Merge pull request #694 from microsoft/update-translations
🌐 Update translations via Co-op Translator
pull/695/head
commit
c21027a13d
@ -1,199 +1,196 @@
|
||||
<!--
|
||||
CO_OP_TRANSLATOR_METADATA:
|
||||
{
|
||||
"original_hash": "9dc77d6fd78ee43189ae20d3d2206c00",
|
||||
"translation_date": "2025-10-11T14:34:30+00:00",
|
||||
"original_hash": "f9a704f7494ca2d185ded59ba3da99ef",
|
||||
"translation_date": "2025-10-24T09:04:30+00:00",
|
||||
"source_file": "README.md",
|
||||
"language_code": "pa"
|
||||
}
|
||||
-->
|
||||
# ਸ਼ੁਰੂਆਤੀ ਡਾਟਾ ਸਾਇੰਸ - ਇੱਕ ਪਾਠਕ੍ਰਮ
|
||||
|
||||
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
|
||||
Azure Cloud Advocates ਮਾਈਕਰੋਸਾਫਟ ਵਿੱਚ 10 ਹਫ਼ਤਿਆਂ ਦਾ, 20 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰਨ ਵਿੱਚ ਖੁਸ਼ ਹਨ ਜੋ ਡਾਟਾ ਸਾਇੰਸ ਬਾਰੇ ਹੈ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਪਾਠ ਤੋਂ ਬਾਅਦ ਦੇ ਪ੍ਰਸ਼ਨ, ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤ ਨਿਰਦੇਸ਼, ਇੱਕ ਹੱਲ ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੈ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪੈਡਾਗੌਜੀ ਤੁਹਾਨੂੰ ਸਿਖਾਉਣ ਦੇ ਨਾਲ-ਨਾਲ ਬਣਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਨਵੀਆਂ ਹੁਨਰਾਂ ਨੂੰ 'ਪੱਕਾ' ਕਰਨ ਦਾ ਸਾਬਤ ਤਰੀਕਾ ਹੈ।
|
||||
|
||||
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
|
||||
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
|
||||
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
|
||||
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
|
||||
[](http://makeapullrequest.com)
|
||||
**ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [ਜੈਸਮਿਨ ਗ੍ਰੀਨਵੇ](https://www.twitter.com/paladique), [ਦਿਮਿਤਰੀ ਸੋਸ਼ਨਿਕੋਵ](http://soshnikov.com), [ਨਿਤਿਆ ਨਰਸਿੰਹਨ](https://twitter.com/nitya), [ਜੇਲਨ ਮੈਕਗੀ](https://twitter.com/JalenMcG), [ਜੈਨ ਲੂਪਰ](https://twitter.com/jenlooper), [ਮੌਡ ਲੇਵੀ](https://twitter.com/maudstweets), [ਟਿਫਨੀ ਸੌਟਰ](https://twitter.com/TiffanySouterre), [ਕ੍ਰਿਸਟੋਫਰ ਹੈਰਿਸਨ](https://www.twitter.com/geektrainer)।
|
||||
|
||||
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
|
||||
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
|
||||
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
|
||||
**🙏 ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ 🙏 ਸਾਡੇ [ਮਾਈਕਰੋਸਾਫਟ ਸਟੂਡੈਂਟ ਐਮਬੈਸਡਰ](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਾਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਰਤਾਵਾਂ ਨੂੰ,** ਜਿਵੇਂ ਕਿ ਆਰਯਨ ਅਰੋੜਾ, [ਅਦਿਤਿਆ ਗਰਗ](https://github.com/AdityaGarg00), [ਅਲੋਂਡਰਾ ਸਾਂਚੇਜ਼](https://www.linkedin.com/in/alondra-sanchez-molina/), [ਅੰਕਿਤਾ ਸਿੰਘ](https://www.linkedin.com/in/ankitasingh007), [ਅਨੁਪਮ ਮਿਸ਼ਰਾ](https://www.linkedin.com/in/anupam--mishra/), [ਅਰਪਿਤਾ ਦਾਸ](https://www.linkedin.com/in/arpitadas01/), ਛੈਲਬਿਹਾਰੀ ਦੁਬੇ, [ਦਿਬਰੀ ਨਸੋਫਰ](https://www.linkedin.com/in/dibrinsofor), [ਦਿਸ਼ਿਤਾ ਭਾਸਿਨ](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [ਮਜਦ ਸਾਫੀ](https://www.linkedin.com/in/majd-s/), [ਮੈਕਸ ਬਲਮ](https://www.linkedin.com/in/max-blum-6036a1186/), [ਮਿਗੁਏਲ ਕੋਰੇਆ](https://www.linkedin.com/in/miguelmque/), [ਮੋਹੰਮਾ ਇਫ਼ਤੇਖਰ (ਇਫ਼ਤੂ) ਇਬਨੇ ਜਲਾਲ](https://twitter.com/iftu119), [ਨਾਵਰਿਨ ਤਬਸੁਮ](https://www.linkedin.com/in/nawrin-tabassum), [ਰੇਮੰਡ ਵਾਂਗਸਾ ਪੁਤਰਾ](https://www.linkedin.com/in/raymond-wp/), [ਰੋਹਿਤ ਯਾਦਵ](https://www.linkedin.com/in/rty2423), ਸਮਰਿਧੀ ਸ਼ਰਮਾ, [ਸੰਯਾ ਸਿੰਹਾ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [ਸ਼ੀਨਾ ਨਰੂਲਾ](https://www.linkedin.com/in/sheena-narua-n/), [ਤੌਕੀਰ ਅਹਿਮਦ](https://www.linkedin.com/in/tauqeerahmad5201/), ਯੋਗੇਂਦਰਸਿੰਘ ਪਵਾਰ, [ਵਿਦੁਸ਼ੀ ਗੁਪਤਾ](https://www.linkedin.com/in/vidushi-gupta07/), [ਜਸਲੀਨ ਸੋਨਧੀ](https://www.linkedin.com/in/jasleen-sondhi/)।
|
||||
|
||||
[](https://discord.gg/zxKYvhSnVp?WT.mc_id=academic-000002-leestott)
|
||||
|
||||
[](https://aka.ms/foundry/forum)
|
||||
|
||||
