Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا لمدة 10 أسابيع يتضمن 20 درسًا حول علم البيانات. كل درس يحتوي على اختبارات قبل وبعد الدرس، تعليمات مكتوبة لإكمال الدرس، حلول، ومهام. تعتمد طريقة التدريس لدينا على المشاريع، مما يتيح لك التعلم أثناء البناء، وهي طريقة مثبتة لجعل المهارات الجديدة تترسخ.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://aka.ms/foundry/forum)
يسر فريق Azure Cloud Advocates في Microsoft أن يقدم منهجًا دراسيًا لمدة 10 أسابيع يتضمن 20 درسًا حول علم البيانات. يحتوي كل درس على اختبارات قبل وبعد الدرس، تعليمات مكتوبة لإكمال الدرس، الحل، وتكليف. تعتمد طريقة التدريس لدينا على المشاريع، مما يتيح لك التعلم أثناء البناء، وهي طريقة مثبتة لجعل المهارات الجديدة "تترسخ".
**🙏 شكر خاص 🙏 لمؤلفينا ومراجعي المحتوى من [سفراء الطلاب في Microsoft](https://studentambassadors.microsoft.com/)،** بما في ذلك Aaryan Arora، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
||
**إذا كنت ترغب في دعم لغات إضافية، يمكنك الاطلاع على القائمة [هنا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### انضم إلى مجتمعنا
[](https://aka.ms/ds4beginners/discord)
لدينا سلسلة تعلم مع الذكاء الاصطناعي مستمرة، تعرف على المزيد وانضم إلينا في [سلسلة تعلم مع الذكاء الاصطناعي](https://aka.ms/learnwithai/discord) من 18 - 30 سبتمبر، 2025. ستحصل على نصائح وحيل لاستخدام GitHub Copilot في علم البيانات.
لدينا سلسلة تعلم مع الذكاء الاصطناعي مستمرة، تعرف على المزيد وانضم إلينا في [سلسلة تعلم مع الذكاء الاصطناعي](https://aka.ms/learnwithai/discord) من 18 إلى 30 سبتمبر، 2025. ستحصل على نصائح وحيل لاستخدام GitHub Copilot في علم البيانات.

@ -39,13 +55,13 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
ابدأ باستخدام الموارد التالية:
- [صفحة مركز الطلاب](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) في هذه الصفحة، ستجد موارد للمبتدئين، حزم الطلاب وحتى طرق للحصول على قسيمة شهادة مجانية. هذه صفحة يجب أن تضيفها إلى إشاراتك المرجعية وتراجعها من وقت لآخر حيث نقوم بتغيير المحتوى شهريًا على الأقل.
- [سفراء الطلاب في Microsoft Learn](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) انضم إلى مجتمع عالمي من سفراء الطلاب، قد تكون هذه فرصتك للدخول إلى Microsoft.
- [سفراء الطلاب في Microsoft](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) انضم إلى مجتمع عالمي من سفراء الطلاب، قد تكون هذه فرصتك للدخول إلى Microsoft.
# البدء
> **المعلمون**: لقد قمنا [بتضمين بعض الاقتراحات](for-teachers.md) حول كيفية استخدام هذا المنهج الدراسي. نود سماع ملاحظاتكم [في منتدى المناقشة الخاص بنا](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[الطلاب](https://aka.ms/student-page)**: لاستخدام هذا المنهج الدراسي بمفردك، قم بعمل نسخة من المستودع بالكامل وأكمل التمارين بنفسك، بدءًا من اختبار ما قبل المحاضرة. ثم اقرأ المحاضرة وأكمل بقية الأنشطة. حاول إنشاء المشاريع من خلال فهم الدروس بدلاً من نسخ الكود الحل؛ ومع ذلك، يتوفر هذا الكود في مجلدات الحلول في كل درس قائم على المشروع. فكرة أخرى هي تشكيل مجموعة دراسة مع الأصدقاء ومراجعة المحتوى معًا. لمزيد من الدراسة، نوصي بـ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[الطلاب](https://aka.ms/student-page)**: لاستخدام هذا المنهج الدراسي بمفردك، قم بعمل نسخة من المستودع بالكامل وأكمل التمارين بنفسك، بدءًا من اختبار ما قبل المحاضرة. ثم اقرأ المحاضرة وأكمل بقية الأنشطة. حاول إنشاء المشاريع من خلال فهم الدروس بدلاً من نسخ كود الحل؛ ومع ذلك، يتوفر هذا الكود في مجلدات الحلول في كل درس قائم على المشروع. فكرة أخرى هي تشكيل مجموعة دراسية مع الأصدقاء ومراجعة المحتوى معًا. لمزيد من الدراسة، نوصي بـ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## تعرف على الفريق
@ -59,7 +75,7 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
لقد اخترنا مبدأين تعليميين أثناء بناء هذا المنهج الدراسي: التأكد من أنه قائم على المشاريع وأنه يتضمن اختبارات متكررة. بحلول نهاية هذه السلسلة، سيتعلم الطلاب المبادئ الأساسية لعلم البيانات، بما في ذلك المفاهيم الأخلاقية، إعداد البيانات، طرق مختلفة للعمل مع البيانات، تصور البيانات، تحليل البيانات، حالات استخدام علم البيانات في العالم الحقيقي، والمزيد.
بالإضافة إلى ذلك، يحدد اختبار منخفض المخاطر قبل الفصل نية الطالب نحو تعلم موضوع معين، بينما يضمن اختبار ثانٍ بعد الفصل مزيدًا من الاحتفاظ بالمعلومات. تم تصميم هذا المنهج ليكون مرنًا وممتعًا ويمكن أخذه بالكامل أو جزئيًا. تبدأ المشاريع صغيرة وتصبح أكثر تعقيدًا بحلول نهاية دورة الـ 10 أسابيع.
بالإضافة إلى ذلك، فإن الاختبار منخفض المخاطر قبل الفصل يوجه نية الطالب نحو تعلم موضوع معين، بينما يضمن الاختبار الثاني بعد الفصل المزيد من الاحتفاظ بالمعلومات. تم تصميم هذا المنهج ليكون مرنًا وممتعًا ويمكن أخذه بالكامل أو جزئيًا. تبدأ المشاريع صغيرة وتصبح أكثر تعقيدًا بحلول نهاية دورة الـ 10 أسابيع.
@ -69,11 +85,11 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
- فيديو إضافي اختياري
- اختبار تمهيدي قبل الدرس
- درس مكتوب
- بالنسبة للدروس القائمة على المشاريع، أدلة خطوة بخطوة حول كيفية بناء المشروع
- بالنسبة للدروس القائمة على المشاريع، إرشادات خطوة بخطوة حول كيفية بناء المشروع
- فحوصات المعرفة
- تحدي
- قراءة إضافية
- مهمة
- تكليف
- [اختبار بعد الدرس](https://ff-quizzes.netlify.app/en/)
> **ملاحظة حول الاختبارات**: جميع الاختبارات موجودة في مجلد Quiz-App، بإجمالي 40 اختبارًا يحتوي كل منها على ثلاثة أسئلة. يتم الربط بها من داخل الدروس، ولكن يمكن تشغيل تطبيق الاختبار محليًا أو نشره على Azure؛ اتبع التعليمات في مجلد `quiz-app`. يتم ترجمتها تدريجيًا.
@ -86,30 +102,30 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
| رقم الدرس | الموضوع | مجموعة الدروس | أهداف التعلم | الدرس المرتبط | المؤلف |
| 01 | تعريف علم البيانات | [المقدمة](1-Introduction/README.md) | تعلم المفاهيم الأساسية لعلم البيانات وكيف يرتبط بالذكاء الاصطناعي، التعلم الآلي، والبيانات الضخمة. | [الدرس](1-Introduction/01-defining-data-science/README.md) [الفيديو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | أخلاقيات علم البيانات | [المقدمة](1-Introduction/README.md) | مفاهيم أخلاقيات البيانات، التحديات والأطر. | [الدرس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 02 | أخلاقيات علم البيانات | [المقدمة](1-Introduction/README.md) | مفاهيم أخلاقيات البيانات، التحديات، والأطر. | [الدرس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | تعريف البيانات | [المقدمة](1-Introduction/README.md) | كيفية تصنيف البيانات ومصادرها الشائعة. | [الدرس](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | مقدمة في الإحصاء والاحتمالات | [المقدمة](1-Introduction/README.md) | التقنيات الرياضية للإحصاء والاحتمالات لفهم البيانات. | [الدرس](1-Introduction/04-stats-and-probability/README.md) [الفيديو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | العمل مع البيانات العلائقية | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة في البيانات العلائقية وأساسيات استكشاف وتحليل البيانات العلائقية باستخدام لغة الاستعلام الهيكلية، المعروفة بـ SQL (تُنطق "سي-كويل"). | [الدرس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | العمل مع بيانات NoSQL | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة في البيانات غير العلائقية، أنواعها المختلفة وأساسيات استكشاف وتحليل قواعد بيانات الوثائق. | [الدرس](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 05 | العمل مع البيانات العلائقية | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة عن البيانات العلائقية وأساسيات استكشاف وتحليل البيانات العلائقية باستخدام لغة الاستعلام الهيكلية، المعروفة بـ SQL (تُنطق "سي-كويل"). | [الدرس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | العمل مع بيانات NoSQL | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة عن البيانات غير العلائقية، أنواعها المختلفة، وأساسيات استكشاف وتحليل قواعد بيانات الوثائق. | [الدرس](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | العمل مع بايثون | [العمل مع البيانات](2-Working-With-Data/README.md) | أساسيات استخدام بايثون لاستكشاف البيانات باستخدام مكتبات مثل Pandas. يُفضل وجود فهم أساسي لبرمجة بايثون. | [الدرس](2-Working-With-Data/07-python/README.md) [الفيديو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | إعداد البيانات | [العمل مع البيانات](2-Working-With-Data/README.md) | مواضيع حول تقنيات تنظيف وتحويل البيانات للتعامل مع تحديات البيانات المفقودة أو غير الدقيقة أو غير المكتملة. | [الدرس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | تصور الكميات | [تصور البيانات](3-Data-Visualization/README.md) | تعلم كيفية استخدام Matplotlib لتصور بيانات الطيور 🦆 | [الدرس](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | تصور توزيع البيانات | [تصور البيانات](3-Data-Visualization/README.md) | تصور الملاحظات والاتجاهات ضمن نطاق معين. | [الدرس](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | تصور توزيع البيانات | [تصور البيانات](3-Data-Visualization/README.md) | تصور الملاحظات والاتجاهات ضمن فترة زمنية. | [الدرس](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | تصور العلاقات | [تصور البيانات](3-Data-Visualization/README.md) | تصور الروابط والارتباطات بين مجموعات البيانات ومتغيراتها. | [الدرس](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | تصورات ذات معنى | [تصور البيانات](3-Data-Visualization/README.md) | تقنيات وإرشادات لجعل تصوراتك ذات قيمة لحل المشكلات بشكل فعال واستخلاص الأفكار. | [الدرس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | مقدمة في دورة حياة علم البيانات | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | مقدمة في دورة حياة علم البيانات وخطوتها الأولى في الحصول على البيانات واستخراجها. | [الدرس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 14 | مقدمة في دورة حياة علم البيانات | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | مقدمة في دورة حياة علم البيانات وخطوتها الأولى في جمع واستخراج البيانات. | [الدرس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | التحليل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | تركز هذه المرحلة من دورة حياة علم البيانات على تقنيات تحليل البيانات. | [الدرس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | التواصل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | تركز هذه المرحلة من دورة حياة علم البيانات على تقديم الأفكار المستخلصة من البيانات بطريقة تسهل على صناع القرار فهمها. | [الدرس](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تقدم هذه السلسلة من الدروس علم البيانات في السحابة وفوائده. | [الدرس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 18 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تدريب النماذج باستخدام أدوات Low Code. |[الدرس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 18 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تدريب النماذج باستخدام أدوات منخفضة الكود. |[الدرس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 19 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | نشر النماذج باستخدام Azure Machine Learning Studio. | [الدرس](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 20 | علم البيانات في العالم الحقيقي | [في العالم الحقيقي](6-Data-Science-In-Wild/README.md) | مشاريع تعتمد على علم البيانات في العالم الحقيقي. | [الدرس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
اتبع هذه الخطوات لفتح هذا المثال في Codespace:
1. انقر على القائمة المنسدلة Code واختر خيار Open with Codespaces.
1. انقر على القائمة المنسدلة "Code" واختر خيار "Open with Codespaces".
2. اختر + New codespace في أسفل اللوحة.
لمزيد من المعلومات، تحقق من [وثائق GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
@ -120,17 +136,17 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
لاستخدام هذا المستودع، يمكنك فتحه إما في وحدة تخزين Docker معزولة:
**ملاحظة**: في الخلفية، سيتم استخدام أمر Remote-Containers: **Clone Repository in Container Volume...** لنسخ الكود المصدر في وحدة تخزين Docker بدلاً من نظام الملفات المحلي. [الوحدات التخزينية](https://docs.docker.com/storage/volumes/) هي الآلية المفضلة للحفاظ على بيانات الحاوية.
**ملاحظة**: في الخلفية، سيتم استخدام أمر Remote-Containers: **Clone Repository in Container Volume...** لاستنساخ الكود المصدر في وحدة تخزين Docker بدلاً من نظام الملفات المحلي. [الوحدات التخزينية](https://docs.docker.com/storage/volumes/) هي الآلية المفضلة للحفاظ على بيانات الحاوية.
أو فتح نسخة محلية مستنسخة أو محملة من المستودع:
أو فتح نسخة مستنسخة أو محملة محليًا من المستودع:
- قم باستنساخ هذا المستودع إلى نظام الملفات المحلي.
- استنسخ هذا المستودع إلى نظام الملفات المحلي لديك.
- اضغط على F1 واختر الأمر **Remote-Containers: Open Folder in Container...**.
- اختر النسخة المستنسخة من هذا المجلد، انتظر حتى تبدأ الحاوية، وجرب الأمور.
## الوصول دون اتصال
يمكنك تشغيل هذا التوثيق دون اتصال باستخدام [Docsify](https://docsify.js.org/#/). قم بعمل Fork لهذا المستودع، [قم بتثبيت Docsify](https://docsify.js.org/#/quickstart) على جهازك المحلي، ثم في المجلد الجذري لهذا المستودع، اكتب `docsify serve`. سيتم تشغيل الموقع على المنفذ 3000 على localhost: `localhost:3000`.
يمكنك تشغيل هذا التوثيق دون اتصال باستخدام [Docsify](https://docsify.js.org/#/). قم بعمل Fork لهذا المستودع، [ثبت Docsify](https://docsify.js.org/#/quickstart) على جهازك المحلي، ثم في المجلد الجذري لهذا المستودع، اكتب `docsify serve`. سيتم تشغيل الموقع على المنفذ 3000 على جهازك المحلي: `localhost:3000`.
> ملاحظة، لن يتم عرض دفاتر الملاحظات عبر Docsify، لذا عندما تحتاج إلى تشغيل دفتر ملاحظات، قم بذلك بشكل منفصل في VS Code باستخدام نواة Python.
@ -138,6 +154,8 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
فريقنا ينتج مناهج أخرى! تحقق من:
- [Edge AI للمبتدئين](https://aka.ms/edgeai-for-beginners)
- [الذكاء الاصطناعي التوليدي باستخدام JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -158,3 +176,5 @@ Azure Cloud Advocates في Microsoft يقدمون منهجًا دراسيًا ل
---
**إخلاء المسؤولية**:
تم ترجمة هذا المستند باستخدام خدمة الترجمة بالذكاء الاصطناعي [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو عدم دقة. يجب اعتبار المستند الأصلي بلغته الأصلية المصدر الرسمي. للحصول على معلومات حاسمة، يُوصى بالترجمة البشرية الاحترافية. نحن غير مسؤولين عن أي سوء فهم أو تفسيرات خاطئة ناتجة عن استخدام هذه الترجمة.
Azure Cloud Advocates в Microsoft с удоволствие предлагат 10-седмична, 20-урочна учебна програма, посветена на науката за данни. Всеки урок включва предварителни и последващи тестове, писмени инструкции за изпълнение на урока, решение и задача. Нашият подход, базиран на проекти, ви позволява да учите, докато създавате, доказан метод за усвояване на нови умения.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Екипът на Azure Cloud Advocates в Microsoft с удоволствие предлага 10-седмична учебна програма с 20 урока, посветена на науката за данни. Всеки урок включва тестове преди и след урока, писмени инструкции за изпълнение на задачите, решения и задания. Нашият подход, базиран на проекти, ви позволява да учите, докато създавате, което е доказан начин за усвояване на нови умения.
||
|:---:|
@ -21,16 +38,16 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
### 🌐 Поддръжка на много езици
#### Поддържани чрез GitHub Action (Автоматизирано и винаги актуално)
#### Поддържано чрез GitHub Action (Автоматично и винаги актуално)
**Ако желаете да бъдат добавени допълнителни езици, списъкът с поддържани езици е [тук](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Ако желаете да добавите допълнителни преводи, списъкът с поддържани езици е [тук](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Присъединете се към нашата общност
[](https://aka.ms/ds4beginners/discord)
Имаме текуща серия за обучение с AI в Discord, научете повече и се присъединете към нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) от 18 до 30 септември 2025 г. Ще получите съвети и трикове за използване на GitHub Copilot за наука за данни.
Имаме текуща серия за обучение с AI в Discord. Научете повече и се присъединете към нас в [Learn with AI Series](https://aka.ms/learnwithai/discord) от 18 до 30 септември 2025 г. Ще получите съвети и трикове за използване на GitHub Copilot за наука за данни.

@ -38,14 +55,14 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
Започнете с тези ресурси:
- [Студентска страница](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На тази страница ще намерите ресурси за начинаещи, студентски пакети и дори начини да получите безплатен ваучер за сертификат. Това е страница, която трябва да запазите и проверявате от време на време, тъй като съдържанието се обновява поне веднъж месечно.
- [Студентска страница](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На тази страница ще намерите ресурси за начинаещи, студентски пакети и дори начини да получите безплатен ваучер за сертификат. Това е страница, която си струва да запазите и да проверявате редовно, тъй като съдържанието се обновява поне веднъж месечно.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Присъединете се към глобална общност от студентски посланици, това може да бъде вашият път към Microsoft.
# Започнете
> **Учители**: включили сме [някои предложения](for-teachers.md) за това как да използвате тази учебна програма. Ще се радваме на вашата обратна връзка [в нашия форум за дискусии](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Студенти](https://aka.ms/student-page)**: за да използвате тази учебна програма самостоятелно, клонирайте цялото хранилище и изпълнете упражненията самостоятелно, започвайки с тест преди лекцията. След това прочетете лекцията и изпълнете останалите дейности. Опитайте се да създадете проектите, като разбирате уроците, вместо да копирате кода на решенията; въпреки това, този код е наличен в папките /solutions във всеки урок, базиран на проект. Друга идея е да създадете учебна група с приятели и да преминете през съдържанието заедно. За допълнително обучение препоръчваме [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Студенти](https://aka.ms/student-page)**: за да използвате тази учебна програма самостоятелно, клонирайте целия репозиторий и изпълнете упражненията самостоятелно, започвайки с тест преди лекцията. След това прочетете лекцията и завършете останалите дейности. Опитайте се да създадете проектите, като разбирате уроците, вместо да копирате кода на решенията; въпреки това, този код е наличен в папките /solutions във всеки урок, базиран на проект. Друга идея е да сформирате учебна група с приятели и да преминете през съдържанието заедно. За допълнително обучение препоръчваме [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Запознайте сес екипа
@ -57,9 +74,9 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
## Педагогика
Избрахме два педагогически принципа при създаването на тази учебна програма: да гарантираме, че тя е базирана на проекти и че включва чести тестове. До края на тази серия студентите ще са научили основни принципи на науката за данни, включително етични концепции, подготовка на данни, различни начини за работа с данни, визуализация на данни, анализ на данни, реални случаи на използване на науката за данни и други.
Избрахме два педагогически принципа при създаването на тази учебна програма: да бъде базирана на проекти и да включва чести тестове. До края на тази серия студентите ще са научили основни принципи на науката за данни, включително етични концепции, подготовка на данни, различни начини за работа с данни, визуализация на данни, анализ на данни, реални приложения на науката за данни и други.
Освен това, тест с нисък риск преди урока насочва вниманието на студента към изучаването на дадена тема, докато втори тест след урока осигурява допълнително задържане на знанията. Тази учебна програма е проектирана да бъде гъвкава и забавна и може да бъде взета изцяло или частично. Проектите започват малки и стават все по-сложни до края на 10-седмичния цикъл.
Освен това, тест с нисък риск преди урока насочва вниманието на студента към изучаването на дадена тема, докато втори тест след урока осигурява допълнително задържане на знанията. Тази учебна програма е проектирана да бъде гъвкава и забавна и може да се използва изцяло или частично. Проектите започват малки и стават все по-сложни до края на 10-седмичния цикъл.
> Намерете нашия [Кодекс за поведение](CODE_OF_CONDUCT.md), [Принос](CONTRIBUTING.md), [Насоки за превод](TRANSLATIONS.md). Очакваме вашата конструктивна обратна връзка!
@ -73,22 +90,22 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
- Проверка на знанията
- Предизвикателство
- Допълнително четене
- Задача
- Задание
- [Тест след урока](https://ff-quizzes.netlify.app/en/)
> **Бележка относно тестовете**: Всички тестове са включени в папката Quiz-App, общо 40 теста с по три въпроса всеки. Теса свързани от уроците, но приложението за тестове може да бъде стартирано локално или разположено в Azure; следвайте инструкциите в папката `quiz-app`. Те постепенно се локализират.
> **Бележка за тестовете**: Всички тестове се намират в папката Quiz-App, общо 40 теста с по три въпроса всеки. Теса свързани от уроците, но приложението за тестове може да се изпълнява локално или да се разположи в Azure; следвайте инструкциите в папката `quiz-app`. Те постепенно се локализират.
| 01 | Определяне на науката за данни | [Въведение](1-Introduction/README.md) | Научете основните концепции за науката за данни и как тя е свързана с изкуствения интелект, машинното обучение и големите данни. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Определяне на науката за данни | [Въведение](1-Introduction/README.md) | Научете основните концепции зад науката за данни и как тя е свързана с изкуствения интелект, машинното обучение и големите данни. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Етика в науката за данни | [Въведение](1-Introduction/README.md) | Концепции за етика на данните, предизвикателства и рамки. | [урок](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Определяне на данни | [Въведение](1-Introduction/README.md) | Как се класифицират данните и какви сатехните често срещани източници. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Въведение в статистиката и вероятностите | [Въведение](1-Introduction/README.md) | Математически техники за вероятности и статистика за разбиране на данните. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 03 | Определяне на данни | [Въведение](1-Introduction/README.md) | Как се класифицират данните и техните често срещани източници. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Въведение в статистиката и вероятностите | [Въведение](1-Introduction/README.md) | Математическите техники на вероятностите и статистиката за разбиране на данните. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Работа с релационни данни | [Работа с данни](2-Working-With-Data/README.md) | Въведение в релационните данни и основите на изследването и анализа на релационни данни с езика за структурирани заявки, известен като SQL (произнася се „си-квел“). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Работа с NoSQL данни | [Работа с данни](2-Working-With-Data/README.md) | Въведение в нерелационните данни, техните различни типове и основите на изследването и анализа на документни бази данни. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Работа с Python | [Работа с данни](2-Working-With-Data/README.md) | Основи на използването на Python за изследване на данни с библиотеки като Pandas. Препоръчва се основно разбиране на програмирането с Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
@ -102,9 +119,9 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
| 15 | Анализиране | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Тази фаза от жизнения цикъл на науката за данни се фокусира върху техники за анализ на данни. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Комуникация | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Тази фаза от жизнения цикъл на науката за данни се фокусира върху представянето на прозренията от данните по начин, който улеснява разбирането от страна на вземащите решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Тази серия от уроци представя науката за данни в облака и нейните предимства. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 18 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Обучение на модели синструменти за нисък код. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 18 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Обучение на модели спомощта на инструменти с нисък код. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 19 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Деплойване на модели с Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 20 | Наука за данни в реалния свят | [В реалния свят](6-Data-Science-In-Wild/README.md) | Проекти, базирани на науката за данни, в реалния свят. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Наука за данни в реалния свят | [В реалния свят](6-Data-Science-In-Wild/README.md) | Проекти, водени от науката за данни, в реалния свят. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -132,16 +149,18 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
Можете да стартирате тази документация офлайн, използвайки [Docsify](https://docsify.js.org/#/). Форкнете това хранилище, [инсталирайте Docsify](https://docsify.js.org/#/quickstart) на вашия локален компютър, след това в основната папка на това хранилище въведете `docsify serve`. Уебсайтът ще бъде достъпен на порт 3000 на вашия localhost: `localhost:3000`.
> Забележка: тетрадките няма да бъдат визуализирани чрез Docsify, така че когато трябва да стартирате тетрадка, направете го отделно в VS Code, използвайки Python kernel.
> Забележка, тетрадките няма да бъдат визуализирани чрез Docsify, така че когато трябва да стартирате тетрадка, направете го отделно в VS Code, използвайки Python kernel.
## Други учебни програми
Нашият екип създава и други учебни програми! Вижте:
- [Generative AI за начинаещи](https://aka.ms/genai-beginners)
- [Generative AI за начинаещи .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI с JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI с Java](https://aka.ms/genaijava)
- [Edge AI за начинаещи](https://aka.ms/edgeai-for-beginners)
- [AI агенти за начинаещи](https://aka.ms/ai-agents-beginners)
- [Генеративен AI за начинаещи](https://aka.ms/genai-beginners)
- [Генеративен AI за начинаещи .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Генеративен AI с JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Генеративен AI с Java](https://aka.ms/genaijava)
- [AI за начинаещи](https://aka.ms/ai-beginners)
- [Наука за данни за начинаещи](https://aka.ms/datascience-beginners)
- [Bash за начинаещи](https://github.com/microsoft/bash-for-beginners)
@ -154,7 +173,9 @@ Azure Cloud Advocates в Microsoft с удоволствие предлагат
- [Овладяване на GitHub Copilot за AI програмиране в двойка](https://aka.ms/GitHubCopilotAI)
- [XR разработка за начинаещи](https://github.com/microsoft/xr-development-for-beginners)
- [Овладяване на GitHub Copilot за C#/.NET разработчици](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Изберете своето приключение с Copilot](https://github.com/microsoft/CopilotAdventures)
- [Изберете своето собствено приключение с Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Отказ от отговорност**:
Този документ е преведен с помощта на AI услуга за превод [Co-op Translator](https://github.com/Azure/co-op-translator). Въпреки че се стремим към точност, моля, имайте предвид, че автоматизираните преводи може да съдържат грешки или неточности. Оригиналният документ на неговия роден език трябва да се счита за авторитетен източник. За критична информация се препоръчва професионален човешки превод. Ние не носим отговорност за недоразумения или погрешни интерпретации, произтичащи от използването на този превод.
# ডেটা সায়েন্সের জন্য শিক্ষার্থীদের - একটি পাঠক্রম
Azure Cloud Advocates Microsoft থেকে ১০ সপ্তাহের, ২০টি পাঠের একটি পাঠক্রম উপস্থাপন করতে পেরে আনন্দিত। প্রতিটি পাঠে রয়েছে প্রাক-পাঠ এবং পর-পাঠ কুইজ, লিখিত নির্দেশনা, সমাধান এবং একটি অ্যাসাইনমেন্ট। আমাদের প্রকল্প-ভিত্তিক শিক্ষাদান পদ্ধতি আপনাকে শেখার সময় তৈরি করতে সাহায্য করে, যা নতুন দক্ষতা অর্জনের একটি প্রমাণিত উপায়।
[](https://aka.ms/foundry/forum)
মাইক্রোসফটের Azure Cloud Advocates একটি ১০-সপ্তাহের, ২০-লেসনের পাঠক্রম উপস্থাপন করতে পেরে আনন্দিত যা সম্পূর্ণ ডেটা সায়েন্স নিয়ে। প্রতিটি পাঠে প্রাক-পাঠ এবং পর-পাঠ কুইজ, লিখিত নির্দেশনা, সমাধান এবং একটি অ্যাসাইনমেন্ট অন্তর্ভুক্ত রয়েছে। আমাদের প্রকল্প-ভিত্তিক শিক্ষণ পদ্ধতি আপনাকে শেখার সময় তৈরি করতে সাহায্য করে, যা নতুন দক্ষতা অর্জনের একটি প্রমাণিত উপায়।
**যদি আপনি অতিরিক্ত ভাষার অনুবাদ চান, সমর্থিত ভাষার তালিকা [এখানে](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**যদি আপনি অতিরিক্ত অনুবাদ চান, সমর্থিত ভাষার তালিকা [এখানে](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### আমাদের সম্প্রদায়ে যোগ দিন
[](https://aka.ms/ds4beginners/discord)
আমাদের Discord-এ AI শেখার সিরিজ চলছে, আরও জানুন এবং আমাদের সাথে যোগ দিন [Learn with AI Series](https://aka.ms/learnwithai/discord) ১৮ - ৩০ সেপ্টেম্বর, ২০২৫। আপনি GitHub Copilot ব্যবহার করে ডেটা সায়েন্সের টিপস এবং কৌশল শিখতে পারবেন।
আমাদের Discord-এ AI শেখার সিরিজ চলছে, আরও জানুন এবং আমাদের সাথে যোগ দিন [AI শেখার সিরিজ](https://aka.ms/learnwithai/discord) ১৮ - ৩০ সেপ্টেম্বর, ২০২৫। আপনি GitHub Copilot ব্যবহার করে ডেটা সায়েন্সের টিপস এবং কৌশল শিখতে পারবেন।

- [Student Hub পৃষ্ঠা](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) এই পৃষ্ঠায় আপনি শিক্ষার্থীদের জন্য প্রাথমিক সম্পদ, স্টুডেন্ট প্যাক এবং এমনকি বিনামূল্যে সার্টিফিকেট ভাউচার পাওয়ার উপায় খুঁজে পাবেন। এটি একটি পৃষ্ঠা যা আপনি বুকমার্ক করতে এবং সময়ে সময়ে পরীক্ষা করতে চাইবেন কারণ আমরা অন্তত মাসিকভাবে বিষয়বস্তু পরিবর্তন করি।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) একটি বৈশ্বিক শিক্ষার্থী অ্যাম্বাসেডর সম্প্রদায়ে যোগ দিন, এটি Microsoft-এ আপনার প্রবেশের পথ হতে পারে।
- [স্টুডেন্ট হাব পৃষ্ঠা](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) এই পৃষ্ঠায়, আপনি শিক্ষার্থীদের জন্য প্রাথমিক সম্পদ, স্টুডেন্ট প্যাক এবং এমনকি বিনামূল্যে সার্টিফিকেট ভাউচার পাওয়ার উপায় খুঁজে পাবেন। এটি একটি পৃষ্ঠা যা আপনি বুকমার্ক করতে এবং সময়ে সময়ে পরীক্ষা করতে চাইবেন কারণ আমরা অন্তত মাসিকভাবে বিষয়বস্তু পরিবর্তন করি।
- [মাইক্রোসফট লার্ন স্টুডেন্ট অ্যাম্বাসেডর](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) একটি বৈশ্বিক শিক্ষার্থী অ্যাম্বাসেডর সম্প্রদায়ে যোগ দিন, এটি মাইক্রোসফটে আপনার প্রবেশের পথ হতে পারে।
# শুরু করা
> **শিক্ষকগণ**: আমরা [কিছু পরামর্শ অন্তর্ভুক্ত করেছি](for-teachers.md) কীভাবে এই পাঠক্রমটি ব্যবহার করবেন। আমাদের [আলোচনা ফোরামে](https://github.com/microsoft/Data-Science-For-Beginners/discussions) আপনার মতামত জানাতে ভালো লাগবে!
> **শিক্ষকগণ**: আমরা এই পাঠক্রমটি কীভাবে ব্যবহার করবেন তার জন্য [কিছু পরামর্শ অন্তর্ভুক্ত করেছি](for-teachers.md)। আমাদের [আলোচনা ফোরামে](https://github.com/microsoft/Data-Science-For-Beginners/discussions) আপনার মতামত জানাতে ভালো লাগবে!
> **[শিক্ষার্থীরা](https://aka.ms/student-page)**: এই পাঠক্রমটি নিজের জন্য ব্যবহার করতে, পুরো রিপোজিটরি ফর্ক করুন এবং নিজের জন্য অনুশীলনগুলি সম্পূর্ণ করুন, প্রাক-লেকচার কুইজ দিয়ে শুরু করুন। তারপর লেকচার পড়ুন এবং বাকি কার্যক্রম সম্পূর্ণ করুন। পাঠগুলি বুঝে প্রকল্পগুলি তৈরি করার চেষ্টা করুন, সমাধান কোডটি কপি না করে; তবে, সেই কোডটি প্রতিটি প্রকল্প-ভিত্তিক পাঠের /solutions ফোল্ডারে উপলব্ধ। আরেকটি ধারণা হতে পারে বন্ধুদের সাথে একটি স্টাডি গ্রুপ তৈরি করা এবং একসাথে বিষয়বস্তুটি পড়া। আরও অধ্যয়নের জন্য, আমরা [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) সুপারিশ করি।
> **[শিক্ষার্থীরা](https://aka.ms/student-page)**: এই পাঠক্রমটি নিজেরাই ব্যবহার করতে, পুরো রিপোজিটরি ফর্ক করুন এবং নিজেরাই অনুশীলনগুলি সম্পূর্ণ করুন, একটি প্রাক-লেকচার কুইজ দিয়ে শুরু করুন। তারপর লেকচারটি পড়ুন এবং বাকি কার্যক্রমগুলি সম্পূর্ণ করুন। পাঠগুলি বুঝে প্রকল্পগুলি তৈরি করার চেষ্টা করুন, সমাধান কোডটি কপি না করে; তবে, সেই কোডটি প্রতিটি প্রকল্প-ভিত্তিক পাঠের /solutions ফোল্ডারে উপলব্ধ। আরেকটি ধারণা হতে পারে বন্ধুদের সাথে একটি স্টাডি গ্রুপ তৈরি করা এবং একসাথে বিষয়বস্তুটি পড়া। আরও অধ্যয়নের জন্য, আমরা [মাইক্রোসফট লার্ন](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) সুপারিশ করি।
@ -55,11 +71,11 @@ Azure Cloud Advocates Microsoft থেকে ১০ সপ্তাহের,
> 🎥 উপরের ছবিতে ক্লিক করুন প্রকল্প এবং এটি তৈরি করা ব্যক্তিদের সম্পর্কে একটি ভিডিও দেখতে!
## শিক্ষাদান পদ্ধতি
## শিক্ষণ পদ্ধতি
আমরা এই পাঠক্রমটি তৈরি করার সময় দুটি শিক্ষাদান নীতি বেছে নিয়েছি: এটি প্রকল্প-ভিত্তিক নিশ্চিত করা এবং এটি ঘন ঘন কুইজ অন্তর্ভুক্ত করা। এই সিরিজের শেষে, শিক্ষার্থীরা ডেটা সায়েন্সের মৌলিক নীতিগুলি শিখবে, যার মধ্যে রয়েছে নৈতিক ধারণা, ডেটা প্রস্তুতি, ডেটা নিয়ে কাজ করার বিভিন্ন উপায়, ডেটা ভিজ্যুয়ালাইজেশন, ডেটা বিশ্লেষণ, ডেটা সায়েন্সের বাস্তব জীবনের ব্যবহার এবং আরও অনেক কিছু।
আমরা এই পাঠক্রমটি তৈরি করার সময় দুটি শিক্ষণ পদ্ধতি বেছে নিয়েছি: এটি প্রকল্প-ভিত্তিক নিশ্চিত করা এবং এতে ঘন ঘন কুইজ অন্তর্ভুক্ত করা। এই সিরিজের শেষে, শিক্ষার্থীরা ডেটা সায়েন্সের মৌলিক নীতিগুলি শিখবে, যার মধ্যে রয়েছে নৈতিক ধারণা, ডেটা প্রস্তুতি, ডেটা নিয়ে কাজ করার বিভিন্ন উপায়, ডেটা ভিজ্যুয়ালাইজেশন, ডেটা বিশ্লেষণ, ডেটা সায়েন্সের বাস্তব জীবনের ব্যবহার এবং আরও অনেক কিছু।
এছাড়াও, একটি ক্লাসের আগে একটি কম-ঝুঁকির কুইজ শিক্ষার্থীর মনোযোগ একটি বিষয় শেখার দিকে সেট করে, যখন ক্লাসের পরে একটি দ্বিতীয় কুইজ আরও ধারণ নিশ্চিত করে। এই পাঠক্রমটি নমনীয় এবং মজাদার করার জন্য ডিজাইন করা হয়েছে এবং এটি সম্পূর্ণ বা আংশিকভাবে নেওয়া যেতে পারে। প্রকল্পগুলি ছোট থেকে শুরু হয় এবং ১০ সপ্তাহের চক্রের শেষে ক্রমশ জটিল হয়ে ওঠে।
এছাড়াও, একটি ক্লাসের আগে একটি কম ঝুঁকির কুইজ শিক্ষার্থীর একটি বিষয় শেখার উদ্দেশ্য স্থাপন করে, যখন ক্লাসের পরে একটি দ্বিতীয় কুইজ আরও ধারণ নিশ্চিত করে। এই পাঠক্রমটি নমনীয় এবং মজাদার করার জন্য ডিজাইন করা হয়েছে এবং এটি সম্পূর্ণ বা আংশিকভাবে নেওয়া যেতে পারে। প্রকল্পগুলি ছোট থেকে শুরু হয় এবং ১০ সপ্তাহের চক্রের শেষে ক্রমশ জটিল হয়ে ওঠে।
> আমাদের [আচরণবিধি](CODE_OF_CONDUCT.md), [অবদান](CONTRIBUTING.md), [অনুবাদ](TRANSLATIONS.md) নির্দেশিকা খুঁজুন। আমরা আপনার গঠনমূলক মতামতকে স্বাগত জানাই!
@ -76,85 +92,91 @@ Azure Cloud Advocates Microsoft থেকে ১০ সপ্তাহের,
> **কুইজ সম্পর্কে একটি নোট**: সমস্ত কুইজ Quiz-App ফোল্ডারে অন্তর্ভুক্ত, মোট ৪০টি কুইজ, প্রতিটিতে তিনটি প্রশ্ন। এগুলি পাঠের মধ্যে থেকে লিঙ্ক করা হয়েছে, তবে কুইজ অ্যাপটি স্থানীয়ভাবে চালানো বা Azure-এ ডিপ্লয় করা যেতে পারে; `quiz-app` ফোল্ডারে নির্দেশনা অনুসরণ করুন। এগুলি ধীরে ধীরে স্থানীয়করণ করা হচ্ছে।
> **কুইজ সম্পর্কে একটি নোট**: সমস্ত কুইজ Quiz-App ফোল্ডারে অন্তর্ভুক্ত রয়েছে, মোট ৪০টি কুইজ, প্রতিটিতে তিনটি প্রশ্ন। এগুলি পাঠের মধ্যে থেকে লিঙ্ক করা হয়েছে, তবে কুইজ অ্যাপটি স্থানীয়ভাবে চালানো বা Azure-এ ডিপ্লয় করা যেতে পারে; `quiz-app` ফোল্ডারে নির্দেশনা অনুসরণ করুন। এগুলি ধীরে ধীরে স্থানীয়করণ করা হচ্ছে।
## পাঠসমূহ
||
| 03 | ডেটার সংজ্ঞা | [ভূমিকা](1-Introduction/README.md) | ডেটা কীভাবে শ্রেণীবদ্ধ হয় এবং এর সাধারণ উৎসগুলি। | [লেসন](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | পরিসংখ্যান ও সম্ভাবনার পরিচিতি | [ভূমিকা](1-Introduction/README.md) | ডেটা বোঝার জন্য সম্ভাবনা এবং পরিসংখ্যানের গাণিতিক কৌশল। | [লেসন](1-Introduction/04-stats-and-probability/README.md) [ভিডিও](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | রিলেশনাল ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | রিলেশনাল ডেটার পরিচিতি এবং SQL (যা "see-quell" নামে উচ্চারিত হয়) ব্যবহার করে রিলেশনাল ডেটা অন্বেষণ ও বিশ্লেষণের মৌলিক বিষয়। | [লেসন](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | নন-রিলেশনাল ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | নন-রিলেশনাল ডেটার পরিচিতি, এর বিভিন্ন প্রকার এবং ডকুমেন্ট ডেটাবেস অন্বেষণ ও বিশ্লেষণের মৌলিক বিষয়। | [লেসন](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | পাইথনের সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | পাইথন ব্যবহার করে ডেটা অন্বেষণের মৌলিক বিষয়, যেমন Pandas লাইব্রেরি। পাইথন প্রোগ্রামিংয়ের প্রাথমিক ধারণা সুপারিশ করা হয়। | [লেসন](2-Working-With-Data/07-python/README.md) [ভিডিও](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ডেটা প্রস্তুতি | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | ডেটা পরিষ্কার ও রূপান্তরের কৌশল, যেমন অনুপস্থিত, ভুল বা অসম্পূর্ণ ডেটা পরিচালনা। | [লেসন](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 16 | যোগাযোগ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা থেকে অন্তর্দৃষ্টি উপস্থাপন করার কৌশল, যা সিদ্ধান্ত গ্রহণকারীদের বোঝা সহজ করে। | [লেসন](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | ক্লাউডে ডেটা সায়েন্স এবং এর সুবিধাগুলির পরিচিতি। | [লেসন](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 01 | ডেটা সায়েন্স সংজ্ঞায়িত করা | [ভূমিকা](1-Introduction/README.md) | ডেটা সায়েন্সের মৌলিক ধারণা এবং এটি কীভাবে কৃত্রিম বুদ্ধিমত্তা, মেশিন লার্নিং এবং বিগ ডেটার সাথে সম্পর্কিত তা শিখুন। | [লেসন](1-Introduction/01-defining-data-science/README.md) [ভিডিও](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | ডেটা সংজ্ঞায়িত করা | [ভূমিকা](1-Introduction/README.md) | ডেটা কীভাবে শ্রেণীবদ্ধ হয় এবং এর সাধারণ উৎস। | [লেসন](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | পরিসংখ্যান ও সম্ভাবনার ভূমিকা | [ভূমিকা](1-Introduction/README.md) | ডেটা বোঝার জন্য সম্ভাবনা এবং পরিসংখ্যানের গাণিতিক কৌশল। | [লেসন](1-Introduction/04-stats-and-probability/README.md) [ভিডিও](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | সম্পর্কিত ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | সম্পর্কিত ডেটার ভূমিকা এবং SQL (যা "see-quell" নামে পরিচিত) ব্যবহার করে সম্পর্কিত ডেটা অন্বেষণ ও বিশ্লেষণের মৌলিক বিষয়। | [লেসন](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | অ-সম্পর্কিত ডেটার ভূমিকা, এর বিভিন্ন প্রকার এবং ডকুমেন্ট ডেটাবেস অন্বেষণ ও বিশ্লেষণের মৌলিক বিষয়। | [লেসন](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | পাইথনের সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | Pandas-এর মতো লাইব্রেরি ব্যবহার করে ডেটা অন্বেষণের জন্য পাইথন ব্যবহারের মৌলিক বিষয়। পাইথন প্রোগ্রামিংয়ের প্রাথমিক ধারণা সুপারিশ করা হয়। | [লেসন](2-Working-With-Data/07-python/README.md) [ভিডিও](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ডেটা প্রস্তুতি | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | ডেটা পরিষ্কার ও রূপান্তর করার কৌশল এবং অনুপস্থিত, ভুল বা অসম্পূর্ণ ডেটার চ্যালেঞ্জ মোকাবেলার বিষয়। | [লেসন](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | পরিমাণের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | Matplotlib ব্যবহার করে পাখির ডেটা 🦆 ভিজ্যুয়ালাইজ করতে শিখুন। | [লেসন](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ডেটার বিতরণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | একটি অন্তরালের পর্যবেক্ষণ ও প্রবণতা ভিজ্যুয়ালাইজ করা। | [লেসন](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | অনুপাতের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | পৃথক ও গোষ্ঠীভুক্ত শতাংশ ভিজ্যুয়ালাইজ করা। | [লেসন](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | সম্পর্কের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | ডেটার সেট এবং এর ভেরিয়েবলগুলোর মধ্যে সংযোগ ও সম্পর্ক ভিজ্যুয়ালাইজ করা। | [লেসন](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | অর্থপূর্ণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | কার্যকর সমস্যা সমাধান ও অন্তর্দৃষ্টির জন্য আপনার ভিজ্যুয়ালাইজেশনকে মূল্যবান করার কৌশল ও নির্দেশনা। | [লেসন](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | ডেটা সায়েন্স লাইফসাইকেলের ভূমিকা | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের ভূমিকা এবং ডেটা সংগ্রহ ও নিষ্কাশনের প্রথম ধাপ। | [লেসন](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | বিশ্লেষণ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা বিশ্লেষণের কৌশলগুলোর উপর ভিত্তি করে ডেটা সায়েন্স লাইফসাইকেলের এই ধাপ। | [লেসন](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | যোগাযোগ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা থেকে প্রাপ্ত অন্তর্দৃষ্টিগুলো এমনভাবে উপস্থাপন করা যাতে সিদ্ধান্ত গ্রহণকারীদের জন্য তা সহজ হয়। | [লেসন](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | ক্লাউডে ডেটা সায়েন্স এবং এর সুবিধাগুলো নিয়ে লেসন। | [লেসন](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 18 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | লো কোড টুল ব্যবহার করে মডেল প্রশিক্ষণ। |[লেসন](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 19 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ব্যবহার করে মডেল স্থাপন। | [লেসন](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 20 | বাস্তব জীবনে ডেটা সায়েন্স | [ইন দ্য ওয়াইল্ড](6-Data-Science-In-Wild/README.md) | বাস্তব জীবনের ডেটা সায়েন্স চালিত প্রকল্প। | [লেসন](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 19 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ব্যবহার করে মডেল ডিপ্লয় করা। | [লেসন](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
এই নমুনাটি কোডস্পেসে খুলতে নিম্নলিখিত ধাপগুলি অনুসরণ করুন:
1. কোড ড্রপ-ডাউন মেনুতে ক্লিক করুন এবং "Open with Codespaces" অপশনটি নির্বাচন করুন।
2. প্যানেলের নিচে "+ New codespace" নির্বাচন করুন।
আরও তথ্যের জন্য, [গিটহাব ডকুমেন্টেশন](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) দেখুন।
Codespace-এ এই নমুনা খুলতে নিচের ধাপগুলো অনুসরণ করুন:
1. Code ড্রপ-ডাউন মেনুতে ক্লিক করুন এবং Open with Codespaces অপশনটি নির্বাচন করুন।
2. প্যানেলের নিচে + New codespace নির্বাচন করুন।
আরও তথ্যের জন্য, [GitHub ডকুমেন্টেশন](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) দেখুন।
## ভিএসকোড রিমোট - কন্টেইনারস
আপনার স্থানীয় মেশিন এবং ভিএসকোড ব্যবহার করে এই রিপোজিটরিটি একটি কন্টেইনারে খুলতে নিম্নলিখিত ধাপগুলি অনুসরণ করুন:
## VSCode Remote - Containers
আপনার স্থানীয় মেশিন এবং VSCode ব্যবহার করে VS Code Remote - Containers এক্সটেনশন দিয়ে এই রিপোজিটরি একটি কন্টেইনারে খুলতে নিচের ধাপগুলো অনুসরণ করুন:
1. যদি এটি আপনার প্রথমবার ডেভেলপমেন্ট কন্টেইনার ব্যবহার হয়, নিশ্চিত করুন যে আপনার সিস্টেম প্রয়োজনীয়তা পূরণ করে (যেমন, Docker ইনস্টল করা আছে) [গেটিং স্টার্টেড ডকুমেন্টেশন](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) এ।
1. যদি এটি আপনার প্রথমবার ডেভেলপমেন্ট কন্টেইনার ব্যবহার হয়, তাহলে নিশ্চিত করুন যে আপনার সিস্টেম প্রয়োজনীয়তা পূরণ করে (যেমন Docker ইনস্টল করা আছে) [শুরু করার ডকুমেন্টেশন](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) অনুযায়ী।
এই রিপোজিটরিটি ব্যবহার করতে, আপনি হয় এটি একটি আইসোলেটেড ডকার ভলিউমে খুলতে পারেন:
এই রিপোজিটরি ব্যবহার করতে, আপনি হয় রিপোজিটরিটি একটি বিচ্ছিন্ন Docker ভলিউমে খুলতে পারেন:
**নোট**: এটি "Remote-Containers: **Clone Repository in Container Volume...**" কমান্ড ব্যবহার করবে, যা স্থানীয় ফাইল সিস্টেমের পরিবর্তে একটি ডকার ভলিউমে সোর্স কোড ক্লোন করবে। [ভলিউম](https://docs.docker.com/storage/volumes/) কন্টেইনার ডেটা সংরক্ষণের জন্য পছন্দের পদ্ধতি।
**নোট**: ভিতরে, এটি Remote-Containers: **Clone Repository in Container Volume...** কমান্ড ব্যবহার করবে যা স্থানীয় ফাইল সিস্টেমের পরিবর্তে Docker ভলিউমে সোর্স কোড ক্লোন করবে। [Volumes](https://docs.docker.com/storage/volumes/) কন্টেইনার ডেটা সংরক্ষণের জন্য পছন্দনীয় পদ্ধতি।
অথবা স্থানীয়ভাবে ক্লোন করা বা ডাউনলোড করা সংস্করণ খুলুন:
অথবা স্থানীয়ভাবে ক্লোন করা বা ডাউনলোড করা রিপোজিটরির একটি সংস্করণ খুলুন:
- এই রিপোজিটরিটি আপনার স্থানীয় ফাইল সিস্টেমে ক্লোন করুন।
- F1 চাপুন এবং **Remote-Containers: Open Folder in Container...** কমান্ডটি নির্বাচন করুন।
- এই ফোল্ডারের ক্লোন করা কপি নির্বাচন করুন, কন্টেইনারটি শুরু হওয়ার জন্য অপেক্ষা করুন এবং চেষ্টা করুন।
- এই ফোল্ডারের ক্লোন করা কপি নির্বাচন করুন, কন্টেইনারটি শুরু হওয়ার জন্য অপেক্ষা করুন এবং পরীক্ষা করুন।
## অফলাইন অ্যাক্সেস
আপনি [Docsify](https://docsify.js.org/#/) ব্যবহার করে এই ডকুমেন্টেশনটি অফলাইনে চালাতে পারেন। এই রিপোজিটরিটি ফর্ক করুন, [Docsify ইনস্টল করুন](https://docsify.js.org/#/quickstart) আপনার স্থানীয় মেশিনে, তারপর এই রিপোজিটরির মূল ফোল্ডারে `docsify serve` টাইপ করুন। ওয়েবসাইটটি আপনার লোকালহোস্টে পোর্ট 3000-এ পরিবেশন করা হবে: `localhost:3000`।
আপনি [Docsify](https://docsify.js.org/#/) ব্যবহার করে এই ডকুমেন্টেশন অফলাইনে চালাতে পারেন। এই রিপোজিটরি ফর্ক করুন, [Docsify ইনস্টল করুন](https://docsify.js.org/#/quickstart) আপনার স্থানীয় মেশিনে, তারপর এই রিপোজিটরির মূল ফোল্ডারে `docsify serve` টাইপ করুন। ওয়েবসাইটটি আপনার localhost-এ পোর্ট 3000-এ পরিবেশন করা হবে: `localhost:3000`।
> নোট, নোটবুকগুলি Docsify এর মাধ্যমে রেন্ডার হবে না, তাই যখন আপনাকে একটি নোটবুক চালাতে হবে, এটি আলাদাভাবে ভিএস কোডে একটি পাইথন কার্নেল চালিয়ে করুন।
> নোট, নোটবুকগুলো Docsify-এর মাধ্যমে রেন্ডার করা হবে না, তাই যখন আপনাকে একটি নোটবুক চালাতে হবে, তখন তা আলাদাভাবে VS Code-এ একটি পাইথন কার্নেল চালিয়ে করুন।
## অন্যান্য কারিকুলাম
আমাদের টিম অন্যান্য কারিকুলামও তৈরি করে! দেখুন:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [C#/.NET ডেভেলপারদের জন্য GitHub Copilot আয়ত্ত করা](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [আপনার নিজস্ব Copilot অ্যাডভেঞ্চার নির্বাচন করুন](https://github.com/microsoft/CopilotAdventures)
---
**অস্বীকৃতি**:
এই নথিটি AI অনুবাদ পরিষেবা [Co-op Translator](https://github.com/Azure/co-op-translator) ব্যবহার করে অনুবাদ করা হয়েছে। আমরা যথাসাধ্য সঠিকতার জন্য চেষ্টা করি, তবে অনুগ্রহ করে মনে রাখবেন যে স্বয়ংক্রিয় অনুবাদে ত্রুটি বা অসঙ্গতি থাকতে পারে। মূল ভাষায় থাকা নথিটিকে প্রামাণিক উৎস হিসেবে বিবেচনা করা উচিত। গুরুত্বপূর্ণ তথ্যের জন্য, পেশাদার মানব অনুবাদ সুপারিশ করা হয়। এই অনুবাদ ব্যবহারের ফলে কোনো ভুল বোঝাবুঝি বা ভুল ব্যাখ্যা হলে আমরা দায়বদ্ধ থাকব না।
Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições sobre Ciência de Dados. Cada lição inclui questionários antes e depois da aula, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa abordagem baseada em projetos permite que você aprenda enquanto constrói, uma maneira comprovada de fazer com que novas habilidades sejam assimiladas.
Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições sobre Ciência de Dados. Cada lição inclui questionários antes e depois da aula, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa pedagogia baseada em projetos permite que você aprenda enquanto constrói, uma maneira comprovada de fazer novas habilidades "grudarem".
@ -31,7 +31,7 @@ Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10
#### Junte-se à Nossa Comunidade
[](https://aka.ms/ds4beginners/discord)
Temos uma série de aprendizado com IA no Discord em andamento. Saiba mais e junte-se a nós em [Learn with AI Series](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Você receberá dicas e truques sobre como usar o GitHub Copilot para Ciência de Dados.
Temos uma série de aprendizado com IA em andamento no Discord. Saiba mais e junte-se a nós no [Learn with AI Series](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Você receberá dicas e truques sobre como usar o GitHub Copilot para Ciência de Dados.

@ -39,14 +39,14 @@ Temos uma série de aprendizado com IA no Discord em andamento. Saiba mais e jun
Comece com os seguintes recursos:
- [Página do Hub do Estudante](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, você encontrará recursos para iniciantes, pacotes para estudantes e até mesmo maneiras de obter um voucher de certificação gratuito. Esta é uma página que você deve marcar como favorita e verificar de tempos em tempos, pois trocamos o conteúdo pelo menos mensalmente.
- [Página do Hub do Estudante](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, você encontrará recursos para iniciantes, pacotes para estudantes e até maneiras de obter um voucher de certificação gratuito. Esta é uma página que você vai querer marcar e verificar de tempos em tempos, pois trocamos o conteúdo pelo menos mensalmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junte-se a uma comunidade global de embaixadores estudantis, isso pode ser sua porta de entrada para a Microsoft.
# Começando
> **Professores**: incluímos [algumas sugestões](for-teachers.md) sobre como usar este currículo. Adoraríamos receber seu feedback [em nosso fórum de discussão](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faça um fork de todo o repositório e complete os exercícios por conta própria, começando com um questionário pré-aula. Em seguida, leia a aula e complete o restante das atividades. Tente criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudos adicionais, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faça um fork do repositório inteiro e complete os exercícios por conta própria, começando com um questionário pré-aula. Depois, leia a aula e complete o restante das atividades. Tente criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudos adicionais, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Conheça a Equipe
@ -84,27 +84,27 @@ Além disso, um questionário de baixa pressão antes da aula define a intençã
|:---:|
| Ciência de Dados para Iniciantes: Roteiro - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
| Número da Aula | Tópico | Agrupamento de Aulas | Objetivos de Aprendizado | Aula Vinculada | Autor |
| Número da Aula | Tópico | Agrupamento de Aulas | Objetivos de Aprendizagem | Aula Vinculada | Autor |
| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprenda os conceitos básicos por trás da ciência de dados e como ela se relaciona com inteligência artificial, aprendizado de máquina e big data. | [aula](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética na Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e estruturas de ética em dados. | [aula](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprenda os conceitos básicos de ciência de dados e como ela está relacionada à inteligência artificial, aprendizado de máquina e big data. | [aula](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética na Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e frameworks de ética em dados. | [aula](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definindo Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [aula](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introdução à Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para compreender dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e os fundamentos de exploração e análise de dados relacionais com a Linguagem de Consulta Estruturada, também conhecida como SQL (pronunciado “sequel”). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 04 | Introdução à Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para entender os dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e os fundamentos de exploração e análise de dados relacionais com a Linguagem de Consulta Estruturada, também conhecida como SQL (pronunciado "sequel"). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabalhando com Dados NoSQL | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus vários tipos e os fundamentos de exploração e análise de bancos de dados de documentos. | [aula](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Fundamentos do uso de Python para exploração de dados com bibliotecas como Pandas. Recomenda-se conhecimento básico de programação em Python. | [aula](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparação de Dados | [Trabalhando com Dados](2-Working-With-Data/README.md) | Tópicos sobre técnicas de limpeza e transformação de dados para lidar com desafios de dados ausentes, imprecisos ou incompletos. | [aula](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Fundamentos do uso de Python para exploração de dados com bibliotecas como Pandas. É recomendável ter uma compreensão básica de programação em Python. | [aula](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparação de Dados | [Trabalhando com Dados](2-Working-With-Data/README.md) | Técnicas de limpeza e transformação de dados para lidar com desafios como dados ausentes, imprecisos ou incompletos. | [aula](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizando Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda a usar Matplotlib para visualizar dados de pássaros 🦆 | [aula](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizando Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando observações e tendências dentro de um intervalo. | [aula](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizando Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando porcentagens discretas e agrupadas. | [aula](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizando Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando conexões e correlações entre conjuntos de dados e suas variáveis. | [aula](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar suas visualizações valiosas para resolução eficaz de problemas e obtenção de insights. | [aula](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar suas visualizações valiosas para resolução de problemas e obtenção de insights eficazes. | [aula](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introdução ao Ciclo de Vida da Ciência de Dados | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e sua primeira etapa de aquisição e extração de dados. | [aula](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Análise | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em técnicas para analisar dados. | [aula](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em apresentar os insights dos dados de forma que facilite o entendimento pelos tomadores de decisão. | [aula](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em apresentar os insights dos dados de forma que facilite a compreensão pelos tomadores de decisão. | [aula](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Esta série de aulas introduz a ciência de dados na nuvem e seus benefícios. | [aula](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 18 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Treinando modelos usando ferramentas de baixo código. |[aula](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 19 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Implantando modelos com o Azure Machine Learning Studio. | [aula](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 18 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Treinamento de modelos usando ferramentas de baixo código. |[aula](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 19 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Implantação de modelos com o Azure Machine Learning Studio. | [aula](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 20 | Ciência de Dados no Mundo Real | [No Mundo Real](6-Data-Science-In-Wild/README.md) | Projetos impulsionados por ciência de dados no mundo real. | [aula](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -117,13 +117,13 @@ Para mais informações, confira a [documentação do GitHub](https://docs.githu
## VSCode Remote - Containers
Siga estas etapas para abrir este repositório em um contêiner usando sua máquina local e o VSCode com a extensão VS Code Remote - Containers:
1. Se esta for sua primeira vez usando um contêiner de desenvolvimento, certifique-se de que seu sistema atenda aos pré-requisitos (ou seja, tenha o Docker instalado) na [documentação de introdução](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Se esta for sua primeira vez usando um contêiner de desenvolvimento, certifique-se de que seu sistema atende aos pré-requisitos (ou seja, ter o Docker instalado) na [documentação de introdução](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Para usar este repositório, você pode abri-lo em um volume Docker isolado:
Para usar este repositório, você pode abrir o repositório em um volume isolado do Docker:
**Nota**: Nos bastidores, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de contêiner.
**Nota**: Por trás dos panos, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume do Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de contêiner.
Ou abra uma versão clonada ou baixada localmente do repositório:
Ou abrir uma versão clonada ou baixada localmente do repositório:
- Clone este repositório para o sistema de arquivos local.
- Pressione F1 e selecione o comando **Remote-Containers: Open Folder in Container...**.
@ -131,14 +131,16 @@ Ou abra uma versão clonada ou baixada localmente do repositório:
## Acesso Offline
Você pode executar esta documentação offline usando o [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) em sua máquina local e, na pasta raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 do seu localhost: `localhost:3000`.
Você pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) em sua máquina local, e na pasta raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 do seu localhost: `localhost:3000`.
> Nota: notebooks não serão renderizados via Docsify, então, quando precisar executar um notebook, faça isso separadamente no VS Code executando um kernel Python.
> Nota: os notebooks não serão renderizados via Docsify, então, quando precisar executar um notebook, faça isso separadamente no VS Code executando um kernel Python.
## Outros Currículos
Nossa equipe produz outros currículos! Confira:
- [Edge AI para Iniciantes](https://aka.ms/edgeai-for-beginners)
- [Agentes de IA para Iniciantes](https://aka.ms/ai-agents-beginners)
- [IA Generativa para Iniciantes](https://aka.ms/genai-beginners)
- [IA Generativa para Iniciantes .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [IA Generativa com JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -146,7 +148,7 @@ Nossa equipe produz outros currículos! Confira:
- [IA para Iniciantes](https://aka.ms/ai-beginners)
- [Ciência de Dados para Iniciantes](https://aka.ms/datascience-beginners)
- [Bash para Iniciantes](https://github.com/microsoft/bash-for-beginners)
- [Aprendizado de Máquina para Iniciantes](https://aka.ms/ml-beginners)
- [ML para Iniciantes](https://aka.ms/ml-beginners)
- [Cibersegurança para Iniciantes](https://github.com/microsoft/Security-101)
- [Desenvolvimento Web para Iniciantes](https://aka.ms/webdev-beginners)
- [IoT para Iniciantes](https://aka.ms/iot-beginners)
@ -159,3 +161,5 @@ Nossa equipe produz outros currículos! Confira:
---
**Aviso Legal**:
Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original em seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações equivocadas decorrentes do uso desta tradução.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates ve společnosti Microsoft s potěšením nabízejí 10týdenní kurikulum o 20 lekcích zaměřené na datovou vědu. Každá lekce obsahuje kvízy před a po lekci, písemné pokyny k dokončení lekce, řešení a úkol. Náš přístup založený na projektech vám umožní učit se prostřednictvím tvorby, což je osvědčený způsob, jak si nové dovednosti lépe osvojit.
Azure Cloud Advocates ve společnosti Microsoft s potěšením nabízejí 10týdenní kurikulum s 20 lekcemi zaměřenými na datovou vědu. Každá lekce obsahuje kvízy před a po lekci, písemné pokyny k dokončení lekce, řešení a úkol. Náš přístup založený na projektech vám umožní učit se při tvorbě, což je osvědčený způsob, jak si nové dovednosti lépe osvojit.
@ -55,14 +55,14 @@ Máme probíhající sérii Learn with AI na Discordu, dozvíte se více a přip
Začněte s následujícími zdroji:
- [Student Hub stránka](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na této stránce najdete zdroje pro začátečníky, studentské balíčky a dokonce způsoby, jak získat voucher na certifikaci zdarma. Tuto stránku si určitě uložte a pravidelně kontrolujte, protože obsah měníme alespoň jednou měsíčně.
- [Stránka Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na této stránce najdete zdroje pro začátečníky, studentské balíčky a dokonce způsoby, jak získat voucher na certifikaci zdarma. Tuto stránku si určitě uložte a pravidelně kontrolujte, protože obsah měníme alespoň jednou měsíčně.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Připojte se ke globální komunitě studentských ambasadorů, může to být vaše cesta do Microsoftu.
# Začínáme
> **Učitelé**: máme [několik návrhů](for-teachers.md), jak toto kurikulum využít. Budeme rádi za vaši zpětnou vazbu [v našem diskusním fóru](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Učitelé**: [zahrnuli jsme několik návrhů](for-teachers.md), jak toto kurikulum využít. Budeme rádi za vaši zpětnou vazbu [v našem diskusním fóru](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenti](https://aka.ms/student-page)**: pokud chcete toto kurikulum použít samostatně, vytvořte si vlastní kopii celého repozitáře a dokončete cvičení sami, začněte kvízem před lekcí. Poté si přečtěte lekci a dokončete zbytek aktivit. Snažte se vytvářet projekty pochopením lekcí, místo abyste kopírovali řešení; kód řešení je však k dispozici ve složkách /solutions v každé lekci zaměřené na projekt. Další možností je vytvořit studijní skupinu s přáteli a projít obsah společně. Pro další studium doporučujeme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenti](https://aka.ms/student-page)**: pokud chcete toto kurikulum použít samostatně, vytvořte si vlastní kopii celého repozitáře a dokončete cvičení sami, začněte kvízem před lekcí. Poté si přečtěte lekci a dokončete zbytek aktivit. Snažte se vytvářet projekty pochopením lekcí, místo abyste kopírovali řešení kódu; tento kód je však dostupný ve složkách /solutions v každé lekci zaměřené na projekt. Dalším nápadem by bylo vytvořit studijní skupinu s přáteli a projít obsah společně. Pro další studium doporučujeme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Seznamte se s týmem
@ -74,19 +74,19 @@ Začněte s následujícími zdroji:
## Pedagogika
Při tvorbě tohoto kurikula jsme se rozhodli pro dva pedagogické principy: zajistit, aby bylo založeno na projektech, a zahrnout časté kvízy. Na konci této série se studenti naučí základní principy datové vědy, včetně etických konceptů, přípravy dat, různých způsobů práce s daty, vizualizace dat, analýzy dat, reálných případů použití datové vědy a další.
Při tvorbě tohoto kurikula jsme zvolili dva pedagogické principy: zajistit, aby bylo založeno na projektech, a zahrnout časté kvízy. Na konci této série se studenti naučí základní principy datové vědy, včetně etických konceptů, přípravy dat, různých způsobů práce s daty, vizualizace dat, analýzy dat, reálných případů použití datové vědy a další.
Kromě toho nízkostresový kvíz před hodinou nastaví záměr studenta na učení daného tématu, zatímco druhý kvíz po hodině zajistí lepší zapamatování. Toto kurikulum bylo navrženo tak, aby bylo flexibilní a zábavné, a lze ho absolvovat celé nebo jen jeho části. Projekty začínají malými úkoly a postupně se stávají složitějšími na konci 10týdenního cyklu.
Navíc nízkostresový kvíz před hodinou nastaví záměr studenta na učení daného tématu, zatímco druhý kvíz po hodině zajistí lepší zapamatování. Toto kurikulum bylo navrženo tak, aby bylo flexibilní a zábavné, a lze ho absolvovat celé nebo jen jeho část. Projekty začínají malými úkoly a postupně se stávají složitějšími na konci 10týdenního cyklu.
> Najděte naše [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) pokyny. Uvítáme vaši konstruktivní zpětnou vazbu!
> Najděte náš [Kodex chování](CODE_OF_CONDUCT.md), [Pokyny pro přispívání](CONTRIBUTING.md), [Pokyny pro překlady](TRANSLATIONS.md). Uvítáme vaši konstruktivní zpětnou vazbu!
## Každá lekce obsahuje:
- Volitelný sketchnote
- Volitelné doplňkové video
- Kvíz na zahřátí před lekcí
- Písemná lekce
- U lekcí zaměřených na projekt podrobné pokyny, jak projekt vytvořit
- Písemnou lekci
- U lekcí zaměřených na projekt, podrobné pokyny, jak projekt vytvořit
- Kontroly znalostí
- Výzvu
- Doplňkové čtení
@ -98,21 +98,21 @@ Kromě toho nízkostresový kvíz před hodinou nastaví záměr studenta na uč
## Lekce
||
|:---:|
| Data Science pro začátečníky: Plán - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
| Data Science For Beginners: Roadmap - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
| Číslo lekce | Téma | Skupina lekcí | Cíle učení | Odkaz na lekci | Autor |
| 01 | Definování datové vědy | [Úvod](1-Introduction/README.md) | Naučte se základní koncepty datové vědy a jak souvisí s umělou inteligencí, strojovým učením a velkými daty. | [lekce](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definování datové vědy | [Úvod](1-Introduction/README.md) | Naučte se základní koncepty datové vědy a její vztah k umělé inteligenci, strojovému učení a velkým datům. | [lekce](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | Definování dat | [Úvod](1-Introduction/README.md) | Jak jsou data klasifikována a jejich běžné zdroje. | [lekce](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Úvod do statistiky a pravděpodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravděpodobnosti a statistiky pro pochopení dat. | [lekce](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Práce s relačními daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do relačních dat a základy jejich zkoumání a analýzy pomocí Structured Query Language, známého jako SQL (vyslovováno „si-kvel“). | [lekce](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 05 | Práce s relačními daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do relačních dat a základy zkoumání a analýzy relačních dat pomocí Structured Query Language, známého jako SQL (vyslovováno „si-kvel“). | [lekce](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Práce s NoSQL daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do nerelačních dat, jejich různých typů a základy zkoumání a analýzy dokumentových databází. | [lekce](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Práce s Pythonem | [Práce s daty](2-Working-With-Data/README.md) | Základy používání Pythonu pro zkoumání dat s knihovnami, jako je Pandas. Doporučuje se základní znalost programování v Pythonu. | [lekce](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 07 | Práce s Pythonem | [Práce s daty](2-Working-With-Data/README.md) | Základy používání Pythonu pro zkoumání dat s knihovnami jako Pandas. Doporučuje se základní znalost programování v Pythonu. | [lekce](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Příprava dat | [Práce s daty](2-Working-With-Data/README.md) | Témata o technikách čištění a transformace dat pro řešení problémů s chybějícími, nepřesnými nebo neúplnými daty. | [lekce](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Vizualizace množství | [Vizualizace dat](3-Data-Visualization/README.md) | Naučte se používat Matplotlib k vizualizaci dat o ptácích 🦆 | [lekce](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Vizualizace rozložení dat | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace pozorování a trendů v rámci intervalu. | [lekce](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Vizualizace vztahů | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace spojení a korelací mezi datovými sadami a jejich proměnnými. | [lekce](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Smysluplné vizualizace | [Vizualizace dat](3-Data-Visualization/README.md) | Techniky a doporučení pro vytváření vizualizací, které jsou hodnotné pro efektivní řešení problémů a získávání poznatků. | [lekce](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Úvod do životního cyklu datové vědy | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Úvod do životního cyklu datové vědy a jeho prvního kroku získávání a extrakce dat. | [lekce](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
@ -155,6 +155,8 @@ Tuto dokumentaci můžete spustit offline pomocí [Docsify](https://docsify.js.o
Náš tým vytváří další kurzy! Podívejte se na:
- [Edge AI pro začátečníky](https://aka.ms/edgeai-for-beginners)
- [AI agenti pro začátečníky](https://aka.ms/ai-agents-beginners)
- [Generativní AI pro začátečníky](https://aka.ms/genai-beginners)
- [Generativní AI pro začátečníky .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generativní AI s JavaScriptem](https://github.com/microsoft/generative-ai-with-javascript)
@ -170,8 +172,10 @@ Náš tým vytváří další kurzy! Podívejte se na:
- [XR vývoj pro začátečníky](https://aka.ms/xr-dev-for-beginners)
- [Ovládnutí GitHub Copilot pro AI párové programování](https://aka.ms/GitHubCopilotAI)
- [XR vývoj pro začátečníky](https://github.com/microsoft/xr-development-for-beginners)
- [Ovládnutí GitHub Copilot pro vývojáře C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Ovládnutí GitHub Copilot pro C#/.NET vývojáře](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Vyberte si vlastní dobrodružství s Copilotem](https://github.com/microsoft/CopilotAdventures)
---
**Prohlášení**:
Tento dokument byl přeložen pomocí služby AI pro překlady [Co-op Translator](https://github.com/Azure/co-op-translator). I když se snažíme o přesnost, mějte prosím na paměti, že automatizované překlady mohou obsahovat chyby nebo nepřesnosti. Původní dokument v jeho původním jazyce by měl být považován za autoritativní zdroj. Pro důležité informace se doporučuje profesionální lidský překlad. Neodpovídáme za žádná nedorozumění nebo nesprávné interpretace vyplývající z použití tohoto překladu.
Azure Cloud Advocates hos Microsoft er glade for at tilbyde et 10-ugers, 20-lektioners curriculum om Data Science. Hver lektion inkluderer quizzer før og efter lektionen, skriftlige instruktioner til at gennemføre lektionen, en løsning og en opgave. Vores projektbaserede tilgang giver dig mulighed for at lære ved at bygge, en dokumenteret metode til at få nye færdigheder til at hænge fast.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates hos Microsoft er glade for at tilbyde et 10-ugers, 20-lektioners curriculum om Data Science. Hver lektion inkluderer quizzer før og efter lektionen, skriftlige instruktioner til at gennemføre lektionen, en løsning og en opgave. Vores projektbaserede tilgang giver dig mulighed for at lære, mens du bygger, en dokumenteret metode til at få nye færdigheder til at hænge fast.
||
| Data Science For Begyndere - _Sketchnote af [@nitya](https://twitter.com/nitya)_ |
| Data Science For Beginners - _Sketchnote af [@nitya](https://twitter.com/nitya)_ |
### 🌐 Multisproget Support
### 🌐 Flersproget support
#### Understøttet via GitHub Action (Automatisk & Altid Opdateret)
@ -31,7 +47,7 @@ Azure Cloud Advocates hos Microsoft er glade for at tilbyde et 10-ugers, 20-lekt
#### Bliv en del af vores fællesskab
[](https://aka.ms/ds4beginners/discord)
Vi har en Discord-serie om læring med AI i gang. Lær mere og deltag i [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du vil få tips og tricks til at bruge GitHub Copilot til Data Science.
Vi har en Discord-serie om læring med AI i gang, lær mere og deltag i [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du vil få tips og tricks til at bruge GitHub Copilot til Data Science.

