여 수량을 시각화하는 방법에 대한 몇 가지 정보를 배웠습니다. 시각화를 위해 데이터셋으로 작업할 수 있는 다른 방법에 대해 알아보세요. [Plotly](https://github.com/plotly/plotly.py) 는 이 강의에서 다루지 않을 내용입니다. 어떤 기능을 제공하는지 살펴보세요.
|
||||
## 과제
|
||||
|
||||
[선, 산점도, 막대 그래프](assignment.md)
|
@ -0,0 +1,212 @@
|
||||
# Visualizando Quantidades
|
||||
|
||||
| ](../../../sketchnotes/09-Visualizing-Quantities.png)|
|
||||
|:---:|
|
||||
| Visualizando quantidades - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
Nesta aula você irá explorar como usar uma das muitas bibliotecas disponíveis no Python para aprender a criar visualizações interessantes relacionadas ao conceito de quantidade. Usando um dataset já limpo sobre aves de Minnesota, você pode aprender muitos fatos interessantes sobre a fauna selvagem local.
|
||||
## [Quiz pré-aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/16)
|
||||
|
||||
## Observando envergadura da asa com Matplotlib
|
||||
|
||||
Uma biblioteca excelente para criar tanto gráficos simples como sofisticados e de diversos tipos é o [Matplotlib](https://matplotlib.org/stable/index.html). Em geral, o processo de plotar dados com esta biblioteca inclui identificar as partes do seu dataframe que você quer focar, utilizando quaisquer transformações necessárias nestes dados, atribuindo parâmetros dos eixos x e y, decidindo qual tipo de gráfico usar, e então mostrando o gráfico. O Matplotlib oferece uma grande variedade de visualizações, mas, nesta aula, iremos focar nos mais apropriados para visualizar quantidade: gráfico de linha, gráfico de dispersão e gráfico de barra.
|
||||
|
||||
> ✅ Use o melhor gráfico para se adaptar a estrutura dos dados e a história que você quer contar.
|
||||
> - Para analisar tendências temporais: linha
|
||||
> - Para comparar valores: barra, coluna, pizza, dispersão
|
||||
> - Para mostrar como as partes se relacionam com o todo: pizza
|
||||
> - Para mostrar a distribuição dos dados: dispersão, barra
|
||||
> - Para mostrar tendências: linha, coluna
|
||||
> - Para mostrar relações entre valores: linha, dispersão, bolha
|
||||
|
||||
Se você tem um dataset e precisa descobrir quanto de um dado elemento está presente, uma das primeiras coisas que você precisará fazer é examinar seus valores.
|
||||
|
||||
✅ Existem dicas ('cheat sheets') ótimas disponíveis para o Matplotlib [aqui](https://matplotlib.org/cheatsheets/cheatsheets.pdf).
|
||||
|
||||
## Construindo um gráfico de linhas sobre os valores de envergadura de aves
|
||||
|
||||
Abra o arquivo `notebook.ipynb` na raiz da pasta desta aula e adicione uma célula.
|
||||
|
||||
> Nota: os dados estão armazenados na raiz deste repositório na pasta `/data`.
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
|
||||
Estes dados são uma mistura de texto e números:
|
||||
|
||||
|
||||
| | Name | ScientificName | Category | Order | Family | Genus | ConservationStatus | MinLength | MaxLength | MinBodyMass | MaxBodyMass | MinWingspan | MaxWingspan |
|
||||
| ---: | :--------------------------- | :--------------------- | :-------------------- | :----------- | :------- | :---------- | :----------------- | --------: | --------: | ----------: | ----------: | ----------: | ----------: |
|
||||
| 0 | Black-bellied whistling-duck | Dendrocygna autumnalis | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 47 | 56 | 652 | 1020 | 76 | 94 |
|
||||
| 1 | Fulvous whistling-duck | Dendrocygna bicolor | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 45 | 53 | 712 | 1050 | 85 | 93 |
|
||||
| 2 | Snow goose | Anser caerulescens | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 79 | 2050 | 4050 | 135 | 165 |
|
||||
| 3 | Ross's goose | Anser rossii | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 57.3 | 64 | 1066 | 1567 | 113 | 116 |
|
||||
| 4 | Greater white-fronted goose | Anser albifrons | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 81 | 1930 | 3310 | 130 | 165 |
|
||||
|
||||
Vamos começar plotando alguns dados numéricos com um simples gráfico de linhas. Suponha que você quer uma visualização da envergadura máxima (MaxWingspan) dessas aves interessantes.
|
||||
|
||||
```python
|
||||
wingspan = birds['MaxWingspan']
|
||||
wingspan.plot()
|
||||
```
|
||||

|
||||
|
||||
O que é possível perceber imediatamente? Aparentemente existe pelo menos um outlier - e que envergadura! Uma envergadura de 2300 centímetros equivale a 23 metros - existem pterodáctilos voando em Minnesota? Vamos investigar.
|
||||
|
||||
Você poderia fazer uma ordenação rápida no Excel para encontrar estes outliers, que provavelmente são erros de digitação. No entanto, vamos continuar o processo de visualização trabalhando no gráfico.
|
||||
|
||||
Adicione identificadores (labels) no eixo x para mostrar os nomes das aves que estão sendo analisadas:
|
||||
|
||||
```
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.xticks(rotation=45)
|
||||
x = birds['Name']
|
||||
y = birds['MaxWingspan']
|
||||
|
||||
plt.plot(x, y)
|
||||
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Mesmo com a rotação das labels em 45 graus, existem muitas para ler. Vamos tentar outra estratégia: identificar os outliers e somente colocar as labels deles dentro do gráfico. Você pode usar um gráfico de dispersão para abrir mais espaço para labels (identificadores):
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
plt.plot(x, y, 'bo')
|
||||
if birds['MaxWingspan'][i] > 500:
|
||||
plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
O que aconteceu aqui? Você usou `tick_params` para esconder as labels do eixo x e então criou um loop sobre o dataset das aves. Depois, plotou o gráfico com pequenos círculos azuis usando `bo` e procurou por aves com envergadura maior que 500 e, em caso positivo, exibiu a label ao lado do círculo. Você ajustou as labels no eixo y (`y * (1 - 0.05)`) e usou o nome da ave como label.
|
||||
|
||||
O que você descobriu?
|
||||
|
||||

|
||||
|
||||
## Filtrando seus dados
|
||||
|
||||
Apesar de grandes, tanto a Bald Eagle (águia-de-cabeça-branca) como o Prairie Falcon (Falcão-da-pradaria) parecem ter valores errados, com um `0` a mais na envergadura máxima (MaxWingspan). É improvável que você encontre uma águia-de-cabeça-branca com envergadura de 25 metros, mas, se encontrar, por favor nos diga! Agora, vamos criar um dataframe sem estes dois outliers:
|
||||
|
||||
```python
|
||||
plt.title('Max Wingspan in Centimeters')
|
||||
plt.ylabel('Wingspan (CM)')
|
||||
plt.xlabel('Birds')
|
||||
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
|
||||
for i in range(len(birds)):
|
||||
x = birds['Name'][i]
|
||||
y = birds['MaxWingspan'][i]
|
||||
if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:
|
||||
plt.plot(x, y, 'bo')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
Agora que estes outliers foram removidos, seus dados estão mais coesos e compreensíveis.
|
||||
|
||||

|
||||
|
||||
Agora que temos um dataset mais limpo ao menos em termos de envergadura, vamos aprender mais sobre estas aves.
|
||||
|
||||
Enquanto gráficos de linha e dispersão conseguem mostrar informações sobre valores e suas distribuições, nós queremos pensar sobre os valores inerentes a este dataset. Você poderia criar visualizações para responder as seguintes perguntas sobre quantidade:
|
||||
|
||||
> Quantas categorias de aves existem, e quais são seus valores?
|
||||
> Quantas aves estão extintas, em risco de extinção, raras ou comuns?
|
||||
> Quantos gêneros e ordens da taxonomia de Lineu (nome científico) existem no dataset?
|
||||
|
||||
## Explorando gráfico de barras
|
||||
|
||||
Gráfico de barras são úteis quando precisamos mostrar agrupamentos de dados. Vamos explorar as categorias de aves que existem neste dataset para observar qual é o mais comum em quantidade.
|
||||
|
||||
No arquivo notebook, crie um gráfico de barras simples.
|
||||
|
||||
✅ Note que você pode remover as duas aves outliers que foram identificados anteriormente, editar o erro de digitação na envergadura ou deixá-los nestes exercícios que não dependem dos valores da envergadura.
|
||||
|
||||
Ao criar um gráfico de barras, você pode selecionar os dados que quer focar. Gráficos de barras podem ser criados a partir de dados brutos:
|
||||
|
||||
```python
|
||||
birds.plot(x='Category',
|
||||
kind='bar',
|
||||
stacked=True,
|
||||
title='Birds of Minnesota')
|
||||
|
||||
```
|
||||
|
||||

|
||||
|
||||
No entanto, este gráfico de barras é ilegível, porque existem muitos dados não agrupados. Você precisa selecionar somente os dados que quer plotar, então vamos olhar o comprimento das aves usando sua categoria como referência.
|
||||
|
||||
Filtre os dados para incluir somente a categoria da ave.
|
||||
|
||||
✅ Note que você usa o Pandas para lidar com os dados, e deixa a criação de gráficos para o Matplotlib.
|
||||
|
||||
Já que existem muitas categorias, você pode mostrar este gráfico verticalmente e ajustar sua altura para acomodar todos os dados:
|
||||
|
||||
```python
|
||||
category_count = birds.value_counts(birds['Category'].values, sort=True)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
category_count.plot.barh()
|
||||
```
|
||||

|
||||
|
||||
Este gráfico de barras mostra uma boa visão do número de aves em cada categoria. Em um piscar de olhos, você vê que a maior quantidade de aves nesta região pertence à categoria de Ducks/Geese/Waterfowl (patos/gansos/cisnes). Minnesota é 'a terra de 10.000 lagos', então isto não é surpreendente!
|
||||
|
||||
✅ Tente contabilizar outras quantidades deste dataset. Algo te surpreende?
|
||||
|
||||
## Comparando dados
|
||||
|
||||
Você pode tentar diferentes comparações de dados agrupados criando novos eixos. Tente comparar o comprimento máximo de uma ave, com base na sua categoria:
|
||||
|
||||
```python
|
||||
maxlength = birds['MaxLength']
|
||||
plt.barh(y=birds['Category'], width=maxlength)
|
||||
plt.rcParams['figure.figsize'] = [6, 12]
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Nada é surpreendente aqui: hummingbirds (beija-flores) têm o menor comprimento enquanto pelicans (pelicanos) e geese (gansos) têm os maiores valores. É muito bom quando os dados fazem sentido!
|
||||
|
||||
Você pode criar visualizações mais interessantes de gráficos de barras ao sobrepor dados. Vamos sobrepor o comprimento mínimo e máximo de uma dada categoria de ave:
|
||||
|
||||
```python
|
||||
minLength = birds['MinLength']
|
||||
maxLength = birds['MaxLength']
|
||||
category = birds['Category']
|
||||
|
||||
plt.barh(category, maxLength)
|
||||
plt.barh(category, minLength)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
Neste gráfico, você pode ver o intervalo de comprimento mínimo e máximo por categoria de ave. Você pode seguramente dizer, a partir destes dados, que quanto maior a ave, maior o seu intervalo de comprimento. Fascinante!
|
||||
|
||||

