From d8bfdb203cc264bf079d3dea91d055e4d951cad6 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 19:26:23 +0000 Subject: [PATCH 01/16] Bump ssri from 6.0.1 to 6.0.2 in /quiz-app Bumps [ssri](https://github.com/npm/ssri) from 6.0.1 to 6.0.2. - [Release notes](https://github.com/npm/ssri/releases) - [Changelog](https://github.com/npm/ssri/blob/v6.0.2/CHANGELOG.md) - [Commits](https://github.com/npm/ssri/compare/v6.0.1...v6.0.2) --- updated-dependencies: - dependency-name: ssri dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 46 ++++++++++++-------------------------- 1 file changed, 14 insertions(+), 32 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..d161bb6 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -1753,9 +1743,9 @@ "dev": true }, "ssri": { - "version": "7.1.0", - "resolved": "https://registry.npmjs.org/ssri/-/ssri-7.1.0.tgz", - "integrity": "sha512-77/WrDZUWocK0mvA5NTRQyveUf+wsrIc6vyrxpS8tVvYBcX215QbafrJR3KtkpskIzoFLqqNuuYQvxaMjXJ/0g==", + "version": "7.1.1", + "resolved": "https://registry.npmjs.org/ssri/-/ssri-7.1.1.tgz", + "integrity": "sha512-w+daCzXN89PseTL99MkA+fxJEcU3wfaE/ah0i0lnOlpG1CYLJ2ZjzEry68YBKfLs4JfoTShrTEsJkAZuNZ/stw==", "dev": true, "requires": { "figgy-pudding": "^3.5.1", @@ -9916,9 +9906,9 @@ } }, "ssri": { - "version": "6.0.1", - "resolved": "https://registry.npmjs.org/ssri/-/ssri-6.0.1.tgz", - "integrity": "sha512-3Wge10hNcT1Kur4PDFwEieXSCMCJs/7WvSACcrMYrNp+b8kDL1/0wJch5Ni2WrtwEa2IO8OsVfeKIciKCDx/QA==", + "version": "6.0.2", + "resolved": "https://registry.npmjs.org/ssri/-/ssri-6.0.2.tgz", + "integrity": "sha512-cepbSq/neFK7xB6A50KHN0xHDotYzq58wWCa5LeWqnPrHG8GzfEjO/4O8kpmcGW+oaxkvhEJCWgbgNk4/ZV93Q==", "dev": true, "requires": { "figgy-pudding": "^3.5.1" @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From 0ed1393084c623b33472f486751eb5bc41421a69 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 19:26:24 +0000 Subject: [PATCH 02/16] Bump dns-packet from 1.3.1 to 1.3.4 in /quiz-app Bumps [dns-packet](https://github.com/mafintosh/dns-packet) from 1.3.1 to 1.3.4. - [Release notes](https://github.com/mafintosh/dns-packet/releases) - [Changelog](https://github.com/mafintosh/dns-packet/blob/master/CHANGELOG.md) - [Commits](https://github.com/mafintosh/dns-packet/compare/v1.3.1...v1.3.4) --- updated-dependencies: - dependency-name: dns-packet dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..22b7b96 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -4324,9 +4314,9 @@ "dev": true }, "dns-packet": { - "version": "1.3.1", - "resolved": "https://registry.npmjs.org/dns-packet/-/dns-packet-1.3.1.tgz", - "integrity": "sha512-0UxfQkMhYAUaZI+xrNZOz/as5KgDU0M/fQ9b6SpkyLbk3GEswDi6PADJVaYJradtRVsRIlF1zLyOodbcTCDzUg==", + "version": "1.3.4", + "resolved": "https://registry.npmjs.org/dns-packet/-/dns-packet-1.3.4.tgz", + "integrity": "sha512-BQ6F4vycLXBvdrJZ6S3gZewt6rcrks9KBgM9vrhW+knGRqc8uEdT7fuCwloc7nny5xNoMJ17HGH0R/6fpo8ECA==", "dev": true, "requires": { "ip": "^1.1.0", @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From 8b4c65b3d8cbf0b16e82fa629dfb37dde643435e Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 19:26:24 +0000 Subject: [PATCH 03/16] Bump postcss from 7.0.35 to 7.0.36 in /quiz-app Bumps [postcss](https://github.com/postcss/postcss) from 7.0.35 to 7.0.36. - [Release notes](https://github.com/postcss/postcss/releases) - [Changelog](https://github.com/postcss/postcss/blob/main/CHANGELOG.md) - [Commits](https://github.com/postcss/postcss/compare/7.0.35...7.0.36) --- updated-dependencies: - dependency-name: postcss dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..ca7963d 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -8088,9 +8078,9 @@ "dev": true }, "postcss": { - "version": "7.0.35", - "resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.35.tgz", - "integrity": "sha512-3QT8bBJeX/S5zKTTjTCIjRF3If4avAT6kqxcASlTWEtAFCb9NH0OUxNDfgZSWdP5fJnBYCMEWkIFfWeugjzYMg==", + "version": "7.0.36", + "resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.36.tgz", + "integrity": "sha512-BebJSIUMwJHRH0HAQoxN4u1CN86glsrwsW0q7T+/m44eXOUAxSNdHRkNZPYz5vVUbg17hFgOQDE7fZk7li3pZw==", "dev": true, "requires": { "chalk": "^2.4.2", @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From b0709e8681e69797ac9db21774855421300dea70 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 19:26:25 +0000 Subject: [PATCH 04/16] Bump hosted-git-info from 2.8.8 to 2.8.9 in /quiz-app Bumps [hosted-git-info](https://github.com/npm/hosted-git-info) from 2.8.8 to 2.8.9. - [Release notes](https://github.com/npm/hosted-git-info/releases) - [Changelog](https://github.com/npm/hosted-git-info/blob/v2.8.9/CHANGELOG.md) - [Commits](https://github.com/npm/hosted-git-info/compare/v2.8.8...v2.8.9) --- updated-dependencies: - dependency-name: hosted-git-info dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..73b460d 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -5751,9 +5741,9 @@ "dev": true }, "hosted-git-info": { - "version": "2.8.8", - "resolved": "https://registry.npmjs.org/hosted-git-info/-/hosted-git-info-2.8.8.tgz", - "integrity": "sha512-f/wzC2QaWBs7t9IYqB4T3sR1xviIViXJRJTWBlx2Gf3g0Xi5vI7Yy4koXQ1c9OYDGHN9sBy1DQ2AB8fqZBWhUg==", + "version": "2.8.9", + "resolved": "https://registry.npmjs.org/hosted-git-info/-/hosted-git-info-2.8.9.tgz", + "integrity": "sha512-mxIDAb9Lsm6DoOJ7xH+5+X4y1LU/4Hi50L9C5sIswK3JzULS4bwk1FvjdBgvYR4bzT4tuUQiC15FE2f5HbLvYw==", "dev": true }, "hpack.js": { @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From 9d90a324b126fbabf64c2ed2c7f613dc4b12bac0 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 19:26:38 +0000 Subject: [PATCH 05/16] Bump browserslist from 4.16.0 to 4.16.6 in /quiz-app Bumps [browserslist](https://github.com/browserslist/browserslist) from 4.16.0 to 4.16.6. - [Release notes](https://github.com/browserslist/browserslist/releases) - [Changelog](https://github.com/browserslist/browserslist/blob/main/CHANGELOG.md) - [Commits](https://github.com/browserslist/browserslist/compare/4.16.0...4.16.6) --- updated-dependencies: - dependency-name: browserslist dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 86 ++++++++++++++++++-------------------- 1 file changed, 41 insertions(+), 45 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..93f336a 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -2761,16 +2751,42 @@ } }, "browserslist": { - "version": "4.16.0", - "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.16.0.tgz", - "integrity": "sha512-/j6k8R0p3nxOC6kx5JGAxsnhc9ixaWJfYc+TNTzxg6+ARaESAvQGV7h0uNOB4t+pLQJZWzcrMxXOxjgsCj3dqQ==", + "version": "4.16.6", + "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.16.6.tgz", + "integrity": "sha512-Wspk/PqO+4W9qp5iUTJsa1B/QrYn1keNCcEP5OvP7WBwT4KaDly0uONYmC6Xa3Z5IqnUgS0KcgLYu1l74x0ZXQ==", "dev": true, "requires": { - "caniuse-lite": "^1.0.30001165", - "colorette": "^1.2.1", - "electron-to-chromium": "^1.3.621", + "caniuse-lite": "^1.0.30001219", + "colorette": "^1.2.2", + "electron-to-chromium": "^1.3.723", "escalade": "^3.1.1", - "node-releases": "^1.1.67" + "node-releases": "^1.1.71" + }, + "dependencies": { + "caniuse-lite": { + "version": "1.0.30001245", + "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001245.tgz", + "integrity": "sha512-768fM9j1PKXpOCKws6eTo3RHmvTUsG9UrpT4WoREFeZgJBTi4/X9g565azS/rVUGtqb8nt7FjLeF5u4kukERnA==", + "dev": true + }, + "colorette": { + "version": "1.2.2", + "resolved": "https://registry.npmjs.org/colorette/-/colorette-1.2.2.tgz", + "integrity": "sha512-MKGMzyfeuutC/ZJ1cba9NqcNpfeqMUcYmyF1ZFY6/Cn7CNSAKx6a+s48sqLqyAiZuaP2TcqMhoo+dlwFnVxT9w==", + "dev": true + }, + "electron-to-chromium": { + "version": "1.3.775", + "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.3.775.tgz", + "integrity": "sha512-EGuiJW4yBPOTj2NtWGZcX93ZE8IGj33HJAx4d3ouE2zOfW2trbWU+t1e0yzLr1qQIw81++txbM3BH52QwSRE6Q==", + "dev": true + }, + "node-releases": { + "version": "1.1.73", + "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-1.1.73.tgz", + "integrity": "sha512-uW7fodD6pyW2FZNZnp/Z3hvWKeEW1Y8R1+1CnErE8cXFXzl5blBOoVB41CvMer6P6Q0S5FXDwcHgFd1Wj0U9zg==", + "dev": true + } } }, "buffer": { @@ -4476,12 +4492,6 @@ "integrity": "sha512-7vmuyh5+kuUyJKePhQfRQBhXV5Ce+RnaeeQArKu1EAMpL3WbgMt5WG6uQZpEVvYSSsxMXRKOewtDk9RaTKXRlA==", "dev": true }, - "electron-to-chromium": { - "version": "1.3.633", - "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.3.633.tgz", - "integrity": "sha512-bsVCsONiVX1abkWdH7KtpuDAhsQ3N3bjPYhROSAXE78roJKet0Y5wznA14JE9pzbwSZmSMAW6KiKYf1RvbTJkA==", - "dev": true - }, "elliptic": { "version": "6.5.3", "resolved": "https://registry.npmjs.org/elliptic/-/elliptic-6.5.3.tgz", @@ -7471,12 +7481,6 @@ } } }, - "node-releases": { - "version": "1.1.67", - "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-1.1.67.tgz", - "integrity": "sha512-V5QF9noGFl3EymEwUYzO+3NTDpGfQB4ve6Qfnzf3UNydMhjQRVPR1DZTuvWiLzaFJYw2fmDwAfnRNEVb64hSIg==", - "dev": true - }, "normalize-package-data": { "version": "2.5.0", "resolved": "https://registry.npmjs.org/normalize-package-data/-/normalize-package-data-2.5.0.tgz", @@ -10954,11 +10958,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10973,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10992,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +11000,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11024,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From 81668211fd11287491a5820e35fadb5a1cd38dbd Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 19:26:43 +0000 Subject: [PATCH 06/16] Bump color-string from 1.5.4 to 1.5.5 in /quiz-app Bumps [color-string](https://github.com/Qix-/color-string) from 1.5.4 to 1.5.5. - [Release notes](https://github.com/Qix-/color-string/releases) - [Changelog](https://github.com/Qix-/color-string/blob/master/CHANGELOG.md) - [Commits](https://github.com/Qix-/color-string/compare/1.5.4...1.5.5) --- updated-dependencies: - dependency-name: color-string dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..6049b4e 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -3288,9 +3278,9 @@ "dev": true }, "color-string": { - "version": "1.5.4", - "resolved": "https://registry.npmjs.org/color-string/-/color-string-1.5.4.tgz", - "integrity": "sha512-57yF5yt8Xa3czSEW1jfQDE79Idk0+AkN/4KWad6tbdxUmAs3MvjxlWSWD4deYytcRfoZ9nhKyFl1kj5tBvidbw==", + "version": "1.5.5", + "resolved": "https://registry.npmjs.org/color-string/-/color-string-1.5.5.tgz", + "integrity": "sha512-jgIoum0OfQfq9Whcfc2z/VhCNcmQjWbey6qBX0vqt7YICflUmBCh9E9CiQD5GSJ+Uehixm3NUwHVhqUAWRivZg==", "dev": true, "requires": { "color-name": "^1.0.0", @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From ec20536633fd09ff0eb08b60a31651d290cf8b40 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 21:23:42 +0000 Subject: [PATCH 07/16] Bump prismjs from 1.23.0 to 1.24.1 Bumps [prismjs](https://github.com/PrismJS/prism) from 1.23.0 to 1.24.1. - [Release notes](https://github.com/PrismJS/prism/releases) - [Changelog](https://github.com/PrismJS/prism/blob/master/CHANGELOG.md) - [Commits](https://github.com/PrismJS/prism/compare/v1.23.0...v1.24.1) --- updated-dependencies: - dependency-name: prismjs dependency-type: indirect ... Signed-off-by: dependabot[bot] --- package-lock.json | 54 ++++------------------------------------------- 1 file changed, 4 insertions(+), 50 deletions(-) diff --git a/package-lock.json b/package-lock.json index 34e7272..a2cae81 100644 --- a/package-lock.json +++ b/package-lock.json @@ -298,18 +298,6 @@ "integrity": "sha512-y4coMcylgSCdVinjiDBuR8PCC2bLjyGTwEmPb9NHR/QaNU6EUOXcTY/s6VjGMD6ENSEaeQYHCY0GNGS5jfMwPw==", "dev": true }, - "clipboard": { - "version": "2.0.8", - "resolved": "https://registry.npmjs.org/clipboard/-/clipboard-2.0.8.tgz", - "integrity": "sha512-Y6WO0unAIQp5bLmk1zdThRhgJt/x3ks6f30s3oE3H1mgIEU33XyQjEf8gsf6DxC7NPX8Y1SsNWjUjL/ywLnnbQ==", - "dev": true, - "optional": true, - "requires": { - "good-listener": "^1.2.2", - "select": "^1.1.2", - "tiny-emitter": "^2.0.0" - } - }, "cliui": { "version": "5.0.0", "resolved": "https://registry.npmjs.org/cliui/-/cliui-5.0.0.tgz", @@ -474,13 +462,6 @@ "integrity": "sha512-0ISdNousHvZT2EiFlZeZAHBUvSxmKswVCEf8hW7KWgG4a8MVEu/3Vb6uWYozkjylyCxe0JBIiRB1jV45S70WVQ==", "dev": true }, - "delegate": { - "version": "3.2.0", - "resolved": "https://registry.npmjs.org/delegate/-/delegate-3.2.0.tgz", - "integrity": "sha512-IofjkYBZaZivn0V8nnsMJGBr4jVLxHDheKSW88PyxS5QC4Vo9ZbZVvhzlSxY87fVq3STR6r+4cGepyHkcWOQSw==", - "dev": true, - "optional": true - }, "depd": { "version": "1.1.2", "resolved": "https://registry.npmjs.org/depd/-/depd-1.1.2.tgz", @@ -832,16 +813,6 @@ "ini": "1.3.7" } }, - "good-listener": { - "version": "1.2.2", - "resolved": "https://registry.npmjs.org/good-listener/-/good-listener-1.2.2.tgz", - "integrity": "sha1-1TswzfkxPf+33JoNR3CWqm0UXFA=", - "dev": true, - "optional": true, - "requires": { - "delegate": "^3.1.2" - } - }, "got": { "version": "9.6.0", "resolved": "https://registry.npmjs.org/got/-/got-9.6.0.tgz", @@ -1462,13 +1433,10 @@ "dev": true }, "prismjs": { - "version": "1.23.0", - "resolved": "https://registry.npmjs.org/prismjs/-/prismjs-1.23.0.tgz", - "integrity": "sha512-c29LVsqOaLbBHuIbsTxaKENh1N2EQBOHaWv7gkHN4dgRbxSREqDnDbtFJYdpPauS4YCplMSNCABQ6Eeor69bAA==", - "dev": true, - "requires": { - "clipboard": "^2.0.0" - } + "version": "1.24.1", + "resolved": "https://registry.npmjs.org/prismjs/-/prismjs-1.24.1.tgz", + "integrity": "sha512-mNPsedLuk90RVJioIky8ANZEwYm5w9LcvCXrxHlwf4fNVSn8jEipMybMkWUyyF0JhnC+C4VcOVSBuHRKs1L5Ow==", + "dev": true }, "process-nextick-args": { "version": "2.0.1", @@ -1699,13 +1667,6 @@ "integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g==", "dev": true }, - "select": { - "version": "1.1.2", - "resolved": "https://registry.npmjs.org/select/-/select-1.1.2.tgz", - "integrity": "sha1-DnNQrN7ICxEIUoeG7B1EGNEbOW0=", - "dev": true, - "optional": true - }, "semver": { "version": "6.3.0", "resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz", @@ -1880,13 +1841,6 @@ "integrity": "sha512-wK0Ri4fOGjv/XPy8SBHZChl8CM7uMc5VML7SqiQ0zG7+J5Vr+RMQDoHa2CNT6KHUnTGIXH34UDMkPzAUyapBZg==", "dev": true }, - "tiny-emitter": { - "version": "2.1.0", - "resolved": "https://registry.npmjs.org/tiny-emitter/-/tiny-emitter-2.1.0.tgz", - "integrity": "sha512-NB6Dk1A9xgQPMoGqC5CVXn123gWyte215ONT5Pp5a0yt4nlEoO1ZWeCwpncaekPHXO60i47ihFnZPiRPjRMq4Q==", - "dev": true, - "optional": true - }, "tinydate": { "version": "1.3.0", "resolved": "https://registry.npmjs.org/tinydate/-/tinydate-1.3.0.tgz", From ba55c4fe0716d5d815c3abb1c07d72d1c92141f6 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 21:24:37 +0000 Subject: [PATCH 08/16] Bump ws from 6.2.1 to 6.2.2 in /quiz-app Bumps [ws](https://github.com/websockets/ws) from 6.2.1 to 6.2.2. - [Release notes](https://github.com/websockets/ws/releases) - [Commits](https://github.com/websockets/ws/compare/6.2.1...6.2.2) --- updated-dependencies: - dependency-name: ws dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..1005e38 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } @@ -11806,9 +11788,9 @@ } }, "ws": { - "version": "6.2.1", - "resolved": "https://registry.npmjs.org/ws/-/ws-6.2.1.tgz", - "integrity": "sha512-GIyAXC2cB7LjvpgMt9EKS2ldqr0MTrORaleiOno6TweZ6r3TKtoFQWay/2PceJ3RuBasOHzXNn5Lrw1X0bEjqA==", + "version": "6.2.2", + "resolved": "https://registry.npmjs.org/ws/-/ws-6.2.2.tgz", + "integrity": "sha512-zmhltoSR8u1cnDsD43TX59mzoMZsLKqUweyYBAIvTngR3shc0W6aOZylZmq/7hqyVxPdi+5Ud2QInblgyE72fw==", "dev": true, "requires": { "async-limiter": "~1.0.0" From 6a3d0ec7d55bcc22ad90a4a14bf391f406a2f811 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 21:24:53 +0000 Subject: [PATCH 09/16] Bump url-parse from 1.4.7 to 1.5.1 in /quiz-app Bumps [url-parse](https://github.com/unshiftio/url-parse) from 1.4.7 to 1.5.1. - [Release notes](https://github.com/unshiftio/url-parse/releases) - [Commits](https://github.com/unshiftio/url-parse/compare/1.4.7...1.5.1) --- updated-dependencies: - dependency-name: url-parse dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..c35df76 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -10756,9 +10746,9 @@ } }, "url-parse": { - "version": "1.4.7", - "resolved": "https://registry.npmjs.org/url-parse/-/url-parse-1.4.7.tgz", - "integrity": "sha512-d3uaVyzDB9tQoSXFvuSUNFibTd9zxd2bkVrDRvF5TmvWWQwqE4lgYJ5m+x1DbecWkw+LK4RNl2CU1hHuOKPVlg==", + "version": "1.5.1", + "resolved": "https://registry.npmjs.org/url-parse/-/url-parse-1.5.1.tgz", + "integrity": "sha512-HOfCOUJt7iSYzEx/UqgtwKRMC6EU91NFhsCHMv9oM03VJcVo2Qrp8T8kI9D7amFf1cu+/3CEhgb3rF9zL7k85Q==", "dev": true, "requires": { "querystringify": "^2.1.1", @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From c292485f51eb70b6794f1e468f036fc6d71c1f9a Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 14 Jul 2021 21:25:12 +0000 Subject: [PATCH 10/16] Bump lodash from 4.17.20 to 4.17.21 in /quiz-app Bumps [lodash](https://github.com/lodash/lodash) from 4.17.20 to 4.17.21. - [Release notes](https://github.com/lodash/lodash/releases) - [Commits](https://github.com/lodash/lodash/compare/4.17.20...4.17.21) --- updated-dependencies: - dependency-name: lodash dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 40 +++++++++++--------------------------- 1 file changed, 11 insertions(+), 29 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index e9aebee..f33d46a 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -1087,16 +1087,6 @@ "postcss": "^7.0.0" } }, - "@kazupon/vue-i18n-loader": { - "version": "0.5.0", - "resolved": "https://registry.npmjs.org/@kazupon/vue-i18n-loader/-/vue-i18n-loader-0.5.0.tgz", - "integrity": "sha512-Tp2mXKemf9/RBhI9CW14JjR9oKjL2KH7tV6S0eKEjIBuQBAOFNuPJu3ouacmz9hgoXbNp+nusw3MVQmxZWFR9g==", - "dev": true, - "requires": { - "js-yaml": "^3.13.1", - "json5": "^2.1.1" - } - }, "@mrmlnc/readdir-enhanced": { "version": "2.2.1", "resolved": "https://registry.npmjs.org/@mrmlnc/readdir-enhanced/-/readdir-enhanced-2.2.1.tgz", @@ -6904,9 +6894,9 @@ } }, "lodash": { - "version": "4.17.20", - "resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.20.tgz", - "integrity": "sha512-PlhdFcillOINfeV7Ni6oF1TAEayyZBoZ8bcshTHqOYJYlrqzRK5hagpagky5o4HfCzzd1TRkXPMFq6cKk9rGmA==", + "version": "4.17.21", + "resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.21.tgz", + "integrity": "sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==", "dev": true }, "lodash.defaultsdeep": { @@ -10954,11 +10944,10 @@ } }, "vue-loader-v16": { - "version": "npm:vue-loader@16.1.2", - "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.1.2.tgz", - "integrity": "sha512-8QTxh+Fd+HB6fiL52iEVLKqE9N1JSlMXLR92Ijm6g8PZrwIxckgpqjPDWRP5TWxdiPaHR+alUWsnu1ShQOwt+Q==", + "version": "npm:vue-loader@16.3.0", + "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.3.0.tgz", + "integrity": "sha512-UDgni/tUVSdwHuQo+vuBmEgamWx88SuSlEb5fgdvHrlJSPB9qMBRF6W7bfPWSqDns425Gt1wxAUif+f+h/rWjg==", "dev": true, - "optional": true, "requires": { "chalk": "^4.1.0", "hash-sum": "^2.0.0", @@ -10970,17 +10959,15 @@ "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "dev": true, - "optional": true, "requires": { "color-convert": "^2.0.1" } }, "chalk": { - "version": "4.1.0", - "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.0.tgz", - "integrity": "sha512-qwx12AxXe2Q5xQ43Ac//I6v5aXTipYrSESdOgzrN+9XjgEpyjpKuvSGaN4qE93f7TQTlerQQ8S+EQ0EyDoVL1A==", + "version": "4.1.1", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.1.tgz", + "integrity": "sha512-diHzdDKxcU+bAsUboHLPEDQiw0qEe0qd7SYUn3HgcFlWgbDcfLGswOHYeGrHKzG9z6UYf01d9VFMfZxPM1xZSg==", "dev": true, - "optional": true, "requires": { "ansi-styles": "^4.1.0", "supports-color": "^7.1.0" @@ -10991,7 +10978,6 @@ "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "dev": true, - "optional": true, "requires": { "color-name": "~1.1.4" } @@ -11000,22 +10986,19 @@ "version": "1.1.4", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", - "dev": true, - "optional": true + "dev": true }, "has-flag": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", - "dev": true, - "optional": true + "dev": true }, "loader-utils": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "dev": true, - "optional": true, "requires": { "big.js": "^5.2.2", "emojis-list": "^3.0.0", @@ -11027,7 +11010,6 @@ "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "dev": true, - "optional": true, "requires": { "has-flag": "^4.0.0" } From 0f1bc3d3b8a4616805ce5c7d3ecbd8ae4f12d95a Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Thu, 15 Jul 2021 10:04:25 -0400 Subject: [PATCH 11/16] adding solution folders, translation folders, and base notebook for all lessons --- .gitignore | 1 + 01-defining-data-science/notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 02-ethics/notebook.ipynb | 0 02-ethics/solution/notebook.ipynb | 0 02-ethics/translations/README.es.md | 0 03-defining-data/notebook.ipynb | 0 03-defining-data/solution/notebook.ipynb | 0 03-defining-data/translations/README.es.md | 0 04-stats-and-probability/notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../20-tbd/notebook.ipynb | 0 .../20-tbd/solution/notebook.ipynb | 0 .../20-tbd/translations/README.es.md | 0 .../21-tbd/notebook.ipynb | 0 .../21-tbd/solution/notebook.ipynb | 0 .../21-tbd/translations/README.es.md | 0 .../22-tbd/notebook.ipynb | 0 .../22-tbd/solution/notebook.ipynb | 0 .../22-tbd/translations/README.es.md | 0 .../23-tbd/notebook.ipynb | 0 .../23-tbd/solution/notebook.ipynb | 0 .../23-tbd/translations/README.es.md | 0 .../24-tbd/notebook.ipynb | 0 .../24-tbd/solution/notebook.ipynb | 0 .../24-tbd/translations/README.es.md | 0 .../15-capturing/notebook.ipynb | 0 .../15-capturing/solution/notebook.ipynb | 0 .../15-capturing/translations/README.es.md | 0 .../16-processing/notebook.ipynb | 0 .../16-processing/solution/notebook.ipynb | 0 .../16-processing/translations/README.es.md | 0 .../17-analyzing/notebook.ipynb | 0 .../17-analyzing/solution/notebook.ipynb | 0 .../17-analyzing/translations/README.es.md | 0 .../18-communication/notebook.ipynb | 0 .../18-communication/solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../19-maintaining/notebook.ipynb | 0 .../19-maintaining/solution/notebook.ipynb | 0 .../19-maintaining/translations/README.es.md | 0 .../translations/README.es.md | 0 .../10-visualization-quantities/README.md | 1 + .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 visualizations/README.md | 4 + visualizations/data/birds.csv | 445 ++++++++++++++++++ .../05-spreadsheets/notebook.ipynb | 0 .../05-spreadsheets/solution/notebook.ipynb | 0 .../05-spreadsheets/translations/README.es.md | 0 .../06-relational-databases/notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 working-with-data/07-nosql/notebook.ipynb | 0 .../07-nosql/solution/notebook.ipynb | 0 .../07-nosql/translations/README.es.md | 0 working-with-data/08-python/notebook.ipynb | 0 .../08-python/solution/notebook.ipynb | 0 .../08-python/translations/README.es.md | 0 .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 working-with-data/translations/README.es.md | 0 78 files changed, 451 insertions(+) create mode 100644 01-defining-data-science/notebook.ipynb create mode 100644 01-defining-data-science/solution/notebook.ipynb create mode 100644 01-defining-data-science/translations/README.es.md create mode 100644 02-ethics/notebook.ipynb create mode 100644 02-ethics/solution/notebook.ipynb create mode 100644 02-ethics/translations/README.es.md create mode 100644 03-defining-data/notebook.ipynb create mode 100644 03-defining-data/solution/notebook.ipynb create mode 100644 03-defining-data/translations/README.es.md create mode 100644 04-stats-and-probability/notebook.ipynb create mode 100644 04-stats-and-probability/solution/notebook.ipynb create mode 100644 04-stats-and-probability/translations/README.es.md create mode 100644 data-science-in-the-cloud/20-tbd/notebook.ipynb create mode 100644 data-science-in-the-cloud/20-tbd/solution/notebook.ipynb create mode 100644 data-science-in-the-cloud/20-tbd/translations/README.es.md create mode 100644 data-science-in-the-cloud/21-tbd/notebook.ipynb create mode 100644 data-science-in-the-cloud/21-tbd/solution/notebook.ipynb create mode 100644 data-science-in-the-cloud/21-tbd/translations/README.es.md create mode 100644 data-science-in-the-cloud/22-tbd/notebook.ipynb create mode 100644 data-science-in-the-cloud/22-tbd/solution/notebook.ipynb create mode 100644 data-science-in-the-cloud/22-tbd/translations/README.es.md create mode 100644 data-science-in-the-wild/23-tbd/notebook.ipynb create mode 100644 data-science-in-the-wild/23-tbd/solution/notebook.ipynb create mode 100644 data-science-in-the-wild/23-tbd/translations/README.es.md create mode 100644 data-science-in-the-wild/24-tbd/notebook.ipynb create mode 100644 data-science-in-the-wild/24-tbd/solution/notebook.ipynb create mode 100644 data-science-in-the-wild/24-tbd/translations/README.es.md create mode 100644 data-science-lifecycle/15-capturing/notebook.ipynb create mode 100644 data-science-lifecycle/15-capturing/solution/notebook.ipynb create mode 100644 data-science-lifecycle/15-capturing/translations/README.es.md create mode 100644 data-science-lifecycle/16-processing/notebook.ipynb create mode 100644 data-science-lifecycle/16-processing/solution/notebook.ipynb create mode 100644 data-science-lifecycle/16-processing/translations/README.es.md create mode 100644 data-science-lifecycle/17-analyzing/notebook.ipynb create mode 100644 data-science-lifecycle/17-analyzing/solution/notebook.ipynb create mode 100644 data-science-lifecycle/17-analyzing/translations/README.es.md create mode 100644 data-science-lifecycle/18-communication/notebook.ipynb create mode 100644 data-science-lifecycle/18-communication/solution/notebook.ipynb create mode 100644 data-science-lifecycle/18-communication/translations/README.es.md create mode 100644 data-science-lifecycle/19-maintaining/notebook.ipynb create mode 100644 data-science-lifecycle/19-maintaining/solution/notebook.ipynb create mode 100644 data-science-lifecycle/19-maintaining/translations/README.es.md create mode 100644 data-science-lifecycle/translations/README.es.md create mode 100644 visualizations/10-visualization-quantities/notebook.ipynb create mode 100644 visualizations/10-visualization-quantities/solution/notebook.ipynb create mode 100644 visualizations/10-visualization-quantities/translations/README.es.md create mode 100644 visualizations/11-visualization-distributions/notebook.ipynb create mode 100644 visualizations/11-visualization-distributions/solution/notebook.ipynb create mode 100644 visualizations/11-visualization-distributions/translations/README.es.md create mode 100644 visualizations/12-visualization-proportions/notebook.ipynb create mode 100644 visualizations/12-visualization-proportions/solution/notebook.ipynb create mode 100644 visualizations/12-visualization-proportions/translations/README.es.md create mode 100644 visualizations/13-visualization-relationships/notebook.ipynb create mode 100644 visualizations/13-visualization-relationships/solution/notebook.ipynb create mode 100644 visualizations/13-visualization-relationships/translations/README.es.md create mode 100644 visualizations/14-meaningful-visualizations/notebook.ipynb create mode 100644 visualizations/14-meaningful-visualizations/solution/notebook.ipynb create mode 100644 visualizations/14-meaningful-visualizations/translations/README.es.md create mode 100644 visualizations/data/birds.csv create mode 100644 working-with-data/05-spreadsheets/notebook.ipynb create mode 100644 working-with-data/05-spreadsheets/solution/notebook.ipynb create mode 100644 working-with-data/05-spreadsheets/translations/README.es.md create mode 100644 working-with-data/06-relational-databases/notebook.ipynb create mode 100644 working-with-data/06-relational-databases/solution/notebook.ipynb create mode 100644 working-with-data/06-relational-databases/translations/README.es.md create mode 100644 working-with-data/07-nosql/notebook.ipynb create mode 100644 working-with-data/07-nosql/solution/notebook.ipynb create mode 100644 