@ -40,15 +56,15 @@ Vi har en Discord-serie om læring med AI i gang. Lær mere og deltag i [Learn w
Kom i gang med følgende ressourcer:
- [Student Hub side](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denne side finder du ressourcer for begyndere, studentpakker og endda måder at få en gratis certifikatvoucher. Dette er en side, du bør bogmærke og tjekke fra tid til anden, da vi skifter indhold mindst månedligt.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bliv en del af et globalt fællesskab af studentambassadører; dette kunne være din vej ind i Microsoft.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bliv en del af et globalt fællesskab af studentambassadører, dette kunne være din vej ind i Microsoft.
# Kom godt i gang
> **Lærere**: vi har [inkluderet nogle forslag](for-teachers.md) til, hvordan man bruger dette curriculum. Vi vil meget gerne høre din feedback [i vores diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studerende](https://aka.ms/student-page)**: for at bruge dette curriculum på egen hånd, fork hele repoen og gennemfør øvelserne selv, startende med en quiz før lektionen. Læs derefter lektionen og fuldfør resten af aktiviteterne. Prøv at skabe projekterne ved at forstå lektionerne i stedet for at kopiere løsningskoden; dog er koden tilgængelig i /solutions-mapperne i hver projektorienteret lektion. En anden idé kunne være at danne en studiegruppe med venner og gennemgå indholdet sammen. For yderligere studier anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studerende](https://aka.ms/student-page)**: for at bruge dette curriculum på egen hånd, fork hele repoen og gennemfør øvelserne selv, startende med en quiz før lektionen. Læs derefter lektionen og fuldfør resten af aktiviteterne. Prøv at skabe projekterne ved at forstå lektionerne i stedet for at kopiere løsningskoden; dog er denne kode tilgængelig i /solutions-mapperne i hver projektorienteret lektion. En anden idé kunne være at danne en studiegruppe med venner og gennemgå indholdet sammen. For yderligere studier anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -68,7 +84,7 @@ Derudover sætter en lav-stress quiz før en klasse intentionen hos den studeren
- Valgfri sketchnote
- Valgfri supplerende video
- Quiz til opvarmning før lektionen
- Opvarmningsquiz før lektionen
- Skriftlig lektion
- For projektbaserede lektioner, trin-for-trin vejledninger om, hvordan man bygger projektet
- Videnskontroller
@ -90,10 +106,10 @@ Derudover sætter en lav-stress quiz før en klasse intentionen hos den studeren
| 02 | Data Science Etik | [Introduktion](1-Introduction/README.md) | Begreber, udfordringer og rammer inden for dataetik. | [lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definere Data | [Introduktion](1-Introduction/README.md) | Hvordan data klassificeres og dets almindelige kilder. | [lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduktion til Statistik & Sandsynlighed | [Introduktion](1-Introduction/README.md) | Matematiske teknikker inden for sandsynlighed og statistik til at forstå data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbejde med Relationelle Data | [Arbejde med Data](2-Working-With-Data/README.md) | Introduktion til relationelle data og grundlæggende udforskning og analyse af relationelle data med Structured Query Language, også kendt som SQL (udtales "see-quell"). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbejde med NoSQL Data | [Arbejde med Data](2-Working-With-Data/README.md) | Introduktion til ikke-relationelle data, deres forskellige typer og grundlæggende udforskning og analyse af dokumentdatabaser. | [lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbejde med Python | [Arbejde med Data](2-Working-With-Data/README.md) | Grundlæggende brug af Python til dataudforskning med biblioteker som Pandas. Grundlæggende forståelse af Python-programmering anbefales. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Dataklargøring | [Arbejde med Data](2-Working-With-Data/README.md) | Emner om datateknikker til rengøring og transformation af data for at håndtere udfordringer med manglende, unøjagtige eller ufuldstændige data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 05 | Arbejde med Relationelle Data | [Arbejde Med Data](2-Working-With-Data/README.md) | Introduktion til relationelle data og grundlæggende udforskning og analyse af relationelle data med Structured Query Language, også kendt som SQL (udtales "see-quell"). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbejde med NoSQL Data | [Arbejde Med Data](2-Working-With-Data/README.md) | Introduktion til ikke-relationelle data, deres forskellige typer og grundlæggende udforskning og analyse af dokumentdatabaser. | [lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbejde med Python | [Arbejde Med Data](2-Working-With-Data/README.md) | Grundlæggende brug af Python til dataudforskning med biblioteker som Pandas. Grundlæggende forståelse af Python-programmering anbefales. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Dataklargøring | [Arbejde Med Data](2-Working-With-Data/README.md) | Emner om datateknikker til rengøring og transformation af data for at håndtere udfordringer med manglende, unøjagtige eller ufuldstændige data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisering af Mængder | [Datavisualisering](3-Data-Visualization/README.md) | Lær hvordan man bruger Matplotlib til at visualisere fugledata 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisering af Datafordelinger | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af observationer og tendenser inden for et interval. | [lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisering af Proportioner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af diskrete og grupperede procentdele. | [lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
@ -110,52 +126,56 @@ Derudover sætter en lav-stress quiz før en klasse intentionen hos den studeren
## GitHub Codespaces
Følg disse trin for at åbne dette eksempel i en Codespace:
1. Klik på Code-menuen og vælg Open with Codespaces.
1. Klik på Code-dropdownmenuen og vælg Open with Codespaces.
2. Vælg + New codespace nederst i panelet.
For mere info, se [GitHubdokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
For mere info, se [GitHub-dokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Følg disse trin for at åbne dette repo i en container ved hjælp af din lokale maskine og VSCode med VS Code Remote - Containers-udvidelsen:
1. Hvis det er første gang, du bruger en udviklingscontainer, skal du sikre dig, at dit system opfylder forudsætningerne (f.eks. have Docker installeret) i [denne startdokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Hvis det er første gang, du bruger en udviklingscontainer, skal du sikre dig, at dit system opfylder forudsætningerne (f.eks. have Docker installeret) i [kom godt i gang-dokumentationen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
For at bruge dette repository kan du enten åbne det i et isoleret Docker-volumen:
**Bemærk**: Bag kulisserne vil dette bruge Remote-Containers: **Clone Repository in Container Volume...**kommandoen til at klone kildekoden i et Docker-volumen i stedet for det lokale filsystem. [Volumener](https://docs.docker.com/storage/volumes/) er den foretrukne mekanisme til at gemme containerdata.
**Bemærk**: Bag kulisserne vil dette bruge Remote-Containers: **Clone Repository in Container Volume...**-kommandoen til at klone kildekoden i et Docker-volumen i stedet for det lokale filsystem. [Volumener](https://docs.docker.com/storage/volumes/) er den foretrukne mekanisme til at vedligeholde containerdata.
Eller åbne en lokalt klonet eller downloadet version af repositoryet:
- Klon dette repository til dit lokale filsystem.
- Tryk på F1 og vælg **Remote-Containers: Open Folder in Container...**kommandoen.
- Vælg den klonede kopi af denne mappe, vent på at containeren starter, og prøv tingene af.
- Tryk på F1 og vælg **Remote-Containers: Open Folder in Container...**-kommandoen.
- Vælg den klonede kopi af denne mappe, vent på, at containeren starter, og prøv tingene af.
## Offline adgang
Du kan køre denne dokumentation offline ved hjælp af [Docsify](https://docsify.js.org/#/). Fork dette repo, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskine, og i roden af dette repo, skriv `docsify serve`. Hjemmesiden vil blive serveret på port 3000 på din localhost: `localhost:3000`.
Du kan køre denne dokumentation offline ved hjælp af [Docsify](https://docsify.js.org/#/). Fork dette repo, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskine, og skriv derefter `docsify serve` i roden af dette repo. Websitet vil blive serveret på port 3000 på din localhost: `localhost:3000`.
> Bemærk, notebooks vil ikke blive gengivet via Docsify, så når du skal køre en notebook, gør det separat i VS Code med en Python-kerne.
> Bemærk, notebooks vil ikke blive gengivet via Docsify, så når du skal køre en notebook, skal du gøre det separat i VS Code med en Python-kernel.
## Andre Læseplaner
Vores team producerer andre læseplaner! Tjek:
- [Generativ AI for Begyndere](https://aka.ms/genai-beginners)
- [Generativ AI for Begyndere .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generativ AI med JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generativ AI med Java](https://aka.ms/genaijava)
- [AI for Begyndere](https://aka.ms/ai-beginners)
- [Data Science for Begyndere](https://aka.ms/datascience-beginners)
- [Bash for Begyndere](https://github.com/microsoft/bash-for-beginners)
- [ML for Begyndere](https://aka.ms/ml-beginners)
- [Cybersikkerhed for Begyndere](https://github.com/microsoft/Security-101)
- [Webudvikling for Begyndere](https://aka.ms/webdev-beginners)
- [IoT for Begyndere](https://aka.ms/iot-beginners)
- [Maskinlæring for Begyndere](https://aka.ms/ml-beginners)
- [XR Udvikling for Begyndere](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Parprogrammering](https://aka.ms/GitHubCopilotAI)
- [XR Udvikling for Begyndere](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Udviklere](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Vælg Din Egen Copilot Eventyr](https://github.com/microsoft/CopilotAdventures)
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**Ansvarsfraskrivelse**:
Dette dokument er blevet oversat ved hjælp af AI-oversættelsestjenesten [Co-op Translator](https://github.com/Azure/co-op-translator). Selvom vi bestræber os på nøjagtighed, skal det bemærkes, at automatiserede oversættelser kan indeholde fejl eller unøjagtigheder. Det originale dokument på dets oprindelige sprog bør betragtes som den autoritative kilde. For kritisk information anbefales professionel menneskelig oversættelse. Vi påtager os ikke ansvar for misforståelser eller fejltolkninger, der måtte opstå som følge af brugen af denne oversættelse.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@ -25,44 +25,44 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
Die Azure Cloud Advocates bei Microsoft freuen sich, einen 10-wöchigen, 20-Lektionen umfassenden Lehrplan rund um Data Science anzubieten. Jede Lektion enthält Quizfragen vor und nach der Lektion, schriftliche Anleitungen zur Durchführung der Lektion, eine Lösung und eine Aufgabe. Unsere projektbasierte Pädagogik ermöglicht es Ihnen, durch praktisches Arbeiten zu lernen – eine bewährte Methode, um neue Fähigkeiten nachhaltig zu erlernen.
Die Azure Cloud Advocates bei Microsoft freuen sich, einen 10-wöchigen, 20 Lektionen umfassenden Lehrplan rund um Datenwissenschaft anzubieten. Jede Lektion enthält Vor- und Nachtests, schriftliche Anweisungen zur Durchführung der Lektion, eine Lösung und eine Aufgabe. Unsere projektbasierte Pädagogik ermöglicht es Ihnen, durch praktisches Arbeiten zu lernen – eine bewährte Methode, um neue Fähigkeiten nachhaltig zu erlernen.
||
|:---:|
| Data Science für Anfänger –_Sketchnote von [@nitya](https://twitter.com/nitya)_ |
| Datenwissenschaft für Anfänger -_Sketchnote von [@nitya](https://twitter.com/nitya)_ |
### 🌐 Mehrsprachige Unterstützung
#### Unterstützt durch GitHub Action (Automatisiert & Immer aktuell)
**Falls Sie zusätzliche Übersetzungen wünschen, finden Sie die unterstützten Sprachen [hier](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Treten Sie unserer Community bei
[](https://aka.ms/ds4beginners/discord)
Wir haben eine laufende Discord-Serie „Lernen mit KI“. Erfahren Sie mehr und schließen Sie sich uns an unter [Lernen mit KI-Serie](https://aka.ms/learnwithai/discord) vom 18. bis 30. September 2025. Sie erhalten Tipps und Tricks zur Nutzung von GitHub Copilot für Data Science.
Wir haben eine laufende Discord-Serie zum Lernen mit KI. Erfahren Sie mehr und treten Sie uns bei [Learn with AI Series](https://aka.ms/learnwithai/discord) vom 18. bis 30. September 2025 bei. Sie erhalten Tipps und Tricks zur Nutzung von GitHub Copilot für Datenwissenschaft.


# Sind Sie Student*in?
# Sind Sie ein Student?
Starten Sie mit den folgenden Ressourcen:
Beginnen Sie mit den folgenden Ressourcen:
- [Studenten-Hub-Seite](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Auf dieser Seite finden Sie Ressourcen für Anfänger, Studentenpakete und sogar Möglichkeiten, einen kostenlosen Zertifizierungsgutschein zu erhalten. Diese Seite sollten Sie sich als Lesezeichen speichern und regelmäßig besuchen, da wir den Inhalt mindestens monatlich aktualisieren.
- [Student Hub Seite](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Auf dieser Seite finden Sie Ressourcen für Anfänger, Student Packs und sogar Möglichkeiten, einen kostenlosen Zertifikatsgutschein zu erhalten. Diese Seite sollten Sie sich unbedingt merken und regelmäßig besuchen, da wir den Inhalt mindestens monatlich aktualisieren.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Treten Sie einer globalen Community von Studentenbotschaftern bei – dies könnte Ihr Einstieg bei Microsoft sein.
# Erste Schritte
> **Lehrer*innen**: Wir haben [einige Vorschläge](for-teachers.md) beigefügt, wie Sie diesen Lehrplan nutzen können. Wir freuen uns über Ihr Feedback [in unserem Diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Lehrer**: Wir haben [einige Vorschläge](for-teachers.md) aufgenommen, wie Sie diesen Lehrplan nutzen können. Wir würden uns über Ihr Feedback [in unserem Diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions) freuen!
> **[Student*innen](https://aka.ms/student-page)**: Um diesen Lehrplan eigenständig zu nutzen, forken Sie das gesamte Repository und bearbeiten Sie die Übungen selbstständig, beginnend mit einem Quiz vor der Lektion. Lesen Sie dann die Lektion und bearbeiten Sie die restlichen Aktivitäten. Versuchen Sie, die Projekte zu erstellen, indem Sie die Lektionen verstehen, anstatt den Lösungscode zu kopieren; dieser ist jedoch in den /solutions-Ordnern jeder projektorientierten Lektion verfügbar. Eine weitere Idee wäre, eine Lerngruppe mit Freund*innen zu bilden und den Inhalt gemeinsam durchzugehen. Für weiterführendes Lernen empfehlen wir [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenten](https://aka.ms/student-page)**: Um diesen Lehrplan eigenständig zu nutzen, forken Sie das gesamte Repository und bearbeiten Sie die Übungen selbst, beginnend mit einem Quiz vor der Vorlesung. Lesen Sie dann die Vorlesung und führen Sie die restlichen Aktivitäten durch. Versuchen Sie, die Projekte zu erstellen, indem Sie die Lektionen verstehen, anstatt den Lösungscode zu kopieren; dieser Code ist jedoch in den /solutions-Ordnern jeder projektorientierten Lektion verfügbar. Eine weitere Idee wäre, eine Lerngruppe mit Freunden zu bilden und den Inhalt gemeinsam durchzugehen. Für weiterführendes Lernen empfehlen wir [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Lernen Sie das Team kennen
@ -70,21 +70,21 @@ Starten Sie mit den folgenden Ressourcen:
> 🎥 Klicken Sie auf das Bild oben, um ein Video über das Projekt und die Personen dahinter anzusehen!
> 🎥 Klicken Sie auf das Bild oben, um ein Video über das Projekt und die Personen, die es erstellt haben, anzusehen!
## Pädagogik
Wir haben zwei pädagogische Grundsätze bei der Erstellung dieses Lehrplans gewählt: sicherzustellen, dass er projektbasiert ist, und häufige Quizfragen einzubauen. Am Ende dieser Serie werden die Schüler*innen grundlegende Prinzipien der Datenwissenschaft gelernt haben, einschließlich ethischer Konzepte, Datenvorbereitung, verschiedener Arbeitsweisen mit Daten, Datenvisualisierung, Datenanalyse, realer Anwendungsfälle der Datenwissenschaft und mehr.
Wir haben zwei pädagogische Grundsätze gewählt, während wir diesen Lehrplan erstellt haben: sicherzustellen, dass er projektbasiert ist und dass er häufige Quizfragen enthält. Am Ende dieser Serie werden die Studenten grundlegende Prinzipien der Datenwissenschaft gelernt haben, einschließlich ethischer Konzepte, Datenvorbereitung, verschiedener Arbeitsweisen mit Daten, Datenvisualisierung, Datenanalyse, realer Anwendungsfälle der Datenwissenschaft und mehr.
Darüber hinaus setzt ein niedrigschwelliges Quiz vor einer Klasse die Intention der Schüler*innen, ein Thema zu lernen, während ein zweites Quiz nach der Klasse das Gelernte weiter festigt. Dieser Lehrplan wurde so gestaltet, dass er flexibel und unterhaltsam ist und ganz oder teilweise genutzt werden kann. Die Projekte beginnen klein und werden im Laufe des 10-wöchigen Zyklus zunehmend komplexer.
Darüber hinaus setzt ein niedrigschwelliges Quiz vor einer Klasse die Absicht des Studenten, ein Thema zu lernen, während ein zweites Quiz nach der Klasse die weitere Beibehaltung sicherstellt. Dieser Lehrplan wurde so gestaltet, dass er flexibel und unterhaltsam ist und ganz oder teilweise absolviert werden kann. Die Projekte beginnen klein und werden bis zum Ende des 10-Wochen-Zyklus zunehmend komplexer.
> Finden Sie unsere [Verhaltensregeln](CODE_OF_CONDUCT.md), [Beitragsrichtlinien](CONTRIBUTING.md) und [Übersetzungsrichtlinien](TRANSLATIONS.md). Wir freuen uns über Ihr konstruktives Feedback!
> Finden Sie unseren [Verhaltenskodex](CODE_OF_CONDUCT.md), [Beitragsrichtlinien](CONTRIBUTING.md), [Übersetzungsrichtlinien](TRANSLATIONS.md). Wir freuen uns über Ihr konstruktives Feedback!
## Jede Lektion enthält:
- Optionales Sketchnote
- Optionales ergänzendes Video
- Aufwärmquiz vor der Lektion
- Warm-up-Quiz vor der Lektion
- Schriftliche Lektion
- Für projektbasierte Lektionen: Schritt-für-Schritt-Anleitungen zum Erstellen des Projekts
- Wissensüberprüfungen
@ -93,7 +93,7 @@ Darüber hinaus setzt ein niedrigschwelliges Quiz vor einer Klasse die Intention
- Aufgabe
- [Quiz nach der Lektion](https://ff-quizzes.netlify.app/en/)
> **Eine Anmerkung zu den Quizfragen**: Alle Quizfragen befinden sich im Quiz-App-Ordner, insgesamt 40 Quizfragen mit jeweils drei Fragen. Sie sind in den Lektionen verlinkt, aber die Quiz-App kann lokal ausgeführt oder auf Azure bereitgestellt werden; folgen Sie den Anweisungen im `quiz-app`-Ordner. Sie werden nach und nach lokalisiert.
> **Eine Anmerkung zu den Quizfragen**: Alle Quizfragen befinden sich im Quiz-App-Ordner, insgesamt 40 Quizfragen mit jeweils drei Fragen. Sie sind innerhalb der Lektionen verlinkt, aber die Quiz-App kann lokal ausgeführt oder auf Azure bereitgestellt werden; folgen Sie den Anweisungen im `quiz-app`-Ordner. Sie werden schrittweise lokalisiert.
## Lektionen
||
@ -101,78 +101,82 @@ Darüber hinaus setzt ein niedrigschwelliges Quiz vor einer Klasse die Intention
| Data Science für Anfänger: Roadmap - _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
| Lektion Nummer | Thema | Gruppierung der Lektionen | Lernziele | Verlinkte Lektion | Autor |
| Lektion Nummer | Thema | Lektion Gruppe | Lernziele | Verlinkte Lektion | Autor |
| 01 | Definition von Data Science | [Einführung](1-Introduction/README.md) | Lerne die grundlegenden Konzepte hinter Data Science und wie es mit künstlicher Intelligenz, maschinellem Lernen und Big Data zusammenhängt. | [Lektion](1-Introduction/01-defining-data-science/README.md) [Video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definition von Data Science | [Einführung](1-Introduction/README.md) | Grundlegende Konzepte der Data Science und deren Beziehung zu künstlicher Intelligenz, maschinellem Lernen und Big Data kennenlernen. | [Lektion](1-Introduction/01-defining-data-science/README.md) [Video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ethik in der Data Science | [Einführung](1-Introduction/README.md) | Konzepte, Herausforderungen und Rahmenbedingungen der Datenethik. | [Lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definition von Daten | [Einführung](1-Introduction/README.md) | Wie Daten klassifiziert werden und welche gängigen Quellen es gibt. | [Lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 03 | Definition von Daten | [Einführung](1-Introduction/README.md) | Wie Daten klassifiziert werden und ihre häufigsten Quellen. | [Lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Einführung in Statistik und Wahrscheinlichkeit | [Einführung](1-Introduction/README.md) | Mathematische Techniken der Wahrscheinlichkeit und Statistik, um Daten zu verstehen. | [Lektion](1-Introduction/04-stats-and-probability/README.md) [Video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbeiten mit relationalen Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in relationale Daten und die Grundlagen der Analyse relationaler Daten mit der Structured Query Language (SQL). | [Lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeiten mit NoSQL-Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in nicht-relationale Daten, ihre verschiedenen Typen und die Grundlagen der Analyse von Dokumentendatenbanken. | [Lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbeiten mit Python | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Grundlagen der Datenanalyse mit Python und Bibliotheken wie Pandas. Grundkenntnisse in Python-Programmierung werden empfohlen. | [Lektion](2-Working-With-Data/07-python/README.md) [Video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Datenaufbereitung | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Themen zu Techniken der Datenbereinigung und -transformation, um Herausforderungen wie fehlende, ungenaue oder unvollständige Daten zu bewältigen. | [Lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisierung von Mengen | [Datenvisualisierung](3-Data-Visualization/README.md) | Lerne, wie man mit Matplotlib Vogeldaten 🦆 visualisiert. | [Lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisierung von Datenverteilungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von Beobachtungen und Trends innerhalb eines Intervalls. | [Lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisierung von Proportionen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von diskreten und gruppierten Prozentwerten. | [Lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisierung von Beziehungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von Verbindungen und Korrelationen zwischen Datensätzen und ihren Variablen. | [Lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Sinnvolle Visualisierungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Techniken und Leitlinien, um Visualisierungen wertvoll für effektive Problemlösungen und Erkenntnisse zu machen. | [Lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Einführung in den Data-Science-Lebenszyklus | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Einführung in den Data-Science-Lebenszyklus und seinen ersten Schritt: das Erfassen und Extrahieren von Daten. | [Lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyse | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Data-Science-Lebenszyklus konzentriert sich auf Techniken zur Datenanalyse. | [Lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikation | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Data-Science-Lebenszyklus konzentriert sich darauf, die Erkenntnisse aus den Daten so zu präsentieren, dass Entscheidungsträger sie leicht verstehen können. | [Lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 05 | Arbeiten mit relationalen Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in relationale Daten und die Grundlagen der Exploration und Analyse relationaler Daten mit der Structured Query Language, auch bekannt als SQL (ausgesprochen „see-quell“). | [Lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeiten mit NoSQL-Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in nicht-relationale Daten, ihre verschiedenen Typen und die Grundlagen der Exploration und Analyse von Dokumentdatenbanken. | [Lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbeiten mit Python | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Grundlagen der Nutzung von Python zur Datenexploration mit Bibliotheken wie Pandas. Grundlegendes Verständnis der Python-Programmierung wird empfohlen. | [Lektion](2-Working-With-Data/07-python/README.md) [Video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Datenvorbereitung | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Themen zu Datentechniken für das Bereinigen und Transformieren von Daten, um Herausforderungen wie fehlende, ungenaue oder unvollständige Daten zu bewältigen. | [Lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisierung von Mengen | [Datenvisualisierung](3-Data-Visualization/README.md) | Lernen, wie man Matplotlib verwendet, um Vogeldaten 🦆 zu visualisieren. | [Lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisierung von Datenverteilungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Beobachtungen und Trends innerhalb eines Intervalls visualisieren. | [Lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisierung von Proportionen | [Datenvisualisierung](3-Data-Visualization/README.md) | Diskrete und gruppierte Prozentsätze visualisieren. | [Lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisierung von Beziehungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Verbindungen und Korrelationen zwischen Datensätzen und ihren Variablen visualisieren. | [Lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Sinnvolle Visualisierungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Techniken und Leitlinien, um Ihre Visualisierungen wertvoll für effektive Problemlösungen und Erkenntnisse zu machen. | [Lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Einführung in den DataScience-Lebenszyklus | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Einführung in den Data Science-Lebenszyklus und seinen ersten Schritt: Daten erfassen und extrahieren. | [Lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyse | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des DataScience-Lebenszyklus konzentriert sich auf Techniken zur Datenanalyse. | [Lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikation | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des DataScience-Lebenszyklus konzentriert sich darauf, die Erkenntnisse aus den Daten so zu präsentieren, dass Entscheidungsträger sie leichter verstehen können. | [Lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Diese Serie von Lektionen führt in Data Science in der Cloud und deren Vorteile ein. | [Lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Low-Code-Tools trainieren. |[Lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Azure Machine Learning Studio bereitstellen. | [Lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science in freier Wildbahn | [In der Praxis](6-Data-Science-In-Wild/README.md) | Datenwissenschaftlich getriebene Projekte in der realen Welt. | [Lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Data Science in der Praxis | [In der Praxis](6-Data-Science-In-Wild/README.md) | Von Data Science getriebene Projekte in der realen Welt. | [Lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Folge diesen Schritten, um dieses Beispiel in einem Codespace zu öffnen:
1. Klicke auf das Dropdown-Menü "Code" und wähle die Option "Mit Codespaces öffnen".
2. Wähle unten im Bereich "+ Neuer Codespace".
Weitere Informationen findest du in der [GitHub-Dokumentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
Folgen Sie diesen Schritten, um dieses Beispiel in einem Codespace zu öffnen:
1. Klicken Sie auf das Code-Dropdown-Menü und wählen Sie die Option "Mit Codespaces öffnen".
2. Wählen Sie + Neuer Codespace unten im Fenster.
Weitere Informationen finden Sie in der [GitHub-Dokumentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Folge diesen Schritten, um dieses Repository in einem Container mit deinem lokalen Rechner und VSCode unter Verwendung der VS Code Remote - Containers-Erweiterung zu öffnen:
Folgen Sie diesen Schritten, um dieses Repository in einem Container mit Ihrer lokalen Maschine und VSCode mithilfe der VS Code Remote - Containers-Erweiterung zu öffnen:
1. Wenn du zum ersten Mal einen Entwicklungscontainer verwendest, stelle sicher, dass dein System die Voraussetzungen erfüllt (z. B. Docker installiert ist), wie in der [Einführungsdokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) beschrieben.
1. Wenn Sie zum ersten Mal einen Entwicklungscontainer verwenden, stellen Sie sicher, dass Ihr System die Voraussetzungen erfüllt (z. B. Docker installiert ist), wie in der [Einführungsdokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) beschrieben.
Um dieses Repository zu verwenden, kannst du entweder das Repository in einem isolierten Docker-Volume öffnen:
Um dieses Repository zu verwenden, können Sie entweder das Repository in einem isolierten Docker-Volume öffnen:
**Hinweis**: Im Hintergrund wird der Befehl Remote-Containers:**Clone Repository in Container Volume...** verwendet, um den Quellcode in einem Docker-Volume anstelle des lokalen Dateisystems zu klonen. [Volumes](https://docs.docker.com/storage/volumes/) sind der bevorzugte Mechanismus zur Persistenz von Containerdaten.
**Hinweis**: Im Hintergrund wird der Remote-Containers-Befehl**Clone Repository in Container Volume...** verwendet, um den Quellcode in einem Docker-Volume anstelle des lokalen Dateisystems zu klonen. [Volumes](https://docs.docker.com/storage/volumes/) sind das bevorzugte Verfahren zur Persistierung von Containerdaten.
Oder eine lokal geklonte oder heruntergeladene Version des Repositorys öffnen:
Oder öffnen Sie eine lokal geklonte oder heruntergeladene Version des Repositorys:
- Klone dieses Repository auf dein lokales Dateisystem.
- Drücke F1 und wähle den Befehl **Remote-Containers: Ordner im Container öffnen...**.
- Wähle die geklonte Kopie dieses Ordners, warte, bis der Container gestartet ist, und probiere es aus.
- Klonen Sie dieses Repository auf Ihr lokales Dateisystem.
- Drücken Sie F1 und wählen Sie den Befehl **Remote-Containers: Open Folder in Container...**.
- Wählen Sie die geklonte Kopie dieses Ordners aus, warten Sie, bis der Container gestartet ist, und probieren Sie die Funktionen aus.
## Offline-Zugriff
Du kannst diese Dokumentation offline mit [Docsify](https://docsify.js.org/#/) ausführen. Forke dieses Repository, [installiere Docsify](https://docsify.js.org/#/quickstart) auf deinem lokalen Rechner und gib dann im Stammverzeichnis dieses Repos `docsify serve` ein. Die Website wird auf Port 3000 auf deinem localhost bereitgestellt: `localhost:3000`.
Sie können diese Dokumentation offline mit [Docsify](https://docsify.js.org/#/) ausführen. Forken Sie dieses Repository, [installieren Sie Docsify](https://docsify.js.org/#/quickstart) auf Ihrer lokalen Maschine, und geben Sie dann im Stammordner dieses Repositorys `docsify serve` ein. Die Website wird auf Port 3000 auf Ihrem localhost bereitgestellt: `localhost:3000`.
> Hinweis: Notebooks werden nicht über Docsify gerendert. Wenn du ein Notebook ausführen musst, mache das separat in VS Code mit einem Python-Kernel.
> Hinweis: Notebooks werden nicht über Docsify gerendert, daher sollten Sie ein Notebook separat in VS Code mit einem Python-Kernel ausführen.
## Weitere Lehrpläne
Unser Team erstellt weitere Lehrpläne! Schau dir an:
Unser Team erstellt weitere Lehrpläne! Schauen Sie sich an:
- [Generative KI für Anfänger](https://aka.ms/genai-beginners)
- [Generative KI für Anfänger .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative KI mit JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative KI mit Java](https://aka.ms/genaijava)
- [KI für Anfänger](https://aka.ms/ai-beginners)
- [Edge AI für Anfänger](https://aka.ms/edgeai-for-beginners)
- [AI Agents für Anfänger](https://aka.ms/ai-agents-beginners)
- [Generative AI für Anfänger](https://aka.ms/genai-beginners)
- [Generative AI für Anfänger .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI mit JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI mit Java](https://aka.ms/genaijava)
- [AI für Anfänger](https://aka.ms/ai-beginners)
- [Data Science für Anfänger](https://aka.ms/datascience-beginners)
- [Bash für Anfänger](https://github.com/microsoft/bash-for-beginners)
- [ML für Anfänger](https://aka.ms/ml-beginners)
- [Cybersicherheit für Anfänger](https://github.com/microsoft/Security-101)
- [Cybersecurity für Anfänger](https://github.com/microsoft/Security-101)
- [Webentwicklung für Anfänger](https://aka.ms/webdev-beginners)
- [IoT für Anfänger](https://aka.ms/iot-beginners)
- [Maschinelles Lernen für Anfänger](https://aka.ms/ml-beginners)
- [XR-Entwicklung für Anfänger](https://aka.ms/xr-dev-for-beginners)
- [GitHub Copilot für KI-gestütztes Programmieren meistern](https://aka.ms/GitHubCopilotAI)
- [GitHub Copilot für KI-gestütztes Pair-Programming meistern](https://aka.ms/GitHubCopilotAI)
- [XR-Entwicklung für Anfänger](https://github.com/microsoft/xr-development-for-beginners)
- [GitHub Copilot für C#/.NET-Entwickler meistern](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Wähle dein eigenes Copilot-Abenteuer](https://github.com/microsoft/CopilotAdventures)
- [Wählen Sie Ihr eigenes Copilot-Abenteuer](https://github.com/microsoft/CopilotAdventures)
---
**Haftungsausschluss**:
Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.
# Επιστήμη Δεδομένων για Αρχάριους - Ένα Πρόγραμμα Σπουδών
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Οι Azure Cloud Advocates στη Microsoft είναι στην ευχάριστη θέση να προσφέρουν ένα πρόγραμμα σπουδών 10 εβδομάδων και 20 μαθημάτων για την Επιστήμη Δεδομένων. Κάθε μάθημα περιλαμβάνει κουίζ πριν και μετά το μάθημα, γραπτές οδηγίες για την ολοκλήρωση του μαθήματος, μια λύση και μια εργασία. Η παιδαγωγική μας, που βασίζεται σε έργα, σας επιτρέπει να μαθαίνετε δημιουργώντας, ένας αποδεδειγμένος τρόπος γιανα "κατακτήσετε" νέες δεξιότητες.
Azure Cloud Advocates στη Microsoft προσφέρουν ένα πρόγραμμα σπουδών 10 εβδομάδων με 20 μαθήματα σχετικά με την Επιστήμη Δεδομένων. Κάθε μάθημα περιλαμβάνει κουίζ πριν και μετά το μάθημα, γραπτές οδηγίες για την ολοκλήρωση του μαθήματος, λύση και εργασία. Η παιδαγωγική μας προσέγγιση βασισμένη σε έργα σας επιτρέπει να μαθαίνετε δημιουργώντας, μια αποδεδειγμένη μέθοδος γιανα αποκτήσετε νέες δεξιότητες που "μένουν".
||
@ -38,16 +22,16 @@ CO_OP_TRANSLATOR_METADATA:
### 🌐 Υποστήριξη Πολλαπλών Γλωσσών
#### Υποστηρίζεται μέσω GitHub Action (Αυτόματα& Πάντα Ενημερωμένο)
#### Υποστηρίζεται μέσω GitHub Action (Αυτοματοποιημένο& Πάντα Ενημερωμένο)
**Ανεπιθυμείτε να υποστηριχθούν επιπλέον γλώσσες, οι διαθέσιμες γλώσσες αναφέρονται [εδώ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Ανθέλετε να υποστηριχθούν επιπλέον γλώσσες, οι διαθέσιμες γλώσσες παρατίθενται [εδώ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Γίνετε μέλος της κοινότητάς μας
#### Γίνετε Μέλος της Κοινότητάς μας
[](https://aka.ms/ds4beginners/discord)
Έχουμε μια σειρά εκμάθησης με AI σε εξέλιξη, μάθετε περισσότερα και συμμετάσχετε στο [Learn with AI Series](https://aka.ms/learnwithai/discord) από τις 18 έως τις 30 Σεπτεμβρίου 2025. Θα λάβετε συμβουλές και κόλπα για τη χρήση του GitHub Copilot για την Επιστήμη Δεδομένων.
Έχουμε μια σειρά εκμάθησης με AI στο Discord, μάθετε περισσότερα και γίνετε μέλος μας στο [Learn with AI Series](https://aka.ms/learnwithai/discord) από 18 - 30 Σεπτεμβρίου, 2025. Θα λάβετε συμβουλές και κόλπα για τη χρήση του GitHub Copilot για την Επιστήμη Δεδομένων.

@ -55,18 +39,18 @@ CO_OP_TRANSLATOR_METADATA:
Ξεκινήστε με τους παρακάτω πόρους:
- [Σελίδα Κόμβου Φοιτητών](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Σε αυτή τη σελίδα, θα βρείτε πόρους για αρχάριους, πακέτα φοιτητών και ακόμη και τρόπους γιανα αποκτήσετε δωρεάν κουπόνι πιστοποίησης. Αυτή είναι μια σελίδα που θέλετε να προσθέσετε στους σελιδοδείκτες σας και να ελέγχετε από καιρό σε καιρό, καθώς αλλάζουμε το περιεχόμενο τουλάχιστον μηνιαία.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Γίνετε μέλος μιας παγκόσμιας κοινότητας φοιτητών πρεσβευτών, αυτό θα μπορούσε να είναι οδρόμος σας προς τη Microsoft.
- [Σελίδα Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Σε αυτή τη σελίδα, θα βρείτε πόρους για αρχάριους, πακέτα για φοιτητές και ακόμη και τρόπους γιανα αποκτήσετε δωρεάν κουπόνι πιστοποίησης. Αυτή είναι μια σελίδα που θέλετε να προσθέσετε στους σελιδοδείκτες σας και να ελέγχετε από καιρό σε καιρό καθώς αλλάζουμε το περιεχόμενο τουλάχιστον μηνιαία.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Γίνετε μέλος μιας παγκόσμιας κοινότητας φοιτητών πρεσβευτών, αυτό θα μπορούσε να είναι οτρόπος σας γιανα μπείτε στη Microsoft.
# Ξεκινώντας
> **Καθηγητές**: έχουμε [συμπεριλάβει κάποιες προτάσεις](for-teachers.md) για το πώς να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών. Θα θέλαμε τα σχόλιά σας [στο φόρουμ συζητήσεων](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Καθηγητές**: έχουμε [συμπεριλάβει κάποιες προτάσεις](for-teachers.md) για το πώς να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών. Θα θέλαμε τη γνώμη σας [στο φόρουμ συζητήσεων μας](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Φοιτητές](https://aka.ms/student-page)**: γιανα χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών μόνοι σας, κάντε fork ολόκληρο το αποθετήριο και ολοκληρώστε τις ασκήσεις μόνοι σας, ξεκινώντας με ένα κουίζ πριν από τη διάλεξη. Στη συνέχεια, διαβάστε τη διάλεξη και ολοκληρώστε τις υπόλοιπες δραστηριότητες. Προσπαθήστε να δημιουργήσετε τα έργα κατανοώντας τα μαθήματα αντί να αντιγράφετε τον κώδικα λύσης. Ωστόσο, αυτός ο κώδικας είναι διαθέσιμος στους φακέλους /solutions σε κάθε μάθημα που βασίζεται σε έργα. Μια άλλη ιδέα θα ήταν να σχηματίσετε μια ομάδα μελέτης με φίλους και να περάσετε το περιεχόμενο μαζί. Για περαιτέρω μελέτη, προτείνουμε το [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Φοιτητές](https://aka.ms/student-page)**: γιανα χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών μόνοι σας, κάντε fork ολόκληρο το αποθετήριο και ολοκληρώστε τις ασκήσεις μόνοι σας, ξεκινώντας με ένα κουίζ πριν από το μάθημα. Στη συνέχεια, διαβάστε το μάθημα και ολοκληρώστε τις υπόλοιπες δραστηριότητες. Προσπαθήστε να δημιουργήσετε τα έργα κατανοώντας τα μαθήματα αντί να αντιγράφετε τον κώδικα λύσης· ωστόσο, αυτός ο κώδικας είναι διαθέσιμος στους φακέλους /solutions σε κάθε μάθημα που βασίζεται σε έργο. Μια άλλη ιδέα θα ήταν να σχηματίσετε μια ομάδα μελέτης με φίλους και να περάσετε το περιεχόμενο μαζί. Για περαιτέρω μελέτη, προτείνουμε [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
Επιλέξαμε δύο παιδαγωγικές αρχές κατά τη δημιουργία αυτού του προγράμματος σπουδών: να διασφαλίσουμε ότι είναι βασισμένο σε έργα και ότι περιλαμβάνει συχνά κουίζ. Μέχρι το τέλος αυτής της σειράς, οι φοιτητές θα έχουν μάθει βασικές αρχές της επιστήμης δεδομένων, συμπεριλαμβανομένων ηθικών εννοιών, προετοιμασίας δεδομένων, διαφορετικών τρόπων εργασίας με δεδομένα, οπτικοποίησης δεδομένων, ανάλυσης δεδομένων, πραγματικών περιπτώσεων χρήσης της επιστήμης δεδομένων και πολλά άλλα.
Επιπλέον, ένα κουίζ χαμηλού ρίσκου πριν από το μάθημα θέτει την πρόθεση του φοιτητή προς την εκμάθηση ενός θέματος, ενώ ένα δεύτερο κουίζ μετά το μάθημα διασφαλίζει περαιτέρω την απομνημόνευση. Αυτό το πρόγραμμα σπουδών σχεδιάστηκε ώστε να είναι ευέλικτο και διασκεδαστικό και μπορεί να ολοκληρωθεί ολόκληρο ή εν μέρει. Τα έργα ξεκινούν μικρά και γίνονται όλο και πιο περίπλοκα μέχρι το τέλος του κύκλου των 10 εβδομάδων.
Επιπλέον, ένα κουίζ χαμηλού κινδύνου πριν από το μάθημα θέτει την πρόθεση του φοιτητή προς την εκμάθηση ενός θέματος, ενώ ένα δεύτερο κουίζ μετά το μάθημα διασφαλίζει περαιτέρω την απομνημόνευση. Αυτό το πρόγραμμα σπουδών σχεδιάστηκε γιανα είναι ευέλικτο και διασκεδαστικό και μπορεί να ληφθεί ολόκληρο ή εν μέρει. Τα έργα ξεκινούν μικρά και γίνονται όλο και πιο περίπλοκα μέχρι το τέλος του κύκλου των 10 εβδομάδων.
> Βρείτε τον [Κώδικα Συμπεριφοράς](CODE_OF_CONDUCT.md), τις [Οδηγίες Συνεισφοράς](CONTRIBUTING.md), και τις [Οδηγίες Μετάφρασης](TRANSLATIONS.md). Καλωσορίζουμε τα εποικοδομητικά σας σχόλια!
> Βρείτε τον [Κώδικα Δεοντολογίας](CODE_OF_CONDUCT.md), [Οδηγίες Συνεισφοράς](CONTRIBUTING.md), [Οδηγίες Μετάφρασης](TRANSLATIONS.md). Καλωσορίζουμε τα εποικοδομητικά σας σχόλια!
## Κάθε μάθημα περιλαμβάνει:
@ -93,34 +77,35 @@ CO_OP_TRANSLATOR_METADATA:
- Εργασία
- [Κουίζ μετά το μάθημα](https://ff-quizzes.netlify.app/en/)
> **Σημείωση για τα κουίζ**: Όλα τα κουίζ περιέχονται στον φάκελο Quiz-App, γιασυνολικά 40 κουίζ με τρεις ερωτήσεις το καθένα. Συνδέονται μέσα από τα μαθήματα, αλλά η εφαρμογή κουίζ μπορεί να εκτελεστεί τοπικά ή να αναπτυχθεί στο Azure. Ακολουθήστε τις οδηγίες στον φάκελο `quiz-app`. Μεταφράζονται σταδιακά.
> **Σημείωση για τα κουίζ**: Όλα τα κουίζ περιέχονται στον φάκελο Quiz-App, συνολικά 40 κουίζ με τρεις ερωτήσεις το καθένα. Συνδέονται μέσα από τα μαθήματα, αλλά η εφαρμογή κουίζ μπορεί να εκτελεστεί τοπικά ή να αναπτυχθεί στο Azure· ακολουθήστε τις οδηγίες στον φάκελο `quiz-app`. Μεταφράζονται σταδιακά.
## Μαθήματα
||
|:---:|
| Επιστήμη Δεδομένων για Αρχάριους: Οδικός Χάρτης - _Σκίτσο από [@nitya](https://twitter.com/nitya)_ |
| Αριθμός Μαθήματος | Θέμα | Ομαδοποίηση Μαθήματος | Στόχοι Μάθησης | Συνδεδεμένο Μάθημα | Συγγραφέας |
| 01 | Ορισμός της Επιστήμης Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Μάθετε τις βασικές έννοιες της επιστήμης δεδομένων και πώς συνδέεται με την τεχνητή νοημοσύνη, τη μηχανική μάθηση και τα μεγάλα δεδομένα. | [μάθημα](1-Introduction/01-defining-data-science/README.md) [βίντεο](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | Ορισμός των Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Πώς ταξινομούνται τα δεδομένα και ποιες είναι οι κοινές πηγές τους. | [μάθημα](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Εισαγωγή στη Στατιστική και Πιθανότητες | [Εισαγωγή](1-Introduction/README.md) | Μαθηματικές τεχνικές πιθανοτήτων και στατιστικής για την κατανόηση των δεδομένων. | [μάθημα](1-Introduction/04-stats-and-probability/README.md) [βίντεο](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Εργασία με Σχεσιακά Δεδομένα | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή στα σχεσιακά δεδομένα και βασικές τεχνικές εξερεύνησης και ανάλυσης με τη γλώσσα SQL (προφέρεται "σι-κουέλ"). | [μάθημα](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Εργασία με Δεδομένα NoSQL | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή στα μη σχεσιακά δεδομένα, τους διάφορους τύπους τους και τις βασικές τεχνικές εξερεύνησης και ανάλυσης βάσεων δεδομένων εγγράφων. | [μάθημα](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Εργασία με Python | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Βασικά στοιχεία χρήσης της Python για εξερεύνηση δεδομένων με βιβλιοθήκες όπως η Pandas. Συνιστάται θεμελιώδης κατανόηση της προγραμματιστικής γλώσσας Python. | [μάθημα](2-Working-With-Data/07-python/README.md) [βίντεο](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Προετοιμασία Δεδομένων | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Θέματα τεχνικών καθαρισμού και μετασχηματισμού δεδομένων για την αντιμετώπιση προκλήσεων όπως ελλιπή ή ανακριβή δεδομένα. | [μάθημα](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Εισαγωγή στη Στατιστική και Πιθανότητες | [Εισαγωγή](1-Introduction/README.md) | Οι μαθηματικές τεχνικές της πιθανότητας και της στατιστικής για την κατανόηση των δεδομένων. | [μάθημα](1-Introduction/04-stats-and-probability/README.md) [βίντεο](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Εργασία με Σχεσιακά Δεδομένα | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή στα σχεσιακά δεδομένα και βασικές αρχές εξερεύνησης και ανάλυσης σχεσιακών δεδομένων με τη Δομημένη Γλώσσα Ερωτημάτων (SQL). | [μάθημα](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Εργασία με Δεδομένα NoSQL | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή στα μη σχεσιακά δεδομένα, τους διάφορους τύπους τους και τις βασικές αρχές εξερεύνησης και ανάλυσης βάσεων δεδομένων εγγράφων. | [μάθημα](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Εργασία με Python | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Βασικές αρχές χρήσης της Python για εξερεύνηση δεδομένων με βιβλιοθήκες όπως η Pandas. Συνιστάται θεμελιώδης κατανόηση της Python. | [μάθημα](2-Working-With-Data/07-python/README.md) [βίντεο](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Προετοιμασία Δεδομένων | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Θέματα τεχνικών δεδομένων για καθαρισμό και μετασχηματισμό δεδομένων ώστε να αντιμετωπιστούν προκλήσεις όπως ελλιπή ή ανακριβή δεδομένα. | [μάθημα](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 12 | Οπτικοποίηση Σχέσεων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Οπτικοποίηση συνδέσεων και συσχετίσεων μεταξύ συνόλων δεδομένων και των μεταβλητών τους. | [μάθημα](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Οπτικοποίηση Σχέσεων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Οπτικοποίηση συνδέσεων και συσχετίσεων μεταξύ συνόλων δεδομένων και μεταβλητών τους. | [μάθημα](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Σημαντικές Οπτικοποιήσεις | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Τεχνικές και καθοδήγηση για τη δημιουργία οπτικοποιήσεων που είναι χρήσιμες για αποτελεσματική επίλυση προβλημάτων και εξαγωγή συμπερασμάτων. | [μάθημα](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Εισαγωγή στον Κύκλο Ζωής της Επιστήμης Δεδομένων | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Εισαγωγή στον κύκλο ζωής της επιστήμης δεδομένων και το πρώτο βήμα της απόκτησης και εξαγωγής δεδομένων. | [μάθημα](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Ανάλυση | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται στις τεχνικές ανάλυσης δεδομένων. | [μάθημα](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Επικοινωνία | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται στην παρουσίαση των συμπερασμάτων από τα δεδομένα με τρόπο που να είναι κατανοητός για τους υπεύθυνους λήψης αποφάσεων. | [μάθημα](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Επιστήμη Δεδομένων στο Cloud | [Cloud Δεδομένα](5-Data-Science-In-Cloud/README.md) | Αυτή η σειρά μαθημάτων εισάγει την επιστήμη δεδομένων στο cloud και τα οφέλη της. | [μάθημα](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
| 19 | Επιστήμη Δεδομένων στο Cloud | [Cloud Δεδομένα](5-Data-Science-In-Cloud/README.md) | Ανάπτυξη μοντέλων με το Azure Machine Learning Studio. | [μάθημα](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
| 16 | Επικοινωνία | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται στην παρουσίαση των συμπερασμάτων από τα δεδομένα με τρόπο που να είναι κατανοητός από τους υπεύθυνους λήψης αποφάσεων. | [μάθημα](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Επιστήμη Δεδομένων στο Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Αυτή η σειρά μαθημάτων εισάγει την επιστήμη δεδομένων στο cloud και τα οφέλη της. | [μάθημα](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
| 19 | Επιστήμη Δεδομένων στο Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ανάπτυξη μοντέλων με το Azure Machine Learning Studio. | [μάθημα](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
| 20 | Επιστήμη Δεδομένων στην Πράξη | [Στην Πράξη](6-Data-Science-In-Wild/README.md) | Έργα επιστήμης δεδομένων στον πραγματικό κόσμο. | [μάθημα](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -133,11 +118,11 @@ CO_OP_TRANSLATOR_METADATA:
## VSCode Remote - Containers
Ακολουθήστε αυτά τα βήματα γιανα ανοίξετε αυτό το αποθετήριο σε ένα container χρησιμοποιώντας τον τοπικό σας υπολογιστή και το VSCode με την επέκταση VS Code Remote - Containers:
1. Εάν είναι η πρώτη φορά που χρησιμοποιείτε container ανάπτυξης, βεβαιωθείτε ότι το σύστημά σας πληροί τις προϋποθέσεις (π.χ. έχετε εγκαταστήσει το Docker) στην [τεκμηρίωση για την έναρξη](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Εάν είναι η πρώτη φορά που χρησιμοποιείτε container ανάπτυξης, βεβαιωθείτε ότι το σύστημά σας πληροί τις προϋποθέσεις (π.χ. έχετε εγκαταστήσει το Docker) στην [τεκμηρίωση έναρξης](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Για να χρησιμοποιήσετε αυτό το αποθετήριο, μπορείτε είτε να το ανοίξετε σε έναν απομονωμένο όγκο Docker:
**Σημείωση**: Στο παρασκήνιο, αυτό θα χρησιμοποιήσει την εντολή Remote-Containers: **Clone Repository in Container Volume...**γιανα κλωνοποιήσει τον πηγαίο κώδικα σε έναν όγκο Docker αντί για το τοπικό σύστημα αρχείων. Οι [Όγκοι](https://docs.docker.com/storage/volumes/) είναι ο προτιμώμενος μηχανισμός για τη διατήρηση δεδομένων container.
**Σημείωση**: Στο παρασκήνιο, αυτό θα χρησιμοποιήσει την εντολή Remote-Containers: **Clone Repository in Container Volume...**γιανα κλωνοποιήσει τον πηγαίο κώδικα σε έναν όγκο Docker αντί για το τοπικό σύστημα αρχείων. Οι [Όγκοι](https://docs.docker.com/storage/volumes/) είναι ο προτιμώμενος μηχανισμός για την αποθήκευση δεδομένων container.
Ή να ανοίξετε μια τοπικά κλωνοποιημένη ή κατεβασμένη έκδοση του αποθετηρίου:
@ -155,10 +140,12 @@ CO_OP_TRANSLATOR_METADATA:
Η ομάδα μας παράγει και άλλα προγράμματα σπουδών! Δείτε:
- [Generative AI για Αρχάριους](https://aka.ms/genai-beginners)
- [Generative AI για Αρχάριους .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI με JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI με Java](https://aka.ms/genaijava)
- [Edge AI για Αρχάριους](https://aka.ms/edgeai-for-beginners)
- [AI Agents για Αρχάριους](https://aka.ms/ai-agents-beginners)
- [Γενετική AI για Αρχάριους](https://aka.ms/genai-beginners)
- [Γενετική AI για Αρχάριους .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Γενετική AI με JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Γενετική AI με Java](https://aka.ms/genaijava)
- [AI για Αρχάριους](https://aka.ms/ai-beginners)
- [Επιστήμη Δεδομένων για Αρχάριους](https://aka.ms/datascience-beginners)
- [Bash για Αρχάριους](https://github.com/microsoft/bash-for-beginners)
@ -175,3 +162,5 @@ CO_OP_TRANSLATOR_METADATA:
---
**Αποποίηση ευθύνης**:
Αυτό το έγγραφο έχει μεταφραστεί χρησιμοποιώντας την υπηρεσία αυτόματης μετάφρασης [Co-op Translator](https://github.com/Azure/co-op-translator). Παρόλο που καταβάλλουμε προσπάθειες για ακρίβεια, παρακαλούμε να έχετε υπόψη ότι οι αυτόματες μεταφράσεις ενδέχεται να περιέχουν λάθη ή ανακρίβειες. Το πρωτότυπο έγγραφο στη μητρική του γλώσσα θα πρέπει να θεωρείται η αυθεντική πηγή. Για κρίσιμες πληροφορίες, συνιστάται επαγγελματική ανθρώπινη μετάφραση. Δεν φέρουμε ευθύνη για τυχόν παρεξηγήσεις ή εσφαλμένες ερμηνείες που προκύπτουν από τη χρήση αυτής της μετάφρασης.
@ -38,14 +38,14 @@ We are hosting a Discord "Learn with AI" series from September 18–30, 2025. Jo
Start with these resources:
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum): This page offers beginner resources, student packs, and even opportunities to get free certification vouchers. Bookmark it and check back regularly for updated content.
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum): This page offers beginner resources, student packs, and even opportunities to get free certification vouchers. Bookmark it and check back regularly for updates.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum): Join a global community of student ambassadors—your gateway to Microsoft.
# Getting Started
> **Teachers**: We’ve [included some suggestions](for-teachers.md) on how to use this curriculum. Share your feedback [in our discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Teachers**: We've [included some suggestions](for-teachers.md) on how to use this curriculum. Share your feedback [in our discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Students](https://aka.ms/student-page)**: To use this curriculum independently, fork the repository and complete the exercises, starting with the pre-lesson quiz. Read the lesson and complete the activities. Try to build the projects by understanding the lessons rather than copying the solution code (available in the /solutions folders for each project-based lesson). Alternatively, form a study group with friends and go through the content together. For further learning, explore [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Students](https://aka.ms/student-page)**: To use this curriculum independently, fork the repository and complete the exercises, starting with the pre-lesson quiz. Read the lesson and complete the activities. Try to build the projects by understanding the lessons rather than copying the solution code (available in the /solutions folders). Alternatively, form a study group with friends and go through the content together. For further learning, explore [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Meet the Team
@ -57,9 +57,9 @@ Start with these resources:
## Pedagogy
This curriculum is built on two key principles: project-based learning and frequent quizzes. By the end of the series, students will understand fundamental concepts of data science, including ethical considerations, data preparation, data visualization, data analysis, real-world applications, and more.
This curriculum is built on two key principles: project-based learning and frequent quizzes. By the end of the series, students will understand fundamental data science concepts, including ethics, data preparation, data visualization, data analysis, real-world applications, and more.
Low-stakes quizzes before each class help students focus on the topic, while post-class quizzes reinforce retention. The curriculum is designed to be flexible and engaging, allowing students to complete it in full or in part. Projects start small and grow in complexity over the 10-week cycle.
Low-stakes quizzes before and after lessons help set learning intentions and reinforce retention. The curriculum is designed to be flexible and engaging, with projects that grow in complexity over the 10-week cycle.
> Check out our [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), and [Translation](TRANSLATIONS.md) guidelines. We welcome your constructive feedback!
@ -76,48 +76,48 @@ Low-stakes quizzes before each class help students focus on the topic, while pos
> **A note about quizzes**: All quizzes are located in the Quiz-App folder, with 40 quizzes containing three questions each. They are linked within the lessons but can also be run locally or deployed to Azure. Follow the instructions in the `quiz-app` folder. Localization is ongoing.
> **A note about quizzes**: All quizzes are located in the Quiz-App folder, with 40 quizzes of three questions each. They are linked within the lessons but can also be run locally or deployed to Azure. Follow the instructions in the `quiz-app` folder. Localization is ongoing.
## Lessons
||
|:---:|
| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| 01 | Defining Data Science | [Introduction](1-Introduction/README.md) | Learn the basic concepts behind data science and how it’s related to artificial intelligence, machine learning, and big data. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Data Science Ethics | [Introduction](1-Introduction/README.md) | Concepts, challenges, and frameworks related to data ethics. | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 02 | Data Science Ethics | [Introduction](1-Introduction/README.md) | Data Ethics Concepts, Challenges & Frameworks. | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Defining Data | [Introduction](1-Introduction/README.md) | How data is classified and its common sources. | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduction to Statistics & Probability | [Introduction](1-Introduction/README.md) | Mathematical techniques in probability and statistics to understand data. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Working with Relational Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to relational data and the basics of exploring and analyzing relational data using SQL (pronounced “see-quell”). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
| 06 | Working with NoSQL Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to non-relational data, its various types, and the basics of exploring and analyzing document databases. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Working with Python | [Working With Data](2-Working-With-Data/README.md) | Basics of using Python for data exploration with libraries like Pandas. Foundational knowledge of Python programming is recommended. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Data Preparation | [Working With Data](2-Working-With-Data/README.md) | Techniques for cleaning and transforming data to address challenges like missing, inaccurate, or incomplete data. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduction to Statistics & Probability | [Introduction](1-Introduction/README.md) | The mathematical techniques of probability and statistics to understand data. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Working with Relational Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to relational data and the basics of exploring and analyzing relational data with the Structured Query Language, also known as SQL (pronounced “see-quell”). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Working with NoSQL Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to non-relational data, its various types and the basics of exploring and analyzing document databases. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Working with Python | [Working With Data](2-Working-With-Data/README.md) | Basics of using Python for data exploration with libraries such as Pandas. Foundational understanding of Python programming is recommended. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Data Preparation | [Working With Data](2-Working-With-Data/README.md) | Topics on data techniques for cleaning and transforming the data to handle challenges of missing, inaccurate, or incomplete data. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizing Quantities | [Data Visualization](3-Data-Visualization/README.md) | Learn how to use Matplotlib to visualize bird data 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizing Distributions of Data | [Data Visualization](3-Data-Visualization/README.md) | Visualizing observations and trends within an interval. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizing Relationships | [Data Visualization](3-Data-Visualization/README.md) | Visualizing connections and correlations between data sets and their variables. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Meaningful Visualizations | [Data Visualization](3-Data-Visualization/README.md) | Techniques and guidance for creating visualizations that effectively solve problems and provide insights. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduction to the Data Science lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduction to the data science lifecycle and its first step: acquiring and extracting data. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyzing | [Lifecycle](4-Data-Science-Lifecycle/README.md) | This phase of the data science lifecycle focuses on techniques for analyzing data. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
| 16 | Communication | [Lifecycle](4-Data-Science-Lifecycle/README.md) | This phase of the data science lifecycle focuses on presenting insights from data in a way that decision-makers can easily understand. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
| 12 | Visualizing Relationships | [Data Visualization](3-Data-Visualization/README.md) | Visualizing connections and correlations between sets of data and their variables. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Meaningful Visualizations | [Data Visualization](3-Data-Visualization/README.md) | Techniques and guidance for making your visualizations valuable for effective problem solving and insights. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduction to the Data Science lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduction to the data science lifecycle and its first step of acquiring and extracting data. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyzing | [Lifecycle](4-Data-Science-Lifecycle/README.md) | This phase of the data science lifecycle focuses on techniques to analyze data. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Communication | [Lifecycle](4-Data-Science-Lifecycle/README.md) | This phase of the data science lifecycle focuses on presenting the insights from the data in a way that makes it easier for decision makers to understand. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | This series of lessons introduces data science in the cloud and its benefits. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Training models using Low Code tools. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deploying models with Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science in the Wild | [In the Wild](6-Data-Science-In-Wild/README.md) | Data science-driven projects in real-world scenarios. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 18 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Training models using Low Code tools. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deploying models with Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science in the Wild | [In the Wild](6-Data-Science-In-Wild/README.md) | Data science driven projects in the real world. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Follow these steps to open this sample in a Codespace:
1. Click the Code drop-down menu and select the Open with Codespaces option.
2. Select + New codespace at the bottom of the pane.
2. Select + New codespace at the bottom on the pane.
For more info, check out the [GitHub documentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Follow these steps to open this repo in a container using your local machine and VSCode using the VS Code Remote - Containers extension:
Follow these steps to open this repo in a container using your local machine and VSCode with the VS Code Remote - Containers extension:
1. If this is your first time using a development container, ensure your system meets the prerequisites (e.g., Docker installed) in [the getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in [the getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
To use this repository, you can either open the repository in an isolated Docker volume:
@ -131,14 +131,16 @@ Or open a locally cloned or downloaded version of the repository:
## Offline access
You can run this documentation offline using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, then in the root folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`.
You can run this documentation offline by using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, then in the root folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`.
> Note: Notebooks will not be rendered via Docsify, so when you need to run a notebook, do that separately in VS Code using a Python kernel.
> Note, notebooks will not be rendered via Docsify, so when you need to run a notebook, do that separately in VS Code running a Python kernel.
## Other Curricula
Our team produces other curricula! Check out:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -159,3 +161,5 @@ Our team produces other curricula! Check out:
---
**Disclaimer**:
This document has been translated using the AI translation service [Co-op Translator](https://github.com/Azure/co-op-translator). While we aim for accuracy, please note that automated translations may contain errors or inaccuracies. The original document in its native language should be regarded as the authoritative source. For critical information, professional human translation is recommended. We are not responsible for any misunderstandings or misinterpretations resulting from the use of this translation.
# Ciencia de Datos para Principiantes - Un Currículo
Azure Cloud Advocates en Microsoft se complacen en ofrecer un currículo de 10 semanas y 20 lecciones sobre Ciencia de Datos. Cada lección incluye cuestionarios antes y después de la lección, instrucciones escritas para completar la lección, una solución y una tarea. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma comprobada de que las nuevas habilidades se queden contigo.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://aka.ms/foundry/forum)
Los Azure Cloud Advocates de Microsoft se complacen en ofrecer un currículo de 10 semanas y 20 lecciones sobre Ciencia de Datos. Cada lección incluye cuestionarios antes y después de la lección, instrucciones escritas para completar la lección, una solución y una tarea. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma comprobada de que las nuevas habilidades se queden contigo.
**Si deseas que se admitan traducciones adicionales, los idiomas disponibles están listados [aquí](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Si deseas que se admitan idiomas adicionales, los idiomas disponibles están listados [aquí](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Únete a Nuestra Comunidad
[](https://aka.ms/ds4beginners/discord)
Tenemos una serie de aprendizaje con IA en Discord en curso, aprende más y únete a nosotros en [Learn with AI Series](https://aka.ms/learnwithai/discord) del 18 al 30 de septiembre de 2025. Obtendrás consejos y trucos para usar GitHub Copilot en Ciencia de Datos.


# ¿Eres estudiante?
Comienza con los siguientes recursos:
- [Página del Hub para Estudiantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) En esta página encontrarás recursos para principiantes, paquetes para estudiantes e incluso formas de obtener un voucher gratuito para certificación. Es una página que querrás marcar como favorita y revisar de vez en cuando, ya que cambiamos el contenido al menos mensualmente.
- [Página del Hub para Estudiantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) En esta página encontrarás recursos para principiantes, paquetes para estudiantes e incluso formas de obtener un voucher gratuito para certificación. Es una página que querrás marcar y revisar de vez en cuando, ya que cambiamos el contenido al menos mensualmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Únete a una comunidad global de embajadores estudiantiles, esta podría ser tu puerta de entrada a Microsoft.
# Comenzando
> **Profesores**: hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este currículo. Nos encantaría recibir tus comentarios [en nuestro foro de discusión](https://github.com/microsoft/Data-Science-For-Beginners/discussions).
> **Profesores**: hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este currículo. Nos encantaría recibir tus comentarios [en nuestro foro de discusión](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Estudiantes](https://aka.ms/student-page)**: para usar este currículo por tu cuenta, haz un fork del repositorio completo y completa los ejercicios por tu cuenta, comenzando con un cuestionario previo a la lección. Luego, lee la lección y completa el resto de las actividades. Intenta crear los proyectos comprendiendo las lecciones en lugar de copiar el código de solución; sin embargo, ese código está disponible en las carpetas /solutions en cada lección orientada a proyectos. Otra idea sería formar un grupo de estudio con amigos y revisar el contenido juntos. Para un estudio más profundo, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -62,7 +78,7 @@ Hemos elegido dos principios pedagógicos al construir este currículo: asegurar
Además, un cuestionario de bajo riesgo antes de la clase establece la intención del estudiante hacia el aprendizaje de un tema, mientras que un segundo cuestionario después de la clase asegura una mayor retención. Este currículo fue diseñado para ser flexible y divertido y puede tomarse en su totalidad o en parte. Los proyectos comienzan pequeños y se vuelven cada vez más complejos al final del ciclo de 10 semanas.
> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), [Contribuciones](CONTRIBUTING.md), [Traducciones](TRANSLATIONS.md). ¡Agradecemos tus comentarios constructivos!
> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), [Contribuciones](CONTRIBUTING.md), [Guías de Traducción](TRANSLATIONS.md). ¡Agradecemos tus comentarios constructivos!
## Cada lección incluye:
@ -86,42 +102,42 @@ Además, un cuestionario de bajo riesgo antes de la clase establece la intenció
| Número de Lección | Tema | Agrupación de Lecciones | Objetivos de Aprendizaje | Lección Vinculada | Autor |
| 01 | Definiendo la Ciencia de Datos | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos de la ciencia de datos y cómo se relaciona con la inteligencia artificial, el aprendizaje automático y los grandes datos. | [lección](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definiendo la Ciencia de Datos | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos detrás de la ciencia de datos y cómo se relaciona con la inteligencia artificial, el aprendizaje automático y los grandes datos. | [lección](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética en la Ciencia de Datos | [Introducción](1-Introduction/README.md) | Conceptos, desafíos y marcos de ética en los datos. | [lección](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiendo los Datos | [Introducción](1-Introduction/README.md) | Cómo se clasifican los datos y sus fuentes comunes. | [lección](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introducción a Estadística y Probabilidad | [Introducción](1-Introduction/README.md) | Técnicas matemáticas de probabilidad y estadística para comprender los datos. | [lección](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabajando con Datos Relacionales | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a los datos relacionales y los conceptos básicos de exploración y análisis de datos relacionales con el Lenguaje de Consulta Estructurada, también conocido como SQL (pronunciado "sequel"). | [lección](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabajando con Datos NoSQL | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a los datos no relacionales, sus diversos tipos y los conceptos básicos de exploración y análisis de bases de datos de documentos. | [lección](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabajando con Python | [Trabajando con Datos](2-Working-With-Data/README.md) | Conceptos básicos de uso de Python para la exploración de datos con bibliotecas como Pandas. Se recomienda una comprensión fundamental de la programación en Python. | [lección](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 04 | Introducción a Estadística y Probabilidad | [Introducción](1-Introduction/README.md) | Las técnicas matemáticas de probabilidad y estadística para entender los datos. | [lección](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabajando con Datos Relacionales | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a los datos relacionales y los conceptos básicos para explorar y analizar datos relacionales con el Lenguaje de Consulta Estructurada, también conocido como SQL (pronunciado "see-quell"). | [lección](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabajando con Datos NoSQL | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a los datos no relacionales, sus diversos tipos y los conceptos básicos para explorar y analizar bases de datos de documentos. | [lección](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabajando con Python | [Trabajando con Datos](2-Working-With-Data/README.md) | Conceptos básicos para usar Python en la exploración de datos con bibliotecas como Pandas. Se recomienda tener una comprensión fundamental de la programación en Python. | [lección](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparación de Datos | [Trabajando con Datos](2-Working-With-Data/README.md) | Temas sobre técnicas de datos para limpiar y transformar los datos para manejar desafíos como datos faltantes, inexactos o incompletos. | [lección](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizando Cantidades | [Visualización de Datos](3-Data-Visualization/README.md) | Aprende a usar Matplotlib para visualizar datos de aves 🦆 | [lección](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizando Distribuciones de Datos | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de observaciones y tendencias dentro de un intervalo. | [lección](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizando Proporciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de porcentajes discretos y agrupados. | [lección](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizando Relaciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de conexiones y correlaciones entre conjuntos de datos y sus variables. | [lección](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizando Distribuciones de Datos | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando observaciones y tendencias dentro de un intervalo. | [lección](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizando Proporciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando porcentajes discretos y agrupados. | [lección](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizando Relaciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando conexiones y correlaciones entre conjuntos de datos y sus variables. | [lección](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizaciones Significativas | [Visualización de Datos](3-Data-Visualization/README.md) | Técnicas y orientación para hacer que tus visualizaciones sean valiosas para resolver problemas de manera efectiva y obtener ideas. | [lección](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introducción al Ciclo de Vida de la Ciencia de Datos | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introducción al ciclo de vida de la ciencia de datos y su primer paso de adquisición y extracción de datos. | [lección](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 14 | Introducción al Ciclo de Vida de la Ciencia de Datos | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introducción al ciclo de vida de la ciencia de datos y su primer paso de adquirir y extraer datos. | [lección](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analizando | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en técnicas para analizar datos. | [lección](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicación | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en presentar los hallazgos de los datos de manera que sea más fácil para los tomadores de decisiones comprenderlos. | [lección](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Comunicación | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en presentar los hallazgos de los datos de manera que sea más fácil para los tomadores de decisiones entender. | [lección](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Esta serie de lecciones introduce la ciencia de datos en la nube y sus beneficios. | [lección](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 18 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Entrenamiento de modelos usando herramientas de bajo código. |[lección](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 19 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Despliegue de modelos con Azure Machine Learning Studio. | [lección](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 18 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Entrenando modelos usando herramientas de bajo código. |[lección](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 19 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Desplegando modelos con Azure Machine Learning Studio. | [lección](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 20 | Ciencia de Datos en el Mundo Real | [En el Mundo Real](6-Data-Science-In-Wild/README.md) | Proyectos impulsados por la ciencia de datos en el mundo real. | [lección](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sigue estos pasos para abrir este ejemplo en un Codespace:
1. Haz clic en el menú desplegable Code y selecciona la opción Open with Codespaces.
2. Selecciona + New codespace en la parte inferior del panel.
1. Haz clic en el menú desplegable de Código y selecciona la opción Abrir con Codespaces.
2. Selecciona + Nuevo codespace en la parte inferior del panel.
Para más información, consulta la [documentación de GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sigue estos pasos para abrir este repositorio en un contenedor usando tu máquina local y VSCode con la extensión VS Code Remote - Containers:
1. Si es la primera vez que usas un contenedor de desarrollo, asegúrate de que tu sistema cumpla con los requisitos previos (por ejemplo, tener Docker instalado) en [la documentación de introducción](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Si es la primera vez que usas un contenedor de desarrollo, asegúrate de que tu sistema cumpla con los requisitos previos (es decir, tener Docker instalado) en [la documentación de introducción](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Para usar este repositorio, puedes abrirlo en un volumen de Docker aislado:
**Nota**: En segundo plano, esto usará el comando Remote-Containers: **Clone Repository in Container Volume...** para clonar el código fuente en un volumen de Docker en lugar del sistema de archivos local. [Los volúmenes](https://docs.docker.com/storage/volumes/) son el mecanismo preferido para persistir datos de contenedores.
**Nota**: En segundo plano, esto usará el comando Remote-Containers: **Clone Repository in Container Volume...** para clonar el código fuente en un volumen de Docker en lugar del sistema de archivos local. [Volúmenes](https://docs.docker.com/storage/volumes/) son el mecanismo preferido para persistir datos de contenedores.
O abrir una versión clonada o descargada localmente del repositorio:
@ -139,23 +155,27 @@ Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsi
¡Nuestro equipo produce otros currículos! Consulta:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [Edge AI para Principiantes](https://aka.ms/edgeai-for-beginners)
- [Agentes de IA para Principiantes](https://aka.ms/ai-agents-beginners)
- [IA Generativa para Principiantes](https://aka.ms/genai-beginners)
- [IA Generativa para Principiantes .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [IA Generativa con JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [IA Generativa con Java](https://aka.ms/genaijava)
- [IA para Principiantes](https://aka.ms/ai-beginners)
- [Ciencia de Datos para Principiantes](https://aka.ms/datascience-beginners)
- [Bash para Principiantes](https://github.com/microsoft/bash-for-beginners)
- [ML para Principiantes](https://aka.ms/ml-beginners)
- [Ciberseguridad para Principiantes](https://github.com/microsoft/Security-101)
- [Desarrollo Web para Principiantes](https://aka.ms/webdev-beginners)
- [IoT para Principiantes](https://aka.ms/iot-beginners)
- [Aprendizaje Automático para Principiantes](https://aka.ms/ml-beginners)
- [Desarrollo XR para Principiantes](https://aka.ms/xr-dev-for-beginners)
- [Dominando GitHub Copilot para Programación en Pareja con IA](https://aka.ms/GitHubCopilotAI)
- [Desarrollo XR para Principiantes](https://github.com/microsoft/xr-development-for-beginners)
- [Dominando GitHub Copilot para Desarrolladores C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Elige tu propia aventura con Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Descargo de responsabilidad**:
Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.
Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه آموزشی ۱۰ هفتهای و ۲۰ درس درباره علم داده ارائه میدهند. هر درس شامل آزمونهای پیش از درس و پس از درس، دستورالعملهای نوشتاری برای تکمیل درس، یک راهحل و یک تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما امکان میدهد در حین ساختن یاد بگیرید، روشی اثباتشده برای تثبیت مهارتهای جدید.
Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه آموزشی ۱۰ هفتهای و ۲۰ درس درباره علم داده ارائه میدهند. هر درس شامل آزمونهای پیش از درس و پس از درس، دستورالعملهای نوشتاری برای تکمیل درس، یک راهحل و یک تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما امکان میدهد در حین ساختن یاد بگیرید، که یک روش اثباتشده برای تثبیت مهارتهای جدید است.
||
||
|:---:|
| علم داده برای مبتدیان - _طرحنگاری توسط [@nitya](https://twitter.com/nitya)_ |
| علم داده برای مبتدیان - _اسکچنوت توسط [@nitya](https://twitter.com/nitya)_ |
### 🌐 پشتیبانی چندزبانه
@ -25,12 +25,12 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
[](https://aka.ms/ds4beginners/discord)
ما یک سری یادگیری با هوش مصنوعی در Discord داریم، بیشتر بیاموزید و به ما بپیوندید در [سری یادگیری با هوش مصنوعی](https://aka.ms/learnwithai/discord) از ۱۸ تا ۳۰ سپتامبر ۲۰۲۵. شما نکات و ترفندهای استفاده از GitHub Copilot برای علم داده را دریافت خواهید کرد.
ما یک سری یادگیری با هوش مصنوعی در Discord داریم، بیشتر بدانید و به ما بپیوندید در [Learn with AI Series](https://aka.ms/learnwithai/discord) از ۱۸ تا ۳۰ سپتامبر ۲۰۲۵. شما نکات و ترفندهای استفاده از GitHub Copilot برای علم داده را دریافت خواهید کرد.