|
||||
|
||||
## 🚀 Desafio
|
||||
|
||||
Este dataset de aves oferece uma riqueza de informações sobre os diferentes tipos de aves de um ecossistema particular. Tente achar na internet outros datasets com dados sobre aves. Pratique construir gráficos com eles e tente descobrir fatos que você ainda não havia percebido.
|
||||
|
||||
## [Quiz pós-aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/17)
|
||||
|
||||
## Revisão e autoestudo
|
||||
|
||||
Esta primeira aula lhe deu informações sobre como usar o Matplotlib para visualizar quantidades. Procure por outras formas de trabalhar com dataset para visualização. [Plotly](https://github.com/plotly/plotly.py) é uma biblioteca que não será abordada nas aulas, então dê uma olhada no que ela pode oferecer.
|
||||
|
||||
## Tarefa
|
||||
|
||||
[Linhas, dispersão e barras](assignment.pt-br.md)
|
@ -0,0 +1,11 @@
|
||||
# Líneas, Dispersiones y Barras
|
||||
|
||||
## Instrucciones
|
||||
|
||||
En esta lección, has trabajado con gráficos de líneas, gráficos de dispersión y gráficos de barras para mostrar hechos interesantes sobre este conjunto de datos. En esta asignación, profundiza en el conjunto de datos para descubrir un hecho sobre un tipo de ave determinado. Por ejemplo, crea un cuaderno que visualice todos los datos interesantes que puedas descubrir sobre los gansos de nieve. Utiliza los tres gráficos mencionados anteriormente para contar una historia en tu cuaderno.
|
||||
|
||||
## Rúbrica
|
||||
|
||||
Ejemplar | Adecuado | Necesita mejorar
|
||||
--- | --- | -- |
|
||||
El cuaderno se presenta con buenas anotaciones, una narración sólida y gráficos atractivos | Al cuaderno le falta uno de estos elementos | Al cuaderno le faltan dos de estos elementos
|
@ -0,0 +1,11 @@
|
||||
# 선, 산점도, 막대 그래프
|
||||
|
||||
## 지침
|
||||
|
||||
이 강의에서는 선형 차트, 산점도 및 막대형 차트를 사용하여 이 데이터 셋에 대한 흥미로운 사실을 보여 주었습니다. 이 과제에서는 데이터셋을 자세히 조사하여 특정 유형의 새에 대한 사실을 발견하는 과정을 진행합니다. 예를 들어, 흰기러기(Snow Geese) 에 대한 모든 흥미로운 데이터를 시각화하는 노트북을 만드는 것이 있습니다. 위에서 언급한 세 가지의 플롯을 사용하여 여러분의 노트북을 만들어보세요.
|
||||
|
||||
## 기준표
|
||||
|
||||
모범적인 | 적당한 | 개선 필요
|
||||
--- | --- | -- |
|
||||
좋은 주석처리, 탄탄한 내용, 매력적인 그래프로 노트북 작성 | 노트북에 다음 요소 중 하나가 없습니다. | 노트북에 요소 중에 두 가지가 없습니다.
|
@ -0,0 +1,11 @@
|
||||
# रेखाहरू, स्क्याटरहरू र बारहरू
|
||||
|
||||
## निर्देशनहरू
|
||||
|
||||
यस पाठमा, तपाईंले यस डेटा सेटको बारेमा रोचक तथ्यहरू देखाउन लाइन चार्टहरू, स्क्याटर चार्टहरू, र बार चार्टहरूसँग काम गर्नुभएको छ। यस असाइनमेन्टमा, तपाइँ एक विशेष प्रकारको चराको बारेमा तथ्य पत्ता लगाउन आफ्नो डेटा सेटमा ड्रिल डाउन गर्नुहुन्छ। उदाहरणका लागि, एउटा नोटबुक सिर्जना गर्नुहोस् जुन तपाईंले स्नो गिजको बारेमा पत्ता लगाउन सक्ने सबै रोचक तथ्यहरू प्रदर्शन गर्दछ। तपाईंको नोटबुकमा कथा बताउन माथि उल्लेखित तीनवटा चार्टहरू प्रयोग गर्नुहोस्।
|
||||
|
||||
## रुब्रिक
|
||||
|
||||
अनुकरणीय | पर्याप्त | सुधार चाहिन्छ
|
||||
--- | --- | - |
|
||||
नोटबुक राम्रो एनोटेसन, बलियो कथन र आकर्षक ग्राफिक्स संग प्रस्तुत गरिएको छ | नोटबुकमा यी वस्तुहरू मध्ये एउटा हराइरहेको छ | नोटबुकमा यी दुई वस्तुहरू हराइरहेका छन् |
|
@ -0,0 +1,11 @@
|
||||
# Linhas, dispersão e barras
|
||||
|
||||
## Instruções
|
||||
|
||||
Nesta aula, você trabalhou com gráficos de linhas, dispersão e barras para mostrar fatos interessantes sobre este dataset. Nesta tarefa, explore o mesmo dataset mais a fundo para descobrir algo sobre um dado tipo de ave. Por exemplo, crie um notebook que mostre visualizações de todos os fatos interessantes que encontrar sobre os Snow Geese (gansos-das-neves). Use os três tipos de gráficos mencionados anteriormente para contar uma história em seu notebook.
|
||||
|
||||
## Rubrica
|
||||
|
||||
Exemplar | Adequado | Precisa melhorar
|
||||
--- | --- | -- |
|
||||
O notebook foi apresentado com boas anotações, contação de histórias (storytelling) sólida e gráficos cativantes | O notebook não tem um desses elementos | O notebook não tem dois desses elementos
|
After Width: | Height: | Size: 5.0 KiB |
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 10 KiB |
After Width: | Height: | Size: 8.6 KiB |
After Width: | Height: | Size: 13 KiB |
After Width: | Height: | Size: 39 KiB |
@ -0,0 +1,193 @@
|
||||
# Visualización de Distribuciones
|
||||
|
||||
| ](../../../sketchnotes/10-Visualizing-Distributions.png)|
|
||||
|:---:|
|
||||
| Visualización de Distribuciones - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
En la lección anterior, aprendiste algunos datos interesantes sobre un conjunto de datos acerca de las aves de Minnesota. Encontraste algunos datos erróneos visualizando los valores atípicos y observaste las diferencias entre las categorías de aves según su longitud máxima.
|
||||
|
||||
## [Cuestionario previo](https://red-water-0103e7a0f.azurestaticapps.net/quiz/18)
|
||||
## Explora el conjunto de datos sobre aves
|
||||
|
||||
Otra forma de profundizar en los datos es observar su distribución, o cómo se organizan los datos a lo largo de un eje. Quizás, por ejemplo, te gustaría conocer la distribución general para este conjunto de datos, de la envergadura máxima o la masa corporal máxima de las aves de Minnesota.
|
||||
|
||||
Descubramos algunos hechos sobre las distribuciones de los datos en este conjunto de datos. En el archivo _notebook.ipynb_ en la raíz de la carpeta de esta lección, importa Pandas, Matplotlib, y tus datos:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
En general, puedes ver rápidamente la forma en que se distribuyen los datos usando un gráfico de dispersión como hicimos en la lección anterior:
|
||||
|
||||
```python
|
||||
birds.plot(kind='scatter',x='MaxLength',y='Order',figsize=(12,8))
|
||||
|
||||
plt.title('Max Length per Order')
|
||||
plt.ylabel('Order')
|
||||
plt.xlabel('Max Length')
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
Esto da una visión general de la distribución de la longitud del cuerpo por orden de las aves, pero no es la forma óptima de mostrar las verdaderas distribuciones. Esa tarea se suele realizar creando un Histograma.
|
||||
|
||||
## Trabajando con histogramas
|
||||
|
||||
Matplotlib ofrece muy buenas formas de visualizar la distribución de los datos utilizando Histogramas. Este tipo de gráfico es como un gráfico de barras en el que la distribución se puede ver a través de la subida y bajada de las barras. Para construir un histograma, necesitas datos numéricos. Para construir un Histograma, puedes trazar un gráfico definiendo el tipo como 'hist' para Histograma. Este gráfico muestra la distribución de MaxBodyMass para todo el rango de datos numéricos del conjunto de datos. Al dividir el conjunto de datos que se le da en intervalos más pequeños, puede mostrar la distribución de los valores de los datos:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 10, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Como puedes ver, la mayoría de los más de 400 pájaros de este conjunto de datos se encuentran en el rango de menos de 2000 para su masa corporal máxima. Puedes obtener más información sobre los datos cambiando el parámetro `bins` a un número mayor, algo así como 30:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 30, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Este gráfico muestra la distribución de forma un poco más granular. Se podría crear un gráfico menos sesgado hacia la izquierda asegurándose de que sólo se seleccionan datos dentro de un rango determinado:
|
||||
|
||||
Filtra tus datos para obtener sólo las aves cuya masa corporal es inferior a 60, y mostrar 40 `bins`:
|
||||
|
||||
```python
|
||||
filteredBirds = birds[(birds['MaxBodyMass'] > 1) & (birds['MaxBodyMass'] < 60)]
|
||||
filteredBirds['MaxBodyMass'].plot(kind = 'hist',bins = 40,figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ Prueba otros filtros y puntos de datos. Para ver la distribución completa de los datos, elimina el filtro `['MaxBodyMass']` para mostrar las distribuciones etiquetadas.
|
||||
|
||||
El histograma ofrece algunas mejoras de color y etiquetado para probar también:
|
||||
|
||||
Crea un histograma 2D para comparar la relación entre dos distribuciones. Comparemos `MaxBodyMass` vs. `MaxLength`. Matplotlib ofrece una forma integrada de mostrar la convergencia utilizando colores más brillantes:
|
||||
|
||||
```python
|
||||
x = filteredBirds['MaxBodyMass']
|
||||
y = filteredBirds['MaxLength']
|
||||
|
||||
fig, ax = plt.subplots(tight_layout=True)
|
||||
hist = ax.hist2d(x, y)
|
||||
```
|
||||
Parece haber una correlación esperada entre estos dos elementos a lo largo de un eje esperado, con un punto de convergencia particularmente fuerte:
|
||||
|
||||

|
||||
|
||||
Los histogramas funcionan bien por defecto para los datos numéricos. ¿Y si necesita ver las distribuciones según los datos de texto?
|
||||
## Explorar el conjunto de datos para ver las distribuciones según los datos de texto
|
||||
|
||||
Este conjunto de datos también incluye buena información sobre la categoría de ave, su género, especie y familia, así como su estado de conservación. Exploremos esta información sobre la conservación. Cuál es la distribución de las aves según su estado de conservación?
|
||||
|
||||
> ✅ En el conjunto de datos, se utilizan varios acrónimos para describir el estado de conservación. Estas siglas proceden de la [Lista Roja de Categorías de la UICN](https://www.iucnredlist.org/), una organización que cataloga el estado de las especies.
|
||||
>
|
||||
> - CR: En peligro crítico
|
||||
> - EN: En peligro de extinción
|
||||
> - EX: Extinta
|
||||
> - LC: Preocupación Menor
|
||||
> - NT: Casi amenazada
|
||||
> - VU: Vulnerable
|
||||
|
||||
Estos son valores basados en texto, por lo que tendrás que hacer una transformación para crear un histograma. Utilizando el dataframe de FilteredBirds, muestra su estado de conservación junto con su envergadura mínima. ¿Qué es lo que ves?
|
||||
|
||||
```python
|
||||
x1 = filteredBirds.loc[filteredBirds.ConservationStatus=='EX', 'MinWingspan']
|
||||
x2 = filteredBirds.loc[filteredBirds.ConservationStatus=='CR', 'MinWingspan']
|
||||
x3 = filteredBirds.loc[filteredBirds.ConservationStatus=='EN', 'MinWingspan']
|
||||
x4 = filteredBirds.loc[filteredBirds.ConservationStatus=='NT', 'MinWingspan']
|
||||
x5 = filteredBirds.loc[filteredBirds.ConservationStatus=='VU', 'MinWingspan']
|
||||
x6 = filteredBirds.loc[filteredBirds.ConservationStatus=='LC', 'MinWingspan']
|
||||
|
||||
kwargs = dict(alpha=0.5, bins=20)
|
||||
|
||||
plt.hist(x1, **kwargs, color='red', label='Extinct')
|
||||
plt.hist(x2, **kwargs, color='orange', label='Critically Endangered')
|
||||
plt.hist(x3, **kwargs, color='yellow', label='Endangered')
|
||||
plt.hist(x4, **kwargs, color='green', label='Near Threatened')
|
||||
plt.hist(x5, **kwargs, color='blue', label='Vulnerable')
|
||||
plt.hist(x6, **kwargs, color='gray', label='Least Concern')
|
||||
|
||||
plt.gca().set(title='Conservation Status', ylabel='Max Body Mass')
|
||||
plt.legend();
|
||||
```
|
||||
|
||||