working-with-data/07-nosql/translations/README.es.md create mode 100644 working-with-data/08-python/notebook.ipynb create mode 100644 working-with-data/08-python/solution/notebook.ipynb create mode 100644 working-with-data/08-python/translations/README.es.md create mode 100644 working-with-data/09-cleaning-transformations/notebook.ipynb create mode 100644 working-with-data/09-cleaning-transformations/solution/notebook.ipynb create mode 100644 working-with-data/09-cleaning-transformations/translations/README.es.md create mode 100644 working-with-data/translations/README.es.md diff --git a/.gitignore b/.gitignore index c2bdc7f..70a9172 100644 --- a/.gitignore +++ b/.gitignore @@ -10,6 +10,7 @@ *.userosscache *.sln.docstates *.code-workspace +*.DS_Store # User-specific files (MonoDevelop/Xamarin Studio) *.userprefs diff --git a/01-defining-data-science/notebook.ipynb b/01-defining-data-science/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/01-defining-data-science/solution/notebook.ipynb b/01-defining-data-science/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/01-defining-data-science/translations/README.es.md b/01-defining-data-science/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/02-ethics/notebook.ipynb b/02-ethics/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/02-ethics/solution/notebook.ipynb b/02-ethics/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/02-ethics/translations/README.es.md b/02-ethics/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/03-defining-data/notebook.ipynb b/03-defining-data/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/03-defining-data/solution/notebook.ipynb b/03-defining-data/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/03-defining-data/translations/README.es.md b/03-defining-data/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/04-stats-and-probability/notebook.ipynb b/04-stats-and-probability/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/04-stats-and-probability/solution/notebook.ipynb b/04-stats-and-probability/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/04-stats-and-probability/translations/README.es.md b/04-stats-and-probability/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/20-tbd/notebook.ipynb b/data-science-in-the-cloud/20-tbd/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/20-tbd/solution/notebook.ipynb b/data-science-in-the-cloud/20-tbd/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/20-tbd/translations/README.es.md b/data-science-in-the-cloud/20-tbd/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/21-tbd/notebook.ipynb b/data-science-in-the-cloud/21-tbd/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/21-tbd/solution/notebook.ipynb b/data-science-in-the-cloud/21-tbd/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/21-tbd/translations/README.es.md b/data-science-in-the-cloud/21-tbd/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/22-tbd/notebook.ipynb b/data-science-in-the-cloud/22-tbd/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/22-tbd/solution/notebook.ipynb b/data-science-in-the-cloud/22-tbd/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-cloud/22-tbd/translations/README.es.md b/data-science-in-the-cloud/22-tbd/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/23-tbd/notebook.ipynb b/data-science-in-the-wild/23-tbd/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/23-tbd/solution/notebook.ipynb b/data-science-in-the-wild/23-tbd/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/23-tbd/translations/README.es.md b/data-science-in-the-wild/23-tbd/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/24-tbd/notebook.ipynb b/data-science-in-the-wild/24-tbd/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/24-tbd/solution/notebook.ipynb b/data-science-in-the-wild/24-tbd/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/24-tbd/translations/README.es.md b/data-science-in-the-wild/24-tbd/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/15-capturing/notebook.ipynb b/data-science-lifecycle/15-capturing/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/15-capturing/solution/notebook.ipynb b/data-science-lifecycle/15-capturing/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/15-capturing/translations/README.es.md b/data-science-lifecycle/15-capturing/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/16-processing/notebook.ipynb b/data-science-lifecycle/16-processing/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/16-processing/solution/notebook.ipynb b/data-science-lifecycle/16-processing/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/16-processing/translations/README.es.md b/data-science-lifecycle/16-processing/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/17-analyzing/notebook.ipynb b/data-science-lifecycle/17-analyzing/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/17-analyzing/solution/notebook.ipynb b/data-science-lifecycle/17-analyzing/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/17-analyzing/translations/README.es.md b/data-science-lifecycle/17-analyzing/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/18-communication/notebook.ipynb b/data-science-lifecycle/18-communication/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/18-communication/solution/notebook.ipynb b/data-science-lifecycle/18-communication/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/18-communication/translations/README.es.md b/data-science-lifecycle/18-communication/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/19-maintaining/notebook.ipynb b/data-science-lifecycle/19-maintaining/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/19-maintaining/solution/notebook.ipynb b/data-science-lifecycle/19-maintaining/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/19-maintaining/translations/README.es.md b/data-science-lifecycle/19-maintaining/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-lifecycle/translations/README.es.md b/data-science-lifecycle/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/10-visualization-quantities/README.md b/visualizations/10-visualization-quantities/README.md index e5716a2..5e3b07e 100644 --- a/visualizations/10-visualization-quantities/README.md +++ b/visualizations/10-visualization-quantities/README.md @@ -1,5 +1,6 @@ # Visualizing Quantities +In this lesson, you will use three different libraries to learn how to create interesting visualizations all around the concept of quantity. ## Pre-Lecture Quiz [Pre-lecture quiz]() diff --git a/visualizations/10-visualization-quantities/notebook.ipynb b/visualizations/10-visualization-quantities/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/10-visualization-quantities/solution/notebook.ipynb b/visualizations/10-visualization-quantities/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/10-visualization-quantities/translations/README.es.md b/visualizations/10-visualization-quantities/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/11-visualization-distributions/notebook.ipynb b/visualizations/11-visualization-distributions/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/11-visualization-distributions/solution/notebook.ipynb b/visualizations/11-visualization-distributions/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/11-visualization-distributions/translations/README.es.md b/visualizations/11-visualization-distributions/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/12-visualization-proportions/notebook.ipynb b/visualizations/12-visualization-proportions/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/12-visualization-proportions/solution/notebook.ipynb b/visualizations/12-visualization-proportions/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/12-visualization-proportions/translations/README.es.md b/visualizations/12-visualization-proportions/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/13-visualization-relationships/notebook.ipynb b/visualizations/13-visualization-relationships/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/13-visualization-relationships/solution/notebook.ipynb b/visualizations/13-visualization-relationships/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/13-visualization-relationships/translations/README.es.md b/visualizations/13-visualization-relationships/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/14-meaningful-visualizations/notebook.ipynb b/visualizations/14-meaningful-visualizations/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/14-meaningful-visualizations/solution/notebook.ipynb b/visualizations/14-meaningful-visualizations/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/14-meaningful-visualizations/translations/README.es.md b/visualizations/14-meaningful-visualizations/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/visualizations/README.md b/visualizations/README.md index d85e64b..faf2611 100644 --- a/visualizations/README.md +++ b/visualizations/README.md @@ -24,6 +24,10 @@ These visualization lessons were written with 🌸 by [Jen Looper](https://twitt 🍄 Data for mushrooms is also sourced from [Kaggle](https://www.kaggle.com/hatterasdunton/mushroom-classification-updated-dataset) revised by Hatteras Dunton. This dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family Mushroom drawn from The Audubon Society Field Guide to North American Mushrooms (1981). This dataset was donated to UCI ML 27 in 1987. +🦆 Data for Minnesota Birds is from [Kaggle](https://www.kaggle.com/hannahcollins/minnesota-birds) scraped from [Wikipedia](https://en.wikipedia.org/wiki/List_of_birds_of_Minnesota) by Hannah Collins. + +All these datasets are licensed as [CC0: Creative Commons](https://creativecommons.org/publicdomain/zero/1.0/). + diff --git a/visualizations/data/birds.csv b/visualizations/data/birds.csv new file mode 100644 index 0000000..932069e --- /dev/null +++ b/visualizations/data/birds.csv @@ -0,0 +1,445 @@ +Name,Scientific Name,Indicator or Other Notes,Category,State,Kingdom,Phylum,Class,Order,Family,Genus,Conservation status,Length Min (cm),Length Max (cm),Body Mass Min (g),Body Mass Max (g),Wingspan Min (cm),Wingspan Max (cm) +Black-bellied whistling-duck,Dendrocygna autumnalis,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Dendrocygna,LC,47,56,652,1020,76,94 +Fulvous whistling-duck,Dendrocygna bicolor,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Dendrocygna,LC,45,53,712,1050,85,93 +Snow goose,Anser caerulescens,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anser,LC,64,79,2050,4050,135,165 +Ross's goose,Anser rossii,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anser,LC,57.3,64,1066,1567,113,116 +Greater white-fronted goose,Anser albifrons,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anser,LC,64,81,1930,3310,130,165 +Brant,Branta bernicla,(C),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Branta,LC,55,66,880,2200,206,121 +Cackling goose,Branta hutchinsii,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Branta,LC,63,65,1398,2380,108,111 +Canada goose,Branta canadensis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Branta,LC,75,110,2600,6500,127,185 +Mute swan,Cygnus olor,(I),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Cygnus,LC,125,170,9200,14300,200,240 +Trumpeter swan,Cygnus buccinator,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Cygnus,LC,138,180,7000,13600,185,250 +Tundra swan,Cygnus columbianus,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Cygnus,LC,115,150,3400,9600,168,211 +Wood duck,Aix sponsa,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aix,LC,47,54,454,862,66,73 +Garganey,Spatula querquedula,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,41,41,300,400,58,69 +Blue-winged teal,Spatula discors,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,40,40,370,370,58,58 +Cinnamon teal,Spatula cyanoptera,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,41,41,400,400,56,56 +Northern shoveler,Spatula clypeata,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,48,48,600,600,76,76 +Gadwall,Mareca strepera,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mareca,LC,46,56,850,990,78,90 +Eurasian wigeon,Mareca penelope,(C),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mareca,LC,42,42,500,1073,71,80 +American wigeon,Mareca americana,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mareca,LC,42,59,512,1330,76,71 +Mallard,Anas platyrhynchos,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,50,65,720,1580,81,98 +American black duck,Anas rubripes,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,54,59,720,1640,88,95 +Mottled duck,Anas fulvigula,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,46.9,57.2,699,1241,80,87.2 +Northern pintail,Anas acuta,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,51,76,450,1360,80,95 +Green-winged teal,Anas crecca,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,31,39,140,500,53,59 +Canvasback,Aythya valisineria,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,48,56,862,1600,79,89 +Redhead,Aythya americana,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,37,84,907,1134,84,84 +Ring-necked duck,Aythya collaris,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,39,46,490,910,62,63 +Tufted duck,Aythya fuligula,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,40.6,45.7,629,1026,19.4,21.2 +Greater scaup,Aythya marila,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,39,56,726,1360,71,84 +Lesser scaup,Aythya affinis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,38,48,454,1089,19,20 +King eider,Somateria spectabilis,(C),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Somateria,LC,50,70,900,2200,86,102 +Common eider,Somateria mollissima,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Somateria,NT,50,71,810,3040,80,110 +Harlequin duck,Histrionicus histrionicus,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Histrionicus,LC,38,43,600,600,26,26 +Surf scoter,Melanitta perspicillata,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Melanitta,LC,48,60,900,1293,76,77 +White-winged scoter,Melanitta deglandi,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Melanitta,LC,48,60,950,2128,80,80 +Black scoter,Melanitta americana,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Melanitta,NT,43,55,950,950,71,71 +Long-tailed duck,Clangula hyemalis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Clangula,VU,44,60,740,740,71,71 +Bufflehead,Bucephala albeola,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Bucephala,LC,32,40,270,550,55,55 +Common goldeneye,Bucephala clangula,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Bucephala,LC,45,51,1000,1000,77,83 +Barrow's goldeneye,Bucephala islandica,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Bucephala,LC,43,49,590,970,70,73 +Smew,Mergellus albellus,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mergellus,LC,38,44,450,650,56,69 +Hooded merganser,Lophodytes cucullatus,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Lophodytes,LC,40,49,453,879,60,66 +Common merganser,Mergus merganser,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mergus,LC,58,72,900,2100,78,97 +Red-breasted merganser,Mergus serrator,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mergus,LC,51,62,800,1350,70,86 +Ruddy duck,Oxyura jamaicensis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Oxyura,LC,34,43,560,560,47,47 +Northern bobwhite,Colinus virginianus,(Ex),New World quail,,Animalia,Chordata,Aves,Galliformes,Odontophoridae,Colinus,NT,24,28,129,173,33,38 +Wild turkey,Meleagris gallopavo,(Introduced to Minnesota per the MOURC),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Meleagris,LC,110,115,2500,10800,125,144 +Ruffed grouse,Bonasa umbellus,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Bonasa,LC,40,50,450,750,50,64 +Spruce grouse,Falcipennis canadensis,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Falcipennis,LC,38,43,450,650,54.5,57.5 +Willow ptarmigan,Lagopus lagopus,(A),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Lagopus,LC,35,44,430,810,60,65 +Rock ptarmigan,Lagopus muta,(A),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Lagopus,LC,34,36,440,640,54,60 +Sharp-tailed grouse,Tympanuchus phasianellus,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Tympanuchus,LC,38.1,48.3,596,880,62,65 +Greater prairie-chicken,Tympanuchus cupido,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Tympanuchus,VU,43,43,700,1200,69.5,72.5 +Gray partridge,Perdix perdix,(I),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Perdix,LC,30,33,385,500,53,56 +Ring-necked pheasant,Phasianus colchicus,(I),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Phasianus,LC,60,89,500,3000,56,86 +Pied-billed grebe,Podilymbus podiceps,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podilymbus,LC,31,38,253,568,45,62 +Horned grebe,Podiceps auritus,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podiceps,VU,31,38,300,570,55,74 +Red-necked grebe,Podiceps grisegena,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podiceps,LC,40,50,692,925,77,85 +Eared grebe,Podiceps nigricollis,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podiceps,LC,28,34,265,450,52,55 +Western grebe,Aechmorphorus occidentalis,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Aechmophorus,LC,55,75,795,2000,79,102 +Clark's grebe,Aechmorphorus clarkii,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Aechmophorus,LC,56,74,718,1258,24,24 +Rock pigeon,Columba livia,(I),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Columba,LC,29,37,238,380,62,72 +Band-tailed pigeon,Patagioenas fasciata,(A),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Patagioenas,LC,33,40,225,515,26,26 +Eurasian collared-dove,Streptopelia decaocto,(I),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Streptopelia,LC,32,32,125,240,47,55 +Passenger pigeon,Ectopistes migratorius,(E),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Ectopistes,EX,39,41,260,340,18,21.5 +Inca dove,Scardafella inca,(A),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Columbina,LC,16.5,23,30,58,28.5,32 +Common ground dove,Columbina passerina,(A),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Columbina,LC,15,18,26,40,27,27 +White-winged dove,Zenaida asiatica,,Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Zenaida,LC,29,29,150,150,48,58 +Mourning dove,Zenaida macroura,,Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Zenaida,LC,31,31,112,170,37,45 +Groove-billed ani,Crotophaga sulcirostris,(A),Cuckoos,,Animalia,Chordata,Aves,Cuculiformes,Cuculidae,Crotophaga,LC,34,34,70,90,41,46 +Black-billed cuckoo,Coccyzus erythropthalmus,,Cuckoos,,Animalia,Chordata,Aves,Cuculiformes,Cuculidae,Cuculidae,LC,28,32,45,55,44,44 +Yellow-billed cuckoo,Coccyzus americanus,,Cuckoos,,Animalia,Chordata,Aves,Cuculiformes,Cuculidae,Coccyzus,LC,26,30,55,65,38,43 +Common nighthawk,Chordeiles minor,,Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Chordeiles,LC,22,25,55,98,51,61 +Common poorwill,Phalaenoptilus nuttallii,(A),Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Phalaenoptilus,LC,18,18,36,58,30,30 +Chuck-will's-widow,Antrostomus carolinensis,(A),Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Antrostomus,NT,28,33,66,188,58,66 +Eastern whip-poor-will,Antrostomus vociferus,,Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Antrostomus,NT,22,27,42,69,45,50 +Chimney swift,Chaetura pelagica,,Swifts,,Animalia,Chordata,Aves,Apodiformes,Apodidae,Chaetura,VU,12,15,17,30,27,30 +White-throated swift,Aeronautes saxatalis,(A),Swifts,,Animalia,Chordata,Aves,Apodiformes,Apodidae,Aeronautes,LC,15,18,28,36,35.5,35.5 +Mexican violetear,Colibri thalassinus,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Colibri,LC,9.7,12,4.8,5.6,12,12 +Rivoli's hummingbird,Eugenes fulgens,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Eugenes,LC,11,14,6,10,18,18 +Ruby-throated hummingbird,Archilochus colubris,,Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Archilochus,LC,7,9,2,6,8,11 +Anna's hummingbird,Calypte anna,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Calypte,LC,9.9,10.9,3,6,12,12 +Costa's hummingbird,Calypte costae,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Calypte,LC,7.6,8.9,3.05,3.22,11,11 +Calliope hummingbird,Selasphorus calliope,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Selasphorus,LC,7,10,2,3,11,11 +Rufous hummingbird,Selasphorus rufus,(C),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Selasphorus,NT,7,9,2,5,11,11 +King rail,Rallus elegans,(A),"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Rallus,NT,15.5,19,290,290,48,48 +Virginia rail,Rallus limicola,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Rallus,LC,20,27,65,95,32,38 +Sora,Porzana carolina,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Porzana,LC,19,30,49,112,35,40 +Common gallinule,Gallinula galeata,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Gallinula,LC,32,35,310,456,54,62 +American coot,Fulica americana,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Fulica,LC,34,43,427,848,58,71 +Purple gallinule,Porphyrio martinicus,(A),"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Porphyrio,LC,26,37,141,305,50,61 +Yellow rail,Coturnicops noveboracensis,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Cotorunicops,LC,13,18,41,68,28,32 +Black rail,Laterallus jamaicensis,(A),"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Laterallus,EN,10,15,29,39,22,28 +Sandhill crane,Antigone canadensis,,Cranes,,Animalia,Chordata,Aves,Gruiformes,Gruidae,Antigone,LC,80,136,4020,4570,200,200 +Whooping crane,Grus americana,(A),Cranes,,Animalia,Chordata,Aves,Gruiformes,Gruidae,Grus,EN,124,160,4500,8500,200,230 +Black-necked stilt,Himantopus mexicanus,(C),Stilts and avocets,,Animalia,Chordata,Aves,Charadriiformes,Recurvirostridae,Himantopus,LC,35,39,150,176,71.5,75.5 +American avocet,Recurvirostra americana,,Stilts and avocets,,Animalia,Chordata,Aves,Charadriiformes,Recurvirostridae,Recurvirostra,LC,40,51,275,420,68,76 +Black-bellied plover,Pluvialis squatarola,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Pluvialis,LC,27,30,190,280,71,83 +American golden-plover,Pluvialis dominica,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Pluvialis,LC,24,28,122,194,65,67 +Killdeer,Charadrius vociferus,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,LC,20,28,72,121,59,63 +Semipalmated plover,Charadrius semipalmatus,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,LC,14,20,22,63,35,56 +Piping plover,Charadrius melodus,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,NT,15,19,42,64,35,41 +Wilson's plover,Charadrius wilsonia,(A),Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,LC,16,20,55,70,48.2,48.2 +Snowy plover,Charadrius nivosus,(A),Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,NT,15,17,32.5,58,34,43.2 +Upland sandpiper,Bartramia longicauda,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Bartramia,LC,30,30,170,170,66,66 +Whimbrel,Numenius phaeopus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Numenius,,37,47,270,493,75,90 +Eskimo curlew,Numenius borealis,(E),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Numenius,CR,30,30,360,360,70,70 +Long-billed curlew,Numenius americanus,(A),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Numenius,LC,50,65,490,950,62,90 +Hudsonian godwit,Limosa haemastica,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limosa,LC,37,42,300,300,74,74 +Marbled godwit,Limosa fedoa,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limosa,LC,40,50,240,510,70,88 +Ruddy turnstone,Arenaria interpres,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Arenaria,LC,22,24,85,150,50,57 +Red knot,Calidris canutus,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,23,26,100,200,47,53 +Ruff,Calidris pugnax,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,29,32,180,180,54,60 +Sharp-tailed sandpiper,Calidris acuminata,(A),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,22,22,39,114,36,43 +Stilt sandpiper,Calidris himantopus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,20,23,50,70,38,41 +Curlew sandpiper,Calidris ferruginea,(A),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,18,23,44,117,38,41 +Sanderling,Calidris alba,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,18,22,60,60,43,43 +Dunlin,Calidris alpina,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,16,22,48.7,75.9,36,38 +Purple sandpiper,Calidris maritima,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,20,22,50,105,42,46 +Baird's sandpiper,Calidris bairdii,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,18,19,38,38,43,43 +Least sandpiper,Calidris minutilla,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,13,15,19,30,27,28 +White-rumped sandpiper,Calidris fuscicollis,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,17,20,42,42,43,43 +Buff-breasted sandpiper,Calidris subruficollis,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,19,23,63,63,46,46 +Pectoral sandpiper,Calidris melanotos,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,20,24,73,73,46,46 +Semipalmated sandpiper,Calidris pusilla,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,13,15,20,32,35,57 +Western sandpiper,Calidris mauri,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,14,17,22,35,35,37 +Short-billed dowitcher,Limnodromus griseus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limnodromus,LC,23,32,73,155,46,56 +Long-billed dowitcher,Limnodromus scolopaceus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limnodromus,LC,29,29,88,131,47,49 +American woodcock,Scolopax minor,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Scolopax,LC,25,30,140,230,42,48 +Wilson's snipe,Gallinago delicata,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Gallinago,LC,23,28,76,146,39,45 +Spotted sandpiper,Actitis macularius,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Actitis,LC,18,20,34,50,37,40 +Solitary sandpiper,Tringa solitaria,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,18,23,31,65,50,50 +Lesser yellowlegs,Tringa flavipes,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,23,27,79.5,90.9,59,64 +Willet,Tringa semipalmata,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,33,41,200,330,70,70 +Greater yellowlegs,Tringa melanoleuca,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,29,40,111,250,60,60 +Wilson's phalarope,Phalaropus tricolor,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Phalaropus,LC,22,24,38,110,39,43 +Red-necked phalarope,Phalaropus lobatus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Phalaropus,LC,17,20,35,35,38,38 +Red phalarope,Phalaropus fulicarius,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Phalaropus,LC,20,23,55,55,43,43 +Pomarine jaeger,Stercorarius pomarinus,(C),Skuas and jaegers,,Animalia,Chordata,Aves,Charadriiformes,Stercorariidae,Stercorarius,LC,46,67,540,920,110,138 +Parasitic jaeger,Stercorarius parasiticus,,Skuas and jaegers,,Animalia,Chordata,Aves,Charadriiformes,Stercorariidae,Stercorarius,LC,41,48,300,650,107,125 +Long-tailed jaeger,Stercorarius longicaudus,(A),Skuas and jaegers,,Animalia,Chordata,Aves,Charadriiformes,Stercorariidae,Stercorarius,LC,38,58,230,444,102,117 +Dovekie,Alle alle,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Alle,LC,19,21,134,204,34,38 +Black guillemot,Cepphus grylle,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Cepphus,LC,30,32,300,460,52,58 +Long-billed murrelet,Brachyramphus perdix,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Brachyramphus,NT,25,25,310,210,43,43 +Ancient murrelet,Synthliboramphus antiquus,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Synthliboramphus,LC,20,24,153,250,45,46 +Black-legged kittiwake,Rissa tridactyla,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Rissa,VU,37,41,305,525,91,105 +Ivory gull,Pagophila eburnea,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Pagophila,NT,40,43,448,687,108,120 +Sabine's gull,Xema sabini,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Xema,LC,27,33,135,225,81,87 +Bonaparte's