@ -39,19 +39,19 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
با منابع زیر شروع کنید:
- [صفحه مرکز دانشجویی](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) در این صفحه، منابع مبتدی، بستههای دانشجویی و حتی راههایی برای دریافت یک کوپن گواهی رایگان را خواهید یافت. این صفحهای است که میخواهید نشانکگذاری کنید و هر از گاهی بررسی کنید زیرا ما حداقل ماهانه محتوا را تغییر میدهیم.
- [سفیران دانشجویی مایکروسافت](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این میتواند راه شما به مایکروسافت باشد.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این میتواند راه شما به مایکروسافت باشد.
# شروع به کار
> **معلمان**: ما [برخی پیشنهادات](for-teachers.md) در مورد نحوه استفاده از این برنامه آموزشی را گنجاندهایم. ما مشتاقانه منتظر بازخورد شما [در انجمن بحث ما](https://github.com/microsoft/Data-Science-For-Beginners/discussions) هستیم!
> **معلمان**: ما [برخی پیشنهادات](for-teachers.md) در مورد نحوه استفاده از این برنامه آموزشی را گنجاندهایم. ما مشتاقانه منتظر بازخورد شما هستیم [در انجمن بحث ما](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[دانشجویان](https://aka.ms/student-page)**: برای استفاده از این برنامه آموزشی بهصورت مستقل، کل مخزن را فورک کنید و تمرینها را بهصورت مستقل انجام دهید، با آزمون پیش از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیتها را تکمیل کنید. سعی کنید پروژهها را با درک درسها ایجاد کنید نه با کپی کردن کد راهحل؛ با این حال، آن کد در پوشههای /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که یک گروه مطالعه با دوستان تشکیل دهید و محتوا را با هم مرور کنید. برای مطالعه بیشتر، ما [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) را توصیه میکنیم.
> **[دانشجویان](https://aka.ms/student-page)**: برای استفاده از این برنامه آموزشی بهصورت مستقل، کل مخزن را فورک کنید و تمرینها را بهصورت مستقل انجام دهید، با آزمون پیش از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیتها را تکمیل کنید. سعی کنید پروژهها را با درک درسها ایجاد کنید نه با کپی کردن کد راهحل؛ با این حال، آن کد در پوشههای /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که یک گروه مطالعه با دوستان تشکیل دهید و با هم محتوا را مرور کنید. برای مطالعه بیشتر، ما [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) را توصیه میکنیم.
> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره پروژه و افرادی که آن را ایجاد کردهاند ببینید!
@ -59,24 +59,24 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
ما دو اصل آموزشی را هنگام ساخت این برنامه آموزشی انتخاب کردهایم: اطمینان از اینکه مبتنی بر پروژه است و شامل آزمونهای مکرر میشود. تا پایان این سری، دانشجویان اصول اولیه علم داده را یاد خواهند گرفت، از جمله مفاهیم اخلاقی، آمادهسازی دادهها، روشهای مختلف کار با دادهها، مصورسازی دادهها، تحلیل دادهها، موارد استفاده واقعی از علم داده و موارد دیگر.
علاوه بر این، یک آزمون کمفشار قبل از کلاس، توجه دانشجو را به یادگیری یک موضوع جلب میکند، در حالی که یک آزمون دوم پس از کلاس، حفظ بیشتر را تضمین میکند. این برنامه آموزشی بهگونهای طراحی شده است که انعطافپذیر و سرگرمکننده باشد و میتوان آن را بهصورت کامل یا جزئی گذراند. پروژهها کوچک شروع میشوند و تا پایان چرخه ۱۰ هفتهای بهتدریج پیچیدهتر میشوند.
علاوه بر این، یک آزمون کمفشار قبل از کلاس، قصد دانشجو را برای یادگیری یک موضوع تعیین میکند، در حالی که یک آزمون دوم پس از کلاس، حفظ بیشتر را تضمین میکند. این برنامه آموزشی بهگونهای طراحی شده است که انعطافپذیر و سرگرمکننده باشد و میتوان آن را بهطور کامل یا جزئی انجام داد. پروژهها کوچک شروع میشوند و تا پایان چرخه ۱۰ هفتهای بهطور فزایندهای پیچیده میشوند.
> [قوانین رفتاری](CODE_OF_CONDUCT.md)، [مشارکت](CONTRIBUTING.md)، [ترجمه](TRANSLATIONS.md) ما را پیدا کنید. ما مشتاقانه منتظر بازخورد سازنده شما هستیم!
> دستورالعملهای [Code of Conduct](CODE_OF_CONDUCT.md)، [Contributing](CONTRIBUTING.md)، [Translation](TRANSLATIONS.md) ما را پیدا کنید. ما از بازخورد سازنده شما استقبال میکنیم!
## هر درس شامل موارد زیر است:
- طرحنگاری اختیاری
- اسکچنوت اختیاری
- ویدئوی تکمیلی اختیاری
- آزمون گرمآپ پیش از درس
- درس نوشتاری
- برای درسهای مبتنی بر پروژه، راهنمای گامبهگام برای ساخت پروژه
- برای درسهای مبتنی بر پروژه، راهنمای گامبهگام در مورد نحوه ساخت پروژه
- بررسی دانش
- یک چالش
- مطالعه تکمیلی
- تکلیف
- [آزمون پس از درس](https://ff-quizzes.netlify.app/en/)
> **نکتهای درباره آزمونها**: تمام آزمونها در پوشه Quiz-App قرار دارند، برای مجموع ۴۰ آزمون هر کدام شامل سه سؤال. آنها از داخل درسها لینک شدهاند، اما اپلیکیشن آزمون میتواند بهصورت محلی اجرا شود یا در Azure مستقر شود؛ دستورالعملها را در پوشه `quiz-app` دنبال کنید. آنها بهتدریج بومیسازی میشوند.
> **یادداشتی درباره آزمونها**: تمام آزمونها در پوشه Quiz-App قرار دارند، برای مجموع ۴۰ آزمون هر کدام شامل سه سؤال. آنها از داخل درسها لینک شدهاند، اما اپلیکیشن آزمون میتواند بهصورت محلی اجرا شود یا در Azure مستقر شود؛ دستورالعملها را در پوشه `quiz-app` دنبال کنید. آنها بهتدریج بومیسازی میشوند.
## درسها
||
@ -86,23 +86,23 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
| شماره درس | موضوع | گروهبندی درس | اهداف یادگیری | درس مرتبط | نویسنده |
| 01 | تعریف علم داده | [مقدمه](1-Introduction/README.md) | یادگیری مفاهیم پایه علم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و دادههای کلان. | [درس](1-Introduction/01-defining-data-science/README.md) [ویدئو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | اخلاق در علم داده | [مقدمه](1-Introduction/README.md) | مفاهیم اخلاق داده، چالشها و چارچوبها. | [درس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 02 | اخلاق علم داده | [مقدمه](1-Introduction/README.md) | مفاهیم اخلاق داده، چالشها و چارچوبها. | [درس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | تعریف داده | [مقدمه](1-Introduction/README.md) | نحوه طبقهبندی دادهها و منابع رایج آنها. | [درس](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | مقدمهای بر آمار و احتمال | [مقدمه](1-Introduction/README.md) | تکنیکهای ریاضی احتمال و آمار برای درک دادهها. | [درس](1-Introduction/04-stats-and-probability/README.md) [ویدئو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | کار با دادههای رابطهای | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای رابطهای و اصول بررسی و تحلیل دادههای رابطهای با زبان Structured Query Language یا SQL. | [درس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 05 | کار با دادههای رابطهای | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای رابطهای و اصول بررسی و تحلیل دادههای رابطهای با زبان پرسوجوی ساختاریافته، معروف به SQL (تلفظ "سیکوئل"). | [درس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | کار با دادههای NoSQL | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای غیررابطهای، انواع مختلف آن و اصول بررسی و تحلیل پایگاههای داده سندی. | [درس](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | کار با پایتون | [کار با دادهها](2-Working-With-Data/README.md) | اصول استفاده از پایتون برای بررسی دادهها با کتابخانههایی مانند Pandas. توصیه میشود که دانش پایهای از برنامهنویسی پایتون داشته باشید. | [درس](2-Working-With-Data/07-python/README.md) [ویدئو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | آمادهسازی دادهها | [کار با دادهها](2-Working-With-Data/README.md) | موضوعاتی درباره تکنیکهای پاکسازی و تبدیل دادهها برای مقابله با چالشهای دادههای ناقص، نادرست یا ناکامل. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 07 | کار با پایتون | [کار با دادهها](2-Working-With-Data/README.md) | اصول استفاده از پایتون برای بررسی دادهها با کتابخانههایی مانند Pandas. توصیه میشود که درک پایهای از برنامهنویسی پایتون داشته باشید. | [درس](2-Working-With-Data/07-python/README.md) [ویدئو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | آمادهسازی دادهها | [کار با دادهها](2-Working-With-Data/README.md) | موضوعاتی درباره تکنیکهای داده برای پاکسازی و تبدیل دادهها به منظور مقابله با چالشهای دادههای ناقص، نادرست یا ناکامل. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | مصورسازی مقادیر | [مصورسازی دادهها](3-Data-Visualization/README.md) | یادگیری نحوه استفاده از Matplotlib برای مصورسازی دادههای پرندگان 🦆 | [درس](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | مصورسازی توزیع دادهها | [مصورسازی دادهها](3-Data-Visualization/README.md) | مصورسازی مشاهدات و روندها در یک بازه. | [درس](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | مصورسازی روابط | [مصورسازی دادهها](3-Data-Visualization/README.md) | مصورسازی ارتباطات و همبستگیها بین مجموعههای داده و متغیرهای آنها. | [درس](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | مصورسازیهای معنادار | [مصورسازی دادهها](3-Data-Visualization/README.md) | تکنیکها و راهنماییهایی برای ارزشمند کردن مصورسازیها جهت حل مؤثر مسائل و ارائه بینشها. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | مصورسازیهای معنادار | [مصورسازی دادهها](3-Data-Visualization/README.md) | تکنیکها و راهنماییهایی برای ارزشمند کردن مصورسازیها به منظور حل مؤثر مشکلات و ارائه بینشها. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | مقدمهای بر چرخه عمر علم داده | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | مقدمهای بر چرخه عمر علم داده و اولین مرحله آن یعنی جمعآوری و استخراج دادهها. | [درس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | تحلیل | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر تکنیکهای تحلیل داده تمرکز دارد. | [درس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | ارتباط | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر ارائه بینشهای حاصل از دادهها به گونهای که تصمیمگیرندگان بتوانند آن را بهتر درک کنند، تمرکز دارد. | [درس](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | این مجموعه درسها علم داده در فضای ابری و مزایای آن را معرفی میکند. | [درس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 18 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | آموزش مدلها با استفاده از ابزارهای Low Code. |[درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 18 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | آموزش مدلها با استفاده از ابزارهای کمکد. |[درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 19 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | استقرار مدلها با Azure Machine Learning Studio. | [درس](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 20 | علم داده در دنیای واقعی | [در دنیای واقعی](6-Data-Science-In-Wild/README.md) | پروژههای مبتنی بر علم داده در دنیای واقعی. | [درس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
@ -116,7 +116,7 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
## VSCode Remote - Containers
برای باز کردن این مخزن در یک کانتینر با استفاده از ماشین محلی و VSCode با استفاده از افزونه VS Code Remote - Containers مراحل زیر را دنبال کنید:
1. اگر اولین بار است که از کانتینر توسعه استفاده میکنید، لطفاً مطمئن شوید که سیستم شما پیشنیازها را دارد (مانند نصب Docker) در [مستندات شروع به کار](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. اگر اولین بار است که از کانتینر توسعه استفاده میکنید، لطفاً مطمئن شوید که سیستم شما پیشنیازها را برآورده میکند (مانند نصب Docker) در [مستندات شروع به کار](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
برای استفاده از این مخزن، میتوانید مخزن را در یک حجم ایزوله Docker باز کنید:
@ -126,11 +126,11 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
- این مخزن را به سیستم فایل محلی خود کلون کنید.
- کلید F1 را فشار دهید و دستور **Remote-Containers: Open Folder in Container...** را انتخاب کنید.
- نسخه کلونشده این پوشه را انتخاب کنید، منتظر بمانید تا کانتینر شروع شود و موارد را امتحان کنید.
- نسخه کلونشده این پوشه را انتخاب کنید، منتظر شروع کانتینر باشید و موارد را امتحان کنید.
## دسترسی آفلاین
میتوانید این مستندات را به صورت آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را Fork کنید، [Docsify را نصب کنید](https://docsify.js.org/#/quickstart) روی ماشین محلی خود، سپس در پوشه ریشه این مخزن، دستور `docsify serve` را تایپ کنید. وبسایت روی پورت 3000 در localhost شما اجرا خواهد شد: `localhost:3000`.
شما میتوانید این مستندات را به صورت آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را فورک کنید، [Docsify را نصب کنید](https://docsify.js.org/#/quickstart) روی ماشین محلی خود، سپس در پوشه اصلی این مخزن، دستور `docsify serve` را تایپ کنید. وبسایت روی پورت 3000 در localhost شما اجرا خواهد شد: `localhost:3000`.
> توجه داشته باشید، نوتبوکها از طریق Docsify رندر نمیشوند، بنابراین زمانی که نیاز به اجرای یک نوتبوک دارید، آن را جداگانه در VS Code با اجرای یک کرنل پایتون انجام دهید.
@ -138,6 +138,8 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
تیم ما برنامههای آموزشی دیگری تولید میکند! بررسی کنید:
- [Edge AI برای مبتدیان](https://aka.ms/edgeai-for-beginners)
- [عاملهای هوش مصنوعی برای مبتدیان](https://aka.ms/ai-agents-beginners)
- [هوش مصنوعی مولد برای مبتدیان](https://aka.ms/genai-beginners)
- [هوش مصنوعی مولد برای مبتدیان .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [هوش مصنوعی مولد با جاوااسکریپت](https://github.com/microsoft/generative-ai-with-javascript)
@ -158,3 +160,5 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
---
**سلب مسئولیت**:
این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش میکنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمههای خودکار ممکن است شامل خطاها یا نادرستیها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه میشود از ترجمه حرفهای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهمها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.
# Data Science aloittelijoille - Opetussuunnitelma
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Microsoftin Azure Cloud Advocates -tiimi tarjoaa ilolla 10 viikon ja 20 oppitunnin opetussuunnitelman, joka käsittelee data-analytiikkaa. Jokainen oppitunti sisältää ennakkokyselyn ja jälkikyselyn, kirjalliset ohjeet oppitunnin suorittamiseen, ratkaisun ja tehtävän. Projektipohjainen oppimismenetelmämme auttaa sinua oppimaan rakentamisen kautta, mikä on todistetusti tehokas tapa omaksua uusia taitoja.
Microsoftin Azure Cloud Advocates tarjoaa ilolla 10 viikon, 20 oppitunnin opetussuunnitelman, joka käsittelee data-analytiikkaa. Jokainen oppitunti sisältää ennakkokyselyn ja jälkikyselyn, kirjalliset ohjeet oppitunnin suorittamiseen, ratkaisun ja tehtävän. Projektipohjainen oppimismenetelmämme auttaa sinua oppimaan rakentamisen kautta, mikä on todistetusti tehokas tapa omaksua uusia taitoja.
@ -55,16 +55,16 @@ Meillä on käynnissä Discordissa oppimissarja tekoälyn kanssa. Lue lisää ja
Aloita seuraavilla resursseilla:
- [Student Hub -sivu](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Tältä sivulta löydät aloittelijaresursseja, opiskelijapaketit ja jopa tapoja saada ilmainen sertifikaattivoucher. Tämä on sivu, jonka haluat tallentaa kirjanmerkkeihin ja tarkistaa säännöllisesti, sillä sisältöä vaihdetaan vähintään kuukausittain.
- [Student Hub -sivu](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Tältä sivulta löydät aloittelijaresursseja, opiskelijapakkauksia ja jopa tapoja saada ilmainen sertifikaattivoucher. Tämä on sivu, jonka haluat tallentaa kirjanmerkkeihin ja tarkistaa säännöllisesti, sillä sisältöä vaihdetaan vähintään kuukausittain.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Liity maailmanlaajuiseen opiskelijalähettiläiden yhteisöön, tämä voi olla sinun tiesi Microsoftiin.
# Aloittaminen
> **Opettajat**: olemme [lisänneet joitakin ehdotuksia](for-teachers.md) siitä, miten tätä opetussuunnitelmaa voi käyttää. Haluaisimme kuulla palautettasi [keskustelufoorumillamme](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Opettajat**: olemme [lisänneet joitakin ehdotuksia](for-teachers.md) siitä, miten käyttää tätä opetussuunnitelmaa. Haluaisimme kuulla palautettanne [keskustelufoorumillamme](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Opiskelijat](https://aka.ms/student-page)**: jos haluat käyttää tätä opetussuunnitelmaa itsenäisesti, haaroita koko repo ja suorita tehtävät itsenäisesti aloittaen ennakkokyselystä. Lue sitten oppitunti ja suorita loput aktiviteetit. Yritä luoda projektit ymmärtämällä oppitunnit sen sijaan, että kopioisit ratkaisukoodin; kuitenkin kyseinen koodi on saatavilla /solutions-kansioissa jokaisessa projektipohjaisessa oppitunnissa. Toinen idea olisi muodostaa opiskeluryhmä ystävien kanssa ja käydä sisältö läpi yhdessä. Lisäopiskelua varten suosittelemme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Opiskelijat](https://aka.ms/student-page)**: jos haluat käyttää tätä opetussuunnitelmaa itsenäisesti, haaroita koko repo ja suorita tehtävät itsenäisesti aloittaen ennakkokyselystä. Lue sitten oppitunti ja suorita loput aktiviteetit. Yritä luoda projektit ymmärtämällä oppitunnit sen sijaan, että kopioisit ratkaisukoodin; kuitenkin kyseinen koodi on saatavilla /solutions-kansioissa jokaisessa projektipohjaisessa oppitunnissa. Toinen idea olisi muodostaa opiskeluryhmä ystävien kanssa ja käydä sisältö läpi yhdessä. Jatko-opiskelua varten suosittelemme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
Olemme valinneet kaksi pedagogista periaatetta tätä opetussuunnitelmaa rakentaessamme: varmistaa, että se on projektipohjainen ja että se sisältää usein kyselyjä. Tämän sarjan lopussa opiskelijat ovat oppineet data-analytiikan perusperiaatteet, mukaan lukien eettiset käsitteet, datan valmistelu, erilaiset tavat työskennellä datan kanssa, datan visualisointi, data-analyysi, data-analytiikan tosielämän käyttötapaukset ja paljon muuta.
Olemme valinneet kaksi pedagogista periaatetta tämän opetussuunnitelman rakentamisessa: varmistaa, että se on projektipohjainen ja että se sisältää usein kyselyjä. Tämän sarjan lopussa opiskelijat ovat oppineet data-analytiikan perusperiaatteet, mukaan lukien eettiset käsitteet, datan valmistelu, erilaiset tavat työskennellä datan kanssa, datan visualisointi, data-analyysi, data-analytiikan tosielämän käyttötapaukset ja paljon muuta.
Lisäksi matalan kynnyksen kysely ennen oppituntia ohjaa opiskelijan huomion oppimaan aihetta, kun taas toinen kysely oppitunnin jälkeen varmistaa paremman tiedon säilymisen. Tämä opetussuunnitelma on suunniteltu joustavaksi ja hauskaksi, ja sen voi suorittaa kokonaan tai osittain. Projektit alkavat pienistä ja muuttuvat yhä monimutkaisemmiksi 10 viikon jakson loppuun mennessä.
> Löydä [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) -ohjeet. Otamme mielellämme vastaan rakentavaa palautettasi!
> Löydä [käytössäännöt](CODE_OF_CONDUCT.md), [osallistumisohjeet](CONTRIBUTING.md), [käännösohjeet](TRANSLATIONS.md). Otamme mielellämme vastaan rakentavaa palautettasi!
## Jokainen oppitunti sisältää:
@ -93,68 +93,69 @@ Lisäksi matalan kynnyksen kysely ennen oppituntia ohjaa opiskelijan huomion opp
> **Huomio kyselyistä**: Kaikki kyselyt löytyvät Quiz-App-kansiosta, yhteensä 40 kyselyä, joissa on kolme kysymystä kussakin. Ne on linkitetty oppituntien sisällä, mutta kyselysovelluksen voi ajaa paikallisesti tai julkaista Azureen; seuraa ohjeita `quiz-app`-kansiossa. Kyselyjä lokalisoidaan vähitellen.
> **Huomio kyselyistä**: Kaikki kyselyt löytyvät Quiz-App-kansiosta, yhteensä 40 kyselyä, joissa on kolme kysymystä kussakin. Ne on linkitetty oppitunneista, mutta kyselysovelluksen voi ajaa paikallisesti tai julkaista Azureen; seuraa ohjeita `quiz-app`-kansiossa. Kyselyt lokalisoidaan vähitellen.
## Oppitunnit
||
|:---:|
| Data Science For Beginners: Tiekartta - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Oppitunnin numero | Aihe | Oppituntiryhmä | Oppimistavoitteet | Linkitetty oppitunti | Kirjoittaja |
| Oppitunnin numero | Aihe | Oppituntiryhmä | Oppimistavoitteet | Linkitetty oppitunti | Tekijä |
| 01 | Mitä on datatiede? | [Johdanto](1-Introduction/README.md) | Opi datatieteen peruskäsitteet ja sen yhteys tekoälyyn, koneoppimiseen ja big dataan. | [oppitunti](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | Datan määrittely | [Johdanto](1-Introduction/README.md) | Miten data luokitellaan ja mitkä ovat sen yleisimmät lähteet. | [oppitunti](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 01 | Mitä on data-analytiikka | [Johdanto](1-Introduction/README.md) | Opettele data-analytiikan peruskäsitteet ja sen yhteys tekoälyyn, koneoppimiseen ja big dataan. | [oppitunti](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | Datan määrittely | [Johdanto](1-Introduction/README.md) | Miten data luokitellaan ja sen yleiset lähteet. | [oppitunti](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 11 | Suhteiden visualisointi | [Datan visualisointi](3-Data-Visualization/README.md) | Yhteyksien ja korrelaatioiden visualisointi datan joukkojen ja niiden muuttujien välillä. | [oppitunti](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Merkitykselliset visualisoinnit | [Datan visualisointi](3-Data-Visualization/README.md) | Tekniikoita ja ohjeita, joiden avulla visualisoinneista saadaan arvokkaita ongelmanratkaisun ja oivallusten kannalta. | [oppitunti](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Johdatus datatieteen elinkaareen | [Elinkaari](4-Data-Science-Lifecycle/README.md) | Johdatus datatieteen elinkaareen ja sen ensimmäiseen vaiheeseen: datan hankintaan ja uuttamiseen. | [oppitunti](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Viestintä | [Elinkaari](4-Data-Science-Lifecycle/README.md) | Datatieteen elinkaaren vaihe, joka keskittyy datasta saatujen oivallusten esittämiseen päätöksentekijöille ymmärrettävällä tavalla. | [oppitunti](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Datatiede pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Tämä oppituntisarja esittelee datatieteen pilvessä ja sen hyödyt. | [oppitunti](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
| 15 | Viestintä | [Elinkaari](4-Data-Science-Lifecycle/README.md) | Data-analytiikan elinkaaren vaihe, joka keskittyy datasta saatujen oivallusten esittämiseen päätöksentekijöille ymmärrettävässä muodossa. | [oppitunti](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Data-analytiikka pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Oppituntisarja, joka esittelee data-analytiikkaa pilvessä ja sen hyötyjä. | [oppitunti](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
Seuraa näitä ohjeita avataksesi tämän repositorion kontissa paikallisella koneellasi ja VSCode-ohjelmalla käyttäen VS Code Remote - Containers -laajennusta:
Noudata näitä ohjeita avataksesi tämän repositorion kontissa paikallisella koneellasi ja VSCode-ohjelmalla käyttäen VS Code Remote - Containers -laajennusta:
1. Jos käytät kehityskonttia ensimmäistä kertaa, varmista, että järjestelmäsi täyttää ennakkovaatimukset (esim. Docker on asennettu) [aloitusdokumentaation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) mukaisesti.
1. Jos käytät kehityskonttia ensimmäistä kertaa, varmista, että järjestelmäsi täyttää vaatimukset (esim. Docker on asennettu) [aloitusdokumentaation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) mukaisesti.
Tämän repositorion käyttöön voit joko avata sen eristetyssä Docker-volyymissä:
Voit käyttää tätä repositoriota joko avaamalla sen eristetyssä Docker-volyymissa:
**Huom:** Tämä käyttää taustalla Remote-Containers: **Clone Repository in Container Volume...** -komentoa kloonaamaan lähdekoodin Docker-volyymiin paikallisen tiedostojärjestelmän sijaan. [Volyymit](https://docs.docker.com/storage/volumes/) ovat suositeltu tapa säilyttää konttidataa.
**Huom**: Taustalla tämä käyttää Remote-Containers: **Clone Repository in Container Volume...** -komentoa kloonatakseen lähdekoodin Docker-volyymiin paikallisen tiedostojärjestelmän sijaan. [Volyymit](https://docs.docker.com/storage/volumes/) ovat suositeltu tapa säilyttää konttidata.
Tai avata paikallisesti kloonatun tai ladatun version repositoriosta:
Tai avaamalla paikallisesti kloonatun tai ladatun version repositoriosta:
- Kloonaa tämä repositorio paikalliselle tiedostojärjestelmällesi.
- Paina F1 ja valitse **Remote-Containers: Open Folder in Container...** -komento.
- Valitse tämän kansion kloonattu kopio, odota, että kontti käynnistyy, ja kokeile asioita.
- Valitse kloonattu kopio tästä kansiosta, odota konttia käynnistymään ja kokeile asioita.
## Offline-käyttö
Voit käyttää tätä dokumentaatiota offline-tilassa käyttämällä [Docsifyä](https://docsify.js.org/#/). Haaroita tämä repositorio, [asenna Docsify](https://docsify.js.org/#/quickstart) paikalliselle koneellesi ja kirjoita tämän repositorion juurikansiossa `docsify serve`. Verkkosivusto palvelee portissa 3000 localhostissa: `localhost:3000`.
Voit käyttää tätä dokumentaatiota offline-tilassa [Docsify](https://docsify.js.org/#/) avulla. Haarauta tämä repositorio, [asenna Docsify](https://docsify.js.org/#/quickstart) paikalliselle koneellesi, ja kirjoita tämän repositorion juurikansiossa `docsify serve`. Verkkosivusto palvelee portilla 3000 localhostissa: `localhost:3000`.
> Huomaa, että Docsify ei renderöi muistikirjoja, joten kun tarvitset muistikirjan suorittamista, tee se erikseen VS Codessa Python-ytimellä.
> Huomaa, että muistikirjoja ei renderöidä Docsifyllä, joten kun tarvitset muistikirjan suorittamista, tee se erikseen VS Codessa Python-ytimellä.
## Muut opetussuunnitelmat
## Muut oppimateriaalit
Tiimimme tuottaa muita opetussuunnitelmia! Tutustu:
Tiimimme tuottaa muita oppimateriaaleja! Tutustu:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -175,3 +176,5 @@ Tiimimme tuottaa muita opetussuunnitelmia! Tutustu:
---
**Vastuuvapauslauseke**:
Tämä asiakirja on käännetty käyttämällä tekoälypohjaista käännöspalvelua [Co-op Translator](https://github.com/Azure/co-op-translator). Vaikka pyrimme tarkkuuteen, huomioithan, että automaattiset käännökset voivat sisältää virheitä tai epätarkkuuksia. Alkuperäinen asiakirja sen alkuperäisellä kielellä tulisi pitää ensisijaisena lähteenä. Kriittisen tiedon osalta suositellaan ammattimaista ihmiskäännöstä. Emme ole vastuussa väärinkäsityksistä tai virhetulkinnoista, jotka johtuvat tämän käännöksen käytöstä.
Azure Cloud Advocates chez Microsoft sont ravis de proposer un programme de 10 semaines et 20 leçons dédié à la science des données. Chaque leçon inclut des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution et un devoir. Notre pédagogie basée sur les projets vous permet d'apprendre tout en construisant, une méthode éprouvée pour que les nouvelles compétences soient bien assimilées.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Les Cloud Advocates d'Azure chez Microsoft sont ravis de proposer un curriculum de 10 semaines et 20 leçons consacré à la science des données. Chaque leçon comprend des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution et un devoir. Notre pédagogie basée sur les projets vous permet d'apprendre tout en construisant, une méthode éprouvée pour que les nouvelles compétences soient bien assimilées.
**Un grand merci à nos auteurs :** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
||
|:---:|
| Data Science pour les Débutants - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
| Data Science pour Débutants - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
### 🌐 Support Multilingue
### 🌐 Support multilingue
#### Supporté via GitHub Action (Automatisé et Toujours à Jour)
#### Supporté via GitHub Action (Automatisé et toujours à jour)
**Si vous souhaitez ajouter des langues supplémentaires, les langues supportées sont listées [ici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
@ -33,7 +49,7 @@ Azure Cloud Advocates chez Microsoft sont ravis de proposer un programme de 10 s
Nous avons une série d'apprentissage avec l'IA en cours sur Discord. Apprenez-en plus et rejoignez-nous à [Learn with AI Series](https://aka.ms/learnwithai/discord) du 18 au 30 septembre 2025. Vous découvrirez des astuces pour utiliser GitHub Copilot pour la science des données.


# Êtes-vous étudiant ?
@ -44,9 +60,9 @@ Commencez avec les ressources suivantes :
# Commencer
> **Enseignants** : nous avons [inclus quelques suggestions](for-teachers.md) sur la façon d'utiliser ce programme. Nous aimerions avoir vos retours [dans notre forum de discussion](https://github.com/microsoft/Data-Science-For-Beginners/discussions) !
> **Enseignants** : nous avons [inclus quelques suggestions](for-teachers.md) sur la façon d'utiliser ce curriculum. Nous aimerions avoir vos retours [dans notre forum de discussion](https://github.com/microsoft/Data-Science-For-Beginners/discussions) !
> **[Étudiants](https://aka.ms/student-page)** : pour utiliser ce programme par vous-même, clonez le dépôt entier et complétez les exercices par vous-même, en commençant par un quiz avant la leçon. Ensuite, lisez la leçon et complétez le reste des activités. Essayez de créer les projets en comprenant les leçons plutôt qu'en copiant le code de solution ; cependant, ce code est disponible dans les dossiers /solutions de chaque leçon orientée projet. Une autre idée serait de former un groupe d'étude avec des amis et de parcourir le contenu ensemble. Pour approfondir vos connaissances, nous recommandons [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Étudiants](https://aka.ms/student-page)** : pour utiliser ce curriculum par vous-même, clonez le dépôt entier et complétez les exercices par vous-même, en commençant par un quiz avant la leçon. Ensuite, lisez la leçon et complétez le reste des activités. Essayez de créer les projets en comprenant les leçons plutôt qu'en copiant le code de solution ; cependant, ce code est disponible dans les dossiers /solutions de chaque leçon orientée projet. Une autre idée serait de former un groupe d'étude avec des amis et de parcourir le contenu ensemble. Pour approfondir vos études, nous recommandons [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Rencontrez l'équipe
@ -58,11 +74,11 @@ Commencez avec les ressources suivantes :
## Pédagogie
Nous avons choisi deux principes pédagogiques en construisant ce programme : garantir qu'il soit basé sur des projets et qu'il inclue des quiz fréquents. À la fin de cette série, les étudiants auront appris les principes de base de la science des données, y compris les concepts éthiques, la préparation des données, différentes façons de travailler avec les données, la visualisation des données, l'analyse des données, des cas d'utilisation réels de la science des données, et plus encore.
Nous avons choisi deux principes pédagogiques lors de la création de ce curriculum : garantir qu'il soit basé sur des projets et qu'il inclue des quiz fréquents. À la fin de cette série, les étudiants auront appris les principes de base de la science des données, y compris les concepts éthiques, la préparation des données, différentes façons de travailler avec les données, la visualisation des données, l'analyse des données, des cas d'utilisation réels de la science des données, et plus encore.
De plus, un quiz à faible enjeu avant une classe fixe l'intention de l'étudiant d'apprendre un sujet, tandis qu'un second quiz après la classe assure une meilleure rétention. Ce programme a été conçu pour être flexible et amusant et peut être suivi en totalité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 10 semaines.
De plus, un quiz à faible enjeu avant un cours fixe l'intention de l'étudiant d'apprendre un sujet, tandis qu'un deuxième quiz après le cours assure une meilleure rétention. Ce curriculum a été conçu pour être flexible et amusant et peut être suivi en totalité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 10 semaines.
> Retrouvez notre [Code de Conduite](CODE_OF_CONDUCT.md), nos directives pour [Contribuer](CONTRIBUTING.md), et pour [Traduction](TRANSLATIONS.md). Nous accueillons vos retours constructifs !
> Retrouvez notre [Code de Conduite](CODE_OF_CONDUCT.md), nos directives pour [Contribuer](CONTRIBUTING.md), et pour [Traduire](TRANSLATIONS.md). Nous accueillons vos retours constructifs !
## Chaque leçon inclut :
@ -70,10 +86,10 @@ De plus, un quiz à faible enjeu avant une classe fixe l'intention de l'étudian
- Vidéo complémentaire optionnelle
- Quiz d'échauffement avant la leçon
- Leçon écrite
- Pour les leçons basées sur des projets, guides étape par étape pour construire le projet
- Pour les leçons basées sur des projets, des guides étape par étape pour construire le projet
- Vérifications des connaissances
- Un défi
- Lectures complémentaires
- Lecture complémentaire
- Devoir
- [Quiz après la leçon](https://ff-quizzes.netlify.app/en/)
@ -82,7 +98,8 @@ De plus, un quiz à faible enjeu avant une classe fixe l'intention de l'étudian
## Leçons
||
|:---:|
| Data Science pour les Débutants : Plan de route - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
| Data Science pour les Débutants : Plan de Route - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
| Numéro de leçon | Sujet | Regroupement des leçons | Objectifs d'apprentissage | Leçon liée | Auteur |
@ -97,8 +114,8 @@ De plus, un quiz à faible enjeu avant une classe fixe l'intention de l'étudian
| 09 | Visualiser des quantités | [Visualisation des données](3-Data-Visualization/README.md) | Apprenez à utiliser Matplotlib pour visualiser des données d'oiseaux 🦆 | [leçon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualiser des distributions de données | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des observations et des tendances dans un intervalle. | [leçon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualiser des proportions | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des pourcentages discrets et groupés. | [leçon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualiser des relations | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des connexions et des corrélations entre ensembles de données et leurs variables. | [leçon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisations significatives | [Visualisation des données](3-Data-Visualization/README.md) | Techniques et conseils pour rendre vos visualisations utiles pour résoudre des problèmes et obtenir des insights. | [leçon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualiser des relations | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des connexions et des corrélations entre des ensembles de données et leurs variables. | [leçon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisations significatives | [Visualisation des données](3-Data-Visualization/README.md) | Techniques et conseils pour rendre vos visualisations utiles pour résoudre des problèmes et obtenir des insights efficaces. | [leçon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduction au cycle de vie de la Data Science | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Introduction au cycle de vie de la data science et à sa première étape : l'acquisition et l'extraction des données. | [leçon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyser | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la data science se concentre sur les techniques d'analyse des données. | [leçon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Communication | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la data science se concentre sur la présentation des insights issus des données de manière compréhensible pour les décideurs. | [leçon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
@ -110,8 +127,8 @@ De plus, un quiz à faible enjeu avant une classe fixe l'intention de l'étudian
## GitHub Codespaces
Suivez ces étapes pour ouvrir cet exemple dans un Codespace :
1. Cliquez sur le menu déroulant Code et sélectionnez l'option Open with Codespaces.
2. Sélectionnez + New codespace en bas du volet.
1. Cliquez sur le menu déroulant Code et sélectionnez l'option Ouvrir avec Codespaces.
2. Sélectionnez + Nouveau codespace en bas du volet.
Pour plus d'informations, consultez la [documentation GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
@ -121,7 +138,7 @@ Suivez ces étapes pour ouvrir ce dépôt dans un conteneur en utilisant votre m
Pour utiliser ce dépôt, vous pouvez soit ouvrir le dépôt dans un volume Docker isolé :
**Note** : En coulisses, cela utilisera la commande Remote-Containers : **Clone Repository in Container Volume...** pour cloner le code source dans un volume Docker au lieu du système de fichiers local. Les [volumes](https://docs.docker.com/storage/volumes/) sont le mécanisme préféré pour la persistance des données des conteneurs.
**Note** : En coulisses, cela utilisera la commande Remote-Containers : **Clone Repository in Container Volume...** pour cloner le code source dans un volume Docker au lieu du système de fichiers local. Les [volumes](https://docs.docker.com/storage/volumes/) sont le mécanisme préféré pour persister les données des conteneurs.
Ou ouvrir une version clonée ou téléchargée localement du dépôt :
@ -139,23 +156,27 @@ Vous pouvez exécuter cette documentation hors ligne en utilisant [Docsify](http
Notre équipe produit d'autres programmes ! Découvrez :
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [Edge AI pour les Débutants](https://aka.ms/edgeai-for-beginners)
- [Agents IA pour les Débutants](https://aka.ms/ai-agents-beginners)
- [IA Générative pour les Débutants](https://aka.ms/genai-beginners)
- [IA Générative pour les Débutants .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [IA Générative avec JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [IA Générative avec Java](https://aka.ms/genaijava)
- [IA pour les Débutants](https://aka.ms/ai-beginners)
- [Data Science pour les Débutants](https://aka.ms/datascience-beginners)
- [Bash pour les Débutants](https://github.com/microsoft/bash-for-beginners)
- [ML pour les Débutants](https://aka.ms/ml-beginners)
- [Cybersécurité pour les Débutants](https://github.com/microsoft/Security-101)
- [Développement Web pour les Débutants](https://aka.ms/webdev-beginners)
- [IoT pour les Débutants](https://aka.ms/iot-beginners)
- [Machine Learning pour les Débutants](https://aka.ms/ml-beginners)
- [Développement XR pour les Débutants](https://aka.ms/xr-dev-for-beginners)
- [Maîtriser GitHub Copilot pour la Programmation Assistée par IA](https://aka.ms/GitHubCopilotAI)
- [Développement XR pour les Débutants](https://github.com/microsoft/xr-development-for-beginners)
- [Maîtriser GitHub Copilot pour les Développeurs C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.
Azure Cloud Advocates במיקרוסופט שמחים להציע תוכנית לימודים בת 10 שבועות ו-20 שיעורים על מדע הנתונים. כל שיעור כולל חידונים לפני ואחרי השיעור, הוראות כתובות להשלמת השיעור, פתרון ומשימה. הגישה שלנו מבוססת על פרויקטים, ומאפשרת לכם ללמוד תוך כדי בנייה - שיטה מוכחת להטמעת מיומנויות חדשות.
Azure Cloud Advocates במיקרוסופט שמחים להציע תוכנית לימודים בת 10 שבועות ו-20 שיעורים בנושא מדע הנתונים. כל שיעור כולל מבחני טרום-שיעור ואחרי-שיעור, הוראות כתובות להשלמת השיעור, פתרון ומשימה. הגישה שלנו מבוססת פרויקטים ומאפשרת ללמוד תוך כדי בנייה, שיטה מוכחת להטמעת מיומנויות חדשות.
||
||
|:---:|
| מדע הנתונים למתחילים - _סקיצה מאת [@nitya](https://twitter.com/nitya)_ |
| מדע הנתונים למתחילים - _סקצ'נוט מאת [@nitya](https://twitter.com/nitya)_ |
### 🌐 תמיכה בריבוי שפות
### 🌐 תמיכה רב-שפתית
#### נתמך באמצעות GitHub Action (אוטומטי ומעודכן תמיד)
#### נתמך באמצעות GitHub Action (אוטומטי ותמיד מעודכן)
**אם תרצו להוסיף שפות נוספות, ניתן למצוא את הרשימה [כאן](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**אם תרצו להוסיף שפות נוספות, רשימת השפות הנתמכות נמצאת [כאן](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### הצטרפו לקהילה שלנו
#### הצטרפו לקהילה שלנו
[](https://aka.ms/ds4beginners/discord)
יש לנו סדרת למידה עם AI ב-Discord, למדו עוד והצטרפו אלינו ב-[Learn with AI Series](https://aka.ms/learnwithai/discord) בין ה-18 ל-30 בספטמבר, 2025. תקבלו טיפים וטריקים לשימוש ב-GitHub Copilot עבור מדע הנתונים.
יש לנו סדרת לימוד עם AI ב-Discord, למדו עוד והצטרפו אלינו ב-[Learn with AI Series](https://aka.ms/learnwithai/discord) בין 18 ל-30 בספטמבר, 2025. תקבלו טיפים וטריקים לשימוש ב-GitHub Copilot עבור מדע הנתונים.


# האם אתם סטודנטים?
התחילו עם המשאבים הבאים:
- [עמוד ה-Hub לסטודנטים](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) בעמוד זה תמצאו משאבים למתחילים, חבילות לסטודנטים ואפילו דרכים לקבל שובר הסמכה בחינם. זהו עמוד שכדאי לשמור ולבדוק מדי פעם, שכן אנו מעדכנים את התוכן לפחות פעם בחודש.
- [שגרירי הסטודנטים של מיקרוסופט](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) הצטרפו לקהילה גלובלית של שגרירים סטודנטים, זו יכולה להיות הדרך שלכם למיקרוסופט.
- [עמוד מרכז הסטודנטים](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) בעמוד זה תמצאו משאבים למתחילים, חבילות לסטודנטים ואפילו דרכים לקבל שובר הסמכה בחינם. זהו עמוד שכדאי לשמור ולבדוק מדי פעם, שכן אנו מעדכנים את התוכן לפחות פעם בחודש.
- [שגרירי הסטודנטים של מיקרוסופט](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) הצטרפו לקהילה גלובלית של שגרירי סטודנטים, זו יכולה להיות הדרך שלכם למיקרוסופט.
# התחלת העבודה
> **מורים**: כללנו [כמה הצעות](for-teachers.md) כיצד להשתמש בתוכנית הלימודים הזו. נשמח לקבל את המשוב שלכם [בפורום הדיונים שלנו](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[סטודנטים](https://aka.ms/student-page)**: כדי להשתמש בתוכנית הלימודים הזו בעצמכם, עשו fork לכל המאגר והשלימו את התרגילים בעצמכם, החל מחידון לפני השיעור. לאחר מכן קראו את השיעור והשלימו את שאר הפעילויות. נסו ליצור את הפרויקטים על ידי הבנת השיעורים במקום להעתיק את קוד הפתרון; עם זאת, הקוד זמין בתיקיות /solutions בכל שיעור מבוסס פרויקט. רעיון נוסף הוא להקים קבוצת לימוד עם חברים ולעבור על התוכן יחד. ללימוד נוסף, אנו ממליצים על [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[סטודנטים](https://aka.ms/student-page)**: כדי להשתמש בתוכנית הלימודים הזו באופן עצמאי, עשו fork לכל הריפו והשלימו את התרגילים בעצמכם, החל ממבחן טרום-שיעור. לאחר מכן, קראו את השיעור והשלימו את שאר הפעילויות. נסו ליצור את הפרויקטים על ידי הבנת השיעורים במקום להעתיק את קוד הפתרון; עם זאת, הקוד זמין בתיקיות /solutions בכל שיעור מבוסס פרויקט. רעיון נוסף הוא ליצור קבוצת לימוד עם חברים ולעבור על התוכן יחד. ללימוד נוסף, אנו ממליצים על [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## הכירו את הצוות
@ -57,31 +57,31 @@ Azure Cloud Advocates במיקרוסופט שמחים להציע תוכנית ל
## פדגוגיה
בחרנו בשני עקרונות פדגוגיים בעת בניית תוכנית הלימודים הזו: לוודא שהיא מבוססת פרויקטים ושכוללת חידונים תכופים. בסיום הסדרה, הסטודנטים ילמדו עקרונות בסיסיים של מדע הנתונים, כולל מושגים אתיים, הכנת נתונים, דרכים שונות לעבודה עם נתונים, ויזואליזציה של נתונים, ניתוח נתונים, שימושים בעולם האמיתי של מדע הנתונים ועוד.
בחרנו שני עקרונות פדגוגיים בעת בניית תוכנית הלימודים הזו: לוודא שהיא מבוססת פרויקטים ושכוללת מבחנים תכופים. בסוף הסדרה, סטודנטים ילמדו עקרונות בסיסיים של מדע הנתונים, כולל מושגים אתיים, הכנת נתונים, דרכים שונות לעבוד עם נתונים, ויזואליזציה של נתונים, ניתוח נתונים, שימושים בעולם האמיתי של מדע הנתונים ועוד.
בנוסף, חידון בעל סיכון נמוך לפני השיעור מכוון את הסטודנט ללמידת הנושא, בעוד שחידון שני לאחר השיעור מבטיח שימור נוסף. תוכנית הלימודים הזו תוכננה להיות גמישה ומהנה וניתן לקחת אותה בשלמותה או בחלקים. הפרויקטים מתחילים קטנים והופכים מורכבים יותר בסיום מחזור 10 השבועות.
בנוסף, מבחן קל לפני השיעור מכוון את הסטודנט ללמידת הנושא, בעוד מבחן שני לאחר השיעור מבטיח שימור נוסף. תוכנית הלימודים עוצבה להיות גמישה ומהנה וניתן לקחת אותה בשלמותה או בחלקים. הפרויקטים מתחילים קטנים והופכים מורכבים יותר בסוף מחזור של 10 שבועות.
> מצאו את [קוד ההתנהגות](CODE_OF_CONDUCT.md), [תרומה](CONTRIBUTING.md), [הנחיות תרגום](TRANSLATIONS.md). נשמח לקבל את המשוב הבונה שלכם!
> מצאו את [קוד ההתנהגות שלנו](CODE_OF_CONDUCT.md), [הנחיות לתרומה](CONTRIBUTING.md), [הנחיות לתרגום](TRANSLATIONS.md). נשמח לקבל את המשוב הבונה שלכם!
## כל שיעור כולל:
- סקיצה אופציונלית
- סקצ'נוט אופציונלי
- סרטון משלים אופציונלי
- חידון חימום לפני השיעור
- מבחן חימום לפני השיעור
- שיעור כתוב
- עבור שיעורים מבוססי פרויקטים, מדריכים שלב-אחר-שלב כיצד לבנות את הפרויקט
- עבור שיעורים מבוססי פרויקט, מדריכים שלב-אחר-שלב כיצד לבנות את הפרויקט
- [מבחן אחרי השיעור](https://ff-quizzes.netlify.app/en/)
> **הערה על חידונים**: כל החידונים נמצאים בתיקיית Quiz-App, עבור 40 חידונים בסך הכל, כל אחד עם שלוש שאלות. הם מקושרים מתוך השיעורים, אך ניתן להפעיל את אפליקציית החידונים באופן מקומי או לפרוס אותה ל-Azure; עקבו אחר ההוראות בתיקיית `quiz-app`. הם מתורגמים בהדרגה.
> **הערה לגבי מבחנים**: כל המבחנים נמצאים בתיקיית Quiz-App, סה"כ 40 מבחנים של שלוש שאלות כל אחד. הם מקושרים מתוך השיעורים, אך ניתן להריץ את אפליקציית המבחנים באופן מקומי או לפרוס אותה ב-Azure; עקבו אחר ההוראות בתיקיית `quiz-app`. הם מתורגמים בהדרגה.
## שיעורים
||
|:---:|
| מדע הנתונים למתחילים: מפת דרכים - _סקצ'נוט מאת [@nitya](https://twitter.com/nitya)_ |
| מדע הנתונים למתחילים: מפת דרכים - _איור מאת [@nitya](https://twitter.com/nitya)_ |
| מספר שיעור | נושא | קבוצת שיעורים | מטרות למידה | שיעור מקושר | מחבר |
@ -92,19 +92,19 @@ Azure Cloud Advocates במיקרוסופט שמחים להציע תוכנית ל
| 05 | עבודה עם נתונים יחסיים | [עבודה עם נתונים](2-Working-With-Data/README.md) | מבוא לנתונים יחסיים ולבסיסי חקר וניתוח נתונים יחסיים באמצעות שפת SQL (מכונה "סי-קוול"). | [שיעור](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | עבודה עם נתוני NoSQL | [עבודה עם נתונים](2-Working-With-Data/README.md) | מבוא לנתונים לא יחסיים, סוגיהם השונים ולבסיסי חקר וניתוח מסדי נתונים מבוססי מסמכים. | [שיעור](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | עבודה עם Python | [עבודה עם נתונים](2-Working-With-Data/README.md) | יסודות השימוש ב-Python לחקר נתונים עם ספריות כמו Pandas. מומלץ ידע בסיסי בתכנות ב-Python. | [שיעור](2-Working-With-Data/07-python/README.md) [וידאו](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | הכנת נתונים | [עבודה עם נתונים](2-Working-With-Data/README.md) | נושאים וטכניקות לניקוי והמרת נתונים כדי להתמודד עם אתגרים של נתונים חסרים, לא מדויקים או לא שלמים. | [שיעור](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 08 | הכנת נתונים | [עבודה עם נתונים](2-Working-With-Data/README.md) | טכניקות לניקוי והמרת נתונים כדי להתמודד עם אתגרים של נתונים חסרים, לא מדויקים או לא שלמים. | [שיעור](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | ויזואליזציה של כמויות | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | ללמוד כיצד להשתמש ב-Matplotlib כדי להציג נתוני ציפורים 🦆 | [שיעור](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ויזואליזציה של התפלגויות נתונים | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | הצגת תצפיות ומגמות בתוך טווח. | [שיעור](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | ויזואליזציה של פרופורציות | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | הצגת אחוזים בדידים ומקובצים. | [שיעור](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | ויזואליזציה של קשרים | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | הצגת קשרים וקורלציות בין קבוצות נתונים ומשתנים שלהם. | [שיעור](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | ויזואליזציות משמעותיות | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | טכניקות והנחיות ליצירת ויזואליזציות בעלות ערך לפתרון בעיות והפקת תובנות. | [שיעור](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | מבוא למחזור החיים של מדע הנתונים | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | מבוא למחזור החיים של מדע הנתונים ולשלב הראשון של רכישה וחילוץ נתונים. | [שיעור](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 14 | מבוא למחזור החיים של מדע הנתונים | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | מבוא למחזור החיים של מדע הנתונים ולשלב הראשון של רכישת והפקת נתונים. | [שיעור](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | ניתוח | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | שלב זה במחזור החיים של מדע הנתונים מתמקד בטכניקות לניתוח נתונים. | [שיעור](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | תקשורת | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | שלב זה במחזור החיים של מדע הנתונים מתמקד בהצגת התובנות מהנתונים בצורה שמקלה על מקבלי ההחלטות להבין. | [שיעור](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | מדע הנתונים בענן | [נתונים בענן](5-Data-Science-In-Cloud/README.md) | סדרת שיעורים זו מציגה את מדע הנתונים בענן ואת יתרונותיו. | [שיעור](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ו-[Maud](https://twitter.com/maudstweets) |
| 18 | מדע הנתונים בענן | [נתונים בענן](5-Data-Science-In-Cloud/README.md) | אימון מודלים באמצעות כלים בעלי קוד נמוך. |[שיעור](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ו-[Maud](https://twitter.com/maudstweets) |
| 19 | מדע הנתונים בענן | [נתונים בענן](5-Data-Science-In-Cloud/README.md) | פריסת מודלים עם Azure Machine Learning Studio. | [שיעור](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ו-[Maud](https://twitter.com/maudstweets) |
| 20 | מדע הנתונים בשטח | [בשדה](6-Data-Science-In-Wild/README.md) | פרויקטים מונעי מדע נתונים בעולם האמיתי. | [שיעור](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | מדע הנתונים בשטח | [בשטח](6-Data-Science-In-Wild/README.md) | פרויקטים מונעי מדע נתונים בעולם האמיתי. | [שיעור](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -116,45 +116,49 @@ Azure Cloud Advocates במיקרוסופט שמחים להציע תוכנית ל
## VSCode Remote - Containers
עקבו אחר השלבים הבאים כדי לפתוח את המאגר הזה במיכל באמצעות המחשב המקומי שלכם ו-VSCode באמצעות הרחבת VS Code Remote - Containers:
1. אם זו הפעם הראשונה שאתם משתמשים במיכל פיתוח, ודאו שהמערכת שלכם עומדת בדרישות המקדימות (כלומר, התקנתם Docker) ב-[תיעוד ההתחלה](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. אם זו הפעם הראשונה שאתם משתמשים במיכל פיתוח, ודאו שהמערכת שלכם עומדת בדרישות המקדימות (כלומר, התקנת Docker) ב-[תיעוד ההתחלה](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
כדי להשתמש במאגר זה, תוכלו לפתוח את המאגר בנפח Docker מבודד:
**הערה**: מאחורי הקלעים, זה ישתמש בפקודה Remote-Containers: **Clone Repository in Container Volume...** כדי לשכפל את קוד המקור בנפח Docker במקום במערכת הקבצים המקומית. [נפחים](https://docs.docker.com/storage/volumes/) הם המנגנון המועדף לשמירת נתוני מיכלים.
או לפתוח גרסה משוכפלת או שהורדה מקומית של המאגר:
או לפתוח גרסה משוכפלת או שהורדה באופן מקומי של המאגר:
- שכפלו את המאגר הזה למערכת הקבצים המקומית שלכם.
- לחצו על F1 ובחרו בפקודה **Remote-Containers: Open Folder in Container...**.
- בחרו את העותק המשוכפל של התיקייה הזו, המתינו עד שהמיכל יתחיל, ונסו דברים.
- בחרו את העותק המשוכפל של התיקייה הזו, המתינו שהמיכל יתחיל, ונסו דברים.
## גישה לא מקוונת
ניתן להפעיל את התיעוד הזה לא מקוון באמצעות [Docsify](https://docsify.js.org/#/). שיבטו את המאגר הזה, [התקינו את Docsify](https://docsify.js.org/#/quickstart) במחשב המקומי שלכם, ואז בתיקיית השורש של המאגר הזה, הקלידו `docsify serve`. האתר יוגש על פורט 3000 ב-localhost שלכם: `localhost:3000`.
> שימו לב, מחברות לא יופעלו דרך Docsify, ולכן כאשר תצטרכו להפעיל מחברת, עשו זאת בנפרד ב-VS Code עם ליבת Python פעילה.
## תכניות לימוד נוספות
הצוות שלנו מייצר תכניות לימוד נוספות! בדקו:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
> שימו לב, מחברות לא יופעלו דרך Docsify, ולכן כאשר תצטרכו להפעיל מחברת, עשו זאת בנפרד ב-VS Code עם קרנל Python פעיל.
## תכניות לימודים נוספות
הצוות שלנו מייצר תכניות לימודים נוספות! בדקו:
- [Edge AI למתחילים](https://aka.ms/edgeai-for-beginners)
- [סוכני AI למתחילים](https://aka.ms/ai-agents-beginners)
- [Generative AI למתחילים](https://aka.ms/genai-beginners)
- [Generative AI למתחילים .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI עם JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI עם Java](https://aka.ms/genaijava)
- [AI למתחילים](https://aka.ms/ai-beginners)
- [מדע הנתונים למתחילים](https://aka.ms/datascience-beginners)
- [בחרו את הרפתקת Copilot שלכם](https://github.com/microsoft/CopilotAdventures)
---
**כתב ויתור**:
מסמך זה תורגם באמצעות שירות תרגום מבוסס בינה מלאכותית [Co-op Translator](https://github.com/Azure/co-op-translator). למרות שאנו שואפים לדיוק, יש לקחת בחשבון שתרגומים אוטומטיים עשויים להכיל שגיאות או אי דיוקים. המסמך המקורי בשפתו המקורית צריך להיחשב כמקור סמכותי. עבור מידע קריטי, מומלץ להשתמש בתרגום מקצועי על ידי אדם. איננו נושאים באחריות לאי הבנות או לפרשנויות שגויות הנובעות משימוש בתרגום זה.
# डेटा साइंस के शुरुआती लोगों के लिए - एक पाठ्यक्रम
Azure Cloud Advocates, Microsoft द्वारा प्रस्तुत, 10 सप्ताह का, 20 पाठों का पाठ्यक्रम, जो पूरी तरह से डेटा साइंस पर आधारित है। हर पाठ में प्री-लेसन और पोस्ट-लेसन क्विज़, लिखित निर्देश, समाधान और असाइनमेंट शामिल हैं। हमारा प्रोजेक्ट-आधारित शिक्षण तरीका आपको सीखने के साथ-साथ निर्माण करने का मौका देता है, जो नई स्किल्स को लंबे समय तक याद रखने का एक सिद्ध तरीका है।
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Microsoft के Azure Cloud Advocates ने डेटा साइंस पर आधारित 10 सप्ताह, 20 पाठों का पाठ्यक्रम तैयार किया है। प्रत्येक पाठ में प्री-लेसन और पोस्ट-लेसन क्विज़, लिखित निर्देश, समाधान और असाइनमेंट शामिल हैं। हमारा प्रोजेक्ट-आधारित शिक्षण दृष्टिकोण आपको सीखने के दौरान निर्माण करने की अनुमति देता है, जो नई कौशल को स्थायी रूप से सीखने का एक सिद्ध तरीका है।
||
|:---:|
| शुरुआती लोगों के लिए डेटा साइंस - _स्केच नोट [@nitya](https://twitter.com/nitya)_ द्वारा |
| शुरुआती लोगों के लिए डेटा साइंस - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
### 🌐 बहुभाषी समर्थन
#### GitHub Action के माध्यम से समर्थित (स्वचालित और हमेशा अद्यतन)
**यदि आप अतिरिक्त भाषाओं में अनुवाद चाहते हैं, तो समर्थित भाषाओं की सूची [यहां](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) दी गई है।**
#### हमारे समुदाय से जुड़ें
#### हमारे समुदाय में शामिल हों
[](https://aka.ms/ds4beginners/discord)
हमारे पास AI के साथ सीखने की एक श्रृंखला चल रही है। अधिक जानें और [Learn with AI Series](https://aka.ms/learnwithai/discord) में 18 - 30 सितंबर, 2025 तक शामिल हों। आपको GitHub Copilot का उपयोग करने के टिप्स और ट्रिक्स मिलेंगे।
@ -36,16 +52,16 @@ Azure Cloud Advocates, Microsoft द्वारा प्रस्तुत, 10
# क्या आप एक छात्र हैं?
इन संसाधनों से शुरुआत करें:
निम्नलिखित संसाधनों से शुरुआत करें:
- [स्टूडेंट हब पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum): इस पेज पर आपको शुरुआती संसाधन, स्टूडेंट पैक्स और यहां तक कि मुफ्त प्रमाणपत्र वाउचर पाने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर चेक करना चाहेंगे क्योंकि हम कम से कम मासिक रूप से सामग्री बदलते हैं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum): छात्र एंबेसडर के वैश्विक समुदाय में शामिल हों, यह Microsoft में आपका प्रवेश द्वार हो सकता है।
- [स्टूडेंट हब पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) इस पेज पर आपको शुरुआती संसाधन, स्टूडेंट पैक्स और यहां तक कि मुफ्त प्रमाणपत्र वाउचर प्राप्त करने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर जांचना चाहेंगे क्योंकि हम कम से कम मासिक रूप से सामग्री बदलते हैं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) एक वैश्विक छात्र एंबेसडर समुदाय में शामिल हों, यह Microsoft में आपका प्रवेश द्वार हो सकता है।
# शुरुआत करें
> **शिक्षक**: हमने [कुछ सुझाव शामिल किए हैं](for-teachers.md) कि इस पाठ्यक्रम का उपयोग कैसे करें। हमें आपके फीडबैक की आवश्यकता है [हमारे चर्चा मंच में](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **शिक्षक**: हमने इस पाठ्यक्रम का उपयोग करने के लिए [कुछ सुझाव शामिल किए हैं](for-teachers.md)। हमें आपके फीडबैक की आवश्यकता है [हमारे चर्चा मंच में](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[छात्र](https://aka.ms/student-page)**: इस पाठ्यक्रम का उपयोग अपने आप करने के लिए, पूरे रिपॉजिटरी को फोर्क करें और अपने आप अभ्यास करें, प्री-लेक्चर क्विज़ से शुरुआत करें। फिर लेक्चर पढ़ें और बाकी गतिविधियों को पूरा करें। कोशिश करें कि प्रोजेक्ट्स को समझकर बनाएं, न कि समाधान कोड को कॉपी करके; हालांकि, वह कोड प्रत्येक प्रोजेक्ट-आधारित पाठ में /solutions फोल्डर में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ एक अध्ययन समूह बनाएं और सामग्री को एक साथ पढ़ें। आगे की पढ़ाई के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सिफारिश करते हैं।
> **[छात्र](https://aka.ms/student-page)**: इस पाठ्यक्रम का उपयोग अपने आप करने के लिए, पूरे रिपॉजिटरी को फोर्क करें और अपने आप अभ्यास करें, प्री-लेक्चर क्विज़ से शुरुआत करें। फिर लेक्चर पढ़ें और बाकी गतिविधियों को पूरा करें। कोशिश करें कि पाठों को समझकर प्रोजेक्ट बनाएं बजाय समाधान कोड की नकल करने के; हालांकि, वह कोड प्रत्येक प्रोजेक्ट-आधारित पाठ के /solutions फोल्डर में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ एक अध्ययन समूह बनाएं और सामग्री को एक साथ पढ़ें। आगे की पढ़ाई के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सिफारिश करते हैं।
## टीम से मिलें
@ -55,11 +71,11 @@ Azure Cloud Advocates, Microsoft द्वारा प्रस्तुत, 10
> 🎥 ऊपर दी गई छवि पर क्लिक करें इस प्रोजेक्ट और इसे बनाने वाले लोगों के बारे में वीडियो देखने के लिए!
## शिक्षण पद्धति
## शिक्षण दृष्टिकोण
हमने इस पाठ्यक्रम को बनाते समय दो शिक्षण सिद्धांतों को चुना है: यह सुनिश्चित करना कि यह प्रोजेक्ट-आधारित है और इसमें बार-बार क्विज़ शामिल हैं। इस श्रृंखला के अंत तक, छात्र डेटा साइंस के बुनियादी सिद्धांतों को सीखेंगे, जिनमें नैतिक अवधारणाएं, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विज़ुअलाइज़ेशन, डेटा विश्लेषण, डेटा साइंस के वास्तविक जीवन के उपयोग के मामले और अधिक शामिल हैं।
हमने इस पाठ्यक्रम को बनाते समय दो शिक्षण दृष्टिकोण चुने हैं: यह सुनिश्चित करना कि यह प्रोजेक्ट-आधारित है और इसमें बार-बार क्विज़ शामिल हैं। इस श्रृंखला के अंत तक, छात्र डेटा साइंस के बुनियादी सिद्धांतों को सीखेंगे, जिनमें नैतिक अवधारणाएं, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विज़ुअलाइज़ेशन, डेटा विश्लेषण, डेटा साइंस के वास्तविक दुनिया के उपयोग के मामले और अधिक शामिल हैं।
इसके अलावा, कक्षा से पहले एक कम दबाव वाला क्विज़ छात्र को विषय सीखने के लिए प्रेरित करता है, जबकि कक्षा के बाद दूसरा क्विज़ आगे की जानकारी को बनाए रखने में मदद करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरे या आंशिक रूप से लिया जा सकता है। प्रोजेक्ट्स छोटे से शुरू होते हैं और 10 सप्ताह के चक्र के अंत तक धीरे-धीरे जटिल हो जाते हैं।
इसके अलावा, कक्षा से पहले एक कम दबाव वाला क्विज़ छात्र को विषय सीखने की ओर प्रेरित करता है, जबकि कक्षा के बाद दूसरा क्विज़ आगे की जानकारी को बनाए रखने में मदद करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरे या आंशिक रूप से लिया जा सकता है। प्रोजेक्ट छोटे से शुरू होते हैं और 10 सप्ताह के चक्र के अंत तक धीरे-धीरे जटिल हो जाते हैं।
> हमारा [आचार संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपके रचनात्मक फीडबैक का स्वागत करते हैं!
@ -76,7 +92,7 @@ Azure Cloud Advocates, Microsoft द्वारा प्रस्तुत, 10
> **क्विज़ के बारे में एक नोट**: सभी क्विज़ Quiz-App फोल्डर में शामिल हैं, कुल 40 क्विज़, प्रत्येक में तीन प्रश्न। वे पाठों के भीतर से लिंक किए गए हैं, लेकिन क्विज़ ऐप को स्थानीय रूप से चलाया जा सकता है या Azure पर तैनात किया जा सकता है; `quiz-app` फोल्डर में दिए गए निर्देशों का पालन करें। उन्हें धीरे-धीरे स्थानीयकृत किया जा रहा है।
> **क्विज़ के बारे में एक नोट**: सभी क्विज़ Quiz-App फोल्डर में शामिल हैं, प्रत्येक में तीन प्रश्नों के 40 कुल क्विज़। वे पाठों के भीतर से लिंक किए गए हैं, लेकिन क्विज़ ऐप को स्थानीय रूप से चलाया जा सकता है या Azure पर तैनात किया जा सकता है; `quiz-app` फोल्डर में दिए गए निर्देशों का पालन करें। उन्हें धीरे-धीरे स्थानीयकृत किया जा रहा है।
## पाठ
@ -91,16 +107,16 @@ Azure Cloud Advocates, Microsoft द्वारा प्रस्तुत, 10
| 03 | डेटा की परिभाषा | [परिचय](1-Introduction/README.md) | डेटा को कैसे वर्गीकृत किया जाता है और इसके सामान्य स्रोत। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | सांख्यिकी और संभावना का परिचय | [परिचय](1-Introduction/README.md) | डेटा को समझने के लिए संभावना और सांख्यिकी की गणितीय तकनीकें। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [वीडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | रिलेशनल डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | रिलेशनल डेटा का परिचय और SQL (जिसे "सी-क्वेल" कहा जाता है) के साथ रिलेशनल डेटा का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गैर-रिलेशनल डेटा का परिचय, इसके विभिन्न प्रकार और डॉक्यूमेंट डेटाबेस का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | Pandas जैसी लाइब्रेरी के साथ डेटा अन्वेषण के लिए Python का उपयोग करने की मूल बातें। Python प्रोग्रामिंग की बुनियादी समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा को साफ करने और बदलने के लिए तकनीकों पर चर्चा, ताकि गायब, गलत या अधूरी जानकारी की चुनौतियों को संभाला जा सके। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 05 | संबंधपरक डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | संबंधपरक डेटा का परिचय और SQL (जिसे "सी-क्वेल" कहा जाता है) के साथ संबंधपरक डेटा का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गैर-संबंधपरक डेटा का परिचय, इसके विभिन्न प्रकार और दस्तावेज़ डेटाबेस का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | पायथन के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | Pandas जैसी लाइब्रेरी के साथ डेटा अन्वेषण के लिए पायथन का उपयोग करने की मूल बातें। पायथन प्रोग्रामिंग की बुनियादी समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा को साफ़ और बदलने के लिए तकनीकों पर चर्चा, ताकि गायब, गलत या अधूरी जानकारी की चुनौतियों को संभाला जा सके। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | मात्राओं का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | Matplotlib का उपयोग करके पक्षी डेटा 🦆 को विज़ुअलाइज़ करना सीखें। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | डेटा वितरण का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | अंतराल के भीतर अवलोकन और रुझानों को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | अनुपात का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | अलग-अलग और समूहित प्रतिशत को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | संबंधों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | डेटा सेट और उनके वेरिएबल्स के बीच कनेक्शन और सहसंबंध को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | सार्थक विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए अपने विज़ुअलाइज़ेशन को मूल्यवान बनाने के लिए तकनीक और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | डेटा साइंस जीवनचक्र का परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का परिचय और डेटा को प्राप्त करने और निकालने का पहला चरण। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 13 | सार्थक विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए आपके विज़ुअलाइज़ेशन को मूल्यवान बनाने के लिए तकनीक और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | डेटा साइंस जीवनचक्र का परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र और डेटा को प्राप्त करने और निकालने के पहले चरण का परिचय। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का यह चरण डेटा का विश्लेषण करने की तकनीकों पर केंद्रित है। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा से अंतर्दृष्टि को इस तरह प्रस्तुत करना कि निर्णय लेने वालों के लिए इसे समझना आसान हो। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउड में डेटा साइंस और इसके लाभों का परिचय। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) |
@ -110,19 +126,19 @@ Azure Cloud Advocates, Microsoft द्वारा प्रस्तुत, 10
## GitHub Codespaces
Codespace में इस सैंपल को खोलने के लिए इन चरणों का पालन करें:
1. Code ड्रॉप-डाउन मेनू पर क्लिक करें और Open with Codespaces विकल्प चुनें।
Codespace में इस सैंपल को खोलने के लिए निम्नलिखित चरणों का पालन करें:
1. कोड ड्रॉप-डाउन मेनू पर क्लिक करें और Open with Codespaces विकल्प चुनें।
2. पैन के नीचे + New codespace चुनें।
अधिक जानकारी के लिए, [GitHub दस्तावेज़](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) देखें।
## VSCode Remote - Containers
अपने स्थानीय मशीन और VSCode का उपयोग करके इस रिपॉजिटरी को कंटेनर में खोलने के लिए इन चरणों का पालन करें:
अपने स्थानीय मशीन और VSCode का उपयोग करके इस रिपॉजिटरी को कंटेनर में खोलने के लिए निम्नलिखित चरणों का पालन करें:
1. यदि यह पहली बार है जब आप डेवलपमेंट कंटेनर का उपयोग कर रहे हैं, तो कृपया सुनिश्चित करें कि आपका सिस्टम प्री-रिक्वायरमेंट्स को पूरा करता है (जैसे कि Docker इंस्टॉल हो) [शुरुआती दस्तावेज़](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) में।
इस रिपॉजिटरी का उपयोग करने के लिए, आप या तो इसे एक अलग Docker वॉल्यूम में खोल सकते हैं:
इस रिपॉजिटरी का उपयोग करने के लिए, आप इसे एक अलग Docker वॉल्यूम में खोल सकते हैं:
**नोट**: अंदर ही अंदर, यह Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करेगा ताकि स्रोत कोड को स्थानीय फाइल सिस्टम के बजाय Docker वॉल्यूम में क्लोन किया जा सके। [Volumes](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को बनाए रखने के लिए पसंदीदा तंत्र हैं।
**नोट**: अंदरूनी तौर पर, यह Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करेगा ताकि स्रोत कोड को स्थानीय फाइल सिस्टम के बजाय Docker वॉल्यूम में क्लोन किया जा सके। [वॉल्यूम](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को बनाए रखने के लिए पसंदीदा तंत्र हैं।
या स्थानीय रूप से क्लोन की गई या डाउनलोड की गई रिपॉजिटरी खोलें:
@ -134,12 +150,14 @@ Codespace में इस सैंपल को खोलने के लि
आप इस दस्तावेज़ को ऑफलाइन [Docsify](https://docsify.js.org/#/) का उपयोग करके चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart) अपने स्थानीय मशीन पर, फिर इस रिपॉजिटरी के रूट फ़ोल्डर में `docsify serve` टाइप करें। वेबसाइट आपके localhost पर पोर्ट 3000 पर सर्व की जाएगी: `localhost:3000`।
> नोट, नोटबुक्स Docsify के माध्यम से रेंडर नहीं किए जाएंगे, इसलिए जब आपको नोटबुक चलाने की आवश्यकता हो, तो इसे अलग से Python कर्नेल चलाते हुए VS Code में करें।
> नोट, नोटबुक्स Docsify के माध्यम से रेंडर नहीं होंगे, इसलिए जब आपको नोटबुक चलाने की आवश्यकता हो, तो इसे अलग से VS Code में Python कर्नेल चलाकर करें।
## अन्य पाठ्यक्रम
हमारी टीम अन्य पाठ्यक्रम भी बनाती है! देखें:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -160,3 +178,5 @@ Codespace में इस सैंपल को खोलने के लि
---
**अस्वीकरण**:
यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
[](https://aka.ms/foundry/forum)
Microsoft 的 Azure Cloud Advocates 很高興提供一個為期 10 週、共 20 節課的數據科學課程。每節課都包含課前和課後測驗、完成課程的書面指導、解決方案以及作業。我們的基於項目的教學法讓您在實踐中學習,這是一種能讓新技能更牢固掌握的有效方法。
Microsoft 的 Azure Cloud Advocates 很高興提供一個為期 10 週、共 20 節課的數據科學課程。每節課包括課前和課後測驗、完成課程的書面指導、解決方案以及作業。我們的基於項目的教學法讓您在實踐中學習,這是一種能讓新技能牢牢掌握的有效方法。
||
||
|:---:|
| 初學者數據科學:學習路線圖 - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates u Microsoftu s ponosom predstavljaju 10-tjedni kurikulum s 20 lekcija o znanosti o podacima. Svaka lekcija uključuje kvizove prije i poslije lekcije, pisane upute za dovršetak lekcije, rješenje i zadatak. Naša metodologija temeljena na projektima omogućuje vam učenje kroz izgradnju, što je dokazano učinkovit način za usvajanje novih vještina.
Azure Cloud Advocates u Microsoftu s ponosom nude 10-tjedni kurikulum s 20 lekcija o znanosti o podacima. Svaka lekcija uključuje kvizove prije i nakon lekcije, pisane upute za dovršavanje lekcije, rješenje i zadatak. Naša metodologija temeljena na projektima omogućuje vam učenje kroz izradu, što je dokazano učinkovit način za usvajanje novih vještina.
@ -34,20 +34,20 @@ Azure Cloud Advocates u Microsoftu s ponosom predstavljaju 10-tjedni kurikulum s
||
|:---:|
| Znanost o Podacima za Početnike - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Znanost o podacima za početnike - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
### 🌐 Podrška za Više Jezika
### 🌐 Podrška za više jezika
#### Podržano putem GitHub Action (Automatizirano i Uvijek Ažurirano)
#### Podržano putem GitHub Action (Automatski i uvijek ažurirano)
**Ako želite dodati dodatne jezike, podržani jezici su navedeni [ovdje](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Ako želite dodatne prijevode, podržani jezici navedeni su [ovdje](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Pridružite se Našoj Zajednici
#### Pridružite se našoj zajednici
[](https://aka.ms/ds4beginners/discord)
Imamo seriju "Učimo s AI" koja je u tijeku, saznajte više i pridružite nam se na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. rujna 2025. Dobit ćete savjete i trikove za korištenje GitHub Copilota za znanost o podacima.
Imamo seriju učenja s AI na Discordu, saznajte više i pridružite nam se na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. rujna 2025. Dobit ćete savjete i trikove za korištenje GitHub Copilota za znanost o podacima.

@ -55,16 +55,16 @@ Imamo seriju "Učimo s AI" koja je u tijeku, saznajte više i pridružite nam se
Započnite s ovim resursima:
- [Stranica za studente](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na ovoj stranici pronaći ćete resurse za početnike, studentske pakete, pa čak i načine za dobivanje besplatnog certifikata. Ovo je stranica koju želite označiti i povremeno provjeravati jer sadržaj mijenjamo barem jednom mjesečno.
- [Student Hub stranica](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na ovoj stranici pronaći ćete resurse za početnike, studentske pakete i čak načine za dobivanje besplatnog certifikata. Ovo je stranica koju želite označiti i povremeno provjeravati jer mijenjamo sadržaj barem jednom mjesečno.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pridružite se globalnoj zajednici studentskih ambasadora, ovo bi mogao biti vaš put u Microsoft.
# Početak
> **Nastavnici**: [uključili smo neke prijedloge](for-teachers.md) o tome kako koristiti ovaj kurikulum. Voljeli bismo čuti vaše povratne informacije [u našem forumu za raspravu](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Nastavnici**: [uključili smo neke prijedloge](for-teachers.md) o tome kako koristiti ovaj kurikulum. Voljeli bismo vaše povratne informacije [u našem forumu za raspravu](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenti](https://aka.ms/student-page)**: da biste koristili ovaj kurikulum samostalno, forkajte cijeli repozitorij i sami dovršite vježbe, počevši s kvizom prije predavanja. Zatim pročitajte lekciju i dovršite ostale aktivnosti. Pokušajte sami izraditi projekte razumijevajući lekcije umjesto kopiranja rješenja; međutim, taj kod je dostupan u /solutions mapama u svakoj lekciji temeljenoj na projektima. Druga ideja bila bi formirati studijsku grupu s prijateljima i zajedno prolaziti kroz sadržaj. Za daljnje učenje preporučujemo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenti](https://aka.ms/student-page)**: za samostalno korištenje ovog kurikuluma, forkajte cijeli repo i dovršite vježbe sami, počevši s kvizom prije predavanja. Zatim pročitajte predavanje i dovršite ostale aktivnosti. Pokušajte izraditi projekte razumijevanjem lekcija umjesto kopiranja rješenja koda; međutim, taj kod je dostupan u /solutions mapama u svakoj lekciji temeljenoj na projektu. Druga ideja bila bi formirati grupu za učenje s prijateljima i zajedno prolaziti kroz sadržaj. Za daljnje učenje preporučujemo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
Odabrali smo dva pedagoška načela pri izradi ovog kurikuluma: osigurati da je temeljen na projektima i da uključuje česte kvizove. Do kraja ove serije, studenti će naučiti osnovne principe znanosti o podacima, uključujući etičke koncepte, pripremu podataka, različite načine rada s podacima, vizualizaciju podataka, analizu podataka, stvarne primjere primjene znanosti o podacima i još mnogo toga.
Odabrali smo dva pedagoška načela prilikom izrade ovog kurikuluma: osigurati da je temeljen na projektima i da uključuje česte kvizove. Do kraja ove serije, studenti će naučiti osnovne principe znanosti o podacima, uključujući etičke koncepte, pripremu podataka, različite načine rada s podacima, vizualizaciju podataka, analizu podataka, stvarne primjere korištenja znanosti o podacima i još mnogo toga.
Osim toga, kviz s niskim ulogom prije predavanja usmjerava pažnju studenta na učenje teme, dok drugi kviz nakon predavanja osigurava bolje zadržavanje znanja. Ovaj kurikulum je osmišljen da bude fleksibilan i zabavan te se može uzeti u cijelosti ili djelomično. Projekti započinju jednostavno i postaju sve složeniji do kraja 10-tjednog ciklusa.
Osim toga, kviz s niskim rizikom prije predavanja usmjerava pažnju studenta na učenje teme, dok drugi kviz nakon predavanja osigurava daljnje zadržavanje znanja. Ovaj kurikulum je dizajniran da bude fleksibilan i zabavan te se može uzeti u cijelosti ili djelomično. Projekti počinju jednostavno i postaju sve složeniji do kraja 10-tjednog ciklusa.
> Pronađite naš [Kodeks ponašanja](CODE_OF_CONDUCT.md), [Upute za doprinos](CONTRIBUTING.md), [Upute za prijevod](TRANSLATIONS.md). Vaše konstruktivne povratne informacije su dobrodošle!
> Pronađite naš [Kodeks ponašanja](CODE_OF_CONDUCT.md), [Doprinos](CONTRIBUTING.md), [Smjernice za prijevod](TRANSLATIONS.md). Vaše konstruktivne povratne informacije su dobrodošle!
## Svaka lekcija uključuje:
@ -86,7 +86,7 @@ Osim toga, kviz s niskim ulogom prije predavanja usmjerava pažnju studenta na u
- Opcionalni dodatni video
- Kviz za zagrijavanje prije lekcije
- Pisanu lekciju
- Za lekcije temeljene na projektima, vodiče korak-po-korak kako izraditi projekt
- Za lekcije temeljene na projektima, vodiče korak po korak kako izraditi projekt
- Provjere znanja
- Izazov
- Dodatno čitanje
@ -109,7 +109,7 @@ Osim toga, kviz s niskim ulogom prije predavanja usmjerava pažnju studenta na u
| 05 | Rad s relacijskim podacima | [Rad s podacima](2-Working-With-Data/README.md) | Uvod u relacijske podatke i osnove istraživanja i analize relacijskih podataka pomoću Structured Query Language (SQL). | [lekcija](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Rad s NoSQL podacima | [Rad s podacima](2-Working-With-Data/README.md) | Uvod u nerelacijske podatke, njihove različite vrste i osnove istraživanja i analize dokumentnih baza podataka. | [lekcija](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Rad s Pythonom | [Rad s podacima](2-Working-With-Data/README.md) | Osnove korištenja Pythona za istraživanje podataka s bibliotekama poput Pandas. Preporučuje se osnovno razumijevanje programiranja u Pythonu. | [lekcija](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Priprema podataka | [Rad s podacima](2-Working-With-Data/README.md) | Tehnike čišćenja i transformacije podataka za rješavanje izazova poput nedostajućih, netočnih ili nepotpunih podataka. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 08 | Priprema podataka | [Rad s podacima](2-Working-With-Data/README.md) | Teme o tehnikama čišćenja i transformacije podataka za rješavanje izazova poput nedostajućih, netočnih ili nepotpunih podataka. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Vizualizacija količina | [Vizualizacija podataka](3-Data-Visualization/README.md) | Naučite kako koristiti Matplotlib za vizualizaciju podataka o pticama 🦆 | [lekcija](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Vizualizacija distribucije podataka | [Vizualizacija podataka](3-Data-Visualization/README.md) | Vizualizacija opažanja i trendova unutar intervala. | [lekcija](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
@ -117,8 +117,8 @@ Osim toga, kviz s niskim ulogom prije predavanja usmjerava pažnju studenta na u
| 13 | Smislene vizualizacije | [Vizualizacija podataka](3-Data-Visualization/README.md) | Tehnike i smjernice za stvaranje vizualizacija koje su korisne za učinkovito rješavanje problema i dobivanje uvida. | [lekcija](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Uvod u životni ciklus podatkovne znanosti | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Uvod u životni ciklus podatkovne znanosti i njegov prvi korak - prikupljanje i ekstrakcija podataka. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa podatkovne znanosti fokusira se na tehnike analize podataka. | [lekcija](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacija | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa podatkovne znanosti fokusira se na prezentaciju uvida iz podataka na način koji olakšava razumijevanje donositeljima odluka. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Podatkovna znanost u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Serija lekcija koja uvodi podatkovnu znanost u oblaku i njezine prednosti. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 16 | Komunikacija | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa podatkovne znanosti fokusira se na prezentiranje uvida iz podataka na način koji olakšava razumijevanje donositeljima odluka. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Podatkovna znanost u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Ova serija lekcija uvodi podatkovnu znanost u oblaku i njezine prednosti. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 18 | Podatkovna znanost u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Treniranje modela pomoću alata s malo koda. |[lekcija](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 19 | Podatkovna znanost u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Implementacija modela pomoću Azure Machine Learning Studija. | [lekcija](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 20 | Podatkovna znanost u stvarnom svijetu | [U stvarnom svijetu](6-Data-Science-In-Wild/README.md) | Projekti vođeni podatkovnom znanošću u stvarnom svijetu. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
@ -131,7 +131,7 @@ Slijedite ove korake za otvaranje ovog primjera u Codespaceu:
Za više informacija, pogledajte [GitHub dokumentaciju](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Slijedite ove korake za otvaranje ovog repozitorija u kontejneru koristeći lokalno računalo i VSCode s ekstenzijom VS Code Remote - Containers:
Slijedite ove korake za otvaranje ovog repozitorija u kontejneru koristeći vaše lokalno računalo i VSCode s ekstenzijom VS Code Remote - Containers:
1. Ako prvi put koristite razvojni kontejner, osigurajte da vaš sustav ispunjava preduvjete (npr. instaliran Docker) prema [dokumentaciji za početak](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
@ -141,13 +141,13 @@ Za korištenje ovog repozitorija, možete ga otvoriti u izoliranom Docker volume
Ili otvorite lokalno kloniranu ili preuzetu verziju repozitorija:
- Klonirajte ovaj repozitorij na lokalni datotečni sustav.
- Klonirajte ovaj repozitorij na vaš lokalni datotečni sustav.
- Pritisnite F1 i odaberite naredbu **Remote-Containers: Open Folder in Container...**.
- Odaberite kloniranu kopiju ove mape, pričekajte da se kontejner pokrene i isprobajte stvari.
## Offline pristup
Možete pokrenuti ovu dokumentaciju offline koristeći [Docsify](https://docsify.js.org/#/). Forkajte ovaj repozitorij, [instalirajte Docsify](https://docsify.js.org/#/quickstart) na svoje lokalno računalo, zatim u korijenskoj mapi ovog repozitorija upišite `docsify serve`. Web stranica će biti poslužena na portu 3000 na vašem localhostu: `localhost:3000`.
Možete pokrenuti ovu dokumentaciju offline koristeći [Docsify](https://docsify.js.org/#/). Forkajte ovaj repozitorij, [instalirajte Docsify](https://docsify.js.org/#/quickstart) na vaše lokalno računalo, zatim u korijenskoj mapi ovog repozitorija upišite `docsify serve`. Web stranica će biti poslužena na portu 3000 na vašem localhostu: `localhost:3000`.
> Napomena, bilježnice neće biti prikazane putem Docsifyja, pa kada trebate pokrenuti bilježnicu, učinite to zasebno u VS Codeu koristeći Python kernel.
@ -155,6 +155,8 @@ Možete pokrenuti ovu dokumentaciju offline koristeći [Docsify](https://docsify
Naš tim proizvodi i druge kurikulume! Pogledajte:
- [Edge AI za početnike](https://aka.ms/edgeai-for-beginners)
- [AI agenti za početnike](https://aka.ms/ai-agents-beginners)
- [Generativna AI za početnike](https://aka.ms/genai-beginners)
- [Generativna AI za početnike .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generativna AI s JavaScriptom](https://github.com/microsoft/generative-ai-with-javascript)
@ -170,8 +172,10 @@ Naš tim proizvodi i druge kurikulume! Pogledajte:
- [XR razvoj za početnike](https://aka.ms/xr-dev-for-beginners)
- [Savladavanje GitHub Copilota za AI programiranje u paru](https://aka.ms/GitHubCopilotAI)
- [XR razvoj za početnike](https://github.com/microsoft/xr-development-for-beginners)
- [Savladavanje GitHub Copilota za C#/.NET programere](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Odaberite svoju Copilot avanturu](https://github.com/microsoft/CopilotAdventures)
- [Savladavanje GitHub Copilota za C#/.NET developere](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Odaberite vlastitu Copilot avanturu](https://github.com/microsoft/CopilotAdventures)
---
**Odricanje od odgovornosti**:
Ovaj dokument je preveden pomoću AI usluge za prevođenje [Co-op Translator](https://github.com/Azure/co-op-translator). Iako nastojimo osigurati točnost, imajte na umu da automatski prijevodi mogu sadržavati pogreške ili netočnosti. Izvorni dokument na izvornom jeziku treba smatrati mjerodavnim izvorom. Za ključne informacije preporučuje se profesionalni prijevod od strane stručnjaka. Ne preuzimamo odgovornost za bilo kakve nesporazume ili pogrešne interpretacije proizašle iz korištenja ovog prijevoda.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
A Microsoft Azure Cloud Advocates csapata örömmel kínál egy 10 hetes, 20 leckéből álló tantervet az adattudományról. Minden lecke tartalmaz előzetes és utólagos kvízeket, írásos útmutatót a lecke elvégzéséhez, megoldást és feladatot. Projektalapú pedagógiai megközelítésünk lehetővé teszi, hogy tanulás közben építs, ami bizonyítottan segíti az új készségek elsajátítását.
Azure Cloud Advocates a Microsoftnál örömmel kínál egy 10 hetes, 20 leckéből álló tantervet az adattudományról. Minden lecke tartalmaz előzetes és utólagos kvízeket, írásos útmutatót a lecke elvégzéséhez, megoldást és feladatot. Projektalapú pedagógiánk lehetővé teszi, hogy tanulás közben építs, ami bizonyítottan segíti az új készségek elsajátítását.
@ -49,24 +33,24 @@ A Microsoft Azure Cloud Advocates csapata örömmel kínál egy 10 hetes, 20 lec
Van egy folyamatban lévő Discord tanulási sorozatunk AI-val, tudj meg többet és csatlakozz hozzánk a [Learn with AI Series](https://aka.ms/learnwithai/discord) eseményen 2025. szeptember 18-30. között. Tippeket és trükköket kapsz a GitHub Copilot használatához az adattudományban.