|
||||
|
||||
No parece haber una buena correlación entre la envergadura mínima y el estado de conservación. Prueba otros elementos del conjunto de datos utilizando este método. También puedes probar diferentes filtros. ¿Encuentras alguna correlación?
|
||||
|
||||
## Gráficos de densidad
|
||||
|
||||
Habrás notado que los histogramas que hemos visto hasta ahora están "escalonados" y no fluyen suavemente en un arco. Para mostrar un gráfico de densidad más suave, puedes probar con un gráfico de densidad.
|
||||
|
||||
Para trabajar con gráficos de densidad, familiarízate con una nueva biblioteca de trazado, [Seaborn](https://seaborn.pydata.org/generated/seaborn.kdeplot.html).
|
||||
|
||||
Cargando Seaborn, intenta un gráfico de densidad básico:
|
||||
|
||||
```python
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
sns.kdeplot(filteredBirds['MinWingspan'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Puedes ver cómo el gráfico se asemeja al anterior para los datos de envergadura mínima; sólo que es un poco más suave. De acuerdo con la documentación de Seaborn, "En relación con un histograma, KDE puede producir un gráfico que es menos desordenado y más interpretable, especialmente cuando se dibujan múltiples distribuciones. Pero tiene el potencial de introducir distorsiones si la distribución subyacente está acotada o no es suave. Al igual que un histograma, la calidad de la representación también depende de la selección de buenos parámetros de suavización." [fuente](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) En otras palabras, los valores atípicos, como siempre, harán que tus gráficos se comporten mal.
|
||||
|
||||
Si quieres volver a ver esa línea dentada de MaxBodyMass en el segundo gráfico que construiste, podrías suavizarla muy bien recreándola con este método:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Si quieres una línea suave, pero no demasiado suave, edita el parámetro `bw_adjust`:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'], bw_adjust=.2)
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ Lee acerca de los parámetros disponibles para este tipo de gráfico y experimenta.
|
||||
|
||||
Este tipo de gráfico ofrece bonitas visualizaciones explicativas. Con unas pocas líneas de código, por ejemplo, se puede mostrar la densidad de masa corporal máxima por orden de aves:
|
||||
|
||||
```python
|
||||
sns.kdeplot(
|
||||
data=filteredBirds, x="MaxBodyMass", hue="Order",
|
||||
fill=True, common_norm=False, palette="crest",
|
||||
alpha=.5, linewidth=0,
|
||||
)
|
||||
```
|
||||
|
||||

|
||||
|
||||
También puedes mapear la densidad de varias variables en un gráfico. Observa la longitud máxima y mínima de un ave en comparación con su estado de conservación:
|
||||
|
||||
```python
|
||||
sns.kdeplot(data=filteredBirds, x="MinLength", y="MaxLength", hue="ConservationStatus")
|
||||
```
|
||||
|
||||

|
||||
|
||||
Tal vez valga la pena investigar si la agrupación de aves "Vulnerables" según su longitud tiene sentido o no.
|
||||
|
||||
## 🚀 Desafío
|
||||
|
||||
Los histogramas son un tipo de gráfico más sofisticado que los gráficos de dispersión básicos, los gráficos de barras o los gráficos de líneas. Haz una búsqueda en internet para encontrar buenos ejemplos del uso de histogramas. ¿Cómo se utilizan, qué demuestran y en qué campos o áreas de investigación suelen utilizarse?
|
||||
|
||||
## [Cuestionario posterior a la clase](https://red-water-0103e7a0f.azurestaticapps.net/quiz/19)
|
||||
|
||||
## Repaso y Autoestudio
|
||||
|
||||
En esta lección, has utilizado Matplotlib y empezado a trabajar con Seaborn para mostrar gráficos más sofisticados. Investiga un poco sobre `kdeplot` en Seaborn, una "curva de densidad de probabilidad continua en una o más dimensiones". Lee [la documentación](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) para entender cómo funciona.
|
||||
|
||||
## Asignación
|
||||
|
||||
[Aplica tus habilidades](assignment.es.md)
|
@ -0,0 +1,191 @@
|
||||
# विज़ुअलाइज़िंग वितरण
|
||||
|
||||
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
|
||||
|:---:|
|
||||
| विज़ुअलाइज़िंग वितरण - _सकेटच्नोते करने वाला [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
In the previous lesson, you learned some interesting facts about a dataset about the birds of Minnesota. You found some erroneous data by visualizing outliers and looked at the differences between bird categories by their maximum length.
|
||||
|
||||
## [प्री-लेक्चर क्विज](https://red-water-0103e7a0f.azurestaticapps.net/quiz/18)
|
||||
## पक्षियों के डेटासेट का अन्वेषण करें
|
||||
|
||||
डेटा में खुदाई करने का दूसरा तरीका इसके वितरण को देखना है, या डेटा को एक अक्ष के साथ कैसे व्यवस्थित किया जाता है। शायद, उदाहरण के लिए, आप इस डेटासेट के सामान्य वितरण के बारे में जानना चाहेंगे, मिनेसोटा के पक्षियों के लिए अधिकतम पंख या अधिकतम शरीर द्रव्यमान।
|
||||
|
||||
आइए इस डेटासेट में डेटा के वितरण के बारे में कुछ तथ्यों की खोज करें। इस पाठ फ़ोल्डर के मूल में _नोटबुक.आईपीएनबी_ फ़ाइल में, पांडा, मैटप्लोटलिब और अपना डेटा आयात करें:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
|
||||
सामान्य तौर पर, आप देख सकते हैं कि स्कैटर प्लॉट का उपयोग करके डेटा कैसे वितरित किया जाता है, जैसा कि हमने पिछले पाठ में किया था:
|
||||
|
||||
```python
|
||||
birds.plot(kind='scatter',x='MaxLength',y='Order',figsize=(12,8))
|
||||
|
||||
plt.title('Max Length per Order')
|
||||
plt.ylabel('Order')
|
||||
plt.xlabel('Max Length')
|
||||
|
||||
plt.show()
|
||||
```
|
||||
यह प्रति पक्षी क्रम में शरीर की लंबाई के सामान्य वितरण का एक सिंहावलोकन देता है, लेकिन यह सही वितरण प्रदर्शित करने का सबसे अच्छा तरीका नहीं है। उस कार्य को आमतौर पर हिस्टोग्राम बनाकर नियंत्रित किया जाता है।
|
||||
## हिस्टोग्राम के साथ काम करना
|
||||
|
||||
माटप्लोटलिब हिस्टोग्राम का उपयोग करके डेटा वितरण की कल्पना करने के लिए बहुत अच्छे तरीके प्रदान करता है। इस प्रकार का चार्ट एक बार चार्ट की तरह होता है जहां वितरण को बार के ऊपर और नीचे के माध्यम से देखा जा सकता है। हिस्टोग्राम बनाने के लिए, आपको संख्यात्मक डेटा की आवश्यकता होती है। हिस्टोग्राम बनाने के लिए, आप हिस्टोग्राम के लिए 'इतिहास' के रूप में परिभाषित एक चार्ट तैयार कर सकते हैं। यह चार्ट संख्यात्मक डेटा की संपूर्ण डेटासेट की श्रेणी के लिए MaxBodyMass के वितरण को दर्शाता है। डेटा की सरणी को विभाजित करके इसे छोटे डिब्बे में दिया जाता है, यह डेटा के मूल्यों के वितरण को प्रदर्शित कर सकता है:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 10, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
जैसा कि आप देख सकते हैं, इस डेटासेट में 400+ पक्षी अपने मैक्स बॉडी मास के लिए 2000 से कम की सीमा में आते हैं। `बिन्स` पैरामीटर को अधिक संख्या में बदलकर डेटा में अधिक जानकारी प्राप्त करें, जैसे कुछ 30:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 30, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
यह चार्ट वितरण को कुछ अधिक बारीक तरीके से दिखाता है। यह सुनिश्चित करके कि आप केवल एक दी गई सीमा के भीतर डेटा का चयन करते हैं, बाईं ओर कम तिरछा एक चार्ट बनाया जा सकता है:
|
||||
|
||||
केवल उन पक्षियों को प्राप्त करने के लिए अपना डेटा फ़िल्टर करें जिनके शरीर का द्रव्यमान 60 से कम है, और 40 `डिब्बे` दिखाएं:
|
||||
|
||||
```python
|
||||
filteredBirds = birds[(birds['MaxBodyMass'] > 1) & (birds['MaxBodyMass'] < 60)]
|
||||
filteredBirds['MaxBodyMass'].plot(kind = 'hist',bins = 40,figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ कुछ अन्य फ़िल्टर और डेटा बिंदु आज़माएं। डेटा का पूरा वितरण देखने के लिए, लेबल किए गए वितरण दिखाने के लिए `['मैक्सबॉडीमास']` फ़िल्टर को हटा दें।
|
||||
|
||||
हिस्टोग्राम भी कोशिश करने के लिए कुछ अच्छे रंग और लेबलिंग संवर्द्धन प्रदान करता है:
|
||||
|
||||
दो वितरणों के बीच संबंध की तुलना करने के लिए एक 2डी हिस्टोग्राम बनाएं। आइए `मैक्सबॉडीमास` बनाम `अधिकतम लंबाई` की तुलना करें। माटप्लोटलिब चमकीले रंगों का उपयोग करके अभिसरण दिखाने के लिए एक अंतर्निहित तरीका प्रदान करता है:
|
||||
|
||||
```python
|
||||
x = filteredBirds['MaxBodyMass']
|
||||
y = filteredBirds['MaxLength']
|
||||
|
||||
fig, ax = plt.subplots(tight_layout=True)
|
||||
hist = ax.hist2d(x, y)
|
||||
```
|
||||
एक विशेष रूप से मजबूत अभिसरण बिंदु के साथ, एक अपेक्षित अक्ष के साथ इन दो तत्वों के बीच एक अपेक्षित सहसंबंध प्रतीत होता है:
|
||||
|
||||

|
||||
|
||||
संख्यात्मक डेटा के लिए हिस्टोग्राम डिफ़ॉल्ट रूप से अच्छी तरह से काम करते हैं। क्या होगा यदि आपको टेक्स्ट डेटा के अनुसार वितरण देखने की आवश्यकता है?
|
||||
## टेक्स्ट डेटा का उपयोग करके वितरण के लिए डेटासेट का अन्वेषण करें
|
||||
|
||||
इस डेटासेट में पक्षी श्रेणी और उसके जीनस, प्रजातियों और परिवार के साथ-साथ इसके संरक्षण की स्थिति के बारे में अच्छी जानकारी भी शामिल है। आइए इस संरक्षण जानकारी में खुदाई करें। पक्षियों का वितरण उनकी संरक्षण स्थिति के अनुसार क्या है?
|
||||
|
||||
> ✅ डेटासेट में, संरक्षण की स्थिति का वर्णन करने के लिए कई समरूपों का उपयोग किया जाता है। ये एक्रोनिम्स [IUCN रेड लिस्ट कैटेगरी](https://www.iucnredlist.org/) से आते हैं, जो एक संगठन है जो प्रजातियों की स्थिति को सूचीबद्ध करता है।
|
||||
>
|
||||
> - सीआर: गंभीर रूप से संकटग्रस्त
|
||||
> - एन: लुप्तप्राय
|
||||
> - पूर्व: विलुप्त
|
||||
> - एलसी: कम से कम चिंता
|
||||
> - एनटी: खतरे के पास
|
||||
> - वीयू: कमजोर
|
||||
|
||||
ये टेक्स्ट-आधारित मान हैं इसलिए आपको हिस्टोग्राम बनाने के लिए एक ट्रांसफ़ॉर्म करना होगा। फ़िल्टर्ड बर्ड्स डेटाफ़्रेम का उपयोग करते हुए, इसके न्यूनतम विंगस्पैन के साथ-साथ इसकी संरक्षण स्थिति प्रदर्शित करें। क्या देखती है?
|
||||
|
||||
```python
|
||||
x1 = filteredBirds.loc[filteredBirds.ConservationStatus=='EX', 'MinWingspan']
|
||||
x2 = filteredBirds.loc[filteredBirds.ConservationStatus=='CR', 'MinWingspan']
|
||||
x3 = filteredBirds.loc[filteredBirds.ConservationStatus=='EN', 'MinWingspan']
|
||||
x4 = filteredBirds.loc[filteredBirds.ConservationStatus=='NT', 'MinWingspan']
|
||||
x5 = filteredBirds.loc[filteredBirds.ConservationStatus=='VU', 'MinWingspan']
|
||||
x6 = filteredBirds.loc[filteredBirds.ConservationStatus=='LC', 'MinWingspan']
|
||||
|
||||
kwargs = dict(alpha=0.5, bins=20)
|
||||
|
||||
plt.hist(x1, **kwargs, color='red', label='Extinct')
|
||||
plt.hist(x2, **kwargs, color='orange', label='Critically Endangered')
|
||||
plt.hist(x3, **kwargs, color='yellow', label='Endangered')
|
||||
plt.hist(x4, **kwargs, color='green', label='Near Threatened')
|
||||
plt.hist(x5, **kwargs, color='blue', label='Vulnerable')
|
||||
plt.hist(x6, **kwargs, color='gray', label='Least Concern')
|
||||
|
||||
plt.gca().set(title='Conservation Status', ylabel='Max Body Mass')
|
||||
plt.legend();
|
||||
```
|
||||
|
||||