Microsoft ਦੇ Azure Cloud Advocates ਨੇ 10 ਹਫ਼ਤਿਆਂ, 20 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰਨ ਵਿੱਚ ਖੁਸ਼ੀ ਮਹਿਸੂਸ ਕੀਤੀ ਹੈ ਜੋ ਡਾਟਾ ਸਾਇੰਸ ਬਾਰੇ ਹੈ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਪਾਠ ਤੋਂ ਬਾਅਦ ਦੇ ਪ੍ਰਸ਼ਨ, ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤ ਨਿਰਦੇਸ਼, ਇੱਕ ਹੱਲ ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੈ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਤ ਪੈਡਾਗੌਜੀ ਤੁਹਾਨੂੰ ਸਿੱਖਣ ਦਿੰਦਾ ਹੈ ਜਦੋਂ ਤੁਸੀਂ ਬਣਾਉਂਦੇ ਹੋ, ਨਵੀਆਂ ਹੁਨਰਾਂ ਨੂੰ 'ਟਿਕਾਉਣ' ਦਾ ਸਾਬਤ ਤਰੀਕਾ।
|
||||
|
||||
**ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
|
||||
|
||||
**🙏 ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ 🙏 ਸਾਡੇ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਾਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਰਤਾਵਾਂ ਨੂੰ,** ਖਾਸ ਤੌਰ 'ਤੇ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
|
||||
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|
||||
|
||||
||
|
||||
||
|
||||
|:---:|
|
||||
| ਸ਼ੁਰੂਆਤੀ ਡਾਟਾ ਸਾਇੰਸ - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
|
||||
| ਸ਼ੁਰੂਆਤੀ ਡਾਟਾ ਸਾਇੰਸ - _[@nitya](https://twitter.com/nitya) ਦੁਆਰਾ ਸਕੈਚਨੋਟ_ |
|
||||
|
||||
### 🌐 ਬਹੁ-ਭਾਸ਼ਾ ਸਹਾਇਤਾ
|
||||
|
||||
#### GitHub Action ਰਾਹੀਂ ਸਹਾਇਤ (ਆਟੋਮੈਟਿਕ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)
|
||||
|
||||
<!-- CO-OP TRANSLATOR LANGUAGES TABLE START -->
|
||||
[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](./README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
|
||||
<!-- CO-OP TRANSLATOR LANGUAGES TABLE END -->
|
||||
#### GitHub Action ਰਾਹੀਂ ਸਹਾਇਤਾਪ੍ਰਾਪਤ (ਆਟੋਮੈਟਿਕ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)
|
||||
|
||||
**ਜੇ ਤੁਸੀਂ ਹੋਰ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦ ਕਰਵਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ ਤਾਂ ਸਹਾਇਤ ਭਾਸ਼ਾਵਾਂ ਦੀ ਸੂਚੀ [ਇੱਥੇ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ਦਿੱਤੀ ਗਈ ਹੈ।**
|
||||
**ਜੇ ਤੁਸੀਂ ਹੋਰ ਅਨੁਵਾਦਾਂ ਦੀ ਮੰਗ ਕਰਨੀ ਹੈ, ਸਹਾਇਤਾਪ੍ਰਾਪਤ ਭਾਸ਼ਾਵਾਂ ਦੀ ਸੂਚੀ [ਇੱਥੇ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ਦਿੱਤੀ ਗਈ ਹੈ।**
|
||||
|
||||
#### ਸਾਡੇ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ
|
||||
[](https://aka.ms/ds4beginners/discord)
|
||||
|
||||
ਸਾਡੇ ਕੋਲ Discord 'ਤੇ AI ਸਿੱਖਣ ਦੀ ਲੜੀ ਚੱਲ ਰਹੀ ਹੈ। ਹੋਰ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ ਅਤੇ ਸਾਡੇ ਨਾਲ [Learn with AI Series](https://aka.ms/learnwithai/discord) ਵਿੱਚ 18 - 30 ਸਤੰਬਰ, 2025 ਤੱਕ ਸ਼ਾਮਲ ਹੋਵੋ। ਤੁਸੀਂ GitHub Copilot ਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਵਰਤਣ ਦੇ ਟਿਪਸ ਅਤੇ ਟ੍ਰਿਕਸ ਸਿੱਖ ਸਕਦੇ ਹੋ।
|
||||
ਸਾਡੇ Discord 'Learn with AI' ਸੀਰੀਜ਼ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, [Learn with AI Series](https://aka.ms/learnwithai/discord) ਤੋਂ 18 - 30 ਸਤੰਬਰ, 2025। ਤੁਸੀਂ GitHub Copilot ਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਵਰਤਣ ਦੇ ਟਿੱਪਸ ਅਤੇ ਟ੍ਰਿਕਸ ਸਿੱਖੋਗੇ।
|
||||
|
||||

|
||||
|
||||
# ਕੀ ਤੁਸੀਂ ਵਿਦਿਆਰਥੀ ਹੋ?
|
||||
|
||||
ਹੇਠਾਂ ਦਿੱਤੇ ਸਰੋਤਾਂ ਨਾਲ ਸ਼ੁਰੂਆਤ ਕਰੋ:
|
||||
ਹੇਠਾਂ ਦਿੱਤੇ ਸਰੋਤਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ:
|
||||
|
||||
- [Student Hub ਪੇਜ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਪੇਜ 'ਤੇ ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤੀ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਮਿਲਣਗੇ। ਇਹ ਇੱਕ ਪੇਜ ਹੈ ਜਿਸਨੂੰ ਤੁਸੀਂ ਬੁੱਕਮਾਰਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਸਮੇਂ-ਸਮੇਂ 'ਤੇ ਚੈੱਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਘੱਟੋ-ਘੱਟ ਮਹੀਨਾਵਾਰ ਸਮੱਗਰੀ ਬਦਲਦੇ ਹਾਂ।
|
||||
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਦਿਆਰਥੀ ਅੰਬੈਸਡਰਾਂ ਦੇ ਗਲੋਬਲ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ Microsoft ਵਿੱਚ ਤੁਹਾਡਾ ਰਸਤਾ ਹੋ ਸਕਦਾ ਹੈ।
|
||||
- [ਵਿਦਿਆਰਥੀ ਹੱਬ ਪੇਜ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਪੇਜ ਵਿੱਚ, ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤੀ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਮਿਲਣਗੇ। ਇਹ ਇੱਕ ਪੇਜ ਹੈ ਜਿਸ ਨੂੰ ਤੁਸੀਂ ਬੁੱਕਮਾਰਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਸਮੇਂ-ਸਮੇਂ 'ਤੇ ਚੈੱਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਘੱਟੋ-ਘੱਟ ਮਹੀਨਾਵਾਰ ਸਮੱਗਰੀ ਬਦਲਦੇ ਹਾਂ।
|
||||
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਦਿਆਰਥੀ ਐਮਬੈਸਡਰਾਂ ਦੇ ਗਲੋਬਲ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ ਮਾਈਕਰੋਸਾਫਟ ਵਿੱਚ ਤੁਹਾਡਾ ਰਸਤਾ ਹੋ ਸਕਦਾ ਹੈ।