# Diák vagy?
Kezdd el az alábbi forrásokkal:
- [Student Hub oldal](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Ezen az oldalon kezdő forrásokat, diákcsomagokat és akár ingyenes tanúsítvány-vouchert is találhatsz. Ez egy olyan oldal, amit érdemes könyvjelzőzni és időnként ellenőrizni, mivel havonta cseréljük a tartalmat.
- [Student Hub oldal](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Ezen az oldalon kezdő forrásokat, diákcsomagokat és akár ingyenes tanúsítvány-vouchert is találhatsz. Ez egy olyan oldal, amit érdemes könyvjelzőzni és időnként ellenőrizni, mivel havonta legalább egyszer frissítjük a tartalmat.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Csatlakozz egy globális diák nagyköveti közösséghez, ez lehet az utad a Microsofthoz.
# Kezdés
> **Tanárok**: [néhány javaslatot](for-teachers.md) is mellékeltünk arról, hogyan használhatjátok ezt a tantervet. Örömmel fogadjuk visszajelzéseiteket [a vitafórumunkon](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Diákok](https://aka.ms/student-page)**: ha egyedül szeretnéd használni ezt a tantervet, forkolj le az egész repót, és végezd el a gyakorlatokat önállóan, kezdve az előzetes kvízzel. Ezután olvasd el az előadást, és végezd el a többi tevékenységet. Próbáld meg a projekteket úgy létrehozni, hogy megérted a leckéket, nem pedig a megoldási kódot másolod; azonban a kód elérhető a /solutions mappákban minden projektalapú leckében. Egy másik ötlet lehet, hogy tanulócsoportot alakítasz barátaiddal, és együtt haladtok a tartalommal. További tanulmányokhoz ajánljuk a [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) platformot.
> **[Diákok](https://aka.ms/student-page)**: ha önállóan szeretnéd használni ezt a tantervet, forkolj le az egész repót, és végezd el a gyakorlatokat önállóan, kezdve egy előzetes kvízzel. Ezután olvasd el az előadást, és végezd el a többi tevékenységet. Próbáld meg a projekteket úgy elkészíteni, hogy megérted a leckéket, ahelyett hogy lemásolnád a megoldás kódját; azonban a kód elérhető a /solutions mappákban minden projektalapú leckében. Egy másik ötlet lehet, hogy tanulócsoportot alakítasz barátaiddal, és együtt haladtok a tartalommal. További tanulmányokhoz ajánljuk a [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) platformot.
Két pedagógiai alapelvet választottunk a tanterv kidolgozása során: biztosítani, hogy projektalapú legyen, és hogy gyakori kvízeket tartalmazzon. A sorozat végére a diákok megtanulják az adattudomány alapelveit, beleértve az etikai fogalmakat, az adatok előkészítését, az adatokkal való munka különböző módjait, az adatvizualizációt, az adatelemzést, az adattudomány valós alkalmazásait és még sok mást.
Ezenkívül egy alacsony tétű kvíz az óra előtt segít a diákoknak a téma iránti figyelem felkeltésében, míg egy második kvíz az óra után biztosítja a további rögzítést. Ez a tanterv rugalmas és szórakoztató, és egészében vagy részben is elvégezhető. A projektek kicsiben kezdődnek, és a 10 hetes ciklus végére egyre összetettebbé válnak.
Ezenkívül egy alacsony tétű kvíz az óra előtt segít a diákoknak a téma iránti figyelem összpontosításában, míg egy második kvíz az óra után biztosítja a további rögzítést. Ez a tanterv rugalmas és szórakoztató módon lett kialakítva, és egészében vagy részben is elvégezhető. A projektek kicsiben kezdődnek, és a 10 hetes ciklus végére egyre összetettebbé válnak.
> Találd meg a [Magatartási kódexünket](CODE_OF_CONDUCT.md), [Hozzájárulási](CONTRIBUTING.md), [Fordítási](TRANSLATIONS.md) irányelveinket. Örömmel fogadjuk építő jellegű visszajelzéseidet!
@ -93,7 +77,7 @@ Ezenkívül egy alacsony tétű kvíz az óra előtt segít a diákoknak a téma
> **Megjegyzés a kvízekről**: Minden kvíz a Quiz-App mappában található, összesen 40 darab, három kérdésből álló kvíz. A leckékből hivatkozva érhetők el, de a kvíz alkalmazás helyben futtatható vagy Azure-ra telepíthető; kövesd az utasításokat a `quiz-app` mappában. Fokozatosan lokalizáljuk őket.
> **Megjegyzés a kvízekről**: Minden kvíz a Quiz-App mappában található, összesen 40 darab három kérdéses kvíz. A leckékből vannak linkelve, de a kvíz alkalmazás helyben futtatható vagy Azure-ra telepíthető; kövesd az utasításokat a `quiz-app` mappában. Fokozatosan lokalizálásra kerülnek.
## Leckék
||
@ -102,42 +86,42 @@ Ezenkívül egy alacsony tétű kvíz az óra előtt segít a diákoknak a téma
| Lecke száma | Téma | Leckecsoport | Tanulási célok | Kapcsolódó lecke | Szerző |
| 01 | Az adattudomány meghatározása | [Bevezetés](1-Introduction/README.md) | Ismerd meg az adattudomány alapfogalmait, és hogy hogyan kapcsolódik a mesterséges intelligenciához, gépi tanuláshoz és big data-hoz. | [lecke](1-Introduction/01-defining-data-science/README.md) [videó](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Adattudományi etika | [Bevezetés](1-Introduction/README.md) | Adatetikával kapcsolatos fogalmak, kihívások és keretrendszerek. | [lecke](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Az adattudomány meghatározása | [Bevezetés](1-Introduction/README.md) | Ismerd meg az adattudomány alapfogalmait, és hogy hogyan kapcsolódik a mesterséges intelligenciához, gépi tanuláshoz és a big data-hoz. | [lecke](1-Introduction/01-defining-data-science/README.md) [videó](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Az adattudomány etikája | [Bevezetés](1-Introduction/README.md) | Az adatetika fogalmai, kihívásai és keretrendszerei. | [lecke](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Az adatok meghatározása | [Bevezetés](1-Introduction/README.md) | Hogyan osztályozzuk az adatokat és mik a leggyakoribb forrásaik. | [lecke](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Bevezetés a statisztikába és valószínűségszámításba | [Bevezetés](1-Introduction/README.md) | A statisztika és valószínűségszámítás matematikai technikái az adatok megértéséhez. | [lecke](1-Introduction/04-stats-and-probability/README.md) [videó](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Relációs adatok kezelése | [Adatok kezelése](2-Working-With-Data/README.md) | Bevezetés a relációs adatokba és az SQL (Structured Query Language) alapjaiba, amelyet „szí-kvell”-nek ejtünk. | [lecke](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL adatok kezelése | [Adatok kezelése](2-Working-With-Data/README.md) | Bevezetés a nem relációs adatokba, azok különböző típusaiba, valamint dokumentumadatbázisok elemzésének alapjaiba. | [lecke](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python használata | [Adatok kezelése](2-Working-With-Data/README.md) | Alapok a Python használatához adatok feltárásában, például Pandas könyvtárakkal. Ajánlott a Python programozás alapjainak ismerete. | [lecke](2-Working-With-Data/07-python/README.md) [videó](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Adatok előkészítése | [Adatok kezelése](2-Working-With-Data/README.md) | Témák az adatok tisztításának és átalakításának technikáiról, hogy kezelni tudjuk a hiányos, pontatlan vagy nem teljes adatokat. | [lecke](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Mennyiségek vizualizálása | [Adatok vizualizálása](3-Data-Visualization/README.md) | Tanuld meg, hogyan használhatod a Matplotlib-et madáradatok vizualizálására 🦆 | [lecke](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 04 | Bevezetés a statisztikába és valószínűségszámításba | [Bevezetés](1-Introduction/README.md) | A valószínűségszámítás és statisztika matematikai technikái az adatok megértéséhez. | [lecke](1-Introduction/04-stats-and-probability/README.md) [videó](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Relációs adatokkal való munka | [Adatokkal való munka](2-Working-With-Data/README.md) | Bevezetés a relációs adatokba és az SQL (Structured Query Language) alapjaiba, amelyet „szí-kvell”-nek ejtünk. | [lecke](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL adatokkal való munka | [Adatokkal való munka](2-Working-With-Data/README.md) | Bevezetés a nem relációs adatokba, azok különböző típusai és dokumentumadatbázisok elemzésének alapjai. | [lecke](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python használata | [Adatokkal való munka](2-Working-With-Data/README.md) | Alapok a Python használatához az adatok feltárásában, például Pandas könyvtárral. Ajánlott a Python programozás alapjainak ismerete. | [lecke](2-Working-With-Data/07-python/README.md) [videó](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Adatok előkészítése | [Adatokkal való munka](2-Working-With-Data/README.md) | Témák az adatok tisztításának és átalakításának technikáiról, hogy kezelni tudjuk a hiányos, pontatlan vagy nem teljes adatokat. | [lecke](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Mennyiségek vizualizálása | [Adatok vizualizálása](3-Data-Visualization/README.md) | Tanuld meg, hogyan használhatod a Matplotlib-et madáradatok 🦆 vizualizálására. | [lecke](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Adatok eloszlásának vizualizálása | [Adatok vizualizálása](3-Data-Visualization/README.md) | Megfigyelések és trendek vizualizálása egy intervallumon belül. | [lecke](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Kapcsolatok vizualizálása | [Adatok vizualizálása](3-Data-Visualization/README.md) | Kapcsolatok és korrelációk vizualizálása adathalmazok és változóik között. | [lecke](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Értelmes vizualizációk | [Adatok vizualizálása](3-Data-Visualization/README.md) | Technikák és útmutatók, hogy a vizualizációid hatékony problémamegoldásra és betekintésekre legyenek alkalmasak. | [lecke](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Kapcsolatok vizualizálása | [Adatok vizualizálása](3-Data-Visualization/README.md) | Kapcsolatok és korrelációk vizualizálása adathalmazok és azok változói között. | [lecke](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Értelmes vizualizációk | [Adatok vizualizálása](3-Data-Visualization/README.md) | Technikák és útmutatók, hogy vizualizációid hatékony problémamegoldásra és betekintésekre alkalmasak legyenek. | [lecke](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Bevezetés az adattudomány életciklusába | [Életciklus](4-Data-Science-Lifecycle/README.md) | Bevezetés az adattudomány életciklusába és annak első lépésébe, az adatok megszerzésébe és kinyerésébe. | [lecke](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Elemzés | [Életciklus](4-Data-Science-Lifecycle/README.md) | Az adattudomány életciklusának ezen szakasza az adatok elemzésének technikáira összpontosít. | [lecke](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikáció | [Életciklus](4-Data-Science-Lifecycle/README.md) | Az adattudomány életciklusának ezen szakasza az adatokból származó betekintések bemutatására összpontosít, hogy a döntéshozók könnyebben megértsék azokat. | [lecke](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Ez a leckesorozat bevezeti az adattudományt a felhőben és annak előnyeit. | [lecke](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
| 18 | Adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek tanítása alacsony kódú eszközökkel. |[lecke](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
| 19 | Adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek telepítése az Azure Machine Learning Studio-val. | [lecke](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
| 17 | Adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Ez a leckesorozat bevezeti az adattudományt a felhőben és annak előnyeit. | [lecke](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
| 18 | Adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek tanítása alacsony kódú eszközökkel. |[lecke](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
| 19 | Adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek telepítése az Azure Machine Learning Studio-val. | [lecke](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
| 20 | Adattudomány a való világban | [Való világban](6-Data-Science-In-Wild/README.md) | Adattudomány által vezérelt projektek a való életben. | [lecke](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Kövesd az alábbi lépéseket, hogy megnyisd ezt a mintát egy Codespace-ben:
1. Kattints a Code legördülő menüre, és válaszd az Open with Codespaces opciót.
2. Válaszd a + New codespace lehetőséget a panel alján.
2. Válaszd ki a + New codespace lehetőséget a panel alján.
További információért nézd meg a [GitHub dokumentációt](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Kövesd az alábbi lépéseket, hogy megnyisd ezt a repót egy konténerben a helyi gépeden és a VSCode-ban a VS Code Remote - Containers bővítmény segítségével:
1. Ha először használsz fejlesztői konténert, győződj meg róla, hogy a rendszered megfelel az előfeltételeknek (például telepítve van a Docker) a [kezdő dokumentációban](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Ha először használsz fejlesztői konténert, győződj meg róla, hogy a rendszered megfelel az előfeltételeknek (pl. telepítve van a Docker) a [kezdő dokumentációban](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
A repó használatához megnyithatod a repót egy izolált Docker kötetben:
**Megjegyzés**: A háttérben ez a Remote-Containers: **Clone Repository in Container Volume...** parancsot fogja használni, hogy a forráskódot egy Docker kötetben klónozza a helyi fájlrendszer helyett. [Kötetek](https://docs.docker.com/storage/volumes/) az adatok tárolásának preferált mechanizmusa.
**Megjegyzés**: A háttérben ez a Remote-Containers: **Clone Repository in Container Volume...** parancsot fogja használni, hogy a forráskódot egy Docker kötetbe klónozza a helyi fájlrendszer helyett. A [kötetek](https://docs.docker.com/storage/volumes/) az adatok tárolásának preferált mechanizmusa.
Vagy megnyithatod a repó helyileg klónozott vagy letöltött verzióját:
@ -149,12 +133,14 @@ Vagy megnyithatod a repó helyileg klónozott vagy letöltött verzióját:
Ezt a dokumentációt offline is futtathatod a [Docsify](https://docsify.js.org/#/) segítségével. Forkold ezt a repót, [telepítsd a Docsify-t](https://docsify.js.org/#/quickstart) a helyi gépedre, majd a repó gyökérmappájában írd be: `docsify serve`. A weboldal a localhost 3000-es portján lesz elérhető: `localhost:3000`.
> Megjegyzés: a jegyzetfüzetek nem lesznek megjelenítve a Docsify segítségével, így ha jegyzetfüzetet kell futtatnod, azt külön futtasd a VS Code-ban Python kernel használatával.
> Megjegyzés: a jegyzetfüzetek nem lesznek megjelenítve a Docsify segítségével, így ha jegyzetfüzetet kell futtatnod, azt külön futtasd a VS Code-ban egy Python kernel használatával.
## Egyéb tananyagok
Csapatunk más tananyagokat is készít! Nézd meg:
- [Edge AI kezdőknek](https://aka.ms/edgeai-for-beginners)
- [Válaszd ki saját Copilot kalandodat](https://github.com/microsoft/CopilotAdventures)
---
**Felelősség kizárása**:
Ez a dokumentum az [Co-op Translator](https://github.com/Azure/co-op-translator) AI fordítási szolgáltatás segítségével került lefordításra. Bár törekszünk a pontosságra, kérjük, vegye figyelembe, hogy az automatikus fordítások hibákat vagy pontatlanságokat tartalmazhatnak. Az eredeti dokumentum az eredeti nyelvén tekintendő hiteles forrásnak. Kritikus információk esetén javasolt professzionális emberi fordítást igénybe venni. Nem vállalunk felelősséget az ebből a fordításból eredő félreértésekért vagy téves értelmezésekért.
||
|:---:|
@ -40,33 +40,33 @@ Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10 mi
#### Didukung melalui GitHub Action (Otomatis & Selalu Terbaru)
**Jika Anda ingin menambahkan bahasa terjemahan lainnya, daftar bahasa yang didukung tersedia [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Jika Anda ingin mendukung bahasa tambahan, daftar bahasa tersedia [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Bergabunglah dengan Komunitas Kami
[](https://aka.ms/ds4beginners/discord)
Kami memiliki seri belajar dengan AI yang sedang berlangsung di Discord, pelajari lebih lanjut dan bergabunglah dengan kami di [Learn with AI Series](https://aka.ms/learnwithai/discord) dari 18 - 30 September 2025. Anda akan mendapatkan tips dan trik menggunakan GitHub Copilot untuk Data Science.
Kami memiliki seri belajar dengan AI yang sedang berlangsung di Discord, pelajari lebih lanjut dan bergabunglah dengan kami di [Learn with AI Series](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapatkan tips dan trik menggunakan GitHub Copilot untuk Data Science.


# Apakah Anda seorang pelajar?
Mulailah dengan sumber daya berikut:
- [Halaman Hub Pelajar](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, Anda akan menemukan sumber daya untuk pemula, paket pelajar, dan bahkan cara mendapatkan voucher sertifikasi gratis. Halaman ini layak untuk ditandai dan diperiksa dari waktu ke waktu karena kami mengganti konten setidaknya setiap bulan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bergabunglah dengan komunitas global duta pelajar, ini bisa menjadi jalan Anda menuju Microsoft.
- [Halaman Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, Anda akan menemukan sumber daya untuk pemula, paket pelajar, dan bahkan cara mendapatkan voucher sertifikat gratis. Ini adalah halaman yang ingin Anda tandai dan periksa dari waktu ke waktu karena kami mengganti konten setidaknya setiap bulan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bergabunglah dengan komunitas global duta pelajar, ini bisa menjadi jalan Anda ke Microsoft.
# Memulai
> **Guru**: kami telah [menyertakan beberapa saran](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami sangat menghargai umpan balik Anda [di forum diskusi kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Guru**: kami telah [menyertakan beberapa saran](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami akan senang mendengar umpan balik Anda [di forum diskusi kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara mandiri, fork seluruh repositori dan selesaikan latihan secara mandiri, dimulai dengan kuis pra-pelajaran. Kemudian baca materi pelajaran dan selesaikan semua aktivitas lainnya. Cobalah untuk membuat proyek dengan memahami pelajaran daripada menyalin kode solusi; namun, kode tersebut tersedia di folder /solutions di setiap pelajaran berbasis proyek. Ide lainnya adalah membentuk kelompok belajar dengan teman-teman dan mempelajari konten bersama. Untuk studi lebih lanjut, kami merekomendasikan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara mandiri, fork seluruh repo dan selesaikan latihan secara mandiri, dimulai dengan kuis pra-pelajaran. Kemudian baca materi pelajaran dan selesaikan aktivitas lainnya. Cobalah untuk membuat proyek dengan memahami pelajaran daripada menyalin kode solusi; namun, kode tersebut tersedia di folder /solutions dalam setiap pelajaran berbasis proyek. Ide lainnya adalah membentuk kelompok belajar dengan teman-teman dan mempelajari konten bersama-sama. Untuk studi lebih lanjut, kami merekomendasikan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -76,46 +76,45 @@ Mulailah dengan sumber daya berikut:
Kami memilih dua prinsip pedagogi saat membangun kurikulum ini: memastikan bahwa kurikulum berbasis proyek dan mencakup kuis yang sering. Pada akhir seri ini, pelajar akan mempelajari prinsip dasar data science, termasuk konsep etika, persiapan data, berbagai cara bekerja dengan data, visualisasi data, analisis data, kasus penggunaan nyata data science, dan lainnya.
Selain itu, kuis dengan risiko rendah sebelum kelas membantu siswa memfokuskan perhatian mereka pada topik yang akan dipelajari, sementara kuis kedua setelah kelas memastikan retensi lebih lanjut. Kurikulum ini dirancang agar fleksibel dan menyenangkan, serta dapat diambil secara keseluruhan atau sebagian. Proyek dimulai dari yang sederhana dan menjadi semakin kompleks pada akhir siklus 10 minggu.
Selain itu, kuis dengan risiko rendah sebelum kelas membantu siswa memfokuskan niat mereka untuk mempelajari topik tertentu, sementara kuis kedua setelah kelas memastikan retensi lebih lanjut. Kurikulum ini dirancang agar fleksibel dan menyenangkan serta dapat diambil secara keseluruhan atau sebagian. Proyek dimulai dari yang kecil dan menjadi semakin kompleks pada akhir siklus 10 minggu.
> Temukan [Kode Etik](CODE_OF_CONDUCT.md), [Kontribusi](CONTRIBUTING.md), dan panduan [Terjemahan](TRANSLATIONS.md) kami. Kami menyambut umpan balik konstruktif Anda!
- [Kuis setelah pelajaran](https://ff-quizzes.netlify.app/en/)
> **Catatan tentang kuis**: Semua kuis terdapat di folder Quiz-App, dengan total 40 kuis masing-masing terdiri dari tiga pertanyaan. Kuis tersebut terhubung dari dalam pelajaran, tetapi aplikasi kuis dapat dijalankan secara lokal atau di-deploy ke Azure; ikuti instruksi di folder `quiz-app`. Kuis secara bertahap sedang dilokalkan.
> **Catatan tentang kuis**: Semua kuis terdapat di folder Quiz-App, dengan total 40 kuis masing-masing terdiri dari tiga pertanyaan. Kuis tersebut terhubung dari dalam pelajaran, tetapi aplikasi kuis dapat dijalankan secara lokal atau diterapkan ke Azure; ikuti instruksi di folder `quiz-app`. Kuis ini secara bertahap sedang dilokalkan.
## Pelajaran
||
||
|:---:|
| Data Science Untuk Pemula: Roadmap - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Nomor Pelajaran | Topik | Kelompok Pelajaran | Tujuan Pembelajaran | Pelajaran Terkait | Penulis |
| 01 | Mendefinisikan Data Science | [Pendahuluan](1-Introduction/README.md) | Pelajari konsep dasar di balik data science dan hubungannya dengan kecerdasan buatan, pembelajaran mesin, dan big data. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | Mendefinisikan Data | [Pendahuluan](1-Introduction/README.md) | Bagaimana data diklasifikasikan dan sumber-sumber umumnya. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Pengantar Statistik & Probabilitas | [Pendahuluan](1-Introduction/README.md) | Teknik matematika probabilitas dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Bekerja dengan Data Relasional | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengantar data relasional dan dasar-dasar eksplorasi serta analisis data relasional menggunakan Structured Query Language, yang juga dikenal sebagai SQL (diucapkan “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengantar data non-relasional, berbagai jenisnya, dan dasar-dasar eksplorasi serta analisis database dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 05 | Bekerja dengan Data Relasional | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengantar data relasional dan dasar-dasar eksplorasi serta analisis data relasional dengan Structured Query Language, yang juga dikenal sebagai SQL (diucapkan “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengantar data non-relasional, berbagai jenisnya, dan dasar-dasar eksplorasi serta analisis basis data dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Bekerja dengan Python | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Dasar-dasar menggunakan Python untuk eksplorasi data dengan pustaka seperti Pandas. Pemahaman dasar tentang pemrograman Python direkomendasikan. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Persiapan Data | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Topik tentang teknik data untuk membersihkan dan mentransformasi data guna menangani tantangan data yang hilang, tidak akurat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisasi Kuantitas | [Visualisasi Data](3-Data-Visualization/README.md) | Pelajari cara menggunakan Matplotlib untuk memvisualisasikan data burung 🦆 | [pelajaran](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisasi Distribusi Data | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan pengamatan dan tren dalam suatu interval. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisasi Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan koneksi dan korelasi antara kumpulan data dan variabelnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisasi yang Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk membuat visualisasi Anda berharga untuk pemecahan masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisasi yang Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk membuat visualisasi Anda bernilai untuk pemecahan masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Pengantar Siklus Hidup Data Science | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Pengantar siklus hidup data science dan langkah pertama dalam memperoleh serta mengekstraksi data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Menganalisis | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase ini dalam siklus hidup data science berfokus pada teknik untuk menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasi | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase ini dalam siklus hidup data science berfokus pada menyajikan wawasan dari data dengan cara yang memudahkan pengambil keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
@ -132,13 +131,13 @@ Ikuti langkah-langkah berikut untuk membuka contoh ini di Codespace:
Untuk informasi lebih lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Ikuti langkah-langkah berikut untuk membuka repo ini dalam container menggunakan mesin lokal Anda dan VSCode dengan ekstensi VS Code Remote - Containers:
Ikuti langkah-langkah berikut untuk membuka repositori ini dalam container menggunakan mesin lokal Anda dan VSCode dengan ekstensi VS Code Remote - Containers:
1. Jika ini adalah pertama kalinya Anda menggunakan container pengembangan, pastikan sistem Anda memenuhi persyaratan awal (misalnya, memiliki Docker terinstal) dalam [dokumentasi memulai](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Jika ini pertama kali Anda menggunakan container pengembangan, pastikan sistem Anda memenuhi persyaratan awal (misalnya, memiliki Docker terinstal) dalam [dokumentasi memulai](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Untuk menggunakan repositori ini, Anda dapat membukanya dalam volume Docker yang terisolasi:
**Catatan**: Di balik layar, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk mengkloning kode sumber dalam volume Docker daripada sistem file lokal. [Volumes](https://docs.docker.com/storage/volumes/) adalah mekanisme yang disukai untuk menyimpan data container.
**Catatan**: Di balik layar, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk mengkloning kode sumber dalam volume Docker alih-alih sistem file lokal. [Volumes](https://docs.docker.com/storage/volumes/) adalah mekanisme yang disukai untuk menyimpan data container.
Atau buka versi repositori yang telah diklon atau diunduh secara lokal:
@ -148,7 +147,7 @@ Atau buka versi repositori yang telah diklon atau diunduh secara lokal:
## Akses Offline
Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repo ini, [instal Docsify](https://docsify.js.org/#/quickstart) di mesin lokal Anda, lalu di folder root repo ini, ketik `docsify serve`. Situs web akan disajikan di port 3000 di localhost Anda: `localhost:3000`.
Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repositori ini, [instal Docsify](https://docsify.js.org/#/quickstart) di mesin lokal Anda, lalu di folder root repositori ini, ketik `docsify serve`. Situs web akan disajikan di port 3000 di localhost Anda: `localhost:3000`.
> Catatan, notebook tidak akan dirender melalui Docsify, jadi ketika Anda perlu menjalankan notebook, lakukan itu secara terpisah di VS Code dengan kernel Python.
@ -156,6 +155,8 @@ Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsif
Tim kami menghasilkan kurikulum lainnya! Lihat:
- [Edge AI untuk Pemula](https://aka.ms/edgeai-for-beginners)
- [AI Agents untuk Pemula](https://aka.ms/ai-agents-beginners)
- [Generative AI untuk Pemula](https://aka.ms/genai-beginners)
- [Generative AI untuk Pemula .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI dengan JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -176,3 +177,5 @@ Tim kami menghasilkan kurikulum lainnya! Lihat:
---
**Penafian**:
Dokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan hasil yang akurat, harap diperhatikan bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan manusia profesional. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.
Azure Cloud Advocates di Microsoft sono lieti di offrire un curriculum di 10 settimane e 20 lezioni dedicato alla Data Science. Ogni lezione include quiz pre-lezione e post-lezione, istruzioni scritte per completare la lezione, una soluzione e un compito. La nostra pedagogia basata sui progetti ti permette di imparare mentre costruisci, un metodo comprovato per far sì che le nuove competenze rimangano impresse.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://aka.ms/foundry/forum)
Gli Azure Cloud Advocates di Microsoft sono lieti di offrire un curriculum di 10 settimane e 20 lezioni dedicato alla Data Science. Ogni lezione include quiz pre-lezione e post-lezione, istruzioni scritte per completare la lezione, una soluzione e un compito. La nostra pedagogia basata sui progetti ti permette di imparare mentre costruisci, un metodo comprovato per far sì che le nuove competenze rimangano impresse.
||
|:---:|
@ -39,8 +55,8 @@ Abbiamo una serie di apprendimento con AI in corso su Discord, scopri di più e
Inizia con le seguenti risorse:
- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) In questa pagina troverai risorse per principianti, pacchetti per studenti e persino modi per ottenere un voucher gratuito per la certificazione. Questa è una pagina che vuoi aggiungere ai segnalibri e controllare di tanto in tanto, poiché cambiamo i contenuti almeno mensilmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Unisciti a una comunità globale di ambasciatori studenti, potrebbe essere il tuo ingresso in Microsoft.
- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) In questa pagina troverai risorse per principianti, pacchetti per studenti e persino modi per ottenere un voucher gratuito per la certificazione. Questa è una pagina che vuoi salvare nei preferiti e controllare di tanto in tanto, poiché cambiamo contenuti almeno mensilmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Unisciti a una comunità globale di ambasciatori studenti, questa potrebbe essere la tua portad'ingresso in Microsoft.
# Per iniziare
@ -58,9 +74,9 @@ Inizia con le seguenti risorse:
## Pedagogia
Abbiamo scelto due principi pedagogici durante la creazione di questo curriculum: garantire che sia basato sui progetti e che includa quiz frequenti. Alla fine di questa serie, gli studenti avranno appreso i principi base della data science, inclusi concetti etici, preparazione dei dati, diversi modi di lavorare con i dati, visualizzazione dei dati, analisi dei dati, casi d'uso reali della data science e altro.
Abbiamo scelto due principi pedagogici durante la creazione di questo curriculum: garantire che sia basato su progetti e che includa quiz frequenti. Alla fine di questa serie, gli studenti avranno appreso i principi base della data science, inclusi concetti etici, preparazione dei dati, diversi modi di lavorare con i dati, visualizzazione dei dati, analisi dei dati, casi d'uso reali della data science e altro.
Inoltre, un quiz a basso rischio prima di una lezione orienta l'intenzione dello studente verso l'apprendimento di un argomento, mentre un secondo quiz dopo la lezione garantisce una maggiore ritenzione. Questo curriculum è stato progettato per essere flessibile e divertente e può essere seguito interamente o in parte. I progetti iniziano piccoli e diventano sempre più complessi entro la fine del ciclo di 10 settimane.
Inoltre, un quiz a basso rischio prima della lezione orienta lo studente verso l'apprendimento di un argomento, mentre un secondo quiz dopo la lezione garantisce una maggiore ritenzione. Questo curriculum è stato progettato per essere flessibile e divertente e può essere seguito interamente o in parte. I progetti iniziano piccoli e diventano sempre più complessi entro la fine del ciclo di 10 settimane.
> Trova il nostro [Codice di Condotta](CODE_OF_CONDUCT.md), [Contributi](CONTRIBUTING.md), [Linee guida per la traduzione](TRANSLATIONS.md). Accogliamo con favore il tuo feedback costruttivo!
@ -70,38 +86,38 @@ Inoltre, un quiz a basso rischio prima di una lezione orienta l'intenzione dello
- Video supplementare opzionale
- Quiz di riscaldamento pre-lezione
- Lezione scritta
- Per le lezioni basate sui progetti, guide passo-passo su come costruire il progetto
- Per le lezioni basate su progetti, guide passo-passo su come costruire il progetto
> **Una nota sui quiz**: Tutti i quiz sono contenuti nella cartella Quiz-App, per un totale di 40 quiz di tre domande ciascuno. Sono collegati all'interno delle lezioni, ma l'app dei quiz può essere eseguita localmente o distribuita su Azure; segui le istruzioni nella cartella `quiz-app`. Sono gradualmente in fase di localizzazione.
> **Una nota sui quiz**: Tutti i quiz sono contenuti nella cartella Quiz-App, per un totale di 40 quiz di tre domande ciascuno. Sono collegati all'interno delle lezioni, ma l'app dei quiz può essere eseguita localmente o distribuita su Azure; segui le istruzioni nella cartella `quiz-app`. I quiz vengono gradualmente localizzati.
## Lezioni
||
||
|:---:|
| Data Science per Principianti: Roadmap - _Sketchnote di [@nitya](https://twitter.com/nitya)_ |
| Numero Lezione | Argomento | Raggruppamento Lezione | Obiettivi di Apprendimento | Lezione Collegata | Autore |
| 01 | Definire la Data Science | [Introduzione](1-Introduction/README.md) | Impara i concetti di base della data science e come è correlata all'intelligenza artificiale, al machine learning e ai big data. | [lezione](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definire la Data Science | [Introduzione](1-Introduction/README.md) | Imparare i concetti di base della data science e come è correlata all'intelligenza artificiale, al machine learning e ai big data. | [lezione](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etica della Data Science | [Introduzione](1-Introduction/README.md) | Concetti, sfide e framework sull'etica dei dati. | [lezione](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definire i Dati | [Introduzione](1-Introduction/README.md) | Come vengono classificati i dati e le loro fonti comuni. | [lezione](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduzione a Statistica e Probabilità | [Introduzione](1-Introduction/README.md) | Tecniche matematiche di probabilità e statistica per comprendere i dati. | [lezione](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Lavorare con Dati Relazionali | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati relazionali e alle basi dell'esplorazione e analisi dei dati relazionali con il linguaggio SQL (Structured Query Language). | [lezione](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 05 | Lavorare con Dati Relazionali | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati relazionali e alle basi dell'esplorazione e analisi dei dati relazionali con il linguaggio SQL (pronunciato "see-quell"). | [lezione](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Lavorare con Dati NoSQL | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati non relazionali, ai loro vari tipi e alle basi dell'esplorazione e analisi dei database documentali. | [lezione](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Lavorare con Python | [Lavorare con i Dati](2-Working-With-Data/README.md) | Basi dell'uso di Python per l'esplorazione dei dati con librerie come Pandas. È consigliata una comprensione di base della programmazione in Python. | [lezione](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparazione dei Dati | [Lavorare con i Dati](2-Working-With-Data/README.md) | Tecniche sui dati per pulire e trasformare i dati affrontando le sfide di dati mancanti, inaccurati o incompleti. | [lezione](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizzare Quantità | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Impara a usare Matplotlib per visualizzare dati sugli uccelli 🦆 | [lezione](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 08 | Preparazione dei Dati | [Lavorare con i Dati](2-Working-With-Data/README.md) | Tecniche sui dati per pulire e trasformare i dati per affrontare le sfide di dati mancanti, inaccurati o incompleti. | [lezione](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizzare Quantità | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Imparare a usare Matplotlib per visualizzare dati sugli uccelli 🦆 | [lezione](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizzare Distribuzioni di Dati | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Visualizzare osservazioni e tendenze all'interno di un intervallo. | [lezione](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizzare Proporzioni | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Visualizzare percentuali discrete e raggruppate. | [lezione](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizzare Relazioni | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Visualizzare connessioni e correlazioni tra insiemi di dati e le loro variabili. | [lezione](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizzazioni Significative | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Tecniche e linee guida per rendere le tue visualizzazioni utili per una risoluzione efficace dei problemi e per ottenere approfondimenti. | [lezione](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizzazioni Significative | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Tecniche e linee guida per rendere le visualizzazioni utili per una risoluzione efficace dei problemi e per ottenere approfondimenti. | [lezione](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduzione al ciclo di vita della Data Science | [Ciclo di Vita](4-Data-Science-Lifecycle/README.md) | Introduzione al ciclo di vita della data science e al suo primo passo: acquisire ed estrarre dati. | [lezione](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analisi | [Ciclo di Vita](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della data science si concentra sulle tecniche per analizzare i dati. | [lezione](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicazione | [Ciclo di Vita](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della data science si concentra sulla presentazione degli approfondimenti dai dati in modo che sia più facile per i decisori comprendere. | [lezione](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Comunicazione | [Ciclo di Vita](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della data science si concentra sulla presentazione degli approfondimenti dai dati in modo che i decisori possano comprenderli facilmente. | [lezione](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science nel Cloud | [Dati nel Cloud](5-Data-Science-In-Cloud/README.md) | Questa serie di lezioni introduce la data science nel cloud e i suoi vantaggi. | [lezione](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science nel Cloud | [Dati nel Cloud](5-Data-Science-In-Cloud/README.md) | Addestrare modelli usando strumenti Low Code. |[lezione](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science nel Cloud | [Dati nel Cloud](5-Data-Science-In-Cloud/README.md) | Distribuire modelli con Azure Machine Learning Studio. | [lezione](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
@ -112,20 +128,20 @@ Inoltre, un quiz a basso rischio prima di una lezione orienta l'intenzione dello
Segui questi passaggi per aprire questo esempio in un Codespace:
1. Clicca sul menu a discesa "Code" e seleziona l'opzione "Open with Codespaces".
2. Seleziona + New codespace in fondo al pannello.
Per ulteriori informazioni, consulta la [documentazione di GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
Per maggiori informazioni, consulta la [documentazione di GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Segui questi passaggi per aprire questo repository in un container utilizzando la tua macchina locale e VSCode con l'estensione VS Code Remote - Containers:
Segui questi passaggi per aprire questo repository in un container usando la tua macchina locale e VSCode con l'estensione VS Code Remote - Containers:
1. Se è la prima volta che utilizzi un container di sviluppo, assicurati che il tuo sistema soddisfi i prerequisiti (ad esempio, avere Docker installato) nella [documentazione introduttiva](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Per utilizzare questo repository, puoi aprirlo in un volume Docker isolato:
**Nota**: In background, verrà utilizzato il comando Remote-Containers: **Clone Repository in Container Volume...** per clonare il codice sorgente in un volume Docker anziché nel filesystem locale. I [volumi](https://docs.docker.com/storage/volumes/) sono il meccanismo preferito per la persistenza dei dati del container.
**Nota**: In background, verrà utilizzato il comando Remote-Containers: **Clone Repository in Container Volume...** per clonare il codice sorgente in un volume Docker invece che nel file system locale. [I volumi](https://docs.docker.com/storage/volumes/) sono il meccanismo preferito per la persistenza dei dati del container.
Oppure apri una versione clonata o scaricata localmente del repository:
- Clona questo repository nel tuo filesystem locale.
- Clona questo repository nel tuo filesystem locale.
- Premi F1 e seleziona il comando **Remote-Containers: Open Folder in Container...**.
- Seleziona la copia clonata di questa cartella, attendi che il container si avvii e prova le funzionalità.
Il nostro team produce altri curricula! Dai un'occhiata a:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
Il nostro team produce altri curricula! Dai un'occhiata:
- [Edge AI per Principianti](https://aka.ms/edgeai-for-beginners)
- [Agenti AI per Principianti](https://aka.ms/ai-agents-beginners)
- [AI Generativa per Principianti](https://aka.ms/genai-beginners)
- [AI Generativa per Principianti .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [AI Generativa con JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [AI Generativa con Java](https://aka.ms/genaijava)
- [AI per Principianti](https://aka.ms/ai-beginners)
- [Data Science per Principianti](https://aka.ms/datascience-beginners)
- [Bash per Principianti](https://github.com/microsoft/bash-for-beginners)
- [ML per Principianti](https://aka.ms/ml-beginners)
- [Cybersecurity per Principianti](https://github.com/microsoft/Security-101)
- [Sviluppo Web per Principianti](https://aka.ms/webdev-beginners)
- [IoT per Principianti](https://aka.ms/iot-beginners)
- [Machine Learning per Principianti](https://aka.ms/ml-beginners)
- [Sviluppo XR per Principianti](https://aka.ms/xr-dev-for-beginners)
- [Padroneggiare GitHub Copilot per la Programmazione AI in Coppia](https://aka.ms/GitHubCopilotAI)
- [Sviluppo XR per Principianti](https://github.com/microsoft/xr-development-for-beginners)
- [Padroneggiare GitHub Copilot per Sviluppatori C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Scegli la tua Avventura con Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Disclaimer**:
Questo documento è stato tradotto utilizzando il servizio di traduzione AI [Co-op Translator](https://github.com/Azure/co-op-translator). Sebbene ci impegniamo per garantire l'accuratezza, si prega di notare che le traduzioni automatiche possono contenere errori o imprecisioni. Il documento originale nella sua lingua nativa dovrebbe essere considerato la fonte autorevole. Per informazioni critiche, si raccomanda una traduzione professionale effettuata da un esperto umano. Non siamo responsabili per eventuali incomprensioni o interpretazioni errate derivanti dall'uso di questa traduzione.
Azure Cloud Advocates at Microsoftは、データサイエンスに関する10週間、20レッスンのカリキュラムを提供します。各レッスンには、事前・事後のクイズ、レッスンを完了するための手順書、解答例、課題が含まれています。このプロジェクトベースの教育法により、学びながら構築することで、新しいスキルを効果的に身につけることができます。
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
||
[](https://aka.ms/ds4beginners/discord)
現在、AIを使った学習シリーズをDiscordで開催中です。詳細を確認し、[Learn with AI Series](https://aka.ms/learnwithai/discord)に2025年9月18日から30日まで参加してください。GitHub Copilotをデータサイエンスで活用するためのヒントやコツを学べます。
現在、DiscordでAI学習シリーズを開催中です。詳細を確認し、2025年9月18日から30日までの[Learn with AI Series](https://aka.ms/learnwithai/discord)に参加してください。GitHub Copilotを活用したデータサイエンスのヒントやコツを学べます。

@ -38,68 +55,70 @@ Azure Cloud Advocates at Microsoftは、データサイエンスに関する10
||
[](https://aka.ms/foundry/forum)
Microsoft의 Azure Cloud Advocates는 데이터 과학에 관한 10주, 20강의 커리큘럼을 제공합니다. 각 강의는 사전 및 사후 퀴즈, 강의 내용을 완성하기 위한 서면 지침, 솔루션, 과제를 포함합니다. 프로젝트 기반 학습법을 통해 배우면서 실제로 만들어보는 방식은 새로운 기술을 효과적으로 익히는 검증된 방법입니다.
Microsoft의 Azure Cloud Advocates는 데이터 과학에 관한 10주간의 20개 강의 커리큘럼을 제공합니다. 각 강의는 사전 및 사후 퀴즈, 강의 완료를 위한 작성된 지침, 솔루션, 과제를 포함합니다. 프로젝트 기반 학습 방법을 통해 새로운 기술을 효과적으로 익힐 수 있습니다.
||
|:---:|
| 초보자를 위한 데이터 과학 - _[@nitya](https://twitter.com/nitya)의 스케치노트_ |
| 데이터 과학 입문 - _스케치노트 by [@nitya](https://twitter.com/nitya)_ |
**추가 번역 언어를 원하시면 [여기](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)에서 지원 언어 목록을 확인하세요.**
**추가 번역 언어를 지원하고 싶다면 [여기](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)에서 확인하세요.**
#### 커뮤니티에 참여하세요
[](https://aka.ms/ds4beginners/discord)
현재 진행 중인 AI 학습 시리즈에 대해 알아보고 [Learn with AI Series](https://aka.ms/learnwithai/discord)에 참여하세요. 2025년 9월 18일부터 30일까지 진행됩니다. GitHub Copilot을 데이터 과학에 활용하는 팁과 요령을 배울 수 있습니다.
현재 진행 중인 AI 학습 시리즈 Discord에 참여하세요. 자세한 내용을 확인하고 [Learn with AI Series](https://aka.ms/learnwithai/discord)에 참여하세요. 2025년 9월 18일부터 30일까지 GitHub Copilot을 활용한 데이터 과학 팁과 트릭을 배울 수 있습니다.

# 학생이신가요?
다음 리소스를 통해 시작해보세요:
다음 리소스를 통해 시작하세요:
- [학생 허브 페이지](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 이 페이지에서는 초보자를 위한 리소스, 학생 팩, 무료 인증서 바우처를 얻는 방법 등을 찾을 수 있습니다. 이 페이지를 즐겨찾기에 추가하고 정기적으로 확인하세요. 콘텐츠는 최소 월 1회 변경됩니다.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 글로벌 학생 대사 커뮤니티에 참여하세요. Microsoft로의 길이 열릴 수 있습니다.
- [학생 허브 페이지](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 이 페이지에서는 초보자를 위한 리소스, 학생 팩, 무료 인증서 바우처를 얻는 방법 등을 찾을 수 있습니다. 이 페이지를 즐겨찾기에 추가하고 정기적으로 확인하세요. 콘텐츠는 최소 월별로 변경됩니다.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 글로벌 학생 대사 커뮤니티에 가입하세요. Microsoft로의 길이 될 수 있습니다.
# 시작하기
> **교사**: 이 커리큘럼을 활용하는 방법에 대한 [제안 사항](for-teachers.md)을 포함했습니다. [토론 포럼](https://github.com/microsoft/Data-Science-For-Beginners/discussions)에서 피드백을 주시면 감사하겠습니다!
> **교사**: 이 커리큘럼을 활용하는 방법에 대한 [제안](for-teachers.md)을 포함했습니다. [토론 포럼](https://github.com/microsoft/Data-Science-For-Beginners/discussions)에서 피드백을 주시면 감사하겠습니다!
> **[학생](https://aka.ms/student-page)**: 이 커리큘럼을 스스로 사용하려면 전체 저장소를 포크하고 사전 강의 퀴즈부터 시작하여 스스로 연습 문제를 완료하세요. 강의를 읽고 나머지 활동을 완료하세요. 솔루션 코드를 복사하기보다는 강의를 이해하며 프로젝트를 만들어보세요. 하지만 솔루션 코드는 각 프로젝트 기반 강의의 /solutions 폴더에 있습니다. 또 다른 방법은 친구들과 스터디 그룹을 만들어 함께 콘텐츠를 학습하는 것입니다. 추가 학습을 위해 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)을 추천합니다.
> **[학생](https://aka.ms/student-page)**: 이 커리큘럼을 독학으로 사용하려면 전체 저장소를 포크하고 사전 강의 퀴즈부터 시작하여 스스로 연습을 완료하세요. 강의를 읽고 나머지 활동을 완료하세요. 솔루션 코드를 복사하지 않고 강의를 이해하며 프로젝트를 만들어보세요. 하지만 솔루션 코드는 각 프로젝트 기반 강의의 /solutions 폴더에 있습니다. 또 다른 아이디어는 친구들과 스터디 그룹을 만들어 콘텐츠를 함께 학습하는 것입니다. 추가 학습을 위해 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)을 추천합니다.
이 커리큘럼을 설계할 때 두 가지 교육 원칙을 선택했습니다: 프로젝트 기반 학습과 빈번한 퀴즈 포함. 이 시리즈가 끝날 때쯤 학생들은 데이터 과학의 기본 원칙, 윤리적 개념, 데이터 준비, 데이터 작업 방법, 데이터 시각화, 데이터 분석, 데이터 과학의 실제 사례 등을 배우게 됩니다.
이 커리큘럼을 제작할 때 두 가지 교육 원칙을 선택했습니다: 프로젝트 기반 학습과 빈번한 퀴즈 포함. 이 시리즈가 끝날 때 학생들은 데이터 과학의 기본 원칙, 윤리적 개념, 데이터 준비, 데이터 작업 방법, 데이터 시각화, 데이터 분석, 데이터 과학의 실제 사례 등을 배우게 됩니다.
또한, 수업 전 간단한 퀴즈는 학생이 주제 학습에 집중하도록 하고, 수업 후 퀴즈는 학습 내용을 더 잘 기억하도록 돕습니다. 이 커리큘럼은 유연하고 재미있게 설계되었으며, 전체 또는 일부만 학습할 수 있습니다. 프로젝트는 작게 시작하여 10주 과정이 끝날 때쯤 점점 더 복잡해집니다.
또한, 수업 전 간단한 퀴즈는 학생이 주제 학습에 집중하도록 하고, 수업 후 퀴즈는 학습 내용을 더 잘 기억하도록 돕습니다. 이 커리큘럼은 유연하고 재미있게 설계되었으며 전체 또는 일부만 학습할 수 있습니다. 프로젝트는 작게 시작하여 10주 과정이 끝날 때 점점 복잡해집니다.
> **퀴즈에 대한 참고 사항**: 모든 퀴즈는 Quiz-App 폴더에 포함되어 있으며, 각 3문항으로 구성된 총 40개의 퀴즈가 있습니다. 강의 내에서 링크로 연결되어 있지만, 퀴즈 앱은 로컬에서 실행하거나 Azure에 배포할 수 있습니다. `quiz-app` 폴더의 지침을 따르세요. 퀴즈는 점차적으로 현지화되고 있습니다.
> **퀴즈에 대한 참고 사항**: 모든 퀴즈는 Quiz-App 폴더에 포함되어 있으며, 각 퀴즈는 3문제씩 총 40개의 퀴즈로 구성되어 있습니다. 강의 내에서 링크로 연결되어 있지만, 퀴즈 앱은 로컬에서 실행하거나 Azure에 배포할 수 있습니다. `quiz-app` 폴더의 지침을 따르세요. 퀴즈는 점차적으로 현지화되고 있습니다.
## 강의 목록
||
|:---:|
| 데이터 과학 입문: 로드맵 - _[@nitya](https://twitter.com/nitya)의 스케치노트_ |
| 데이터 과학 입문: 로드맵 - _스케치노트 by [@nitya](https://twitter.com/nitya)_ |
| 01 | 데이터 과학 정의하기 | [소개](1-Introduction/README.md) | 데이터 과학의 기본 개념과 인공지능, 머신러닝, 빅데이터와의 관계를 배웁니다. | [강의](1-Introduction/01-defining-data-science/README.md) [영상](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | 데이터 과학 윤리 | [소개](1-Introduction/README.md) | 데이터 윤리의 개념, 도전 과제 및 프레임워크. | [강의](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | 데이터 정의하기 | [소개](1-Introduction/README.md) | 데이터의 분류 방식과 일반적인 출처를 배웁니다. | [강의](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | 통계 및 확률 소개 | [소개](1-Introduction/README.md) | 데이터를 이해하기 위한 확률과 통계의 수학적 기법. | [강의](1-Introduction/04-stats-and-probability/README.md) [영상](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | 관계형 데이터 작업하기 | [데이터 작업](2-Working-With-Data/README.md) | 관계형 데이터 소개 및 SQL(“시퀄”로 발음됨)을 사용하여 관계형 데이터를 탐색하고 분석하는 기본 사항. | [강의](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL 데이터 작업하기 | [데이터 작업](2-Working-With-Data/README.md) | 비관계형 데이터의 다양한 유형과 문서 데이터베이스를 탐색하고 분석하는 기본 사항. | [강의](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python 작업하기 | [데이터 작업](2-Working-With-Data/README.md) | Pandas와 같은 라이브러리를 사용하여 데이터를 탐색하는 Python의 기본 사항. Python 프로그래밍에 대한 기초 이해가 권장됩니다. | [강의](2-Working-With-Data/07-python/README.md) [영상](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | 데이터 준비 | [데이터 작업](2-Working-With-Data/README.md) | 누락되거나 부정확하거나 불완전한 데이터를 처리하기 위한 데이터 정리 및 변환 기술. | [강의](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 02 | 데이터 과학 윤리 | [소개](1-Introduction/README.md) | 데이터 윤리 개념, 도전 과제 및 프레임워크. | [강의](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | 데이터 정의하기 | [소개](1-Introduction/README.md) | 데이터가 어떻게 분류되고 일반적인 출처는 무엇인지 배웁니다. | [강의](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | 통계 및 확률 소개 | [소개](1-Introduction/README.md) | 데이터를 이해하기 위한 확률 및 통계의 수학적 기법. | [강의](1-Introduction/04-stats-and-probability/README.md) [영상](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | 관계형 데이터 작업하기 | [데이터 작업하기](2-Working-With-Data/README.md) | 관계형 데이터 소개 및 SQL(“시퀄”로 발음됨)을 사용하여 관계형 데이터를 탐색하고 분석하는 기본 사항. | [강의](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL 데이터 작업하기 | [데이터 작업하기](2-Working-With-Data/README.md) | 비관계형 데이터 소개, 다양한 유형 및 문서 데이터베이스를 탐색하고 분석하는 기본 사항. | [강의](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python 작업하기 | [데이터 작업하기](2-Working-With-Data/README.md) | Pandas와 같은 라이브러리를 사용하여 데이터를 탐색하는 Python 사용의 기본 사항. Python 프로그래밍에 대한 기초 이해가 권장됩니다. | [강의](2-Working-With-Data/07-python/README.md) [영상](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | 데이터 준비 | [데이터 작업하기](2-Working-With-Data/README.md) | 누락되거나 부정확하거나 불완전한 데이터를 처리하기 위한 데이터 정리 및 변환 기술에 대한 주제. | [강의](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | 수량 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | Matplotlib을 사용하여 새 데이터 🦆를 시각화하는 방법을 배웁니다. | [강의](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | 데이터 분포 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 구간 내 관찰 및 추세를 시각화합니다. | [강의](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | 비율 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 개별 및 그룹화된 백분율을 시각화합니다. | [강의](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | 관계 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 데이터 세트와 변수 간의 연결 및 상관관계를 시각화합니다. | [강의](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | 의미 있는 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 문제 해결 및 통찰력을 효과적으로 제공하기 위해 시각화를 가치 있게 만드는 기술과 지침. | [강의](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | 비율 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 개별 및 그룹화된 비율을 시각화합니다. | [강의](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | 관계 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 데이터 세트와 변수 간의 연결 및 상관관계를 시각화합니다. | [강의](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | 의미 있는 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 효과적인 문제 해결 및 통찰력을 위한 시각화를 가치 있게 만드는 기술과 지침. | [강의](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | 데이터 과학 생애주기 소개 | [생애주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 생애주기와 데이터 획득 및 추출의 첫 번째 단계 소개. | [강의](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | 분석하기 | [생애주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 생애주기의 이 단계는 데이터를 분석하는 기술에 중점을 둡니다. | [강의](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | 커뮤니케이션 | [생애주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 생애주기의 이 단계는 의사 결정자가 데이터를 쉽게 이해할 수 있도록 통찰력을 제시하는 데 중점을 둡니다. | [강의](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 클라우드에서의 데이터 과학과 그 이점을 소개하는 강의 시리즈. | [강의](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 18 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 로우 코드 도구를 사용하여 모델을 훈련합니다. |[강의](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 19 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio를 사용하여 모델을 배포합니다. | [강의](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 20 | 실제 환경에서의 데이터 과학 | [실제 환경](6-Data-Science-In-Wild/README.md) | 실제 환경에서 데이터 과학 기반 프로젝트. | [강의](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | 실제 환경에서의 데이터 과학 | [실제 환경](6-Data-Science-In-Wild/README.md) | 실제 세계에서 데이터 과학 기반 프로젝트. | [강의](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -143,18 +145,20 @@ Codespace에서 이 샘플을 열려면 다음 단계를 따르세요:
- 이 저장소를 로컬 파일 시스템에 복제합니다.
- F1을 누르고 **Remote-Containers: Open Folder in Container...** 명령을 선택합니다.
- 이 폴더의 복제본을 선택하고 컨테이너가 시작될 때까지 기다린 후 테스트를 진행합니다.
- 이 폴더의 복제본을 선택하고 컨테이너가 시작될 때까지 기다린 후 시도해 보세요.
## 오프라인 액세스
[Docsify](https://docsify.js.org/#/)를 사용하여 이 문서를 오프라인으로 실행할 수 있습니다. 이 저장소를 포크하고, 로컬 머신에 [Docsify 설치](https://docsify.js.org/#/quickstart)를 한 후, 이 저장소의 루트 폴더에서 `docsify serve`를 입력하세요. 웹사이트는 localhost의 포트 3000에서 제공됩니다: `localhost:3000`.
> 참고, 노트북은 Docsify를 통해 렌더링되지 않으므로 노트북을 실행해야 할 때는 Python 커널을 실행하는 VS Code에서 별도로 실행하세요.
> 참고: Docsify를 통해 노트북은 렌더링되지 않으므로 노트북을 실행해야 할 때는 Python 커널을 실행하는 VS Code에서 별도로 실행하세요.
## 기타 커리큘럼
우리 팀은 다른 커리큘럼도 제작합니다! 확인해보세요:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -175,3 +179,5 @@ Codespace에서 이 샘플을 열려면 다음 단계를 따르세요:
---
**면책 조항**:
이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있음을 유의하시기 바랍니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.
# Duomenų mokslas pradedantiesiems - Mokymo programa
Azure Cloud Advocates iš Microsoft džiaugiasi galėdami pasiūlyti 10 savaičių, 20 pamokų mokymo programą apie duomenų mokslą. Kiekviena pamoka apima prieš pamoką ir po pamokos pateikiamus testus, rašytines instrukcijas, kaip atlikti pamoką, sprendimą ir užduotį. Mūsų projektinis mokymosi metodas leidžia mokytis kuriant, o tai yra patikrintas būdas įsisavinti naujus įgūdžius.
Azure Cloud Advocates iš Microsoft džiaugiasi galėdami pasiūlyti 10 savaičių, 20 pamokų mokymo programą apie duomenų mokslą. Kiekviena pamoka apima prieš pamoką ir po pamokos testus, rašytines instrukcijas, kaip atlikti pamoką, sprendimą ir užduotį. Mūsų projektinis mokymosi metodas leidžia mokytis kuriant, o tai yra įrodytas būdas įsisavinti naujus įgūdžius.
> **Mokytojai**: mes [įtraukėme keletą pasiūlymų](for-teachers.md), kaip naudoti šią mokymo programą. Laukiame jūsų atsiliepimų [mūsų diskusijų forume](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studentai](https://aka.ms/student-page)**: norėdami naudoti šią mokymo programą savarankiškai, nukopijuokite visą repozitoriją ir atlikite užduotis savarankiškai, pradėdami nuo prieš pamoką pateikiamo testo. Tada perskaitykite pamoką ir atlikite likusias veiklas. Stenkitės kurti projektus suprasdami pamokas, o ne kopijuodami sprendimo kodą; tačiau tas kodas yra prieinamas /solutions aplankuose kiekvienoje projektinėje pamokoje. Kita idėja būtų suformuoti mokymosi grupę su draugais ir kartu peržiūrėti turinį. Tolimesniam mokymuisi rekomenduojame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studentai](https://aka.ms/student-page)**: norėdami naudoti šią mokymo programą savarankiškai, nukopijuokite visą repozitoriją ir atlikite užduotis savarankiškai, pradėdami nuo prieš pamoką testo. Tada perskaitykite pamoką ir atlikite likusias veiklas. Stenkitės kurti projektus suprasdami pamokas, o ne kopijuodami sprendimo kodą; tačiau tas kodas yra prieinamas /solutions aplankuose kiekvienoje projektinėje pamokoje. Kita idėja būtų suformuoti mokymosi grupę su draugais ir kartu peržiūrėti turinį. Tolimesniam mokymuisi rekomenduojame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Susipažinkite su komanda
@ -58,9 +58,9 @@ Pradėkite nuo šių išteklių:
## Pedagogika
Kuriant šią mokymo programą, pasirinkome du pedagoginius principus: užtikrinti, kad ji būtų projektinė, ir įtraukti dažnus testus. Iki šios serijos pabaigos studentai išmoks pagrindinius duomenų mokslo principus, įskaitant etikos koncepcijas, duomenų paruošimą, skirtingus darbo su duomenimis būdus, duomenų vizualizaciją, duomenų analizę, realaus pasaulio duomenų mokslo panaudojimo atvejus ir dar daugiau.
Kuriant šią mokymo programą, mes pasirinkome du pedagoginius principus: užtikrinti, kad ji būtų projektinė, ir įtraukti dažnus testus. Iki šios serijos pabaigos studentai išmoks pagrindinius duomenų mokslo principus, įskaitant etikos koncepcijas, duomenų paruošimą, įvairius darbo su duomenimis būdus, duomenų vizualizaciją, duomenų analizę, realaus pasaulio duomenų mokslo panaudojimo atvejus ir daugiau.
Be to, mažos rizikos testas prieš pamoką nukreipia studentą mokytis temos, o antrasis testas po pamokos užtikrina geresnį įsisavinimą. Ši mokymo programa buvo sukurta taip, kad būtų lanksti ir įdomi, ją galima naudoti visą arba dalimis. Projektai prasideda nuo mažų ir tampa vis sudėtingesni iki 10 savaičių ciklo pabaigos.
Be to, mažos rizikos testas prieš pamoką nustato studento ketinimą mokytis temos, o antrasis testas po pamokos užtikrina geresnį įsisavinimą. Ši mokymo programa buvo sukurta taip, kad būtų lanksti ir įdomi, ją galima naudoti visą arba dalimis. Projektai prasideda nuo mažų ir tampa vis sudėtingesni iki 10 savaičių ciklo pabaigos.
> **Pastaba apie testus**: Visi testai yra Quiz-App aplanke, iš viso 40 testų po tris klausimus kiekviename. Jie yra susieti iš pamokų, tačiau testų programėlę galima paleisti lokaliai arba įdiegti Azure; sekite instrukcijas `quiz-app` aplanke. Jie palaipsniui lokalizuojami.
> **Pastaba apie testus**: Visi testai yra Quiz-App aplanke, iš viso 40 testų po tris klausimus kiekviename. Jie yra susieti iš pamokų, tačiau testų programėlę galima paleisti vietoje arba įdiegti Azure; sekite instrukcijas `quiz-app` aplanke. Jie palaipsniui lokalizuojami.
## Pamokos
||
|:---:|
| Duomenų mokslas pradedantiesiems: Kelio žemėlapis - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Duomenų mokslas pradedantiesiems: kelio planas - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Pamokos numeris | Tema | Pamokų grupavimas | Mokymosi tikslai | Susieta pamoka | Autorius |
| 01 | Duomenų mokslo apibrėžimas | [Įvadas](1-Introduction/README.md) | Sužinokite pagrindines duomenų mokslo sąvokas ir kaip jis susijęs su dirbtiniu intelektu, mašininio mokymosi ir didžiųjų duomenų sritimis. | [pamoka](1-Introduction/01-defining-data-science/README.md) [vaizdo įrašas](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Duomenų mokslo apibrėžimas | [Įvadas](1-Introduction/README.md) | Sužinokite pagrindines duomenų mokslo sąvokas ir kaip jis susijęs su dirbtiniu intelektu, mašininio mokymosi ir didžiųjų duomenų technologijomis. | [pamoka](1-Introduction/01-defining-data-science/README.md) [vaizdo įrašas](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Duomenų mokslo etika | [Įvadas](1-Introduction/README.md) | Duomenų etikos sąvokos, iššūkiai ir struktūros. | [pamoka](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Duomenų apibrėžimas | [Įvadas](1-Introduction/README.md) | Kaip klasifikuojami duomenys ir kokie yra jų dažniausi šaltiniai. | [pamoka](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Įvadas į statistiką ir tikimybes | [Įvadas](1-Introduction/README.md) | Matematiniai tikimybių ir statistikos metodai, skirti duomenų supratimui. | [pamoka](1-Introduction/04-stats-and-probability/README.md) [vaizdo įrašas](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
@ -94,14 +94,14 @@ Be to, mažos rizikos testas prieš pamoką nukreipia studentą mokytis temos, o
| 06 | Darbas su NoSQL duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į nereliacinius duomenis, jų įvairius tipus ir pagrindai, kaip tyrinėti ir analizuoti dokumentų duomenų bazes. | [pamoka](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Darbas su Python | [Darbas su duomenimis](2-Working-With-Data/README.md) | Python naudojimo pagrindai duomenų tyrinėjimui su tokiomis bibliotekomis kaip Pandas. Rekomenduojama turėti pagrindinį Python programavimo supratimą. | [pamoka](2-Working-With-Data/07-python/README.md) [vaizdo įrašas](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Duomenų paruošimas | [Darbas su duomenimis](2-Working-With-Data/README.md) | Temos apie duomenų valymo ir transformavimo technikas, skirtas spręsti trūkstamų, netikslių ar neišsamių duomenų problemas. | [pamoka](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Kiekio vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Sužinokite, kaip naudoti Matplotlib vizualizuojant paukščių duomenis 🦆 | [pamoka](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Duomenų pasiskirstymo vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuoti stebėjimus ir tendencijas intervale. | [pamoka](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Ryšių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuoti ryšius ir koreliacijas tarp duomenų rinkinių ir jų kintamųjų. | [pamoka](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 09 | Kiekių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Sužinokite, kaip naudoti Matplotlib vizualizuojant paukščių duomenis 🦆 | [pamoka](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Duomenų pasiskirstymo vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuojant stebėjimus ir tendencijas intervale. | [pamoka](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Ryšių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuojant ryšius ir koreliacijas tarp duomenų rinkinių ir jų kintamųjų. | [pamoka](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Reikšmingos vizualizacijos | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Technikos ir gairės, kaip padaryti vizualizacijas vertingas efektyviam problemų sprendimui ir įžvalgoms. | [pamoka](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Įvadas į duomenų mokslo gyvavimo ciklą | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Įvadas į duomenų mokslo gyvavimo ciklą ir pirmąjį jo etapą – duomenų gavimą ir ištrauką. | [pamoka](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analizavimas | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Ši duomenų mokslo gyvavimo ciklo fazė orientuota į duomenų analizės technikas. | [pamoka](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacija | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Ši duomenų mokslo gyvavimo ciklo fazė orientuota į įžvalgų pateikimą iš duomenų taip, kad sprendimų priėmėjams būtų lengviau suprasti. | [pamoka](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 15 | Analizavimas | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Šis duomenų mokslo gyvavimo ciklo etapas yra skirtas duomenų analizės technikoms. | [pamoka](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacija | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Šis duomenų mokslo gyvavimo ciklo etapas yra skirtas duomenų įžvalgų pateikimui taip, kad sprendimų priėmėjams būtų lengviau suprasti. | [pamoka](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Ši pamokų serija pristato duomenų mokslą debesyje ir jo privalumus. | [pamoka](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
| 18 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Modelių mokymas naudojant mažo kodo įrankius. |[pamoka](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
| 19 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Modelių diegimas naudojant Azure Machine Learning Studio. | [pamoka](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
@ -110,20 +110,20 @@ Be to, mažos rizikos testas prieš pamoką nukreipia studentą mokytis temos, o
## GitHub Codespaces
Sekite šiuos žingsnius, kad atidarytumėte šį pavyzdį Codespace aplinkoje:
1. Spustelėkite Code išskleidžiamąjį meniu ir pasirinkite Open with Codespaces parinktį.
2. Pasirinkite + New codespace apačioje.
1. Spustelėkite meniu „Code“ ir pasirinkite „Open with Codespaces“ parinktį.
2. Pasirinkite + Naujas Codespace apačioje.
Daugiau informacijos rasite [GitHub dokumentacijoje](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sekite šiuos žingsnius, kad atidarytumėte šį repo konteineryje naudodami savo vietinį kompiuterį ir VSCode su VS Code Remote - Containers plėtiniu:
1. Jei pirmą kartą naudojate vystymo konteinerį, įsitikinkite, kad jūsų sistema atitinka reikalavimus (pvz., įdiegta Docker) [pradžios dokumentacijoje](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Jei pirmą kartą naudojate kūrimo konteinerį, įsitikinkite, kad jūsų sistema atitinka reikalavimus (pvz., įdiegta Docker) [pradžios dokumentacijoje](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Norėdami naudoti šį repo, galite jį atidaryti izoliuotame Docker tūryje:
**Pastaba**: Viduje tai naudos Remote-Containers: **Clone Repository in Container Volume...** komandą, kad nukopijuotų šaltinio kodą į Docker tūrį, o ne vietinį failų sistemą. [Tūriai](https://docs.docker.com/storage/volumes/) yra rekomenduojamas mechanizmas konteinerio duomenims išsaugoti.
**Pastaba**: Viduje tai naudos Remote-Containers: **Clone Repository in Container Volume...** komandą, kad nukopijuotų šaltinio kodą į Docker tūrį, o ne vietinę failų sistemą. [Tūriai](https://docs.docker.com/storage/volumes/) yra rekomenduojamas mechanizmas konteinerio duomenims išsaugoti.
Arba atidarykite vietoje nukopijuotą ar atsisiųstą repo versiją:
Arba atidarykite vietinę nukopijuotą ar atsisiųstą repo versiją:
- Nukopijuokite šį repo į savo vietinę failų sistemą.
- Paspauskite F1 ir pasirinkite **Remote-Containers: Open Folder in Container...** komandą.
@ -137,8 +137,10 @@ Arba atidarykite vietoje nukopijuotą ar atsisiųstą repo versiją:
## Kiti mokymo kursai
Mūsų komanda kuria ir kitus mokymo kursus! Peržiūrėkite:
Mūsų komanda kuria kitus mokymo kursus! Peržiūrėkite:
- [Edge AI pradedantiesiems](https://aka.ms/edgeai-for-beginners)
- [Pasirink savo Copilot nuotykį](https://github.com/microsoft/CopilotAdventures)
- [GitHub Copilot valdymas C#/.NET kūrėjams](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Pasirinkite savo Copilot nuotykį](https://github.com/microsoft/CopilotAdventures)
---
**Atsakomybės atsisakymas**:
Šis dokumentas buvo išverstas naudojant AI vertimo paslaugą [Co-op Translator](https://github.com/Azure/co-op-translator). Nors stengiamės užtikrinti tikslumą, prašome atkreipti dėmesį, kad automatiniai vertimai gali turėti klaidų ar netikslumų. Originalus dokumentas jo gimtąja kalba turėtų būti laikomas autoritetingu šaltiniu. Kritinei informacijai rekomenduojama naudoti profesionalų žmogaus vertimą. Mes neprisiimame atsakomybės už nesusipratimus ar neteisingus interpretavimus, atsiradusius dėl šio vertimo naudojimo.
[](https://aka.ms/foundry/forum)
Microsoft 的 Azure Cloud Advocates 很高興提供一個為期 10 週、共 20 節課的數據科學課程。每節課都包含課前和課後測驗、完成課程的書面指導、解決方案以及作業。我們的基於項目的教學法讓您在實踐中學習,這是一種能讓新技能牢牢掌握的有效方法。
||
Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा, 20 धड्यांचा अभ्यासक्रम सादर करण्यात येत आहे, जो पूर्णपणे डेटा सायन्सवर आधारित आहे. प्रत्येक धड्यात प्री-लेसन आणि पोस्ट-लेसन क्विझ, धडा पूर्ण करण्यासाठी लेखी सूचना, समाधान आणि असाइनमेंट समाविष्ट आहे. प्रोजेक्ट-आधारित शिक्षण पद्धतीमुळे तुम्हाला शिकताना तयार करण्याची संधी मिळते, ज्यामुळे नवीन कौशल्ये अधिक चांगल्या प्रकारे आत्मसात होतात.
Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा, 20 धड्यांचा अभ्यासक्रम डेटा सायन्सबद्दल सादर करण्यात येत आहे. प्रत्येक धड्यात प्री-लेसन आणि पोस्ट-लेसन क्विझ, धडा पूर्ण करण्यासाठी लेखी सूचना, समाधान आणि असाइनमेंट समाविष्ट आहे. प्रोजेक्ट-आधारित शिक्षण पद्धतीमुळे तुम्हाला शिकताना तयार करण्याची संधी मिळते, ज्यामुळे नवीन कौशल्ये अधिक चांगल्या प्रकारे आत्मसात होतात.
@ -30,7 +30,7 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
#### आमच्या समुदायात सामील व्हा
[](https://aka.ms/ds4beginners/discord)
आमच्याकडे AI सह शिकण्याची Discord मालिका चालू आहे, अधिक जाणून घ्या आणि [Learn with AI Series](https://aka.ms/learnwithai/discord) मध्ये 18 - 30 सप्टेंबर, 2025 दरम्यान सामील व्हा. तुम्हाला GitHub Copilot डेटा सायन्ससाठी वापरण्याचे टिप्स आणि ट्रिक्स मिळतील.
आमच्याकडे Discord वर AI शिकण्याची मालिका सुरू आहे, अधिक जाणून घ्या आणि [Learn with AI Series](https://aka.ms/learnwithai/discord) मध्ये 18 - 30 सप्टेंबर, 2025 दरम्यान सामील व्हा. तुम्हाला GitHub Copilot डेटा सायन्ससाठी वापरण्याचे टिप्स आणि ट्रिक्स मिळतील.