|
||||
|
||||
न्यूनतम पंखों की अवधि और संरक्षण की स्थिति के बीच कोई अच्छा संबंध प्रतीत नहीं होता है। इस पद्धति का उपयोग करके डेटासेट के अन्य तत्वों का परीक्षण करें। आप अलग-अलग फ़िल्टर भी आज़मा सकते हैं। क्या आप कोई सहसंबंध पाते हैं?
|
||||
## घनत्व भूखंड
|
||||
|
||||
आपने देखा होगा कि अब तक हमने जिन आयतचित्रों को देखा है वे 'चरणबद्ध' हैं और एक चाप में सुचारू रूप से प्रवाहित नहीं होते हैं। एक आसान घनत्व चार्ट दिखाने के लिए, आप एक घनत्व प्लॉट आज़मा सकते हैं।
|
||||
|
||||
घनत्व वाले भूखंडों के साथ काम करने के लिए, अपने आप को एक नई प्लॉटिंग लाइब्रेरी से परिचित कराएं, [सीबॉर्न](https://seaborn.pydata.org/generated/seaborn.kdeplot.html).
|
||||
|
||||
सीबॉर्न लोड हो रहा है, एक बुनियादी घनत्व प्लॉट आज़माएं:
|
||||
|
||||
```python
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
sns.kdeplot(filteredBirds['MinWingspan'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
आप देख सकते हैं कि न्यूनतम विंगस्पैन डेटा के लिए प्लॉट पिछले वाले को कैसे गूँजता है; यह थोड़ा चिकना है। सीबॉर्न के दस्तावेज़ीकरण के अनुसार, "हिस्टोग्राम के सापेक्ष, केडीई एक ऐसे प्लॉट का निर्माण कर सकता है जो कम अव्यवस्थित और अधिक व्याख्या योग्य हो, विशेष रूप से कई वितरणों को चित्रित करते समय। लेकिन इसमें विकृतियों को पेश करने की क्षमता होती है यदि अंतर्निहित वितरण बाध्य है या सुचारू नहीं है। जैसे हिस्टोग्राम, प्रतिनिधित्व की गुणवत्ता भी अच्छे चौरसाई मापदंडों के चयन पर निर्भर करती है।" [स्रोत](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) दूसरे शब्दों में, आउटलेयर हमेशा की तरह आपके चार्ट को खराब व्यवहार करेंगे।
|
||||
|
||||
यदि आप अपने द्वारा बनाए गए दूसरे चार्ट में उस दांतेदार मैक्सबॉडीमास लाइन को फिर से देखना चाहते हैं, तो आप इस पद्धति का उपयोग करके इसे फिर से बनाकर इसे बहुत अच्छी तरह से सुचारू कर सकते हैं:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
यदि आप एक चिकनी, लेकिन बहुत चिकनी रेखा नहीं चाहते हैं, तो `bw_adjust` पैरामीटर संपादित करें:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'], bw_adjust=.2)
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ इस प्रकार के प्लॉट और प्रयोग के लिए उपलब्ध मापदंडों के बारे में पढ़ें!
|
||||
|
||||
इस प्रकार का चार्ट खूबसूरती से व्याख्यात्मक दृश्य प्रस्तुत करता है। कोड की कुछ पंक्तियों के साथ, उदाहरण के लिए, आप प्रति पक्षी अधिकतम शरीर द्रव्यमान घनत्व दिखा सकते हैं:
|
||||
|
||||
```python
|
||||
sns.kdeplot(
|
||||
data=filteredBirds, x="MaxBodyMass", hue="Order",
|
||||
fill=True, common_norm=False, palette="crest",
|
||||
alpha=.5, linewidth=0,
|
||||
)
|
||||
```
|
||||
|
||||

|
||||
|
||||
आप एक चार्ट में कई चरों के घनत्व को भी मैप कर सकते हैं। किसी पक्षी की संरक्षण स्थिति की तुलना में उसकी अधिकतम लंबाई और न्यूनतम लंबाई को टेक्स्ट करें:
|
||||
|
||||
```python
|
||||
sns.kdeplot(data=filteredBirds, x="MinLength", y="MaxLength", hue="ConservationStatus")
|
||||
```
|
||||
|
||||

|
||||
|
||||
शायद यह शोध करने लायक है कि 'कमजोर' पक्षियों का समूह उनकी लंबाई के अनुसार सार्थक है या नहीं।
|
||||
|
||||
## 🚀 चुनौती
|
||||
|
||||
हिस्टोग्राम बुनियादी स्कैटरप्लॉट, बार चार्ट या लाइन चार्ट की तुलना में अधिक परिष्कृत प्रकार के चार्ट हैं। हिस्टोग्राम के उपयोग के अच्छे उदाहरण खोजने के लिए इंटरनेट पर खोज करें। उनका उपयोग कैसे किया जाता है, वे क्या प्रदर्शित करते हैं, और किन क्षेत्रों या पूछताछ के क्षेत्रों में उनका उपयोग किया जाता है?
|
||||
|
||||
## [व्याख्यान के बाद प्रश्नोत्तरी](https://red-water-0103e7a0f.azurestaticapps.net/quiz/19)
|
||||
|
||||
## समीक्षा और स्व अध्ययन
|
||||
|
||||
इस पाठ में, आपने Matplotlib का उपयोग किया और अधिक परिष्कृत चार्ट दिखाने के लिए Seaborn के साथ काम करना शुरू किया। सीबॉर्न में `केडीप्लॉट` पर कुछ शोध करें, "एक या अधिक आयामों में निरंतर संभाव्यता घनत्व वक्र"। यह कैसे काम करता है, यह समझने के लिए [दस्तावेज](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) पढ़ें।
|
||||
|
||||
## कार्यभार
|
||||
|
||||
[अपने कौशल को लागू करें](assignment.md)
|
@ -0,0 +1,193 @@
|
||||
# 분포 시각화하기
|
||||
|
||||
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
|
||||
|:---:|
|
||||
| 분포 시각화 - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
이전 수업에서, 미네소타의 새에 대한 데이터셋에 대해서 몇몇 흥미로운 사실들을 배웠습니다. 이상치를 시각화하면서 잘못된 데이터들을 발견하고 새들의 최대 길이에 따라 새 카테고리들의 차이를 살펴보았습니다.
|
||||
|
||||
## [강의 전 퀴즈](https://red-water-0103e7a0f.azurestaticapps.net/quiz/18)
|
||||
## 새 데이터셋 탐색하기
|
||||
|
||||
데이터를 자세히 조사하는 또 다른 방법은 데이터의 분포, 또는 데이터가 축에 따라 구성되는 방식을 살펴보는 것입니다. 예를 들어, 미네소타 새들의 최대 날개 길이나 최대 체중의 일반적인 분포에 대해 알고 싶을 수도 있습니다.
|
||||
|
||||
이 데이터셋의 데이터 분포에 대한 몇 가지 사실들을 알아보겠습니다. 이 수업 폴더의 루트에 있는 _notebook.ipynb_파일에서 Pandas, Matplotlib 및 데이터를 import합니다:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
|
||||
일반적으로, 이전 수업에서와 같이 산점도를 사용하면 데이터가 분포되는 방식을 빠르게 확인할 수 있습니다:
|
||||
|
||||
```python
|
||||
birds.plot(kind='scatter',x='MaxLength',y='Order',figsize=(12,8))
|
||||
|
||||
plt.title('Max Length per Order')
|
||||
plt.ylabel('Order')
|
||||
plt.xlabel('Max Length')
|
||||
|
||||
plt.show()
|
||||
```
|
||||
이렇게 하면 새 한 마리당 몸길이의 일반적인 분포에 대한 개요를 제공하지만 실제 분포를 표시하는 최적의 방법은 아닙니다. 이 작업은 보통 히스토그램을 생성하여 처리됩니다.
|
||||
## 히스토그램으로 작업하기
|
||||
|
||||
Matplotlib는 히스토그램을 사용하여 데이터 분포를 시각화하는 매우 좋은 방법을 제공합니다. 이 유형의 차트는 막대의 상승 및 하락을 통해 분포를 확인할 수 있는 막대 차트와 같습니다. 히스토그램을 작성하려면 숫자 데이터가 필요합니다. 히스토그램을 작성하기 위해, 히스토그램의 종류를 'hist'로 정의하는 차트를 표시할 수 있습니다. 이 차트는 전체 데이터셋의 숫자 데이터 범위에 대한 MaxBodyMass 분포를 보여 줍니다. 주어진 데이터의 배열을 더 작은 폭(bins)으로 나누어 데이터 값의 분포를 표시할 수 있습니다:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 10, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
보시다시피, 이 데이터셋에 있는 400마리 이상의 새들의 대부분은 최대 체질량에서 2000 미만의 범위에 속합니다. 매개 변수 `bins`를 30과 같이 더 높은 숫자로 변경하여 데이터에 대한 더 깊이 이해하세요:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 30, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
이 차트는 좀 더 세분화된 방식으로 분포를 보여줍니다. 주어진 범위 내에서만 데이터를 선택하여 왼쪽으로 치우치지 않은 차트를 만들 수 있습니다:
|
||||
|
||||
데이터를 필터링하여 체중이 60 미만인 새들만 골라서 40개의 `bins`을 표시합니다:
|
||||
|
||||
```python
|
||||
filteredBirds = birds[(birds['MaxBodyMass'] > 1) & (birds['MaxBodyMass'] < 60)]
|
||||
filteredBirds['MaxBodyMass'].plot(kind = 'hist',bins = 40,figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ 다른 필터와 데이터 포인트를 사용해보세요. 데이터의 전체 분포를 보려면, 라벨링된 분포를 표시하도록 `['MaxBodyMass']` 필터를 제거하세요.
|
||||
|
||||
히스토그램에서는 다음과 같은 몇 가지 색상 및 레이블 향상 기능도 제공합니다:
|
||||
|
||||
2D 히스토그램을 생성하여 두 분포 간의 관계를 비교합니다. `MaxBodyMass`와 `MaxLength`를 비교해보겠습니다. Matplotlib은 더 밝은 색상을 사용하여 수렴을 보여주는 기본 제공 방법을 제공합니다:
|
||||
|
||||
```python
|
||||
x = filteredBirds['MaxBodyMass']
|
||||
y = filteredBirds['MaxLength']
|
||||
|
||||
fig, ax = plt.subplots(tight_layout=True)
|
||||
hist = ax.hist2d(x, y)
|
||||
```
|
||||
예상되는 축을 따라 이 두 요소 사이에는 다음과 같은 특별한 수렴이 있는 것으로 보입니다:
|
||||
|
||||