gull,Chroicocephalus philadelphia,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Chroicocephalus,LC,28,38,180,225,76,84 +Black-headed gull,Chroicocephalus ridibundus,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Chroicocephalus,LC,38,44,190,400,94,105 +Little gull,Hydrocoloeus minutus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Hydrocoloeus,LC,25,30,68,162,61,78 +Ross's gull,Rhodostethia rosea,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Rhodostethia,LC,29,31,140,250,90,100 +Laughing gull,Leucophaeus atricilla,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Leucophaeus,LC,36,41,203,371,98,110 +Franklin's gull,Leucophaeus pipixcan,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Leucophaeus,LC,32,36,230,300,85,95 +Mew gull,Larus canus,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,40,46,290,586,96,125 +Ring-billed gull,Larus delawarensis,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,43,54,300,700,105,117 +California gull,Larus californicus,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,46,55,430,1045,122,137 +Herring gull,Larus argentatus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,53,66,600,1650,120,155 +Iceland gull,Larus glaucoides,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,50,64,480,1100,115,150 +Lesser black-backed gull,Larus fuscus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,51,64,452,1100,124,150 +Slaty-backed gull,Larus schistisagus,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,55,68.5,1050,1700,52,63 +Glaucous-winged gull,Larus glaucescens,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,50,68,730,1690,120,150 +Glaucous gull,Larus hyperboreus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,55,77,960,2700,132,170 +Great black-backed gull,Larus marinus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,64,79,750,2300,150,170 +Least tern,Sternula antillarum,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sternula,LC,22,24,39,52,50,50 +Gull-billed tern,Gelochelidon nilotica,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Gelochelidon,LC,33,42,150,292,76,91 +Caspian tern,Hydroprogne caspia,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Hydroprogne,LC,48,60,530,782,127,145 +Black tern,Chlidonias niger,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Childonias,LC,25,25,62,62,61,61 +Common tern,Sterna hirundo,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sterna,LC,31,35,110,141,77,98 +Arctic tern,Sterna paradisaea,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sterna,LC,28,39,86,127,65,75 +Forster's tern,Sterna forsteri,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sterna,LC,33,36,130,190,64,70 +Sandwich tern,Thalasseus sandvicensis,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Thalasseus,LC,37,43,180,300,85,97 +Elegant tern,Thalasseus elegans,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Thalasseus,NT,39,42,190,325,76,81 +Red-throated loon,Gavia stellata,,Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,LC,53,69,1000,2700,91,120 +Pacific loon,Gavia pacifica,,Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,LC,58,74,1000,2500,110,128 +Common loon,Gavia immer,,Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,LC,66,91,2200,7600,127,147 +Yellow-billed loon,Gavia adamsii,(A),Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,NT,76,97,4000,6400,135,160 +Northern fulmar,Fulmarus glacialis,(A),Shearwaters and petrels,,Animalia,Chordata,Aves,Procellariiformes,Procellariidae,Fulmarus,LC,46,46,450,1000,102,112 +Wood stork,Mycteria americana,(A),Storks,,Animalia,Chordata,Aves,Ciconiiformes,Ciconiidae,Mycteria,LC,83,115,2000,3300,140,180 +Magnificent frigatebird,Fregata magnificens,(A),Frigatebirds,,Animalia,Chordata,Aves,Suliformes,Fregatidae,Fregata,LC,89,114,1100,1590,217,244 +Double-crested cormorant,Phalacrocorax auritus,,Cormorants and shags,,Animalia,Chordata,Aves,Suliformes,Phalacrocoracidae,Phalacrocorax,LC,70,90,1200,2500,114,123 +Neotropic cormorant,Phalacrocorax brasilianus,(A),Cormorants and shags,,Animalia,Chordata,Aves,Suliformes,Phalacrocoracidae,Phalacrocorax,LC,64,64,1000,1500,100,100 +American white pelican,Pelecanus erythrorhynchos,,Pelicans,,Animalia,Chordata,Aves,Pelecaniformes,Pelecanidae,Pelecanus,LC,130,180,3500,13600,240,300 +Brown pelican,Pelecanus occidentalis,(C),Pelicans,,Animalia,Chordata,Aves,Pelecaniformes,Pelecanidae,Pelecanus,LC,100,152,2000,5000,203,228 +American bittern,Botaurus lentiginosus,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Botarus,LC,58,85,370,1072,92,115 +Least bittern,Ixobrychus exilis,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Ixobrychus,LC,28,36,51,102,41,46 +Great blue heron,Ardea herodias,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Ardea,LC,91,137,1820,3600,167,201 +Great egret,Ardea alba,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Ardea,LC,80,104,700,1500,131,170 +Snowy egret,Egretta thula,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Egretta,LC,56,66,370,370,100,100 +Little blue heron,Egretta caerulea,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Egretta,LC,64,76,325,325,102,102 +Tricolored heron,Egretta tricolor,(A),"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Egretta,LC,56,75,334,425,96,96 +Cattle egret,Bubulcus ibis,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Bubulcus,LC,46,56,270,512,88,96 +Green heron,Butorides virescens,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Butorides,LC,41,46,240,240,64,68 +Black-crowned night-heron,Nycticorax nycticorax,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Nycticorax,LC,58,66,727,1014,115,118 +Yellow-crowned night-heron,Nyctanassa violacea,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Nyctsnassa,LC,55,70,650,850,101,112 +White ibis,Eudocimus albus,(A),Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Eudocimus,LC,53,70,592.7,1261,90,105 +Glossy ibis,Plegadis falcinellus,(C),Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Plegadis,LC,48,66,485,970,80,105 +White-faced ibis,Plegadis chihi,,Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Plegadis,LC,46,56,450,525,90,93 +Roseate spoonbill,Ajaia ajaja,(A),Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Platalea,LC,71,86,1200,1800,120,133 +Black vulture,Coragyps atratus,(C),New World vultures,,Animalia,Chordata,Aves,Cathartiformes,Cathartidae,Coragyps,LC,56,74,1600,3000,133,167 +Turkey vulture,Cathartes aura,,New World vultures,,Animalia,Chordata,Aves,Cathartiformes,Cathartidae,Cathartes,LC,62,81,800,2410,160,183 +Osprey,Pandion haliaetus,,Osprey,,Animalia,Chordata,Aves,Accipitriformes,Pandionidae,Pandion,LC,50,66,900,2100,127,180 +White-tailed kite,Elanus leucurus,(A),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Elanus,LC,35,43,250,380,88,102 +Swallow-tailed kite,Elanoides forficatus,(A),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Elanoides,LC,50,68,310,600,112,136 +Golden eagle,Aquila chrysaetos,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Aquila,LC,66,102,2500,6350,180,234 +Northern harrier,Circus hudsonius,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Circus,LC,41,52,290,750,97,122 +Sharp-shinned hawk,Accipiter striatus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Accipiter,LC,23,37,82,219,42,68 +Cooper's hawk,Accipiter cooperii,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Accipiter,LC,35,50,215,701,62,99 +Northern goshawk,Accipiter gentilis,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Accipiter,LC,46,69,357,1200,89,127 +Bald eagle,Haliaeetus leucocephalus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Haliaeetus,LC,70,102,3000,6300,1800,2300 +Mississippi kite,Ictinia mississippiensis,(C),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Ictinia,LC,30,37,214,388,91,91 +Red-shouldered hawk,Buteo lineatus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,38,61,460,930,90,127 +Broad-winged hawk,Buteo platypterus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,32,44,265,560,74,100 +Swainson's hawk,Buteo swainsoni,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,43,56,500,1700,117,137 +Red-tailed hawk,Buteo jamaicensis,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,45,65,690,1600,110,141 +Rough-legged hawk,Buteo lagopus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,46,60,600,1660,120,153 +Ferruginous hawk,Buteo regalis,(A),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,51,69,907,2268,122,152 +Barn owl,Tyto alba,(C),Barn-owls,,Animalia,Chordata,Aves,Strigiformes,Tytonidae,Tyto,LC,33,39,224,710,80,95 +Eastern screech-owl,Megascops asio,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Megascops,LC,16,25,121,244,46,61 +Great horned owl,Bubo virginianus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Bubo,LC,43,64,910,2500,91,153 +Snowy owl,Bubo scandiacus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Bubo,VU,52.5,64,1300,2951,116,165.6 +Northern hawk owl,Surnia ulula,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Surnia,LC,36,42.5,300,300,45,45 +Burrowing owl,Athene cunicularia,(C),Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Athene,LC,19,28,140,240,50.8,61 +Barred owl,Strix varia,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Strix,LC,40,63,468,1150,96,125 +Great gray owl,Strix nebulosa,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Strix,LC,61,84,580,1900,140,142 +Long-eared owl,Asio otus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Asio,LC,31,40,160,435,86,102 +Short-eared owl,Asio flammeus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Asio,LC,34,43,206,475,85,110 +Boreal owl,Aegolius funereus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Aegolius,LC,22,27,93,215,50,62 +Northern saw-whet owl,Aegolius acadicus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Aegolius,LC,17,22,54,151,42,56.3 +Belted kingfisher,Megaeryle alcyon,,Kingfishers,,Animalia,Chordata,Aves,Coraciiformes,Alcedinidae,Megaceryle,LC,28,35,113,178,48,58 +Lewis's woodpecker,Melanerpes lewis,(C),Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,26,28,88,138,49,52 +Red-headed woodpecker,Melanerpes erythrocephalus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,19,25,56,97,42.5,42.5 +Acorn woodpecker,Melanerpes formicivorus,(A),Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,19,23,65,90,35,43 +Red-bellied woodpecker,Melanerpes carolinus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,22.85,26.7,56,91,38,46 +Williamson's sapsucker,Sphyrapicus thyroideus,(A),Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Sphyrapicus,LC,21,25,44,55,43,43 +Yellow-bellied sapsucker,Sphyrapicus varius,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Sphyrapicus,LC,19,21,35,62,34,40 +American three-toed woodpecker,Picoides dorsalis,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Picoides,LC,21,21,55,55,38,38 +Black-backed woodpecker,Picoides arcticus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Picoides,LC,23,23,61,88,40,42 +Downy woodpecker,Dryobates pubescens,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Dryobates,LC,14,18,20,33,25,31 +Hairy woodpecker,Dryobates villosus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Leuconotopicus,LC,18,26,40,95,33,43 +Northern flicker,Colaptes auratus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Colaptes,LC,28,36,86,167,42,54 +Pileated woodpecker,Dryocopus pileatus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Dryocopus,LC,40,49,250,400,66,75 +Crested caracara,Caracara cheriway,(A),Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Caracara,LC,49,63,701,1387,118,132 +American kestrel,Falco sparverius,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,22,31,80,165,51,61 +Merlin,Falco columbarius,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,24,33,125,210,50,73 +Gyrfalcon,Falco rusticolus,(C),Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Hierofalco,LC,48,65,805,2100,110,160 +Peregrine falcon,Falco peregrinus,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,34,58,330,1500,74,120 +Prairie falcon,Falco mexicanus,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,37,45,500,970,1100,1100 +Ash-throated flycatcher,Myiarchus cinerascens,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Myiarchus,LC,19,22,20,37,30,32 +Great crested flycatcher,Myiarchus crinitus,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Myiarchus,LC,17,21,27,40,34,34 +Tropical kingbird,Tyrannus melancholicus,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,22,22,39,39,38,41 +Cassin's kingbird,Tyrannus vociferans,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,21,23,45,45,41,41 +Western kingbird,Tyrannus verticalis,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,20,24,40,40,39,39 +Eastern kingbird,Tyrannus tyrannus,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,19,23,33,55,33,38 +Scissor-tailed flycatcher,Tyrannus forficatus,(C),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,38,38,43,43,15,15 +Fork-tailed flycatcher,Tyrannus savana,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,37,41,28,32,38,38 +Olive-sided flycatcher,Contopus cooperi,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Contopus,NT,18,20,28,40.4,31.5,34.5 +Western wood-pewee,Contopus sordidulus,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Contopus,LC,14,16,11,14,26,26 +Eastern wood-pewee,Contopus virens,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Contopus,LC,13.5,15,14,14,23,26 +Yellow-bellied flycatcher,Empidonax flaviventris,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,13,15,9,16,18,20 +Acadian flycatcher,Empidonax virescens,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,14,15,11.1,13.9,22,23 +Alder flycatcher,Empidonax alnorum,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,13,17,12,14,21,24 +Willow flycatcher,Empidonax traillii,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,13,15,13.5,13.5,22,22 +Least flycatcher,Empidonax minimus,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,12,14,10.3,10.3,19,22 +Eastern phoebe,Sayornis phoebe,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Sayornis,LC,14,17,16,21,26,28 +Say's phoebe,Sayornis saya,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Sayornis,LC,19,19,21,21,33,33 +Vermilion flycatcher,Pyrocephalus rubinus,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Pyrocephalus,LC,13,14,11,14,24,25 +Loggerhead shrike,Lanius ludovicianus,,Shrikes,,Animalia,Chordata,Aves,Passeriformes,Laniidae,Lanius,NT,20,23,35,50,28,32 +Northern shrike,Lanius borealis,,Shrikes,,Animalia,Chordata,Aves,Passeriformes,Laniidae,Lanius,LC,23,24,56,79,30,35 +White-eyed vireo,Vireo griseus,(C),"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,11,13,10,14,17,17 +Bell's vireo,Vireo bellii,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,11.5,12.5,7.4,9.8,17,19 +Yellow-throated vireo,Vireo flavifrons,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,13,15,15,21,23,23 +Blue-headed vireo,Vireo solitarius,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,12.6,14.8,13,19,20,24 +Philadelphia vireo,Vireo philadelphicus,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,11,13,12,12,20,20 +Warbling vireo,Vireo gilvus,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,12,13,10,16,22,22 +Red-eyed vireo,Vireo olivaceus,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,12,13,12,26,23,25 +Canada jay,Perisoreus canadensis,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Perisoreus,LC,25,33,65,70,45,45 +Blue jay,Cyanocitta cristata,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Cyanocitta,LC,22,30,70,100,34,43 +Clark's nutcracker,Nucifraga columbiana,(C),"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Nucifraga,LC,27,30,106,161,46,46 +Black-billed magpie,Pica hudsonia,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Pica,LC,45,60,141,216,17.5,21.9 +American crow,Corvus brachyrhynchos,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Corvus,LC,40,53,316,620,85,100 +Common raven,Corvus corax,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Corvus,LC,54,67,690,2000,115,150 +Horned lark,Eremophila alpestris,,Larks,,Animalia,Chordata,Aves,Passeriformes,Alaudidae,Eremophila,LC,16,20,28,48,30,34 +Bank swallow,Riparia riparia,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Riparia,LC,12,14,10.2,18.8,25,33 +Tree swallow,Tachycineta bicolor,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Tachycineta,LC,12,14,17,25.5,30,35 +Violet-green swallow,Tachycineta thalassina,(A),Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Tachycineta,LC,11.7,11.8,13.9,14.4,10.6,10.6 +Northern rough-winged swallow,Stelgidopteryx serripennis,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Stelgidopteryx,LC,13,15,10,18,27,30 +Purple martin,Progne subis,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Progne,LC,19,20,45,60,39,41 +Barn swallow,Hirundo rustica,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Hirundo,LC,17,19,16,22,32,34.5 +Cliff swallow,Petrochelidon pyrrhonota,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Petrochelidon,LC,13,15,19,31,28,33 +Black-capped chickadee,Poecile atricapilla,,"Tits, chickadees, and titmice",,Animalia,Chordata,Aves,Passeriformes,Paridae,Poecile,LC,12,15,9,14,16,21 +Boreal chickadee,Poecile hudsonica,,"Tits, chickadees, and titmice",,Animalia,Chordata,Aves,Passeriformes,Paridae,Poecile,LC,13,14,10,10,21,21 +Tufted titmouse,Baeolophus bicolor,,"Tits, chickadees, and titmice",,Animalia,Chordata,Aves,Passeriformes,Paridae,Baeolophus,LC,14,16,18,26,20,26 +Red-breasted nuthatch,Sitta canadensis,,Nuthatches,,Animalia,Chordata,Aves,Passeriformes,Sittidae,Sitta,LC,11,11,9.9,9.9,22,22 +White-breasted nuthatch,Sitta carolinensis,,Nuthatches,,Animalia,Chordata,Aves,Passeriformes,Sittidae,Sitta,LC,13,14,18,30,20,27 +Pygmy nuthatch,Sitta pygmaea,(A),Nuthatches,,Animalia,Chordata,Aves,Passeriformes,Sittidae,Sitta,LC,9,11,9,11,19.7,19.7 +Brown creeper,Certhia americana,,Treecreepers,,Animalia,Chordata,Aves,Passeriformes,Certhiidae,Certhia,LC,12,14,5,10,17,20 +Rock wren,Salpinctes obsoletus,(A),Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Salpinctes,LC,12.5,15,15,18,22,24 +House wren,Troglodytes aedon,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Troglodytes,LC,11,13,10,12,15,15 +Winter wren,Troglodytes hiemalis,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Nannus,LC,8,12,8,12,12,16 +Sedge wren,Cistothorus platensis,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Cistothorus,LC,10,12,7,10,12,14 +Marsh wren,Cistothorus palustris,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Cistothorus,LC,10,14,9,14,15,15 +Carolina wren,Thryothorus ludovicianus,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Thryothorus,LC,12.5,14,18,23,29,29 +Bewick's wren,Thryomanes bewickii,(A),Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Thryomanes,LC,13,13,8,12,18,18 +Blue-gray gnatcatcher,Polioptila caerulea,,Gnatcatchers,,Animalia,Chordata,Aves,Passeriformes,Polioptilidae,Polioptila,LC,10,13,5,7,16,16 +American dipper,Cinclus mexicanus,(A),Dippers,,Animalia,Chordata,Aves,Passeriformes,Cinclidae,Cinclus,LC,16.5,16.5,46,46,23,23 +Golden-crowned kinglet,Regulus satrapa,,Kinglets,,Animalia,Chordata,Aves,Passeriformes,Regulidae,Regulus,LC,8,11,4,7.8,14,18 +Ruby-crowned kinglet,Regulus calendula,,Kinglets,,Animalia,Chordata,Aves,Passeriformes,Regulidae,Regulus,LC,9,11,5,10,9,11 +Northern wheatear,Oenanthe oenanthe,(A),Old World flycatchers,,Animalia,Chordata,Aves,Passeriformes,Muscicapidae,Oenanthe,LC,14.5,16,17,30,26,32 +Eastern bluebird,Sialia sialis,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Sialia,LC,16,21,27,34,25,32 +Mountain bluebird,Sialia currucoides,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Sialia,LC,15.5,18,24,37,28,36 +Townsend's solitaire,Myadestes townsendi,(C),Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Myadestes,LC,20,24,34,34,37,37 +Veery,Catharus fuscescens,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,16,19.5,26,39,28.5,28.5 +Gray-cheeked thrush,Catharus minimus,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,16,17,26,30,32,34 +Swainson's thrush,Catharus ustulatus,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,16,20,23,45,30,30 +Hermit thrush,Catharus guttatus,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,15,18,18,37,25,30 +Wood thrush,Hylocichla mustelina,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Hylocichla,NT,18,21.5,48,72,30,40 +Fieldfare,Turdus pilaris,(A),Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Turdus,LC,25,25,80,140,39,42 +American robin,Turdus migratorius,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Turdus,LC,23,28,59,94,31,41 +Varied thrush,Ixoreus naevius,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Ixoreus,LC,20,26,65,100,34,42 +Gray catbird,Dumetella carolinensis,,Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Dumetella,LC,20.5,24,23.2,56.5,22,30 +Curve-billed thrasher,Toxostoma curvirostre,(A),Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Toxostoma,LC,27,28,60.8,93.6,34,34.5 +Brown thrasher,Toxostoma rufum,,Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Toxostoma,LC,23.5,30.5,61,89,29,33 +Sage thrasher,Oreoscoptes montanus,(A),Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Oreoscoptes,LC,20,23,40,50,32,32 +Northern mockingbird,Mimus polyglottos,,Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Mimus,LC,20.5,28,40,58,31,38 +European starling,Sturnus vulgaris,(I),Starlings,,Animalia,Chordata,Aves,Passeriformes,Sturnidae,Sturnus,LC,19,23,58,101,31,44 +Bohemian waxwing,Bombycilla garrulus,,Waxwings,,Animalia,Chordata,Aves,Passeriformes,Bombycillidae,Bombycilla,LC,19,23,55,55,32,35.5 +Cedar waxwing,Bombycilla cedrorum,,Waxwings,,Animalia,Chordata,Aves,Passeriformes,Bombycillidae,Bombycilla,LC,15,18,30,30,22,30 +House sparrow,Passer domesticus,(I),Old World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passeridae,Passer,LC,14,18,24,29.5,19,25 +Eurasian tree sparrow,Passer montanus,(I),Old World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passeridae,Passer,LC,12.5,14,24,24,21,21 +American pipit,Anthus rubescens,,Wagtails and pitpits,,Animalia,Chordata,Aves,Passeriformes,Motacillidae,Anthus,LC,16,16,22,22,24,24 +Sprague's pipit,Anthus spragueii,(C),Wagtails and pitpits,,Animalia,Chordata,Aves,Passeriformes,Motacillidae,Anthus,VU,15,17,18.2,27,25.4,25.4 +Brambling,Fringilla montifringilla,(A),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Fringilla,LC,16,16,23,29,25,26 +Evening grosbeak,Coccothraustes vespertinus,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Coccothraustes,VU,16,22,38.7,86.1,30,36 +Pine grosbeak,Pinicola enucleator,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Carduelinae,LC,20,25.5,52,78,33,33 +Gray-crowned rosy-finch,Leucosticte tephrocotis,(C),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Leucosticte,LC,14,16,22,60,33,33 +House finch,Haemorhous mexicanus,(Native to the southwestern U.S.; introduced to the east),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Haemorhous,LC,12.5,15,16,27,20,25 +Purple finch,Haemorhous purpureus,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Haemorhous,LC,12,16,18,32,22,26 +Cassin's finch,Haemorhous cassinii,(A),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Haemorhous,LC,16,16,24,34,25,27 +Common redpoll,Acanthis flammea,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Acanthis,LC,11.5,14,12,16,19,22 +Hoary redpoll,Acanthis hornemanni,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Acanthis,LC,12,14,12,16,20,25 +Red crossbill,Loxia curvirostra,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Loxia,LC,20,20,40,53,27,29 +White-winged crossbill,Loxia leucoptera,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Loxia,LC,17,17,30,40,26,29 +Pine siskin,Spinus pinus,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Spinus,LC,11,14,12,18,18,22 +American goldfinch,Spinus tristis,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Spinus,LC,11,14,11,20,19,22 +Lapland longspur,Calcarius lapponicus,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Calcarius,LC,15,16,22.3,33.1,22,29 +Chestnut-collared longspur,Calcarius ornatus,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Calcarius,VU,13,16.5,17,23,25,27 +Smith's longspur,Calcarius pictus,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Calcarius,LC,15,17,20,32,25,25 +Thick-billed longspur,Rhynchophanes mccownii,(A),Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Rhynchophanes,LC,15,15,25,25,28,28 +Snow bunting,Plectrophenax nivalis,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Plextrophenax,LC,15,15,30,40,32,38 +Grasshopper sparrow,Ammodramus savannarum,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Ammodramus,LC,10,14,13.8,28.4,17.5,17.5 +Black-throated sparrow,Amphispiza bilineata,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Amphispiza,LC,12,14,11,15,19.5,19.5 +Lark sparrow,Chondestes grammacus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Chondestes,LC,15,17,24,33,28,28 +Lark bunting,Calamospiza melanocorys,(C),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Calamospiza,LC,14,18,35.3,41.3,25,28 +Chipping sparrow,Spizella passerina,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,12,15,11,16,21,21 +Clay-colored sparrow,Spizella pallida,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,12,15,12,12,19,19 +Field sparrow,Spizella pusilla,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,13,15,12.5,12.5,20,20 +Brewer's sparrow,Spizella breweri,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,13,15,11,14,18,20 +Fox sparrow,Passerella iliaca,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Passerella,LC,15,19,26,44,26.7,29 +American tree sparrow,Spizelloides arborea,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizelloides,LC,14,14,13,28,24,24 +Dark-eyed junco,Junco hyemalis,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Junco,LC,13,17.5,18,30,18,25 +White-crowned sparrow,Zonotrichia leucophrys,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,LC,15,16,25,28,21,24 +Golden-crowned sparrow,Zonotrichia atricapilla,(C),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,LC,15,18,19,35.4,24.75,24.75 +Harris's sparrow,Zonotrichia querula,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,NT,17,20,26,49,27,27 +White-throated sparrow,Zonotrichia albicollis,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,LC,15,19,22,32,23,23 +Vesper sparrow,Pooecetes gramineus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pooecetes,LC,13,16,20,28,24,24 +LeConte's sparrow,Ammospiza leconteii,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Ammospiza,LC,12,12,12,16,18,18 +Nelson's sparrow,Ammospiza nelsoni,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Ammospiza,LC,11,13,17,21,16.5,20 +Baird's sparrow,Centronyx bairdii,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Centronyx,LC,12,12,17,21,23,23 +Henslow's sparrow,Centronyx henslowii,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Centronyx,LC,11,13,11,15,16,20 +Savannah sparrow,Passerculus sandwichensis,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Passerculus,LC,11,17,15,29,18,25 +Song sparrow,Melospiza melodia,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Melospiza,LC,11,18,11.9,53,18,25.4 +Lincoln's sparrow,Melospiza lincolnii,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Melospiza,LC,13,15,17,19,19,22 +Swamp sparrow,Melospiza georgiana,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Melospiza,LC,12,15,15,23,18,19 +Green-tailed towhee,Pipilo chlorurus,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pipilo,LC,18.4,18.4,29,29,, +Spotted towhee,Pipilo maculatus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pipilo,LC,17,21,22,49,28,28 +Eastern towhee,Pipilo erythrophthalmus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pipilo,LC,17.3,23,32,53,20,30 +Yellow-breasted chat,Icteria virens,,Yellow-breasted