Merge pull request #417 from Thoogend1/branch

Small Punctuation fixes
pull/361/merge
Jasmine Greenaway 3 years ago committed by GitHub
commit c06b8fa827
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,6 @@
# Definiendo la ciencia de datos
| ![ Boceto por [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/01-Definitions.png) |
| ![ Boceto por [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/01-Definitions.png) |
| :----------------------------------------------------------------------------------------------------: |
| Definiendo la ciencia de datos - Boceto por [@nitya](https://twitter.com/nitya)_ |

@ -30,4 +30,4 @@ Vul de volgende tabel in (vul je eigen onderwerp in, indien nodig):
Uitstekend | Adequaat | Vereist verbetering
--- | --- | -- |
Men kon voldoende databronnen vinden, deze juist opslaan en hier de juiste inzichten aan ontlenen voor alle probleemstellingen. | Sommige aspecten van de oplssing zijn niet concreet, de data opslag is niet gedefinieerd, tenminste 2 van de probleemstellingen zijn besproken. | Enkel onderdelen vand e oplossing zijn beschreven, slechts een van de probleemstellingen is besproken.
Men kon voldoende databronnen vinden, deze juist opslaan en hier de juiste inzichten aan ontlenen voor alle probleemstellingen. | Sommige aspecten van de oplssing zijn niet concreet, de data opslag is niet gedefinieerd, tenminste 2 van de probleemstellingen zijn besproken. | Enkele onderdelen van de oplossing zijn beschreven, slechts een van de probleemstellingen is besproken.

@ -12,7 +12,7 @@ Market trends tell us that by 2022, 1-in-3 large organizations will buy and sell
Trends also indicate that we will create and consume over [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) of data by 2025. As **Data Scientists**, this gives us unprecedented levels of access to personal data. This means we can build behavioral profiles of users and influence decision-making in ways that create an [illusion of free choice](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) while potentially nudging users towards outcomes we prefer. It also raises broader questions on data privacy and user protections.
Data ethics are now _necessary guardrails_ for data science and engineering, helping us minimize potential harms and unintended consequences from our data-driven actions. The [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifies relevant trends in digital ethics, responsible AI ,and AI governance as key drivers for larger megatrends around _democratization_ and _industrialization_ of AI.
Data ethics are now _necessary guardrails_ for data science and engineering, helping us minimize potential harms and unintended consequences from our data-driven actions. The [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifies relevant trends in digital ethics, responsible AI, and AI governance as key drivers for larger megatrends around _democratization_ and _industrialization_ of AI.
![Gartner's Hype Cycle for AI - 2020](https://images-cdn.newscred.com/Zz1mOWJhNzlkNDA2ZTMxMWViYjRiOGFiM2IyMjQ1YmMwZQ==)
@ -84,7 +84,7 @@ The moral questions we need to ask are:
#### 2.2 Informed Consent
[Informed consent](https://legaldictionary.net/informed-consent/) defines the act of users agreeing to an action (like data collection) with a _full understanding_ of relevant facts including the purpose, potential risks ,and alternatives.
[Informed consent](https://legaldictionary.net/informed-consent/) defines the act of users agreeing to an action (like data collection) with a _full understanding_ of relevant facts including the purpose, potential risks, and alternatives.
Questions to explore here are:
* Did the user (data subject) give permission for data capture and usage?
@ -242,7 +242,7 @@ Examples of data protection and privacy regulations:
### 4. Ethics Culture
Note that there remains an intangible gap between _compliance_ (doing enough to meet "the letter of the law") and addressing [systemic issues](https://www.coursera.org/learn/data-science-ethics/home/week/4) (like ossification, information asymmetry ,and distributional unfairness) that can speed up the weaponization of AI.
Note that there remains an intangible gap between _compliance_ (doing enough to meet "the letter of the law") and addressing [systemic issues](https://www.coursera.org/learn/data-science-ethics/home/week/4) (like ossification, information asymmetry, and distributional unfairness) that can speed up the weaponization of AI.
The latter requires [collaborative approaches to defining ethics cultures](https://towardsdatascience.com/why-ai-ethics-requires-a-culture-driven-approach-26f451afa29f) that build emotional connections and consistent shared values _across organizations_ in the industry. This calls for more [formalized data ethics cultures](https://www.codeforamerica.org/news/formalizing-an-ethical-data-culture/) in organizations - allowing _anyone_ to [pull the Andon cord](https://en.wikipedia.org/wiki/Andon_(manufacturing)) (to raise ethics concerns early in the process) and making _ethical assessments_ (e.g., in hiring) a core criteria team formation in AI projects.

@ -1,6 +1,6 @@
# 데이터 윤리 소개
| ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/02-Ethics.png) |
| ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/02-Ethics.png) |
| :-----------------------------------------------------------------------------------------------: |
| 데이터 과학 윤리 - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |

@ -19,7 +19,7 @@ Met groot genoegen bieden Azure Cloud Advocates bij Microsoft dit curriculum van
**🙏 Speciale dank 🙏 gaat uit naar onze [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) auteurs, proeflezers en "meedenkers",** notably Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), Tauqeer Ahmad, Yogendrasingh Pawar
|![ Sketchnote door [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Title.png)|
|![ Sketchnote door [(@sketchthedocs)](https://sketchthedocs.dev) ](../sketchnotes/00-Title.png)|
|:---:|
| Data Science voor Beginners - _Sketchnote door [@nitya](https://twitter.com/nitya)_ |

Loading…
Cancel
Save