|
||||
|
||||
# ਸ਼ੁਰੂਆਤ ਕਰਨਾ
|
||||
|
||||
## 📚 ਦਸਤਾਵੇਜ਼
|
||||
|
||||
- **[ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md)** - ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਕਦਮ-ਦਰ-ਕਦਮ ਸੈਟਅੱਪ ਨਿਰਦੇਸ਼
|
||||
- **[ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md)** - ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਕਦਮ-ਦਰ-ਕਦਮ ਸੈਟਅਪ ਨਿਰਦੇਸ਼
|
||||
- **[ਵਰਤੋਂ ਗਾਈਡ](USAGE.md)** - ਉਦਾਹਰਨਾਂ ਅਤੇ ਆਮ ਵਰਕਫਲੋਜ਼
|
||||
- **[ਟ੍ਰਬਲਸ਼ੂਟਿੰਗ](TROUBLESHOOTING.md)** - ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ
|
||||
- **[ਯੋਗਦਾਨ ਗਾਈਡ](CONTRIBUTING.md)** - ਇਸ ਪ੍ਰੋਜੈਕਟ ਵਿੱਚ ਯੋਗਦਾਨ ਦੇਣ ਦਾ ਤਰੀਕਾ
|
||||
- **[ਅਧਿਆਪਕਾਂ ਲਈ](for-teachers.md)** - ਪੜ੍ਹਾਉਣ ਦੇ ਨਿਰਦੇਸ਼ ਅਤੇ ਕਲਾਸਰੂਮ ਸਰੋਤ
|
||||
|
||||
## 👨🎓 ਵਿਦਿਆਰਥੀਆਂ ਲਈ
|
||||
> **ਪੂਰੇ ਸ਼ੁਰੂਆਤੀ**: ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵੇਂ ਹੋ? ਸਾਡੇ [ਸ਼ੁਰੂਆਤੀ-ਅਨੁਕੂਲ ਉਦਾਹਰਨਾਂ](examples/README.md) ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ! ਇਹ ਸਧਾਰਨ, ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀ ਕੀਤੇ ਉਦਾਹਰਨ ਤੁਹਾਨੂੰ ਮੁੱਢਲੇ ਮੂਲ ਸਿੱਖਣ ਵਿੱਚ ਮਦਦ ਕਰਨਗੇ।
|
||||
> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ ਅਤੇ ਆਪਣੇ ਆਪ ਅਭਿਆਸ ਪੂਰੇ ਕਰੋ, ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਦੇ ਪ੍ਰਸ਼ਨ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ। ਫਿਰ ਪਾਠ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀਆਂ ਕਰੋ। ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਨਾ ਕਿ ਹੱਲ ਕੋਡ ਨੂੰ ਕਾਪੀ ਕਰੋ; ਹਾਲਾਂਕਿ, ਉਹ ਕੋਡ /solutions ਫੋਲਡਰ ਵਿੱਚ ਉਪਲਬਧ ਹੈ। ਇੱਕ ਹੋਰ ਵਿਚਾਰ ਇਹ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਦੋਸਤਾਂ ਨਾਲ ਇੱਕ ਸਟਡੀ ਗਰੁੱਪ ਬਣਾਓ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਇਕੱਠੇ ਪੜ੍ਹੋ। ਹੋਰ ਅਧਿਐਨ ਲਈ, ਅਸੀਂ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।
|
||||
> **ਪੂਰੇ ਸ਼ੁਰੂਆਤੀ**: ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵੇਂ ਹੋ? ਸਾਡੇ [ਸ਼ੁਰੂਆਤੀ-ਅਨੁਕੂਲ ਉਦਾਹਰਨਾਂ](examples/README.md) ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ! ਇਹ ਸਧਾਰਨ, ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀ ਕੀਤੇ ਉਦਾਹਰਨ ਤੁਹਾਨੂੰ ਪੂਰੇ ਪਾਠਕ੍ਰਮ ਵਿੱਚ ਡੁੱਬਣ ਤੋਂ ਪਹਿਲਾਂ ਮੂਲ ਭਾਗ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰੇਗਾ।
|
||||
> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ ਅਤੇ ਆਪਣੇ ਆਪ ਅਭਿਆਸ ਪੂਰੇ ਕਰੋ, ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਦੇ ਪ੍ਰਸ਼ਨ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ। ਫਿਰ ਪਾਠ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀਆਂ ਕਰੋ। ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਨਾ ਕਿ ਹੱਲ ਕੋਡ ਨੂੰ ਕਾਪੀ ਕਰਨ ਦੀ; ਹਾਲਾਂਕਿ, ਉਹ ਕੋਡ ਹਰ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠ ਵਿੱਚ /solutions ਫੋਲਡਰ ਵਿੱਚ ਉਪਲਬਧ ਹੈ। ਇੱਕ ਹੋਰ ਵਿਚਾਰ ਇਹ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਦੋਸਤਾਂ ਨਾਲ ਇੱਕ ਅਧਿਐਨ ਸਮੂਹ ਬਣਾਓ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਇਕੱਠੇ ਪੜ੍ਹੋ। ਹੋਰ ਅਧਿਐਨ ਲਈ, ਅਸੀਂ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।
|
||||
|
||||
**ਤੁਰੰਤ ਸ਼ੁਰੂਆਤ:**
|
||||
1. [ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md) ਚੈੱਕ ਕਰੋ ਅਤੇ ਆਪਣਾ ਵਾਤਾਵਰਣ ਸੈਟਅੱਪ ਕਰੋ
|
||||
2. [ਵਰਤੋਂ ਗਾਈਡ](USAGE.md) ਦੀ ਸਮੀਖਾ ਕਰੋ ਅਤੇ ਪਾਠਕ੍ਰਮ ਨਾਲ ਕੰਮ ਕਰਨ ਦਾ ਤਰੀਕਾ ਸਿੱਖੋ
|
||||
3. ਪਾਠ 1 ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ ਲਗਾਤਾਰ ਅਗਲੇ ਪਾਠਾਂ 'ਤੇ ਜਾਓ
|
||||
1. [ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md) ਚੈੱਕ ਕਰੋ ਆਪਣੇ ਵਾਤਾਵਰਣ ਨੂੰ ਸੈਟਅਪ ਕਰਨ ਲਈ
|
||||
2. [ਵਰਤੋਂ ਗਾਈਡ](USAGE.md) ਦੀ ਸਮੀਖਾ ਕਰੋ ਪਾਠਕ੍ਰਮ ਨਾਲ ਕੰਮ ਕਰਨ ਦਾ ਤਰੀਕਾ ਸਿੱਖਣ ਲਈ
|
||||
3. ਪਾਠ 1 ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ ਲਗਾਤਾਰ ਅਗੇ ਵਧੋ
|
||||
4. ਸਾਡੇ [Discord ਸਮੁਦਾਇ](https://aka.ms/ds4beginners/discord) ਵਿੱਚ ਸਹਾਇਤਾ ਲਈ ਸ਼ਾਮਲ ਹੋਵੋ
|
||||
|
||||
## 👩🏫 ਅਧਿਆਪਕਾਂ ਲਈ
|
||||
|
||||
> **ਅਧਿਆਪਕ**: ਅਸੀਂ [ਕੁਝ ਸੁਝਾਅ](for-teachers.md) ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ ਕਿ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਕਿਵੇਂ ਵਰਤਣਾ ਹੈ। ਸਾਡੇ [ਚਰਚਾ ਫੋਰਮ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ਵਿੱਚ ਤੁਹਾਡੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਉਮੀਦ ਹੈ!