@ -43,7 +43,7 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
# सुरुवात कशी करावी
> **शिक्षक:** आम्ही [काही सूचना समाविष्ट केल्या आहेत](for-teachers.md) की हा अभ्यासक्रम कसा वापरायचा. आम्हाला तुमचे अभिप्राय [आमच्या चर्चा मंचावर](https://github.com/microsoft/Data-Science-For-Beginners/discussions) आवडेल!
> **शिक्षक:** आम्ही [काही सूचना समाविष्ट केल्या आहेत](for-teachers.md) या अभ्यासक्रमाचा उपयोग कसा करावा याबद्दल. आम्हाला तुमचे अभिप्राय [आमच्या चर्चा मंचावर](https://github.com/microsoft/Data-Science-For-Beginners/discussions) आवडेल!
> **[विद्यार्थी](https://aka.ms/student-page):** स्वतः हा अभ्यासक्रम वापरण्यासाठी, संपूर्ण रेपो फोर्क करा आणि स्वतःच व्यायाम पूर्ण करा, प्री-लेक्चर क्विझपासून सुरुवात करा. नंतर लेक्चर वाचा आणि उर्वरित क्रियाकलाप पूर्ण करा. धड्यांमधून समजून प्रोजेक्ट तयार करण्याचा प्रयत्न करा, समाधान कोड कॉपी करण्याऐवजी; तथापि, तो कोड प्रत्येक प्रोजेक्ट-आधारित धड्याच्या /solutions फोल्डरमध्ये उपलब्ध आहे. आणखी एक कल्पना म्हणजे मित्रांसोबत अभ्यास गट तयार करणे आणि एकत्र सामग्रीचा अभ्यास करणे. पुढील अभ्यासासाठी, आम्ही [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ची शिफारस करतो.
@ -53,15 +53,15 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
> 🎥 वरील प्रतिमेवर क्लिक करा प्रकल्पाबद्दल आणि ते तयार करणाऱ्या लोकांबद्दल व्हिडिओ पाहण्यासाठी!
> 🎥 वरच्या प्रतिमेवर क्लिक करा प्रकल्पाबद्दल आणि ते तयार करणाऱ्या लोकांबद्दल व्हिडिओ पाहण्यासाठी!
## शिक्षण पद्धती
आम्ही हा अभ्यासक्रम तयार करताना दोन शिक्षण पद्धती निवडल्या आहेत: प्रोजेक्ट-आधारित शिक्षण सुनिश्चित करणे आणि वारंवार क्विझ समाविष्ट करणे. या मालिकेच्या शेवटी, विद्यार्थ्यांनी डेटा सायन्सचे मूलभूत तत्त्वे शिकलेली असतील, ज्यामध्ये नैतिक संकल्पना, डेटा तयारी, डेटा हाताळण्याचे विविध मार्ग, डेटा व्हिज्युअलायझेशन, डेटा विश्लेषण, डेटा सायन्सचे वास्तविक-जगातील उपयोग आणि बरेच काही समाविष्ट आहे.
आम्ही हा अभ्यासक्रम तयार करताना दोन शिक्षण पद्धती स्वीकारल्या आहेत: प्रोजेक्ट-आधारित शिक्षण सुनिश्चित करणे आणि वारंवार क्विझ समाविष्ट करणे. या मालिकेच्या शेवटी, विद्यार्थ्यांनी डेटा सायन्सचे मूलभूत तत्त्वे शिकलेली असतील, ज्यामध्ये नैतिक संकल्पना, डेटा तयारी, डेटा हाताळण्याचे विविध मार्ग, डेटा व्हिज्युअलायझेशन, डेटा विश्लेषण, डेटा सायन्सचे वास्तविक जीवनातील उपयोग आणि बरेच काही समाविष्ट आहे.
याशिवाय, वर्गाच्या आधी कमी-जोखीम क्विझ विद्यार्थ्याला विषय शिकण्याच्या उद्देशाने तयार करते, तर वर्गानंतर दुसरी क्विझ अधिक चांगल्या प्रकारे माहिती टिकवून ठेवण्यास मदत करते. हा अभ्यासक्रम लवचिक आणि मजेदार बनवण्यासाठी डिझाइन केला गेला आहे आणि तो संपूर्ण किंवा अंशतः घेतला जाऊ शकतो. प्रोजेक्ट्स लहान सुरू होतात आणि 10 आठवड्यांच्या चक्राच्या शेवटी अधिकाधिक जटिल होतात.
याशिवाय, वर्गाच्या आधीचा कमी ताणाचा क्विझ विद्यार्थ्याला विषय शिकण्याच्या उद्देशाने तयार करतो, तर वर्गानंतरचा दुसरा क्विझ अधिक चांगल्या प्रकारे माहिती टिकवून ठेवण्यास मदत करतो. हा अभ्यासक्रम लवचिक आणि मजेदार बनवण्यासाठी डिझाइन केला गेला आहे आणि तो संपूर्ण किंवा अंशतः घेतला जाऊ शकतो. प्रोजेक्ट्स लहान स्वरूपात सुरू होतात आणि 10 आठवड्यांच्या चक्राच्या शेवटी अधिकाधिक जटिल होतात.
> आमचा [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) मार्गदर्शक शोधा. आम्ही तुमचा रचनात्मक अभिप्राय स्वागत करतो!
> आमचा [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) मार्गदर्शक शोधा. आम्ही तुमच्या रचनात्मक अभिप्रायांचे स्वागत करतो!
## प्रत्येक धड्यात समाविष्ट आहे:
@ -76,7 +76,7 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
> **क्विझबद्दल एक टीप:** सर्व क्विझ Quiz-App फोल्डरमध्ये समाविष्ट आहेत, प्रत्येक तीन प्रश्नांसाठी 40 एकूण क्विझ. ते धड्यांमधून लिंक केलेले आहेत, परंतु क्विझ अॅप स्थानिक पातळीवर चालवले जाऊ शकते किंवा Azure वर तैनात केले जाऊ शकते; `quiz-app` फोल्डरमधील सूचनांचे अनुसरण करा. ते हळूहळू स्थानिक भाषांमध्ये अनुवादित केले जात आहेत.
> **क्विझबद्दल एक टीप:** सर्व क्विझ Quiz-App फोल्डरमध्ये समाविष्ट आहेत, प्रत्येक तीन प्रश्नांसाठी 40 एकूण क्विझ. ते धड्यांमधून लिंक केलेले आहेत, परंतु क्विझ अॅप स्थानिक पातळीवर चालवले जाऊ शकते किंवा Azure वर तैनात केले जाऊ शकते; `quiz-app` फोल्डरमधील सूचनांचे अनुसरण करा. ते हळूहळू स्थानिक भाषांमध्ये अनुवादित केले जात आहेत.
## धडे
||
@ -85,22 +85,22 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
| धडा क्रमांक | विषय | धड्याचे गट | शिकण्याचे उद्दिष्ट | संबंधित धडा | लेखक |
| 01 | डेटा सायन्सची व्याख्या | [परिचय](1-Introduction/README.md) | डेटा सायन्सचे मूलभूत संकल्पना आणि त्याचा कृत्रिम बुद्धिमत्ता, मशीन लर्निंग आणि बिग डेटा यांच्याशी असलेला संबंध शिकणे. | [धडा](1-Introduction/01-defining-data-science/README.md) [व्हिडिओ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | डेटा सायन्सची व्याख्या | [परिचय](1-Introduction/README.md) | डेटा सायन्सचे मूलभूत संकल्पना आणि त्याचा कृत्रिम बुद्धिमत्ता, मशीन लर्निंग आणि बिग डेटा यांच्याशी संबंध कसा आहे हे जाणून घ्या. | [धडा](1-Introduction/01-defining-data-science/README.md) [व्हिडिओ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | डेटाची व्याख्या | [परिचय](1-Introduction/README.md) | डेटा कसा वर्गीकृत केला जातो आणि त्याचे सामान्य स्रोत काय आहेत. | [धडा](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | सांख्यिकी आणि संभाव्यतेची ओळख | [परिचय](1-Introduction/README.md) | डेटा समजण्यासाठी संभाव्यता आणि सांख्यिकीचे गणितीय तंत्र. | [धडा](1-Introduction/04-stats-and-probability/README.md) [व्हिडिओ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | रिलेशनल डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | रिलेशनल डेटाची ओळख आणि स्ट्रक्चर्ड क्वेरी लँग्वेज (SQL) वापरून रिलेशनल डेटा एक्सप्लोर आणि विश्लेषण करण्याचे मूलभूत तत्त्व. | [धडा](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | नॉन-रिलेशनल डेटाची ओळख, त्याचे विविध प्रकार आणि डॉक्युमेंट डेटाबेस एक्सप्लोर आणि विश्लेषण करण्याचे मूलभूत तत्त्व. | [धडा](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | पायथनसह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | Pandas सारख्या लायब्ररीसह डेटा एक्सप्लोरेशनसाठी पायथन वापरण्याचे मूलभूत तत्त्व. पायथन प्रोग्रामिंगचे मूलभूत ज्ञान शिफारसीय आहे. | [धडा](2-Working-With-Data/07-python/README.md) [व्हिडिओ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटासह काम करणे](2-Working-With-Data/README.md) | डेटा साफसफाई आणि रूपांतर करण्यासाठी तंत्रज्ञान, तसेच हरवलेला, अचूक नसलेला किंवा अपूर्ण डेटा हाताळण्याचे तंत्र. | [धडा](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 05 | रिलेशनल डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | रिलेशनल डेटाची ओळख आणि स्ट्रक्चर्ड क्वेरी लँग्वेज (SQL) वापरून रिलेशनल डेटा एक्सप्लोर आणि विश्लेषण करण्याच्या मूलभूत गोष्टी. | [धडा](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | नॉन-रिलेशनल डेटाची ओळख, त्याचे विविध प्रकार आणि डॉक्युमेंट डेटाबेस एक्सप्लोर आणि विश्लेषण करण्याच्या मूलभूत गोष्टी. | [धडा](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | पायथनसह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | Pandas सारख्या लायब्ररीसह डेटा एक्सप्लोरेशनसाठी पायथन वापरण्याच्या मूलभूत गोष्टी. पायथन प्रोग्रामिंगची मूलभूत समज आवश्यक आहे. | [धडा](2-Working-With-Data/07-python/README.md) [व्हिडिओ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटासह काम करणे](2-Working-With-Data/README.md) | डेटा साफसफाई आणि रूपांतर करण्याच्या तंत्रांवरील विषय, ज्यामुळे हरवलेला, अचूक नसलेला किंवा अपूर्ण डेटा हाताळता येतो. | [धडा](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | प्रमाणांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | Matplotlib वापरून पक्ष्यांचा डेटा 🦆 व्हिज्युअलायझेशन कसे करावे ते शिका. | [धडा](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | अर्थपूर्ण व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | प्रभावी समस्या सोडवण्यासाठी आणि अंतर्दृष्टीसाठी व्हिज्युअलायझेशन मूल्यवान बनवण्याचे तंत्र आणि मार्गदर्शन. | [धडा](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | संबंधांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | डेटा संच आणि त्याच्या व्हेरिएबल्समधील कनेक्शन आणि सहसंबंध व्हिज्युअलायझेशन. | [धडा](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | अर्थपूर्ण व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | प्रभावी समस्या सोडवण्यासाठी आणि अंतर्दृष्टीसाठी तुमच्या व्हिज्युअलायझेशनला मूल्यवान बनवण्यासाठी तंत्र आणि मार्गदर्शन. | [धडा](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | डेटा सायन्स जीवनचक्राची ओळख | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राची ओळख आणि डेटा मिळवणे आणि काढणे याची पहिली पायरी. | [धडा](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा विश्लेषणाच्या तंत्रांवर लक्ष केंद्रित करतो. | [धडा](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | संवाद | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा अंतर्दृष्टी निर्णय घेणाऱ्यांना समजण्यास सोपे बनवण्यासाठी सादर करण्यावर लक्ष केंद्रित करतो. | [धडा](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 15 | विश्लेषण करणे | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा विश्लेषण करण्याच्या तंत्रांवर केंद्रित आहे. | [धडा](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | संवाद | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा मधून मिळालेल्या अंतर्दृष्टी निर्णय घेणाऱ्यांना समजण्यास सोपे होईल अशा प्रकारे सादर करण्यावर केंद्रित आहे. | [धडा](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमधील डेटा सायन्स आणि त्याचे फायदे याची ओळख करून देणाऱ्या धड्यांची मालिका. | [धडा](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) आणि [Maud](https://twitter.com/maudstweets) |
| 18 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स वापरून मॉडेल्स प्रशिक्षण. |[धडा](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) आणि [Maud](https://twitter.com/maudstweets) |
| 19 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio वापरून मॉडेल्स तैनात करणे. | [धडा](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) आणि [Maud](https://twitter.com/maudstweets) |
@ -108,29 +108,29 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
## GitHub Codespaces
या नमुन्याला Codespace मध्ये उघडण्यासाठी खालील चरणांचे अनुसरण करा:
Codespace मध्ये हे नमुना उघडण्यासाठी खालील चरणांचे अनुसरण करा:
1. कोड ड्रॉप-डाउन मेनूवर क्लिक करा आणि Open with Codespaces पर्याय निवडा.
2. पॅनच्या तळाशी + New codespace निवडा.
अधिक माहितीसाठी, [GitHub दस्तऐवज](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) तपासा.
## VSCode Remote - Containers
आपल्या स्थानिक मशीन आणि VSCode वापरून कंटेनरमध्ये हे रिपो उघडण्यासाठी खालील चरणांचे अनुसरण करा, VS Code Remote - Containers विस्तार वापरून:
VSCode Remote - Containers विस्तार वापरून तुमच्या स्थानिक मशीनवर आणि VSCode मध्ये कंटेनरमध्ये हे रिपो उघडण्यासाठी खालील चरणांचे अनुसरण करा:
1. जर तुम्ही प्रथमच विकास कंटेनर वापरत असाल, तर कृपया सुनिश्चित करा की तुमची प्रणाली पूर्व-आवश्यकता पूर्ण करते (उदा. Docker स्थापित केले आहे) [सुरुवातीच्या दस्तऐवजामध्ये](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. जर तुम्ही प्रथमच विकास कंटेनर वापरत असाल, तर कृपया तुमची प्रणाली प्री-रेक्विझिट्स पूर्ण करते याची खात्री करा (उदा. [गेटिंग स्टार्टेड डॉक्युमेंटेशन](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मध्ये Docker स्थापित केले आहे).
या रिपॉझिटरीचा वापर करण्यासाठी, तुम्ही या रिपॉझिटरीला वेगळ्या Docker व्हॉल्यूममध्ये उघडू शकता:
हे रिपॉझिटरी वापरण्यासाठी, तुम्ही रिपॉझिटरीला वेगळ्या Docker व्हॉल्यूममध्ये उघडू शकता:
**टीप**: अंतर्गत, हे Remote-Containers: **Clone Repository in Container Volume...** कमांड वापरेल जेणेकरून स्थानिक फाइल सिस्टमऐवजी Docker व्हॉल्यूममध्ये स्त्रोत कोड क्लोन केला जाईल. [व्हॉल्यूम्स](https://docs.docker.com/storage/volumes/) कंटेनर डेटा टिकवण्यासाठी प्राधान्य दिलेले यंत्रणा आहेत.
**टीप**: अंतर्गत, हे Remote-Containers: **Clone Repository in Container Volume...** कमांड वापरेल जेणेकरून स्थानिक फाइल सिस्टमऐवजी Docker व्हॉल्यूममध्ये स्रोत कोड क्लोन केला जाईल. [व्हॉल्यूम्स](https://docs.docker.com/storage/volumes/) कंटेनर डेटा टिकवण्यासाठी प्राधान्य दिलेले यंत्र आहे.
किंवा स्थानिकपणे क्लोन केलेल्या किंवा डाउनलोड केलेल्या रिपॉझिटरीची आवृत्ती उघडा:
- ही रिपॉझिटरी तुमच्या स्थानिक फाइल सिस्टमवर क्लोन करा.
- या रिपॉझिटरीला तुमच्या स्थानिक फाइल सिस्टमवर क्लोन करा.
- F1 दाबा आणि **Remote-Containers: Open Folder in Container...** कमांड निवडा.
- या फोल्डरची क्लोन केलेली प्रत निवडा, कंटेनर सुरू होण्याची वाट पाहा आणि गोष्टी वापरून पहा.
## ऑफलाइन प्रवेश
[Docsify](https://docsify.js.org/#/) वापरून तुम्ही ही दस्तऐवज ऑफलाइन चालवू शकता. ही रिपॉझिटरी फोर्क करा, [Docsify स्थापित करा](https://docsify.js.org/#/quickstart) तुमच्या स्थानिक मशीनवर, नंतर या रिपॉझिटरीच्या मूळ फोल्डरमध्ये `docsify serve` टाइप करा. वेबसाइट तुमच्या लोकलहोस्टवर पोर्ट 3000 वर चालवली जाईल: `localhost:3000`.
[Docsify](https://docsify.js.org/#/) वापरून तुम्ही हे दस्तऐवज ऑफलाइन चालवू शकता. या रिपॉझिटरीला फोर्क करा, तुमच्या स्थानिक मशीनवर [Docsify स्थापित करा](https://docsify.js.org/#/quickstart), नंतर या रिपॉझिटरीच्या मूळ फोल्डरमध्ये `docsify serve` टाइप करा. वेबसाइट तुमच्या लोकलहोस्टवर पोर्ट 3000 वर चालवली जाईल: `localhost:3000`.
> टीप, नोटबुक्स Docsify द्वारे प्रस्तुत केले जाणार नाहीत, त्यामुळे तुम्हाला नोटबुक चालवायचे असल्यास, ते वेगळ्या पायथन कर्नल चालवणाऱ्या VS Code मध्ये करा.
@ -138,23 +138,27 @@ Azure Cloud Advocates, Microsoft कडून 10 आठवड्यांचा,
आमची टीम इतर अभ्यासक्रम तयार करते! तपासा:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [एज AI फॉर बिगिनर्स](https://aka.ms/edgeai-for-beginners)
हा दस्तऐवज AI भाषांतर सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) चा वापर करून भाषांतरित करण्यात आला आहे. आम्ही अचूकतेसाठी प्रयत्नशील असलो तरी कृपया लक्षात ठेवा की स्वयंचलित भाषांतरे त्रुटी किंवा अचूकतेच्या अभावाने युक्त असू शकतात. मूळ भाषेतील दस्तऐवज हा अधिकृत स्रोत मानला जावा. महत्त्वाच्या माहितीसाठी व्यावसायिक मानवी भाषांतराची शिफारस केली जाते. या भाषांतराचा वापर करून उद्भवलेल्या कोणत्याही गैरसमज किंवा चुकीच्या अर्थासाठी आम्ही जबाबदार राहणार नाही.
[](https://aka.ms/foundry/forum)
Penasihat Awan Azure di Microsoft dengan sukacitanya menawarkan kurikulum 10 minggu, 20 pelajaran tentang Sains Data. Setiap pelajaran termasuk kuiz sebelum dan selepas pelajaran, arahan bertulis untuk melengkapkan pelajaran, penyelesaian, dan tugasan. Pedagogi berasaskan projek kami membolehkan anda belajar sambil membina, satu cara yang terbukti untuk kemahiran baru 'melekat'.
Azure Cloud Advocates di Microsoft dengan sukacitanya menawarkan kurikulum 10 minggu, 20 pelajaran tentang Sains Data. Setiap pelajaran termasuk kuiz sebelum dan selepas pelajaran, arahan bertulis untuk melengkapkan pelajaran, penyelesaian, dan tugasan. Pedagogi berasaskan projek kami membolehkan anda belajar sambil membina, cara yang terbukti untuk kemahiran baharu 'melekat'.
**Terima kasih yang tulus kepada penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
||
@ -47,22 +47,22 @@ Penasihat Awan Azure di Microsoft dengan sukacitanya menawarkan kurikulum 10 min
#### Sertai Komuniti Kami
[](https://aka.ms/ds4beginners/discord)
Kami sedang mengadakan siri pembelajaran dengan AI di Discord, ketahui lebih lanjut dan sertai kami di [Siri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapat tip dan trik menggunakan GitHub Copilot untuk Sains Data.
Kami sedang menjalankan siri pembelajaran dengan AI di Discord, ketahui lebih lanjut dan sertai kami di [Siri Pembelajaran dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapat tip dan trik menggunakan GitHub Copilot untuk Sains Data.


# Adakah anda seorang pelajar?
Mulakan dengan sumber berikut:
- [Halaman Hab Pelajar](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, anda akan menemui sumber untuk pemula, pek pelajar dan juga cara untuk mendapatkan baucar sijil percuma. Ini adalah halaman yang anda ingin tandai dan periksa dari semasa ke semasa kerana kami menukar kandungan sekurang-kurangnya setiap bulan.
- [Halaman Hab Pelajar](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, anda akan menemui sumber untuk pemula, pakej pelajar dan juga cara untuk mendapatkan baucar sijil percuma. Ini adalah satu halaman yang patut anda tandai dan periksa dari semasa ke semasa kerana kami menukar kandungan sekurang-kurangnya setiap bulan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sertai komuniti global duta pelajar, ini boleh menjadi jalan anda ke Microsoft.
# Memulakan
> **Guru**: kami telah [menyertakan beberapa cadangan](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami menghargai maklum balas anda [di forum perbincangan kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara sendiri, fork keseluruhan repo dan lengkapkan latihan secara sendiri, bermula dengan kuiz pra-kuliah. Kemudian baca kuliah dan lengkapkan aktiviti lain. Cuba buat projek dengan memahami pelajaran daripada menyalin kod penyelesaian; walau bagaimanapun, kod tersebut tersedia dalam folder /solutions dalam setiap pelajaran berorientasikan projek. Idea lain adalah untuk membentuk kumpulan belajar dengan rakan-rakan dan melalui kandungan bersama-sama. Untuk kajian lanjut, kami mengesyorkan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara individu, fork keseluruhan repo dan lengkapkan latihan secara sendiri, bermula dengan kuiz pra-kuliah. Kemudian baca kuliah dan lengkapkan aktiviti lain. Cuba buat projek dengan memahami pelajaran daripada menyalin kod penyelesaian; walau bagaimanapun, kod tersebut tersedia dalam folder /solutions dalam setiap pelajaran berorientasikan projek. Idea lain adalah membentuk kumpulan belajar dengan rakan-rakan dan melalui kandungan bersama-sama. Untuk kajian lanjut, kami mengesyorkan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> 🎥 Klik imej di atas untuk video tentang projek dan orang-orang yang menciptanya!
> 🎥 Klik imej di atas untuk video tentang projek dan orang yang menciptanya!
## Pedagogi
Kami telah memilih dua prinsip pedagogi semasa membina kurikulum ini: memastikan ia berasaskan projek dan termasuk kuiz yang kerap. Menjelang akhir siri ini, pelajar akan mempelajari prinsip asas sains data, termasuk konsep etika, penyediaan data, pelbagai cara bekerja dengan data, visualisasi data, analisis data, kes penggunaan dunia sebenar sains data, dan banyak lagi.
Selain itu, kuiz berisiko rendah sebelum kelas menetapkan niat pelajar untuk mempelajari topik, manakala kuiz kedua selepas kelas memastikan pengekalan lebih lanjut. Kurikulum ini direka untuk fleksibel dan menyeronokkan dan boleh diambil secara keseluruhan atau sebahagian. Projek bermula kecil dan menjadi semakin kompleks menjelang akhir kitaran 10 minggu.
Selain itu, kuiz berisiko rendah sebelum kelas menetapkan niat pelajar untuk mempelajari topik, manakala kuiz kedua selepas kelas memastikan pengekalan lanjut. Kurikulum ini direka untuk fleksibel dan menyeronokkan dan boleh diambil secara keseluruhan atau sebahagian. Projek bermula kecil dan menjadi semakin kompleks menjelang akhir kitaran 10 minggu.
> Cari [Kod Etika](CODE_OF_CONDUCT.md), [Menyumbang](CONTRIBUTING.md), [Garis Panduan Terjemahan](TRANSLATIONS.md). Kami mengalu-alukan maklum balas membina anda!
@ -93,31 +93,31 @@ Selain itu, kuiz berisiko rendah sebelum kelas menetapkan niat pelajar untuk mem
- Tugasan
- [Kuiz selepas pelajaran](https://ff-quizzes.netlify.app/en/)
> **Nota tentang kuiz**: Semua kuiz terkandung dalam folder Quiz-App, untuk sejumlah 40 kuiz dengan tiga soalan setiap satu. Ia dipautkan dari dalam pelajaran, tetapi aplikasi kuiz boleh dijalankan secara tempatan atau dikerahkan ke Azure; ikuti arahan dalam folder `quiz-app`. Ia sedang dilokalkan secara beransur-ansur.
> **Nota tentang kuiz**: Semua kuiz terdapat dalam folder Quiz-App, untuk sejumlah 40 kuiz dengan tiga soalan setiap satu. Ia dipautkan dari dalam pelajaran, tetapi aplikasi kuiz boleh dijalankan secara tempatan atau dideploy ke Azure; ikuti arahan dalam folder `quiz-app`. Ia sedang dilokalkan secara beransur-ansur.
## Pelajaran
||
|:---:|
| Data Science Untuk Pemula: Peta Jalan - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Nombor Pelajaran | Topik | Kumpulan Pelajaran | Objektif Pembelajaran | Pelajaran Berkaitan | Penulis |
| Nombor Pelajaran | Topik | Kumpulan Pelajaran | Objektif Pembelajaran | Pelajaran Berkaitan | Pengarang |
| 01 | Mendefinisikan Sains Data | [Pengenalan](1-Introduction/README.md) | Belajar konsep asas di sebalik sains data dan bagaimana ia berkaitan dengan kecerdasan buatan, pembelajaran mesin, dan data besar. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | Mendefinisikan Data | [Pengenalan](1-Introduction/README.md) | Bagaimana data diklasifikasikan dan sumber-sumber umumnya. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Pengenalan kepada Statistik & Kebarangkalian | [Pengenalan](1-Introduction/README.md) | Teknik matematik kebarangkalian dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Bekerja dengan Data Relasi | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data relasi dan asas penerokaan serta analisis data relasi menggunakan Structured Query Language, juga dikenali sebagai SQL (disebut “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 05 | Bekerja dengan Data Relasi | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data relasi dan asas penerokaan serta analisis data relasi dengan Structured Query Language, juga dikenali sebagai SQL (disebut “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data bukan relasi, pelbagai jenisnya, dan asas penerokaan serta analisis pangkalan data dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Bekerja dengan Python | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Asas menggunakan Python untuk penerokaan data dengan pustaka seperti Pandas. Pemahaman asas tentang pengaturcaraan Python disarankan. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Penyediaan Data | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Topik tentang teknik data untuk membersihkan dan mengubah data bagi menangani cabaran data yang hilang, tidak tepat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Memvisualkan Kuantiti | [Visualisasi Data](3-Data-Visualization/README.md) | Belajar cara menggunakan Matplotlib untuk memvisualkan data burung 🦆 | [pelajaran](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Memvisualkan Taburan Data | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualkan pemerhatian dan trend dalam satu selang. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Memvisualkan Taburan Data | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualkan pemerhatian dan tren dalam satu interval. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Memvisualkan Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualkan hubungan dan korelasi antara set data dan pemboleh ubahnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisasi Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk menjadikan visualisasi anda bernilai bagi penyelesaian masalah dan mendapatkan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisasi Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk menjadikan visualisasi anda bernilai bagi penyelesaian masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Pengenalan kepada Kitaran Hayat Sains Data | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Pengenalan kepada kitaran hayat sains data dan langkah pertama untuk memperoleh serta mengekstrak data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Menganalisis | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa ini dalam kitaran hayat sains data memberi tumpuan kepada teknik untuk menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasi | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa ini dalam kitaran hayat sains data memberi tumpuan kepada menyampaikan wawasan daripada data dengan cara yang memudahkan pembuat keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 15 | Menganalisis | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa ini dalam kitaran hayat sains data memberi fokus kepada teknik untuk menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasi | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa ini dalam kitaran hayat sains data memberi fokus kepada menyampaikan wawasan dari data dengan cara yang memudahkan pembuat keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Siri pelajaran ini memperkenalkan sains data di awan dan manfaatnya. | [pelajaran](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 18 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Melatih model menggunakan alat Low Code. |[pelajaran](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 19 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Menyebarkan model dengan Azure Machine Learning Studio. | [pelajaran](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
@ -125,7 +125,7 @@ Selain itu, kuiz berisiko rendah sebelum kelas menetapkan niat pelajar untuk mem
## GitHub Codespaces
Ikuti langkah-langkah ini untuk membuka sampel ini dalam Codespace:
Ikuti langkah-langkah ini untuk membuka contoh ini dalam Codespace:
1. Klik menu drop-down Code dan pilih pilihan Open with Codespaces.
2. Pilih + New codespace di bahagian bawah panel.
Untuk maklumat lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
@ -133,7 +133,7 @@ Untuk maklumat lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/cod
## VSCode Remote - Containers
Ikuti langkah-langkah ini untuk membuka repo ini dalam kontena menggunakan mesin tempatan anda dan VSCode dengan sambungan VS Code Remote - Containers:
1. Jika ini kali pertama anda menggunakan kontena pembangunan, pastikan sistem anda memenuhi prasyarat (iaitu mempunyai Docker dipasang) dalam [dokumentasi permulaan](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Jika ini kali pertama anda menggunakan kontena pembangunan, pastikan sistem anda memenuhi prasyarat (contohnya, mempunyai Docker dipasang) dalam [dokumentasi memulakan](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Untuk menggunakan repositori ini, anda boleh membukanya dalam volume Docker yang terasing:
@ -143,30 +143,32 @@ Atau buka versi repositori yang telah diklon atau dimuat turun secara tempatan:
- Klon repositori ini ke sistem fail tempatan anda.
- Tekan F1 dan pilih arahan **Remote-Containers: Open Folder in Container...**.
- Pilih salinan yang telah diklon folder ini, tunggu kontena dimulakan, dan cuba perkara-perkara.
- Pilih salinan yang telah diklon folder ini, tunggu kontena untuk dimulakan, dan cuba perkara-perkara.
## Akses Luar Talian
Anda boleh menjalankan dokumentasi ini secara luar talian dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repo ini, [pasang Docsify](https://docsify.js.org/#/quickstart) pada mesin tempatan anda, kemudian di folder root repo ini, taip `docsify serve`. Laman web akan disediakan pada port 3000 di localhost anda: `localhost:3000`.
> Nota, notebook tidak akan dipaparkan melalui Docsify, jadi apabila anda perlu menjalankan notebook, lakukan secara berasingan dalam VS Code yang menjalankan kernel Python.
> Nota, notebook tidak akan dirender melalui Docsify, jadi apabila anda perlu menjalankan notebook, lakukan secara berasingan dalam VS Code yang menjalankan kernel Python.
## Kurikulum Lain
Pasukan kami menghasilkan kurikulum lain! Lihat:
- [Edge AI untuk Pemula](https://aka.ms/edgeai-for-beginners)
- [AI Agents untuk Pemula](https://aka.ms/ai-agents-beginners)
- [Generative AI untuk Pemula](https://aka.ms/genai-beginners)
- [Generative AI untuk Pemula .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI dengan JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI dengan Java](https://aka.ms/genaijava)
- [AI untuk Pemula](https://aka.ms/ai-beginners)
- [Sains Data untuk Pemula](https://aka.ms/datascience-beginners)
- [Data Science untuk Pemula](https://aka.ms/datascience-beginners)
- [Bash untuk Pemula](https://github.com/microsoft/bash-for-beginners)
- [ML untuk Pemula](https://aka.ms/ml-beginners)
- [Keselamatan Siber untuk Pemula](https://github.com/microsoft/Security-101)
- [Pembangunan Web untuk Pemula](https://aka.ms/webdev-beginners)
- [Web Dev untuk Pemula](https://aka.ms/webdev-beginners)
- [IoT untuk Pemula](https://aka.ms/iot-beginners)
- [Pembelajaran Mesin untuk Pemula](https://aka.ms/ml-beginners)
- [Machine Learning untuk Pemula](https://aka.ms/ml-beginners)
- [Pembangunan XR untuk Pemula](https://aka.ms/xr-dev-for-beginners)
- [Menguasai GitHub Copilot untuk Pengaturcaraan Berpasangan AI](https://aka.ms/GitHubCopilotAI)
- [Pembangunan XR untuk Pemula](https://github.com/microsoft/xr-development-for-beginners)
@ -175,3 +177,5 @@ Pasukan kami menghasilkan kurikulum lain! Lihat:
---
**Penafian**:
Dokumen ini telah diterjemahkan menggunakan perkhidmatan terjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Walaupun kami berusaha untuk memastikan ketepatan, sila ambil perhatian bahawa terjemahan automatik mungkin mengandungi kesilapan atau ketidaktepatan. Dokumen asal dalam bahasa asalnya harus dianggap sebagai sumber yang berwibawa. Untuk maklumat yang kritikal, terjemahan manusia profesional adalah disyorkan. Kami tidak bertanggungjawab atas sebarang salah faham atau salah tafsir yang timbul daripada penggunaan terjemahan ini.
[](https://aka.ms/foundry/forum)
||
|:---:|
| ဒေတာသိပ္ပံအတွက် အခြေခံသင်ခန်းစာ - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
||
|:---:|
| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
# डेटा साइन्सका लागि शुरुवातकर्ताहरू - एक पाठ्यक्रम
# डेटा साइन्सका लागि शुरुवातकर्ता - पाठ्यक्रम
Azure Cloud Advocates मा Microsoftले डेटा साइन्सको बारेमा १० हप्ताको, २० पाठको पाठ्यक्रम प्रस्तुत गर्न पाउँदा खुशी छ। प्रत्येक पाठमा प्रि-पाठ र पोस्ट-पाठ क्विजहरू, पाठ पूरा गर्नका लागि लेखिएको निर्देशन, समाधान, र असाइनमेन्ट समावेश छ। हाम्रो परियोजना-आधारित शिक्षण विधिले तपाईंलाई निर्माण गर्दै सिक्न अनुमति दिन्छ, नयाँ सीपहरू 'टिक्न' को लागि प्रमाणित तरिका।
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Microsoft का Azure Cloud Advocates ले १० हप्ताको, २० पाठहरूको पाठ्यक्रम प्रदान गर्न पाउँदा खुशी छन्, जुन डेटा साइन्सको बारेमा छ। प्रत्येक पाठमा पाठ अघि र पाठ पछि क्विजहरू, पाठ पूरा गर्नका लागि लिखित निर्देशनहरू, समाधान, र असाइनमेन्ट समावेश छ। हाम्रो परियोजना-आधारित शिक्षण विधिले तपाईंलाई निर्माण गर्दै सिक्न अनुमति दिन्छ, नयाँ सीपहरू 'टिक्न' को लागि प्रमाणित तरिका।
||
|:---:|
| डेटा साइन्सका लागि शुरुवातकर्ताहरू - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| डेटा साइन्सका लागि शुरुवातकर्ता - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
**यदि तपाईं थप भाषाहरूको अनुवाद चाहनुहुन्छ भने यहाँ सूचीबद्ध छन् [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**यदि तपाईं थप अनुवाद चाहनुहुन्छ भने यहाँ सूचीबद्ध भाषाहरू समर्थित छन् [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### हाम्रो समुदायमा सामेल हुनुहोस्
[](https://aka.ms/ds4beginners/discord)
हामीसँग AI सिक्ने शृंखला चलिरहेको छ, थप जान्न र हामीसँग सामेल हुन [Learn with AI Series](https://aka.ms/learnwithai/discord) मा १८ - ३० सेप्टेम्बर, २०२५। तपाईंले GitHub Copilot प्रयोग गर्ने टिप्स र ट्रिक्स पाउनुहुनेछ।
हामीसँग AI सिक्ने शृंखला चलिरहेको छ, थप जान्न र सामेल हुन [Learn with AI Series](https://aka.ms/learnwithai/discord) मा जानुहोस् १८ - ३० सेप्टेम्बर, २०२५। तपाईंले GitHub Copilot लाई डेटा साइन्सका लागि प्रयोग गर्ने टिप्स र ट्रिक्स पाउनुहुनेछ।

- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) यस पृष्ठमा, तपाईंले शुरुवातकर्ताहरूका स्रोतहरू, विद्यार्थी प्याकहरू र नि:शुल्क प्रमाणपत्र भौचर प्राप्त गर्ने तरिकाहरू पाउनुहुनेछ। यो एक पृष्ठ हो जुन तपाईंले बुकमार्क गर्न चाहनुहुन्छ र समय-समयमा जाँच गर्नुहोस् किनकि हामी कम्तीमा मासिक सामग्री परिवर्तन गर्छौं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) एक विश्वव्यापी विद्यार्थी राजदूतहरूको समुदायमा सामेल हुनुहोस्, यो Microsoftमा तपाईंको प्रवेशको बाटो हुन सक्छ।
- [Student Hub पृष्ठ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) यस पृष्ठमा, तपाईंले शुरुवातकर्ता स्रोतहरू, विद्यार्थी प्याकहरू र नि:शुल्क प्रमाणपत्र भौचर प्राप्त गर्ने तरिकाहरू पाउनुहुनेछ। यो पृष्ठलाई बुकमार्क गर्नुहोस् र समय-समयमा जाँच गर्नुहोस् किनकि हामी कम्तीमा मासिक सामग्री परिवर्तन गर्छौं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) विद्यार्थी राजदूतहरूको विश्वव्यापी समुदायमा सामेल हुनुहोस्, यो Microsoft मा तपाईंको प्रवेशद्वार हुन सक्छ।
# सुरु गर्दै
> **शिक्षकहरू**: हामीले [केही सुझावहरू समावेश गरेका छौं](for-teachers.md) यो पाठ्यक्रम कसरी प्रयोग गर्ने। हामी तपाईंको प्रतिक्रिया [हाम्रो छलफल फोरममा](https://github.com/microsoft/Data-Science-For-Beginners/discussions) चाहन्छौं!
> **शिक्षकहरू**: हामीले [केही सुझावहरू समावेश गरेका छौं](for-teachers.md) यो पाठ्यक्रम कसरी प्रयोग गर्ने। कृपया हाम्रो [चर्चा फोरममा](https://github.com/microsoft/Data-Science-For-Beginners/discussions) तपाईंको प्रतिक्रिया दिनुहोस्!
> **[विद्यार्थीहरू](https://aka.ms/student-page)**: यो पाठ्यक्रम आफैं प्रयोग गर्न, सम्पूर्ण रिपोजिटरीलाई फोर्क गर्नुहोस् र आफैं अभ्यासहरू पूरा गर्नुहोस्, प्रि-लेक्चर क्विजबाट सुरु गर्दै। त्यसपछि लेक्चर पढ्नुहोस् र बाँकी गतिविधिहरू पूरा गर्नुहोस्। पाठहरू बुझेर परियोजनाहरू सिर्जना गर्ने प्रयास गर्नुहोस् समाधान कोड प्रतिलिपि नगरी; यद्यपि, त्यो कोड प्रत्येक परियोजना-उन्मुख पाठको /solutions फोल्डरहरूमा उपलब्ध छ। अर्को विचार भनेको साथीहरूसँग अध्ययन समूह बनाउनुहोस् र सामग्री सँगै जानुहोस्। थप अध्ययनको लागि, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) सिफारिस गर्छौं।
> **[विद्यार्थीहरू](https://aka.ms/student-page)**: यो पाठ्यक्रमलाई आफैं प्रयोग गर्न, सम्पूर्ण रिपोजिटरीलाई फोर्क गर्नुहोस् र आफैं अभ्यासहरू पूरा गर्नुहोस्, प्रि-लेक्चर क्विजबाट सुरु गर्दै। त्यसपछि लेक्चर पढ्नुहोस् र बाँकी गतिविधिहरू पूरा गर्नुहोस्। पाठहरू बुझेर परियोजनाहरू सिर्जना गर्ने प्रयास गर्नुहोस् समाधान कोडलाई नक्कल नगरी; यद्यपि, त्यो कोड प्रत्येक परियोजना-उन्मुख पाठको /solutions फोल्डरहरूमा उपलब्ध छ। अर्को विचार भनेको साथीहरूसँग अध्ययन समूह बनाउनुहोस् र सामग्री सँगै जानुहोस्। थप अध्ययनको लागि, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) सिफारिस गर्छौं।
> 🎥 माथिको छवि क्लिक गर्नुहोस् परियोजनाको बारेमा भिडियोका लागि र यसलाई सिर्जना गर्ने व्यक्तिहरूका लागि!
## शिक्षण विधि
हामीले यो पाठ्यक्रम निर्माण गर्दा दुई शिक्षण सिद्धान्तहरू रोजेका छौं: सुनिश्चित गर्नु कि यो परियोजना-आधारित छ र यसमा बारम्बार क्विजहरू समावेश छन्। यस शृंखलाको अन्त्यसम्ममा, विद्यार्थीहरूले डेटा साइन्सका आधारभूत सिद्धान्तहरू सिकेका हुनेछन्, जसमा नैतिक अवधारणाहरू, डेटा तयारी, डेटा काम गर्ने विभिन्न तरिकाहरू, डेटा दृश्यता, डेटा विश्लेषण, डेटा साइन्सका वास्तविक-विश्व प्रयोगहरू, र अन्य धेरै समावेश छन्।
हामीले यो पाठ्यक्रम निर्माण गर्दा दुई शिक्षण सिद्धान्तहरू रोजेका छौं: सुनिश्चित गर्नु कि यो परियोजना-आधारित हो र यसमा बारम्बार क्विजहरू समावेश छन्। यो शृंखला समाप्त हुँदा, विद्यार्थीहरूले डेटा साइन्सका आधारभूत सिद्धान्तहरू सिकेका हुनेछन्, जसमा नैतिक अवधारणाहरू, डेटा तयारी, डेटा काम गर्ने विभिन्न तरिकाहरू, डेटा दृश्यता, डेटा विश्लेषण, डेटा साइन्सका वास्तविक-विश्व प्रयोगहरू, र थप समावेश छन्।
त्यसका साथै, कक्षाको अगाडि कम-जोखिमको क्विजले विद्यार्थीलाई विषय सिक्नको लागि ध्यान केन्द्रित गराउँछ, जबकि कक्षापछि दोस्रो क्विजले थप स्मरण सुनिश्चित गर्दछ। यो पाठ्यक्रम लचिलो र रमाइलो बनाउन डिजाइन गरिएको हो र पूर्ण वा आंशिक रूपमा लिन सकिन्छ। परियोजनाहरू साना सुरु हुन्छन् र १० हप्ताको चक्रको अन्त्यसम्ममा क्रमशः जटिल बन्छन्।
यसका साथै, कक्षाको अगाडि कम-जोखिमको क्विजले विद्यार्थीलाई विषय सिक्न प्रेरित गर्छ, जबकि कक्षापछि दोस्रो क्विजले थप स्मरण सुनिश्चित गर्छ। यो पाठ्यक्रम लचिलो र रमाइलो बनाउन डिजाइन गरिएको हो र पूर्ण वा आंशिक रूपमा लिन सकिन्छ। परियोजनाहरू साना सुरु हुन्छन् र १० हप्ताको चक्रको अन्त्यसम्ममा क्रमशः जटिल बन्छन्।
> हाम्रो [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) दिशानिर्देशहरू फेला पार्नुहोस्। हामी तपाईंको रचनात्मक प्रतिक्रिया स्वागत गर्दछौं!
> हाम्रो [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) दिशानिर्देशहरू फेला पार्नुहोस्। हामी तपाईंको रचनात्मक प्रतिक्रिया स्वागत गर्छौं!
## प्रत्येक पाठमा समावेश छ:
- वैकल्पिक स्केच नोट
- वैकल्पिक पूरक भिडियो
- प्रि-पाठ वार्मअप क्विज
- लेखिएको पाठ
- परियोजना-आधारित पाठहरूको लागि, परियोजना कसरी निर्माण गर्ने चरण-दर-चरण मार्गदर्शन
- पाठ अघि वार्मअप क्विज
- लिखित पाठ
- परियोजना-आधारित पाठहरूको लागि, परियोजना निर्माण गर्ने चरण-दर-चरण मार्गदर्शन
- [पाठ पछि क्विज](https://ff-quizzes.netlify.app/en/)
> **क्विजहरूको बारेमा नोट**: सबै क्विजहरू Quiz-App फोल्डरमा समावेश छन्, कुल ४० क्विजहरू तीन प्रश्नहरू सहित। तिनीहरू पाठहरू भित्रबाट लिंक गरिएका छन्, तर क्विज एपलाई स्थानीय रूपमा चलाउन वा Azureमा तैनाथ गर्न सकिन्छ; `quiz-app` फोल्डरमा निर्देशनहरू पालना गर्नुहोस्। तिनीहरू क्रमशः स्थानीयकरण हुँदैछन्।
> **क्विजहरूको बारेमा नोट**: सबै क्विजहरू Quiz-App फोल्डरमा समावेश छन्, प्रत्येकमा तीन प्रश्नका ४० कुल क्विजहरू। तिनीहरू पाठभित्र लिंक गरिएका छन्, तर क्विज एपलाई स्थानीय रूपमा चलाउन वा Azure मा तैनात गर्न सकिन्छ; `quiz-app` फोल्डरमा निर्देशनहरू पालना गर्नुहोस्। तिनीहरू क्रमशः स्थानीयकरण हुँदैछन्।
## पाठहरू
||
|:---:|
| डेटा साइन्सको लागि शुरुआती: रोडम्याप - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| डेटा साइन्सको लागि शुरुआती: रोडम्याप - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
| पाठ संख्या | विषय | पाठ समूह | सिक्ने उद्देश्यहरू | लिंक गरिएको पाठ | लेखक |
| 03 | डेटा परिभाषा | [परिचय](1-Introduction/README.md) | डेटा कसरी वर्गीकृत गरिन्छ र यसको सामान्य स्रोतहरू। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | तथ्यांक र सम्भावनाको परिचय | [परिचय](1-Introduction/README.md) | डेटा बुझ्नको लागि सम्भावना र तथ्यांकको गणितीय प्रविधिहरू। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [भिडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | सम्बन्धित डेटा संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | सम्बन्धित डेटा र SQL (सिक्वेल) प्रयोग गरेर डेटा अन्वेषण र विश्लेषणको आधारभूत कुराहरूको परिचय। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | गैर-सम्बन्धित डेटा, यसको विभिन्न प्रकारहरू र डकुमेन्ट डाटाबेसहरूको अन्वेषण र विश्लेषणको आधारभूत कुराहरूको परिचय। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | Pandas जस्ता पुस्तकालयहरू प्रयोग गरेर डेटा अन्वेषणको लागि Python प्रयोग गर्ने आधारभूत कुराहरू। Python प्रोग्रामिङको आधारभूत ज्ञान सिफारिस गरिन्छ। | [पाठ](2-Working-With-Data/07-python/README.md) [भिडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | हराएको, गलत, वा अपूर्ण डेटा समाधान गर्न सफा गर्ने र रूपान्तरण गर्ने प्रविधिहरू। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | मात्राहरूको दृश्यात्मकता | [डेटा दृश्यात्मकता](3-Data-Visualization/README.md) | Matplotlib प्रयोग गरेर चरा डेटा 🦆 दृश्यात्मकता सिक्नुहोस्। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 05 | सम्बन्धित डेटा संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | सम्बन्धित डेटा र SQL (सी-क्वेल) को प्रयोग गरेर डेटा अन्वेषण र विश्लेषणको आधारभूत कुराहरूको परिचय। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | गैर-सम्बन्धित डेटा, यसको विभिन्न प्रकारहरू र दस्तावेज डेटाबेसहरूको अन्वेषण र विश्लेषणको आधारभूत कुराहरूको परिचय। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | Pandas जस्ता पुस्तकालयहरूको प्रयोग गरेर डेटा अन्वेषणको लागि Python प्रयोग गर्ने आधारभूत कुराहरू। Python प्रोग्रामिङको आधारभूत ज्ञान सिफारिस गरिन्छ। | [पाठ](2-Working-With-Data/07-python/README.md) [भिडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | हराएको, गलत, वा अपूर्ण डेटा सामना गर्न सफा गर्ने र रूपान्तरण गर्ने प्रविधिहरू। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | मात्राहरूको दृश्यात्मकता | [डेटा दृश्यात्मकता](3-Data-Visualization/README.md) | Matplotlib प्रयोग गरेर चरा डेटा 🦆 दृश्यात्मकता गर्न सिक्नुहोस्। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 16 | सञ्चार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा बाट प्राप्त अन्तर्दृष्टिहरू निर्णयकर्ताहरूलाई बुझ्न सजिलो बनाउने तरिकामा प्रस्तुत गर्ने जीवनचक्रको यो चरण। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइन्स जीवनचक्रको यो चरण डेटा विश्लेषण गर्ने प्रविधिहरूमा केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | सञ्चार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइन्स जीवनचक्रको यो चरण डेटा बाट प्राप्त अन्तर्दृष्टिहरू निर्णयकर्ताहरूलाई बुझ्न सजिलो बनाउने तरिकामा प्रस्तुत गर्न केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउडमा डेटा साइन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमा डेटा साइन्स र यसको फाइदाहरूको परिचय दिने पाठहरूको श्रृंखला। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
| 18 | क्लाउडमा डेटा साइन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड उपकरणहरू प्रयोग गरेर मोडेलहरू प्रशिक्षण। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
| 19 | क्लाउडमा डेटा साइन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio प्रयोग गरेर मोडेलहरू तैनात गर्ने। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
तपाईंको स्थानीय मेसिन र VSCode प्रयोग गरेर यो रिपोजिटरीलाई कन्टेनरमा खोल्न निम्न चरणहरू पालना गर्नुहोस्:
1. यदि यो पहिलो पटक विकास कन्टेनर प्रयोग गर्दै हुनुहुन्छ भने, कृपया सुनिश्चित गर्नुहोस् कि तपाईंको प्रणालीले पूर्व-आवश्यकताहरू पूरा गरेको छ (जस्तै Docker स्थापना गरिएको छ) [शुरुआत दस्तावेज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मा।
1. यदि यो पहिलो पटक विकास कन्टेनर प्रयोग गर्दै हुनुहुन्छ भने, कृपया सुनिश्चित गर्नुहोस् कि तपाईंको प्रणालीले पूर्व-आवश्यकताहरू पूरा गरेको छ (जस्तै Docker स्थापना गरिएको छ) [शुरुआती दस्तावेज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मा।
यो रिपोजिटरी प्रयोग गर्न, तपाईं यसलाई अलग Docker भोल्युममा खोल्न सक्नुहुन्छ:
**नोट**: यसले Remote-Containers: **Clone Repository in Container Volume...** आदेश प्रयोग गरेर स्रोत कोडलाई स्थानीय फाइल प्रणालीको सट्टा Docker भोल्युममा क्लोन गर्नेछ। [Volumes](https://docs.docker.com/storage/volumes/) कन्टेनर डेटा कायम राख्नको लागि प्राथमिक विधि हो।
**नोट**: यसले Remote-Containers: **Clone Repository in Container Volume...** आदेश प्रयोग गरेर स्रोत कोडलाई स्थानीय फाइल प्रणालीको सट्टा Docker भोल्युममा क्लोन गर्नेछ। [Volumes](https://docs.docker.com/storage/volumes/) कन्टेनर डेटा कायम राख्नको लागि प्राथमिक मेकानिज्म हो।
वा स्थानीय रूपमा क्लोन गरिएको वा डाउनलोड गरिएको संस्करण खोल्नुहोस्:
तपाईं [Docsify](https://docsify.js.org/#/) प्रयोग गरेर यो दस्तावेज अफलाइन चलाउन सक्नुहुन्छ। यो रिपोजिटरीलाई Fork गर्नुहोस्, [Docsify स्थापना गर्नुहोस्](https://docsify.js.org/#/quickstart) तपाईंको स्थानीय मेसिनमा, त्यसपछि यो रिपोजिटरीको मूल फोल्डरमा `docsify serve` टाइप गर्नुहोस्। वेबसाइट तपाईंको localhost मा पोर्ट 3000 मा सेवा हुनेछ: `localhost:3000`।
तपाईं [Docsify](https://docsify.js.org/#/) प्रयोग गरेर यो दस्तावेज अफलाइन चलाउन सक्नुहुन्छ। यो रिपोजिटरीलाई Fork गर्नुहोस्, [Docsify स्थापना गर्नुहोस्](https://docsify.js.org/#/quickstart) तपाईंको स्थानीय मेसिनमा, त्यसपछि यो रिपोजिटरीको मूल फोल्डरमा `docsify serve` टाइप गर्नुहोस्। वेबसाइट तपाईंको localhost मा पोर्ट 3000 मा सेवा गरिनेछ: `localhost:3000`।
> नोट, नोटबुकहरू Docsify मार्फत प्रस्तुत गरिने छैनन्, त्यसैले जब तपाईंलाई नोटबुक चलाउन आवश्यक छ, Python कर्नेल चलाउँदै VS Code मा अलग्गै गर्नुहोस्।
यो दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) प्रयोग गरेर अनुवाद गरिएको हो। हामी यथासम्भव शुद्धता सुनिश्चित गर्न प्रयास गर्छौं, तर कृपया ध्यान दिनुहोस् कि स्वचालित अनुवादमा त्रुटिहरू वा अशुद्धताहरू हुन सक्छ। मूल दस्तावेज़ यसको मातृभाषामा आधिकारिक स्रोत मानिनुपर्छ। महत्वपूर्ण जानकारीको लागि, व्यावसायिक मानव अनुवाद सिफारिस गरिन्छ। यस अनुवादको प्रयोगबाट उत्पन्न हुने कुनै पनि गलतफहमी वा गलत व्याख्याको लागि हामी जिम्मेवार हुने छैनौं।
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates bij Microsoft bieden met trots een 10-weekse, 20-lessen curriculum aan over Data Science. Elke les bevat quizzen vooraf en achteraf, geschreven instructies om de les te voltooien, een oplossing en een opdracht. Onze projectgerichte aanpak stelt je in staat om te leren terwijl je bouwt, een bewezen methode om nieuwe vaardigheden te laten beklijven.
Azure Cloud Advocates bij Microsoft bieden met plezier een 10-weekse, 20-lessen curriculum aan over Data Science. Elke les bevat een quiz vooraf en achteraf, geschreven instructies om de les te voltooien, een oplossing en een opdracht. Onze projectgerichte aanpak stelt je in staat om te leren terwijl je bouwt, een bewezen methode om nieuwe vaardigheden te laten beklijven.
@ -55,7 +55,7 @@ We hebben een doorlopende Discord-serie over leren met AI, leer meer en doe mee
Begin met de volgende bronnen:
- [Student Hub pagina](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Op deze pagina vind je bronnen voor beginners, studentpakketten en zelfs manieren om een gratis certificaatvoucher te krijgen. Dit is een pagina die je wilt bookmarken en regelmatig wilt bekijken, omdat we de inhoud minstens maandelijks aanpassen.
- [Student Hub pagina](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Op deze pagina vind je beginnersbronnen, studentpakketten en zelfs manieren om een gratis certificaatvoucher te krijgen. Dit is een pagina die je wilt bookmarken en regelmatig wilt bekijken, omdat we de inhoud minstens maandelijks aanpassen.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Word lid van een wereldwijde community van studentambassadeurs, dit kan jouw toegangspoort tot Microsoft zijn.
# Aan de slag
@ -74,17 +74,17 @@ Begin met de volgende bronnen:
## Pedagogiek
We hebben twee pedagogische principes gekozen bij het ontwikkelen van dit curriculum: ervoor zorgen dat het projectgericht is en dat het frequente quizzen bevat. Aan het einde van deze serie hebben studenten de basisprincipes van data science geleerd, waaronder ethische concepten, datavoorbereiding, verschillende manieren om met data te werken, datavisualisatie, data-analyse, praktijkvoorbeelden van data science en meer.
We hebben twee pedagogische principes gekozen bij het opstellen van dit curriculum: ervoor zorgen dat het projectgericht is en dat het frequente quizzen bevat. Aan het einde van deze serie hebben studenten de basisprincipes van data science geleerd, waaronder ethische concepten, datavoorbereiding, verschillende manieren om met data te werken, datavisualisatie, data-analyse, praktijkvoorbeelden van data science en meer.
Daarnaast zorgt een laagdrempelige quiz voorafgaand aan een les ervoor dat de student zich richt op het leren van een onderwerp, terwijl een tweede quiz na de les verdere retentie bevordert. Dit curriculum is ontworpen om flexibel en leuk te zijn en kan in zijn geheel of gedeeltelijk worden gevolgd. De projecten beginnen klein en worden steeds complexer tegen het einde van de 10-weekse cyclus.
Daarnaast zorgt een quiz voorafgaand aan een les ervoor dat de student zich richt op het leren van een onderwerp, terwijl een tweede quiz na de les verdere retentie bevordert. Dit curriculum is ontworpen om flexibel en leuk te zijn en kan in zijn geheel of gedeeltelijk worden gevolgd. De projecten beginnen klein en worden steeds complexer tegen het einde van de 10-weekse cyclus.
> Bekijk onze [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) richtlijnen. We verwelkomen je constructieve feedback!
> Bekijk onze [Gedragscode](CODE_OF_CONDUCT.md), [Bijdragen](CONTRIBUTING.md), [Vertalingsrichtlijnen](TRANSLATIONS.md). We verwelkomen je constructieve feedback!
## Elke les bevat:
- Optionele sketchnote
- Optionele aanvullende video
- Opwarmquiz voorafgaand aan de les
- Quiz voorafgaand aan de les
- Geschreven les
- Voor projectgerichte lessen, stapsgewijze handleidingen over hoe je het project bouwt
- Kennischecks
@ -93,7 +93,7 @@ Daarnaast zorgt een laagdrempelige quiz voorafgaand aan een les ervoor dat de st
- Opdracht
- [Quiz na de les](https://ff-quizzes.netlify.app/en/)
> **Een opmerking over quizzen**: Alle quizzen zijn opgenomen in de Quiz-App map, voor in totaal 40 quizzen van elk drie vragen. Ze zijn gelinkt vanuit de lessen, maar de quiz-app kan lokaal worden uitgevoerd of worden gedeployed naar Azure; volg de instructies in de `quiz-app` map. Ze worden geleidelijk vertaald.
> **Een opmerking over quizzen**: Alle quizzen zijn opgenomen in de Quiz-App map, voor in totaal 40 quizzen van drie vragen elk. Ze zijn gelinkt vanuit de lessen, maar de quiz-app kan lokaal worden uitgevoerd of worden gedeployed naar Azure; volg de instructies in de `quiz-app` map. Ze worden geleidelijk gelokaliseerd.
## Lessen
||
@ -103,59 +103,61 @@ Daarnaast zorgt een laagdrempelige quiz voorafgaand aan een les ervoor dat de st
| 01 | Wat is Data Science? | [Introductie](1-Introduction/README.md) | Leer de basisconcepten van data science en hoe het gerelateerd is aan kunstmatige intelligentie, machine learning en big data. | [les](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Data Science Ethiek | [Introductie](1-Introduction/README.md) | Concepten, uitdagingen en kaders van data-ethiek. | [les](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Wat is Data? | [Introductie](1-Introduction/README.md) | Hoe data wordt geclassificeerd en wat de meest voorkomende bronnen zijn. | [les](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introductie tot Statistiek & Kansrekening | [Introductie](1-Introduction/README.md) | De wiskundige technieken van kansrekening en statistiek om data te begrijpen. | [les](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Werken met Relationele Data | [Werken met Data](2-Working-With-Data/README.md) | Introductie tot relationele data en de basis van het verkennen en analyseren van relationele data met Structured Query Language, ook wel SQL genoemd. | [les](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 01 | Data Science Definiëren | [Introductie](1-Introduction/README.md) | Leer de basisconcepten achter data science en hoe het gerelateerd is aan kunstmatige intelligentie, machine learning en big data. | [les](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Data Science Ethiek | [Introductie](1-Introduction/README.md) | Concepten, uitdagingen en kaders rondom data-ethiek. | [les](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Data Definiëren | [Introductie](1-Introduction/README.md) | Hoe data wordt geclassificeerd en de meest voorkomende bronnen. | [les](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introductie tot Statistiek & Kansberekening | [Introductie](1-Introduction/README.md) | De wiskundige technieken van kansberekening en statistiek om data te begrijpen. | [les](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Werken met Relationele Data | [Werken met Data](2-Working-With-Data/README.md) | Introductie tot relationele data en de basis van het verkennen en analyseren van relationele data met Structured Query Language, ook wel SQL genoemd (uitgesproken als “see-quell”). | [les](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Werken met NoSQL Data | [Werken met Data](2-Working-With-Data/README.md) | Introductie tot niet-relationele data, de verschillende typen en de basis van het verkennen en analyseren van documentdatabases. | [les](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Werken met Python | [Werken met Data](2-Working-With-Data/README.md) | Basisprincipes van het gebruik van Python voor data-exploratie met bibliotheken zoals Pandas. Basiskennis van Python-programmeren wordt aanbevolen. | [les](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Data Voorbereiden | [Werken met Data](2-Working-With-Data/README.md) | Onderwerpen over technieken voor het opschonen en transformeren van data om uitdagingen zoals ontbrekende, onnauwkeurige of onvolledige data aan te pakken. | [les](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Hoeveelheden Visualiseren | [Data Visualisatie](3-Data-Visualization/README.md) | Leer hoe je Matplotlib kunt gebruiken om vogeldata te visualiseren 🦆 | [les](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 07 | Werken met Python | [Werken met Data](2-Working-With-Data/README.md) | Basisprincipes van het gebruik van Python voor data-exploratie met bibliotheken zoals Pandas. Een fundamenteel begrip van Python-programmering wordt aanbevolen. | [les](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Data Voorbereiding | [Werken met Data](2-Working-With-Data/README.md) | Onderwerpen over technieken voor het opschonen en transformeren van data om uitdagingen zoals ontbrekende, onnauwkeurige of incomplete data aan te pakken. | [les](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Hoeveelheden Visualiseren | [Data Visualisatie](3-Data-Visualization/README.md) | Leer hoe je Matplotlib kunt gebruiken om vogeldata 🦆 te visualiseren. | [les](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Distributies van Data Visualiseren | [Data Visualisatie](3-Data-Visualization/README.md) | Observaties en trends binnen een interval visualiseren. | [les](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Relaties Visualiseren | [Data Visualisatie](3-Data-Visualization/README.md) | Verbindingen en correlaties tussen datasets en hun variabelen visualiseren. | [les](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Verhoudingen Visualiseren | [Data Visualisatie](3-Data-Visualization/README.md) | Visualiseren van discrete en gegroepeerde percentages. | [les](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Relaties Visualiseren | [Data Visualisatie](3-Data-Visualization/README.md) | Visualiseren van verbindingen en correlaties tussen datasets en hun variabelen. | [les](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Betekenisvolle Visualisaties | [Data Visualisatie](3-Data-Visualization/README.md) | Technieken en richtlijnen om je visualisaties waardevol te maken voor effectieve probleemoplossing en inzichten. | [les](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introductie tot de Data Science Levenscyclus | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Introductie tot de data science levenscyclus en de eerste stap: het verkrijgen en extraheren van data. | [les](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyseren | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de data science levenscyclus richt zich op technieken om data te analyseren. | [les](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Communicatie | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de data science levenscyclus richt zich op het presenteren van inzichten uit de data op een manier die het voor besluitvormers gemakkelijker maakt om te begrijpen. | [les](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deze reeks lessen introduceert data science in de cloud en de voordelen ervan. | [les](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Modellen trainen met Low Codetools. |[les](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
| 14 | Introductie tot de Data Science Levenscyclus | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Introductie tot de levenscyclus van data science en de eerste stap van het verkrijgen en extraheren van data. | [les](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyseren | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de levenscyclus van data science richt zich op technieken om data te analyseren. | [les](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Communicatie | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de levenscyclus van data science richt zich op het presenteren van inzichten uit de data op een manier die het voor besluitvormers gemakkelijker maakt om te begrijpen. | [les](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deze serie lessen introduceert data science in de cloud en de voordelen ervan. | [les](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Modellen trainen met Low Code-tools. |[les](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Modellen implementeren met Azure Machine Learning Studio. | [les](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science in de Praktijk | [In de Praktijk](6-Data-Science-In-Wild/README.md) | Data science-gedreven projecten in de echte wereld. | [les](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Data Science in de Praktijk | [In de Praktijk](6-Data-Science-In-Wild/README.md) | Data sciencegedreven projecten in de echte wereld. | [les](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Volg deze stappen om dit voorbeeld in een Codespace te openen:
1. Klik op het Code-dropdownmenu en selecteer de optie Open with Codespaces.
2. Selecteer + New codespace onderaan het paneel.
Volg deze stappen om dit voorbeeld te openen in een Codespace:
1. Klik op het Code-dropdownmenu en selecteer de optie Openen met Codespaces.
2. Selecteer + Nieuwe codespace onderaan het paneel.
Voor meer informatie, bekijk de [GitHub-documentatie](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Volg deze stappen om deze repo in een container te openen met je lokale machine en VSCode met behulp van de VS Code Remote - Containers-extensie:
Volg deze stappen om deze repo te openen in een container met behulp van je lokale machine en VSCode met de VS Code Remote - Containers-extensie:
1. Als dit de eerste keer is dat je een ontwikkelcontainer gebruikt, zorg er dan voor dat je systeem aan de vereisten voldoet (bijv. Docker geïnstalleerd) zoals beschreven in [de startdocumentatie](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Om deze repository te gebruiken, kun je de repository openen in een geïsoleerd Docker-volume:
**Opmerking**: Onder de motorkap wordt de Remote-Containers: **Clone Repository in Container Volume...**-opdracht gebruikt om de broncode in een Docker-volume te klonen in plaats van het lokale bestandssysteem. [Volumes](https://docs.docker.com/storage/volumes/) zijn de voorkeursmethode voor het behouden van containerdata.
**Let op**: Achter de schermen zal dit de Remote-Containers: **Clone Repository in Container Volume...**-opdracht gebruiken om de broncode te klonen in een Docker-volume in plaats van het lokale bestandssysteem. [Volumes](https://docs.docker.com/storage/volumes/) zijn de voorkeursmethode voor het behouden van containerdata.
Of open een lokaal gekloonde of gedownloade versie van de repository:
- Clone deze repository naar je lokale bestandssysteem.
- Druk op F1 en selecteer de **Remote-Containers: Open Folder in Container...**-opdracht.
- Selecteer de gekloonde kopie van deze map, wacht tot de container start, en probeer dingen uit.
- Selecteer de gekloonde kopie van deze map, wacht tot de container start en probeer dingen uit.
## Offline toegang
Je kunt deze documentatie offline bekijken met behulp van [Docsify](https://docsify.js.org/#/). Fork deze repo, [installeer Docsify](https://docsify.js.org/#/quickstart) op je lokale machine, en typ vervolgens in de hoofdmap van deze repo `docsify serve`. De website wordt geserveerd op poort 3000 op je localhost: `localhost:3000`.
Je kunt deze documentatie offline uitvoeren met behulp van [Docsify](https://docsify.js.org/#/). Fork deze repo, [installeer Docsify](https://docsify.js.org/#/quickstart) op je lokale machine, en typ vervolgens in de hoofdmap van deze repo `docsify serve`. De website wordt geserveerd op poort 3000 op je localhost: `localhost:3000`.
> Opmerking: notebooks worden niet gerenderd via Docsify, dus als je een notebook moet uitvoeren, doe dat dan apart in VS Code met een Python-kernel.
> Let op, notebooks worden niet weergegeven via Docsify, dus wanneer je een notebook moet uitvoeren, doe dat dan apart in VS Code met een Python-kernel.
## Andere Leermaterialen
## Andere Curriculum
Ons team produceert andere leermaterialen! Bekijk:
Ons team produceert andere curriculum! Bekijk:
- [Edge AI voor Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents voor Beginners](https://aka.ms/ai-agents-beginners)
- [Generatieve AI voor Beginners](https://aka.ms/genai-beginners)
- [Generatieve AI voor Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generatieve AI met JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -169,10 +171,12 @@ Ons team produceert andere leermaterialen! Bekijk:
- [IoT voor Beginners](https://aka.ms/iot-beginners)
- [Machine Learning voor Beginners](https://aka.ms/ml-beginners)
- [XR Ontwikkeling voor Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot voor AI Pair Programming](https://aka.ms/GitHubCopilotAI)
- [Meesteren van GitHub Copilot voor AI Pair Programming](https://aka.ms/GitHubCopilotAI)
- [XR Ontwikkeling voor Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot voor C#/.NET Ontwikkelaars](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Meesteren van GitHub Copilot voor C#/.NET Ontwikkelaars](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Kies Je Eigen Copilot Avontuur](https://github.com/microsoft/CopilotAdventures)
---
**Disclaimer**:
Dit document is vertaald met behulp van de AI-vertalingsservice [Co-op Translator](https://github.com/Azure/co-op-translator). Hoewel we streven naar nauwkeurigheid, dient u zich ervan bewust te zijn dat geautomatiseerde vertalingen fouten of onnauwkeurigheden kunnen bevatten. Het originele document in de oorspronkelijke taal moet worden beschouwd als de gezaghebbende bron. Voor cruciale informatie wordt professionele menselijke vertaling aanbevolen. Wij zijn niet aansprakelijk voor misverstanden of verkeerde interpretaties die voortvloeien uit het gebruik van deze vertaling.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates hos Microsoft er glade for å tilby et 10-ukers, 20-leksjons pensum om Data Science. Hver leksjon inkluderer quiz før og etter leksjonen, skriftlige instruksjoner for å fullføre leksjonen, en løsning og en oppgave. Vår prosjektbaserte pedagogikk lar deg lære mens du bygger, en bevist metode for å få nye ferdigheter til å sitte.
@ -18,7 +34,7 @@ Azure Cloud Advocates hos Microsoft er glade for å tilby et 10-ukers, 20-leksjo
||
|:---:|
| Data Science for Nybegynnere - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
| Data Science For Nybegynnere - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
### 🌐 Støtte for flere språk
@ -26,12 +42,12 @@ Azure Cloud Advocates hos Microsoft er glade for å tilby et 10-ukers, 20-leksjo
**Hvis du ønsker å få støtte for flere oversettelsesspråk, er de listet opp [her](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Hvis du ønsker å få støtte for flere oversettelser, er språkene listet opp [her](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Bli med i vårt fellesskap
[](https://aka.ms/ds4beginners/discord)
Vi har en Discord-serie for læring med AI pågående, lær mer og bli med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du vil få tips og triks for å bruke GitHub Copilot for Data Science.
Vi har en Discord-serie om læring med AI pågående, lær mer og bli med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du vil få tips og triks om bruk av GitHub Copilot for Data Science.