|
||||
|
||||
히스토그램은 숫자 데이터에 대해 기본적으로 잘 작동합니다. 텍스트 데이터에 따라 분포를 확인하려면 어떻게 해야 합니까?
|
||||
|
||||
## 텍스트 데이터를 사용하여 분포에 대한 데이터셋 탐색하기
|
||||
|
||||
이 데이터셋에는 새 카테고리와 속, 종, 과에 대한 좋은 정보와 보존 상태도 포함되어 있습니다. 이 보존 정보를 자세히 살펴봅시다. 새들의 보존 상태에 따라 분포는 어떻게 되나요?
|
||||
|
||||
> ✅ 데이터셋에서 보존 상태를 설명하기 위해 여러 약어가 사용됩니다. 이 약어는 종의 상태를 분류하는 기관인 [세계자연보전연맹 멸종위기생물목록 카테고리](https://www.iucnredlist.org/)에서 가져왔습니다.
|
||||
>
|
||||
> - CR: 심각한 멸종 위기
|
||||
> - EN: 멸종 위기에 처한
|
||||
> - EX: 멸종
|
||||
> - LC: 관심대상
|
||||
> - NT: 거의 위협
|
||||
> - VU: 취약
|
||||
|
||||
텍스트 기반 값이므로 히스토그램을 생성하려면 변환을 수행해야 합니다. filteredBirds 데이터프레임을 사용하여 최소 날개 길이과 함께 보존 상태를 표시합니다. 무엇을 볼 수 있습니까?
|
||||
|
||||
```python
|
||||
x1 = filteredBirds.loc[filteredBirds.ConservationStatus=='EX', 'MinWingspan']
|
||||
x2 = filteredBirds.loc[filteredBirds.ConservationStatus=='CR', 'MinWingspan']
|
||||
x3 = filteredBirds.loc[filteredBirds.ConservationStatus=='EN', 'MinWingspan']
|
||||
x4 = filteredBirds.loc[filteredBirds.ConservationStatus=='NT', 'MinWingspan']
|
||||
x5 = filteredBirds.loc[filteredBirds.ConservationStatus=='VU', 'MinWingspan']
|
||||
x6 = filteredBirds.loc[filteredBirds.ConservationStatus=='LC', 'MinWingspan']
|
||||
|
||||
kwargs = dict(alpha=0.5, bins=20)
|
||||
|
||||
plt.hist(x1, **kwargs, color='red', label='Extinct')
|
||||
plt.hist(x2, **kwargs, color='orange', label='Critically Endangered')
|
||||
plt.hist(x3, **kwargs, color='yellow', label='Endangered')
|
||||
plt.hist(x4, **kwargs, color='green', label='Near Threatened')
|
||||
plt.hist(x5, **kwargs, color='blue', label='Vulnerable')
|
||||
plt.hist(x6, **kwargs, color='gray', label='Least Concern')
|
||||
|
||||
plt.gca().set(title='Conservation Status', ylabel='Max Body Mass')
|
||||
plt.legend();
|
||||
```
|
||||
|
||||

|
||||
|
||||
최소 날개 길이와 보존 상태 사이에는 좋은 상관 관계가 없어 보입니다. 이 방법을 사용하여 데이터셋의 다른 요소를 테스트합니다. 다른 필터를 시도해 볼 수도 있습니다. 상관관계가 있습니까?
|
||||
|
||||
## 밀도분포 그래프
|
||||
|
||||
지금까지 살펴본 히스토그램이 '계단형'이며 호를 따라 부드럽게 흐르지 않는다는 것을 눈치채셨을 수도 있습니다. 더 부드러운 밀도 차트를 표시하려면 밀도분포 그래프를 시도할 수 있습니다.
|
||||
|
||||
밀도분포 그래프를 사용하려면 새로운 플롯 라이브러리 [Seaborn](https://seaborn.pydata.org/generated/seaborn.kdeplot.html)에 익숙해지세요.
|
||||
|
||||
Seaborn을 로드하고 기본 밀도분포 그래프를 시도하기:
|
||||
|
||||
```python
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
sns.kdeplot(filteredBirds['MinWingspan'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
최소 날개 길이 데이터에 대해 이전 그림이 어떻게 반영되는지 확인할 수 있습니다; 조금 더 부드워졌습니다. Seaborn의 문서에 따르면 "히스토그램에 비해 KDE는 특히 다중 분포를 그릴 때 덜 복잡하고 더 해석하기 쉬운 플롯을 생성할 수 있습니다. 그러나 기본 분포가 한정되어 있거나 매끄럽지 않은 경우 왜곡이 있을 가능성이 있습니다. 히스토그램과 마찬가지로 표현의 품질도 좋은 평활화 매개변수(smoothing parameters)의 선택에 따라 달라집니다." [출처](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) 다시 말해, 이상치는 차트를 잘못 작동하게 만듭니다.
|
||||
|
||||
두 번째 차트에서 들쭉날쭉한 MaxBodyMass 선을 다시 보고 싶다면, 다음 방법을 사용하여 다시 만들면 매우 부드럽게 만들 수 있습니다:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
부드럽지만 너무 부드럽지 않은 선을 원하는 경우 `bw_adjust` 매개변수를 편집하세요:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'], bw_adjust=.2)
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ 이러한 유형의 그림 및 실험에 사용할 수 있는 매개변수에 대해 읽어보세요!
|
||||
|
||||
이러한 유형의 차트는 아름답게 설명되는 시각화를 제공합니다. 예를 들어 코드 몇 줄을 사용하여 새 한마리당 최대 체질량 밀도를 표시할 수 있습니다:
|
||||
|
||||
```python
|
||||
sns.kdeplot(
|
||||
data=filteredBirds, x="MaxBodyMass", hue="Order",
|
||||
fill=True, common_norm=False, palette="crest",
|
||||
alpha=.5, linewidth=0,
|
||||
)
|
||||
```
|
||||
|
||||

|
||||
|
||||
여러 변수의 밀도를 하나의 차트에서 보여줄 수도 있습니다. 새의 보존 상태와 비교하여 새의 MaxLength 및 MinLength 텍스트 입력하세요:
|
||||
|
||||
```python
|
||||
sns.kdeplot(data=filteredBirds, x="MinLength", y="MaxLength", hue="ConservationStatus")
|
||||
```
|
||||
|
||||

|
||||
|
||||
아마도 이러한 길이에 따른 '취약한' 새들의 무리가 의미가 있는지 없는지 연구해볼 가치가 있을 것입니다.
|
||||
|
||||
## 🚀 도전
|
||||
|
||||
히스토그램은 기본 산점도, 막대 차트 또는 꺾은선형 차트보다 더 정교한 유형의 차트입니다. 히스토그램 사용의 좋은 예를 찾으려면 인터넷에서 검색해보세요. 어떻게 사용되고, 무엇을 입증하며, 어떤 분야나 조사 분야에서 사용되는 경향이 있습니까?
|
||||
|
||||
## [강의 후 퀴즈](https://red-water-0103e7a0f.azurestaticapps.net/quiz/19)
|
||||
|
||||
## 복습 & 자기주도학습
|
||||
|
||||
이 수업에서는 Matplotlib를 사용하고 보다 정교한 차트를 보여주기 위해 Seaborn으로 작업을 시작했습니다. "하나 이상의 차원에서 연속 확률 밀도 곡선"인 Seaborn의 `kdeplot`에 대한 연구를 수행하세요. 작동 방식을 이해하려면 [문서](https://seaborn.pydata.org/generated/seaborn.kdeplot.html)를 읽어보세요.
|
||||
|
||||
## 과제
|
||||
|
||||
[기술 적용해보기](assignment.md)
|
@ -0,0 +1,198 @@
|
||||
# Visualizando distribuições
|
||||
|
||||
| ](../../../sketchnotes/10-Visualizing-Distributions.png)|
|
||||
|:---:|
|
||||
| Visualizando distribuições - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
Na aula anterior, você aprendeu fatos interessantes sobre um dataset de aves de Minnesota. Você encontrou dados incorretos ao visualizar outliers e olhou as diferenças entre categorias de aves com base no seu comprimento máximo.
|
||||
|
||||
## [Quiz pré-aula](https://red-water-0103e7a0f.azurestaticapps.net/quiz/18)
|
||||
## Explorando o dataset de aves
|
||||
|
||||
Outra forma de explorar os dados é olhar para sua distribuição, ou como os dados estão organizados ao longo do eixo. Por exemplo, talvez você gostaria de aprender sobre a distribuição geral, neste dataset, do máximo de envergadura (wingspan) ou máximo de massa corporal (body mass) das aves de Minnesota.
|
||||
|
||||
Vamos descobrir alguns fatos sobre as distribuições de dados neste dataset. No arquivo _notebook.ipynb_, na raiz do diretório desta aula, importe Pandas, Matplotlib, e os dados:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
birds = pd.read_csv('../../data/birds.csv')
|
||||
birds.head()
|
||||
```
|
||||
|
||||
Geralmente, você pode olhar para a forma como os dados estão distribuídos usando um gráfico de dispersão (scatter plot) como fizemos na aula anterior:
|
||||
|
||||
```python
|
||||
birds.plot(kind='scatter',x='MaxLength',y='Order',figsize=(12,8))
|
||||
|
||||
plt.title('Max Length per Order')
|
||||
plt.ylabel('Order')
|
||||
plt.xlabel('Max Length')
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
Isso nos dá uma visão geral da distribuição de comprimento do corpo por Ordem da ave, mas não é a melhor forma de mostrar a distribuição real. Esta tarefa geralmente é realizada usando um histograma.
|
||||
|
||||
## Trabalhando com histogramas
|
||||
|
||||
O Matplotlib oferece formas muito boas de visualizar distribuição dos dados usando histogramas. Este tipo de gráfico é parecido com um gráfico de barras onde a distribuição pode ser vista por meio da subida e descida das barras. Para construir um histograma, você precisa de dados numéricos e você pode plotar um gráfico definindo o tipo (kind) como 'hist' para histograma. Este gráfico mostra a distribuição de massa corporal máxima (MaxBodyMass) para todo o intervalo numérico dos dados. Ao dividir um certo vetor de dados em intervalos (bins) menores, vemos a distribuição dos valores:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 10, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||
|
||||

|
||||
|
||||
Como você pode ver, a maior parte das mais de 400 aves cai no intervalo de menos de 2000 para a massa corporal máxima. Obtenha mais conhecimento dos dados mudando o parâmetro de intervalo (`bins`) para um número maior, como 30:
|
||||
|
||||
```python
|
||||
birds['MaxBodyMass'].plot(kind = 'hist', bins = 30, figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||
|
||||