|
||||
> **ਅਧਿਆਪਕ**: ਅਸੀਂ [ਕੁਝ ਸੁਝਾਅ ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ](for-teachers.md) ਕਿ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਕਿਵੇਂ ਵਰਤਣਾ ਹੈ। ਸਾਡੇ [ਚਰਚਾ ਫੋਰਮ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ਵਿੱਚ ਤੁਹਾਡੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਉਮੀਦ ਹੈ!
|
||||
|
||||
## ਟੀਮ ਨਾਲ ਮਿਲੋ
|
||||
|
||||
[](https://youtu.be/8mzavjQSMM4 "Promo video")
|
||||
[](https://youtu.be/8mzavjQSMM4 "ਪ੍ਰੋਮੋ ਵੀਡੀਓ")
|
||||
|
||||
**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
|
||||
**Gif ਦੁਆਰਾ** [ਮੋਹਿਤ ਜੈਸਲ](https://www.linkedin.com/in/mohitjaisal)
|
||||
|
||||
> 🎥 ਉਪਰੋਕਤ ਚਿੱਤਰ 'ਤੇ ਕਲਿੱਕ ਕਰੋ ਅਤੇ ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਇਸਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਦੇਖੋ!
|
||||
> 🎥 ਉਪਰੋਕਤ ਚਿੱਤਰ 'ਤੇ ਕਲਿਕ ਕਰੋ ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਉਸ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਦੇਖਣ ਲਈ!
|
||||
|
||||
## ਪੈਡਾਗੌਜੀ
|
||||
ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ ਦੋ ਸਿੱਖਣ ਦੇ ਸਿਧਾਂਤ ਚੁਣੇ ਹਨ: ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਵਾਰੰ-ਵਾਰ ਕਵਿਜ਼ ਸ਼ਾਮਲ ਹਨ। ਇਸ ਸਿਰੀਜ਼ ਦੇ ਅੰਤ ਤੱਕ, ਵਿਦਿਆਰਥੀ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤ ਸਿੱਖ ਲੈਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਸੰਕਲਪ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲੀ ਜਗਤ ਦੇ ਉਦਾਹਰਣ ਅਤੇ ਹੋਰ ਬਹੁਤ ਕੁਝ ਸ਼ਾਮਲ ਹਨ।
|
||||
ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਬਣਾਉਣ ਦੌਰਾਨ ਦੋ ਸਿੱਖਣ ਦੇ ਸਿਧਾਂਤਾਂ ਨੂੰ ਚੁਣਿਆ ਹੈ: ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਵਾਰੰ-ਵਾਰ ਕਵਿਜ਼ ਸ਼ਾਮਲ ਹਨ। ਇਸ ਸਿਰੀਜ਼ ਦੇ ਅੰਤ ਤੱਕ, ਵਿਦਿਆਰਥੀ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤਾਂ ਸਿੱਖ ਚੁੱਕੇ ਹੋਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਧਾਰਨਾਵਾਂ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲ ਜਗਤ ਦੇ ਉਦਾਹਰਨਾਂ ਅਤੇ ਹੋਰ ਬਹੁਤ ਕੁਝ ਸ਼ਾਮਲ ਹਨ।
|
||||
|
||||
ਇਸ ਤੋਂ ਇਲਾਵਾ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਘੱਟ-ਦਬਾਅ ਵਾਲਾ ਕਵਿਜ਼ ਵਿਦਿਆਰਥੀ ਨੂੰ ਵਿਸ਼ੇ ਨੂੰ ਸਿੱਖਣ ਵੱਲ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਪ੍ਰੇਰਿਤ ਕਰਦਾ ਹੈ, ਜਦਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਕਵਿਜ਼ ਹੋਰ ਯਾਦਗਾਰੀ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਪਾਠਕ੍ਰਮ ਲਚਕੀਲਾ ਅਤੇ ਮਨੋਰੰਜਕ ਬਣਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਇਸਨੂੰ ਪੂਰਾ ਜਾਂ ਹਿੱਸੇ ਵਿੱਚ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵਧਦੇ ਜਟਿਲ ਹੋ ਜਾਂਦੇ ਹਨ।
|
||||
ਇਸ ਤੋਂ ਇਲਾਵਾ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਘੱਟ-ਦਬਾਅ ਵਾਲਾ ਕਵਿਜ਼ ਵਿਦਿਆਰਥੀ ਨੂੰ ਵਿਸ਼ੇ ਸਿੱਖਣ ਵੱਲ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ, ਜਦਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਕਵਿਜ਼ ਸਿੱਖੇ ਗਏ ਗਿਆਨ ਨੂੰ ਹੋਰ ਮਜ਼ਬੂਤ ਕਰਦਾ ਹੈ। ਇਹ ਪਾਠਕ੍ਰਮ ਲਚਕੀਲਾ ਅਤੇ ਮਨੋਰੰਜਕ ਬਣਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਇਸਨੂੰ ਪੂਰੇ ਜਾਂ ਅੰਸ਼ਿਕ ਤੌਰ 'ਤੇ ਪੜ੍ਹਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵਧਦੇ ਹੀ ਜਟਿਲ ਹੋ ਜਾਂਦੇ ਹਨ।
|
||||
|
||||
> ਸਾਡਾ [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) ਗਾਈਡਲਾਈਨਜ਼ ਵੇਖੋ। ਅਸੀਂ ਤੁਹਾਡੀ ਰਚਨਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
|
||||
> ਸਾਡੇ [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਨੂੰ ਵੇਖੋ। ਅਸੀਂ ਤੁਹਾਡੇ ਰਚਨਾਤਮਕ ਫੀਡਬੈਕ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
|
||||
|
||||
## ਹਰ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ:
|
||||
|
||||
- ਵਿਕਲਪਿਕ ਸਕੈਚਨੋਟ
|
||||
- ਵਿਕਲਪਿਕ ਸਹਾਇਕ ਵੀਡੀਓ
|
||||
- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਾਰਮਅੱਪ ਕਵਿਜ਼
|
||||
- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਾਰਮਅਪ ਕਵਿਜ਼
|
||||
- ਲਿਖਤ ਪਾਠ
|
||||
- ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਲਈ, ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੇ ਕਦਮ-ਦਰ-ਕਦਮ ਗਾਈਡ
|
||||
- ਗਿਆਨ ਦੀ ਜਾਂਚ
|
||||
- ਗਿਆਨ ਜਾਂਚ
|
||||
- ਇੱਕ ਚੁਣੌਤੀ
|
||||
- ਸਹਾਇਕ ਪਾਠਨ
|
||||
- ਸਹਾਇਕ ਪੜ੍ਹਾਈ
|
||||
- ਅਸਾਈਨਮੈਂਟ
|
||||
- [ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼](https://ff-quizzes.netlify.app/en/)
|
||||
|
||||
> **ਕਵਿਜ਼ਾਂ ਬਾਰੇ ਇੱਕ ਨੋਟ**: ਸਾਰੀਆਂ ਕਵਿਜ਼ਾਂ Quiz-App ਫੋਲਡਰ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਕਿ ਕੁੱਲ 40 ਕਵਿਜ਼ਾਂ ਦੇ ਤਿੰਨ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਨਾਲ ਹਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚੋਂ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ, ਪਰ ਕਵਿਜ਼ ਐਪ ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਜਾਂ Azure 'ਤੇ ਡਿਪਲੋਇਡ ਕਰਕੇ ਚਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹ ਹੌਲੀ-ਹੌਲੀ ਸਥਾਨਕ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦਿਤ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।
|
||||
> **ਕਵਿਜ਼ਾਂ ਬਾਰੇ ਇੱਕ ਨੋਟ**: ਸਾਰੇ ਕਵਿਜ਼ Quiz-App ਫੋਲਡਰ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ, ਕੁੱਲ 40 ਕਵਿਜ਼, ਹਰ ਇੱਕ ਵਿੱਚ ਤਿੰਨ ਪ੍ਰਸ਼ਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚੋਂ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ, ਪਰ ਕਵਿਜ਼ ਐਪ ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾਂ ਸਕਦਾ ਹੈ ਜਾਂ Azure 'ਤੇ ਡਿਪਲੌਇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਵਿੱਚ ਦਿੱਤੇ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹ ਹੌਲੀ-ਹੌਲੀ ਸਥਾਨਕ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦਿਤ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।
|
||||
|
||||
## 🎓 ਸ਼ੁਰੂਆਤੀ ਸਿਖਲਾਈ ਲਈ ਉਦਾਹਰਣਾਂ
|
||||
## 🎓 ਸ਼ੁਰੂਆਤੀ ਲਈ ਸਹਾਇਕ ਉਦਾਹਰਨਾਂ
|
||||
|
||||
**ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵੇਂ ਹੋ?** ਅਸੀਂ ਤੁਹਾਡੇ ਲਈ ਇੱਕ ਖਾਸ [examples directory](examples/README.md) ਬਣਾਈ ਹੈ ਜਿਸ ਵਿੱਚ ਸਧਾਰਣ, ਵਧੀਆ ਟਿੱਪਣੀ ਕੀਤੇ ਕੋਡ ਹਨ ਜੋ ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੇ ਹਨ:
|
||||
**ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵੇਂ ਹੋ?** ਅਸੀਂ ਇੱਕ ਵਿਸ਼ੇਸ਼ [examples directory](examples/README.md) ਬਣਾਇਆ ਹੈ ਜਿਸ ਵਿੱਚ ਸਧਾਰਨ, ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀ ਕੀਤੇ ਕੋਡ ਹਨ ਜੋ ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੇ ਹਨ:
|
||||
|
||||
- 🌟 **ਹੈਲੋ ਵਰਲਡ** - ਤੁਹਾਡਾ ਪਹਿਲਾ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰੋਗਰਾਮ
|
||||
- 📂 **ਡਾਟਾ ਲੋਡ ਕਰਨਾ** - ਡਾਟਾਸੈਟਸ ਨੂੰ ਪੜ੍ਹਨ ਅਤੇ ਖੋਜਣ ਦਾ ਤਰੀਕਾ ਸਿੱਖੋ
|
||||
- 📊 **ਸਧਾਰਣ ਵਿਸ਼ਲੇਸ਼ਣ** - ਅੰਕੜੇ ਗਿਣੋ ਅਤੇ ਪੈਟਰਨ ਲੱਭੋ
|
||||
- 📈 **ਮੁੱਢਲੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ** - ਚਾਰਟ ਅਤੇ ਗ੍ਰਾਫ ਬਣਾਓ
|
||||
- 🔬 **ਅਸਲੀ ਜਗਤ ਪ੍ਰੋਜੈਕਟ** - ਸ਼ੁਰੂ ਤੋਂ ਅੰਤ ਤੱਕ ਪੂਰਾ ਵਰਕਫਲੋ
|
||||
- 📂 **ਡਾਟਾ ਲੋਡ ਕਰਨਾ** - ਡਾਟਾਸੈਟਸ ਨੂੰ ਪੜ੍ਹਨ ਅਤੇ ਖੋਜਣ ਸਿੱਖੋ
|
||||
- 📊 **ਸਧਾਰਨ ਵਿਸ਼ਲੇਸ਼ਣ** - ਅੰਕੜੇ ਗਣਨਾ ਕਰੋ ਅਤੇ ਪੈਟਰਨ ਲੱਭੋ
|
||||
- 📈 **ਮੁੱਢਲੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ** - ਚਾਰਟ ਅਤੇ ਗ੍ਰਾਫ ਬਣਾਓ
|
||||
- 🔬 **ਅਸਲ ਜਗਤ ਪ੍ਰੋਜੈਕਟ** - ਸ਼ੁਰੂ ਤੋਂ ਅੰਤ ਤੱਕ ਪੂਰਾ ਵਰਕਫਲੋ
|
||||
|
||||
ਹਰ ਉਦਾਹਰਣ ਵਿੱਚ ਹਰ ਕਦਮ ਦੀ ਵਿਸਥਾਰਪੂਰਵਕ ਟਿੱਪਣੀ ਸ਼ਾਮਲ ਹੈ, ਜੋ ਇਸਨੂੰ ਬਿਲਕੁਲ ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਬਿਹਤਰ ਬਣਾਉਂਦਾ ਹੈ!
|
||||
ਹਰ ਉਦਾਹਰਨ ਵਿੱਚ ਹਰ ਕਦਮ ਦੀ ਵਿਸਥਾਰ ਵਿੱਚ ਟਿੱਪਣੀ ਸ਼ਾਮਲ ਹੈ, ਜੋ ਇਸਨੂੰ ਬਿਲਕੁਲ ਸ਼ੁਰੂਆਤੀ ਵਿਦਿਆਰਥੀਆਂ ਲਈ ਬਹੁਤ ਹੀ ਉਤਮ ਬਣਾਉਂਦਾ ਹੈ!