@ -46,11 +62,11 @@ Kom i gang med følgende ressurser:
> **Lærere**: vi har [inkludert noen forslag](for-teachers.md) om hvordan du kan bruke dette pensumet. Vi vil gjerne ha tilbakemeldingen din [i vårt diskusjonsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenter](https://aka.ms/student-page)**: for å bruke dette pensumet på egen hånd, fork hele repoet og fullfør oppgavene på egen hånd, start med en quiz før leksjonen. Les deretter leksjonen og fullfør resten av aktivitetene. Prøv å lage prosjektene ved å forstå leksjonene i stedet for å kopiere løsningskoden; denne koden er imidlertid tilgjengelig i /solutions-mappene i hver prosjektorienterte leksjon. En annen idé kan være å danne en studiegruppe med venner og gå gjennom innholdet sammen. For videre studier anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenter](https://aka.ms/student-page)**: for å bruke dette pensumet på egen hånd, fork hele repoet og fullfør oppgavene på egen hånd, start med en quiz før forelesningen. Les deretter forelesningen og fullfør resten av aktivitetene. Prøv å lage prosjektene ved å forstå leksjonene i stedet for å kopiere løsningskoden; denne koden er imidlertid tilgjengelig i /solutions-mappene i hver prosjektorienterte leksjon. En annen idé kan være å danne en studiegruppe med venner og gå gjennom innholdet sammen. For videre studier anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -58,7 +74,7 @@ Kom i gang med følgende ressurser:
## Pedagogikk
Vi har valgt to pedagogiske prinsipper mens vi bygde dette pensumet: å sikre at det er prosjektbasert og at det inkluderer hyppige quizer. Ved slutten av denne serien vil studentene ha lært grunnleggende prinsipper for data science, inkludert etiske konsepter, dataklargjøring, forskjellige måter å jobbe med data på, datavisualisering, dataanalyse, virkelige brukstilfeller av data science og mer.
Vi har valgt to pedagogiske prinsipper mens vi bygde dette pensumet: å sikre at det er prosjektbasert og at det inkluderer hyppige quizer. Ved slutten av denne serien vil studentene ha lært grunnleggende prinsipper for data science, inkludert etiske konsepter, databehandling, ulike måter å jobbe med data på, datavisualisering, dataanalyse, virkelige brukstilfeller av data science og mer.
I tillegg setter en lavterskelquiz før en klasse intensjonen til studenten mot å lære et emne, mens en andre quiz etter klassen sikrer ytterligere oppbevaring. Dette pensumet ble designet for å være fleksibelt og morsomt og kan tas i sin helhet eller delvis. Prosjektene starter små og blir stadig mer komplekse mot slutten av den 10-ukers syklusen.
@ -67,13 +83,13 @@ I tillegg setter en lavterskelquiz før en klasse intensjonen til studenten mot
## Hver leksjon inkluderer:
- Valgfri sketchnote
- Valgfri supplerende video
- Oppvarmingsquiz før leksjonen
- Valgfri tilleggsvideo
- Quiz for oppvarming før leksjonen
- Skriftlig leksjon
- For prosjektbaserte leksjoner, trinnvise guider om hvordan du bygger prosjektet
- For prosjektbaserte leksjoner, trinnvise guider om hvordan man bygger prosjektet
- Kunnskapssjekker
- En utfordring
- Supplerende lesing
- Tilleggslesing
- Oppgave
- [Quiz etter leksjonen](https://ff-quizzes.netlify.app/en/)
@ -82,7 +98,7 @@ I tillegg setter en lavterskelquiz før en klasse intensjonen til studenten mot
## Leksjoner
||
|:---:|
| Data Science for Beginners: Veikart - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
| Data Science For Beginners: Veikart - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
@ -91,38 +107,38 @@ I tillegg setter en lavterskelquiz før en klasse intensjonen til studenten mot
| 02 | Etikk i Data Science | [Introduksjon](1-Introduction/README.md) | Konsepter, utfordringer og rammeverk for dataetikk. | [leksjon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definere Data | [Introduksjon](1-Introduction/README.md) | Hvordan data klassifiseres og vanlige kilder til data. | [leksjon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduksjon til Statistikk og Sannsynlighet | [Introduksjon](1-Introduction/README.md) | Matematiske teknikker innen sannsynlighet og statistikk for å forstå data. | [leksjon](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbeide med Relasjonsdata | [Arbeide med Data](2-Working-With-Data/README.md) | Introduksjon til relasjonsdata og grunnleggende utforsking og analyse av relasjonsdata med Structured Query Language, også kjent som SQL (uttales "see-quell"). | [leksjon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeide med NoSQL Data | [Arbeide med Data](2-Working-With-Data/README.md) | Introduksjon til ikke-relasjonsdata, deres ulike typer og grunnleggende utforsking og analyse av dokumentdatabaser. | [leksjon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 05 | Arbeide med Relasjonelle Data | [Arbeide med Data](2-Working-With-Data/README.md) | Introduksjon til relasjonelle data og grunnleggende utforsking og analyse av relasjonelle data med Structured Query Language, også kjent som SQL (uttales "see-quell"). | [leksjon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeide med NoSQL Data | [Arbeide med Data](2-Working-With-Data/README.md) | Introduksjon til ikke-relasjonelle data, deres ulike typer og grunnleggende utforsking og analyse av dokumentdatabaser. | [leksjon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbeide med Python | [Arbeide med Data](2-Working-With-Data/README.md) | Grunnleggende bruk av Python for datautforsking med biblioteker som Pandas. Grunnleggende forståelse av Python-programmering anbefales. | [leksjon](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Datapreparering | [Arbeide med Data](2-Working-With-Data/README.md) | Temaer om teknikker for å rense og transformere data for å håndtere utfordringer som manglende, unøyaktige eller ufullstendige data. | [leksjon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisere Mengder | [Datavisualisering](3-Data-Visualization/README.md) | Lær hvordan du bruker Matplotlib til å visualisere fugledata 🦆 | [leksjon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisere Datafordelinger | [Datavisualisering](3-Data-Visualization/README.md) | Visualisere observasjoner og trender innenfor et intervall. | [leksjon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisere Relasjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisere forbindelser og korrelasjoner mellom datasett og deres variabler. | [leksjon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 08 | Datapreparering | [Arbeide med Data](2-Working-With-Data/README.md) | Temaer om teknikker for å rense og transformere data for å håndtere utfordringer med manglende, unøyaktige eller ufullstendige data. | [leksjon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisering av Mengder | [Datavisualisering](3-Data-Visualization/README.md) | Lær hvordan du bruker Matplotlib til å visualisere fugldata 🦆 | [leksjon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisering av Datafordelinger | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av observasjoner og trender innenfor et intervall. | [leksjon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisering av Prosentandeler | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av diskrete og grupperte prosentandeler. | [leksjon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisering av Relasjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av forbindelser og korrelasjoner mellom datasett og deres variabler. | [leksjon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Meningsfulle Visualiseringer | [Datavisualisering](3-Data-Visualization/README.md) | Teknikker og veiledning for å gjøre visualiseringene dine verdifulle for effektiv problemløsning og innsikt. | [leksjon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduksjon til Data Science-livssyklusen | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Introduksjon til data science-livssyklusen og det første steget med å samle og trekke ut data. | [leksjon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyse | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen av data science-livssyklusen fokuserer på teknikker for å analysere data. | [leksjon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikasjon | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen av data science-livssyklusen fokuserer på å presentere innsiktene fra dataene på en måte som gjør det enklere for beslutningstakere å forstå. | [leksjon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science i Skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Denne serien med leksjoner introduserer data science i skyen og fordelene med det. | [leksjon](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
| 14 | Introduksjon til Data Science-livssyklusen | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Introduksjon til livssyklusen for data science og dens første steg med innhenting og utvinning av data. | [leksjon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyse | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen av livssyklusen for data science fokuserer på teknikker for å analysere data. | [leksjon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikasjon | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen av livssyklusen for data science fokuserer på å presentere innsiktene fra data på en måte som gjør det enklere for beslutningstakere å forstå. | [leksjon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science i Skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Denne serien av leksjoner introduserer data science i skyen og dens fordeler. | [leksjon](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science i Skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Trening av modeller ved bruk av Low Code-verktøy. |[leksjon](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science i Skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Distribuere modeller med Azure Machine Learning Studio. | [leksjon](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science i Felten | [I Felten](6-Data-Science-In-Wild/README.md) | Prosjekter drevet av data science i den virkelige verden. | [leksjon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 19 | Data Science i Skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Implementering av modeller med Azure Machine Learning Studio. | [leksjon](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science i Det Virkelige Liv | [I Det Virkelige Liv](6-Data-Science-In-Wild/README.md) | Prosjekter drevet av data science i den virkelige verden. | [leksjon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Følg disse stegene for å åpne dette eksempelet i en Codespace:
1. Klikk på Code-nedtrekksmenyen og velg alternativet Open with Codespaces.
1. Klikk på Code-menyen og velg alternativet Open with Codespaces.
2. Velg + New codespace nederst i panelet.
For mer informasjon, sjekk ut [GitHub-dokumentasjonen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
For mer informasjon, se [GitHub-dokumentasjonen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Følg disse stegene for å åpne dette repoet i en container ved bruk av din lokale maskin og VSCode med VS Code Remote - Containers-utvidelsen:
1. Hvis dette er første gang du bruker en utviklingscontainer, sørg for at systemet ditt oppfyller kravene (f.eks. ha Docker installert) i [komme i gang-dokumentasjonen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Hvis dette er første gang du bruker en utviklingscontainer, sørg for at systemet ditt oppfyller kravene (f.eks. ha Docker installert) i [kom-i-gang-dokumentasjonen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
For å bruke dette repoet, kan du enten åpne det i et isolert Docker-volum:
For å bruke dette repoet kan du enten åpne det i et isolert Docker-volum:
**Merk**: Under panseret vil dette bruke Remote-Containers: **Clone Repository in Container Volume...**-kommandoen for å klone kildekoden i et Docker-volum i stedet for det lokale filsystemet. [Volumer](https://docs.docker.com/storage/volumes/) er den foretrukne mekanismen for å vedvare containerdata.
**Merk**: Under panseret vil dette bruke Remote-Containers: **Clone Repository in Container Volume...**-kommandoen for å klone kildekoden i et Docker-volum i stedet for det lokale filsystemet. [Volumer](https://docs.docker.com/storage/volumes/) er den foretrukne mekanismen for å lagre containerdata.
Eller åpne en lokalt klonet eller nedlastet versjon av repoet:
@ -130,33 +146,37 @@ Eller åpne en lokalt klonet eller nedlastet versjon av repoet:
- Trykk F1 og velg **Remote-Containers: Open Folder in Container...**-kommandoen.
- Velg den klonede kopien av denne mappen, vent til containeren starter, og prøv ting ut.
## Offline-tilgang
## Offlinetilgang
Du kan kjøre denne dokumentasjonen offline ved å bruke [Docsify](https://docsify.js.org/#/). Fork dette repoet, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskin, og i rotmappen til dette repoet, skriv `docsify serve`. Nettstedet vil bli servert på port 3000 på din localhost: `localhost:3000`.
Du kan kjøre denne dokumentasjonen offline ved å bruke [Docsify](https://docsify.js.org/#/). Fork dette repoet, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskin, og skriv deretter `docsify serve`i rotmappen til dette repoet. Nettstedet vil bli servert på port 3000 på din localhost: `localhost:3000`.
> Merk, notatbøker vil ikke bli gjengitt via Docsify, så når du trenger å kjøre en notatbok, gjør det separat i VS Code med en Python-kjerne.
## Andre Læreplaner
Vårt team produserer andre læreplaner! Sjekk ut:
- [Generativ AI for Nybegynnere](https://aka.ms/genai-beginners)
- [Generativ AI for Nybegynnere .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generativ AI med JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generativ AI med Java](https://aka.ms/genaijava)
- [AI for Nybegynnere](https://aka.ms/ai-beginners)
- [Data Science for Nybegynnere](https://aka.ms/datascience-beginners)
- [Bash for Nybegynnere](https://github.com/microsoft/bash-for-beginners)
- [ML for Nybegynnere](https://aka.ms/ml-beginners)
- [Cybersikkerhet for Nybegynnere](https://github.com/microsoft/Security-101)
- [Webutvikling for Nybegynnere](https://aka.ms/webdev-beginners)
- [IoT for Nybegynnere](https://aka.ms/iot-beginners)
## Andre læreplaner
Teamet vårt produserer andre læreplaner! Sjekk ut:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI med JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI med Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Maskinlæring for Nybegynnere](https://aka.ms/ml-beginners)
- [XR-utvikling for Nybegynnere](https://aka.ms/xr-dev-for-beginners)
- [Mestre GitHub Copilot for AI-parprogrammering](https://aka.ms/GitHubCopilotAI)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR-utvikling for Nybegynnere](https://github.com/microsoft/xr-development-for-beginners)
- [Mestre GitHub Copilot for C#/.NET-utviklere](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Velg Ditt Eget Copilot-eventyr](https://github.com/microsoft/CopilotAdventures)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**Ansvarsfraskrivelse**:
Dette dokumentet er oversatt ved hjelp av AI-oversettelsestjenesten [Co-op Translator](https://github.com/Azure/co-op-translator). Selv om vi tilstreber nøyaktighet, vær oppmerksom på at automatiserte oversettelser kan inneholde feil eller unøyaktigheter. Det originale dokumentet på sitt opprinnelige språk bør anses som den autoritative kilden. For kritisk informasjon anbefales profesjonell menneskelig oversettelse. Vi er ikke ansvarlige for misforståelser eller feiltolkninger som oppstår ved bruk av denne oversettelsen.
||
||
# Data Science dla Początkujących - Program Nauczania
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates w Microsoft z przyjemnością oferują 10-tygodniowy, 20-lekcyjny program nauczania dotyczący Data Science. Każda lekcja zawiera quizy przed i po lekcji, pisemne instrukcje do wykonania lekcji, rozwiązanie oraz zadanie. Nasze podejście oparte na projektach pozwala uczyć się poprzez tworzenie, co jest sprawdzonym sposobem na trwałe przyswojenie nowych umiejętności.
**Jeśli chcesz, aby dodatkowe języki były obsługiwane, lista dostępnych języków znajduje się [tutaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Jeśli chcesz, aby obsługiwane były dodatkowe języki, lista dostępnych języków znajduje się [tutaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Dołącz do naszej społeczności
[](https://aka.ms/ds4beginners/discord)
@ -48,32 +64,32 @@ Rozpocznij od następujących zasobów:
> **[Studenci](https://aka.ms/student-page)**: aby korzystać z tego programu nauczania samodzielnie, zrób fork całego repozytorium i wykonaj ćwiczenia samodzielnie, zaczynając od quizu przed lekcją. Następnie przeczytaj lekcję i wykonaj pozostałe aktywności. Spróbuj tworzyć projekty, rozumiejąc lekcje, zamiast kopiować kod rozwiązania; jednak ten kod jest dostępny w folderach /solutions w każdej lekcji opartej na projekcie. Innym pomysłem może być utworzenie grupy naukowej z przyjaciółmi i wspólne przechodzenie przez treści. Do dalszej nauki polecamy [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> 🎥 Kliknij obrazek powyżej, aby obejrzeć wideo o projekcie i osobach, które go stworzyły!
> 🎥 Kliknij obrazek powyżej, aby obejrzeć film o projekcie i ludziach, którzy go stworzyli!
## Pedagogika
Podczas tworzenia tego programu nauczania wybraliśmy dwa główne założenia pedagogiczne: zapewnienie, że jest on oparty na projektach oraz że zawiera częste quizy. Pod koniec tej serii studenci poznają podstawowe zasady data science, w tym koncepcje etyczne, przygotowanie danych, różne sposoby pracy z danymi, wizualizację danych, analizę danych, rzeczywiste przypadki użycia data science i wiele więcej.
Podczas tworzenia tego programu nauczania wybraliśmy dwa główne założenia pedagogiczne: zapewnienie, że jest on oparty na projektach oraz że zawiera częste quizy. Pod koniec tej serii studenci nauczą się podstawowych zasad data science, w tym koncepcji etycznych, przygotowania danych, różnych sposobów pracy z danymi, wizualizacji danych, analizy danych, rzeczywistych przypadków użycia data science i więcej.
Dodatkowo, quiz o niskim poziomie trudności przed zajęciami ustawia intencję studenta na naukę danego tematu, podczas gdy drugi quiz po zajęciach zapewnia dalsze utrwalenie wiedzy. Ten program nauczania został zaprojektowany tak, aby był elastyczny i przyjemny, można go realizować w całości lub częściowo. Projekty zaczynają się od prostych i stają się coraz bardziej złożone pod koniec 10-tygodniowego cyklu.
Dodatkowo, quiz o niskim poziomie trudności przed zajęciami ustawia intencję studenta na naukę danego tematu, podczas gdy drugi quiz po zajęciach zapewnia dalsze utrwalenie wiedzy. Ten program nauczania został zaprojektowany tak, aby był elastyczny i przyjemny, i można go realizować w całości lub częściowo. Projekty zaczynają się od prostych i stają się coraz bardziej złożone pod koniec 10-tygodniowego cyklu.
> Znajdź nasze [Zasady Postępowania](CODE_OF_CONDUCT.md), [Wskazówki dotyczące Współpracy](CONTRIBUTING.md), [Wskazówki dotyczące Tłumaczeń](TRANSLATIONS.md). Czekamy na Wasze konstruktywne opinie!
> Znajdź nasze [Kodeks Postępowania](CODE_OF_CONDUCT.md), [Wskazówki dotyczące współtworzenia](CONTRIBUTING.md), [Wskazówki dotyczące tłumaczenia](TRANSLATIONS.md). Czekamy na Wasze konstruktywne opinie!
## Każda lekcja zawiera:
- Opcjonalny sketchnote
- Opcjonalne dodatkowe wideo
- Opcjonalny film uzupełniający
- Quiz rozgrzewkowy przed lekcją
- Pisemną lekcję
- W przypadku lekcji opartych na projektach, przewodniki krok po kroku dotyczące budowy projektu
- Sprawdzenie wiedzy
- Sprawdzanie wiedzy
- Wyzwanie
- Dodatkowe materiały do czytania
- Lekturę uzupełniającą
- Zadanie
- [Quiz po lekcji](https://ff-quizzes.netlify.app/en/)
@ -84,78 +100,83 @@ Dodatkowo, quiz o niskim poziomie trudności przed zajęciami ustawia intencję
|:---:|
| Data Science dla początkujących: Plan działania - _Sketchnote autorstwa [@nitya](https://twitter.com/nitya)_ |
| Numer lekcji | Temat | Grupa lekcji | Cele nauki | Powiązana lekcja | Autor |
| 01 | Definicja Data Science | [Wprowadzenie](1-Introduction/README.md) | Poznaj podstawowe pojęcia związane z data science oraz jego powiązania ze sztuczną inteligencją, uczeniem maszynowym i big data. | [lekcja](1-Introduction/01-defining-data-science/README.md) [wideo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definiowanie Data Science | [Wprowadzenie](1-Introduction/README.md) | Poznaj podstawowe pojęcia związane z data science oraz jego powiązania z sztuczną inteligencją, uczeniem maszynowym i big data. | [lekcja](1-Introduction/01-defining-data-science/README.md) [wideo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etyka w Data Science | [Wprowadzenie](1-Introduction/README.md) | Koncepcje etyki danych, wyzwania i ramy działania. | [lekcja](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definicja danych | [Wprowadzenie](1-Introduction/README.md) | Jak klasyfikować dane i jakie są ich najczęstsze źródła. | [lekcja](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Wprowadzenie do statystyki i prawdopodobieństwa | [Wprowadzenie](1-Introduction/README.md) | Matematyczne techniki prawdopodobieństwa i statystyki do analizy danych. | [lekcja](1-Introduction/04-stats-and-probability/README.md) [wideo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 03 | Definiowanie danych | [Wprowadzenie](1-Introduction/README.md) | Jak klasyfikować dane i jakie są ich najczęstsze źródła. | [lekcja](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Wprowadzenie do statystyki i prawdopodobieństwa | [Wprowadzenie](1-Introduction/README.md) | Matematyczne techniki prawdopodobieństwa i statystyki w celu zrozumienia danych. | [lekcja](1-Introduction/04-stats-and-probability/README.md) [wideo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Praca z danymi relacyjnymi | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych relacyjnych oraz podstawy eksploracji i analizy danych relacyjnych za pomocą języka SQL (wymawiane „si-kłel”). | [lekcja](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Praca z danymi NoSQL | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych nierelacyjnych, ich różnych typów oraz podstawy eksploracji i analizy baz dokumentów. | [lekcja](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Praca z Pythonem | [Praca z danymi](2-Working-With-Data/README.md) | Podstawy używania Pythona do eksploracji danych z wykorzystaniem bibliotek takich jak Pandas. Zalecana jest podstawowa znajomość programowania w Pythonie. | [lekcja](2-Working-With-Data/07-python/README.md) [wideo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Przygotowanie danych | [Praca z danymi](2-Working-With-Data/README.md) | Tematy dotyczące technik czyszczenia i transformacji danych w celu radzenia sobie z brakującymi, niedokładnymi lub niekompletnymi danymi. | [lekcja](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 07 | Praca z Pythonem | [Praca z danymi](2-Working-With-Data/README.md) | Podstawy używania Pythona do eksploracji danych z wykorzystaniem bibliotek takich jak Pandas. Zalecane jest podstawowe zrozumienie programowania w Pythonie. | [lekcja](2-Working-With-Data/07-python/README.md) [wideo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Przygotowanie danych | [Praca z danymi](2-Working-With-Data/README.md) | Tematy dotyczące technik czyszczenia i transformacji danych w celu radzenia sobie z wyzwaniami związanymi z brakującymi, niedokładnymi lub niekompletnymi danymi. | [lekcja](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Wizualizacja ilości | [Wizualizacja danych](3-Data-Visualization/README.md) | Naucz się używać Matplotlib do wizualizacji danych o ptakach 🦆 | [lekcja](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Wizualizacja rozkładów danych | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja obserwacji i trendów w przedziale. | [lekcja](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Wizualizacja relacji | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja połączeń i korelacji między zbiorami danych i ich zmiennymi. | [lekcja](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Znaczące wizualizacje | [Wizualizacja danych](3-Data-Visualization/README.md) | Techniki i wskazówki dotyczące tworzenia wartościowych wizualizacji, które wspierają efektywne rozwiązywanie problemów i uzyskiwanie wniosków. | [lekcja](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Wprowadzenie do cyklu życia Data Science | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Wprowadzenie do cyklu życia data science i jego pierwszego etapu, jakim jest pozyskiwanie i ekstrakcja danych. | [lekcja](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ten etap cyklu życia data science koncentruje się na technikach analizy danych. | [lekcja](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacja | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ten etap cyklu życia data science koncentruje się na prezentowaniu wniosków z danych w sposób ułatwiający ich zrozumienie decydentom. | [lekcja](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Seria lekcji wprowadzających do data science w chmurze i jego korzyści. | [lekcja](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 12 | Wizualizacja relacji | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja połączeń i korelacji między zestawami danych i ich zmiennymi. | [lekcja](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Znaczące wizualizacje | [Wizualizacja danych](3-Data-Visualization/README.md) | Techniki i wskazówki dotyczące tworzenia wartościowych wizualizacji dla skutecznego rozwiązywania problemów i uzyskiwania wniosków. | [lekcja](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Wprowadzenie do cyklu życia Data Science | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Wprowadzenie do cyklu życia Data Science i jego pierwszego kroku, czyli pozyskiwania i ekstrakcji danych. | [lekcja](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ta faza cyklu życia Data Science koncentruje się na technikach analizy danych. | [lekcja](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacja | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ta faza cyklu życia Data Science koncentruje się na prezentowaniu wniosków z danych w sposób ułatwiający ich zrozumienie decydentom. | [lekcja](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Seria lekcji wprowadzająca do Data Science w chmurze i jego korzyści. | [lekcja](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Trenowanie modeli za pomocą narzędzi Low Code. |[lekcja](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Wdrażanie modeli za pomocą Azure Machine Learning Studio. | [lekcja](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science w praktyce | [W praktyce](6-Data-Science-In-Wild/README.md) | Projekty oparte na data science w rzeczywistym świecie. | [lekcja](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Data Science w praktyce | [W praktyce](6-Data-Science-In-Wild/README.md) | Projekty oparte na Data Science w rzeczywistym świecie. | [lekcja](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Wykonaj poniższe kroki, aby otworzyć ten przykład w Codespace:
1. Kliknij menu rozwijane „Code” i wybierz opcję „Open with Codespaces”.
Postępuj zgodnie z poniższymi krokami, aby otworzyć ten przykład w Codespace:
1. Kliknij menu rozwijane Code i wybierz opcję Open with Codespaces.
2. Wybierz + New codespace na dole panelu.
Więcej informacji znajdziesz w [dokumentacji GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Wykonaj poniższe kroki, aby otworzyć to repozytorium w kontenerze za pomocą swojego lokalnego komputera i VSCode, korzystając z rozszerzenia VS Code Remote - Containers:
Postępuj zgodnie z poniższymi krokami, aby otworzyć to repozytorium w kontenerze za pomocą lokalnego komputera i VSCode, korzystając z rozszerzenia VS Code Remote - Containers:
1. Jeśli korzystasz z kontenerów deweloperskich po raz pierwszy, upewnij się, że Twój system spełnia wymagania wstępne (np. zainstalowany Docker) opisane w [dokumentacji wprowadzającej](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Jeśli korzystasz z kontenerów deweloperskich po raz pierwszy, upewnij się, że Twój system spełnia wymagania wstępne (np. zainstalowany Docker) zgodnie z [dokumentacją wprowadzającą](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Aby użyć tego repozytorium, możesz otworzyć je w izolowanym woluminie Dockera:
Aby użyć tego repozytorium, możesz otworzyć je w izolowanym wolumenie Dockera:
**Uwaga**: W tle zostanie użyte polecenie Remote-Containers: **Clone Repository in Container Volume...**, aby sklonować kod źródłowy w woluminie Dockera zamiast w lokalnym systemie plików. [Woluminy](https://docs.docker.com/storage/volumes/) są preferowanym mechanizmem przechowywania danych kontenera.
**Uwaga**: W tle zostanie użyte polecenie Remote-Containers: **Clone Repository in Container Volume...**, aby sklonować kod źródłowy w wolumenie Dockera zamiast lokalnego systemu plików. [Wolumeny](https://docs.docker.com/storage/volumes/) są preferowanym mechanizmem do przechowywania danych kontenera.
Lub otwórz lokalnie sklonowaną lub pobraną wersję repozytorium:
- Sklonuj to repozytorium na swój lokalny system plików.
- Sklonuj to repozytorium na lokalny system plików.
- Naciśnij F1 i wybierz polecenie **Remote-Containers: Open Folder in Container...**.
- Wybierz sklonowaną kopię tego folderu, poczekaj na uruchomienie kontenera i przetestuj.
- Wybierz sklonowaną kopię tego folderu, poczekaj na uruchomienie kontenera i wypróbuj różne funkcje.
## Dostęp offline
Możesz uruchomić tę dokumentację offline, korzystając z [Docsify](https://docsify.js.org/#/). Sforkuj to repozytorium, [zainstaluj Docsify](https://docsify.js.org/#/quickstart) na swoim lokalnym komputerze, a następnie w katalogu głównym tego repozytorium wpisz `docsify serve`. Strona internetowa zostanie uruchomiona na porcie 3000 na Twoim localhost: `localhost:3000`.
> Uwaga: Notatniki nie będą renderowane za pomocą Docsify, więc jeśli potrzebujesz uruchomić notatnik, zrób to osobno w VS Code, korzystając z jądra Pythona.
> Uwaga, notatniki nie będą renderowane za pomocą Docsify, więc jeśli potrzebujesz uruchomić notatnik, zrób to osobno w VS Code, uruchamiając jądro Pythona.
## Inne programy nauczania
Nasz zespół tworzy inne programy nauczania! Sprawdź:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [Edge AI dla początkujących](https://aka.ms/edgeai-for-beginners)
- [Agent AI dla początkujących](https://aka.ms/ai-agents-beginners)
- [Generatywna AI dla początkujących](https://aka.ms/genai-beginners)
- [Generatywna AI dla początkujących .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generatywna AI z JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generatywna AI z Java](https://aka.ms/genaijava)
- [AI dla początkujących](https://aka.ms/ai-beginners)
- [Data Science dla początkujących](https://aka.ms/datascience-beginners)
- [Bash dla początkujących](https://github.com/microsoft/bash-for-beginners)
- [ML dla początkujących](https://aka.ms/ml-beginners)
- [Cyberbezpieczeństwo dla początkujących](https://github.com/microsoft/Security-101)
- [Web Dev dla początkujących](https://aka.ms/webdev-beginners)
- [IoT dla początkujących](https://aka.ms/iot-beginners)
- [Uczenie maszynowe dla początkujących](https://aka.ms/ml-beginners)
- [Rozwój XR dla początkujących](https://aka.ms/xr-dev-for-beginners)
- [Opanowanie GitHub Copilot dla programowania w parach z AI](https://aka.ms/GitHubCopilotAI)
- [Rozwój XR dla początkujących](https://github.com/microsoft/xr-development-for-beginners)
- [Opanowanie GitHub Copilot dla programistów C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Wybierz swoją własną przygodę z Copilotem](https://github.com/microsoft/CopilotAdventures)
---
**Zastrzeżenie**:
Ten dokument został przetłumaczony za pomocą usługi tłumaczenia AI [Co-op Translator](https://github.com/Azure/co-op-translator). Chociaż staramy się zapewnić dokładność, prosimy pamiętać, że automatyczne tłumaczenia mogą zawierać błędy lub nieścisłości. Oryginalny dokument w jego języku źródłowym powinien być uznawany za autorytatywne źródło. W przypadku informacji krytycznych zaleca się skorzystanie z profesjonalnego tłumaczenia przez człowieka. Nie ponosimy odpowiedzialności za jakiekolwiek nieporozumienia lub błędne interpretacje wynikające z użycia tego tłumaczenia.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://aka.ms/foundry/forum)
Os Azure Cloud Advocates da Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições sobre Ciência de Dados. Cada lição inclui questionários antes e depois da aula, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa pedagogia baseada em projetos permite que você aprenda enquanto constrói, uma maneira comprovada de fazer com que novas habilidades "fiquem".
Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições sobre Ciência de Dados. Cada lição inclui questionários antes e depois da aula, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa abordagem pedagógica baseada em projetos permite que você aprenda enquanto constrói, uma forma comprovada de fazer com que novas habilidades sejam assimiladas.
||
@ -38,62 +22,62 @@ Os Azure Cloud Advocates da Microsoft têm o prazer de oferecer um currículo de
### 🌐 Suporte Multilíngue
#### Suportado via GitHub Action (Automatizado e Sempre Atualizado)
#### Suporte via GitHub Action (Automatizado e Sempre Atualizado)
**Se desejar suporte para idiomas adicionais, consulte a lista [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Se desejar suporte para idiomas adicionais, os idiomas disponíveis estão listados [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Junte-se à Nossa Comunidade
[](https://aka.ms/ds4beginners/discord)
Estamos a realizar uma série de aprendizagem com IA no Discord. Saiba mais e junte-se a nós na [Série Aprenda com IA](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Receba dicas e truques sobre como usar o GitHub Copilot para Ciência de Dados.
Temos uma série de aprendizado com IA em andamento no Discord. Saiba mais e junte-se a nós em [Learn with AI Series](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Você receberá dicas e truques sobre como usar o GitHub Copilot para Ciência de Dados.


# És estudante?
Começa com os seguintes recursos:
- [Página do Hub para Estudantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, encontrarás recursos para iniciantes, pacotes para estudantes e até formas de obter um voucher gratuito para certificação. É uma página que deves marcar como favorita e verificar de tempos em tempos, pois atualizamos o conteúdo pelo menos mensalmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junta-te a uma comunidade global de embaixadores estudantis, esta pode ser a tua porta de entrada para a Microsoft.
- [Página do Hub de Estudantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, encontrarás recursos para iniciantes, pacotes para estudantes e até formas de obter um voucher gratuito para certificação. Esta é uma página que vale a pena marcar e verificar de tempos em tempos, pois trocamos o conteúdo pelo menos mensalmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junta-te a uma comunidade global de embaixadores estudantis; esta pode ser a tua porta de entrada para a Microsoft.
# Começando
> **Professores**: incluímos [algumas sugestões](for-teachers.md) sobre como usar este currículo. Adoraríamos receber o vosso feedback [no nosso fórum de discussão](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faz um fork do repositório inteiro e completa os exercícios por conta própria, começando com um questionário pré-aula. Depois, lê a aula e completa o restante das atividades. Tenta criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudos adicionais, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faz um fork do repositório inteiro e completa os exercícios por conta própria, começando com um questionário pré-aula. Depois, lê a aula e completa o restante das atividades. Tenta criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudo adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> 🎥 Clica na imagem acima para assistir a um vídeo sobre o projeto e as pessoas que o criaram!
> 🎥 Clica na imagem acima para ver um vídeo sobre o projeto e as pessoas que o criaram!
## Pedagogia
Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que seja baseado em projetos e que inclua questionários frequentes. Ao final desta série, os estudantes terão aprendido os princípios básicos da ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes formas de trabalhar com dados, visualização de dados, análise de dados, casos de uso reais de ciência de dados e muito mais.
Além disso, um questionário de baixo risco antes da aula define a intenção do estudante em relação ao aprendizado de um tópico, enquanto um segundo questionário após a aula garante maior retenção. Este currículo foi projetado para ser flexível e divertido, podendo ser realizado na íntegra ou em partes. Os projetos começam pequenos e tornam-se progressivamente mais complexos ao longo do ciclo de 10 semanas.
Além disso, um questionário de baixo risco antes da aula define a intenção do estudante em aprender um tópico, enquanto um segundo questionário após a aula garante maior retenção. Este currículo foi projetado para ser flexível e divertido e pode ser realizado na íntegra ou em partes. Os projetos começam pequenos e tornam-se progressivamente mais complexos ao final do ciclo de 10 semanas.
> Encontra o nosso [Código de Conduta](CODE_OF_CONDUCT.md), [Contribuições](CONTRIBUTING.md), [Traduções](TRANSLATIONS.md). Agradecemos o teu feedback construtivo!
> Encontra o nosso [Código de Conduta](CODE_OF_CONDUCT.md), [Contribuições](CONTRIBUTING.md), [Diretrizes de Tradução](TRANSLATIONS.md). Agradecemos o teu feedback construtivo!
## Cada lição inclui:
- Sketchnote opcional
- Vídeo suplementar opcional
- Questionário de aquecimento pré-aula
- Questionário de aquecimento antes da aula
- Lição escrita
- Para lições baseadas em projetos, guias passo a passo sobre como construir o projeto
> **Uma nota sobre os questionários**: Todos os questionários estão contidos na pasta Quiz-App, totalizando 40 questionários com três perguntas cada. Eles estão vinculados dentro das lições, mas a aplicação de questionários pode ser executada localmente ou implantada no Azure; segue as instruções na pasta `quiz-app`. Eles estão sendo gradualmente localizados.
> **Uma nota sobre os questionários**: Todos os questionários estão contidos na pasta Quiz-App, totalizando 40 questionários de três perguntas cada. Eles estão vinculados dentro das lições, mas a aplicação de questionários pode ser executada localmente ou implantada no Azure; segue as instruções na pasta `quiz-app`. Eles estão sendo gradualmente localizados.
## Lições
||
@ -105,8 +89,8 @@ Além disso, um questionário de baixo risco antes da aula define a intenção d
| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprenda os conceitos básicos de ciência de dados e como ela está relacionada à inteligência artificial, aprendizagem automática e big data. | [aula](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética na Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e frameworks de ética em dados. | [aula](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definindo Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [aula](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introdução a Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para compreender dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e os fundamentos de exploração e análise de dados relacionais com a Structured Query Language, também conhecida como SQL (pronunciado “see-quell”). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 04 | Introdução à Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para compreender dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e os fundamentos de exploração e análise de dados relacionais com a Structured Query Language, também conhecida como SQL (pronunciado "sequel"). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabalhando com Dados NoSQL | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus vários tipos e os fundamentos de exploração e análise de bases de dados de documentos. | [aula](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Fundamentos do uso de Python para exploração de dados com bibliotecas como Pandas. É recomendável ter uma compreensão básica de programação em Python. | [aula](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparação de Dados | [Trabalhando com Dados](2-Working-With-Data/README.md) | Técnicas de limpeza e transformação de dados para lidar com desafios como dados ausentes, imprecisos ou incompletos. | [aula](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
@ -135,9 +119,9 @@ Siga estes passos para abrir este repositório em um container usando sua máqui
1. Se esta for a sua primeira vez usando um container de desenvolvimento, certifique-se de que seu sistema atende aos pré-requisitos (ou seja, ter o Docker instalado) na [documentação de introdução](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Para usar este repositório, você pode abrir o repositório em um volume Docker isolado:
Para usar este repositório, você pode abrir o repositório em um volume isolado do Docker:
**Nota**: Por trás dos panos, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de containers.
**Nota**: Por trás dos panos, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume do Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de containers.
Ou abrir uma versão clonada ou baixada localmente do repositório:
@ -147,14 +131,16 @@ Ou abrir uma versão clonada ou baixada localmente do repositório:
## Acesso Offline
Você pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local, e na pasta raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
Pode executar esta documentação offline utilizando o [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local, e na pasta raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
> Nota: os notebooks não serão renderizados via Docsify, então, quando precisar executar um notebook, faça isso separadamente no VS Code executando um kernel Python.
## Outros Currículos
Nossa equipe produz outros currículos! Confira:
A nossa equipa produz outros currículos! Confira:
- [Edge AI para Iniciantes](https://aka.ms/edgeai-for-beginners)
- [Agentes de IA para Iniciantes](https://aka.ms/ai-agents-beginners)
- [IA Generativa para Iniciantes](https://aka.ms/genai-beginners)
- [IA Generativa para Iniciantes .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [IA Generativa com JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -162,16 +148,18 @@ Nossa equipe produz outros currículos! Confira:
- [IA para Iniciantes](https://aka.ms/ai-beginners)
- [Ciência de Dados para Iniciantes](https://aka.ms/datascience-beginners)
- [Bash para Iniciantes](https://github.com/microsoft/bash-for-beginners)
- [Aprendizagem Automática para Iniciantes](https://aka.ms/ml-beginners)
- [ML para Iniciantes](https://aka.ms/ml-beginners)
- [Cibersegurança para Iniciantes](https://github.com/microsoft/Security-101)
- [Desenvolvimento Web para Iniciantes](https://aka.ms/webdev-beginners)
- [IoT para Iniciantes](https://aka.ms/iot-beginners)
- [Aprendizagem de Máquina para Iniciantes](https://aka.ms/ml-beginners)
- [Aprendizagem Automática para Iniciantes](https://aka.ms/ml-beginners)
- [Desenvolvimento XR para Iniciantes](https://aka.ms/xr-dev-for-beginners)
- [Dominando o GitHub Copilot para Programação em Par com IA](https://aka.ms/GitHubCopilotAI)
- [Dominando o GitHub Copilot para Programação em Parceria com IA](https://aka.ms/GitHubCopilotAI)
- [Desenvolvimento XR para Iniciantes](https://github.com/microsoft/xr-development-for-beginners)
- [Dominando o GitHub Copilot para Desenvolvedores C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Escolha Sua Própria Aventura com Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Aviso**:
Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução.
# Știința Datelor pentru Începători - Un Curriculum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
[](https://aka.ms/foundry/forum)
Advocații Cloud Azure de la Microsoft sunt încântați să ofere un curriculum de 10 săptămâni, cu 20 de lecții, despre Știința Datelor. Fiecare lecție include chestionare înainte și după lecție, instrucțiuni scrise pentru a finaliza lecția, o soluție și o temă. Pedagogia noastră bazată pe proiecte vă permite să învățați construind, o metodă dovedită pentru a face noile abilități să "rămână".
Advocații Cloud Azure de la Microsoft sunt încântați să ofere un curriculum de 10 săptămâni, cu 20 de lecții, dedicat Științei Datelor. Fiecare lecție include chestionare înainte și după lecție, instrucțiuni scrise pentru completarea lecției, o soluție și o temă. Pedagogia noastră bazată pe proiecte vă permite să învățați construind, o metodă dovedită pentru a fixa noile abilități.
||
|:---:|
@ -38,47 +38,47 @@ Advocații Cloud Azure de la Microsoft sunt încântați să ofere un curriculum
### 🌐 Suport Multi-Limbă
#### Suportat prin GitHub Action (Automat &Întotdeauna Actualizat)
#### Suportat prin GitHub Action (Automat &Mereu Actualizat)
**Dacă doriți să aveți suport pentru limbi suplimentare, acestea sunt listate [aici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Dacă doriți să aveți suport pentru alte limbi, acestea sunt listate [aici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Alăturați-vă Comunității Noastre
[](https://aka.ms/ds4beginners/discord)
Avem o serie de învățare cu AI pe Discord în desfășurare, aflați mai multe și alăturați-vă la [Learn with AI Series](https://aka.ms/learnwithai/discord) între 18 - 30 septembrie 2025. Veți primi sfaturi și trucuri despre utilizarea GitHub Copilot pentru Știința Datelor.
Avem o serie de învățare cu AI în desfășurare pe Discord, aflați mai multe și alăturați-vă la [Learn with AI Series](https://aka.ms/learnwithai/discord) între 18 - 30 septembrie, 2025. Veți primi sfaturi și trucuri despre utilizarea GitHub Copilot pentru Știința Datelor.

# Ești student?
Începe cu următoarele resurse:
Începeți cu următoarele resurse:
- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) În această pagină, vei găsi resurse pentru începători, pachete pentru studenți și chiar modalități de a obține un voucher gratuit pentru certificare. Aceasta este o pagină pe care vrei să o salvezi și să o verifici periodic, deoarece schimbăm conținutul cel puțin lunar.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Alătură-te unei comunități globale de ambasadori studenți, aceasta ar putea fi calea ta către Microsoft.
- [Pagina Hub pentru Studenți](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Pe această pagină, veți găsi resurse pentru începători, pachete pentru studenți și chiar modalități de a obține un voucher gratuit pentru certificare. Aceasta este o pagină pe care doriți să o marcați și să o verificați periodic, deoarece schimbăm conținutul cel puțin lunar.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Alăturați-vă unei comunități globale de ambasadori studenți, aceasta ar putea fi calea voastră către Microsoft.
# Începe
# Începeți
> **Profesori**: am [inclus câteva sugestii](for-teachers.md) despre cum să utilizați acest curriculum. Ne-ar plăcea să primim feedback-ul vostru [în forumul nostru de discuții](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenți](https://aka.ms/student-page)**: pentru a utiliza acest curriculum pe cont propriu, faceți fork întregului repo și completați exercițiile pe cont propriu, începând cu un chestionar înainte de lecție. Apoi citiți lecția și completați restul activităților. Încercați să creați proiectele înțelegând lecțiile, mai degrabă decât copierea codului soluției; totuși, acel cod este disponibil în folderele /solutions din fiecare lecție bazată pe proiect. O altă idee ar fi să formați un grup de studiu cu prietenii și să parcurgeți conținutul împreună. Pentru studii suplimentare, vă recomandăm [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenți](https://aka.ms/student-page)**: pentru a utiliza acest curriculum pe cont propriu, faceți fork la întregul repo și completați exercițiile pe cont propriu, începând cu un chestionar înainte de lecție. Apoi citiți lecția și completați restul activităților. Încercați să creați proiectele înțelegând lecțiile, mai degrabă decât copierea codului soluției; totuși, acel cod este disponibil în folderele /solutions din fiecare lecție bazată pe proiect. O altă idee ar fi să formați un grup de studiu cu prietenii și să parcurgeți conținutul împreună. Pentru studii suplimentare, recomandăm [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Gif realizat de** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 Faceți clic pe imaginea de mai sus pentru un videoclip despre proiect și despre cei care l-au creat!
> 🎥 Faceți clic pe imaginea de mai sus pentru un video despre proiect și despre oamenii care l-au creat!
## Pedagogie
Am ales două principii pedagogice în construirea acestui curriculum: asigurarea că este bazat pe proiecte și că include chestionare frecvente. Până la sfârșitul acestei serii, studenții vor fi învățat principiile de bază ale științei datelor, inclusiv concepte etice, pregătirea datelor, diferite moduri de a lucra cu date, vizualizarea datelor, analiza datelor, cazuri de utilizare reală ale științei datelor și multe altele.
Am ales două principii pedagogice în construirea acestui curriculum: asigurarea că este bazat pe proiecte și includerea de chestionare frecvente. Până la sfârșitul acestei serii, studenții vor fi învățat principii de bază ale științei datelor, inclusiv concepte etice, pregătirea datelor, diferite moduri de a lucra cu datele, vizualizarea datelor, analiza datelor, cazuri reale de utilizare ale științei datelor și multe altele.
În plus, un chestionar cu miză mică înainte de o clasă setează intenția studentului de a învăța un subiect, în timp ce un al doilea chestionar după clasă asigură o reținere mai bună. Acest curriculum a fost conceput să fie flexibil și distractiv și poate fi parcurs în întregime sau parțial. Proiectele încep mici și devin din ce în ce mai complexe până la sfârșitul ciclului de 10 săptămâni.
În plus, un chestionar cu miză redusă înainte de o clasă setează intenția studentului de a învăța un subiect, în timp ce un al doilea chestionar după clasă asigură o mai bună retenție. Acest curriculum a fost conceput să fie flexibil și distractiv și poate fi parcurs în întregime sau parțial. Proiectele încep mici și devin din ce în ce mai complexe până la sfârșitul ciclului de 10 săptămâni.
> Găsiți [Codul nostru de Conduită](CODE_OF_CONDUCT.md), [Ghidul de Contribuire](CONTRIBUTING.md), [Ghidul de Traducere](TRANSLATIONS.md). Apreciem feedback-ul vostru constructiv!
> Găsiți [Codul nostru de Conduită](CODE_OF_CONDUCT.md), [Contribuții](CONTRIBUTING.md), [Ghiduri de Traducere](TRANSLATIONS.md). Apreciem feedback-ul vostru constructiv!
## Fiecare lecție include:
@ -87,7 +87,7 @@ Am ales două principii pedagogice în construirea acestui curriculum: asigurare
- Chestionar de încălzire înainte de lecție
- Lecție scrisă
- Pentru lecțiile bazate pe proiecte, ghiduri pas cu pas despre cum să construiți proiectul
- Verificări ale cunoștințelor
- Verificări de cunoștințe
- O provocare
- Lectură suplimentară
- Temă
@ -98,18 +98,18 @@ Am ales două principii pedagogice în construirea acestui curriculum: asigurare
## Lecții
||
|:---:|
| Data Science Pentru Începători: Planificare - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
| Data Science pentru Începători: Planificare - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
| Număr Lecție | Subiect | Grupare Lecții | Obiective de Învățare | Lecție Legată | Autor |
| 01 | Definirea Științei Datelor | [Introducere](1-Introduction/README.md) | Învață conceptele de bază ale științei datelor și cum se leagă de inteligența artificială, învățarea automată și big data. | [lecție](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etica Științei Datelor | [Introducere](1-Introduction/README.md) | Concepte, provocări și cadre de etică a datelor. | [lecție](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 02 | Etica în Știința Datelor | [Introducere](1-Introduction/README.md) | Concepte, provocări și cadre de etică a datelor. | [lecție](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definirea Datelor | [Introducere](1-Introduction/README.md) | Cum sunt clasificate datele și sursele lor comune. | [lecție](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introducere în Statistică și Probabilitate | [Introducere](1-Introduction/README.md) | Tehnici matematice de probabilitate și statistică pentru a înțelege datele. | [lecție](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Lucrul cu Date Relaționale | [Lucrul cu Date](2-Working-With-Data/README.md) | Introducere în date relaționale și elementele de bază ale explorării și analizării datelor relaționale cu Structured Query Language, cunoscut și sub numele de SQL (pronunțat „see-quell”). | [lecție](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Lucrul cu Date NoSQL | [Lucrul cu Date](2-Working-With-Data/README.md) | Introducere în datele non-relaționale, tipurile lor diverse și elementele de bază ale explorării și analizării bazelor de date document. | [lecție](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Lucrul cu Python | [Lucrul cu Date](2-Working-With-Data/README.md) | Bazele utilizării Python pentru explorarea datelor cu biblioteci precum Pandas. Se recomandă o înțelegere fundamentală a programării în Python. | [lecție](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 05 | Lucrul cu Date Relaționale | [Lucrul cu Date](2-Working-With-Data/README.md) | Introducere în date relaționale și elementele de bază ale explorării și analizei datelor relaționale cu Structured Query Language, cunoscut și sub numele de SQL (pronunțat „see-quell”). | [lecție](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Lucrul cu Date NoSQL | [Lucrul cu Date](2-Working-With-Data/README.md) | Introducere în datele non-relaționale, tipurile lor diverse și elementele de bază ale explorării și analizei bazelor de date document. | [lecție](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Lucrul cu Python | [Lucrul cu Date](2-Working-With-Data/README.md) | Elementele de bază ale utilizării Python pentru explorarea datelor cu biblioteci precum Pandas. Se recomandă o înțelegere fundamentală a programării în Python. | [lecție](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Pregătirea Datelor | [Lucrul cu Date](2-Working-With-Data/README.md) | Subiecte despre tehnici de curățare și transformare a datelor pentru a gestiona provocările datelor lipsă, inexacte sau incomplete. | [lecție](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Vizualizarea Cantităților | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Învață cum să folosești Matplotlib pentru a vizualiza date despre păsări 🦆 | [lecție](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
@ -118,7 +118,7 @@ Am ales două principii pedagogice în construirea acestui curriculum: asigurare
| 13 | Vizualizări Semnificative | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Tehnici și îndrumări pentru a face vizualizările tale valoroase pentru rezolvarea eficientă a problemelor și obținerea de perspective. | [lecție](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introducere în ciclul de viață al Științei Datelor | [Ciclul de Viață](4-Data-Science-Lifecycle/README.md) | Introducere în ciclul de viață al științei datelor și primul său pas de achiziție și extragere a datelor. | [lecție](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Ciclul de Viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe tehnici de analiză a datelor. | [lecție](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicarea | [Ciclul de Viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe prezentarea perspectivelor din date într-un mod care să faciliteze înțelegerea pentru factorii de decizie. | [lecție](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Comunicare | [Ciclul de Viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe prezentarea perspectivelor din date într-un mod care să faciliteze înțelegerea pentru factorii de decizie. | [lecție](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Știința Datelor în Cloud | [Date în Cloud](5-Data-Science-In-Cloud/README.md) | Această serie de lecții introduce știința datelor în cloud și beneficiile acesteia. | [lecție](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
| 18 | Știința Datelor în Cloud | [Date în Cloud](5-Data-Science-In-Cloud/README.md) | Antrenarea modelelor folosind instrumente Low Code. |[lecție](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
| 19 | Știința Datelor în Cloud | [Date în Cloud](5-Data-Science-In-Cloud/README.md) | Implementarea modelelor cu Azure Machine Learning Studio. | [lecție](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
@ -132,11 +132,11 @@ Urmează acești pași pentru a deschide acest exemplu într-un Codespace:
Pentru mai multe informații, consultă [documentația GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Urmează acești pași pentru a deschide acest repo într-un container folosind mașina ta locală și VSCode cu extensia VS Code Remote - Containers:
Urmează acești pași pentru a deschide acest depozit într-un container folosind mașina ta locală și VSCode utilizând extensia VS Code Remote - Containers:
1. Dacă este prima dată când folosești un container de dezvoltare, asigură-te că sistemul tău îndeplinește cerințele (de exemplu, să ai Docker instalat) din [documentația de început](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Dacă este prima dată când folosești un container de dezvoltare, asigură-te că sistemul tău îndeplinește cerințele preliminare (de exemplu, să ai Docker instalat) din [documentația de început](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Pentru a folosi acest depozit, poți fie să deschizi depozitul într-un volum Docker izolat:
Pentru a utiliza acest depozit, poți fie să deschizi depozitul într-un volum Docker izolat:
**Notă**: În fundal, aceasta va folosi comanda Remote-Containers: **Clone Repository in Container Volume...** pentru a clona codul sursă într-un volum Docker în loc de sistemul de fișiere local. [Volumurile](https://docs.docker.com/storage/volumes/) sunt mecanismul preferat pentru persistența datelor containerului.
@ -146,9 +146,9 @@ Sau să deschizi o versiune clonată sau descărcată local a depozitului:
- Apasă F1 și selectează comanda **Remote-Containers: Open Folder in Container...**.
- Selectează copia clonată a acestui folder, așteaptă ca containerul să pornească și încearcă lucrurile.
## Acces Offline
## Acces offline
Poți rula această documentație offline folosind [Docsify](https://docsify.js.org/#/). Fork acest repo, [instalează Docsify](https://docsify.js.org/#/quickstart) pe mașina ta locală, apoi în folderul rădăcină al acestui repo, tastează `docsify serve`. Website-ul va fi servit pe portul 3000 pe localhost-ul tău: `localhost:3000`.
Poți rula această documentație offline folosind [Docsify](https://docsify.js.org/#/). Clonează acest depozit, [instalează Docsify](https://docsify.js.org/#/quickstart) pe mașina ta locală, apoi în folderul rădăcină al acestui depozit, tastează `docsify serve`. Website-ul va fi servit pe portul 3000 pe localhost-ul tău: `localhost:3000`.
> Notă, notebook-urile nu vor fi afișate prin Docsify, așa că atunci când ai nevoie să rulezi un notebook, fă asta separat în VS Code rulând un kernel Python.
- [Generative AI pentru Începători](https://aka.ms/genai-beginners)
- [Generative AI pentru Începători .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI cu JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI cu Java](https://aka.ms/genaijava)
- [Edge AI pentru Începători](https://aka.ms/edgeai-for-beginners)
- [Agenți AI pentru Începători](https://aka.ms/ai-agents-beginners)
- [AI Generativ pentru Începători](https://aka.ms/genai-beginners)
- [AI Generativ pentru Începători .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [AI Generativ cu JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [AI Generativ cu Java](https://aka.ms/genaijava)
- [AI pentru Începători](https://aka.ms/ai-beginners)
- [Data Science pentru Începători](https://aka.ms/datascience-beginners)
- [Știința Datelor pentru Începători](https://aka.ms/datascience-beginners)
- [Bash pentru Începători](https://github.com/microsoft/bash-for-beginners)
- [ML pentru Începători](https://aka.ms/ml-beginners)
- [Cybersecurity pentru Începători](https://github.com/microsoft/Security-101)
- [Web Dev pentru Începători](https://aka.ms/webdev-beginners)
- [Securitate Cibernetică pentru Începători](https://github.com/microsoft/Security-101)
- [Dezvoltare Web pentru Începători](https://aka.ms/webdev-beginners)
- [IoT pentru Începători](https://aka.ms/iot-beginners)
- [Machine Learning pentru Începători](https://aka.ms/ml-beginners)
- [Învățare Automată pentru Începători](https://aka.ms/ml-beginners)
- [Dezvoltare XR pentru Începători](https://aka.ms/xr-dev-for-beginners)
- [Stăpânirea GitHub Copilot pentru Programare AI în Perechi](https://aka.ms/GitHubCopilotAI)
- [Dezvoltare XR pentru Începători](https://github.com/microsoft/xr-development-for-beginners)
@ -176,3 +178,5 @@ Echipa noastră produce alte curricule! Consultă:
---
**Declinare de responsabilitate**:
Acest document a fost tradus folosind serviciul de traducere AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși ne străduim să asigurăm acuratețea, vă rugăm să fiți conștienți de faptul că traducerile automate pot conține erori sau inexactități. Documentul original în limba sa natală ar trebui considerat sursa autoritară. Pentru informații critice, se recomandă traducerea profesională realizată de un specialist. Nu ne asumăm responsabilitatea pentru eventualele neînțelegeri sau interpretări greșite care pot apărea din utilizarea acestei traduceri.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
Azure Cloud Advocates в Microsoft рады предложить 10-недельную учебную программу, состоящую из 20 уроков, посвященных Data Science. Каждый урок включает предварительные и итоговые тесты, письменные инструкции для выполнения задания, решение и домашнее задание. Наш проектный подход к обучению позволяет вам учиться, создавая проекты, что доказано способствует лучшему усвоению новых навыков.
[](https://aka.ms/foundry/forum)
Команда Azure Cloud Advocates в Microsoft рада предложить 10-недельный курс из 20 уроков, посвященный Data Science. Каждый урок включает в себя предварительные и итоговые тесты, письменные инструкции для выполнения задания, решение и задание. Наш проектно-ориентированный подход позволяет учиться через практику, что доказано способствует лучшему усвоению новых навыков.
||
||
|:---:|
| Data Science For Beginners - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
| Data Science для начинающих - _Скетчнот от [@nitya](https://twitter.com/nitya)_ |
### 🌐 Поддержка нескольких языков
#### Поддерживается через GitHub Action (автоматически и всегда актуально)
**Если вы хотите добавить поддержку других языков, список доступных языков находится [здесь](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Если вы хотите добавить поддержку дополнительных языков, список доступных языков находится [здесь](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Присоединяйтесь к нашему сообществу
[](https://aka.ms/ds4beginners/discord)
У нас проходит серия обучений с использованием ИИ в Discord. Узнайте больше и присоединяйтесь к нам на [Learn with AI Series](https://aka.ms/learnwithai/discord) с 18 по 30 сентября 2025 года. Вы получите советы и рекомендации по использованию GitHub Copilot для Data Science.
У нас проходит серия обучения с AI в Discord, узнайте больше и присоединяйтесь к нам на [Learn with AI Series](https://aka.ms/learnwithai/discord) с 18 по 30 сентября 2025 года. Вы узнаете советы и хитрости использования GitHub Copilot для Data Science.

# Вы студент?
Начните сэтих ресурсов:
Начните сследующих ресурсов:
- [Студенческая страница](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum). Здесь вы найдете ресурсы для начинающих, студенческие пакеты и даже способы получить бесплатный ваучер на сертификацию. Это страница, которую стоит добавить в закладки и проверять время от времени, так как мы обновляем контент как минимум раз в месяц.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum). Присоединяйтесь к глобальному сообществу студенческих амбассадоров — это может стать вашим путем в Microsoft.
- [Страница для студентов](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum)На этой странице вы найдете ресурсы для начинающих, студенческие пакеты и даже способы получить бесплатный сертификат. Это страница, которую стоит добавить в закладки и проверять время от времени, так как мы обновляем контент как минимум раз в месяц.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Присоединяйтесь к глобальному сообществу студенческих послов, это может стать вашим путем в Microsoft.
# Начало работы
> **Преподаватели**: мы [добавили несколько рекомендаций](for-teachers.md) о том, как использовать этот курс. Мы будем рады вашему отзыву [в нашем форуме обсуждений](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Учителя**: мы [включили несколько предложений](for-teachers.md) о том, как использовать эту учебную программу. Нам будет приятно получить ваш отзыв [в нашем форуме обсуждений](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Студенты](https://aka.ms/student-page)**: чтобы использовать этот курс самостоятельно, сделайте форк репозитория и выполняйте задания самостоятельно, начиная с предварительного теста. Затем прочитайте лекцию и выполните остальные задания. Постарайтесь создавать проекты, понимая уроки, а не копируя готовый код решений; однако этот код доступен в папках /solutions для каждого проектно-ориентированного урока. Еще одна идея — создать учебную группу с друзьями и изучать материал вместе. Для дальнейшего изучения мы рекомендуем [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Студенты](https://aka.ms/student-page)**: чтобы использовать эту учебную программу самостоятельно, сделайте форк всего репозитория и выполните упражнения самостоятельно, начиная с предварительного теста. Затем прочитайте лекцию и выполните остальные задания. Постарайтесь создавать проекты, понимая уроки, а не копируя код решения; однако этот код доступен в папках /solutions в каждом проектно-ориентированном уроке. Еще одна идея — создать учебную группу с друзьями и изучать контент вместе. Для дальнейшего изучения мы рекомендуем [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Знакомьтесь с командой
@ -72,28 +55,28 @@ CO_OP_TRANSLATOR_METADATA:
> 🎥 Нажмите на изображение выше, чтобы посмотреть видео о проекте и людях, которые его создали!
## Педагогический подход
## Педагогика
При создании этого курса мы выбрали два педагогических принципа: проектно-ориентированный подход и частые тесты. К концу этого курса студенты изучат основные принципы Data Science, включая этические аспекты, подготовку данных, различные методы работы с данными, визуализацию данных, анализ данных, реальные примеры использования Data Science и многое другое.
Мы выбрали два педагогических принципа при создании этой учебной программы: обеспечение проектного подхода и включение частых тестов. К концу этой серии студенты изучат основные принципы Data Science, включая этические концепции, подготовку данных, различные способы работы с данными, визуализацию данных, анализ данных, реальные примеры использования Data Science и многое другое.
Кроме того, тесты с низким уровнем стресса перед занятием настраивают студента на изучение темы, а второй тест после занятия способствует лучшему запоминанию. Этот курс был разработан как гибкий и увлекательный, его можно проходить полностью или частично. Проекты начинаются с простых и становятся все более сложными к концу 10-недельного цикла.
Кроме того, тестс низкими ставками перед занятием настраивает студента на изучение темы, а второй тест после занятия способствует дальнейшему закреплению материала. Эта учебная программа была разработана так, чтобы быть гибкой и увлекательной, и ее можно проходить полностью или частично. Проекты начинаются с простых и становятся все более сложными к концу 10-недельного цикла.
> Ознакомьтесь с нашими [Правилами поведения](CODE_OF_CONDUCT.md), [Руководством по участию](CONTRIBUTING.md), [Руководством по переводу](TRANSLATIONS.md). Мы будем рады вашим конструктивным отзывам!
> Ознакомьтесь с нашим [Кодексом поведения](CODE_OF_CONDUCT.md), [Руководством по внесению изменений](CONTRIBUTING.md), [Руководством по переводу](TRANSLATIONS.md). Мы приветствуем ваши конструктивные отзывы!
## Каждый урок включает:
- Опциональный скетчноут
- Опциональный скетчнот
- Опциональное дополнительное видео
- Разогревающий тест перед уроком
- Письменный урок
- Для проектно-ориентированных уроков — пошаговые инструкции по созданию проекта
- Для проектных уроков — пошаговые инструкции по созданию проекта
- Проверка знаний
- Задание
- Задача
- Дополнительное чтение
- Домашнее задание
- [Тест после урока](https://ff-quizzes.netlify.app/en/)
> **Примечание о тестах**: Все тесты находятся в папке Quiz-App, всего 40 тестов по три вопроса в каждом. Они связаны с уроками, но приложение для тестов можно запустить локально или развернуть в Azure; следуйте инструкциям в папке `quiz-app`. Постепенно тесты переводятся на другие языки.
> **Примечание о тестах**: Все тесты находятся в папке Quiz-App, всего 40 тестов по три вопроса каждый. Они связаны с уроками, но приложение для тестов можно запустить локально или развернуть в Azure; следуйте инструкциям в папке `quiz-app`. Они постепенно переводятся на другие языки.
## Уроки
||
@ -102,38 +85,39 @@ CO_OP_TRANSLATOR_METADATA:
| Номер урока | Тема | Группа уроков | Цели обучения | Связанный урок | Автор |
| 01 | Определение Data Science | [Введение](1-Introduction/README.md) | Изучите основные концепции Data Science и его связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитрий](http://soshnikov.com) |
| 02 | Этика Data Science | [Введение](1-Introduction/README.md) | Концепции этики данных, вызовы и подходы. | [урок](1-Introduction/02-ethics/README.md) | [Нития](https://twitter.com/nitya) |
| 01 | Определение науки о данных | [Введение](1-Introduction/README.md) | Изучите основные концепции науки о данных и её связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитрий](http://soshnikov.com) |
| 02 | Этика науки о данных | [Введение](1-Introduction/README.md) | Концепции этики данных, вызовы и рамки. | [урок](1-Introduction/02-ethics/README.md) | [Нития](https://twitter.com/nitya) |
| 03 | Определение данных | [Введение](1-Introduction/README.md) | Как классифицируются данные и их основные источники. | [урок](1-Introduction/03-defining-data/README.md) | [Жасмин](https://www.twitter.com/paladique) |
| 04 | Введение в статистику и теорию вероятностей | [Введение](1-Introduction/README.md) | Математические методы теории вероятностей и статистики для анализа данных. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитрий](http://soshnikov.com) |
| 05 | Работа с реляционными данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в реляционные данные и основы их анализа с использованием языка SQL (произносится как "си-квел"). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
| 06 | Работа с данными NoSQL | [Работа с данными](2-Working-With-Data/README.md) | Введение в нереляционные данные, их типы и основы анализа документных баз данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмин](https://twitter.com/paladique) |
| 06 | Работа сNoSQL данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в нереляционные данные, их различные типы и основы анализа документных баз данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмин](https://twitter.com/paladique) |
| 07 | Работа с Python | [Работа с данными](2-Working-With-Data/README.md) | Основы использования Python для анализа данных с библиотеками, такими как Pandas. Рекомендуется базовое понимание программирования на Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитрий](http://soshnikov.com) |
| 08 | Подготовка данных | [Работа с данными](2-Working-With-Data/README.md) | Техники очистки и преобразования данных для решения проблем, связанных с отсутствующими, неточными или неполными данными. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Жасмин](https://www.twitter.com/paladique) |
| 09 | Визуализация количеств | [Визуализация данных](3-Data-Visualization/README.md) | Узнайте, как использовать Matplotlib для визуализации данных о птицах 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Джен](https://twitter.com/jenlooper) |
| 10 | Визуализация распределений данных | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация наблюдений и трендов в пределах интервала. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Джен](https://twitter.com/jenlooper) |
| 12 | Визуализация взаимосвязей | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация связей и корреляций между наборами данных и их переменными. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Джен](https://twitter.com/jenlooper) |
| 13 | Значимые визуализации | [Визуализация данных](3-Data-Visualization/README.md) | Техники и рекомендации для создания визуализаций, которые помогают эффективно решать задачи и получать инсайты. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Джен](https://twitter.com/jenlooper) |
| 14 | Введение в жизненный цикл Data Science | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл Data Science и его первый этап — сбор и извлечение данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмин](https://twitter.com/paladique) |
| 15 | Анализ | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла Data Science посвящен техникам анализа данных. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмин](https://twitter.com/paladique) | | |
| 16 | Коммуникация | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла Data Science посвящен представлению инсайтов из данных в удобной для понимания форме для лиц, принимающих решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джейлен](https://twitter.com/JalenMcG) | | |
| 17 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Серия уроков, посвященная Data Science в облаке и его преимуществам. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 18 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с использованием инструментов Low Code. | [урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 19 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развертывание моделей с помощью Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 20 | Data Science в реальном мире | [В реальном мире](6-Data-Science-In-Wild/README.md) | Проекты, основанные на Data Science, в реальных условиях. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нития](https://twitter.com/nitya) |
| 14 | Введение в жизненный цикл науки о данных | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл науки о данных и его первый этап — сбор и извлечение данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмин](https://twitter.com/paladique) |
| 15 | Анализ | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла науки о данных посвящён техникам анализа данных. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмин](https://twitter.com/paladique) | | |
| 16 | Коммуникация | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла науки о данных посвящён представлению инсайтов из данных таким образом, чтобы они были понятны лицам, принимающим решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джейлен](https://twitter.com/JalenMcG) | | |
| 17 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Серия уроков, посвящённая науке о данных в облаке и её преимуществам. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 18 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с использованием инструментов Low Code. | [урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 19 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развёртывание моделей с помощью Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 20 | Наука о данных в реальном мире | [В реальном мире](6-Data-Science-In-Wild/README.md) | Проекты, основанные на науке о данных, в реальных условиях. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нития](https://twitter.com/nitya) |
## GitHub Codespaces
Следуйте этим шагам, чтобы открыть этот пример в Codespace:
1. Нажмите на выпадающее меню Code и выберите опцию Open with Codespaces.
2. Выберите + New codespace внизу панели.
2. Выберите + New codespace в нижней части панели.
Для получения дополнительной информации ознакомьтесь с [документацией GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Следуйте этим шагам, чтобы открыть этот репозиторий в контейнере, используя ваш локальный компьютер и VSCode с расширением VS Code Remote - Containers:
1. Если вы впервые используете контейнеры для разработки, убедитесь, что ваша система соответствует требованиям (например, установлен Docker), указанным в [документации по началу работы](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Если вы впервые используете контейнер для разработки, убедитесь, что ваша система соответствует требованиям (например, установлен Docker), указанным в [документации по началу работы](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Чтобы использовать этот репозиторий, вы можете открыть его в изолированном Docker-томе:
@ -147,22 +131,24 @@ CO_OP_TRANSLATOR_METADATA:
## Оффлайн-доступ
Вы можете запустить эту документацию оффлайн, используя [Docsify](https://docsify.js.org/#/). Форкните этот репозиторий, [установите Docsify](https://docsify.js.org/#/quickstart) на вашем локальном компьютере, затем в корневой папке этого репозитория введите `docsify serve`. Веб-сайт будет доступен на порту 3000 вашего localhost: `localhost:3000`.
Вы можете запустить эту документацию оффлайн, используя [Docsify](https://docsify.js.org/#/). Форкните этот репозиторий, [установите Docsify](https://docsify.js.org/#/quickstart) на вашем локальном компьютере, затем в корневой папке этого репозитория введите `docsify serve`. Веб-сайт будет доступен на порту 3000 вашего локального хоста: `localhost:3000`.
> Примечание: блокноты не будут отображаться через Docsify, поэтому, если вам нужно запустить блокнот, сделайте это отдельно в VS Code сзапущенным Python-ядром.
> Примечание: блокноты не будут отображаться через Docsify, поэтому, если вам нужно запустить блокнот, сделайте это отдельно в VS Code сиспользованием Python-ядра.
## Другие учебные материалы
Наша команда создает другие учебные материалы! Ознакомьтесь с:
Наша команда создаёт другие учебные материалы! Ознакомьтесь с:
- [Generative AI для начинающих](https://aka.ms/genai-beginners)
- [Generative AI для начинающих .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI с JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI с Java](https://aka.ms/genaijava)
- [Edge AI для начинающих](https://aka.ms/edgeai-for-beginners)
- [AI-агенты для начинающих](https://aka.ms/ai-agents-beginners)
- [Генеративный AI для начинающих](https://aka.ms/genai-beginners)
- [Генеративный AI для начинающих .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Генеративный AI с JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Генеративный AI с Java](https://aka.ms/genaijava)
- [AI для начинающих](https://aka.ms/ai-beginners)
- [Data Science для начинающих](https://aka.ms/datascience-beginners)
- [Наука о данных для начинающих](https://aka.ms/datascience-beginners)
- [Bash для начинающих](https://github.com/microsoft/bash-for-beginners)
- [ML для начинающих](https://aka.ms/ml-beginners)
- [Машинное обучение для начинающих](https://aka.ms/ml-beginners)
- [Кибербезопасность для начинающих](https://github.com/microsoft/Security-101)
- [Веб-разработка для начинающих](https://aka.ms/webdev-beginners)
- [IoT для начинающих](https://aka.ms/iot-beginners)
@ -171,7 +157,9 @@ CO_OP_TRANSLATOR_METADATA:
- [Мастерство GitHub Copilot для парного программирования с AI](https://aka.ms/GitHubCopilotAI)
- [Разработка XR для начинающих](https://github.com/microsoft/xr-development-for-beginners)
- [Мастерство GitHub Copilot для разработчиков C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Выберите свое приключение с Copilot](https://github.com/microsoft/CopilotAdventures)
- [Выберите своё приключение с Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Отказ от ответственности**:
Этот документ был переведен с помощью сервиса автоматического перевода [Co-op Translator](https://github.com/Azure/co-op-translator). Несмотря на наши усилия обеспечить точность, автоматические переводы могут содержать ошибки или неточности. Оригинальный документ на его родном языке следует считать авторитетным источником. Для получения критически важной информации рекомендуется профессиональный перевод человеком. Мы не несем ответственности за любые недоразумения или неправильные интерпретации, возникшие в результате использования данного перевода.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates v Microsofte s radosťou ponúkajú 10-týždňový, 20-lekciový učebný plán zameraný na Data Science. Každá lekcia obsahuje kvízy pred a po lekcii, písomné pokyny na dokončenie lekcie, riešenie a úlohu. Náš projektovo orientovaný prístup vám umožní učiť sa prostredníctvom tvorby, čo je osvedčený spôsob, ako si nové zručnosti lepšie zapamätať.
Azure Cloud Advocates v spoločnosti Microsoft s radosťou ponúkajú 10-týždňový, 20-lekciový učebný plán o dátovej vede. Každá lekcia obsahuje kvízy pred a po lekcii, písomné pokyny na dokončenie lekcie, riešenie a zadanie. Náš projektovo orientovaný prístup vám umožní učiť sa prostredníctvom tvorby, čo je osvedčený spôsob, ako si nové zručnosti lepšie osvojiť.
@ -34,20 +18,20 @@ Azure Cloud Advocates v Microsofte s radosťou ponúkajú 10-týždňový, 20-le
||
|:---:|
| Data Science pre začiatočníkov - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
| Dátová veda pre začiatočníkov - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
### 🌐 Podpora viacerých jazykov
#### Podporované prostredníctvom GitHub Action (Automatizované a vždy aktuálne)
#### Podporované prostredníctvom GitHub Action (automatizované a vždy aktuálne)
**Ak chcete podporiť ďalšie jazyky, zoznam podporovaných jazykov nájdete [tu](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Pripojte sa k našej komunite
[](https://aka.ms/ds4beginners/discord)
Máme prebiehajúcu sériu Learn with AI na Discorde, dozviete sa viac a pripojte sa k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Získate tipy a triky na používanie GitHub Copilot pre Data Science.
Máme prebiehajúcu sériu "Learn with AI" na Discorde, dozviete sa viac a pripojte sa k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Získate tipy a triky na používanie GitHub Copilot pre dátovú vedu.

@ -55,14 +39,14 @@ Máme prebiehajúcu sériu Learn with AI na Discorde, dozviete sa viac a pripojt
Začnite s nasledujúcimi zdrojmi:
- [Stránka Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tejto stránke nájdete zdroje pre začiatočníkov, študentské balíčky a dokonca aj spôsoby, ako získať bezplatný certifikát. Túto stránku si určite uložte a pravidelne kontrolujte, pretože obsah meníme minimálne raz mesačne.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pripojte sa k globálnej komunite študentských ambasádorov, môže to byť vaša cesta do Microsoftu.
- [Stránka Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tejto stránke nájdete zdroje pre začiatočníkov, študentské balíčky a dokonca aj spôsoby, ako získať bezplatný certifikát. Toto je stránka, ktorú si chcete uložiť a pravidelne kontrolovať, pretože obsah meníme minimálne raz mesačne.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pripojte sa k globálnej komunite študentských ambasádorov, toto môže byť vaša cesta do Microsoftu.
# Začíname
> **Učitelia**: [pridali sme niekoľko návrhov](for-teachers.md), ako používať tento učebný plán. Radi by sme počuli vašu spätnú väzbu [v našom diskusnom fóre](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Študenti](https://aka.ms/student-page)**: Ak chcete tento učebný plán používať samostatne, vytvorte si vlastnú kópiu celého repozitára a dokončite cvičenia sami, začnite kvízom pred lekciou. Potom si prečítajte lekciu a dokončite zvyšok aktivít. Pokúste sa vytvárať projekty pochopením lekcií namiesto kopírovania riešenia kódu; tento kód je však dostupný v priečinkoch /solutions v každej projektovo orientovanej lekcii. Ďalším nápadom by mohlo byť vytvorenie študijnej skupiny s priateľmi a prejsť obsah spoločne. Na ďalšie štúdium odporúčame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Študenti](https://aka.ms/student-page)**: Ak chcete tento učebný plán používať samostatne, vytvorte si vlastnú kópiu celého repozitára a dokončite cvičenia sami, začnite kvízom pred prednáškou. Potom si prečítajte prednášku a dokončite zvyšok aktivít. Skúste vytvoriť projekty pochopením lekcií namiesto kopírovania riešenia kódu; tento kód je však dostupný v priečinkoch /solutions v každej lekcii zameranej na projekt. Ďalším nápadom by bolo vytvoriť študijnú skupinu s priateľmi a prejsť obsah spoločne. Na ďalšie štúdium odporúčame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Spoznajte tím
@ -74,9 +58,9 @@ Začnite s nasledujúcimi zdrojmi:
## Pedagogika
Pri tvorbe tohto učebného plánu sme sa rozhodli pre dva pedagogické princípy: zabezpečiť, aby bol projektovo orientovaný a aby obsahoval časté kvízy. Na konci tejto série sa študenti naučia základné princípy data science, vrátane etických konceptov, prípravy dát, rôznych spôsobov práce s dátami, vizualizácie dát, analýzy dát, reálnych prípadov použitia data science a ďalších.
Pri tvorbe tohto učebného plánu sme si zvolili dva pedagogické princípy: zabezpečiť, aby bol projektovo orientovaný a aby obsahoval časté kvízy. Na konci tejto série sa študenti naučia základné princípy dátovej vedy, vrátane etických konceptov, prípravy dát, rôznych spôsobov práce s dátami, vizualizácie dát, analýzy dát, reálnych prípadov použitia dátovej vedy a ďalších.
Okrem toho nízko-náročný kvíz pred hodinou nastaví študentovi zámer naučiť sa tému, zatiaľ čo druhý kvíz po hodine zabezpečí lepšie zapamätanie. Tento učebný plán bol navrhnutý tak, aby bol flexibilný a zábavný, a môže byť absolvovaný celý alebo len jeho časti. Projekty začínajú malé a postupne sa stávajú zložitejšími na konci 10-týždňového cyklu.
Okrem toho nízko-náročný kvíz pred hodinou nastaví študentovu pozornosť na učenie sa témy, zatiaľ čo druhý kvíz po hodine zabezpečí lepšie zapamätanie. Tento učebný plán bol navrhnutý tak, aby bol flexibilný a zábavný, a môže byť absolvovaný celý alebo len jeho časť. Projekty začínajú malé a postupne sa stávajú zložitejšími na konci 10-týždňového cyklu.
@ -84,29 +68,29 @@ Okrem toho nízko-náročný kvíz pred hodinou nastaví študentovi zámer nau
- Voliteľný sketchnote
- Voliteľné doplnkové video
- Kvíz na zahriatie pred lekciou
- Kvíz na rozohriatie pred lekciou
- Písomná lekcia
- Pre projektovo orientované lekcie, podrobné návody na vytvorenie projektu
- Pre lekcie zamerané na projekt, podrobné pokyny na vytvorenie projektu
- Kontroly vedomostí
- Výzvu
- Doplnkové čítanie
- Úlohu
- Zadanie
- [Kvíz po lekcii](https://ff-quizzes.netlify.app/en/)
> **Poznámka o kvízoch**: Všetky kvízy sú obsiahnuté v priečinku Quiz-App, celkovo 40 kvízov po tri otázky. Sú prepojené v rámci lekcií, ale aplikáciu kvízov je možné spustiť lokálne alebo nasadiť na Azure; postupujte podľa pokynov v priečinku `quiz-app`. Postupne sa lokalizujú.
> **Poznámka o kvízoch**: Všetky kvízy sú obsiahnuté v priečinku Quiz-App, celkovo 40 kvízov po tri otázky. Sú prepojené v rámci lekcií, ale aplikácia kvízov môže byť spustená lokálne alebo nasadená na Azure; postupujte podľa pokynov v priečinku `quiz-app`. Postupne sa lokalizujú.
| 01 | Definovanie dátovej vedy | [Úvod](1-Introduction/README.md) | Naučte sa základné koncepty dátovej vedy a ako súvisí s umelou inteligenciou, strojovým učením a veľkými dátami. | [lekcia](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika dátovej vedy | [Úvod](1-Introduction/README.md) | Koncepty dátovej etiky, výzvy a rámce. | [lekcia](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 02 | Etika dátovej vedy | [Úvod](1-Introduction/README.md) | Koncepty etiky dát, výzvy a rámce. | [lekcia](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definovanie dát | [Úvod](1-Introduction/README.md) | Ako sú dáta klasifikované a ich bežné zdroje. | [lekcia](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Úvod do štatistiky a pravdepodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravdepodobnosti a štatistiky na pochopenie dát. | [lekcia](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Práca s relačnými dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do relačných dát a základy ich skúmania a analýzy pomocou Structured Query Language, známeho ako SQL (vyslovuje sa „si-kvel“). | [lekcia](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 05 | Práca s relačnými dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do relačných dát a základy skúmania a analýzy relačných dát pomocou Structured Query Language, známeho ako SQL (vyslovuje sa „si-kvel“). | [lekcia](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Práca s NoSQL dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do nerelačných dát, ich rôznych typov a základy skúmania a analýzy dokumentových databáz. | [lekcia](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Práca s Pythonom | [Práca s dátami](2-Working-With-Data/README.md) | Základy používania Pythonu na skúmanie dát s knižnicami ako Pandas. Odporúča sa základné pochopenie programovania v Pythone. | [lekcia](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Príprava dát | [Práca s dátami](2-Working-With-Data/README.md) | Témy o technikách čistenia a transformácie dát na riešenie problémov s chýbajúcimi, nepresnými alebo neúplnými dátami. | [lekcia](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
@ -135,7 +119,7 @@ Postupujte podľa týchto krokov na otvorenie tohto repozitára v kontajneri pom
1. Ak je to prvýkrát, čo používate vývojový kontajner, uistite sa, že váš systém spĺňa predpoklady (napr. máte nainštalovaný Docker) uvedené v [dokumentácii pre začiatok](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Na použitie tohto repozitára ho môžete otvoriť buď v izolovanom Docker objeme:
Na použitie tohto repozitára môžete buď otvoriť repozitár v izolovanom Docker objeme:
**Poznámka**: V zákulisí sa použije príkaz Remote-Containers: **Clone Repository in Container Volume...** na klonovanie zdrojového kódu do Docker objemu namiesto lokálneho súborového systému. [Objemy](https://docs.docker.com/storage/volumes/) sú preferovaným mechanizmom na uchovávanie dát kontajnera.
@ -147,14 +131,16 @@ Alebo otvorte lokálne klonovanú alebo stiahnutú verziu repozitára:
## Offline prístup
Túto dokumentáciu môžete spustiť offline pomocou [Docsify](https://docsify.js.org/#/). Forknite tento repozitár, [nainštalujte Docsify](https://docsify.js.org/#/quickstart) na váš lokálny počítač, potom v koreňovom priečinku tohto repozitára zadajte `docsify serve`. Webová stránka bude spustená na porte 3000 na vašom localhost: `localhost:3000`.
Túto dokumentáciu môžete spustiť offline pomocou [Docsify](https://docsify.js.org/#/). Forknite tento repozitár, [nainštalujte Docsify](https://docsify.js.org/#/quickstart) na váš lokálny počítač, potom v koreňovom priečinku tohto repozitára zadajte `docsify serve`. Webová stránka bude dostupná na porte 3000 na vašom localhost: `localhost:3000`.
> Poznámka, notebooky nebudú renderované cez Docsify, takže keď potrebujete spustiť notebook, urobte to samostatne vo VS Code s bežiacim Python kernelom.
## Ďalšie učebné osnovy
Náš tím vytvára ďalšie učebné osnovy! Pozrite si:
Náš tím vytvára aj ďalšie učebné osnovy! Pozrite si:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -175,3 +161,5 @@ Náš tím vytvára ďalšie učebné osnovy! Pozrite si:
---
**Upozornenie**:
Tento dokument bol preložený pomocou služby AI prekladu [Co-op Translator](https://github.com/Azure/co-op-translator). Hoci sa snažíme o presnosť, upozorňujeme, že automatizované preklady môžu obsahovať chyby alebo nepresnosti. Pôvodný dokument v jeho rodnom jazyku by mal byť považovaný za autoritatívny zdroj. Pre kritické informácie sa odporúča profesionálny ľudský preklad. Nenesieme zodpovednosť za akékoľvek nedorozumenia alebo nesprávne interpretácie vyplývajúce z použitia tohto prekladu.
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates pri Microsoftu z veseljem ponujajo 10-tedenski, 20-lekcijski kurikulum o podatkovni znanosti. Vsaka lekcija vključuje kvize pred in po lekciji, pisna navodila za dokončanje lekcije, rešitev in nalogo. Naša projektno usmerjena pedagogika vam omogoča učenje skozi ustvarjanje, kar je dokazano učinkovit način za trajno pridobivanje novih veščin.
Azure Cloud Advocates pri Microsoftu z veseljem ponujajo 10-tedenski, 20-lekcijski kurikulum o podatkovni znanosti. Vsaka lekcija vključuje kvize pred in po lekciji, pisna navodila za dokončanje lekcije, rešitev in nalogo. Naš projektno usmerjen pristop omogoča učenje skozi ustvarjanje, kar je dokazano učinkovit način za trajno pridobivanje novih veščin.
**Če želite dodati dodatne jezike, so podprti jeziki navedeni [tukaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Če želite dodati dodatne prevode, so podprti jeziki navedeni [tukaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Pridružite se naši skupnosti
[](https://aka.ms/ds4beginners/discord)
Imamo serijo učenja z AI na Discordu, več o tem in pridružite se nam na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Prejeli boste nasvete in trike za uporabo GitHub Copilot za podatkovno znanost.
Imamo serijo učenja z AI na Discordu, več o tem in pridružite se nam na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Naučili se boste nasvetov in trikov za uporabo GitHub Copilot za podatkovno znanost.