|
||||
|
||||
Este gráfico mostra a distribuição de forma mais detalhada. Um gráfico menos concentrado na esquerda pode ser criado garantindo que você só selecione os dados dentro de um certo intervalo:
|
||||
|
||||
Filtre seus dados para obter somente as aves que possuem menos de 60 de massa corporal, e mostre 40 intervalos (`bins`):
|
||||
|
||||
```python
|
||||
filteredBirds = birds[(birds['MaxBodyMass'] > 1) & (birds['MaxBodyMass'] < 60)]
|
||||
filteredBirds['MaxBodyMass'].plot(kind = 'hist',bins = 40,figsize = (12,12))
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ Tente outros filtros e pontos de dados (data points). Para ver a distribuição completa dos dados, remova o filtro `['MaxBodyMass']` para mostrar as distribuições com labels (identificadores).
|
||||
|
||||
O histograma também oferece algumas cores legais e labels (identificares) melhorados:
|
||||
|
||||
Crie um histograma 2D para comparar a relação entre duas distribuições. Vamos comparar massa corporal máxima vs. comprimento máximo (`MaxBodyMass` vs. `MaxLength`). O Matplotlib possui uma forma integrada de mostrar convergência usando cores mais vivas:
|
||||
|
||||
```python
|
||||
x = filteredBirds['MaxBodyMass']
|
||||
y = filteredBirds['MaxLength']
|
||||
|
||||
fig, ax = plt.subplots(tight_layout=True)
|
||||
hist = ax.hist2d(x, y)
|
||||
```
|
||||
|
||||
Aparentemente, existe uma suposta correlação entre estes dois elementos ao longo de um eixo esperado, com um forte ponto de convergência:
|
||||
|
||||

|
||||
|
||||
Por definição, os histogramas funcionam para dados numéricos. Mas, e se você precisar ver distribuições de dados textuais?
|
||||
|
||||
## Explore o dataset e busque por distribuições usando dados textuais
|
||||
|
||||
Este dataset também inclui informações relevantes sobre a categoria de ave e seu gênero, espécie e família, assim como seu status de conservação. Vamos explorar mais a fundo esta informação sobre conservação. Qual é a distribuição das aves de acordo com seu status de conservação?
|
||||
|
||||
> ✅ No dataset, são utilizados vários acrônimos para descrever o status de conservação. Estes acrônimos vêm da [IUCN Red List Categories](https://www.iucnredlist.org/), uma organização que cataloga os status das espécies.
|
||||
>
|
||||
> - CR: Critically Endangered (Criticamente em perigo)
|
||||
> - EN: Endangered (Em perigo)
|
||||
> - EX: Extinct (Extinto)
|
||||
> - LC: Least Concern (Pouco preocupante)
|
||||
> - NT: Near Threatened (Quase ameaçada)
|
||||
> - VU: Vulnerable (Vulnerável)
|
||||
|
||||
Estes são valores textuais, então será preciso transformá-los para criar um histograma. Usando o dataframe filteredBirds, mostre seu status de conservação com sua envergadura mínima (MinWingspan). O que você vê?
|
||||
|
||||
```python
|
||||
x1 = filteredBirds.loc[filteredBirds.ConservationStatus=='EX', 'MinWingspan']
|
||||
x2 = filteredBirds.loc[filteredBirds.ConservationStatus=='CR', 'MinWingspan']
|
||||
x3 = filteredBirds.loc[filteredBirds.ConservationStatus=='EN', 'MinWingspan']
|
||||
x4 = filteredBirds.loc[filteredBirds.ConservationStatus=='NT', 'MinWingspan']
|
||||
x5 = filteredBirds.loc[filteredBirds.ConservationStatus=='VU', 'MinWingspan']
|
||||
x6 = filteredBirds.loc[filteredBirds.ConservationStatus=='LC', 'MinWingspan']
|
||||
|
||||
kwargs = dict(alpha=0.5, bins=20)
|
||||
|
||||
plt.hist(x1, **kwargs, color='red', label='Extinct')
|
||||
plt.hist(x2, **kwargs, color='orange', label='Critically Endangered')
|
||||
plt.hist(x3, **kwargs, color='yellow', label='Endangered')
|
||||
plt.hist(x4, **kwargs, color='green', label='Near Threatened')
|
||||
plt.hist(x5, **kwargs, color='blue', label='Vulnerable')
|
||||
plt.hist(x6, **kwargs, color='gray', label='Least Concern')
|
||||
|
||||
plt.gca().set(title='Conservation Status', ylabel='Max Body Mass')
|
||||
plt.legend();
|
||||
```
|
||||
|
||||

|
||||
|
||||
Aparentemente não existe uma correlação forte entre a envergadura mínima e o status de conservação. Teste outros elementos do dataset usando este método. Você também pode tentar outros filtros. Você encontrou alguma correlação?
|
||||
|
||||
## Gráfico de densidade (Estimativa de densidade kernel)
|
||||
|
||||
Você pode ter percebido que até agora os histogramas são quebrados em degraus e não fluem de forma suave em uma curva. Para mostrar um gráfico de densidade mais 'fluido', você pode tentar usar a estimativa de densidade kernel (kde).
|
||||
|
||||
Para trabalhar com gráficos de densidade, acostume-se com uma nova biblioteca de gráficos, o [Seaborn](https://seaborn.pydata.org/generated/seaborn.kdeplot.html).
|
||||
|
||||
Após carregar o Seaborn, tente um gráfico de densidade básico:
|
||||
|
||||
```python
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
sns.kdeplot(filteredBirds['MinWingspan'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Você consegue ver como o gráfico reflete o anterior (de envergadura mínima); só é mais fluido/suave. De acordo com a documentação do Seaborn, "Em comparação com o histograma, o KDE pode produzir um gráfico que é menos confuso e mais legível, especialmente quando plotamos múltiplas distribuições. Mas pode potencialmente introduzir distorções se a distribuição usada é limitada ou não suave. Como um histograma, a qualidade da representação também depende na escolha de bons parâmetros suavizadores (smoothing parameters)." [créditos](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) Em outras palavras, dados discrepantes (outliers) vão fazer seus gráficos se comportarem mal, como sempre.
|
||||
|
||||
Se você quer revisitar a linha irregular/dentada MaxBodyMass (massa corporal máxima) no segundo gráfico construído, você pode suavizá-la muito bem recriando o seguinte método:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'])
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
Se você quer uma linha suave, mas não tão suave, mude o parâmetro `bw_adjust`:
|
||||
|
||||
```python
|
||||
sns.kdeplot(filteredBirds['MaxBodyMass'], bw_adjust=.2)
|
||||
plt.show()
|
||||
```
|
||||

|
||||
|
||||
✅ Leia sobre os parâmetros disponíveis para este tipo de gráfico e experimente!
|
||||
|
||||
Este tipo de gráfico oferece visualizações bonitas e esclarecedoras. Com algumas linhas de código, por exemplo, você pode mostrar a densidade de massa corporal máxima por ave por Ordem:
|
||||
|
||||
```python
|
||||
sns.kdeplot(
|
||||
data=filteredBirds, x="MaxBodyMass", hue="Order",
|
||||
fill=True, common_norm=False, palette="crest",
|
||||
alpha=.5, linewidth=0,
|
||||
)
|
||||
```
|
||||
|
||||

|
||||
|
||||
Você também pode mapear a densidade de várias variáveis em um só gráfico. Teste usar o comprimento máximo (MaxLength) e mínimo (MinLength) de uma ave comparado com seu status de conservação:
|
||||
|
||||
```python
|
||||
sns.kdeplot(data=filteredBirds, x="MinLength", y="MaxLength", hue="ConservationStatus")
|
||||
```
|
||||
|
||||