|
||||
|
||||
👉 **[ਉਦਾਹਰਣਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ](examples/README.md)** 👈
|
||||
👉 **[ਉਦਾਹਰਨਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ](examples/README.md)** 👈
|
||||
|
||||
## ਪਾਠ
|
||||
|
||||
||
|
||||
|:---:|
|
||||
| ਡਾਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਸ: ਰੋਡਮੈਪ - _ਸਕੈਚਨੋਟ [@nitya](https://twitter.com/nitya) ਦੁਆਰਾ_ |
|
||||
| ਡਾਟਾ ਸਾਇੰਸ ਸ਼ੁਰੂਆਤੀ ਲਈ: ਰੋਡਮੈਪ - _[@nitya](https://twitter.com/nitya) ਦੁਆਰਾ ਸਕੈਚਨੋਟ_ |
|
||||
|
||||
| ਪਾਠ ਨੰਬਰ | ਵਿਸ਼ਾ | ਪਾਠ ਸਮੂਹ | ਸਿੱਖਣ ਦੇ ਉਦੇਸ਼ | ਲਿੰਕ ਕੀਤਾ ਪਾਠ | ਲੇਖਕ |
|
||||
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
|
||||
| 01 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਸੰਕਲਪਾਂ ਅਤੇ ਇਸਦਾ ਕ੍ਰਿਤ੍ਰਿਮ ਬੁੱਧੀ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਅਤੇ ਵੱਡੇ ਡਾਟਾ ਨਾਲ ਸਬੰਧ ਸਿੱਖੋ। | [ਪਾਠ](1-Introduction/01-defining-data-science/README.md) [ਵੀਡੀਓ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
|
||||
| 02 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਨੈਤਿਕਤਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੈਤਿਕਤਾ ਦੇ ਸੰਕਲਪ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਫਰੇਮਵਰਕ। | [ਪਾਠ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
|
||||
| 03 | ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਕਿਵੇਂ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸਦੇ ਆਮ ਸਰੋਤ। | [ਪਾਠ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
|
||||
| 04 | ਅੰਕੜੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪਰਿਚਯ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਅੰਕੜਿਆਂ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜੇਬਾਜ਼ੀ ਦੇ ਗਣਿਤਕ ਤਕਨੀਕਾਂ। | [ਪਾਠ](1-Introduction/04-stats-and-probability/README.md) [ਵੀਡੀਓ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
|
||||
| 05 | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਿਚਯ ਅਤੇ ਸਟ੍ਰਕਚਰਡ ਕਵੈਰੀ ਲੈਂਗਵੇਜ (SQL) ਦੀ ਮਦਦ ਨਾਲ ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਤਰੀਕੇ। | [ਪਾਠ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
|
||||
| 06 | ਨਾਨ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ, ਇਸਦੇ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਅਤੇ ਦਸਤਾਵੇਜ਼ ਡਾਟਾਬੇਸ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਤਰੀਕੇ। | [ਪਾਠ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
|
||||
| 07 | ਪਾਈਥਨ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | Pandas ਵਰਗੀਆਂ ਲਾਇਬ੍ਰੇਰੀਆਂ ਨਾਲ ਡਾਟਾ ਖੋਜ ਲਈ ਪਾਈਥਨ ਦੀ ਵਰਤੋਂ ਦੇ ਮੁੱਢਲੇ ਤਰੀਕੇ। ਪਾਈਥਨ ਪ੍ਰੋਗਰਾਮਿੰਗ ਦੀ ਬੁਨਿਆਦੀ ਸਮਝ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। | [ਪਾਠ](2-Working-With-Data/07-python/README.md) [ਵੀਡੀਓ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
|
||||
| 08 | ਡਾਟਾ ਤਿਆਰੀ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਡਾਟਾ ਸਾਫ਼ ਕਰਨ ਅਤੇ ਬਦਲਣ ਲਈ ਤਕਨੀਕਾਂ ਦੇ ਵਿਸ਼ੇ। | [ਪਾਠ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
|
||||
| 09 | ਮਾਤਰਾ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | Matplotlib ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੰਛੀਆਂ ਦੇ ਡਾਟਾ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ ਸਿੱਖੋ 🦆 | [ਪਾਠ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 10 | ਡਾਟਾ ਦੇ ਵੰਡਾਂ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਇੱਕ ਅੰਤਰਾਲ ਦੇ ਅੰਦਰ ਦੇ ਅਵਲੋਕਨ ਅਤੇ ਰੁਝਾਨਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 11 | ਅਨੁਪਾਤਾਂ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਵਿਭਿੰਨ ਅਤੇ ਸਮੂਹਬੱਧ ਪ੍ਰਤੀਸ਼ਤਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 12 | ਸੰਬੰਧਾਂ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਡਾਟਾ ਦੇ ਸੈੱਟਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਵੈਰੀਏਬਲਾਂ ਦੇ ਵਿਚਕਾਰ ਸੰਬੰਧਾਂ ਅਤੇ ਸਬੰਧਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 13 | ਅਰਥਪੂਰਨ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਤੁਹਾਡੇ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਅਤੇ ਅੰਦਰੂਨੀ ਜਾਣਕਾਰੀ ਲਈ ਕੀਮਤੀ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼। | [ਪਾਠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 14 | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ ਅਤੇ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਕੱਢਣ ਦਾ ਪਹਿਲਾ ਕਦਮ। | [ਪਾਠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
|
||||
| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ ਲਈ ਤਕਨੀਕਾਂ 'ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ। | [ਪਾਠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
|
||||
| 16 | ਸੰਚਾਰ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਤੋਂ ਅੰਦਰੂਨੀ ਜਾਣਕਾਰੀ ਨੂੰ ਪੇਸ਼ ਕਰਨ ਲਈ ਤਕਨੀਕਾਂ ਜੋ ਫੈਸਲੇ ਲੈਣ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਆਸਾਨ ਬਣਾਉਂਦੀਆਂ ਹਨ। | [ਪਾਠ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
|
||||
| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸਦੇ ਫਾਇਦਿਆਂ ਦਾ ਪਰਿਚਯ। | [ਪਾਠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
||||
| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਲੋ ਕੋਡ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲਾਂ ਦੀ ਟ੍ਰੇਨਿੰਗ। |[ਪਾਠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
||||
| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ਨਾਲ ਮਾਡਲਾਂ ਨੂੰ ਡਿਪਲੋਇ ਕਰਨਾ। | [ਪਾਠ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