@ -55,14 +55,14 @@ Imamo serijo učenja z AI na Discordu, več o tem in pridružite se nam na [Lear
Začnite z naslednjimi viri:
- [Stran Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej strani boste našli začetniške vire, študentske pakete in celo načine za pridobitev brezplačnega certifikata. To je stran, ki jo želite shraniti med zaznamke in jo občasno preveriti, saj vsebino menjamo vsaj enkrat mesečno.
- [Stran Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej strani boste našli začetniške vire, študentske pakete in celo načine za pridobitev brezplačnega certifikata. To je stran, ki jo želite shraniti med zaznamke in občasno preveriti, saj vsebino menjamo vsaj enkrat mesečno.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pridružite se globalni skupnosti študentskih ambasadorjev, to bi lahko bil vaš vstop v Microsoft.
# Začetek
> **Učitelji**: [vključili smo nekaj predlogov](for-teachers.md) o tem, kako uporabiti ta kurikulum. Veseli bomo vaših povratnih informacij [v našem forumu za razprave](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Študenti](https://aka.ms/student-page)**: za samostojno uporabo tega kurikuluma, razvejajte celoten repozitorij in samostojno dokončajte vaje, začenši s kvizom pred predavanjem. Nato preberite predavanje in dokončajte preostale aktivnosti. Poskusite ustvariti projekte z razumevanjem lekcij, namesto da bi kopirali kodo rešitve; vendar je ta koda na voljo v mapah /solutions v vsaki projektno usmerjeni lekciji. Druga ideja bi bila, da oblikujete študijsko skupino s prijatelji in skupaj preučite vsebino. Za nadaljnje študije priporočamo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Študenti](https://aka.ms/student-page)**: če želite ta kurikulum uporabljati sami, razvejite celoten repozitorij in samostojno dokončajte vaje, začenši s kvizom pred predavanjem. Nato preberite predavanje in dokončajte preostale aktivnosti. Poskusite ustvariti projekte z razumevanjem lekcij, namesto da kopirate kodo rešitve; vendar je ta koda na voljo v mapah /solutions v vsaki lekciji, usmerjeni na projekt. Druga ideja je, da oblikujete študijsko skupino s prijatelji in skupaj preučite vsebino. Za nadaljnje študije priporočamo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Spoznajte ekipo
@ -74,7 +74,7 @@ Začnite z naslednjimi viri:
## Pedagogika
Pri oblikovanju tega kurikuluma smo izbrali dva pedagoška načela: zagotoviti, da je projektno usmerjen in da vključuje pogoste kvize. Do konca te serije bodo študenti osvojili osnovna načela podatkovne znanosti, vključno z etičnimi koncepti, pripravo podatkov, različnimi načini dela s podatki, vizualizacijo podatkov, analizo podatkov, resničnimi primeri uporabe podatkovne znanosti in še več.
Pri oblikovanju tega kurikuluma smo se odločili za dva pedagoška načela: zagotoviti, da je projektno usmerjen in da vključuje pogoste kvize. Do konca te serije bodo študenti osvojili osnovna načela podatkovne znanosti, vključno z etičnimi koncepti, pripravo podatkov, različnimi načini dela s podatki, vizualizacijo podatkov, analizo podatkov, resničnimi primeri uporabe podatkovne znanosti in še več.
Poleg tega kviz z nizkim tveganjem pred predavanjem usmeri pozornost študenta na učenje teme, medtem ko drugi kviz po predavanju zagotavlja dodatno zadrževanje znanja. Ta kurikulum je bil zasnovan tako, da je prilagodljiv in zabaven ter ga je mogoče jemati v celoti ali delno. Projekti se začnejo majhni in postajajo vse bolj kompleksni do konca 10-tedenskega cikla.
@ -82,11 +82,11 @@ Poleg tega kviz z nizkim tveganjem pred predavanjem usmeri pozornost študenta n
## Vsaka lekcija vključuje:
- Neobvezno sketchnote
- Neobvezna sketchnote
- Neobvezni dopolnilni video
- Ogrevalni kviz pred lekcijo
- Pisna lekcija
- Za projektno usmerjene lekcije, vodniki po korakih, kako zgraditi projekt
- Za lekcije, usmerjene na projekt, vodniki korak za korakom, kako zgraditi projekt
- Preverjanje znanja
- Izziv
- Dopolnilno branje
@ -98,7 +98,7 @@ Poleg tega kviz z nizkim tveganjem pred predavanjem usmeri pozornost študenta n
## Lekcije
||
|:---:|
| Data Science za začetnike: Načrt - _Sketchnote avtorja [@nitya](https://twitter.com/nitya)_ |
@ -109,52 +109,54 @@ Poleg tega kviz z nizkim tveganjem pred predavanjem usmeri pozornost študenta n
| 05 | Delo z relacijskimi podatki | [Delo s podatki](2-Working-With-Data/README.md) | Uvod v relacijske podatke in osnove raziskovanja ter analize relacijskih podatkov z jezikom SQL (izgovorjava "si-kvel"). | [lekcija](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Delo z NoSQL podatki | [Delo s podatki](2-Working-With-Data/README.md) | Uvod v nerelacijske podatke, njihove različne vrste ter osnove raziskovanja in analize dokumentnih baz. | [lekcija](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Delo s Pythonom | [Delo s podatki](2-Working-With-Data/README.md) | Osnove uporabe Pythona za raziskovanje podatkov z knjižnicami, kot je Pandas. Priporočljivo je osnovno razumevanje programiranja v Pythonu. | [lekcija](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Priprava podatkov | [Delo s podatki](2-Working-With-Data/README.md) | Tehnike čiščenja in preoblikovanja podatkov za reševanje izzivov, kot so manjkajoči, netočni ali nepopolni podatki. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 08 | Priprava podatkov | [Delo s podatki](2-Working-With-Data/README.md) | Tehnike čiščenja in preoblikovanja podatkov za obvladovanje izzivov, kot so manjkajoči, netočni ali nepopolni podatki. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Vizualizacija količin | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Naučite se uporabljati Matplotlib za vizualizacijo podatkov o pticah 🦆 | [lekcija](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Vizualizacija porazdelitev podatkov | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija opazovanj in trendov znotraj intervala. | [lekcija](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Vizualizacija deležev | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija diskretnih in združenih odstotkov. | [lekcija](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Vizualizacija odnosov | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija povezav in korelacij med nabori podatkov in njihovimi spremenljivkami. | [lekcija](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Smiselne vizualizacije | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Tehnike in smernice za ustvarjanje vizualizacij, ki so koristne za učinkovito reševanje problemov in pridobivanje vpogledov. | [lekcija](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Uvod v življenjski cikel podatkovne znanosti | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Uvod v življenjski cikel podatkovne znanosti in njegov prvi korak - pridobivanje in ekstrakcija podatkov. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 14 | Uvod v življenjski cikel podatkovne znanosti | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Uvod v življenjski cikel podatkovne znanosti in njegov prvi korak pridobivanja ter ekstrakcije podatkov. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Ta faza življenjskega cikla podatkovne znanosti se osredotoča na tehnike analize podatkov. | [lekcija](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacija | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Ta faza življenjskega cikla podatkovne znanosti se osredotoča na predstavitev vpogledov iz podatkov na način, ki olajša razumevanje za odločevalce. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | Komunikacija | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Ta faza življenjskega cikla podatkovne znanosti se osredotoča na predstavitev vpogledov iz podatkov na način, ki ga odločevalci lažje razumejo. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Podatkovna znanost v oblaku | [Podatki v oblaku](5-Data-Science-In-Cloud/README.md) | Serija lekcij, ki uvaja podatkovno znanost v oblaku in njene prednosti. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
| 18 | Podatkovna znanost v oblaku | [Podatki v oblaku](5-Data-Science-In-Cloud/README.md) | Učenje modelov z orodji za nizko kodiranje. |[lekcija](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
| 19 | Podatkovna znanost v oblaku | [Podatki v oblaku](5-Data-Science-In-Cloud/README.md) | Uvajanje modelov z Azure Machine Learning Studio. | [lekcija](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
| 20 | Podatkovna znanost v praksi | [V praksi](6-Data-Science-In-Wild/README.md) | Projekti, ki temeljijo na podatkovni znanosti v resničnem svetu. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Podatkovna znanost v naravi | [V naravi](6-Data-Science-In-Wild/README.md) | Projekti, ki jih poganja podatkovna znanost v resničnem svetu. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sledite tem korakom za odprtje tega vzorca v Codespace:
1. Kliknite spustni meni Code in izberite možnost Open with Codespaces.
2. Na dnu okna izberite + New codespace.
Za več informacij si oglejte [GitHub dokumentacijo](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
2. Na dnu podokna izberite + New codespace.
Za več informacij si oglejte [dokumentacijo GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sledite tem korakom za odprtje tega repozitorija v kontejnerju z uporabo vaše lokalne naprave in VSCode z razširitvijo VS Code Remote - Containers:
Sledite tem korakom za odprtje tega repozitorija v vsebniku z uporabo vaše lokalne naprave in VSCode z razširitvijo VS Code Remote - Containers:
1. Če prvič uporabljate razvojni kontejner, se prepričajte, da vaš sistem izpolnjuje predpogoje (npr. nameščen Docker) v [dokumentaciji za začetek](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Če prvič uporabljate razvojni vsebnik, se prepričajte, da vaš sistem izpolnjuje predpogoje (npr. imate nameščen Docker) v [dokumentaciji za začetek](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Za uporabo tega repozitorija ga lahko odprete v izoliranem Docker volumnu:
Za uporabo tega repozitorija ga lahko odprete bodisi v izoliranem Docker volumnu:
**Opomba**: V ozadju bo uporabljena ukaz Remote-Containers: **Clone Repository in Container Volume...**, da se izvorna koda klonira v Docker volumen namesto lokalnega datotečnega sistema. [Volumni](https://docs.docker.com/storage/volumes/) so priporočeni mehanizem za shranjevanje podatkov kontejnerja.
**Opomba**: V ozadju bo uporabljen ukaz Remote-Containers: **Clone Repository in Container Volume...**, da se izvorna koda klonira v Docker volumen namesto lokalnega datotečnega sistema. [Volumni](https://docs.docker.com/storage/volumes/) so prednostni mehanizem za shranjevanje podatkov vsebnika.
Ali pa odprite lokalno klonirano ali preneseno različico repozitorija:
Ali pa odprete lokalno klonirano ali preneseno različico repozitorija:
- Klonirajte ta repozitorij na vaš lokalni datotečni sistem.
- Pritisnite F1 in izberite ukaz **Remote-Containers: Open Folder in Container...**.
- Izberite klonirano kopijo te mape, počakajte, da se kontejner zažene, in preizkusite stvari.
- Izberite klonirano kopijo te mape, počakajte, da se vsebnik zažene, in preizkusite stvari.
## Dostop brez povezave
To dokumentacijo lahko zaženete brez povezave z uporabo [Docsify](https://docsify.js.org/#/). Forkajte ta repozitorij, [namestite Docsify](https://docsify.js.org/#/quickstart) na vašo lokalno napravo, nato v korenski mapi tega repozitorija vnesite `docsify serve`. Spletna stran bo na voljo na portu 3000 na vašem localhostu: `localhost:3000`.
> Opomba, zvezki ne bodo upodobljeni prek Docsify, zato jih po potrebi zaženite ločeno v VS Code z uporabo Python jedra.
> Opomba, zvezki ne bodo upodobljeni prek Docsify, zato jih, ko jih potrebujete, zaženite ločeno v VS Code z uporabo Python jedra.
## Druge učne vsebine
Naša ekipa ustvarja tudi druge učne vsebine! Oglejte si:
- [Edge AI za začetnike](https://aka.ms/edgeai-for-beginners)
- [AI agenti za začetnike](https://aka.ms/ai-agents-beginners)
- [Generativna AI za začetnike](https://aka.ms/genai-beginners)
- [Generativna AI za začetnike .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generativna AI z JavaScriptom](https://github.com/microsoft/generative-ai-with-javascript)
@ -162,7 +164,7 @@ Naša ekipa ustvarja tudi druge učne vsebine! Oglejte si:
- [AI za začetnike](https://aka.ms/ai-beginners)
- [Podatkovna znanost za začetnike](https://aka.ms/datascience-beginners)
- [Bash za začetnike](https://github.com/microsoft/bash-for-beginners)
- [Strojno učenje za začetnike](https://aka.ms/ml-beginners)
- [ML za začetnike](https://aka.ms/ml-beginners)
- [Kibernetska varnost za začetnike](https://github.com/microsoft/Security-101)
- [Spletni razvoj za začetnike](https://aka.ms/webdev-beginners)
- [IoT za začetnike](https://aka.ms/iot-beginners)
@ -175,3 +177,5 @@ Naša ekipa ustvarja tudi druge učne vsebine! Oglejte si:
---
**Omejitev odgovornosti**:
Ta dokument je bil preveden z uporabo storitve AI za prevajanje [Co-op Translator](https://github.com/Azure/co-op-translator). Čeprav si prizadevamo za natančnost, vas prosimo, da upoštevate, da lahko avtomatizirani prevodi vsebujejo napake ali netočnosti. Izvirni dokument v njegovem maternem jeziku je treba obravnavati kot avtoritativni vir. Za ključne informacije priporočamo profesionalni človeški prevod. Ne prevzemamo odgovornosti za morebitna nesporazumevanja ali napačne razlage, ki izhajajo iz uporabe tega prevoda.
Azure Cloud Advocates у Microsoft-уса задовољством представљају наставни план од 10 недеља и 20 лекција посвећен науци о подацима. Свака лекција укључује квизове пре и после лекције, писана упутства за завршетак лекције, решење и задатак. Наш приступ заснован на пројектима омогућава вам да учите кроз практичан рад, што је доказано ефикасан начин за усвајање нових вештина.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](http://makeapullrequest.com)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates у Microsoft-уса задовољством представљају наставни план од 10 недеља и 20 лекција о науци о подацима. Свака лекција укључује квизове пре и после лекције, писана упутства за завршетак лекције, решење и задатак. Наш приступ заснован на пројектима омогућава вам да учите кроз изградњу, што је доказан начин да нове вештине остану трајне.
||
**Ако желите да додате подршку за додатне језике, списак је доступан [овде](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Ако желите да додате још језика, подржани језици су наведени [овде](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Придружите се нашој заједници
[](https://aka.ms/ds4beginners/discord)
- [Страница за студенте](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На овој страници ћете пронаћи ресурсе за почетнике, студентске пакете и чак начине да добијете бесплатан ваучер за сертификат. Ово је страница коју желите да обележите и повремено проверавате, јер садржај мењамо најмање једном месечно.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Придружите се глобалној заједници студентских амбасадора, ово може бити ваш пут ка Microsoft-у.
- [Студентска страница](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На овој страници ћете пронаћи ресурсе за почетнике, студентске пакете и чак начине да добијете бесплатан ваучер за сертификат. Ово је страница коју желите да обележите и повремено проверавате, јер садржај мењамо најмање једном месечно.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Придружите се глобалној заједници студентских амбасадора, ово би могао бити ваш пут у Microsoft.
# Како започети
# Почетак
> **Наставници**: укључили смо [неке предлоге](for-teachers.md) о томе како да користите овај наставни план. Волели бисмо да чујемо ваше повратне информације [у нашем форуму за дискусију](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Наставници**: укључили смо [неке предлоге](for-teachers.md) о томе како да користите овај наставни план. Волели бисмо ваше повратне информације [у нашем форуму за дискусију](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Студенти](https://aka.ms/student-page)**: да бисте користили овај наставни план самостално, направите форк целог репозиторијума и завршите вежбе самостално, почевши од квиза пре предавања. Затим прочитајте предавање и завршите остале активности. Покушајте да креирате пројекте разумевањем лекција уместо копирања решења; међутим, код решењаје доступан у /solutions фолдерима у свакој лекцији заснованој на пројекту. Друга идеја је да формирате групу за учење са пријатељима и заједно пролазите кроз садржај. За даље учење, препоручујемо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Студенти](https://aka.ms/student-page)**: да бисте користили овај наставни план самостално, форкујте цео репозиторијум и завршите вежбе самостално, почевши од квиза пре предавања. Затим прочитајте предавање и завршите остале активности. Покушајте да креирате пројекте разумевањем лекција, а не копирањем решења; међутим, тај кодје доступан у /solutions фолдерима у свакој лекцији заснованој на пројекту. Друга идеја би била да формирате групу за учење са пријатељима и заједно пролазите кроз садржај. За даље учење препоручујемо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
Приликом креирања овог наставног плана, изабрали смо два педагошка принципа: осигурање да је заснован на пројектима и да укључује честе квизове. До краја ове серије, студенти ће научити основне принципе науке о подацима, укључујући етичке концепте, припрему података, различите начине рада са подацима, визуализацију података, анализу података, стварне примере примене науке о подацима и још много тога.
Изабрали смо два педагошка принципа приликом креирања овог наставног плана: осигурање да је заснован на пројектима и да укључује честе квизове. До краја ове серије, студенти ће научити основне принципе науке о подацима, укључујући етичке концепте, припрему података, различите начине рада са подацима, визуализацију података, анализу података, примере из стварног света и још много тога.
Поред тога, квиз са ниским ризиком пре часа поставља намеру студента ка учењу теме, док други квиз након часа осигурава даље задржавање знања. Овај наставни план је дизајниран да буде флексибилан и забаван и може се узети у целини или делимично. Пројекти почињу малим и постају све сложенији до краја циклуса од 10 недеља.
> Пронађите наш [Кодекс понашања](CODE_OF_CONDUCT.md), [Упутства за допринос](CONTRIBUTING.md), [Упутства за превод](TRANSLATIONS.md). Добродошли сте да нам дате конструктивне повратне информације!
> Пронађите наш [Кодекс понашања](CODE_OF_CONDUCT.md), [Упутства за допринос](CONTRIBUTING.md), [Упутства за превод](TRANSLATIONS.md). Добродошлесу ваше конструктивне повратне информације!
## Свака лекција укључује:
- Опционалну илустрацију
- Опционални допунски видео
- Опциона илустрација
- Опциони допунски видео
- Квиз за загревање пре лекције
- Писану лекцију
- За лекције засноване на пројектима, водиче корак по корак како да изградите пројекат
- Писана лекција
- За лекције засноване на пројектима, водиче корак по корак како изградити пројекат
- Провере знања
- Изазов
- Допунско читање
- Задатак
- [Квиз након лекције](https://ff-quizzes.netlify.app/en/)
> **Напомена о квизовима**: Сви квизови се налазе у фолдеру Quiz-App, укупно 40 квизова са по три питања. Линкови ка квизовима су укључени у лекције, али апликација за квиз може се покренути локално или поставити на Azure; пратите упутства у фолдеру `quiz-app`. Постепено се локализују.
> **Напомена о квизовима**: Сви квизови се налазе у фолдеру Quiz-App, укупно 40 квизова са по три питања. Линкови ка њима су укључени у лекције, али апликација за квиз може се покренути локално или поставити на Azure; пратите упутства у фолдеру `quiz-app`. Постепено се локализују.
## Лекције
||
| 02 | Етика у науци о подацима | [Увод](1-Introduction/README.md) | Концепти етике података, изазови и оквири. | [лекција](1-Introduction/02-ethics/README.md) | [Нитија](https://twitter.com/nitya) |
| 03 | Дефинисање података | [Увод](1-Introduction/README.md) | Како се подаци класификују и њихови уобичајени извори. | [лекција](1-Introduction/03-defining-data/README.md) | [Јасмин](https://www.twitter.com/paladique) |
| 04 | Увод у статистику и вероватноћу | [Увод](1-Introduction/README.md) | Математичке технике вероватноће и статистике за разумевање података. | [лекција](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитриј](http://soshnikov.com) |
| 05 | Рад са релационим подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у релационе податке и основе истраживања и анализе релационих података помоћу SQL-а (Structured Query Language). | [лекција](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
| 06 | Рад са NoSQL подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у нерелационе податке, њихове различите типове и основе истраживања и анализе докумената базе података. | [лекција](2-Working-With-Data/06-non-relational/README.md) | [Јасмин](https://twitter.com/paladique)|
| 05 | Рад са релационим подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у релационе податке и основе истраживања и анализе релационих података помоћу језика SQL (изговара се „си-квел“). | [лекција](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
| 06 | Рад са NoSQL подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у нерелационе податке, њихове различите типове и основе истраживања и анализе докумената база података. | [лекција](2-Working-With-Data/06-non-relational/README.md) | [Јасмин](https://twitter.com/paladique)|
| 07 | Рад са Python-ом | [Рад са подацима](2-Working-With-Data/README.md) | Основе коришћења Python-а за истраживање података уз библиотеке као што је Pandas. Препоручује се основно разумевање Python програмирања. | [лекција](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитриј](http://soshnikov.com) |
| 08 | Припрема података | [Рад са подацима](2-Working-With-Data/README.md) | Теме о техникама чишћења и трансформације података за решавање проблема са недостајућим, нетачним или непотпуним подацима. | [лекција](2-Working-With-Data/08-data-preparation/README.md) | [Јасмин](https://www.twitter.com/paladique) |
| 08 | Припрема података | [Рад са подацима](2-Working-With-Data/README.md) | Теме о техникама за чишћење и трансформацију података ради решавања проблема са недостајућим, нетачним или непотпуним подацима. | [лекција](2-Working-With-Data/08-data-preparation/README.md) | [Јасмин](https://www.twitter.com/paladique) |
| 09 | Визуелизација количина | [Визуелизација података](3-Data-Visualization/README.md) | Научите како да користите Matplotlib за визуелизацију података о птицама 🦆 | [лекција](3-Data-Visualization/09-visualization-quantities/README.md) | [Џен](https://twitter.com/jenlooper) |
| 10 | Визуелизација расподела података | [Визуелизација података](3-Data-Visualization/README.md) | Визуелизација опажања и трендова унутар интервала. | [лекција](3-Data-Visualization/10-visualization-distributions/README.md) | [Џен](https://twitter.com/jenlooper) |
| 12 | Визуелизација односа | [Визуелизација података](3-Data-Visualization/README.md) | Визуелизација веза и корелација између скупова података и њихових варијабли. | [лекција](3-Data-Visualization/12-visualization-relationships/README.md) | [Џен](https://twitter.com/jenlooper) |
| 13 | Смислене визуелизације | [Визуелизација података](3-Data-Visualization/README.md) | Технике и смернице за прављење визуелизација које сукорисне за ефикасно решавање проблема и добијање увида. | [лекција](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Џен](https://twitter.com/jenlooper) |
| 13 | Смислене визуелизације | [Визуелизација података](3-Data-Visualization/README.md) | Технике и смернице за прављење визуелизација које сувредне за ефикасно решавање проблема и добијање увида. | [лекција](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Џен](https://twitter.com/jenlooper) |
| 14 | Увод у животни циклус науке о подацима | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Увод у животни циклус науке о подацима и његов први корак - прикупљање и екстракција података. | [лекција](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Јасмин](https://twitter.com/paladique) |
| 15 | Анализа | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Ова фаза животног циклуса науке о подацима фокусира се на технике анализе података. | [лекција](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Јасмин](https://twitter.com/paladique) | | |
| 16 | Комуникација | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Ова фаза животног циклуса науке о подацима фокусира се на представљање увида из података на начин који олакшава разумевање доносиоцима одлука. | [лекција](4-Data-Science-Lifecycle/16-communication/README.md) | [Џејлен](https://twitter.com/JalenMcG) | | |
| 17 | Наука о подацима у облаку | [Облачни подаци](5-Data-Science-In-Cloud/README.md) | Ова серија лекција уводи науку о подацима у облаку и њене предности. | [лекција](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 17 | Наука о подацима у облаку | [Облачни подаци](5-Data-Science-In-Cloud/README.md) | Ова серија лекција представља науку о подацима у облаку и њене предности. | [лекција](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 18 | Наука о подацима у облаку | [Облачни подаци](5-Data-Science-In-Cloud/README.md) | Тренирање модела помоћу алата са мало кода. |[лекција](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 19 | Наука о подацима у облаку | [Облачни подаци](5-Data-Science-In-Cloud/README.md) | Деплојовање модела помоћу Azure Machine Learning Studio. | [лекција](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 20 | Наука о подацима у стварном свету | [У стварном свету](6-Data-Science-In-Wild/README.md) | Пројекти вођени науком о подацима у стварном свету. | [лекција](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нитија](https://twitter.com/nitya) |
Можете покренути ову документацију офлајн користећи [Docsify](https://docsify.js.org/#/). Форкујте овај репозиторијум, [инсталирајте Docsify](https://docsify.js.org/#/quickstart) на вашем локалном рачунару, а затим у коренском фолдеру овог репозиторијума укуцајте `docsify serve`. Веб-сајт ће бити покренут на порту 3000 на вашем localhost-у: `localhost:3000`.
Можете покренути ову документацију офлајн користећи [Docsify](https://docsify.js.org/#/). Форкујте овај репозиторијум, [инсталирајте Docsify](https://docsify.js.org/#/quickstart) на ваш локални рачунар, а затим у коренском фолдеру овог репозиторијума укуцајте `docsify serve`. Веб-сајт ће бити покренут на порту 3000 на вашем localhost-у: `localhost:3000`.
> Напомена, нотебуци неће бити приказани преко Docsify-а, па када треба да покренете нотебук, урадите то одвојено у VS Code-уса Python кернелом.
> Напомена, бележнице неће бити приказане преко Docsify-а, па када треба да покренете бележницу, урадите то одвојено у VS Code-у користећи Python kernel.
## Остали курикулуми
Наш тим производи и друге курикулуме! Погледајте:
- [Генеративна вештачка интелигенција за почетнике](https://aka.ms/genai-beginners)
- [Генеративна вештачка интелигенција за почетнике .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Генеративна вештачка интелигенција са JavaScript-ом](https://github.com/microsoft/generative-ai-with-javascript)
- [Генеративна вештачка интелигенција са Java-ом](https://aka.ms/genaijava)
- [Вештачка интелигенција за почетнике](https://aka.ms/ai-beginners)
- [Edge AI за почетнике](https://aka.ms/edgeai-for-beginners)
- [AI агенти за почетнике](https://aka.ms/ai-agents-beginners)
- [Генеративна AI за почетнике](https://aka.ms/genai-beginners)
- [Генеративна AI за почетнике .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Генеративна AI са JavaScript-ом](https://github.com/microsoft/generative-ai-with-javascript)
- [Генеративна AI са Java-ом](https://aka.ms/genaijava)
- [AI за почетнике](https://aka.ms/ai-beginners)
- [Наука о подацима за почетнике](https://aka.ms/datascience-beginners)
- [Bash за почетнике](https://github.com/microsoft/bash-for-beginners)
- [Машинско учење за почетнике](https://aka.ms/ml-beginners)
- [IoT за почетнике](https://aka.ms/iot-beginners)
- [Машинско учење за почетнике](https://aka.ms/ml-beginners)
- [XR развој за почетнике](https://aka.ms/xr-dev-for-beginners)
- [Мастеринг GitHub Copilot за AI парно програмирање](https://aka.ms/GitHubCopilotAI)
- [Savladavanje GitHub Copilot-а за AI пар програмирање](https://aka.ms/GitHubCopilotAI)
- [XR развој за почетнике](https://github.com/microsoft/xr-development-for-beginners)
- [Мастеринг GitHub Copilot за C#/.NET програмере](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Savladavanje GitHub Copilot-а за C#/.NET програмере](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Изаберите своју Copilot авантуру](https://github.com/microsoft/CopilotAdventures)
---
**Одрицање од одговорности**:
Овај документ је преведен помоћу услуге за превођење уз помоћ вештачке интелигенције [Co-op Translator](https://github.com/Azure/co-op-translator). Иако се трудимо да обезбедимо тачност, молимо вас да имате у виду да аутоматски преводи могу садржати грешке или нетачности. Оригинални документ на његовом изворном језику треба сматрати меродавним извором. За критичне информације препоручује се професионални превод од стране људског преводиоца. Не преузимамо одговорност за било каква погрешна тумачења или неспоразуме који могу произаћи из коришћења овог превода.
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates på Microsoft är glada att erbjuda en 10-veckors, 20-lektions läroplan om Data Science. Varje lektion innehåller för- och eftertest, skriftliga instruktioner för att genomföra lektionen, en lösning och en uppgift. Vår projektbaserade pedagogik låter dig lära dig genom att skapa, vilket är ett beprövat sätt att få nya färdigheter att fastna.
Azure Cloud Advocates på Microsoft är glada att erbjuda en 10-veckors, 20-lektions läroplan om Data Science. Varje lektion innehåller för- och efter-lektionsquiz, skriftliga instruktioner för att genomföra lektionen, en lösning och en uppgift. Vår projektbaserade pedagogik låter dig lära dig genom att skapa, en beprövad metod för att få nya färdigheter att fastna.
||
|:---:|
| Data Science för Nybörjare - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
### 🌐 Flerspråkigt Stöd
### 🌐 Stöd för flera språk
#### Stöds via GitHub Action (Automatiserat & Alltid Uppdaterat)
**Om du vill ha ytterligare översättningar, finns stödda språk listade [här](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Om du vill ha ytterligare översättningar finns stödda språk listade [här](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Gå med i Vårt Community
#### Gå med i vår community
[](https://aka.ms/ds4beginners/discord)
Vi har en pågående Discord-serie om att lära sig med AI, lär dig mer och gå med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) från 18 - 30 september, 2025. Du får tips och tricks för att använda GitHub Copilot för Data Science.
Vi har en pågående Discord-serie om att lära sig med AI, lär dig mer och gå med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) från 18 - 30 september, 2025. Du får tips och tricks om att använda GitHub Copilot för Data Science.

@ -55,16 +39,16 @@ Vi har en pågående Discord-serie om att lära sig med AI, lär dig mer och gå
Kom igång med följande resurser:
- [Studenthubbsida](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denna sida hittar du resurser för nybörjare, studentpaket och till och med sätt att få en gratis certifieringskupong. Detta är en sida du vill bokmärka och kolla in då och då eftersom vi byter ut innehållet minst en gång i månaden.
- [Microsoft Learn Studentambassadörer](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Gå med i ett globalt community av studentambassadörer, detta kan vara din väg in i Microsoft.
- [Student Hub-sida](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denna sida hittar du resurser för nybörjare, studentpaket och till och med sätt att få en gratis certifikatkupong. Detta är en sida du vill bokmärka och kolla regelbundet eftersom vi byter ut innehåll minst en gång i månaden.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Gå med i en global community av studentambassadörer, detta kan vara din väg in i Microsoft.
# Kom igång
> **Lärare**: vi har [inkluderat några förslag](for-teachers.md) på hur man använder denna läroplan. Vi skulle älska att få din feedback [i vårt diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Lärare**: vi har [inkluderat några förslag](for-teachers.md) på hur man använder denna läroplan. Vi skulle uppskatta din feedback [i vårt diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenter](https://aka.ms/student-page)**: för att använda denna läroplan på egen hand, forka hela repot och slutför övningarna själv, börja med ett förtest. Läs sedan lektionen och slutför resten av aktiviteterna. Försök att skapa projekten genom att förstå lektionerna snarare än att kopiera lösningskoden; dock finns den koden tillgänglig i /solutions-mapparna i varje projektorienterad lektion. Ett annat förslag är att bilda en studiegrupp med vänner och gå igenom innehållet tillsammans. För vidare studier rekommenderar vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenter](https://aka.ms/student-page)**: för att använda denna läroplan på egen hand, gör en fork av hela repot och genomför övningarna själv, börja med ett quiz före lektionen. Läs sedan lektionen och genomför resten av aktiviteterna. Försök att skapa projekten genom att förstå lektionerna snarare än att kopiera lösningskoden; dock finns den koden tillgänglig i /solutions-mapparna i varje projektorienterad lektion. Ett annat förslag är att bilda en studiegrupp med vänner och gå igenom innehållet tillsammans. För vidare studier rekommenderar vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -74,73 +58,72 @@ Kom igång med följande resurser:
## Pedagogik
Vi har valt två pedagogiska principer när vi byggde denna läroplan: att säkerställa att den är projektbaserad och att den innehåller frekventa tester. Vid slutet av denna serie kommer studenter att ha lärt sig grundläggande principer inom data science, inklusive etiska koncept, databeredning, olika sätt att arbeta med data, datavisualisering, dataanalys, verkliga användningsfall av data science och mer.
Vi har valt två pedagogiska principer när vi byggde denna läroplan: att säkerställa att den är projektbaserad och att den innehåller frekventa quiz. Vid slutet av denna serie kommer studenter att ha lärt sig grundläggande principer inom data science, inklusive etiska koncept, databeredning, olika sätt att arbeta med data, datavisualisering, dataanalys, verkliga användningsfall av data science och mer.
Dessutom sätter ett lågtröskeltest före en lektion studentens intention att lära sig ett ämne, medan ett andra test efter lektionen säkerställer ytterligare inlärning. Denna läroplan är designad för att vara flexibel och rolig och kan tas i sin helhet eller delvis. Projekten börjar små och blir alltmer komplexa under den 10-veckors cykeln.
Dessutom sätter ett lågintensivt quiz före en klass studentens intention mot att lära sig ett ämne, medan ett andra quiz efter klassen säkerställer ytterligare retention. Denna läroplan är designad för att vara flexibel och rolig och kan tas i sin helhet eller delvis. Projekten börjar små och blir alltmer komplexa vid slutet av den 10-veckors cykeln.
> Hitta vår [Uppförandekod](CODE_OF_CONDUCT.md), [Bidragsriktlinjer](CONTRIBUTING.md), [Översättningsriktlinjer](TRANSLATIONS.md). Vi välkomnar din konstruktiva feedback!
## Varje lektion inkluderar:
## Varje lektion innehåller:
- Valfri sketchnote
- Valfri kompletterande video
- Förtest för uppvärmning
- Uppvärmningsquiz före lektionen
- Skriftlig lektion
- För projektbaserade lektioner, steg-för-steg-guider för hur man bygger projektet
- För projektbaserade lektioner, steg-för-steg-guider om hur man bygger projektet
- Kunskapskontroller
- En utmaning
- Kompletterande läsning
- Uppgift
- [Eftertest](https://ff-quizzes.netlify.app/en/)
- [Quiz efter lektionen](https://ff-quizzes.netlify.app/en/)
> **En notis om tester**: Alla tester finns i Quiz-App-mappen, totalt 40 tester med tre frågor vardera. De är länkade från lektionerna, men quiz-appen kan köras lokalt eller distribueras till Azure; följ instruktionerna i `quiz-app`-mappen. De lokaliseras gradvis.
> **En notering om quiz**: Alla quiz finns i Quiz-App-mappen, totalt 40 quiz med tre frågor vardera. De är länkade från lektionerna, men quiz-appen kan köras lokalt eller distribueras till Azure; följ instruktionerna i `quiz-app`-mappen. De lokaliseras gradvis.
## Lektioner
||
|:---:|
| Data Science för Nybörjare: Vägkarta - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
| Lektion Nummer | Ämne | Lektion Grupp | Lärandemål | Länkad Lektion | Författare |
| 01 | Definiera Data Science | [Introduktion](1-Introduction/README.md) | Lär dig de grundläggande koncepten bakom data science och hur det är relaterat till artificiell intelligens, maskininlärning och big data. | [lektion](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etik inom Data Science | [Introduktion](1-Introduction/README.md) | Koncept, utmaningar och ramverk för dataetik. | [lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiera Data | [Introduktion](1-Introduction/README.md) | Hur data klassificeras och dess vanliga källor. | [lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduktion till Statistik & Sannolikhet | [Introduktion](1-Introduction/README.md) | Matematiska tekniker inom sannolikhet och statistik för att förstå data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbeta med Relationsdata | [Arbeta med Data](2-Working-With-Data/README.md) | Introduktion till relationsdata och grunderna i att utforska och analysera relationsdata med Structured Query Language, även känt som SQL (uttalas "see-quell"). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 04 | Introduktion till Statistik & Sannolikhet | [Introduktion](1-Introduction/README.md) | Matematiska tekniker för sannolikhet och statistik för att förstå data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbeta med Relationell Data | [Arbeta med Data](2-Working-With-Data/README.md) | Introduktion till relationell data och grunderna i att utforska och analysera relationell data med Structured Query Language, även känt som SQL (uttalas "see-quell"). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeta med NoSQL Data | [Arbeta med Data](2-Working-With-Data/README.md) | Introduktion till icke-relationell data, dess olika typer och grunderna i att utforska och analysera dokumentdatabaser. | [lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbeta med Python | [Arbeta med Data](2-Working-With-Data/README.md) | Grunderna i att använda Python för datautforskning med bibliotek som Pandas. Grundläggande förståelse för Python-programmering rekommenderas. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Databeredning | [Arbeta med Data](2-Working-With-Data/README.md) | Ämnen om datatekniker för att rengöra och transformera data för att hantera utmaningar med saknad, felaktig eller ofullständig data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisera Kvantiteter | [Datavisualisering](3-Data-Visualization/README.md) | Lär dig använda Matplotlib för att visualisera fågeldata 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 08 | Datapreparation | [Arbeta med Data](2-Working-With-Data/README.md) | Ämnen om datatekniker för att rengöra och transformera data för att hantera utmaningar med saknad, felaktig eller ofullständig data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisera Kvantiteter | [Datavisualisering](3-Data-Visualization/README.md) | Lär dig hur du använder Matplotlib för att visualisera fågeldata 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisera Datafördelningar | [Datavisualisering](3-Data-Visualization/README.md) | Visualisera observationer och trender inom ett intervall. | [lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisera Relationer | [Datavisualisering](3-Data-Visualization/README.md) | Visualisera kopplingar och korrelationer mellan dataset och deras variabler. | [lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Meningsfulla Visualiseringar | [Datavisualisering](3-Data-Visualization/README.md) | Tekniker och vägledning för att göra dina visualiseringar värdefulla för effektiv problemlösning och insikter. | [lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduktion till Data Science-livscykeln | [Livscykel](4-Data-Science-Lifecycle/README.md) | Introduktion till data science-livscykeln och dess första steg att samla in och extrahera data. | [lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analysera | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas i data science-livscykeln fokuserar på tekniker för att analysera data. | [lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikation | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas i data science-livscykeln fokuserar på att presentera insikter från data på ett sätt som gör det enklare för beslutsfattare att förstå. | [lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science i Molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Denna serie lektioner introducerar data science i molnet och dess fördelar. | [lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science i Molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Träna modeller med hjälp av Low Code-verktyg. |[lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
| 14 | Introduktion till Data Science Livscykel | [Livscykel](4-Data-Science-Lifecycle/README.md) | Introduktion till data science livscykel och dess första steg att samla in och extrahera data. | [lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analysera | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas av data science livscykel fokuserar på tekniker för att analysera data. | [lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikation | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas av data science livscykel fokuserar på att presentera insikter från data på ett sätt som gör det lättare för beslutsfattare att förstå. | [lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science i Molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Denna serie av lektioner introducerar data science i molnet och dess fördelar. | [lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science i Molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Träna modeller med Low Code-verktyg. |[lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science i Molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Distribuera modeller med Azure Machine Learning Studio. | [lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science i Verkligheten | [I Verkligheten](6-Data-Science-In-Wild/README.md) | Data science-drivna projekt i verkliga världen. | [lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Följ dessa steg för att öppna detta exempel i en Codespace:
1. Klicka på rullgardinsmenyn "Code" och välj alternativet "Open with Codespaces".
2. Välj + Ny codespace längst ner i panelen.
För mer information, kolla in [GitHub-dokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
1. Klicka på Code-menyn och välj alternativet Open with Codespaces.
2. Välj + New codespace längst ner i panelen.
För mer information, kolla [GitHub-dokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Följ dessa steg för att öppna detta repo i en container med din lokala dator och VSCode med hjälp av tillägget VS Code Remote - Containers:
Följ dessa steg för att öppna detta repo i en container med din lokala dator och VSCode med hjälp av VS Code Remote - Containers-tillägget:
1. Om detta är första gången du använder en utvecklingscontainer, se till att ditt system uppfyller förkraven (t.ex. att Docker är installerat) i [dokumentationen för att komma igång](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Om detta är första gången du använder en utvecklingscontainer, se till att ditt system uppfyller förkraven (t.ex. ha Docker installerat) i [dokumentationen för att komma igång](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
För att använda detta repo kan du antingen öppna det i en isolerad Docker-volym:
**Notera**: Under huven kommer detta att använda kommandot Remote-Containers: **Clone Repository in Container Volume...** för att klona källkoden i en Docker-volym istället för det lokala filsystemet. [Volymer](https://docs.docker.com/storage/volumes/) är den föredragna mekanismen för att bevara containerdata.
**Obs**: Under huven kommer detta att använda Remote-Containers: **Clone Repository in Container Volume...**-kommandot för att klona källkoden i en Docker-volym istället för det lokala filsystemet. [Volymer](https://docs.docker.com/storage/volumes/) är den föredragna mekanismen för att bevara containerdata.
Eller öppna en lokalt klonad eller nedladdad version av repot:
Eller öppna en lokalt klonad eller nedladdad version av repo:
- Klona detta repo till ditt lokala filsystem.
- Tryck på F1 och välj kommandot **Remote-Containers: Open Folder in Container...**.
@ -148,14 +131,16 @@ Eller öppna en lokalt klonad eller nedladdad version av repot:
## Offlineåtkomst
Du kan köra denna dokumentation offline genom att använda [Docsify](https://docsify.js.org/#/). Forka detta repo, [installera Docsify](https://docsify.js.org/#/quickstart) på din lokala dator, och i rotmappen av detta repo, skriv `docsify serve`. Webbplatsen kommer att köras på port 3000 på din localhost: `localhost:3000`.
Du kan köra denna dokumentation offline med hjälp av [Docsify](https://docsify.js.org/#/). Forka detta repo, [installera Docsify](https://docsify.js.org/#/quickstart) på din lokala dator, och i root-mappen av detta repo, skriv `docsify serve`. Webbplatsen kommer att köras på port 3000 på din localhost: `localhost:3000`.
> Notera, notebooks kommer inte att renderas via Docsify, så när du behöver köra en notebook, gör det separat i VS Code med en Python-kärna.
> Obs, notebooks kommer inte att renderas via Docsify, så när du behöver köra en notebook, gör det separat i VS Code med en Python-kärna.
## Andra Läroplaner
Vårt team producerar andra läroplaner! Kolla in:
- [Edge AI för Nybörjare](https://aka.ms/edgeai-for-beginners)
- [AI-agenter för Nybörjare](https://aka.ms/ai-agents-beginners)
- [Generativ AI för Nybörjare](https://aka.ms/genai-beginners)
- [Generativ AI för Nybörjare .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generativ AI med JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -172,7 +157,9 @@ Vårt team producerar andra läroplaner! Kolla in:
- [Bemästra GitHub Copilot för AI-parprogrammering](https://aka.ms/GitHubCopilotAI)
- [XR-utveckling för Nybörjare](https://github.com/microsoft/xr-development-for-beginners)
- [Bemästra GitHub Copilot för C#/.NET-utvecklare](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Välj Ditt Eget Copilot-Äventyr](https://github.com/microsoft/CopilotAdventures)
- [Välj ditt eget Copilot-äventyr](https://github.com/microsoft/CopilotAdventures)
---
**Ansvarsfriskrivning**:
Detta dokument har översatts med hjälp av AI-översättningstjänsten [Co-op Translator](https://github.com/Azure/co-op-translator). Även om vi strävar efter noggrannhet, bör det noteras att automatiska översättningar kan innehålla fel eller felaktigheter. Det ursprungliga dokumentet på dess ursprungliga språk bör betraktas som den auktoritativa källan. För kritisk information rekommenderas professionell mänsklig översättning. Vi ansvarar inte för eventuella missförstånd eller feltolkningar som uppstår vid användning av denna översättning.
Azure Cloud Advocates wa Microsoft wanakuletea mtaala wa wiki 10, masomo 20 kuhusu Sayansi ya Takwimu. Kila somo linajumuisha maswali ya awali na ya baada ya somo, maelekezo ya maandishi ya kukamilisha somo, suluhisho, na kazi ya nyumbani. Mbinu yetu ya kujifunza kwa miradi inakuruhusu kujifunza huku ukijenga, njia iliyothibitishwa ya kuhakikisha ujuzi mpya unakaa.
Azure Cloud Advocates wa Microsoft wanakuletea mtaala wa wiki 10, masomo 20 kuhusu Sayansi ya Takwimu. Kila somo linajumuisha maswali ya awali na ya baada ya somo, maelekezo ya maandishi ya kukamilisha somo, suluhisho, na kazi ya nyumbani. Njia yetu ya kujifunza kwa miradi inakuruhusu kujifunza huku ukijenga, njia iliyothibitishwa ya kuhakikisha ujuzi mpya unakaa.
||
|:---:|
| Sayansi ya Takwimu kwa Anayeanza - _Sketchnote na [@nitya](https://twitter.com/nitya)_ |
| Sayansi ya Takwimu kwa Kompyuta - _Sketchnote na [@nitya](https://twitter.com/nitya)_ |
### 🌐 Msaada wa Lugha Nyingi
#### Inayosaidiwa kupitia GitHub Action (Imeboreshwa Kiotomatiki & Daima Inasasishwa)
#### Inasaidiwa kupitia GitHub Action (Imefanywa Kiotomatiki & Daima Imeboreshwa)
@ -30,7 +31,7 @@ Azure Cloud Advocates wa Microsoft wanakuletea mtaala wa wiki 10, masomo 20 kuhu
#### Jiunge na Jamii Yetu
[](https://aka.ms/ds4beginners/discord)
Tuna mfululizo wa kujifunza na AI unaoendelea kwenye Discord, jifunze zaidi na ujiunge nasi katika [Learn with AI Series](https://aka.ms/learnwithai/discord) kuanzia tarehe 18 - 30 Septemba, 2025. Utapata vidokezo na mbinu za kutumia GitHub Copilot kwa Sayansi ya Takwimu.
Tuna mfululizo wa kujifunza na AI unaoendelea kwenye Discord, jifunze zaidi na jiunge nasi katika [Learn with AI Series](https://aka.ms/learnwithai/discord) kuanzia tarehe 18 - 30 Septemba, 2025. Utapata vidokezo na mbinu za kutumia GitHub Copilot kwa Sayansi ya Takwimu.

@ -38,30 +39,30 @@ Tuna mfululizo wa kujifunza na AI unaoendelea kwenye Discord, jifunze zaidi na u
Anza na rasilimali zifuatazo:
- [Ukurasa wa Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Katika ukurasa huu, utapata rasilimali za wanaoanza, vifurushi vya wanafunzi, na hata njia za kupata vocha ya cheti bila malipo. Huu ni ukurasa wa kuweka alama na kuangalia mara kwa mara kwani tunabadilisha maudhui angalau kila mwezi.
- [Ukurasa wa Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Katika ukurasa huu, utapata rasilimali za wanaoanza, Student packs na hata njia za kupata vocha ya cheti bila malipo. Huu ni ukurasa wa kuuweka alama na kuutembelea mara kwa mara kwani tunabadilisha maudhui angalau kila mwezi.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Jiunge na jamii ya kimataifa ya mabalozi wa wanafunzi, hii inaweza kuwa njia yako ya kuingia Microsoft.
# Kuanza
> **Walimu**: tumetoa [mapendekezo kadhaa](for-teachers.md) ya jinsi ya kutumia mtaala huu. Tunapenda maoni yako [kwenye jukwaa letu la majadiliano](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Walimu**: tumetoa [mapendekezo kadhaa](for-teachers.md) ya jinsi ya kutumia mtaala huu. Tunapenda maoni yako [katika jukwaa letu la majadiliano](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Wanafunzi](https://aka.ms/student-page)**: ili kutumia mtaala huu peke yako, fanya nakala ya repo nzima na ukamilishe mazoezi peke yako, ukianza na jaribio la awali la somo. Kisha soma somo na ukamilishe shughuli nyingine zote. Jaribu kuunda miradi kwa kuelewa masomo badala ya kunakili msimbo wa suluhisho; hata hivyo, msimbo huo unapatikana kwenye folda za /solutions katika kila somo linalohusiana na mradi. Wazo jingine ni kuunda kikundi cha kujifunza na marafiki na kupitia maudhui pamoja. Kwa masomo zaidi, tunapendekeza [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Wanafunzi](https://aka.ms/student-page)**: ili kutumia mtaala huu peke yako, fanya nakala ya repo nzima na ukamilishe mazoezi peke yako, ukianza na jaribio la awali la somo. Kisha soma somo na ukamilishe shughuli nyingine. Jaribu kuunda miradi kwa kuelewa masomo badala ya kunakili msimbo wa suluhisho; hata hivyo, msimbo huo unapatikana katika folda za /solutions katika kila somo linalohusiana na mradi. Wazo jingine ni kuunda kikundi cha kujifunza na marafiki na kupitia maudhui pamoja. Kwa masomo zaidi, tunapendekeza [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> 🎥 Bofya picha hapo juu kwa video kuhusu mradi na watu waliouunda!
## Mbinu ya Kufundisha
## Pedagogia
Tulichagua kanuni mbili za kufundisha wakati wa kuunda mtaala huu: kuhakikisha kuwa ni wa msingi wa miradi na kwamba unajumuisha maswali ya mara kwa mara. Mwisho wa mfululizo huu, wanafunzi watakuwa wamejifunza kanuni za msingi za sayansi ya takwimu, ikiwa ni pamoja na dhana za kimaadili, maandalizi ya data, njia tofauti za kufanya kazi na data, uwasilishaji wa data, uchambuzi wa data, matumizi halisi ya sayansi ya takwimu, na zaidi.
Tumetumia kanuni mbili za pedagogia wakati wa kuunda mtaala huu: kuhakikisha kuwa ni wa msingi wa miradi na kwamba unajumuisha maswali ya mara kwa mara. Mwisho wa mfululizo huu, wanafunzi watakuwa wamejifunza kanuni za msingi za sayansi ya takwimu, ikiwa ni pamoja na dhana za kimaadili, maandalizi ya takwimu, njia tofauti za kufanya kazi na takwimu, uonyeshaji wa takwimu, uchambuzi wa takwimu, matumizi halisi ya sayansi ya takwimu, na zaidi.
Aidha, jaribio la kiwango cha chini kabla ya darasa huweka nia ya mwanafunzi kuelekea kujifunza mada, wakati jaribio la pili baada ya darasa huhakikisha uhifadhi zaidi. Mtaala huu uliundwa kuwa rahisi na wa kufurahisha na unaweza kuchukuliwa kwa ukamilifu au kwa sehemu. Miradi huanza kwa urahisi na kuwa ngumu zaidi mwishoni mwa mzunguko wa wiki 10.
Zaidi ya hayo, jaribio la awali la somo lenye shinikizo ndogo huweka nia ya mwanafunzi kuelekea kujifunza mada, wakati jaribio la pili baada ya somo linahakikisha uhifadhi zaidi. Mtaala huu uliundwa kuwa rahisi na wa kufurahisha na unaweza kuchukuliwa kwa ukamilifu au kwa sehemu. Miradi huanza kwa ndogo na kuwa ngumu zaidi mwishoni mwa mzunguko wa wiki 10.
> Pata [Kanuni za Maadili](CODE_OF_CONDUCT.md), [Miongozo ya Kuchangia](CONTRIBUTING.md), [Miongozo ya Tafsiri](TRANSLATIONS.md). Tunakaribisha maoni yako ya kujenga!
> Pata [Kanuni za Maadili](CODE_OF_CONDUCT.md), [Mchango](CONTRIBUTING.md), [Miongozo ya Tafsiri](TRANSLATIONS.md). Tunakaribisha maoni yako ya kujenga!
## Kila somo linajumuisha:
@ -76,85 +77,89 @@ Aidha, jaribio la kiwango cha chini kabla ya darasa huweka nia ya mwanafunzi kue
- Kazi ya nyumbani
- [Jaribio la baada ya somo](https://ff-quizzes.netlify.app/en/)
> **Kuhusu maswali ya jaribio**: Maswali yote ya jaribio yamewekwa kwenye folda ya Quiz-App, kwa jumla ya maswali 40 ya jaribio yenye maswali matatu kila moja. Yameunganishwa kutoka ndani ya masomo, lakini programu ya jaribio inaweza kuendeshwa ndani ya nchi au kupelekwa kwenye Azure; fuata maelekezo kwenye folda ya `quiz-app`. Yanatafsiriwa hatua kwa hatua.
> **Kumbuka kuhusu maswali**: Maswali yote yamejumuishwa katika folda ya Quiz-App, kwa jumla ya maswali 40 ya maswali matatu kila moja. Yameunganishwa kutoka ndani ya masomo, lakini programu ya maswali inaweza kuendeshwa ndani au kupelekwa kwenye Azure; fuata maelekezo katika folda ya `quiz-app`. Yanatafsiriwa hatua kwa hatua.
| 01 | Kufafanua Sayansi ya Takwimu | [Utangulizi](1-Introduction/README.md) | Jifunze dhana za msingi za sayansi ya takwimu na jinsi inavyohusiana na akili bandia, ujifunzaji wa mashine, na data kubwa. | [somo](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Maadili ya Sayansi ya Takwimu | [Utangulizi](1-Introduction/README.md) | Dhana za Maadili ya Data, Changamoto na Mifumo. | [somo](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 02 | Maadili ya Sayansi ya Takwimu | [Utangulizi](1-Introduction/README.md) | Dhana za Maadili ya Data, Changamoto na Mfumo. | [somo](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Kufafanua Data | [Utangulizi](1-Introduction/README.md) | Jinsi data inavyogawanywa na vyanzo vyake vya kawaida. | [somo](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Utangulizi wa Takwimu na Uwezekano | [Utangulizi](1-Introduction/README.md) | Mbinu za kihisabati za uwezekano na takwimu ili kuelewa data. | [somo](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Kufanya Kazi na Data ya Uhusiano | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data ya uhusiano na misingi ya kuchunguza na kuchambua data ya uhusiano kwa kutumia Lugha ya Muundo wa Maswali, inayojulikana kama SQL (inayosemwa "see-quell"). | [somo](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Kufanya Kazi na Data ya NoSQL | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data isiyo ya uhusiano, aina zake mbalimbali na misingi ya kuchunguza na kuchambua hifadhidata za hati. | [somo](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 05 | Kufanya Kazi na Data ya Mahusiano | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data ya mahusiano na misingi ya kuchunguza na kuchambua data ya mahusiano kwa kutumia Lugha ya Muundo wa Maswali, inayojulikana kama SQL (inayosemwa "see-quell"). | [somo](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Kufanya Kazi na Data ya NoSQL | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data isiyo ya mahusiano, aina zake mbalimbali na misingi ya kuchunguza na kuchambua hifadhidata za hati. | [somo](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Kufanya Kazi na Python | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Misingi ya kutumia Python kwa uchunguzi wa data kwa kutumia maktaba kama Pandas. Uelewa wa msingi wa programu ya Python unapendekezwa. | [somo](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Maandalizi ya Data | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Mada kuhusu mbinu za kusafisha na kubadilisha data ili kushughulikia changamoto za data iliyokosekana, isiyo sahihi, au isiyo kamili. | [somo](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 08 | Maandalizi ya Data | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Mada kuhusu mbinu za data za kusafisha na kubadilisha data ili kushughulikia changamoto za data iliyokosekana, isiyo sahihi, au isiyo kamili. | [somo](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Kuonyesha Kiasi | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Jifunze jinsi ya kutumia Matplotlib kuonyesha data ya ndege 🦆 | [somo](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Kuonyesha Usambazaji wa Data | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha uchunguzi na mwelekeo ndani ya kipindi. | [somo](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Kuonyesha Uwiano | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha asilimia za vikundi na vikundi vilivyogawanyika. | [somo](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Kuonyesha Mahusiano | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha miunganiko na uhusiano kati ya seti za data na vigezo vyake. | [somo](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Uonyeshaji wa Maana | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Mbinu na mwongozo wa kufanya uonyeshaji wako wa data kuwa wa thamani kwa utatuzi wa matatizo na kupata maarifa. | [somo](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Utangulizi wa Mzunguko wa Maisha wa Sayansi ya Takwimu | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Utangulizi wa mzunguko wa maisha wa sayansi ya takwimu na hatua yake ya kwanza ya kupata na kutoa data. | [somo](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Kuchambua | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Hatua hii ya mzunguko wa maisha wa sayansi ya takwimu inazingatia mbinu za kuchambua data. | [somo](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Mawasiliano | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Hatua hii ya mzunguko wa maisha wa sayansi ya takwimu inazingatia kuwasilisha maarifa kutoka kwa data kwa njia inayorahisisha watunga maamuzi kuelewa. | [somo](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 10 | Kuonyesha Usambazaji wa Data | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha uchunguzi na mitindo ndani ya muda maalum. | [somo](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Kuonyesha Uwiano | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha asilimia za makundi na za pekee. | [somo](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Kuonyesha Mahusiano | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha uhusiano na ulinganifu kati ya seti za data na vigezo vyake. | [somo](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Uonyeshaji wa Maana | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Mbinu na mwongozo wa kufanya uonyeshaji wako kuwa wa thamani kwa utatuzi wa matatizo na ufahamu wa kina. | [somo](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Utangulizi wa Mzunguko wa Sayansi ya Takwimu | [Mzunguko](4-Data-Science-Lifecycle/README.md) | Utangulizi wa mzunguko wa sayansi ya takwimu na hatua yake ya kwanza ya kupata na kutoa data. | [somo](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Kuchambua | [Mzunguko](4-Data-Science-Lifecycle/README.md) | Awamu hii ya mzunguko wa sayansi ya takwimu inazingatia mbinu za kuchambua data. | [somo](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Mawasiliano | [Mzunguko](4-Data-Science-Lifecycle/README.md) | Awamu hii ya mzunguko wa sayansi ya takwimu inazingatia kuwasilisha ufahamu kutoka kwa data kwa njia inayorahisisha maamuzi kwa watendaji. | [somo](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Sayansi ya Takwimu katika Wingu | [Data ya Wingu](5-Data-Science-In-Cloud/README.md) | Mfululizo huu wa masomo unatoa utangulizi wa sayansi ya takwimu katika wingu na faida zake. | [somo](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
| 18 | Sayansi ya Takwimu katika Wingu | [Data ya Wingu](5-Data-Science-In-Cloud/README.md) | Kufundisha mifano kwa kutumia zana za Low Code. |[somo](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
| 19 | Sayansi ya Takwimu katika Wingu | [Data ya Wingu](5-Data-Science-In-Cloud/README.md) | Kuweka mifano kwa kutumia Azure Machine Learning Studio. | [somo](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
| 20 | Sayansi ya Takwimu katika Mazingira Halisi | [Katika Mazingira Halisi](6-Data-Science-In-Wild/README.md) | Miradi inayoendeshwa na sayansi ya takwimu katika ulimwengu halisi. | [somo](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Sayansi ya Takwimu katika Mazingira Halisi | [Katika Mazingira Halisi](6-Data-Science-In-Wild/README.md) | Miradi inayotokana na sayansi ya takwimu katika ulimwengu halisi. | [somo](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Fuata hatua hizi kufungua sampuli hii katika Codespace:
1. Bonyeza menyu ya kushuka ya Code na uchague chaguo la Open with Codespaces.
2. Chagua + New codespace chini ya paneli.
Kwa maelezo zaidi, angalia [nyaraka za GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
Kwa maelezo zaidi, angalia [GitHub documentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Fuata hatua hizi kufungua hifadhi hii katika kontena ukitumia mashine yako ya ndani na VSCode kwa kutumia kiendelezi cha VS Code Remote - Containers:
Fuata hatua hizi kufungua repo hii katika kontena kwa kutumia mashine yako ya ndani na VSCode kwa kutumia kiendelezi cha VS Code Remote - Containers:
1. Ikiwa ni mara yako ya kwanza kutumia kontena la maendeleo, tafadhali hakikisha mfumo wako unakidhi mahitaji ya awali (yaani, umeweka Docker) katika [nyaraka za kuanza](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Ikiwa ni mara yako ya kwanza kutumia kontena la maendeleo, tafadhali hakikisha mfumo wako unakidhi mahitaji ya awali (yaani, kuwa na Docker iliyosakinishwa) katika [nyaraka za kuanza](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Ili kutumia hifadhi hii, unaweza kufungua hifadhi katika sauti ya Docker iliyotengwa:
Ili kutumia repo hii, unaweza kufungua repo katika ujazo wa Docker uliojitenga:
**Kumbuka**: Chini ya pazia, hii itatumia Remote-Containers: **Clone Repository in Container Volume...** amri ya kunakili msimbo wa chanzo katika sauti ya Docker badala ya mfumo wa faili wa ndani. [Sauti](https://docs.docker.com/storage/volumes/) ni njia inayopendekezwa ya kuhifadhi data ya kontena.
**Kumbuka**: Chini ya pazia, hii itatumia Remote-Containers: **Clone Repository in Container Volume...** amri ya kunakili msimbo wa chanzo katika ujazo wa Docker badala ya mfumo wa faili wa ndani. [Volumes](https://docs.docker.com/storage/volumes/) ni njia inayopendekezwa ya kuhifadhi data ya kontena.
Au fungua nakala iliyopakuliwa au kunakiliwa ya hifadhi:
Au fungua nakala iliyopakuliwa au iliyoklonwa ya repo:
- Nakili hifadhi hii kwenye mfumo wako wa faili wa ndani.
- Nakili repo hii kwenye mfumo wako wa faili wa ndani.
- Bonyeza F1 na uchague amri ya **Remote-Containers: Open Folder in Container...**.
- Chagua nakala iliyokopiwa ya folda hii, subiri kontena lianze, na ujaribu mambo.
- Chagua nakala iliyoklonwa ya folda hii, subiri kontena ianze, na ujaribu vitu.
## Ufikiaji wa Nje ya Mtandao
Unaweza kuendesha nyaraka hizi nje ya mtandao kwa kutumia [Docsify](https://docsify.js.org/#/). Nakili hifadhi hii, [weka Docsify](https://docsify.js.org/#/quickstart) kwenye mashine yako ya ndani, kisha katika folda kuu ya hifadhi hii, andika `docsify serve`. Tovuti itahudumiwa kwenye bandari 3000 kwenye localhost yako: `localhost:3000`.
Unaweza kuendesha nyaraka hizi nje ya mtandao kwa kutumia [Docsify](https://docsify.js.org/#/). Nakili repo hii, [sakinisha Docsify](https://docsify.js.org/#/quickstart) kwenye mashine yako ya ndani, kisha katika folda ya mizizi ya repo hii, andika `docsify serve`. Tovuti itahudumiwa kwenye bandari 3000 kwenye localhost yako: `localhost:3000`.
> Kumbuka, daftari hazitaonyeshwa kupitia Docsify, kwa hivyo unapohitaji kuendesha daftari, fanya hivyo kando katika VS Code ukiendesha kernel ya Python.
> Kumbuka, daftari hazitaonyeshwa kupitia Docsify, kwa hivyo unapotaka kuendesha daftari, fanya hivyo kando katika VS Code ukiendesha kernel ya Python.
## Mitaala Mingine
Timu yetu inazalisha mitaala mingine! Angalia:
- [Generative AI kwa Anzia](https://aka.ms/genai-beginners)
- [Generative AI kwa Anzia .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI na JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI na Java](https://aka.ms/genaijava)
- [AI kwa Anzia](https://aka.ms/ai-beginners)
- [Sayansi ya Takwimu kwa Anzia](https://aka.ms/datascience-beginners)
- [Bash kwa Anzia](https://github.com/microsoft/bash-for-beginners)
- [ML kwa Anzia](https://aka.ms/ml-beginners)
- [Usalama wa Mtandao kwa Anzia](https://github.com/microsoft/Security-101)
- [Web Dev kwa Anzia](https://aka.ms/webdev-beginners)
- [IoT kwa Anzia](https://aka.ms/iot-beginners)
- [Ujifunzaji wa Mashine kwa Anzia](https://aka.ms/ml-beginners)
- [Maendeleo ya XR kwa Anzia](https://aka.ms/xr-dev-for-beginners)
- [Kumudu GitHub Copilot kwa Programu ya AI ya Wawili](https://aka.ms/GitHubCopilotAI)
- [Maendeleo ya XR kwa Anzia](https://github.com/microsoft/xr-development-for-beginners)
- [Kumudu GitHub Copilot kwa Waendelezaji wa C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Edge AI kwa Kompyuta](https://aka.ms/edgeai-for-beginners)
- [Wakala wa AI kwa Kompyuta](https://aka.ms/ai-agents-beginners)
- [AI ya Kizazi kwa Kompyuta](https://aka.ms/genai-beginners)
- [AI ya Kizazi kwa Kompyuta .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [AI ya Kizazi na JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [AI ya Kizazi na Java](https://aka.ms/genaijava)
- [AI kwa Kompyuta](https://aka.ms/ai-beginners)
- [Sayansi ya Takwimu kwa Kompyuta](https://aka.ms/datascience-beginners)
- [Bash kwa Kompyuta](https://github.com/microsoft/bash-for-beginners)
- [ML kwa Kompyuta](https://aka.ms/ml-beginners)
- [Usalama wa Mtandao kwa Kompyuta](https://github.com/microsoft/Security-101)
- [Web Dev kwa Kompyuta](https://aka.ms/webdev-beginners)
- [IoT kwa Kompyuta](https://aka.ms/iot-beginners)
- [Ujifunzaji wa Mashine kwa Kompyuta](https://aka.ms/ml-beginners)
- [Maendeleo ya XR kwa Kompyuta](https://aka.ms/xr-dev-for-beginners)
- [Kumiliki GitHub Copilot kwa Programu ya AI ya Pamoja](https://aka.ms/GitHubCopilotAI)
- [Maendeleo ya XR kwa Kompyuta](https://github.com/microsoft/xr-development-for-beginners)
- [Kumiliki GitHub Copilot kwa Waendelezaji wa C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Chagua Safari Yako ya Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Kanusho**:
Hati hii imetafsiriwa kwa kutumia huduma ya tafsiri ya AI [Co-op Translator](https://github.com/Azure/co-op-translator). Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokuwa sahihi. Hati ya asili katika lugha yake ya awali inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, tafsiri ya kitaalamu ya binadamu inapendekezwa. Hatutawajibika kwa kutoelewana au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.
[](https://aka.ms/foundry/forum)
||
# Data Science para sa mga Baguhan - Isang Kurikulum
Azure Cloud Advocates sa Microsoft ay masayang nag-aalok ng isang 10-linggong, 20-leksyon na kurikulum tungkol sa Data Science. Ang bawat leksyon ay may kasamang pre-leksyon at post-leksyon na mga pagsusulit, nakasulat na mga tagubilin para sa pagsasagawa ng leksyon, isang solusyon, at isang takdang-aralin. Ang aming proyekto-based na paraan ng pagtuturo ay nagbibigay-daan sa iyo na matuto habang gumagawa, isang napatunayang paraan para mas matutunan ang mga bagong kasanayan.
Azure Cloud Advocates sa Microsoft ay masayang nag-aalok ng isang 10-linggong, 20-leksyon na kurikulum tungkol sa Data Science. Ang bawat leksyon ay may kasamang pre-leksyon at post-leksyon na mga pagsusulit, nakasulat na mga tagubilin para sa pagsasagawa ng leksyon, solusyon, at takdang-aralin. Ang aming proyekto-based na pedagogy ay nagbibigay-daan sa iyo na matuto habang gumagawa, isang napatunayang paraan para matutunan ang mga bagong kasanayan.
||
@ -29,22 +29,24 @@ Azure Cloud Advocates sa Microsoft ay masayang nag-aalok ng isang 10-linggong, 2
**Kung nais mong magkaroon ng karagdagang mga pagsasalin, ang mga sinusuportahang wika ay nakalista [dito](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Sumali sa Aming Komunidad
Mayroon kaming Discord na serye ng pag-aaral gamit ang AI na patuloy na nagaganap, alamin pa at sumali sa amin sa [Learn with AI Series](https://aka.ms/learnwithai/discord) mula 18 - 30 Setyembre, 2025. Makakakuha ka ng mga tips at tricks sa paggamit ng GitHub Copilot para sa Data Science.
[](https://aka.ms/ds4beginners/discord)
Mayroon kaming ongoing na Discord learn with AI series, alamin pa at sumali sa amin sa [Learn with AI Series](https://aka.ms/learnwithai/discord) mula 18 - 30 Setyembre, 2025. Makakakuha ka ng mga tips at tricks sa paggamit ng GitHub Copilot para sa Data Science.

# Ikaw ba ay isang mag-aaral?
# Ikaw ba ay isang estudyante?
Magsimula gamit ang mga sumusunod na resources:
Simulan gamit ang mga sumusunod na resources:
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sa pahinang ito, makakahanap ka ng mga resources para sa mga baguhan, mga Student packs, at maging mga paraan para makakuha ng libreng cert voucher. Isa itong pahina na dapat mong i-bookmark at bisitahin paminsan-minsan dahil ina-update namin ang nilalaman buwan-buwan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sumali sa isang pandaigdigang komunidad ng mga student ambassadors, maaaring ito ang iyong daan papunta sa Microsoft.
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sa pahinang ito, makakahanap ka ng mga resources para sa mga baguhan, Student packs, at maging mga paraan para makakuha ng libreng cert voucher. Isa itong pahina na dapat mong i-bookmark at bisitahin paminsan-minsan dahil ina-update namin ang nilalaman buwan-buwan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sumali sa isang global na komunidad ng mga student ambassadors, maaaring ito ang iyong daan papunta sa Microsoft.
# Pagsisimula
> **Mga Guro**: mayroon kaming [ilang mungkahi](for-teachers.md) kung paano gamitin ang kurikulum na ito. Gusto naming marinig ang inyong feedback [sa aming discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Mga Mag-aaral](https://aka.ms/student-page)**: upang gamitin ang kurikulum na ito nang mag-isa, i-fork ang buong repo at kumpletuhin ang mga exercises nang mag-isa, simula sa pre-lecture quiz. Pagkatapos, basahin ang leksyon at kumpletuhin ang natitirang mga aktibidad. Subukang gumawa ng mga proyekto sa pamamagitan ng pag-unawa sa mga leksyon sa halip na kopyahin ang solution code; gayunpaman, ang code na iyon ay makikita sa /solutions folders sa bawat project-oriented na leksyon. Isa pang ideya ay ang bumuo ng study group kasama ang mga kaibigan at sabay-sabay na pag-aralan ang nilalaman. Para sa karagdagang pag-aaral, inirerekomenda namin ang [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Mga Estudyante](https://aka.ms/student-page)**: upang gamitin ang kurikulum na ito nang mag-isa, i-fork ang buong repo at kumpletuhin ang mga gawain nang mag-isa, simula sa pre-lecture quiz. Pagkatapos, basahin ang leksyon at kumpletuhin ang iba pang mga aktibidad. Subukang gawin ang mga proyekto sa pamamagitan ng pag-unawa sa mga leksyon sa halip na kopyahin ang solution code; gayunpaman, ang code na iyon ay makikita sa /solutions folders sa bawat project-oriented na leksyon. Isa pang ideya ay ang bumuo ng study group kasama ang mga kaibigan at sabay-sabay na pag-aralan ang nilalaman. Para sa karagdagang pag-aaral, inirerekumenda namin ang [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Kilalanin ang Koponan
@ -56,70 +58,71 @@ Magsimula gamit ang mga sumusunod na resources:
## Pedagogy
Pinili namin ang dalawang prinsipyo ng pagtuturo habang binubuo ang kurikulum na ito: tiyaking ito ay nakabatay sa proyekto at may kasamang madalas na pagsusulit. Sa pagtatapos ng serye, matututunan ng mga mag-aaral ang mga pangunahing prinsipyo ng data science, kabilang ang mga etikal na konsepto, paghahanda ng data, iba't ibang paraan ng pagtatrabaho sa data, data visualization, data analysis, mga tunay na kaso ng paggamit ng data science, at marami pa.
Pinili namin ang dalawang pedagogical tenets habang binubuo ang kurikulum na ito: tiyakin na ito ay project-based at may kasamang madalas na mga pagsusulit. Sa pagtatapos ng serye, matututunan ng mga estudyante ang mga pangunahing prinsipyo ng data science, kabilang ang mga etikal na konsepto, paghahanda ng data, iba't ibang paraan ng pagproseso ng data, data visualization, data analysis, mga tunay na kaso ng paggamit ng data science, at marami pa.
Bukod dito, ang pagsusulit bago ang klase ay nagtatakda ng intensyon ng mag-aaral patungo sa pag-aaral ng isang paksa, habang ang pangalawang pagsusulit pagkatapos ng klase ay nagtitiyak ng karagdagang pagkatuto. Ang kurikulum na ito ay idinisenyo upang maging flexible at masaya at maaaring kunin nang buo o bahagi lamang. Ang mga proyekto ay nagsisimula sa maliit at nagiging mas kumplikado sa pagtatapos ng 10-linggong siklo.
Bukod dito, ang isang mababang-stakes na pagsusulit bago ang klase ay nagtatakda ng intensyon ng estudyante patungo sa pag-aaral ng isang paksa, habang ang pangalawang pagsusulit pagkatapos ng klase ay nagtitiyak ng karagdagang pagkatuto. Ang kurikulum na ito ay idinisenyo upang maging flexible at masaya at maaaring kunin nang buo o bahagi lamang. Ang mga proyekto ay nagsisimula sa maliit at nagiging mas kumplikado sa pagtatapos ng 10-linggong siklo.
> Hanapin ang aming [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) guidelines. Malugod naming tinatanggap ang inyong mga konstruktibong feedback!
## Ang bawat leksyon ay may kasamang:
- Opsyonal na sketchnote
- Opsyonal na karagdagang video
- Opsyonal na supplemental video
- Pre-leksyon na warmup quiz
- Nakatalang leksyon
- Para sa mga leksyon na nakabatay sa proyekto, step-by-step na gabay kung paano buuin ang proyekto
- Mga pagsusuri sa kaalaman
- Para sa mga project-based na leksyon, step-by-step na gabay kung paano gawin ang proyekto
- Mga pagsusuri ng kaalaman
- Isang hamon
- Karagdagang babasahin
- Takdang-aralin
- [Post-leksyon na pagsusulit](https://ff-quizzes.netlify.app/en/)
> **Tungkol sa mga pagsusulit**: Ang lahat ng pagsusulit ay nakapaloob sa Quiz-App folder, para sa kabuuang 40 pagsusulit na may tig-tatlong tanong bawat isa. Ang mga ito ay naka-link mula sa loob ng mga leksyon, ngunit ang quiz app ay maaaring patakbuhin nang lokal o i-deploy sa Azure; sundin ang mga tagubilin sa `quiz-app` folder. Ang mga ito ay unti-unting isinasalin.
> **Tungkol sa mga pagsusulit**: Ang lahat ng pagsusulit ay nakapaloob sa Quiz-App folder, para sa kabuuang 40 pagsusulit na may tig-tatlong tanong bawat isa. Ang mga ito ay naka-link mula sa loob ng mga leksyon, ngunit ang quiz app ay maaaring patakbuhin nang lokal o i-deploy sa Azure; sundin ang mga tagubilin sa `quiz-app` folder. Ang mga ito ay unti-unting nilolokal.
## Mga Leksyon
||
|:---:|
| Data Science Para sa Mga Baguhan: Roadmap - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
| Numero ng Leksyon | Paksa | Pangkat ng Leksyon | Mga Layunin sa Pag-aaral | Kaugnay na Leksyon | May-akda |
| Bilang ng Aralin | Paksa | Pangkat ng Aralin | Mga Layunin sa Pag-aaral | Kaugnay na Aralin | May-akda |
| 01 | Pagpapakahulugan sa Data Science | [Panimula](1-Introduction/README.md) | Matutunan ang mga pangunahing konsepto ng data science at kung paano ito nauugnay sa artificial intelligence, machine learning, at big data. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika sa Data Science | [Panimula](1-Introduction/README.md) | Mga Konsepto, Hamon, at Framework ng Etika sa Data. | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Pagpapakahulugan sa Data | [Panimula](1-Introduction/README.md) | Paano ikinuklasipika ang data at ang mga karaniwang pinagmulan nito. | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Panimula sa Statistics at Probability | [Panimula](1-Introduction/README.md) | Ang mga teknik sa matematika ng probability at statistics upang maunawaan ang data. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Paggamit ng Relational Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Panimula sa relational data at ang mga pangunahing kaalaman sa pag-explore at pagsusuri ng relational data gamit ang Structured Query Language, na kilala rin bilang SQL (binibigkas na “see-quell”). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Paggamit ng NoSQL Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Panimula sa non-relational data, ang iba't ibang uri nito, at ang mga pangunahing kaalaman sa pag-explore at pagsusuri ng document databases. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Paggamit ng Python | [Paggamit ng Data](2-Working-With-Data/README.md) | Mga pangunahing kaalaman sa paggamit ng Python para sa pag-explore ng data gamit ang mga library tulad ng Pandas. Inirerekomenda ang pundasyong kaalaman sa Python programming. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Paghahanda ng Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Mga paksa tungkol sa mga teknik sa paglilinis at pagbabago ng data upang matugunan ang mga hamon ng nawawala, hindi tama, o hindi kumpletong data. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Pagpapakita ng Dami | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Matutunan kung paano gamitin ang Matplotlib upang ipakita ang data ng mga ibon 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Pagpapakita ng Pamamahagi ng Data | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga obserbasyon at trend sa loob ng isang interval. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Pagpapakita ng Proporsyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng discrete at grouped percentages. | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Pagpapakita ng Relasyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga koneksyon at correlations sa pagitan ng mga set ng data at ang kanilang mga variable. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Makabuluhang Pagpapakita | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Mga teknik at gabay para gawing mahalaga ang iyong mga pagpapakita para sa epektibong paglutas ng problema at mga insight. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Panimula sa Lifecycle ng Data Science | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Panimula sa lifecycle ng data science at ang unang hakbang nito sa pagkuha at pag-extract ng data. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Pagsusuri | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang phase na ito ng lifecycle ng data science ay nakatuon sa mga teknik para sa pagsusuri ng data. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasyon | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang phase na ito ng lifecycle ng data science ay nakatuon sa pagpapakita ng mga insight mula sa data sa paraang mas madaling maunawaan ng mga tagapagdesisyon. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ang serye ng mga leksyon na ito ay nagpapakilala sa data science sa cloud at ang mga benepisyo nito. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pagsasanay ng mga modelo gamit ang Low Code tools. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pag-deploy ng mga modelo gamit ang Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science sa Wild | [Sa Wild](6-Data-Science-In-Wild/README.md) | Mga proyektong pinapatakbo ng data science sa totoong mundo. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Pagpapakahulugan sa Data Science | [Panimula](1-Introduction/README.md) | Matutunan ang mga pangunahing konsepto ng data science at kung paano ito nauugnay sa artificial intelligence, machine learning, at big data. | [aralin](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika sa Data Science | [Panimula](1-Introduction/README.md) | Mga Konsepto, Hamon, at Framework ng Etika sa Data. | [aralin](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Pagpapakahulugan sa Data | [Panimula](1-Introduction/README.md) | Paano ikinuklasipika ang data at ang mga karaniwang pinagmulan nito. | [aralin](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Panimula sa Statistics at Probability | [Panimula](1-Introduction/README.md) | Ang mga teknik sa matematika ng probability at statistics upang maunawaan ang data. | [aralin](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Paggawa gamit ang Relational Data | [Paggawa Gamit ang Data](2-Working-With-Data/README.md) | Panimula sa relational data at ang mga pangunahing kaalaman sa pag-explore at pagsusuri ng relational data gamit ang Structured Query Language, na kilala rin bilang SQL (binibigkas na “see-quell”). | [aralin](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Paggawa gamit ang NoSQL Data | [Paggawa Gamit ang Data](2-Working-With-Data/README.md) | Panimula sa non-relational data, ang iba't ibang uri nito, at ang mga pangunahing kaalaman sa pag-explore at pagsusuri ng document databases. | [aralin](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Paggawa gamit ang Python | [Paggawa Gamit ang Data](2-Working-With-Data/README.md) | Mga pangunahing kaalaman sa paggamit ng Python para sa pag-explore ng data gamit ang mga library tulad ng Pandas. Inirerekomenda ang pundasyong kaalaman sa Python programming. | [aralin](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Paghahanda ng Data | [Paggawa Gamit ang Data](2-Working-With-Data/README.md) | Mga paksa sa mga teknik ng data para sa paglilinis at pagbabago ng data upang matugunan ang mga hamon ng nawawala, hindi tama, o hindi kumpletong data. | [aralin](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Pagpapakita ng Dami | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Matutunan kung paano gamitin ang Matplotlib upang ipakita ang data ng ibon 🦆 | [aralin](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Pagpapakita ng Pamamahagi ng Data | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga obserbasyon at trend sa loob ng isang interval. | [aralin](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Pagpapakita ng Proporsyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng discrete at grouped percentages. | [aralin](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Pagpapakita ng Relasyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga koneksyon at correlations sa pagitan ng mga set ng data at ang kanilang mga variable. | [aralin](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Makabuluhang Pagpapakita | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Mga teknik at gabay para gawing mahalaga ang iyong mga pagpapakita para sa epektibong paglutas ng problema at mga insight. | [aralin](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Panimula sa Lifecycle ng Data Science | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Panimula sa lifecycle ng data science at ang unang hakbang nito sa pagkuha at pag-extract ng data. | [aralin](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Pagsusuri | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang phase na ito ng lifecycle ng data science ay nakatuon sa mga teknik para sa pagsusuri ng data. | [aralin](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasyon | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang phase na ito ng lifecycle ng data science ay nakatuon sa pagpapakita ng mga insight mula sa data sa paraang mas madaling maunawaan ng mga gumagawa ng desisyon. | [aralin](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ang serye ng mga araling ito ay nagpapakilala sa data science sa cloud at ang mga benepisyo nito. | [aralin](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pagsasanay ng mga modelo gamit ang Low Code tools. |[aralin](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pag-deploy ng mga modelo gamit ang Azure Machine Learning Studio. | [aralin](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science sa Wild | [Sa Wild](6-Data-Science-In-Wild/README.md) | Mga proyektong pinapatakbo ng data science sa totoong mundo. | [aralin](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sundin ang mga hakbang na ito upang buksan ang sample na ito sa isang Codespace:
1. I-click ang drop-down menu ng Code at piliin ang opsyon na Open with Codespaces.
1. I-click ang drop-down na menu ng Code at piliin ang opsyong Open with Codespaces.
2. Piliin ang + New codespace sa ibaba ng pane.
Para sa karagdagang impormasyon, tingnan ang [GitHub documentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
Para sa karagdagang impormasyon, tingnan ang [dokumentasyon ng GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sundin ang mga hakbang na ito upang buksan ang repo na ito sa isang container gamit ang iyong lokal na makina at VSCode gamit ang VS Code Remote - Containers extension:
1. Kung ito ang iyong unang beses na gumamit ng development container, tiyakin na ang iyong sistema ay nakakatugon sa mga kinakailangan (hal. may naka-install na Docker) sa [getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Kung ito ang iyong unang beses na gumamit ng development container, tiyaking ang iyong sistema ay nakakatugon sa mga kinakailangan (hal. may naka-install na Docker) sa [dokumentasyon ng pagsisimula](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Upang gamitin ang repository na ito, maaari mong buksan ang repository sa isang hiwalay na Docker volume:
Upang gamitin ang repository na ito, maaari mong buksan ang repository sa isang nakahiwalay na Docker volume:
**Tandaan**: Sa ilalim ng hood, gagamitin nito ang Remote-Containers: **Clone Repository in Container Volume...** command upang i-clone ang source code sa isang Docker volume sa halip na sa lokal na filesystem. Ang [Volumes](https://docs.docker.com/storage/volumes/) ang mas pinapaboran na mekanismo para sa pag-persist ng container data.
**Tandaan**: Sa ilalim ng hood, gagamitin nito ang Remote-Containers: **Clone Repository in Container Volume...** command upang i-clone ang source code sa isang Docker volume sa halip na sa lokal na filesystem. Ang [Volumes](https://docs.docker.com/storage/volumes/) ang mas pinapaboran na mekanismo para sa pag-persist ng data ng container.
O buksan ang isang lokal na na-clone o na-download na bersyon ng repository:
@ -131,12 +134,14 @@ O buksan ang isang lokal na na-clone o na-download na bersyon ng repository:
Maaari mong patakbuhin ang dokumentasyong ito offline gamit ang [Docsify](https://docsify.js.org/#/). I-fork ang repo na ito, [i-install ang Docsify](https://docsify.js.org/#/quickstart) sa iyong lokal na makina, pagkatapos sa root folder ng repo na ito, i-type ang `docsify serve`. Ang website ay magsisilbi sa port 3000 sa iyong localhost: `localhost:3000`.
> Tandaan, ang mga notebook ay hindi mairender sa pamamagitan ng Docsify, kaya kapag kailangan mong patakbuhin ang isang notebook, gawin ito nang hiwalay sa VS Code gamit ang isang Python kernel.
> Tandaan, ang mga notebook ay hindi mairender sa pamamagitan ng Docsify, kaya kapag kailangan mong patakbuhin ang isang notebook, gawin iyon nang hiwalay sa VS Code gamit ang Python kernel.
## Iba pang Kurikulum
Ang aming team ay gumagawa ng iba pang kurikulum! Tingnan ang:
- [Edge AI para sa Mga Baguhan](https://aka.ms/edgeai-for-beginners)
- [AI Agents para sa Mga Baguhan](https://aka.ms/ai-agents-beginners)
- [Generative AI para sa Mga Baguhan](https://aka.ms/genai-beginners)
- [Generative AI para sa Mga Baguhan .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI gamit ang JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -157,3 +162,5 @@ Ang aming team ay gumagawa ng iba pang kurikulum! Tingnan ang:
---
**Paunawa**:
Ang dokumentong ito ay isinalin gamit ang AI translation service na [Co-op Translator](https://github.com/Azure/co-op-translator). Bagama't sinisikap naming maging tumpak, mangyaring tandaan na ang mga awtomatikong pagsasalin ay maaaring maglaman ng mga pagkakamali o hindi pagkakatugma. Ang orihinal na dokumento sa kanyang katutubong wika ang dapat ituring na opisyal na sanggunian. Para sa mahalagang impormasyon, inirerekomenda ang propesyonal na pagsasalin ng tao. Hindi kami mananagot sa anumang hindi pagkakaunawaan o maling interpretasyon na dulot ng paggamit ng pagsasaling ito.
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://aka.ms/foundry/forum)
Microsoft'taki Azure Cloud Advocates ekibi, Veri Bilimi hakkında 10 haftalık, 20 derslik bir müfredat sunmaktan mutluluk duyar. Her ders, ders öncesi ve sonrası testler, dersi tamamlamak için yazılı talimatlar, bir çözüm ve bir ödev içerir. Proje tabanlı pedagojimiz, yeni becerilerin kalıcı olmasını sağlayan kanıtlanmış bir yöntemle öğrenmenizi sağlar.
Microsoft'taki Azure Cloud Advocates ekibi, Veri Bilimi hakkında 10 haftalık, 20 derslik bir müfredat sunmaktan mutluluk duyuyor. Her ders, ders öncesi ve sonrası sınavlar, dersin tamamlanması için yazılı talimatlar, bir çözüm ve bir ödev içerir. Proje tabanlı pedagojimiz, öğrenirken inşa etmenizi sağlar; bu, yeni becerilerin kalıcı olmasını sağlayan kanıtlanmış bir yöntemdir.
||
||
|:---:|
| Başlangıç Seviyesi Veri Bilimi - _[@nitya](https://twitter.com/nitya) tarafından Sketchnote_ |
| Veri Bilimi için Başlangıç - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
### 🌐 Çok Dilli Destek
#### GitHub Action ile Destekleniyor (Otomatik ve Her Zaman Güncel)
**Ek dil çevirileri talep etmek isterseniz, desteklenen diller [burada](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) listelenmiştir.**
#### Topluluğumuza Katılın
[](https://aka.ms/ds4beginners/discord)
AI ile öğrenme serimiz devam ediyor, daha fazla bilgi edinin ve bize [AI ile Öğrenme Serisi](https://aka.ms/learnwithai/discord) adresinden 18 - 30 Eylül 2025 tarihleri arasında katılın. GitHub Copilot'ı Veri Bilimi için kullanma ipuçları ve püf noktalarını öğrenin.
AI ile öğrenme serimiz devam ediyor, daha fazla bilgi edinin ve [AI ile Öğrenme Serisi](https://aka.ms/learnwithai/discord) etkinliğine 18 - 30 Eylül 2025 tarihleri arasında katılın. GitHub Copilot'u Veri Bilimi için kullanma ipuçlarını ve püf noktalarını öğrenin.