|
||||
|
||||
Talvez valha a pena pesquisar mais a fundo se o cluster de aves vulneráveis ('Vulnerable') de acordo com seus comprimentos têm significado ou não.
|
||||
|
||||
## 🚀 Desafio
|
||||
|
||||
Histogramas são um tipo mais sofisticado de gráfico em relação a simples gráficos de dispersão, barras ou linhas. Pesquise na internet bons exemplos de uso de histogramas. Como eles são usados, o que eles demonstram e em quais áreas ou campos de pesquisa eles são usados.
|
||||
|
||||
## [Post-lecture quiz](https://red-water-0103e7a0f.azurestaticapps.net/quiz/19)
|
||||
|
||||
## Revisão e autoestudo
|
||||
|
||||
Nesta aula, você usou o Matplotlib e começou a trabalhar com o Seaborn para mostrar gráficos mais avançados. Pesquise sobre o `kdeplot` no Seaborn, uma "curva de densidade de probabilidade contínua em uma ou mais dimensões". Leia a [documentação](https://seaborn.pydata.org/generated/seaborn.kdeplot.html) para entender como funciona.
|
||||
|
||||
## Tarefa
|
||||
|
||||
[Aplique seus conhecimentos](assignment.pt-br.md)
|
@ -0,0 +1,10 @@
|
||||
# Aplica tus habilidades
|
||||
|
||||
## Instrucciones
|
||||
|
||||
Hasta ahora, has trabajado con el conjunto de datos de aves de Minnesota para descubrir información sobre las cantidades de aves y la densidad de población. Practica tu aplicación de estas técnicas probando un conjunto de datos diferente, quizás procedente de [Kaggle](https://www.kaggle.com/). Construye un cuaderno para contar una historia sobre este conjunto de datos, y asegúrate de utilizar histogramas al hablar de él.
|
||||
## Rúbrica
|
||||
|
||||
Ejemplar | Adecuado | Necesita mejorar
|
||||
--- | --- | -- |
|
||||
Un cuaderno se presenta con anotaciones sobre este conjunto de datos, incluyendo su fuente, y utiliza al menos 5 histogramas para descubrir hechos sobre los datos. | Un cuaderno se presenta con anotaciones incompletas o con errores. | Un cuaderno se presenta sin anotaciones e incluye errores.
|
@ -0,0 +1,10 @@
|
||||
# 기술 적용해보기
|
||||
|
||||
## 지시사항
|
||||
|
||||
지금까지 새의 양과 개체 밀도에 대한 정보를 찾기 위해서 미네소타 새 데이터셋으로 작업하였습니다. [Kaggle](https://www.kaggle.com/)에서 제공하는 다른 데이터셋을 사용하여 이러한 기술 적용을 연습해보세요. 이 데이터셋에 대해서 알려줄 수 있는 노트북을 만들고, 논의할 때 히스토그램을 사용하세요.
|
||||
## 채점기준표
|
||||
|
||||
모범 | 충분 | 개선 필요
|
||||
--- | --- | -- |
|
||||
노트북은 출처를 포함하여 이 데이터셋에 대한 주석이 제공되며, 데이터에 대한 사실을 발견하기 위해서 최소 5개의 히스토그램을 사용합니다. | 노트북은 불완전한 주석이나 버그가 표시됩니다. | 노트북은 주석 없이 표시되며 버그가 포함되어 있습니다.
|
@ -0,0 +1,11 @@
|
||||
# Aplique seus conhecimentos
|
||||
|
||||
## Instruções
|
||||
|
||||
Até agora, você trabalhou com o dataset de aves de Minnesota para descobrir informação sobre quantidades de aves e densidade populacional. Pratique essas técnicas usando outro dataset, talvez do [Kaggle](https://www.kaggle.com/). Faça um notebook que conta uma história sobre esse dataset, e lembre-se de usar histogramas para isso.
|
||||
|
||||
## Rubrica
|
||||
|
||||
Exemplar | Adequado | Precisa melhorar
|
||||
--- | --- | -- |
|
||||
O notebook tem anotações sobre o dataset, incluindo sua origem, e usa pelo menos 5 histogramas para descobrir fatos sobre os dados. | O notebook tem anotações incompletas ou bugs | O notebook não possui nenhuma anotação e contṕem bugs.
|
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 7.8 KiB |
@ -0,0 +1,183 @@
|
||||
# Visualización de Proporciones
|
||||
|
||||
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
|
||||
|:---:|
|
||||
|Visualización de Proporciones - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
En esta lección, utilizarás un conjunto de datos diferente centrado en la naturaleza para visualizar proporciones, como por ejemplo cuántos tipos diferentes de hongos pueblan un determinado conjunto de datos sobre setas. Vamos a explorar estos fascinantes hongos utilizando un conjunto de datos procedente de Audubon que enumera detalles sobre 23 especies de hongos con branquias de las familias Agaricus y Lepiota. Experimentarás con sabrosas visualizaciones como:
|
||||
|
||||
- Gráficos de tarta 🥧
|
||||
- Gráficos de donuts 🍩
|
||||
- Gráficos de waffles 🧇
|
||||
|
||||
> 💡 Un proyecto muy interesante llamado [Charticulator](https://charticulator.com) de Microsoft Research ofrece una interfaz gratuita de arrastrar y soltar para las visualizaciones de datos. ¡En uno de sus tutoriales también utilizan este conjunto de datos de hongos! Así que puedes explorar los datos y aprender la biblioteca al mismo tiempo: [Tutorial de Charticulator](https://charticulator.com/tutorials/tutorial4.html).
|
||||
|
||||
## [Cuestionario previo](https://red-water-0103e7a0f.azurestaticapps.net/quiz/20)
|
||||
|
||||
## Conoce tus hongos 🍄
|
||||
|
||||
Los hongos son muy interesantes. Vamos a importar un conjunto de datos para estudiarlos:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
mushrooms = pd.read_csv('../../data/mushrooms.csv')
|
||||
mushrooms.head()
|
||||
```
|
||||
Una tabla con grandes datos para su análisis se imprime:
|
||||
|
||||
|
||||
| class | cap-shape | cap-surface | cap-color | bruises | odor | gill-attachment | gill-spacing | gill-size | gill-color | stalk-shape | stalk-root | stalk-surface-above-ring | stalk-surface-below-ring | stalk-color-above-ring | stalk-color-below-ring | veil-type | veil-color | ring-number | ring-type | spore-print-color | population | habitat |
|
||||
| --------- | --------- | ----------- | --------- | ------- | ------- | --------------- | ------------ | --------- | ---------- | ----------- | ---------- | ------------------------ | ------------------------ | ---------------------- | ---------------------- | --------- | ---------- | ----------- | --------- | ----------------- | ---------- | ------- |
|
||||
| Poisonous | Convex | Smooth | Brown | Bruises | Pungent | Free | Close | Narrow | Black | Enlarging | Equal | Smooth | Smooth | White | White | Partial | White | One | Pendant | Black | Scattered | Urban |
|
||||
| Edible | Convex | Smooth | Yellow | Bruises | Almond | Free | Close | Broad | Black | Enlarging | Club | Smooth | Smooth | White | White | Partial | White | One | Pendant | Brown | Numerous | Grasses |
|
||||
| Edible | Bell | Smooth | White | Bruises | Anise | Free | Close | Broad | Brown | Enlarging | Club | Smooth | Smooth | White | White | Partial | White | One | Pendant | Brown | Numerous | Meadows |
|
||||
| Poisonous | Convex | Scaly | White | Bruises | Pungent | Free | Close | Narrow | Brown | Enlarging | Equal | Smooth | Smooth | White | White | Partial | White | One | Pendant | Black | Scattered | Urban |
|
||||
|
||||
Enseguida se nota que todos los datos son textuales. Tendrás que convertir estos datos para poder utilizarlos en un gráfico. La mayoría de los datos, de hecho, se representan como un objeto:
|
||||
|
||||
```python
|
||||
print(mushrooms.select_dtypes(["object"]).columns)
|
||||
```
|
||||
|
||||
La salida es:
|
||||
|
||||
```output
|
||||
Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
|
||||
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
|
||||
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
|
||||
'stalk-surface-below-ring', 'stalk-color-above-ring',
|
||||
'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',
|
||||
'ring-type', 'spore-print-color', 'population', 'habitat'],
|
||||
dtype='object')
|
||||
```
|
||||
Toma estos datos y convierte la columna "class" en una categoría:
|
||||
|
||||
```python
|
||||
cols = mushrooms.select_dtypes(["object"]).columns
|
||||
mushrooms[cols] = mushrooms[cols].astype('category')
|
||||
```
|
||||
Ahora, si imprimes los datos de las setas, puedes ver que se han agrupado en categorías según la clase poisonous/edible (venenosa/comestible):
|
||||
|
||||
| | cap-shape | cap-surface | cap-color | bruises | odor | gill-attachment | gill-spacing | gill-size | gill-color | stalk-shape | ... | stalk-surface-below-ring | stalk-color-above-ring | stalk-color-below-ring | veil-type | veil-color | ring-number | ring-type | spore-print-color | population | habitat |
|
||||
| --------- | --------- | ----------- | --------- | ------- | ---- | --------------- | ------------ | --------- | ---------- | ----------- | --- | ------------------------ | ---------------------- | ---------------------- | --------- | ---------- | ----------- | --------- | ----------------- | ---------- | ------- |
|
||||
| class | | | | | | | | | | | | | | | | | | | | | |
|
||||
| Edible | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | ... | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 |
|
||||
| Poisonous | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | ... | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 |
|
||||
|
||||
Si sigues el orden presentado en esta tabla para crear tus etiquetas de categoría de clase, puedes construir un gráfico circular:
|
||||
|
||||
## ¡Pastel!
|
||||
|
||||
```python
|
||||
labels=['Edible','Poisonous']
|
||||
plt.pie(edibleclass['population'],labels=labels,autopct='%.1f %%')
|
||||
plt.title('Edible?')
|
||||
plt.show()
|
||||
```
|
||||
Voilá, un gráfico circular que muestra las proporciones de estos datos según estas dos clases de hongos. ¡Es bastante importante conseguir el orden de las etiquetas correcto, especialmente aquí, así que asegúrate de verificar el orden con el que se construye la matriz de etiquetas!
|
||||
|
||||

|
||||
|
||||
## ¡Donas!
|
||||
|
||||
Algo más interesante desde el punto de vista visual que el gráfico de pastel es el gráfico de donas, que es un gráfico circular con un agujero en el centro. Veamos nuestros datos con este método.
|
||||
|
||||
Observa los distintos hábitats donde crecen las setas:
|
||||
|
||||
```python
|
||||
habitat=mushrooms.groupby(['habitat']).count()
|
||||
habitat
|
||||
```
|
||||
Aquí, estás agrupando tus datos por hábitat. Hay 7 listados, así que úsalos como etiquetas para tu gráfico de donas:
|
||||
|
||||
```python
|
||||
labels=['Grasses','Leaves','Meadows','Paths','Urban','Waste','Wood']
|
||||
|
||||
plt.pie(habitat['class'], labels=labels,
|
||||
autopct='%1.1f%%', pctdistance=0.85)
|
||||
|
||||
center_circle = plt.Circle((0, 0), 0.40, fc='white')
|
||||
fig = plt.gcf()
|
||||
|
||||
fig.gca().add_artist(center_circle)
|
||||
|
||||
plt.title('Mushroom Habitats')
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||

|
||||
|
||||
Este código dibuja un gráfico y un círculo central, luego añade ese círculo central en el gráfico. Edite el ancho del círculo central cambiando `0.40` por otro valor.
|
||||
|
||||
Los gráficos de donas pueden ser modificados de varias maneras para cambiar las etiquetas. Las etiquetas, en particular, pueden ser resaltadas para facilitar su lectura. Obtenga más información en los [docs](https://matplotlib.org/stable/gallery/pie_and_polar_charts/pie_and_donut_labels.html?highlight=donut).
|
||||
|
||||
Ahora que sabes cómo agrupar tus datos y mostrarlos como un pastel o una dona, puedes explorar otros tipos de gráficos. Prueba con un gráfico waffle, que es una forma diferente de explorar la cantidad.
|
||||
## ¡Waffles!
|
||||
|
||||
Un gráfico de tipo "waffle" es una forma diferente de visualizar las cantidades como una matriz 2D de cuadrados. Intenta visualizar las diferentes cantidades de colores de los sombreros de los champiñones en este conjunto de datos. Para hacer esto, necesitas instalar una biblioteca de ayuda llamada [PyWaffle](https://pypi.org/project/pywaffle/) y usar Matplotlib:
|
||||
|
||||
```python
|
||||
pip install pywaffle
|
||||
```
|
||||
|
||||
Seleccione un segmento de sus datos para agrupar:
|
||||
|
||||
```python
|
||||
capcolor=mushrooms.groupby(['cap-color']).count()
|
||||
capcolor
|
||||
```
|
||||
|
||||
Crea un gráfico de waffles creando etiquetas y luego agrupando los datos:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pywaffle import Waffle
|
||||
|
||||
data ={'color': ['brown', 'buff', 'cinnamon', 'green', 'pink', 'purple', 'red', 'white', 'yellow'],
|
||||
'amount': capcolor['class']
|
||||
}
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
fig = plt.figure(
|
||||
FigureClass = Waffle,
|
||||
rows = 100,
|
||||
values = df.amount,
|
||||
labels = list(df.color),
|
||||
figsize = (30,30),
|
||||
colors=["brown", "tan", "maroon", "green", "pink", "purple", "red", "whitesmoke", "yellow"],
|
||||
)
|
||||
```
|
||||
|
||||
Utilizando un gráfico de waffles, se pueden ver claramente las proporciones de los colores de los sombreros de este conjunto de datos de hongos. Curiosamente, ¡hay muchas hongos con el sombrero verde!
|
||||
|
||||

|
||||
|
||||
✅ Pywaffle soporta iconos dentro de los gráficos que utilizan cualquier icono disponible en [Font Awesome](https://fontawesome.com/). Haz algunos experimentos para crear un gráfico waffle aún más interesante usando iconos en lugar de cuadrados.
|
||||
|
||||
En esta lección, aprendiste tres maneras de visualizar proporciones. En primer lugar, tienes que agrupar tus datos en categorías y luego decidir cuál es la mejor manera de mostrar los datos: pastel, dona o waffle. Todas son deliciosas y gratifican al usuario con una instantánea de un conjunto de datos.
|
||||
|
||||
## 🚀 Desafío
|
||||
|
||||
Intenta recrear estos sabrosos gráficos en [Charticulator](https://charticulator.com).
|
||||
## [Cuestionario posterior a la clase](https://red-water-0103e7a0f.azurestaticapps.net/quiz/21)
|
||||
|
||||
## Repaso y autoestudio
|
||||
|
||||
A veces no es obvio cuándo utilizar un gráfico de pastel, de dona o de waffle. Aquí hay algunos artículos para leer sobre este tema:
|
||||
|
||||
https://www.beautiful.ai/blog/battle-of-the-charts-pie-chart-vs-donut-chart
|
||||
|
||||
https://medium.com/@hypsypops/pie-chart-vs-donut-chart-showdown-in-the-ring-5d24fd86a9ce
|
||||
|
||||
https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c6.htm
|
||||
|
||||
https://medium.datadriveninvestor.com/data-visualization-done-the-right-way-with-tableau-waffle-chart-fdf2a19be402
|
||||
|
||||
Investiga un poco para encontrar más información sobre esta decisión pegajosa.
|
||||
## Asignación
|
||||
|
||||
[Pruébalo en Excel](assignment.es.md)
|
@ -0,0 +1,184 @@
|
||||
# विज़ुअलाइज़िंग अनुपात
|
||||
|
||||
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
|
||||
|:---:|
|
||||
|विज़ुअलाइज़िंग अनुपात - _सकेटच्नोते करने वाला [@nitya](https://twitter.com/nitya)_ |
|
||||
|
||||
इस पाठ में, आप अनुपात की कल्पना करने के लिए एक अलग प्रकृति-केंद्रित डेटासेट का उपयोग करेंगे, जैसे कि मशरूम के बारे में दिए गए डेटासेट में कितने अलग-अलग प्रकार के कवक आते हैं। आइए ऑडबोन सूची से प्राप्त डेटासेट का उपयोग करके इन आकर्षक कवक का पता लगाएं, एग्रिकस और लेपियोटा परिवारों में ग्रील्ड मशरूम की 23 प्रजातियों के बारे में विवरण। आप स्वादिष्ट विज़ुअलाइज़ेशन के साथ प्रयोग करेंगे जैसे:
|
||||
|
||||
- पाई चार्ट 🥧
|
||||
- डोनट चार्ट 🍩
|
||||
- वफ़ल चार्ट 🧇
|
||||
|
||||
|
||||
> 💡 माइक्रोसॉफ्ट अनुसंधान द्वारा [चार्टिकुलेटर](https://charticulator.com) नामक एक बहुत ही रोचक परियोजना डेटा विज़ुअलाइज़ेशन के लिए एक निःशुल्क ड्रैग एंड ड्रॉप इंटरफ़ेस प्रदान करती है। अपने एक ट्यूटोरियल में वे इस मशरूम डेटासेट का भी उपयोग करते हैं! तो आप एक ही समय में डेटा का पता लगा सकते हैं और पुस्तकालय सीख सकते हैं: [चार्टिकुलेटर ट्यूटोरियल](https://charticulator.com/tutorials/tutorial4.html)।
|
||||
|
||||
## [प्री-लेक्चर क्विज](https://red-water-0103e7a0f.azurestaticapps.net/quiz/20)
|
||||
|
||||
## अपने मशरूम को जानें 🍄
|
||||
|
||||
मशरूम बहुत दिलचस्प हैं। आइए उनका अध्ययन करने के लिए एक डेटासेट आयात करें:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
mushrooms = pd.read_csv('../../data/mushrooms.csv')
|
||||
mushrooms.head()
|
||||
```
|
||||
विश्लेषण के लिए कुछ महान डेटा के साथ एक तालिका मुद्रित की जाती है:
|
||||
|
||||
|
||||
| class | cap-shape | cap-surface | cap-color | bruises | odor | gill-attachment | gill-spacing | gill-size | gill-color | stalk-shape | stalk-root | stalk-surface-above-ring | stalk-surface-below-ring | stalk-color-above-ring | stalk-color-below-ring | veil-type | veil-color | ring-number | ring-type | spore-print-color | population | habitat |
|
||||
| --------- | --------- | ----------- | --------- | ------- | ------- | --------------- | ------------ | --------- | ---------- | ----------- | ---------- | ------------------------ | ------------------------ | ---------------------- | ---------------------- | --------- | ---------- | ----------- | --------- | ----------------- | ---------- | ------- |
|
||||
| Poisonous | Convex | Smooth | Brown | Bruises | Pungent | Free | Close | Narrow | Black | Enlarging | Equal | Smooth | Smooth | White | White | Partial | White | One | Pendant | Black | Scattered | Urban |
|
||||
| Edible | Convex | Smooth | Yellow | Bruises | Almond | Free | Close | Broad | Black | Enlarging | Club | Smooth | Smooth | White | White | Partial | White | One | Pendant | Brown | Numerous | Grasses |
|
||||
| Edible | Bell | Smooth | White | Bruises | Anise | Free | Close | Broad | Brown | Enlarging | Club | Smooth | Smooth | White | White | Partial | White | One | Pendant | Brown | Numerous | Meadows |
|
||||
| Poisonous | Convex | Scaly | White | Bruises | Pungent | Free | Close | Narrow | Brown | Enlarging | Equal | Smooth | Smooth | White | White | Partial | White | One | Pendant | Black | Scattered | Urban |
|
||||
|
||||
तुरंत, आप देखते हैं कि सभी डेटा टेक्स्टुअल है। चार्ट में इसका उपयोग करने में सक्षम होने के लिए आपको इस डेटा को परिवर्तित करना होगा। अधिकांश डेटा, वास्तव में, एक वस्तु के रूप में दर्शाया जाता है:
|
||||
|
||||
```python
|
||||
print(mushrooms.select_dtypes(["object"]).columns)
|
||||
```
|
||||
|
||||
आउटपुट है:
|
||||
|
||||
```output
|
||||
Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
|
||||
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
|
||||
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
|
||||
'stalk-surface-below-ring', 'stalk-color-above-ring',
|
||||
'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',
|
||||
'ring-type', 'spore-print-color', 'population', 'habitat'],
|
||||
dtype='object')
|
||||
```
|
||||
यह डेटा लें और 'वर्ग' कॉलम को एक श्रेणी में बदलें:
|
||||
|
||||
```python
|
||||
cols = mushrooms.select_dtypes(["object"]).columns
|
||||
mushrooms[cols] = mushrooms[cols].astype('category')
|
||||
```
|
||||
अब, यदि आप मशरूम डेटा का प्रिंट आउट लेते हैं, तो आप देख सकते हैं कि इसे जहरीले/खाद्य वर्ग के अनुसार श्रेणियों में बांटा गया है:
|
||||
|
||||
|
||||
| | cap-shape | cap-surface | cap-color | bruises | odor | gill-attachment | gill-spacing | gill-size | gill-color | stalk-shape | ... | stalk-surface-below-ring | stalk-color-above-ring | stalk-color-below-ring | veil-type | veil-color | ring-number | ring-type | spore-print-color | population | habitat |
|
||||
| --------- | --------- | ----------- | --------- | ------- | ---- | --------------- | ------------ | --------- | ---------- | ----------- | --- | ------------------------ | ---------------------- | ---------------------- | --------- | ---------- | ----------- | --------- | ----------------- | ---------- | ------- |
|
||||
| class | | | | | | | | | | | | | | | | | | | | | |
|
||||
| Edible | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | ... | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 |
|
||||
| Poisonous | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | ... | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 |
|
||||
|
||||
यदि आप अपने वर्ग श्रेणी लेबल बनाने के लिए इस तालिका में प्रस्तुत क्रम का पालन करते हैं, तो आप एक पाई चार्ट बना सकते हैं:
|
||||
|
||||
## Pie!
|
||||
|
||||
```python
|
||||
labels=['Edible','Poisonous']
|
||||
plt.pie(edibleclass['population'],labels=labels,autopct='%.1f %%')
|
||||
plt.title('Edible?')
|
||||
plt.show()
|
||||
```
|
||||
वोइला, मशरूम के इन दो वर्गों के अनुसार इस डेटा के अनुपात को दर्शाने वाला एक पाई चार्ट। लेबल के क्रम को सही करना बहुत महत्वपूर्ण है, विशेष रूप से यहां, इसलिए उस क्रम को सत्यापित करना सुनिश्चित करें जिसके साथ लेबल सरणी बनाई गई है!
|
||||
|
||||