||||
| 20 | ਜੰਗਲੀ ਡਾਟਾ ਸਾਇੰਸ | [ਜੰਗਲ ਵਿੱਚ](6-Data-Science-In-Wild/README.md) | ਅਸਲੀ ਜਗਤ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰੋਜੈਕਟ। | [ਪਾਠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
|
||||
| 01 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਧਾਰਨਾਵਾਂ ਅਤੇ ਇਹ ਕਿਵੇਂ ਕ੍ਰਿਤਮ ਬੁੱਧੀ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਅਤੇ ਵੱਡੇ ਡਾਟਾ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
|
||||
| 02 | ਡਾਟਾ ਸਾਇੰਸ ਨੈਤਿਕਤਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੈਤਿਕਤਾ ਦੇ ਧਾਰਨਾਵਾਂ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਫਰੇਮਵਰਕ। | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
|
||||
| 03 | ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਕਿਵੇਂ ਵਰਗਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸਦੇ ਆਮ ਸਰੋਤ। | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
|
||||
| 04 | ਅੰਕੜੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪ੍ਰਸਤਾਵਨਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜੇ ਦੇ ਗਣਿਤਕ ਤਕਨੀਕ। | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
|
||||
| 05 | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪ੍ਰਸਤਾਵਨਾ ਅਤੇ ਸਟ੍ਰਕਚਰਡ ਕਵੈਰੀ ਲੈਂਗਵੇਜ (SQL) ਦੀ ਮਦਦ ਨਾਲ ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤ। | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
|
||||
| 06 | NoSQL ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪ੍ਰਸਤਾਵਨਾ, ਇਸਦੇ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਅਤੇ ਦਸਤਾਵੇਜ਼ ਡਾਟਾਬੇਸ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤ। | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
|
||||
| 07 | Python ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | Pandas ਵਰਗੀਆਂ ਲਾਇਬ੍ਰੇਰੀਆਂ ਦੀ ਮਦਦ ਨਾਲ ਡਾਟਾ ਦੀ ਖੋਜ ਲਈ Python ਦੀ ਵਰਤੋਂ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤ। Python ਪ੍ਰੋਗਰਾਮਿੰਗ ਦੀ ਮੁੱਢਲੀ ਸਮਝ ਸਿਫਾਰਸ਼ੀ ਹੈ। | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
|
||||
| 08 | ਡਾਟਾ ਤਿਆਰੀ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਡਾਟਾ ਨੂੰ ਸਾਫ਼ ਕਰਨ ਅਤੇ ਰੂਪਾਂਤਰਿਤ ਕਰਨ ਦੇ ਤਰੀਕਿਆਂ ਦੇ ਵਿਸ਼ਿਆਂ, ਜਿਵੇਂ ਕਿ ਗੁੰਮ, ਗਲਤ ਜਾਂ ਅਧੂਰੇ ਡਾਟਾ ਦੀ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨਾ। | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
|
||||
| 09 | ਮਾਤਰਾ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | Matplotlib ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੰਛੀਆਂ ਦੇ ਡਾਟਾ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ ਸਿੱਖੋ 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 10 | ਡਾਟਾ ਦੇ ਵੰਡ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਇੱਕ ਅੰਤਰਾਲ ਵਿੱਚ ਅਵਲੋਕਨ ਅਤੇ ਰੁਝਾਨਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ। | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 11 | ਅਨੁਪਾਤਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਵਿਸ਼ੇਸ਼ ਅਤੇ ਸਮੂਹਬੱਧ ਪ੍ਰਤੀਸ਼ਤਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ। | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 12 | ਸੰਬੰਧਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਡਾਟਾ ਦੇ ਸੈੱਟ ਅਤੇ ਇਸਦੇ ਵੈਰੀਏਬਲਾਂ ਦੇ ਵਿਚਕਾਰ ਸੰਬੰਧਾਂ ਅਤੇ ਸਹਿ-ਸੰਬੰਧਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ। | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 13 | ਅਰਥਪੂਰਨ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਤੁਹਾਡੇ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਅਤੇ ਅੰਦਰੂਨੀ ਜਾਣਕਾਰੀ ਲਈ ਕੀਮਤੀ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼। | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
|
||||
| 14 | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪ੍ਰਸਤਾਵਨਾ | [Lifecycle](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪ੍ਰਸਤਾਵਨਾ ਅਤੇ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਕੱਢਣ ਦਾ ਪਹਿਲਾ ਕਦਮ। | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
|
||||
| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [Lifecycle](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਇਹ ਚਰਨ ਡਾਟਾ ਨੂੰ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਦੇ ਤਰੀਕਿਆਂ 'ਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਦਾ ਹੈ। | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
|
||||
| 16 | ਸੰਚਾਰ | [Lifecycle](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਤੋਂ ਪ੍ਰਾਪਤ ਅੰਦਰੂਨੀ ਜਾਣਕਾਰੀ ਨੂੰ ਇਸ ਤਰੀਕੇ ਨਾਲ ਪੇਸ਼ ਕਰਨ 'ਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਦਾ ਹੈ ਜੋ ਫੈਸਲੇ ਲੈਣ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਆਸਾਨ ਬਣਾਉਂਦਾ ਹੈ। | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
|
||||
| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸਦੇ ਫਾਇਦਿਆਂ ਦਾ ਪ੍ਰਸਤਾਵਨਾ। | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
||||
| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Low Code ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲਾਂ ਨੂੰ ਟ੍ਰੇਨ ਕਰਨਾ। |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
||||
| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ਨਾਲ ਮਾਡਲਾਂ ਨੂੰ ਡਿਪਲੌਇ ਕਰਨਾ। | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
||||
| 20 | ਜੰਗਲੀ ਹਾਲਾਤ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [In the Wild](6-Data-Science-In-Wild/README.md) | ਅਸਲ ਜਗਤ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਚਲਿਤ ਪ੍ਰੋਜੈਕਟ। | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