@ -55,45 +55,45 @@ AI ile öğrenme serimiz devam ediyor, daha fazla bilgi edinin ve bize [AI ile
Aşağıdaki kaynaklarla başlayabilirsiniz:
- [Öğrenci Merkezi sayfası](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Bu sayfada başlangıç kaynakları, öğrenci paketleri ve hatta ücretsiz sertifika kuponu alma yollarını bulabilirsiniz. Bu sayfayı sık kullanılanlara ekleyin ve zaman zaman kontrol edin, çünkü içeriği en az ayda bir değiştiriyoruz.
- [Microsoft Learn Öğrenci Elçileri](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Küresel bir öğrenci elçileri topluluğuna katılın, bu sizin Microsoft'a açılan kapınız olabilir.
- [Öğrenci Merkezi sayfası](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Bu sayfada başlangıç kaynakları, öğrenci paketleri ve hatta ücretsiz sertifika kuponu alma yollarını bulabilirsiniz. Bu sayfayı sık kullanılanlara ekleyip zaman zaman kontrol etmenizi öneririz çünkü içeriği en az ayda bir değiştiriyoruz.
- [Microsoft Learn Öğrenci Elçileri](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Küresel bir öğrenci elçileri topluluğuna katılın, bu sizin Microsoft'a giriş yolunuz olabilir.
# Başlarken
> **Eğitmenler**: Bu müfredatı nasıl kullanabileceğinize dair [bazı öneriler ekledik](for-teachers.md). Geri bildirimlerinizi [tartışma forumumuzda](https://github.com/microsoft/Data-Science-For-Beginners/discussions) paylaşmanızı çok isteriz!
> **Eğitmenler**: Bu müfredatı nasıl kullanabileceğinize dair [bazı öneriler ekledik](for-teachers.md). Geri bildirimlerinizi [tartışma forumumuzda](https://github.com/microsoft/Data-Science-For-Beginners/discussions) bekliyoruz!
> **[Öğrenciler](https://aka.ms/student-page)**: Bu müfredatı kendi başınıza kullanmak için, tüm depoyu çatallayın ve alıştırmaları kendi başınıza tamamlayın, bir ders öncesi testiyle başlayarak. Daha sonra dersi okuyun ve diğer etkinlikleri tamamlayın. Dersleri anlayarak projeleri oluşturmaya çalışın, çözüm kodunu kopyalamaktan kaçının; ancak, bu kod her proje odaklı dersin /solutions klasörlerinde mevcuttur. Başka bir fikir, arkadaşlarınızla bir çalışma grubu oluşturmak ve içeriği birlikte incelemek olabilir. Daha fazla çalışma için [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) öneriyoruz.
> **[Öğrenciler](https://aka.ms/student-page)**: Bu müfredatı kendi başınıza kullanmak için, tüm depoyu çatallayın ve ders öncesi sınavla başlayarak alıştırmaları kendi başınıza tamamlayın. Ardından dersi okuyun ve diğer etkinlikleri tamamlayın. Dersleri anlayarak projeleri oluşturmaya çalışın, çözüm kodunu kopyalamaktan kaçının; ancak bu kod, her proje odaklı dersin /solutions klasörlerinde mevcuttur. Bir diğer fikir, arkadaşlarınızla bir çalışma grubu oluşturup içeriği birlikte incelemek olabilir. Daha fazla çalışma için [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) öneriyoruz.
> 🎥 Proje ve onu oluşturan kişiler hakkında bir video için yukarıdaki görsele tıklayın!
> 🎥 Yukarıdaki görsele tıklayarak proje ve onu oluşturan kişiler hakkında bir video izleyin!
## Pedagoji
Bu müfredatı oluştururken iki pedagojik ilkeye bağlı kaldık: proje tabanlı olmasını sağlamak ve sık sık testler içermesi. Bu serinin sonunda, öğrenciler veri biliminin temel ilkelerini, etik kavramları, veri hazırlama süreçlerini, veriyle çalışma yöntemlerini, veri görselleştirme, veri analizi, veri biliminin gerçek dünya uygulamalarını ve daha fazlasını öğrenmiş olacaklar.
Bu müfredatı oluştururken iki pedagojik ilkeyi benimsedik: proje tabanlı olmasını sağlamak ve sık sık sınavlar içermesi. Bu serinin sonunda, öğrenciler veri biliminin temel ilkelerini, etik kavramları, veri hazırlama yöntemlerini, veriyle çalışma yollarını, veri görselleştirme, veri analizi, veri biliminin gerçek dünya uygulamaları ve daha fazlasını öğrenmiş olacaklar.
Ayrıca, ders öncesi düşük riskli bir test, öğrencinin bir konuyu öğrenmeye yönelik niyetini belirlerken, ders sonrası bir test daha fazla bilgiyi pekiştirir. Bu müfredat esnek ve eğlenceli olacak şekilde tasarlanmıştır ve tamamen veya kısmen alınabilir. Projeler küçük başlar ve 10 haftalık döngünün sonunda giderek daha karmaşık hale gelir.
Ayrıca, ders öncesi düşük riskli bir sınav, öğrencinin bir konuyu öğrenmeye yönelik niyetini belirlerken, ders sonrası ikinci bir sınav daha fazla bilgiyi pekiştirir. Bu müfredat esnek ve eğlenceli olacak şekilde tasarlandı ve tamamı veya bir kısmı alınabilir. Projeler küçük başlar ve 10 haftalık döngünün sonunda giderek daha karmaşık hale gelir.
> **Testler hakkında bir not**: Tüm testler, her biri üç sorudan oluşan toplam 40 test için Quiz-App klasöründe yer alır. Derslerden bağlantılıdır, ancak test uygulaması yerel olarak çalıştırılabilir veya Azure'a dağıtılabilir; `quiz-app` klasöründeki talimatlarıizleyin. Testler kademeli olarak yerelleştirilmektedir.
> **Sınavlar hakkında bir not**: Tüm sınavlar Quiz-App klasöründe yer alır, toplamda her biri üç sorudan oluşan 40 sınav vardır. Derslerin içinden bağlantılıdır, ancak sınav uygulaması yerel olarak çalıştırılabilir veya Azure'a dağıtılabilir; `quiz-app` klasöründeki talimatlarıtakip edin. Sınavlar kademeli olarak yerelleştirilmektedir.
## Dersler
||
@ -107,7 +107,7 @@ Ayrıca, ders öncesi düşük riskli bir test, öğrencinin bir konuyu öğrenm
| 03 | Veriyi Tanımlama | [Giriş](1-Introduction/README.md) | Verinin nasıl sınıflandırıldığı ve yaygın kaynakları. | [ders](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | İstatistik ve Olasılığa Giriş | [Giriş](1-Introduction/README.md) | Veriyi anlamak için olasılık ve istatistik matematiksel teknikleri. | [ders](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | İlişkisel Veri ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel veriye giriş ve Structured Query Language (SQL) olarak bilinen dil ile ilişkisel veriyi keşfetme ve analiz etmenin temelleri. | [ders](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL Veri ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel olmayan veriye giriş, çeşitli türleri ve belge tabanlıveritabanlarını keşfetme ve analiz etmenin temelleri. | [ders](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 06 | NoSQL Veri ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel olmayan veriye giriş, çeşitli türleri ve belge veritabanlarını keşfetme ve analiz etmenin temelleri. | [ders](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | Pandas gibi kütüphanelerle veri keşfi için Python kullanmanın temelleri. Python programlama konusunda temel bir anlayış önerilir. | [ders](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Veri Hazırlama | [Veri ile Çalışma](2-Working-With-Data/README.md) | Eksik, hatalı veya eksik verilerle başa çıkmak için veri temizleme ve dönüştürme teknikleri üzerine konular. | [ders](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
@ -117,61 +117,65 @@ Ayrıca, ders öncesi düşük riskli bir test, öğrencinin bir konuyu öğrenm
| 13 | Anlamlı Görselleştirmeler | [Veri Görselleştirme](3-Data-Visualization/README.md) | Sorun çözme ve içgörüler için görselleştirmelerinizi değerli hale getirmek için teknikler ve rehberlik. | [ders](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Veri Bilimi Yaşam Döngüsüne Giriş | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsüne giriş ve veri toplama ve çıkarma adımı. | [ders](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiz | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün bu aşaması, veriyi analiz etme tekniklerine odaklanır. | [ders](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | İletişim | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün bu aşaması, veriden elde edilen içgörüleri karar vericilerin anlamasını kolaylaştıracak şekilde sunmaya odaklanır. | [ders](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 16 | İletişim | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün bu aşaması, veriden elde edilen içgörüleri karar vericilerin daha kolay anlamasını sağlayacak şekilde sunmaya odaklanır. | [ders](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Bu ders serisi, bulutta veri bilimine ve avantajlarına giriş yapar. | [ders](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
| 18 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Düşük Kod araçları kullanarak modelleri eğitme. |[ders](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
| 19 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ile modelleri dağıtma. | [ders](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
| 20 | Gerçek Hayatta Veri Bilimi | [Gerçek Hayatta](6-Data-Science-In-Wild/README.md) | Gerçek dünyada veri bilimi odaklı projeler. | [ders](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Doğada Veri Bilimi | [Doğada](6-Data-Science-In-Wild/README.md) | Gerçek dünyada veri bilimi odaklı projeler. | [ders](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Bu örneği bir Codespace içinde açmak için şu adımları izleyin:
1. Code açılır menüsüne tıklayın ve Open with Codespaces seçeneğini seçin.
2. Pencerenin altındaki + New codespace seçeneğini seçin.
Daha fazla bilgi için [GitHub dokümantasyonuna](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) göz atın.
Bu örneği bir Codespace'de açmak için şu adımları izleyin:
1. Code açılır menüsüne tıklayın ve Codespaces ile Aç seçeneğini seçin.
2. Pencerenin altındaki + Yeni Codespace seçeneğini seçin.
Daha fazla bilgi için [GitHub belgelerine](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) göz atın.
## VSCode Remote - Containers
Bu repo'yu yerel makineniz ve VSCode kullanarak bir konteyner içinde açmak için VS Code Remote - Containers uzantısını kullanarak şu adımları izleyin:
Bu depoyu yerel makineniz ve VSCode kullanarak bir konteynerde açmak için VS Code Remote - Containers uzantısını kullanarak şu adımları izleyin:
1. İlk kez bir geliştirme konteyneri kullanıyorsanız, sisteminizin ön gereksinimleri karşıladığından emin olun (örneğin, Docker yüklü olmalı) [başlangıç dokümantasyonunda](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. İlk kez bir geliştirme konteyneri kullanıyorsanız, sisteminizin ön gereksinimleri karşıladığından emin olun (örneğin, Docker kurulu olmalı) [başlangıç belgelerinde](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Bu repo'yu kullanmak için, ya repo'yu izole bir Docker hacminde açabilirsiniz:
Bu depoyu kullanmak için, ya depoyu izole bir Docker hacminde açabilirsiniz:
**Not**: Arka planda, bu işlem Remote-Containers: **Clone Repository in Container Volume...** komutunu kullanarak kaynak kodu yerel dosya sistemi yerine bir Docker hacmine klonlayacaktır. [Hacimler](https://docs.docker.com/storage/volumes/) konteyner verilerini kalıcı hale getirmek için tercih edilen mekanizmadır.
**Not**: Arka planda, bu işlem Remote-Containers: **Clone Repository in Container Volume...** komutunu kullanarak kaynak kodunu yerel dosya sistemi yerine bir Docker hacmine klonlayacaktır. [Hacimler](https://docs.docker.com/storage/volumes/) konteyner verilerini kalıcı hale getirmek için tercih edilen mekanizmadır.
Ya da repo'nun yerel olarak klonlanmış veya indirilmiş bir versiyonunu açabilirsiniz:
Ya da yerel olarak klonlanmış veya indirilmiş bir depo sürümünü açabilirsiniz:
- Bu repo'yu yerel dosya sisteminize klonlayın.
- Bu depoyu yerel dosya sisteminize klonlayın.
- F1 tuşuna basın ve **Remote-Containers: Open Folder in Container...** komutunu seçin.
- Bu klasörün klonlanmış kopyasını seçin, konteynerin başlamasını bekleyin ve denemeler yapın.
## Çevrimdışı erişim
Bu dokümantasyonu [Docsify](https://docsify.js.org/#/) kullanarak çevrimdışı çalıştırabilirsiniz. Bu repo'yu çatallayın, [Docsify'i yükleyin](https://docsify.js.org/#/quickstart) yerel makinenize, ardından bu repo'nun kök klasöründe `docsify serve` yazın. Web sitesi localhost'ta 3000 portunda sunulacaktır: `localhost:3000`.
Bu belgeleri [Docsify](https://docsify.js.org/#/) kullanarak çevrimdışı çalıştırabilirsiniz. Bu depoyu çatallayın, [Docsify'i kurun](https://docsify.js.org/#/quickstart) yerel makinenize, ardından bu deponun kök klasöründe `docsify serve` yazın. Web sitesi localhost'ta 3000 portunda sunulacaktır: `localhost:3000`.
> Not, not defterleri Docsify üzerinden görüntülenmeyecektir, bu yüzden bir not defteri çalıştırmanız gerektiğinde bunu ayrı olarak Python çekirdeği çalıştıran VS Code'da yapın.
> Not, not defterleri Docsify üzerinden görüntülenmeyecektir, bu nedenle bir not defteri çalıştırmanız gerektiğinde bunu ayrı olarak VS Code'da bir Python çekirdeği çalıştırarak yapın.
## Diğer Müfredatlar
Ekibimiz başka müfredatlar da üretiyor! Şunlara göz atın:
- [Başlangıç Seviyesi için Üretken Yapay Zeka](https://aka.ms/genai-beginners)
- [Başlangıç Seviyesi için Üretken Yapay Zeka .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [JavaScript ile Üretken Yapay Zeka](https://github.com/microsoft/generative-ai-with-javascript)
- [Java ile Üretken Yapay Zeka](https://aka.ms/genaijava)
- [Başlangıç Seviyesi için Yapay Zeka](https://aka.ms/ai-beginners)
- [Başlangıç Seviyesi için Veri Bilimi](https://aka.ms/datascience-beginners)
- [Başlangıç Seviyesi için Bash](https://github.com/microsoft/bash-for-beginners)
- [Başlangıç Seviyesi için Makine Öğrenimi](https://aka.ms/ml-beginners)
- [Başlangıç Seviyesi için Siber Güvenlik](https://github.com/microsoft/Security-101)
- [Başlangıç Seviyesi için Web Geliştirme](https://aka.ms/webdev-beginners)
- [Başlangıç Seviyesi için IoT](https://aka.ms/iot-beginners)
- [Başlangıç Seviyesi için Makine Öğrenimi](https://aka.ms/ml-beginners)
- [Başlangıç Seviyesi için XR Geliştirme](https://aka.ms/xr-dev-for-beginners)
- [AI Eşli Programlama için GitHub Copilot'u Ustalaştırma](https://aka.ms/GitHubCopilotAI)
- [Başlangıç Seviyesi için XR Geliştirme](https://github.com/microsoft/xr-development-for-beginners)
- [C#/.NET Geliştiricileri için GitHub Copilot'u Ustalaştırma](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**Feragatname**:
Bu belge, AI çeviri hizmeti [Co-op Translator](https://github.com/Azure/co-op-translator) kullanılarak çevrilmiştir. Doğruluk için çaba göstersek de, otomatik çevirilerin hata veya yanlışlık içerebileceğini lütfen unutmayın. Belgenin orijinal dili, yetkili kaynak olarak kabul edilmelidir. Kritik bilgiler için profesyonel insan çevirisi önerilir. Bu çevirinin kullanımından kaynaklanan yanlış anlamalar veya yanlış yorumlamalar için sorumluluk kabul etmiyoruz.
||
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://aka.ms/foundry/forum)
Azure Cloud Advocates у Microsoft раді запропонувати 10-тижневу навчальну програму з 20 уроків, присвячену Data Science. Кожен урок включає тести перед і після заняття, письмові інструкції для виконання уроку, рішення та завдання. Наш підхід, заснований на проектах, дозволяє навчатися через створення, що є перевіреним способом закріплення нових навичок.
Команда Azure Cloud Advocates у Microsoft рада запропонувати 10-тижневу навчальну програму з 20 уроків, присвячену науці про дані. Кожен урок включає тести перед і після заняття, письмові інструкції для виконання уроку, рішення та завдання. Наш підхід, заснований на проектах, дозволяє навчатися через створення, що є перевіреним способом закріплення нових навичок.
||
|:---:|
| Data Science For Beginners - _Скетчнот від [@nitya](https://twitter.com/nitya)_ |
| Наука про дані для початківців - _Скетчнот від [@nitya](https://twitter.com/nitya)_ |
### 🌐 Підтримка багатомовності
#### Підтримується через GitHub Action (Автоматично та завжди актуально)
#### Підтримується через GitHub Action (автоматично та завжди актуально)
**Якщо ви бажаєте додати підтримку інших мов, список доступних мов наведено [тут](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Якщо ви хочете додати додаткові переклади, список підтримуваних мов наведено [тут](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Приєднуйтесь до нашої спільноти
[](https://aka.ms/ds4beginners/discord)
У нас триває серія навчання з AI у Discord, дізнайтеся більше та приєднуйтесь до нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) з 18 по 30 вересня 2025 року. Ви отримаєте поради та хитрощі використання GitHub Copilot для Data Science.
У нас триває серія навчання з AI у Discord, дізнайтеся більше та приєднуйтесь до нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) з 18 по 30 вересня 2025 року. Ви отримаєте поради та хитрощі використання GitHub Copilot для науки про дані.


# Ви студент?
@ -60,11 +60,11 @@ Azure Cloud Advocates у Microsoft раді запропонувати 10-тиж
# Початок роботи
> **Вчителі**: ми [додали кілька пропозицій](for-teachers.md) щодо використання цієї навчальної програми. Ми будемо раді вашим відгукам [у нашому форумі обговорень](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Вчителі**: ми [додали кілька пропозицій](for-teachers.md) щодо використання цієї навчальної програми. Нам буде цікаво отримати ваші відгуки [у нашому форумі обговорень](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Студенти](https://aka.ms/student-page)**: щоб використовувати цю навчальну програму самостійно, зробіть форк усього репозиторію та виконуйте вправи самостійно, починаючи з тесту перед лекцією. Потім прочитайте лекцію та виконайте решту завдань. Спробуйте створювати проекти, розуміючи уроки, а не копіюючи код рішення; однак цей код доступний у папках /solutions у кожному проектно-орієнтованому уроці. Ще одна ідея — створити навчальну групу з друзями та проходити контент разом. Для подальшого навчання ми рекомендуємо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Студенти](https://aka.ms/student-page)**: щоб використовувати цю навчальну програму самостійно, зробіть форк усього репозиторію та виконайте вправи самостійно, починаючи з тесту перед лекцією. Потім прочитайте лекцію та виконайте решту завдань. Спробуйте створювати проекти, розуміючи уроки, а не копіюючи код рішення; однак цей код доступний у папках /solutions у кожному проектно-орієнтованому уроці. Ще одна ідея — створити навчальну групу з друзями та проходити контент разом. Для подальшого навчання ми рекомендуємо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -74,9 +74,9 @@ Azure Cloud Advocates у Microsoft раді запропонувати 10-тиж
## Педагогіка
Ми обрали два педагогічні принципи при створенні цієї навчальної програми: забезпечення її проектно-орієнтованості та включення частих тестів. До кінця цієї серії студенти вивчать основні принципи Data Science, включаючи етичні концепції, підготовку даних, різні способи роботи з даними, візуалізацію даних, аналіз даних, реальні приклади використання Data Science та багато іншого.
Ми обрали два педагогічні принципи при створенні цієї навчальної програми: забезпечення її проектно-орієнтованості та включення частих тестів. До кінця цієї серії студенти вивчать основні принципи науки про дані, включаючи етичні концепції, підготовку даних, різні способи роботи з даними, візуалізацію даних, аналіз даних, реальні приклади використання науки про дані та багато іншого.
Крім того, тест з низькими ставками перед заняттям налаштовує студента на вивчення теми, а другий тест після заняття забезпечує подальше закріплення матеріалу. Ця навчальна програма була розроблена так, щоб бути гнучкою та цікавою, і її можна проходити повністю або частково. Проекти починаються з простих і стають дедалі складнішими до кінця 10-тижневого циклу.
Крім того, тест з низьким рівнем стресу перед заняттям налаштовує студента на вивчення теми, а другий тест після заняття забезпечує подальше закріплення матеріалу. Ця навчальна програма була розроблена як гнучка та цікава і може бути пройдена повністю або частково. Проекти починаються з простих і стають дедалі складнішими до кінця 10-тижневого циклу.
> Знайдіть наш [Кодекс поведінки](CODE_OF_CONDUCT.md), [Правила внесення змін](CONTRIBUTING.md), [Правила перекладу](TRANSLATIONS.md). Ми вітаємо ваші конструктивні відгуки!
@ -93,24 +93,23 @@ Azure Cloud Advocates у Microsoft раді запропонувати 10-тиж
- Завдання
- [Тест після уроку](https://ff-quizzes.netlify.app/en/)
> **Примітка щодо тестів**: Усі тести містяться в папці Quiz-App, всього 40 тестів по три питання кожен. Вони пов’язані з уроками, але додаток для тестів можна запустити локально або розгорнути в Azure; дотримуйтесь інструкцій у папці `quiz-app`. Вони поступово локалізуються.
> **Примітка щодо тестів**: Усі тести знаходяться в папці Quiz-App, всього 40 тестів по три питання кожен. Вони пов’язані з уроками, але додаток для тестів можна запустити локально або розгорнути в Azure; дотримуйтесь інструкцій у папці `quiz-app`. Вони поступово локалізуються.
## Уроки
||
|:---:|
| Data Science For Beginners: Дорожня карта - _Скетчноут від [@nitya](https://twitter.com/nitya)_ |
| Наука про дані для початківців: Дорожня карта - _Скетчнот від [@nitya](https://twitter.com/nitya)_ |
| Номер уроку | Тема | Групування уроків | Цілі навчання | Пов'язаний урок | Автор |
| 01 | Визначення науки про дані | [Вступ](1-Introduction/README.md) | Вивчіть основні концепції науки про дані та її зв’язок зі штучним інтелектом, машинним навчанням і великими даними. | [урок](1-Introduction/01-defining-data-science/README.md) [відео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Етика науки про дані | [Вступ](1-Introduction/README.md) | Концепції етики даних, виклики та рамки. | [урок](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Визначення даних | [Вступ](1-Introduction/README.md) | Як класифікуються дані та їхні основні джерела. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 03 | Визначення даних | [Вступ](1-Introduction/README.md) | Як класифікуються дані та їхні загальні джерела. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Вступ до статистики та ймовірності | [Вступ](1-Introduction/README.md) | Математичні методи ймовірності та статистики для розуміння даних. | [урок](1-Introduction/04-stats-and-probability/README.md) [відео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Робота з реляційними даними | [Робота з даними](2-Working-With-Data/README.md) | Вступ до реляційних даних і основи дослідження та аналізу реляційних даних за допомогою мови структурованих запитів, також відомої як SQL (вимовляється «сі-квел»). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Робота з NoSQL даними | [Робота з даними](2-Working-With-Data/README.md) | Вступ до нереляційних даних, їх різних типів і основи дослідження та аналізу документних баз даних. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Робота з Python | [Робота з даними](2-Working-With-Data/README.md) | Основи використання Python для дослідження даних за допомогою бібліотек, таких як Pandas. Рекомендується базове розуміння програмування на Python. | [урок](2-Working-With-Data/07-python/README.md) [відео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Підготовка даних | [Робота з даними](2-Working-With-Data/README.md) | Теми про методи очищення та трансформації даних для вирішення проблем, пов’язаних із відсутніми, неточними або неповними даними. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 07 | Робота з Python | [Робота з даними](2-Working-With-Data/README.md) | Основи використання Python для дослідження даних із бібліотеками, такими як Pandas. Рекомендується базове розуміння програмування на Python. | [урок](2-Working-With-Data/07-python/README.md) [відео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Підготовка даних | [Робота з даними](2-Working-With-Data/README.md) | Теми про методи очищення та трансформації даних для вирішення проблем із відсутніми, неточними або неповними даними. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Візуалізація кількостей | [Візуалізація даних](3-Data-Visualization/README.md) | Вивчіть, як використовувати Matplotlib для візуалізації даних про птахів 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Візуалізація розподілу даних | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація спостережень і тенденцій у межах інтервалу. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
@ -119,28 +118,28 @@ Azure Cloud Advocates у Microsoft раді запропонувати 10-тиж
| 14 | Вступ до життєвого циклу науки про дані | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Вступ до життєвого циклу науки про дані та його першого етапу — отримання та вилучення даних. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Аналіз | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Ця фаза життєвого циклу науки про дані зосереджена на методах аналізу даних. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Комунікація | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Ця фаза життєвого циклу науки про дані зосереджена на представленні інсайтів із даних у спосіб, який полегшує розуміння для осіб, які приймають рішення. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Ця серія уроків знайомить із наукою про дані в хмарі та її перевагами. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) і [Maud](https://twitter.com/maudstweets) |
| 18 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Навчання моделей за допомогою інструментів Low Code. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) і [Maud](https://twitter.com/maudstweets) |
| 19 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Розгортання моделей за допомогою Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) і [Maud](https://twitter.com/maudstweets) |
| 17 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Ця серія уроків знайомить із наукою про дані в хмарі та її перевагами. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) та [Maud](https://twitter.com/maudstweets) |
| 18 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Навчання моделей за допомогою інструментів Low Code. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) та [Maud](https://twitter.com/maudstweets) |
| 19 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Розгортання моделей за допомогою Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) та [Maud](https://twitter.com/maudstweets) |
| 20 | Наука про дані в реальному світі | [У реальному світі](6-Data-Science-In-Wild/README.md) | Проекти, керовані наукою про дані, у реальному світі. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Виконайте ці кроки, щоб відкрити цей приклад у Codespace:
1. Натисніть спадне меню Code і виберіть опцію Open with Codespaces.
1. Натисніть на випадаюче меню Code і виберіть опцію Open with Codespaces.
2. Виберіть + New codespace внизу панелі.
Для отримання додаткової інформації перегляньте [документацію GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Виконайте ці кроки, щоб відкрити цей репозиторій у контейнері за допомогою вашого локального комп’ютера та VSCode, використовуючи розширення VS Code Remote - Containers:
1. Якщо ви вперше використовуєте контейнер для розробки, переконайтеся, що ваша система відповідає попереднім вимогам (тобто встановлено Docker) у [документації для початку роботи](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Якщо ви вперше використовуєте контейнер для розробки, переконайтеся, що ваша система відповідає вимогам (наприклад, встановлено Docker) у [документації для початку роботи](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Щоб використовувати цей репозиторій, ви можете або відкрити репозиторій в ізольованому томі Docker:
Щоб використовувати цей репозиторій, ви можете або відкрити його в ізольованому томі Docker:
**Примітка**: У фоновому режимі це використовуватиме команду Remote-Containers: **Clone Repository in Container Volume...** для клонування вихідного коду в том Docker замість локальної файлової системи. [Томи](https://docs.docker.com/storage/volumes/) є рекомендованим механізмом для збереження даних контейнера.
Або відкрийте локально клоновану або завантажену версію репозиторію:
Або відкрийте локально клоновану чи завантажену версію репозиторію:
- Клонуйте цей репозиторій у вашу локальну файлову систему.
- Натисніть F1 і виберіть команду **Remote-Containers: Open Folder in Container...**.
@ -148,31 +147,35 @@ Azure Cloud Advocates у Microsoft раді запропонувати 10-тиж
## Офлайн-доступ
Ви можете запустити цю документацію офлайн, використовуючи [Docsify](https://docsify.js.org/#/). Форкніть цей репозиторій, [встановіть Docsify](https://docsify.js.org/#/quickstart) на вашому локальному комп’ютері, потім у кореневій папці цього репозиторію введіть `docsify serve`. Вебсайт буде запущений на порту 3000 на вашому localhost: `localhost:3000`.
Ви можете запустити цю документацію офлайн, використовуючи [Docsify](https://docsify.js.org/#/). Форкніть цей репозиторій, [встановіть Docsify](https://docsify.js.org/#/quickstart) на вашому локальному комп’ютері, потім у кореневій папці цього репозиторію введіть `docsify serve`. Вебсайт буде доступний на порту 3000 вашого localhost: `localhost:3000`.
> Примітка, блокноти не будуть відображатися через Docsify, тому коли вам потрібно запустити блокнот, зробіть це окремо у VS Code, запустивши ядро Python.
> Примітка: блокноти не будуть відображатися через Docsify, тому коли вам потрібно запустити блокнот, зробіть це окремо у VS Code, запустивши Python kernel.
## Інші навчальні програми
Наша команда створює інші навчальні програми! Перегляньте:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [Edge AI для початківців](https://aka.ms/edgeai-for-beginners)
- [AI Agents для початківців](https://aka.ms/ai-agents-beginners)
- [Генеративний AI для початківців](https://aka.ms/genai-beginners)
- [Генеративний AI для початківців .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Генеративний AI з JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Генеративний AI з Java](https://aka.ms/genaijava)
- [AI для початківців](https://aka.ms/ai-beginners)
- [Наука про дані для початківців](https://aka.ms/datascience-beginners)
- [Bash для початківців](https://github.com/microsoft/bash-for-beginners)
- [ML для початківців](https://aka.ms/ml-beginners)
- [Кібербезпека для початківців](https://github.com/microsoft/Security-101)
- [Веб-розробка для початківців](https://aka.ms/webdev-beginners)
- [IoT для початківців](https://aka.ms/iot-beginners)
- [Машинне навчання для початківців](https://aka.ms/ml-beginners)
- [Розробка XR для початківців](https://aka.ms/xr-dev-for-beginners)
- [Опанування GitHub Copilot для парного програмування з AI](https://aka.ms/GitHubCopilotAI)
- [Розробка XR для початківців](https://github.com/microsoft/xr-development-for-beginners)
- [Опанування GitHub Copilot для розробників C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Виберіть свою пригоду з Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Відмова від відповідальності**:
Цей документ був перекладений за допомогою сервісу автоматичного перекладу [Co-op Translator](https://github.com/Azure/co-op-translator). Хоча ми прагнемо до точності, будь ласка, майте на увазі, що автоматичні переклади можуть містити помилки або неточності. Оригінальний документ на його рідній мові слід вважати авторитетним джерелом. Для критичної інформації рекомендується професійний людський переклад. Ми не несемо відповідальності за будь-які непорозуміння або неправильні тлумачення, що виникають внаслідок використання цього перекладу.
Azure Cloud Advocates نے مائیکروسافٹ پر ایک 10 ہفتوں کا، 20 اسباق پر مشتمل نصاب پیش کیا ہے جو مکمل طور پر ڈیٹا سائنس کے بارے میں ہے۔ ہر سبق میں سبق سے پہلے اور بعد کے کوئز، سبق مکمل کرنے کے لیے تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہیں۔ ہمارا پروجیکٹ پر مبنی طریقہ کار آپ کو سیکھنے کے دوران بنانے کی اجازت دیتا ہے، جو نئی مہارتوں کو یاد رکھنے کا ایک مؤثر طریقہ ہے۔
Azure Cloud Advocates نے Microsoft میں ایک 10 ہفتوں، 20 اسباق پر مشتمل نصاب پیش کیا ہے جو مکمل طور پر ڈیٹا سائنس کے بارے میں ہے۔ ہر سبق میں پری-سبق اور پوسٹ-سبق کوئز، سبق مکمل کرنے کے لیے تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہے۔ ہمارا پروجیکٹ پر مبنی طریقہ کار آپ کو سیکھنے کے دوران بنانے کی اجازت دیتا ہے، جو نئے ہنر کو یاد رکھنے کا ایک مؤثر طریقہ ہے۔
**🙏 خاص شکریہ 🙏 ہمارے [مائیکروسافٹ اسٹوڈنٹ ایمبیسڈر](https://studentambassadors.microsoft.com/) مصنفین، جائزہ لینے والوں اور مواد کے شراکت داروں کا،** خاص طور پر آریان اروڑا، [آدتیہ گرگ](https://github.com/AdityaGarg00)، [الوندرا سانچیز](https://www.linkedin.com/in/alondra-sanchez-molina/)، [انکیتا سنگھ](https://www.linkedin.com/in/ankitasingh007)، [انوپم مشرا](https://www.linkedin.com/in/anupam--mishra/)، [ارپیتا داس](https://www.linkedin.com/in/arpitadas01/)، چھائل بہاری دوبے، [دیبری نسوفر](https://www.linkedin.com/in/dibrinsofor)، [دیشیتا بھاسین](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [مجید صافی](https://www.linkedin.com/in/majd-s/)، [میکس بلوم](https://www.linkedin.com/in/max-blum-6036a1186/)، [میگوئل کوریا](https://www.linkedin.com/in/miguelmque/)، [محمد افتخار (افتو) ابن جلال](https://twitter.com/iftu119)، [نورین تبسم](https://www.linkedin.com/in/nawrin-tabassum)، [ریمنڈ وانگسا پترا](https://www.linkedin.com/in/raymond-wp/)، [روہت یادو](https://www.linkedin.com/in/rty2423)، سمردھی شرما، [سانیا سنہا](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [شینا نرولا](https://www.linkedin.com/in/sheena-narua-n/)، [توقیر احمد](https://www.linkedin.com/in/tauqeerahmad5201/)، یوگندر سنگھ پاور، [ودوشی گپتا](https://www.linkedin.com/in/vidushi-gupta07/)، [جسلین سوندھی](https://www.linkedin.com/in/jasleen-sondhi/)۔
**🙏 خصوصی شکریہ 🙏 ہمارے [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) مصنفین، جائزہ لینے والوں اور مواد کے تعاون کرنے والوں کا،** خاص طور پر آریان اروڑا، [ادیتیہ گرگ](https://github.com/AdityaGarg00)، [الوندرا سانچیز](https://www.linkedin.com/in/alondra-sanchez-molina/)، [انکیتا سنگھ](https://www.linkedin.com/in/ankitasingh007)، [انپم مشرا](https://www.linkedin.com/in/anupam--mishra/)، [ارپیتا داس](https://www.linkedin.com/in/arpitadas01/)، چھائل بہاری دوبے، [دیبری نسوفور](https://www.linkedin.com/in/dibrinsofor)، [دیشیتا بھاسین](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [مجید صافی](https://www.linkedin.com/in/majd-s/)، [میکس بلوم](https://www.linkedin.com/in/max-blum-6036a1186/)، [میگوئل کوریا](https://www.linkedin.com/in/miguelmque/)، [محمد افتخار (افتو) ابن جلال](https://twitter.com/iftu119)، [نورین تبسم](https://www.linkedin.com/in/nawrin-tabassum)، [ریمنڈ وانگسا پترا](https://www.linkedin.com/in/raymond-wp/)، [روہت یادو](https://www.linkedin.com/in/rty2423)، سمردھی شرما، [سانیا سنہا](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [شینا نرولا](https://www.linkedin.com/in/sheena-narua-n/)، [توقیر احمد](https://www.linkedin.com/in/tauqeerahmad5201/)، یوگندر سنگھ پاوار، [ودوشی گپتا](https://www.linkedin.com/in/vidushi-gupta07/)، [جسلین سوندھی](https://www.linkedin.com/in/jasleen-sondhi/)۔
||
|:---:|
| ڈیٹا سائنس برائے ابتدائی افراد - _اسکیچ نوٹ از [@nitya](https://twitter.com/nitya)_ |
**اگر آپ اضافی زبانوں میں ترجمہ چاہتے ہیں تو معاون زبانوں کی فہرست [یہاں](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) موجود ہے۔**
**اگر آپ اضافی زبانوں میں ترجمہ چاہتے ہیں تو، [یہاں](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) درج زبانیں دستیاب ہیں۔**
#### ہماری کمیونٹی میں شامل ہوں
#### ہماری کمیونٹی میں شامل ہوں
[](https://aka.ms/ds4beginners/discord)
ہمارے پاس ایک Discord پر AI کے ساتھ سیکھنے کی سیریز جاری ہے، مزید جاننے اور شامل ہونے کے لیے [Learn with AI Series](https://aka.ms/learnwithai/discord) پر جائیں، 18 - 30 ستمبر، 2025۔ آپ کو GitHub Copilot کو ڈیٹا سائنس کے لیے استعمال کرنے کے ٹپس اور ٹرکس ملیں گے۔
ہمارے پاس AI کے ساتھ سیکھنے کی ایک سیریز جاری ہے، مزید جاننے اور شامل ہونے کے لیے [Learn with AI Series](https://aka.ms/learnwithai/discord) پر جائیں، 18 - 30 ستمبر، 2025۔ آپ کو GitHub Copilot کو ڈیٹا سائنس کے لیے استعمال کرنے کے ٹپس اور ٹرکس ملیں گے۔


# کیا آپ طالب علم ہیں؟
مندرجہ ذیل وسائل سے شروعات کریں:
مندرجہ ذیل وسائل کے ساتھ شروعات کریں:
- [اسٹوڈنٹ ہب صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو ابتدائی وسائل، اسٹوڈنٹ پیک اور یہاں تک کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ ایک ایسا صفحہ ہے جسے آپ بک مارک کرنا چاہیں گے اور وقتاً فوقتاً چیک کریں گے کیونکہ ہم کم از کم ماہانہ مواد تبدیل کرتے ہیں۔
- [مائیکروسافٹ لرن اسٹوڈنٹ ایمبیسڈرز](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ایک عالمی کمیونٹی میں شامل ہوں، یہ مائیکروسافٹ میں آپ کے داخلے کا راستہ ہو سکتا ہے۔
- [طالب علم حب صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو ابتدائی وسائل، طالب علم پیک اور یہاں تک کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ ایک صفحہ ہے جسے آپ بک مارک کرنا چاہیں گے اور وقتاً فوقتاً چیک کریں گے کیونکہ ہم کم از کم ماہانہ مواد تبدیل کرتے ہیں۔
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ایک عالمی کمیونٹی میں شامل ہوں، یہ Microsoft میں آپ کے داخلے کا راستہ ہو سکتا ہے۔
# شروعات کریں
# شروعات کیسے کریں
> **اساتذہ**: ہم نے [کچھ تجاویز شامل کی ہیں](for-teachers.md) کہ اس نصاب کو کیسے استعمال کیا جائے۔ ہم آپ کی رائے [ہمارے ڈسکشن فورم](https://github.com/microsoft/Data-Science-For-Beginners/discussions) میں چاہتے ہیں!
> **اساتذہ**: ہم نے [کچھ تجاویز شامل کی ہیں](for-teachers.md) کہ اس نصاب کو کیسے استعمال کیا جائے۔ ہمیں آپ کی رائے [ہمارے بحث فورم](https://github.com/microsoft/Data-Science-For-Beginners/discussions) میں پسند آئے گی!
> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو خود استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور خود سے مشقیں مکمل کریں، سبق سے پہلے کے کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ اسباق کو سمجھ کر پروجیکٹس بنائیں بجائے اس کے کہ حل کوڈ کو کاپی کریں؛ تاہم، وہ کوڈ ہر پروجیکٹ پر مبنی سبق کے /solutions فولڈرز میں دستیاب ہے۔ ایک اور خیال یہ ہو سکتا ہے کہ دوستوں کے ساتھ ایک اسٹڈی گروپ بنائیں اور مواد کو ایک ساتھ دیکھیں۔ مزید مطالعہ کے لیے، ہم [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کی سفارش کرتے ہیں۔
> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو خود استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور خود سے مشقیں مکمل کریں، پری-لیکچر کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ اسباق کو سمجھ کر پروجیکٹس بنائیں بجائے اس کے کہ حل کوڈ کو کاپی کریں؛ تاہم، وہ کوڈ ہر پروجیکٹ پر مبنی سبق کے /solutions فولڈرز میں دستیاب ہے۔ ایک اور خیال یہ ہو سکتا ہے کہ دوستوں کے ساتھ ایک اسٹڈی گروپ بنائیں اور مواد کو ایک ساتھ دیکھیں۔ مزید مطالعہ کے لیے، ہم [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کی سفارش کرتے ہیں۔
> 🎥 اوپر دی گئی تصویر پر کلک کریں تاکہ پروجیکٹ اور اس کے تخلیق کاروں کے بارے میں ویڈیو دیکھ سکیں!
> 🎥 اوپر دی گئی تصویر پر کلک کریں تاکہ پروجیکٹ اور اسے بنانے والے افراد کے بارے میں ویڈیو دیکھ سکیں!
## تدریسی طریقہ کار
ہم نے اس نصاب کو بناتے وقت دو تدریسی اصول اپنائے ہیں: یہ یقینی بنانا کہ یہ پروجیکٹ پر مبنی ہو اور اس میں بار بار کوئز شامل ہوں۔ اس سیریز کے اختتام تک، طلباء ڈیٹا سائنس کے بنیادی اصول سیکھ چکے ہوں گے، جن میں اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے ساتھ مختلف طریقوں سے کام کرنا، ڈیٹا کی بصری نمائندگی، ڈیٹا کا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا کے استعمال کے کیسز، اور مزید شامل ہیں۔
ہم نے اس نصاب کو بناتے وقت دو تدریسی اصول اپنائے ہیں: یہ یقینی بنانا کہ یہ پروجیکٹ پر مبنی ہے اور اس میں بار بار کوئز شامل ہیں۔ اس سیریز کے اختتام تک، طلباء ڈیٹا سائنس کے بنیادی اصول سیکھ چکے ہوں گے، جن میں اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے ساتھ کام کرنے کے مختلف طریقے، ڈیٹا کی بصری نمائندگی، ڈیٹا کا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا کے استعمال کے کیسز، اور مزید شامل ہیں۔
اس کے علاوہ، کلاس سے پہلے ایک کم دباؤ والا کوئز طالب علم کو کسی موضوع کو سیکھنے کی نیت پر مرکوز کرتا ہے، جبکہ کلاس کے بعد دوسرا کوئز مزید یادداشت کو یقینی بناتا ہے۔ یہ نصاب لچکدار اور دلچسپ بنایا گیا ہے اور اسے مکمل یا جزوی طور پر لیا جا سکتا ہے۔ پروجیکٹس چھوٹے شروع ہوتے ہیں اور 10 ہفتوں کے سائیکل کے اختتام تک بتدریج پیچیدہ ہو جاتے ہیں۔
اس کے علاوہ، کلاس سے پہلے ایک کم دباؤ والا کوئز طالب علم کو کسی موضوع کو سیکھنے کی طرف راغب کرتا ہے، جبکہ کلاس کے بعد دوسرا کوئز مزید یادداشت کو یقینی بناتا ہے۔ یہ نصاب لچکدار اور دلچسپ بنایا گیا ہے اور اسے مکمل یا جزوی طور پر لیا جا سکتا ہے۔ پروجیکٹس چھوٹے شروع ہوتے ہیں اور 10 ہفتوں کے سائیکل کے اختتام تک بتدریج پیچیدہ ہو جاتے ہیں۔
> ہمارا [Code of Conduct](CODE_OF_CONDUCT.md)، [Contributing](CONTRIBUTING.md)، [Translation](TRANSLATIONS.md) رہنما خطوط دیکھیں۔ ہم آپ کی تعمیری رائے کا خیر مقدم کرتے ہیں!
> ہمارا [Code of Conduct](CODE_OF_CONDUCT.md)، [Contributing](CONTRIBUTING.md)، [Translation](TRANSLATIONS.md) گائیڈ لائنز دیکھیں۔ ہم آپ کی تعمیری رائے کا خیر مقدم کرتے ہیں!
## ہر سبق میں شامل ہیں:
## ہر سبق میں شامل ہے:
- اختیاری اسکیچ نوٹ
- اختیاری اضافی ویڈیو
- سبق سے پہلے کا وارم اپ کوئز
- پری-سبق وارم اپ کوئز
- تحریری سبق
- پروجیکٹ پر مبنی اسباق کے لیے، پروجیکٹ بنانے کے مرحلہ وار رہنما
- پروجیکٹ پر مبنی اسباق کے لیے، پروجیکٹ بنانے کے مرحلہ وار گائیڈز
- علم کی جانچ
- ایک چیلنج
- اضافی مطالعہ
- اسائنمنٹ
- [سبق کے بعد کا کوئز](https://ff-quizzes.netlify.app/en/)
> **کوئز کے بارے میں ایک نوٹ**: تمام کوئز Quiz-App فولڈر میں موجود ہیں، کل 40 کوئز، ہر ایک میں تین سوالات۔ یہ اسباق کے اندر سے منسلک ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا جا سکتا ہے یا Azure پر تعینات کیا جا سکتا ہے؛ `quiz-app` فولڈر میں ہدایات پر عمل کریں۔ یہ بتدریج مقامی زبانوں میں ترجمہ کیے جا رہے ہیں۔
> **کوئز کے بارے میں ایک نوٹ**: تمام کوئز Quiz-App فولڈر میں موجود ہیں، کل 40 کوئز، ہر ایک میں تین سوالات۔ یہ اسباق کے اندر سے لنک کیے گئے ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا جا سکتا ہے یا Azure پر تعینات کیا جا سکتا ہے؛ `quiz-app` فولڈر میں دی گئی ہدایات پر عمل کریں۔ یہ بتدریج مقامی زبانوں میں ترجمہ کیے جا رہے ہیں۔
## اسباق
||
@ -91,38 +91,38 @@ Azure Cloud Advocates نے مائیکروسافٹ پر ایک 10 ہفتوں کا
| 04 | شماریات اور احتمال کا تعارف | [تعارف](1-Introduction/README.md) | ڈیٹا کو سمجھنے کے لیے احتمال اور شماریات کی ریاضیاتی تکنیکیں۔ | [سبق](1-Introduction/04-stats-and-probability/README.md) [ویڈیو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | تعلقاتی ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | تعلقاتی ڈیٹا کا تعارف اور SQL (جسے "سی-کوئل" کہا جاتا ہے) کے ذریعے تعلقاتی ڈیٹا کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | غیر تعلقاتی ڈیٹا کا تعارف، اس کی مختلف اقسام اور دستاویز ڈیٹا بیس کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | پائتھون کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | پائتھون کے ذریعے ڈیٹا کی دریافت کے لیے بنیادی باتیں، جیسے Pandas لائبریری۔ پائتھون پروگرامنگ کی بنیادی سمجھ بوجھ کی سفارش کی جاتی ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | ڈیٹا کو صاف کرنے اور تبدیل کرنے کے لیے تکنیکوں پر موضوعات تاکہ گمشدہ، غلط، یا نامکمل ڈیٹا کے چیلنجز سے نمٹا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 07 | پائتھون کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | پائتھون کے ذریعے ڈیٹا کو دریافت کرنے کے لیے بنیادی باتیں، جیسے Pandas لائبریری۔ پائتھون پروگرامنگ کی بنیادی سمجھ ضروری ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | ڈیٹا کو صاف کرنے اور تبدیل کرنے کے لیے تکنیکیں، تاکہ گمشدہ، غلط یا نامکمل ڈیٹا کے چیلنجز سے نمٹا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | مقداروں کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | سیکھیں کہ Matplotlib کا استعمال کرتے ہوئے پرندوں کے ڈیٹا کو کیسے بصری بنایا جائے 🦆 | [سبق](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ڈیٹا کی تقسیم کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | وقفے کے اندر مشاہدات اور رجحانات کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | تناسب کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | الگ اور گروپ شدہ فیصد کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | تعلقات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ڈیٹا کے سیٹ اور ان کے متغیرات کے درمیان تعلقات اور ارتباط کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | بامعنی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | آپ کی بصری نمائندگی کو مؤثر مسئلہ حل کرنے اور بصیرت کے لیے قیمتی بنانے کے لیے تکنیک اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | بامعنی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | آپ کی بصری نمائندگی کو مؤثر مسئلہ حل کرنے اور بصیرت کے لیے قیمتی بنانے کے لیے تکنیکیں اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | ڈیٹا سائنس کے لائف سائیکل کا تعارف | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا تعارف اور ڈیٹا حاصل کرنے اور نکالنے کا پہلا مرحلہ۔ | [سبق](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | تجزیہ کرنا | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا کا تجزیہ کرنے کی تکنیکوں پر مرکوز ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | مواصلات | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا سے بصیرت کو اس طرح پیش کرنے پر مرکوز ہے کہ فیصلہ سازوں کے لیے اسے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 15 | تجزیہ کرنا | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا کو تجزیہ کرنے کی تکنیکوں پر مرکوز ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | مواصلات | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا سے حاصل کردہ بصیرت کو اس انداز میں پیش کرنے پر مرکوز ہے جو فیصلہ سازوں کے لیے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | اس سبق کی سیریز کلاؤڈ میں ڈیٹا سائنس اور اس کے فوائد کا تعارف کراتی ہے۔ | [سبق](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 18 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | کم کوڈ ٹولز کا استعمال کرتے ہوئے ماڈلز کی تربیت۔ |[سبق](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 19 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio کے ساتھ ماڈلز کو تعینات کرنا۔ | [سبق](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 20 | جنگلی ماحول میں ڈیٹا سائنس | [جنگلی ماحول میں](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس سے چلنے والے منصوبے۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | جنگلی ماحول میں ڈیٹا سائنس | [جنگلی ماحول میں](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس پر مبنی منصوبے۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
ان مراحل پر عمل کریں تاکہ اس نمونے کو Codespace میں کھولا جا سکے:
اس نمونے کو Codespace میں کھولنے کے لیے درج ذیل مراحل پر عمل کریں:
1. Code ڈراپ ڈاؤن مینو پر کلک کریں اور Open with Codespaces آپشن منتخب کریں۔
2. پین کے نیچے + New codespace منتخب کریں۔
مزید معلومات کے لیے، [GitHub دستاویزات](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) دیکھیں۔
## VSCode Remote - Containers
اپنے مقامی مشین اور VSCode کا استعمال کرتے ہوئے اس ریپو کو کنٹینر میں کھولنے کے لیے ان مراحل پر عمل کریں، VS Code Remote - Containers ایکسٹینشن کا استعمال کرتے ہوئے:
اپنے مقامی کمپیوٹر اور VSCode کا استعمال کرتے ہوئے اس ریپو کو کنٹینر میں کھولنے کے لیے درج ذیل مراحل پر عمل کریں، VS Code Remote - Containers ایکسٹینشن کا استعمال کرتے ہوئے:
1. اگر یہ آپ کا پہلی بار ڈیولپمنٹ کنٹینر استعمال کرنا ہے، تو براہ کرم یقینی بنائیں کہ آپ کا سسٹم پری ریکویزیٹس کو پورا کرتا ہے (یعنی Docker انسٹال ہو) [شروع کرنے کی دستاویزات](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) میں۔
1. اگر یہ آپ کا پہلی بار ڈیولپمنٹ کنٹینر استعمال کرنا ہے، تو براہ کرم یقینی بنائیں کہ آپ کا سسٹم پری ریکوائرمنٹس کو پورا کرتا ہے (یعنی Docker انسٹال ہو) [شروع کرنے کی دستاویزات](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) میں۔
اس ریپوزٹری کو استعمال کرنے کے لیے، آپ یا تو ریپوزٹری کو ایک الگ تھلگ Docker والیوم میں کھول سکتے ہیں:
**نوٹ**: اندرونی طور پر، یہ Remote-Containers: **Clone Repository in Container Volume...** کمانڈ استعمال کرے گا تاکہ سورس کوڈ کو مقامی فائل سسٹم کے بجائے Docker والیوم میں کلون کیا جا سکے۔ [Volumes](https://docs.docker.com/storage/volumes/) کنٹینر ڈیٹا کو برقرار رکھنے کے لیے ترجیحی طریقہ کار ہیں۔
یا مقامی طور پر کلون شدہ یا ڈاؤن لوڈ شدہ ورژن کو کھولیں:
یا مقامی طور پر کلون یا ڈاؤن لوڈ شدہ ریپوزٹری کا ورژن کھولیں:
- اس ریپوزٹری کو اپنے مقامی فائل سسٹم پر کلون کریں۔
- F1 دبائیں اور **Remote-Containers: Open Folder in Container...** کمانڈ منتخب کریں۔
@ -130,14 +130,16 @@ Azure Cloud Advocates نے مائیکروسافٹ پر ایک 10 ہفتوں کا
## آف لائن رسائی
آپ اس دستاویزات کو آف لائن چلا سکتے ہیں [Docsify](https://docsify.js.org/#/) کا استعمال کرتے ہوئے۔ اس ریپو کو فورک کریں، [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart) اپنی مقامی مشین پر، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ آپ کے localhost پر پورٹ 3000 پر پیش کی جائے گی: `localhost:3000`۔
آپ اس دستاویزات کو آف لائن Docsify کا استعمال کرتے ہوئے چلا سکتے ہیں۔ اس ریپو کو فورک کریں، [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart) اپنے مقامی کمپیوٹر پر، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ آپ کے لوکل ہوسٹ پر پورٹ 3000 پر پیش کی جائے گی: `localhost:3000`۔
> نوٹ کریں، نوٹ بکس Docsify کے ذریعے پیش نہیں کیے جائیں گے، لہذا جب آپ کو نوٹ بک چلانے کی ضرورت ہو، تو اسے الگ سے VS Code میں Python kernel چلاتے ہوئے کریں۔
> نوٹ کریں، نوٹ بکس Docsify کے ذریعے پیش نہیں کیے جائیں گے، لہذا جب آپ کو نوٹ بک چلانے کی ضرورت ہو، تو اسے الگ سے VS Code میں Python کرنل چلاتے ہوئے کریں۔
## دیگر نصاب
ہماری ٹیم دیگر نصاب بھی تیار کرتی ہے! دیکھیں:
- [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners)
- [AI Agents for Beginners](https://aka.ms/ai-agents-beginners)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
@ -158,3 +160,5 @@ Azure Cloud Advocates نے مائیکروسافٹ پر ایک 10 ہفتوں کا
---
**ڈسکلیمر**:
یہ دستاویز AI ترجمہ سروس [Co-op Translator](https://github.com/Azure/co-op-translator) کا استعمال کرتے ہوئے ترجمہ کی گئی ہے۔ ہم درستگی کے لیے کوشش کرتے ہیں، لیکن براہ کرم آگاہ رہیں کہ خودکار ترجمے میں غلطیاں یا غیر درستیاں ہو سکتی ہیں۔ اصل دستاویز کو اس کی اصل زبان میں مستند ذریعہ سمجھا جانا چاہیے۔ اہم معلومات کے لیے، پیشہ ور انسانی ترجمہ کی سفارش کی جاتی ہے۔ ہم اس ترجمے کے استعمال سے پیدا ہونے والی کسی بھی غلط فہمی یا غلط تشریح کے ذمہ دار نہیں ہیں۔
# Khoa học Dữ liệu cho Người mới bắt đầu - Chương trình học
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://aka.ms/foundry/forum)
[](https://aka.ms/foundry/forum)
Các chuyên gia Azure Cloud Advocates tại Microsoft rất vui mừng giới thiệu chương trình học kéo dài 10 tuần với 20 bài học về Khoa học Dữ liệu. Mỗi bài học bao gồm các bài kiểm tra trước và sau bài học, hướng dẫn viết để hoàn thành bài học, giải pháp và bài tập. Phương pháp học tập dựa trên dự án của chúng tôi cho phép bạn học thông qua việc thực hành, một cách hiệu quả để kỹ năng mới được ghi nhớ lâu dài.
Các Nhà truyền bá đám mây Azure tại Microsoft rất vui mừng giới thiệu chương trình học kéo dài 10 tuần, gồm 20 bài học về Khoa học Dữ liệu. Mỗi bài học bao gồm các bài kiểm tra trước và sau bài học, hướng dẫn viết để hoàn thành bài học, giải pháp và bài tập. Phương pháp học dựa trên dự án của chúng tôi cho phép bạn học trong khi xây dựng, một cách hiệu quả để kỹ năng mới được ghi nhớ lâu dài.
**Cảm ơn chân thành đến các tác giả của chúng tôi:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 Đặc biệt cảm ơn 🙏 các tác giả, người đánh giá và cộng tác viên nội dung [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** đặc biệt là Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
**🙏 Đặc biệt cảm ơn 🙏 các [Đại sứ Sinh viên Microsoft](https://studentambassadors.microsoft.com/) là tác giả, người đánh giá và người đóng góp nội dung,** đặc biệt là Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
**Nếu bạn muốn có thêm các ngôn ngữ dịch, danh sách các ngôn ngữ được hỗ trợ có thể được tìm thấy [tại đây](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Nếu bạn muốn có thêm các ngôn ngữ dịch, danh sách các ngôn ngữ được hỗ trợ có thể tìm thấy [tại đây](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Tham gia cộng đồng của chúng tôi
[](https://aka.ms/ds4beginners/discord)
Chúng tôi đang tổ chức một chuỗi học tập với AI trên Discord, tìm hiểu thêm và tham gia tại [Learn with AI Series](https://aka.ms/learnwithai/discord) từ ngày 18 - 30 tháng 9, 2025. Bạn sẽ nhận được các mẹo và thủ thuật sử dụng GitHub Copilot cho Khoa học Dữ liệu.
Chúng tôi đang tổ chức một chuỗi học với AI trên Discord, tìm hiểu thêm và tham gia tại [Learn with AI Series](https://aka.ms/learnwithai/discord) từ ngày 18 - 30 tháng 9, 2025. Bạn sẽ nhận được mẹo và thủ thuật sử dụng GitHub Copilot cho Khoa học Dữ liệu.


# Bạn là sinh viên?
Bắt đầu với các tài nguyên sau:
- [Trang Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Trong trang này, bạn sẽ tìm thấy các tài nguyên cho người mới bắt đầu, gói dành cho sinh viên và thậm chí là cách nhận voucher chứng chỉ miễn phí. Đây là một trang bạn nên đánh dấu và kiểm tra thường xuyên vì chúng tôi thay đổi nội dung ít nhất mỗi tháng.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Tham gia cộng đồng toàn cầu của các đại sứ sinh viên, đây có thể là cách bạn bước vào Microsoft.
- [Trang Hub Sinh viên](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Trong trang này, bạn sẽ tìm thấy các tài nguyên dành cho người mới bắt đầu, gói Sinh viên và thậm chí cách nhận voucher chứng chỉ miễn phí. Đây là một trang bạn nên đánh dấu và kiểm tra thường xuyên vì chúng tôi thay đổi nội dung ít nhất hàng tháng.
- [Đại sứ Sinh viên Microsoft Learn](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Tham gia cộng đồng toàn cầu của các đại sứ sinh viên, đây có thể là cách bạn bước vào Microsoft.
# Bắt đầu
> **Giáo viên**: chúng tôi đã [bao gồm một số gợi ý](for-teachers.md) về cách sử dụng chương trình học này. Chúng tôi rất mong nhận được phản hồi của bạn [trong diễn đàn thảo luận của chúng tôi](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Sinh viên](https://aka.ms/student-page)**: để sử dụng chương trình học này một cách độc lập, hãy fork toàn bộ repo và hoàn thành các bài tập theo cách của bạn, bắt đầu với bài kiểm tra trước bài học. Sau đó, đọc bài giảng và hoàn thành các hoạt động còn lại. Hãy cố gắng tạo các dự án bằng cách hiểu bài học thay vì sao chép mã giải pháp; tuy nhiên, mã đó có sẵn trong các thư mục /solutions trong mỗi bài học dựa trên dự án. Một ý tưởng khác là tạo nhóm học tập với bạn bè và cùng nhau đi qua nội dung. Để học thêm, chúng tôi khuyến nghị [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Sinh viên](https://aka.ms/student-page)**: để sử dụng chương trình học này một cách độc lập, hãy fork toàn bộ repo và hoàn thành các bài tập theo cách của bạn, bắt đầu với bài kiểm tra trước bài học. Sau đó đọc bài giảng và hoàn thành các hoạt động còn lại. Hãy cố gắng tạo các dự án bằng cách hiểu bài học thay vì sao chép mã giải pháp; tuy nhiên, mã đó có sẵn trong các thư mục /solutions trong mỗi bài học dựa trên dự án. Một ý tưởng khác là tạo một nhóm học tập với bạn bè và cùng nhau đi qua nội dung. Để học thêm, chúng tôi khuyến nghị [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
Chúng tôi đã chọn hai nguyên tắc giảng dạy khi xây dựng chương trình học này: đảm bảo rằng nó dựa trên dự án và bao gồm các bài kiểm tra thường xuyên. Đến cuối loạt bài này, sinh viên sẽ học được các nguyên tắc cơ bản của khoa học dữ liệu, bao gồm các khái niệm đạo đức, chuẩn bị dữ liệu, các cách làm việc khác nhau với dữ liệu, trực quan hóa dữ liệu, phân tích dữ liệu, các trường hợp sử dụng thực tế của khoa học dữ liệu và nhiều hơn nữa.
Ngoài ra, một bài kiểm tra nhẹ nhàng trước lớp giúp định hướng ý định của sinh viên đối với việc học một chủ đề, trong khi bài kiểm tra thứ hai sau lớp đảm bảo sự ghi nhớ lâu dài. Chương trình học này được thiết kế linh hoạt và thú vị, có thể được học toàn bộ hoặc từng phần. Các dự án bắt đầu nhỏ và trở nên phức tạp hơn vào cuối chu kỳ 10 tuần.
Ngoài ra, một bài kiểm tra nhẹ nhàng trước lớp sẽ định hướng ý định của sinh viên đối với việc học một chủ đề, trong khi bài kiểm tra thứ hai sau lớp đảm bảo sự ghi nhớ lâu hơn. Chương trình học này được thiết kế để linh hoạt và thú vị, có thể học toàn bộ hoặc từng phần. Các dự án bắt đầu nhỏ và trở nên phức tạp hơn vào cuối chu kỳ 10 tuần.
> Tìm [Quy tắc ứng xử](CODE_OF_CONDUCT.md), [Hướng dẫn đóng góp](CONTRIBUTING.md), [Hướng dẫn dịch thuật](TRANSLATIONS.md) của chúng tôi. Chúng tôi hoan nghênh phản hồi mang tính xây dựng của bạn!
@ -93,7 +93,7 @@ Ngoài ra, một bài kiểm tra nhẹ nhàng trước lớp giúp định hư
- Bài tập
- [Bài kiểm tra sau bài học](https://ff-quizzes.netlify.app/en/)
> **Lưu ý về bài kiểm tra**: Tất cả các bài kiểm tra được chứa trong thư mục Quiz-App, với tổng cộng 40 bài kiểm tra, mỗi bài gồm ba câu hỏi. Chúng được liên kết từ trong các bài học, nhưng ứng dụng bài kiểm tra có thể được chạy cục bộ hoặc triển khai lên Azure; hãy làm theo hướng dẫn trong thư mục `quiz-app`. Các bài kiểm tra đang dần được bản địa hóa.
> **Lưu ý về bài kiểm tra**: Tất cả các bài kiểm tra được chứa trong thư mục Quiz-App, với tổng cộng 40 bài kiểm tra, mỗi bài gồm ba câu hỏi. Chúng được liên kết từ trong các bài học, nhưng ứng dụng bài kiểm tra có thể chạy cục bộ hoặc triển khai lên Azure; làm theo hướng dẫn trong thư mục `quiz-app`. Chúng đang dần được bản địa hóa.
## Các bài học
||
@ -102,22 +102,22 @@ Ngoài ra, một bài kiểm tra nhẹ nhàng trước lớp giúp định hư
| Số bài học | Chủ đề | Nhóm bài học | Mục tiêu học tập | Bài học liên kết | Tác giả |
| 01 | Định nghĩa Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Tìm hiểu các khái niệm cơ bản về khoa học dữ liệu và mối liên hệ của nó với trí tuệ nhân tạo, học máy và dữ liệu lớn. | [bài học](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Đạo đức trong Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Các khái niệm, thách thức và khung đạo đức dữ liệu. | [bài học](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Định nghĩa Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Tìm hiểu các khái niệm cơ bản về khoa học dữ liệu và cách nó liên quan đến trí tuệ nhân tạo, học máy và dữ liệu lớn. | [bài học](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Đạo đức Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Các khái niệm, thách thức và khung đạo đức dữ liệu. | [bài học](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Định nghĩa Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Cách phân loại dữ liệu và các nguồn dữ liệu phổ biến. | [bài học](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Giới thiệu về Thống kê & Xác suất | [Giới thiệu](1-Introduction/README.md) | Các kỹ thuật toán học về xác suất và thống kê để hiểu dữ liệu. | [bài học](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Làm việc với Dữ liệu Quan hệ | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Giới thiệu về dữ liệu quan hệ và các nguyên tắc cơ bản để khám phá và phân tích dữ liệu quan hệ bằng Ngôn ngữ Truy vấn Có cấu trúc, còn gọi là SQL (phát âm là “see-quell”). | [bài học](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Làm việc với Dữ liệu NoSQL | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Giới thiệu về dữ liệu phi quan hệ, các loại khác nhau của nó và các nguyên tắc cơ bản để khám phá và phân tích cơ sở dữ liệu tài liệu. | [bài học](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Làm việc với Python | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Các nguyên tắc cơ bản về sử dụng Python để khám phá dữ liệu với các thư viện như Pandas. Nên có kiến thức nền tảng về lập trình Python. | [bài học](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Chuẩn bị Dữ liệu | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Các chủ đề về kỹ thuật dữ liệu để làm sạch và chuyển đổi dữ liệu nhằm xử lý các thách thức về dữ liệu thiếu, không chính xác hoặc không đầy đủ. | [bài học](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Trực quan hóa Số lượng | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Tìm hiểu cách sử dụng Matplotlib để trực quan hóa dữ liệu về chim 🦆 | [bài học](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Trực quan hóa Phân bố Dữ liệu | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các quan sát và xu hướng trong một khoảng thời gian. | [bài học](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 09 | Trực quan hóa Số lượng | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Tìm hiểu cách sử dụng Matplotlib để trực quan hóa dữ liệu chim 🦆 | [bài học](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Trực quan hóa Phân phối Dữ liệu | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các quan sát và xu hướng trong một khoảng thời gian. | [bài học](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Trực quan hóa Tỷ lệ | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các phần trăm rời rạc và nhóm. | [bài học](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Trực quan hóa Mối quan hệ | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các kết nối và mối tương quan giữa các tập dữ liệu và các biến của chúng. | [bài học](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Trực quan hóa Mối quan hệ | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các kết nối và tương quan giữa các tập dữ liệu và các biến của chúng. | [bài học](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Trực quan hóa Có ý nghĩa | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Các kỹ thuật và hướng dẫn để làm cho các trực quan hóa của bạn có giá trị trong việc giải quyết vấn đề và cung cấp thông tin chi tiết hiệu quả. | [bài học](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Giới thiệu về vòng đời Khoa học Dữ liệu | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giới thiệu về vòng đời khoa học dữ liệu và bước đầu tiên của nó là thu thập và trích xuất dữ liệu. | [bài học](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Phân tích | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giai đoạn này của vòng đời khoa học dữ liệu tập trung vào các kỹ thuật để phân tích dữ liệu. | [bài học](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Giao tiếp | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giai đoạn này của vòng đời khoa học dữ liệu tập trung vào việc trình bày các thông tin chi tiết từ dữ liệu theo cách giúp người ra quyết định dễ hiểu hơn. | [bài học](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 15 | Phân tích | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giai đoạn này của vòng đời khoa học dữ liệu tập trung vào các kỹ thuật phân tích dữ liệu. | [bài học](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Truyền đạt | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giai đoạn này của vòng đời khoa học dữ liệu tập trung vào việc trình bày các thông tin chi tiết từ dữ liệu theo cách giúp người ra quyết định dễ dàng hiểu hơn. | [bài học](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Khoa học Dữ liệu trên Đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Loạt bài học này giới thiệu khoa học dữ liệu trên đám mây và các lợi ích của nó. | [bài học](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
| 18 | Khoa học Dữ liệu trên Đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Huấn luyện mô hình bằng các công cụ Low Code. |[bài học](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
| 19 | Khoa học Dữ liệu trên Đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Triển khai mô hình với Azure Machine Learning Studio. | [bài học](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
@ -133,7 +133,7 @@ Thực hiện các bước sau để mở mẫu này trong Codespace:
## VSCode Remote - Containers
Thực hiện các bước sau để mở kho lưu trữ này trong một container bằng máy tính cục bộ của bạn và VSCode sử dụng tiện ích mở rộng VS Code Remote - Containers:
1. Nếu đây là lần đầu tiên bạn sử dụng container phát triển, hãy đảm bảo hệ thống của bạn đáp ứng các yêu cầu trước (ví dụ: đã cài đặt Docker) trong [tài liệu bắt đầu](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Nếu đây là lần đầu tiên bạn sử dụng container phát triển, hãy đảm bảo hệ thống của bạn đáp ứng các yêu cầu (ví dụ: đã cài đặt Docker) trong [tài liệu bắt đầu](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Để sử dụng kho lưu trữ này, bạn có thể mở kho lưu trữ trong một volume Docker cách ly:
@ -155,23 +155,27 @@ Bạn có thể chạy tài liệu này ngoại tuyến bằng cách sử dụng
Nhóm của chúng tôi sản xuất các chương trình học khác! Hãy xem:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [Edge AI cho Người mới bắt đầu](https://aka.ms/edgeai-for-beginners)
- [AI Agents cho Người mới bắt đầu](https://aka.ms/ai-agents-beginners)
- [Generative AI cho Người mới bắt đầu](https://aka.ms/genai-beginners)
- [Generative AI cho Người mới bắt đầu .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI với JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI với Java](https://aka.ms/genaijava)
- [AI cho Người mới bắt đầu](https://aka.ms/ai-beginners)
- [Khoa học Dữ liệu cho Người mới bắt đầu](https://aka.ms/datascience-beginners)
- [Bash cho Người mới bắt đầu](https://github.com/microsoft/bash-for-beginners)
- [ML cho Người mới bắt đầu](https://aka.ms/ml-beginners)
- [An ninh mạng cho Người mới bắt đầu](https://github.com/microsoft/Security-101)
- [Phát triển Web cho Người mới bắt đầu](https://aka.ms/webdev-beginners)
- [IoT cho Người mới bắt đầu](https://aka.ms/iot-beginners)
- [Học máy cho Người mới bắt đầu](https://aka.ms/ml-beginners)
- [Phát triển XR cho Người mới bắt đầu](https://aka.ms/xr-dev-for-beginners)
- [Làm chủ GitHub Copilot cho Lập trình Cặp AI](https://aka.ms/GitHubCopilotAI)
- [Phát triển XR cho Người mới bắt đầu](https://github.com/microsoft/xr-development-for-beginners)
- [Làm chủ GitHub Copilot cho Nhà phát triển C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Chọn Cuộc phiêu lưu Copilot của bạn](https://github.com/microsoft/CopilotAdventures)
---
**Tuyên bố miễn trừ trách nhiệm**:
Tài liệu này đã được dịch bằng dịch vụ dịch thuật AI [Co-op Translator](https://github.com/Azure/co-op-translator). Mặc dù chúng tôi cố gắng đảm bảo độ chính xác, xin lưu ý rằng các bản dịch tự động có thể chứa lỗi hoặc không chính xác. Tài liệu gốc bằng ngôn ngữ bản địa nên được coi là nguồn thông tin chính thức. Đối với các thông tin quan trọng, nên sử dụng dịch vụ dịch thuật chuyên nghiệp từ con người. Chúng tôi không chịu trách nhiệm về bất kỳ sự hiểu lầm hoặc diễn giải sai nào phát sinh từ việc sử dụng bản dịch này.
[](https://aka.ms/foundry/forum)
||