|
||||
|
||||
## डोनट्स!
|
||||
|
||||
कुछ अधिक नेत्रहीन दिलचस्प पाई चार्ट एक डोनट चार्ट है, जो बीच में एक छेद के साथ एक पाई चार्ट है। आइए इस पद्धति का उपयोग करके हमारे डेटा को देखें।
|
||||
|
||||
विभिन्न आवासों पर एक नज़र डालें जहाँ मशरूम उगते हैं:
|
||||
|
||||
```python
|
||||
habitat=mushrooms.groupby(['habitat']).count()
|
||||
habitat
|
||||
```
|
||||
यहां, आप अपने डेटा को आवास के आधार पर समूहित कर रहे हैं। 7 सूचीबद्ध हैं, इसलिए उन्हें अपने डोनट चार्ट के लिए लेबल के रूप में उपयोग करें:
|
||||
|
||||
```python
|
||||
labels=['Grasses','Leaves','Meadows','Paths','Urban','Waste','Wood']
|
||||
|
||||
plt.pie(habitat['class'], labels=labels,
|
||||
autopct='%1.1f%%', pctdistance=0.85)
|
||||
|
||||
center_circle = plt.Circle((0, 0), 0.40, fc='white')
|
||||
fig = plt.gcf()
|
||||
|
||||
fig.gca().add_artist(center_circle)
|
||||
|
||||
plt.title('Mushroom Habitats')
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||

|
||||
|
||||
यह कोड एक चार्ट और एक केंद्र वृत्त बनाता है, फिर उस केंद्र वृत्त को चार्ट में जोड़ता है। `0.40` को दूसरे मान में बदलकर केंद्र वृत्त की चौड़ाई संपादित करें।
|
||||
|
||||
डोनट चार्ट को लेबल बदलने के लिए कई तरह से ट्वीक किया जा सकता है। विशेष रूप से लेबल को पठनीयता के लिए हाइलाइट किया जा सकता है। [दस्तावेज़] (https://matplotlib.org/stable/gallery/pie_and_polar_charts/pie_and_donut_labels.html?highlight=donut) में और जानें।
|
||||
|
||||
अब जबकि आप जानते हैं कि अपने डेटा को कैसे समूहबद्ध करना है और फिर उसे पाई या डोनट के रूप में प्रदर्शित करना है, तो आप अन्य प्रकार के चार्टों को एक्सप्लोर कर सकते हैं। एक वफ़ल चार्ट आज़माएं, जो मात्रा की खोज का एक अलग तरीका है।
|
||||
## Waffles!
|
||||
|
||||
एक 'वफ़ल' प्रकार का चार्ट मात्राओं को वर्गों के 2डी सरणी के रूप में देखने का एक अलग तरीका है। इस डेटासेट में मशरूम कैप रंगों की विभिन्न मात्राओं को देखने का प्रयास करें। ऐसा करने के लिए, आपको [PyWaffle](https://pypi.org/project/pywaffle/) नामक एक सहायक पुस्तकालय स्थापित करने और Matplotlib का उपयोग करने की आवश्यकता है:
|
||||
|
||||
```python
|
||||
pip install pywaffle
|
||||
```
|
||||
|
||||
समूह के लिए अपने डेटा का एक खंड चुनें:
|
||||
|
||||
```python
|
||||
capcolor=mushrooms.groupby(['cap-color']).count()
|
||||
capcolor
|
||||
```
|
||||
|
||||
लेबल बनाकर और फिर अपने डेटा को समूहीकृत करके एक वफ़ल चार्ट बनाएं:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pywaffle import Waffle
|
||||
|
||||
data ={'color': ['brown', 'buff', 'cinnamon', 'green', 'pink', 'purple', 'red', 'white', 'yellow'],
|
||||
'amount': capcolor['class']
|
||||
}
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
fig = plt.figure(
|
||||
FigureClass = Waffle,
|
||||
rows = 100,
|
||||
values = df.amount,
|
||||
labels = list(df.color),
|
||||
figsize = (30,30),
|
||||
colors=["brown", "tan", "maroon", "green", "pink", "purple", "red", "whitesmoke", "yellow"],
|
||||
)
|
||||
```
|
||||
|
||||
वफ़ल चार्ट का उपयोग करके, आप स्पष्ट रूप से इस मशरूम डेटासेट के कैप रंगों के अनुपात को देख सकते हैं। दिलचस्प बात यह है कि कई हरे-छिपे हुए मशरूम हैं!
|
||||
|
||||

|
||||
|
||||
✅ Pywaffle उन चार्ट के भीतर आइकन का समर्थन करता है जो [Font Awesome](https://fontawesome.com/) में उपलब्ध किसी भी आइकन का उपयोग करते हैं। वर्गों के बजाय आइकन का उपयोग करके और भी अधिक रोचक वफ़ल चार्ट बनाने के लिए कुछ प्रयोग करें।
|
||||
|
||||
इस पाठ में, आपने अनुपातों की कल्पना करने के तीन तरीके सीखे। सबसे पहले, आपको अपने डेटा को श्रेणियों में समूहित करना होगा और फिर यह तय करना होगा कि डेटा प्रदर्शित करने का सबसे अच्छा तरीका कौन सा है - पाई, डोनट, या वफ़ल। सभी स्वादिष्ट हैं और डेटासेट के तत्काल स्नैपशॉट के साथ उपयोगकर्ता को संतुष्ट करते हैं।
|
||||
## 🚀 चुनौती
|
||||
|
||||
इन स्वादिष्ट चार्ट को फिर से बनाने का प्रयास करें [चार्टिकुलेटर](https://charticulator.com).
|
||||
## [व्याख्यान के बाद प्रश्नोत्तरी](https://red-water-0103e7a0f.azurestaticapps.net/quiz/21)
|
||||
|
||||
## समीक्षा और आत्म अध्ययन
|
||||
|
||||
कभी-कभी यह स्पष्ट नहीं होता कि पाई, डोनट, या वफ़ल चार्ट का उपयोग कब करना है। इस विषय पर पढ़ने के लिए यहां कुछ लेख दिए गए हैं:
|
||||
|
||||
https://www.beautiful.ai/blog/battle-of-the-charts-pie-chart-vs-donut-chart
|
||||
|
||||
https://medium.com/@hypsypops/pie-chart-vs-donut-chart-showdown-in-the-ring-5d24fd86a9ce
|
||||
|
||||
https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c6.htm
|
||||
|
||||
https://medium.datadriveninvestor.com/data-visualization-done-the-right-way-with-tableau-waffle-chart-fdf2a19be402
|
||||
|
||||
इस चिपचिपे निर्णय के बारे में अधिक जानकारी प्राप्त करने के लिए कुछ शोध करें।
|
||||
## कार्यभार
|
||||
|
||||
[इसे एक्सेल में आज़माएं](assignment.md)
|