|
||||
|
||||
## GitHub Codespaces
|
||||
|
||||
ਇਸ ਨਮੂਨੇ ਨੂੰ Codespace ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
|
||||
1. ਕੋਡ ਡ੍ਰੌਪ-ਡਾਊਨ ਮੀਨੂ 'ਤੇ ਕਲਿੱਕ ਕਰੋ ਅਤੇ "Open with Codespaces" ਵਿਕਲਪ ਚੁਣੋ।
|
||||
ਇਸ ਸੈਂਪਲ ਨੂੰ Codespace ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
|
||||
1. Code ਡ੍ਰੌਪ-ਡਾਊਨ ਮੀਨੂ 'ਤੇ ਕਲਿੱਕ ਕਰੋ ਅਤੇ Open with Codespaces ਵਿਕਲਪ ਚੁਣੋ।
|
||||
2. ਪੈਨ ਦੇ ਹੇਠਾਂ + New codespace ਚੁਣੋ।
|
||||
ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, [GitHub ਡੌਕਯੂਮੈਂਟੇਸ਼ਨ](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ਵੇਖੋ।
|
||||
ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, [GitHub ਦਸਤਾਵੇਜ਼](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ਵੇਖੋ।
|
||||
|
||||
## VSCode ਰਿਮੋਟ - ਕੰਟੇਨਰਜ਼
|
||||
ਆਪਣੇ ਸਥਾਨਕ ਕੰਪਿਊਟਰ ਅਤੇ VSCode ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਰਿਪੋ ਨੂੰ ਕੰਟੇਨਰ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
|
||||
## VSCode Remote - Containers
|
||||
ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰਕੇ ਆਪਣੇ ਸਥਾਨਕ ਮਸ਼ੀਨ ਅਤੇ VSCode ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਰਿਪੋ ਨੂੰ ਇੱਕ ਕੰਟੇਨਰ ਵਿੱਚ ਖੋਲ੍ਹੋ:
|
||||
|
||||
1. ਜੇ ਇਹ ਪਹਿਲੀ ਵਾਰ ਹੈ ਕਿ ਤੁਸੀਂ ਵਿਕਾਸ ਕੰਟੇਨਰ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਤੁਹਾਡੀ ਸਿਸਟਮ ਪੂਰਕਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦੀ ਹੈ (ਜਿਵੇਂ ਕਿ Docker ਇੰਸਟਾਲ ਕੀਤਾ ਹੋਵੇ) [ਸ਼ੁਰੂਆਤੀ ਡੌਕਯੂਮੈਂਟੇਸ਼ਨ](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ਵਿੱਚ।
|
||||
1. ਜੇ ਇਹ ਪਹਿਲੀ ਵਾਰ ਹੈ ਕਿ ਤੁਸੀਂ ਡਿਵੈਲਪਮੈਂਟ ਕੰਟੇਨਰ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਤੁਹਾਡਾ ਸਿਸਟਮ ਪ੍ਰੀ-ਰਿਕਵਾਇਰਮੈਂਟਸ ਨੂੰ ਪੂਰਾ ਕਰਦਾ ਹੈ (ਜਿਵੇਂ Docker ਇੰਸਟਾਲ ਕੀਤਾ ਹੋਵੇ) [ਸ਼ੁਰੂਆਤ ਦਸਤਾਵੇਜ਼](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ਵਿੱਚ।
|
||||
|
||||
ਇਸ ਰਿਪੋਜ਼ਟਰੀ ਦੀ ਵਰਤੋਂ ਕਰਨ ਲਈ, ਤੁਸੀਂ ਇਸਨੂੰ ਇੱਕ ਅਲੱਗ Docker ਵਾਲਿਊਮ ਵਿੱਚ ਖੋਲ੍ਹ ਸਕਦੇ ਹੋ:
|
||||
|
||||
**ਨੋਟ**: ਇਹ ਅੰਦਰੂਨੀ ਤੌਰ 'ਤੇ Remote-Containers: **Clone Repository in Container Volume...** ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰੇਗਾ ਜੋ
|
||||
- [ਵੇਬ ਡਿਵੈਲਪਮੈਂਟ ਸ਼ੁਰੂਆਤੀ ਲਈ](https://aka.ms/webdev-beginners)
|
||||
- [IoT ਸ਼ੁਰੂਆਤੀ ਲਈ](https://aka.ms/iot-beginners)
|
||||
- [ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਸ਼ੁਰੂਆਤੀ ਲਈ](https://aka.ms/ml-beginners)
|
||||
- [XR ਡਿਵੈਲਪਮੈਂਟ ਸ਼ੁਰੂਆਤੀ ਲਈ](https://aka.ms/xr-dev-for-beginners)
|
||||
- [GitHub Copilot ਨਾਲ AI ਪੇਅਰਡ ਪ੍ਰੋਗਰਾਮਿੰਗ ਵਿੱਚ ਮਾਹਰ ਬਣੋ](https://aka.ms/GitHubCopilotAI)
|
||||
- [XR ਡਿਵੈਲਪਮੈਂਟ ਸ਼ੁਰੂਆਤੀ ਲਈ](https://github.com/microsoft/xr-development-for-beginners)
|
||||
- [GitHub Copilot ਨਾਲ C#/.NET ਡਿਵੈਲਪਰਜ਼ ਲਈ ਮਾਹਰ ਬਣੋ](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
|
||||
- [ਆਪਣੀ Copilot ਐਡਵੈਂਚਰ ਚੁਣੋ](https://github.com/microsoft/CopilotAdventures)
|
||||
**ਨੋਟ**: ਅੰਦਰੂਨੀ ਤੌਰ 'ਤੇ, ਇਹ Remote-Containers: **Clone Repository in Container Volume...** ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰੇਗਾ
|
||||
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
|
||||
---
|
||||
|
||||
### ਜਨਰੇਟਿਵ AI ਸੀਰੀਜ਼
|
||||
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
|
||||
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
|
||||
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
|
||||
|
||||
---
|
||||
|
||||
### ਮੁੱਖ ਸਿੱਖਣ
|
||||
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
|
||||
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
|
||||
|
||||
---
|
||||
|
||||
### Copilot ਸੀਰੀਜ਼
|
||||
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
|
||||
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
|
||||
|
||||
## ਮਦਦ ਪ੍ਰਾਪਤ ਕਰਨਾ
|
||||
|
||||
**ਮੁਸ਼ਕਲਾਂ ਆ ਰਹੀਆਂ ਹਨ?** ਸਧਾਰਨ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ ਲਈ ਸਾਡੀ [Troubleshooting Guide](TROUBLESHOOTING.md) ਚੈੱਕ ਕਰੋ।
|
||||
**ਕੋਈ ਸਮੱਸਿਆ ਆਈ?** ਸਾਡੇ [Troubleshooting Guide](TROUBLESHOOTING.md) ਵਿੱਚ ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ ਚੈੱਕ ਕਰੋ।
|
||||
|
||||
ਜੇ ਤੁਸੀਂ ਫਸ ਜਾਓ ਜਾਂ AI ਐਪਸ ਬਣਾਉਣ ਬਾਰੇ ਕੋਈ ਸਵਾਲ ਹੋਵੇ, ਤਾਂ ਸ਼ਾਮਲ ਹੋਵੋ:
|
||||
ਜੇ ਤੁਸੀਂ ਫਸ ਜਾਓ ਜਾਂ AI ਐਪ ਬਣਾਉਣ ਬਾਰੇ ਕੋਈ ਸਵਾਲ ਹੋਵੇ, ਤਾਂ ਸ਼ਾਮਲ ਹੋਵੋ:
|
||||
|
||||
[](https://aka.ms/foundry/discord)
|
||||
|
||||
ਜੇ ਤੁਹਾਡੇ ਕੋਲ ਉਤਪਾਦ ਫੀਡਬੈਕ ਹੈ ਜਾਂ ਬਣਾਉਣ ਦੌਰਾਨ ਕੋਈ ਗਲਤੀਆਂ ਆਉਂਦੀਆਂ ਹਨ, ਤਾਂ ਜਾਓ:
|
||||
ਜੇ ਤੁਹਾਨੂੰ ਉਤਪਾਦ ਫੀਡਬੈਕ ਦੇਣਾ ਹੈ ਜਾਂ ਬਣਾਉਣ ਦੌਰਾਨ ਕੋਈ ਗਲਤੀ ਆਉਂਦੀ ਹੈ ਤਾਂ ਜਾਓ:
|
||||
|
||||
[](https://aka.ms/foundry/forum)
|
||||
|
||||
---
|
||||
|
||||
**ਅਸਵੀਕਰਤਾ**:
|
||||
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਹਾਲਾਂਕਿ ਅਸੀਂ ਸਹੀਤਾ ਲਈ ਯਤਨਸ਼ੀਲ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁਚੱਜੇਪਣ ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਦਸਤਾਵੇਜ਼ ਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਲਿਖੀ ਗਈ ਮੂਲ ਕਾਪੀ ਨੂੰ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।
|
||||
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀ ਹੋਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁਚੀਤਤਾਵਾਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।
|
||||
Loading…
Reference in new issue