chat,,Animalia,Chordata,Aves,Passeriformes,Icteriidae,Icteria,LC,17,19.1,20.2,33.8,23,27 +Yellow-headed blackbird,Xanthocephalus xanthocephalus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Xanthocephalus,LC,21,26,44,100,42,44 +Bobolink,Dolichonyx oryzivorus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Dolichonyx,LC,15,21,29,56,27,27 +Eastern meadowlark,Sturnella magna,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Sturnella,NT,19,28,76,150,35,40 +Western meadowlark,Sturnella neglecta,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Sturnella,LC,16,26,89,115,41,41 +Orchard oriole,Icterus spurius,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,15,18,16,28,25,25 +Bullock's oriole,Icterus bullockii,(A),Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,17,19,29,43,31,31 +Baltimore oriole,Icterus galbula,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,17,22,22.3,42,23,32 +Scott's oriole,Icterus parisorum,(A),Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,23,23,32,41,32,32 +Red-winged blackbird,Agelaius phoeniceus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Agelaius,LC,17,24,29,82,31,40 +Brown-headed cowbird,Molothrus ater,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Molothrus,LC,16,22,30,60,36,36 +Rusty blackbird,Euphagus carolinus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Euphagus,VU,22,25,60,60,36,36 +Brewer's blackbird,Euphagus cyanocephalus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Euphagus,LC,20,26,63,63,39,39 +Common grackle,Quiscalus quiscula,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Quiscalus,NT,28,34,74,142,36,46 +Great-tailed grackle,Quiscalus mexicanus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Quiscalus,LC,38,46,115,265,48,58 +Ovenbird,Seiurus aurocapilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Seiurus,LC,11,16,14,28.8,19,26 +Worm-eating warbler,Helmitheros vermivorum,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Helmitheros,LC,11.2,13.1,12,14,20,22 +Louisiana waterthrush,Parkesia motacilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Parkesia,LC,14,17,17.4,28,21,25.4 +Northern waterthrush,Parkesia noveboracensis,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Parkesia,LC,12,15,13,25,21,24 +Golden-winged warbler,Vermivora chrysoptera,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Vermivora,NT,11.6,11.6,8,10,20,20 +Blue-winged warbler,Vermivora cyanoptera,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Vermivora,LC,11.4,12.7,8.5,8.5,17,19.5 +Black-and-white warbler,Mniotilta varia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Mniotilta,LC,11,13,8,15,18,22 +Prothonotary warbler,Protonotaria citrea,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Protonotaria,LC,13,13,12.5,12.5,22,22 +Tennessee warbler,Leiothlypis peregrina,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Leiothlypis,LC,11.5,11.5,10,10,19.7,19.7 +Orange-crowned warbler,Leiothlypis celata,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Leiothlypis,LC,12,13,9,9,18.4,18.4 +Nashville warbler,Leiothlypis ruficapilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Leiothlypis,LC,11,13,6.7,13.9,17,20 +Connecticut warbler,Oporornis agilis,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Oporornis,LC,13,15,15,15,22,23 +MacGillivray's warbler,Geothlypis tolmiei,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,10,15,9,13,19,19 +Mourning warbler,Geothlypis philadelphia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,10,15,11,13,18,18 +Kentucky warbler,Geothlypis formosa,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,13,13,13,14,20,22 +Common yellowthroat,Geothlypis trichas,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,11,13,9,10,15,19 +Hooded warbler,Setophaga citrina,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,13,9,12,17.5,17.5 +American redstart,Setophaga ruticilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,14,6.9,8.7,16,23 +Kirtland's warbler,Setophaga kirtlandii,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,NT,14,15,12,16,22,22 +Cape May warbler,Setophaga tigrina,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12,14,9,17.3,19,22 +Cerulean warbler,Setophaga cerulea,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,NT,11,11,8,10,20,20 +Northern parula,Setophaga americana,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,10.8,12.4,5,11,16,18 +Magnolia warbler,Setophaga magnolia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,13,6.6,12.6,16,20 +Bay-breasted warbler,Setophaga castanea,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,15,12.5,12.5,23,23 +Blackburnian warbler,Setophaga fusca,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,13,8,13,20,22 +Yellow warbler,Setophaga petechia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,10,18,7,25,16,22 +Chestnut-sided warbler,Setophaga pensylvanica,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,10,14,8,13.1,16,21 +Blackpoll warbler,Setophaga striata,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,NT,12.5,15,9.7,21,20,25 +Black-throated blue warbler,Setophaga caerulescens,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,13,8.4,12.4,19,20 +Palm warbler,Setophaga palmarum,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12,14,7,13,20,21 +Pine warbler,Setophaga pinus,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12.7,14.6,12,12,22.2,22.2 +Yellow-rumped warbler,Setophaga coronata,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12,15,9.9,17.7,19,24 +Yellow-throated warbler,Setophaga dominica,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,14,9,11,21,21 +Prairie warbler,Setophaga discolor,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,12,7.7,7.7,18,18 +Black-throated gray warbler,Setophaga nigrescens,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,13,8.4,8.4,19,19.7 +Townsend's warbler,Setophaga townsendi,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,13,8.8,8.8,20,20 +Hermit warbler,Setophaga occidentalis,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,14,14,9,13,20,20 +Black-throated green warbler,Setophaga virens,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,12,7,11,17,20 +Canada warbler,Cardellina canadensis,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Cardellina,LC,12,15,9,13,17,22 +Wilson's warbler,Cardellina pusilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Cardellina,LC,10,12,5,10,14,17 +Painted redstart,Myioborus pictus,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Myioborus,LC,13,15,8,11,21,21 +Summer tanager,Piranga rubra,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Piranga,LC,17,17,29,29,28,30 +Scarlet tanager,Piranga olivacea,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Piranga,LC,16,19,23.5,38,25,30 +Western tanager,Piranga ludoviciana,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Piranga,LC,16,19,24,36,29,29 +Northern cardinal,Cardinalis cardinalis,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Cardinalis,LC,21,23.5,33.6,65,25,31 +Rose-breasted grosbeak,Pheucticus ludovicianus,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Pheucticus,LC,18,22,35,65,29,33 +Black-headed grosbeak,Pheucticus melanocephalus,(C),Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Pheucticus,LC,18,19,34,49,32,32 +Blue grosbeak,Passerina caerulea,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,14,19,26,31.5,26,29 +Lazuli bunting,Passerina amoena,(C),Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,13,15,13,18,22,22 +Indigo bunting,Passerina cyanea,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,11.5,15,11.2,21.4,18,23 +Painted bunting,Passerina ciris,(C),Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,12,14,13,19,21,23 +Dickcissel,Spiza americana,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Spiza,LC,14,16,25.6,38.4,24.8,26 \ No newline at end of file diff --git a/working-with-data/05-spreadsheets/notebook.ipynb b/working-with-data/05-spreadsheets/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/05-spreadsheets/solution/notebook.ipynb b/working-with-data/05-spreadsheets/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/05-spreadsheets/translations/README.es.md b/working-with-data/05-spreadsheets/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/06-relational-databases/notebook.ipynb b/working-with-data/06-relational-databases/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/06-relational-databases/solution/notebook.ipynb b/working-with-data/06-relational-databases/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/06-relational-databases/translations/README.es.md b/working-with-data/06-relational-databases/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/07-nosql/notebook.ipynb b/working-with-data/07-nosql/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/07-nosql/solution/notebook.ipynb b/working-with-data/07-nosql/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/07-nosql/translations/README.es.md b/working-with-data/07-nosql/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/08-python/notebook.ipynb b/working-with-data/08-python/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/08-python/solution/notebook.ipynb b/working-with-data/08-python/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/08-python/translations/README.es.md b/working-with-data/08-python/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/09-cleaning-transformations/notebook.ipynb b/working-with-data/09-cleaning-transformations/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/09-cleaning-transformations/solution/notebook.ipynb b/working-with-data/09-cleaning-transformations/solution/notebook.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/09-cleaning-transformations/translations/README.es.md b/working-with-data/09-cleaning-transformations/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/working-with-data/translations/README.es.md b/working-with-data/translations/README.es.md new file mode 100644 index 0000000..e69de29 From c05646490e92ed9fa8da968fa80c7344dc6a4992 Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Thu, 15 Jul 2021 19:29:59 -0400 Subject: [PATCH 12/16] this lesson is for the birds! --- .../10-visualization-quantities/README.md | 177 +++- .../images/category-counts.png | Bin 0 -> 51515 bytes .../images/category-length.png | Bin 0 -> 52383 bytes .../images/full-data-bar.png | Bin 0 -> 44033 bytes .../images/labeled-wingspan.png | Bin 0 -> 10119 bytes .../images/max-wingspan-labels.png | Bin 0 -> 50075 bytes .../images/max-wingspan.png | Bin 0 -> 10240 bytes .../images/scatterplot-wingspan.png | Bin 0 -> 12069 bytes .../images/superimposed.png | Bin 0 -> 52709 bytes .../solution/notebook.ipynb | 399 ++++++++ visualizations/data/birds.csv | 890 +++++++++--------- 11 files changed, 1020 insertions(+), 446 deletions(-) create mode 100644 visualizations/10-visualization-quantities/images/category-counts.png create mode 100644 visualizations/10-visualization-quantities/images/category-length.png create mode 100644 visualizations/10-visualization-quantities/images/full-data-bar.png create mode 100644 visualizations/10-visualization-quantities/images/labeled-wingspan.png create mode 100644 visualizations/10-visualization-quantities/images/max-wingspan-labels.png create mode 100644 visualizations/10-visualization-quantities/images/max-wingspan.png create mode 100644 visualizations/10-visualization-quantities/images/scatterplot-wingspan.png create mode 100644 visualizations/10-visualization-quantities/images/superimposed.png diff --git a/visualizations/10-visualization-quantities/README.md b/visualizations/10-visualization-quantities/README.md index 5e3b07e..e6a7c27 100644 --- a/visualizations/10-visualization-quantities/README.md +++ b/visualizations/10-visualization-quantities/README.md @@ -1,10 +1,185 @@ # Visualizing Quantities -In this lesson, you will use three different libraries to learn how to create interesting visualizations all around the concept of quantity. +In this lesson, you will use three different libraries to learn how to create interesting visualizations all around the concept of quantity. Using a cleaned dataset about the birds of Minnesota, you can learn many interesting facts about local wildlife. ## Pre-Lecture Quiz [Pre-lecture quiz]() +## Observe wingspan with Matplotlib + +An excellent library to create both simple and sophisticated plots and charts of various kinds is [Matplotlib](https://matplotlib.org/stable/index.html). In general terms, the process of plotting data using these libraries includes identifying the parts of your dataframe that you want to target, performing any transforms on that data necessary, assigning its x and y axis values, deciding what kind of plot to show, and then showing the plot. Matplotlib offers a large variety of visualizations, but for this lesson, let's focus on the ones most appropriate for visualizing quantity: line charts, scatterplots, and bar plots. + +If you have a dataset and need to discover how much of a given item is included, one of the first tasks you have at hand will be to inspect its values. + +✅ There are very good 'cheat sheets' available for Matplotlib [here](https://github.com/matplotlib/cheatsheets/blob/master/cheatsheets-1.png) and [here](https://github.com/matplotlib/cheatsheets/blob/master/cheatsheets-2.png). + +## Build a line plot about bird wingspan values + +Open the `notebook.ipynb` file at the root of this lesson folder and add a cell: + +```python +import pandas as pd +import matplotlib.pyplot as plt +birds = pd.read_csv('../../data/birds.csv') +birds.head() +``` +This data is a mix of text and numbers: + + +| | Name | ScientificName | Category | Order | Family | Genus | ConservationStatus | MinLength | MaxLength | MinBodyMass | MaxBodyMass | MinWingspan | MaxWingspan | +| ---: | :--------------------------- | :--------------------- | :-------------------- | :----------- | :------- | :---------- | :----------------- | --------: | --------: | ----------: | ----------: | ----------: | ----------: | +| 0 | Black-bellied whistling-duck | Dendrocygna autumnalis | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 47 | 56 | 652 | 1020 | 76 | 94 | +| 1 | Fulvous whistling-duck | Dendrocygna bicolor | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 45 | 53 | 712 | 1050 | 85 | 93 | +| 2 | Snow goose | Anser caerulescens | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 79 | 2050 | 4050 | 135 | 165 | +| 3 | Ross's goose | Anser rossii | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 57.3 | 64 | 1066 | 1567 | 113 | 116 | +| 4 | Greater white-fronted goose | Anser albifrons | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 81 | 1930 | 3310 | 130 | 165 | + +Let's start by plotting some of the numeric data using a basic line plot. Suppose you wanted a view of the maximum wingspan for these interesting birds. + +```python +wingspan = birds['MaxWingspan'] +wingspan.plot() +``` +![Max Wingspan](images/max-wingspan.png) + +What do you notice immediately? There seems to be at least one outlier - that's quite a wingspan! A 2300 centimeter wingspan equals 23 meters - are there Pterodactyls roaming Minnesota? Let's investigate. + +While you could do a quick sort in Excel to find those outliers, which are probably typos, continue the visualization process by working from within the plot. + +Add labels to the y-axis to show what kind of birds are in question: + +``` +plt.title('Max Wingspan in Centimeters') +plt.ylabel('Wingspan (CM)') +plt.xlabel('Birds') +plt.xticks(rotation=45) +x = birds['Name'] +y = birds['MaxWingspan'] + +plt.plot(x, y) + +plt.show() +``` +![wingspan with labels](images/max-wingspan-labels.png) + +Even with the rotation of the labels set to 45 degrees, there are too many to read. Let's try a different strategy: label only those outliers and set the labels within the chart. You can use a scatter chart to make more room for the labeling: + +```python +plt.title('Max Wingspan in Centimeters') +plt.ylabel('Wingspan (CM)') +plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False) + +for i in range(len(birds)): + x = birds['Name'][i] + y = birds['MaxWingspan'][i] + plt.plot(x, y, 'bo') + if birds['MaxWingspan'][i] > 500: + plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12) + +plt.show() +``` +What's going on here? You used `tick_params` to hide the bottom labels and then created a loop over your birds dataset. Plotting the chart with small round blue dots by using `bo`, you checked for any bird with a maximum wingspan over 500 and displayed their label next to the dot if so. You offset the labels a little on the y axis (`y * (1 - 0.05)`) and used the bird name as a label. + +What did you discover? + +![outliers](images/labeled-wingspan.png) +## Filter your data + +Both the Bald Eagle and the Prairie Falcon, while probably very large birds, appear to be mislabeled, with an extra `0` added to their maximum wingspan. It's unlikely that you'll meet a Bald Eagle with a 25 meter wingspan, but if so, please let us know! Let's create a new dataframe without those two outliers: + +```python +plt.title('Max Wingspan in Centimeters') +plt.ylabel('Wingspan (CM)') +plt.xlabel('Birds') +plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False) +for i in range(len(birds)): + x = birds['Name'][i] + y = birds['MaxWingspan'][i] + if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']: + plt.plot(x, y, 'bo') +plt.show() +``` + +By filtering out outliers, your data is now more cohesive and understandable. + +![scatterplot of wingspans](images/scatterplot-wingspan.png) + +Now that we have a cleaner dataset at least in terms of wingspan, let's discover more about these birds. + +While line and scatter plots can display information about data values and their distributions, we want to think about the values inherent in this dataset. You could create visualizations to answer this following questions about quantity: + +> How many categories of birds are there, and what are their numbers? +> How many birds are extinct, endangered, rare, or common? +> How many are there of the various genus and orders in Linnaeus's terminology? +## Explore bar charts + +Bar charts are very useful when you need to show groupings of data. Let's explore the categories of birds that exist in this dataset to see which is the most common by number. + +In the notebook file, create a basic bar chart + +✅ Note, you can either filter out the two outlier birds we identified in the previous section, edit the typo in their wingspan, or leave them in for these exercises which do not depend on wingspan values. + +If you want to create a bar chart, you can select the data you want to focus on. Bar charts can be created from raw data: + +```python +birds.plot(x='Category', + kind='bar', + stacked=True, + title='Birds of Minnesota') + +``` +![full data as a bar chart](images/full-data-bar.png) + +This bar chart, however, is unreadable because there is too much non-grouped data. You need to select only the data that you want to chart, so let's look at the length of birds based on their category. + +Filter your data to include only the bird's category. + +✅ Notice that you use Pandas to manage the data, and then let Matplotlib do the charting. + +Since there are many categories, you can display this chart vertically and tweak its height to account for all the data: + +```python +category_count = birds.value_counts(birds['Category'].values, sort=True) +plt.rcParams['figure.figsize'] = [6, 12] +category_count.plot.barh() +``` +![category and length](images/category-counts.png) + +This bar chart shows a good view of the amount of birds in each category. In a blink of an eye, you see that the largest number of birds in this region are in the Ducks/Geese/Waterfowl category. Minnesota is the 'land of 10,000 lakes' so this isn't surprising! + +✅ Try some other counts on this dataset. Does anything surprise you? + +## Comparing data + +You can try different comparisons of grouped data by creating new axes. Try a comparison of the MaxLength of a bird, based on its category: + +```python +maxlength = birds['MaxLength'] +plt.barh(y=birds['Category'], width=maxlength) +plt.rcParams['figure.figsize'] = [6, 12] +plt.show() +``` +![comparing data](images/category-length.png) + +Nothing is surprising here: hummingbirds have the least MaxLength compared to Pelicans or Geese. It's good when data makes logical sense! + +You can create more interesting visualizations of bar charts by superimposing data. Let's superimpose Minimum and Maximum Length on a given bird category: + +```python +minLength = birds['MinLength'] +maxLength = birds['MaxLength'] +category = birds['Category'] + +plt.barh(category, maxLength) +plt.barh(category, minLength) + +plt.show() +``` +In this plot you can see the range, per category, of the Minimum Length and Maximum length of a given bird category. You can safely say, that, given this data, the bigger the bird, the larger its length range. Fascinating! + +![superimposed values](images/superimposed.png) + + ## 🚀 Challenge diff --git a/visualizations/10-visualization-quantities/images/category-counts.png b/visualizations/10-visualization-quantities/images/category-counts.png new file mode 100644 index 0000000000000000000000000000000000000000..90f1c95e4eae9fc47fe23d2f0465ad125ece193e GIT binary patch literal 51515 zcmaI8c{r5q|2{qo#x7CHzRYARRF>?ba1+X2vgNVGAp36SX(!uQvsbqySwchBX;maO zDa&A{Yz+;vjAbm}ThH@;zkkQ)k6*{(z%aM_y06!AzRvT!x_#E#jE`HC8wP{%0p_P{ zVK4+7`l#aMfL`(QbfZI`*usnfdrs(IJm+7xpzpat%+H6xU_5(wKj7ri#7*eM6XBKQ(lFrEN&D!cU!yT?UmesM4YTj$spy?;=YUsvy<@((1k(7ro>cnM ziMXVjE3VXpkK?~x;}Ql|+y5%uW6UYjs9#k*!+j0<((~&rQzK59YoAO{%Sl5o_&vBU z_~$pyeddH--ZT8@t5XEKv0vK9V%^rb)w!w`QRtT+-x1Ra%4Mib_B;^Wb0KGLwAIet zz4LLEpfP84GU%jyB%K0>-fS%Pbt)Et<~qQ&Il^>bte3+DQ^sn$4Qi1Tco^S zAu+e7?Xjb`W@wuUo=z+ccxzDg<<3%WI8R6gBd(x%>jo*4nDk|kXg3y}H#e6lH(^MdJnnEN5Vwh_$iD)#oGDWiKkh7Ej!{V}#YrKiky@1PLU0_Tf5iVj7=Uruibq!;qH_aw7^}?iXt!+_z`dt-2kjq{ zm_Pta?G=OM0UIFp9GNSIm4N2U3pZ55s8%@}0#`9#Eej6OH;pA!v(#P5e*t;sGpKmJ z=3{xEU2O#b0YFsV{~CB?sl&xwRN0^VZ1tG=hNDUn0W9RM;xHFILiYx4PGEH{VlR@{ z+WPP@loWh*Xt7F7j#GUPq6(AV2#KBHV|#D?%p`*ORk5K3SjSz;$!k)4PR#6{#qEK3vcwSU|QN&tM79qVgi`yG=w z2K7rRQn*%p4Cw`tnzek;Lpa1Rgn!{QrTww^G@6FSMM~ry91(>gO8eQ6DUKn4=3}24 zEK&8B@(?LA;1lzZpgrSA9z-^eGL31agc7uCqZy(iLnSc_-v`VfewnVQ%*O>LamMG1 z?QMlgA-n>2^n<^g-Ac<`#*(RFUS;wjs&$;r23ksUs)moim9X}?Zts_bo!bVafu&ih z-E%FEV2?+PD40bj&-7m&^&S{Br}HNH>r6SHdFWzGpF2&OC^B~hM#zoHXjJhrJ^KH8n~zSB_Q@a}%=5FmFr;8O)Xsq)$v9mQo3ywjsUxkK+HjMj+z1|3>j;;g+00^+@LC6>X|W~q`GE*B~ z9_sbo*5ev@o8-+`BnMKs6P7$)J-~~EY40H3PQr7Ks;OPuIbkBEp!drg8W zk|Z!5IFO^7UV?+N;$CXAEx;4-Tv^cEaH3M`lHv-b+5)}+PoF9L2 zAk5&8qb2SMx9cgQFxU4OI|KLS%T_M%G^2h}-`&AgQN}c=$C`23dTXv8L`I2rTC^;V zk%DGe&HSkC8{NYABB>4f7XIXNfu+S_92Tzyq|48#_#ak`T$838$4Ibm7GY$7fLznc zsV?@;%dFHQkLEkK`1ob6F*Cs*Izk?n1Z z)~QRpC${5HsinA`x_l-aMU=H_-!%UyuqL>$ZhYRPr&~gneyYs197&N3Z2cJN+R7|0 zIQtdaAuGXD+_wNh#m~V`z_ezat71o#jPj=?FV-cRE~w383Mg5bUA%)*kuV{tQ`#5% zn8cLKH!0&8*wQnX(SgR?yu*Gmvj?D^j`x|&j7c$q* z>VD?*n+)~YNd$k6-L)EFT%bh}EUvuzf{PLxnmz*{&Gq+u!F6W%h(58eNJmTX^Ah@R zFDFGhjMa{K$LvMJ)8SbK(a_`D<9PNpN7G5dFg##z`z(1s_*{Tkzx7$E=E4J6%@f!5 z6x3b_3|VGtv|<2Fh;Pyf$eo}7KN!>wA5}xacalg&<@yWeW`#?J9QG$sWoez}O)w5h z38l!(q5$4MRPyx~_f0771)&bS51272aBOa3tP^yQ0R+kUR(8KoIcaL*quYOWa`?6x zn~8=i{ycFSIT5^Y6DgJzgwcab(+>c4p)*uWc`>FpGyFLS2y^VQxL`(hM;9yjy8;3e zjigF#dxdLzURvx;#hvYaMLMJ%v~~fA8{ZU`pH}JQ1^duR|rsUuTkMi@A7n)awEpTyfutzEf;3 zT=4o!E!Rn|-V`d&h<*O|5bnC*5^7l~BRO5sLI<#I2RE*ViNz6)LQlvJLLv6varYSC ziK;MbcK(33b5g@@&cs0BI(L793`G^z4y58sC%Nt@eU-a()r9jN`)d;EY$jNZJ56-| zkP-{8B}{QR3*@uwS#h(?@P6P(ld%%F?_FP?9w0?6F|I`gQf28>(D?_)=}R7*GX2)- z2xAQiT)^UoL@A_dW)Pn^Qcr>2tEWN}r*YYik&wiBEI4u;Cx&sgu;6SvLzX39Gp}g; z^n7t3YSng5HV7Pw^T4TPYq<$CZ6;jOvOU)nu7cDAg^k)}Mb zR>QMZyT>jOs=qcj4jfqH%9JW>MXePxyq4-!VN~ajvVGv)-yQ7j=3zXWG1}>)3P9C# zAl~QpKV|GE*V@FO*xEa0umw*bl-;5L62q6ZTn36Py^DpRUGuJnKLj=aw@96yx2!pN z|M;|@35QiF8mpRTGSn}S9SPsqR1j$d^>gHN1Re7h#V({xZn*RJHN!q{0}Q<(=DY|H z1;ifO`BjqVu0UTUn8G{r8mqyIr7MRlXFijqLZSP{+?S_idAWGRBWL5_y6`3ZG{)77 zr9so9%ufKZl39&c87B!HHp#2Sm`a`y{kjT<6B?V}6VLzCm*oYpV4Zad&istZh6E*} z5+Rx^g)+S=HnBCpUQ(an7L;Gaxyjos+Dv9<5j5E)5ybbbWj1D=z71J}^pzOgo0?u= zr7jHBi7THu*RBzk13Uz1a<?kfiHMfSS{SlLg)5!(=Usbch)M(L0TTy7*4Rj z&aAvBL}FeiUd;J{MFbO`rqcdYU$=9Uv)Qmy67|bvu)~+1gYBn6rAcB!DI;cm_Ke3aTt2k9;dDYnFOCk^cD+bF^ z#1}ur9X!@Vb_Z1D1n6Z-DKQynm#HniU*8B5WeDtPPATuxHUFUDytGLbx!xy&OmY-^JKbut7^g=G%=MYRyokn>|5d5qhWV!*I?v^KS4 zPA0u_;?x9^p`3_|*k2+o9B9$&l2tTdm#+2hZZd)5G3Wx*(3ARHEIJ?=>mj@mMt!1XCNZR z)$YNKPJ-9EIeavV)uM&_9mhSs_uL=}= z9_95IOjQ26x!3 z0tFCb=+k@x??$%_5zMEfVvkTA?g|ft-_ya8f__zA;OKb+A7W<$J?V0$)Py|d|$D58G-2;jq)KdwNvDML^*Y+ zi#Y!6#}*%(DvMdvm#LJmOK=-2di34ha^pTD4_(a@-mqmn##EsF*lZm%`E)iRjUx!2 zrhFuOnVl9v8L+&N5+3*9vYhmvavphKaDg6i#Qz3~4myAL2U%;XQ~9)M^M*Z+$)btJ z(|HbXj+Cf=%y`S0EeaQ#aN%9TUv6hV?F(xHHe^DAJ!6t+D8hbN819h%B?v@#zIh|} zcd6}vTQ%tc$&qMy;f;ff%%2SFbz%st?b@ z$ErJaaVI(yVVqTM-XF}bx#4hRR%rLyr)-S;t`IIWlQbt&qv(krk^cspy3I1%wSBVm zS#3h}-=Nu&*UfUy?^H|C)7&VfxiF)&J#&ZYx5P#C0P-z|(7pc--%lRN<3|JM*+$@- zHlD6Fw!apBm~mnx5JkxNBQ{3i1`7@pT?F+}IPPBv*MxkTyrHLNZ|h{+xS)JJVs)s* zDY{e3zwU=qU}s()v>EK%@B@x?*ndmO%j6c0HHVS|KRcau{%+ROTnh$Iy*y&c6IgnN zTV|N;fV}^M-0C1GAqhXZIF%m@Etn=I#LH1SxHn-34$(O&U(i_3xc{Ll?*9VnYg2xz z^p%$^WgHLQ(4v4(k3aC+SvavYEBxZv^eoAn5SxKWl|&wTX5I_s`{CWjUA1=?l0j|r z($)XlHlf58lcDR;oIPafZmAPG1=I$aBR;trY|T_=F(C+6Q>Wkl)}clLYQCKJpm_Pj zVLpQt=UgW0yW9Gbk8hdaU2uoA5R1ZZQiiszkIe4Qq?5NPaIA@wM=oO>rd>H7;^9RO ze`NzRZ&8t7vdUV{B7Y?Kn75oFN7HUydO^5h`M9Tc+I%A>4VL(Lk4)R?M8nhMJ_{j1 zU`7cV=x=N5G*d0s4)0PB5Tq27@nGwJ=OL*g@XwC&AU@lX1lbI8r3ogLM6TgORFXjjg_VAht> ziq!w`cmf$LB+I^Y(k%8z0}HQ>MGuBuiesyj zSG*E(3k=qz{{=0t{}eB8AQFvbKU}|c$*n&{_&cRId(x2Sr+Le#&cgXgs0-De+gBp1 zp>qRaCNi_~Z$k6@GQo$8`IzG?5i6adznZ5jw0Vf=S^}%a1 zeO9Y-j^kYxy^;kGW=;5-LxR!l92LGer!N_D=iB5#MJ2%mN_AKcg-dPDolTy58qNRRv}HB z%l-15T5TQP_RF#VC4~NO!Qr~Z!jj)5EH*5K1?~i2DI6(Rp`=`n3H&n*=6WaYO+N_5 z(Cv3ze(dOkbL4Oc)_=j(5SV%DrsQbA1XEquGA@(E44Zsaf8-K!UXs>#W(X{)hm!X>i)Pr%-##Xbws+^p@A+(s9-?c;zJR3y4N z2HnWV*Q2v6S-WEZ1g-t_i5xYJqe9NGA`@;Vo$n0C$9H|h?tJ1talYgUBg0-6wPckl z_>-qCCvN~web$}|GH@oi4(;x!2$~;IS{dGEJUaG1lhnyx^R9;jo;UURkr_fOySOJ0 zyMtPAr6n!>j+8llP!;p%k$Asm;J%Fq6D|ARu3%1Yq*+IyoQ0zI4&D%6W%;>{@khIo zIgETMNr<{F8KW_uJB-fh&{Y}NTeC|o5$1Q{VO8R_6UIcUJcD=a=WWce%g+ZY}_h+!-rluJ6wL(19y1VH2pP60GP6z z3yoekkxu3XXA1ZhEMuC+aXTM-O4(ZM6{5Hogvg9*??J^|hAxcg>#n-f3>)~it}08i zE>7~7Rx#!acb={zSsf4xyW4cQ%WN+cW!li6ah4&tp@ z`@9e@xu0&WJGes8!Pz4Z#rshRpC($xiic>>5^1PXu=&To!yyF@cNRC(<8AJW6d+5t z^OO3V>P8|p9=Yv4u07D;SFg2jk5LEwOt#M^pKhvpzl4c2Fu`M1VbwxzXXE*~bERdTVY65EwVEfXcNg1IxtL1*Quec=2 zoWt4>hqRV-i{*?!V}t&)+&{p|^LMzBLJV)SGg%8uEkZ53^7FzCP;G&68K4#LxkD9M zXffjz#~X6k(ng65bm3li+Yu!0E}I=v=*f|QmA-cGkzN+ztWRdjrq8^atWwgHWoq6 zIAti2Z!Pw^gGj?)$sQiRtN%{N?wDN5DH}4H#GFSBvwx;UV9*mI#UV(MfrrN#QxSC}1CI0uWX4 zzsn^L3+$_FcMY3yyLab{d6UFgcUNJ9>?Fib`IY?Sdepv7x<^R#k8|Y7HcVcAH>yw2 zludm(Z|6+Csh%4A0A0P<*~#!(LHwI6%WVB)U0_I2L${Op4572qFe@ptucyNNg8O?4 zq2q2I^{_v+{*q~yD13sNglL&a&_YfPZC8NLFr(Q$CDQ&zDq&?H3$1S*D_iE=8G#R=BNa;X#6q7UKaQR9h^o zHVbJL{k8b_1eGH$i5em04Ed!8kpgf^M#tzpf15?@a*dQfTcQ*#yZ+c)I0d+n)z7)6 zTo$iamV$CJO$2a$C z3qRtre%IxKiZ&&?5~)EyI-otdU<8ptIPs>q;~}v_j}vh2lV*%Lq|Vf-_DoXA`m~Nm z959L-A{r{}_lPr~A8j2Y1(BRRcq>nS%Ihz~sn2ZZw)KU99Hy0m3%3|iO7;nTFAcKr z@AnahM5Es@Q`VopbP?S$B79kr``ZRy2-7cUcK_2Nd2X8;^*rZZ)2s{f9J)*jx<1hs zM4X1nnNzn}nTyN5h?`lWsGK{pu5|+q`i0@1M>G(oPD2$xchSF!RKxO4|1eBjFhr^> zogsneDvz-GL!*5<2Jvz{?_H@$(i&_*A5x?^tdT0njQ$?xDN5}m>qo$F;(2lwcstU% z+IG{=wt%{@nRu+yiPm7`5AK-Tn)i*bYmy#+@FtN+to`qi>eHG5V58 z#d&eh`oK_AVY7UJxp`5tE0;g?HXVu#DC6f#-sOWI760V&JD-Pqb27LB8Da6|w>8RI z<%yVO>_vVudz;w4OVJIV!7DH?SYXnb*bg;h%=>M<&q$XE4>RT{0w0?8iiS#jl97kG zof>-b_qwwbLLM%lV6|`4(R0O>bc66PQ&g>dDQ1teeqP+s%4u1MAyax7?xJ;VGOKl? zkC;H~KH=u-T0A>D>-6@XG3R$X6Y>d4&qN0_3P3gWlj)m$T%B>CfbaXk-HEo^ypYb7 zu^a=eT0rs<742GF`pnFB$ChSweJhu%Av632Sj9b`q)h+(lJy16ciCr4>BdwxYC$+R zDpOq(1z)L(_?ZS?#jFJWRrt8nWf#zNXnq!w21sf&9SRD#Y-X{-(q6basSqmcKauc0 z%}5tu1gfI-A4dfrpLsa>=v5wGk=U8lb3RR0G+ZsjP_6wNd!G3PeSyn?_5ai-e`S4m z98zkygG<`|Q6JO<`a7EMfvITyqH%0+*&=(aY@K)75QFVQPY4Rubw|9@TZa;D$W**)E;bIn0768$gi-9r z()t9$Ty^;1_3T>1{n3IymHiLVD^mv04BmL2wY`-`k2;dw@k8M2wsEW>yJg4wX=pf& z&D=H^SME=^4=&+#C>8rx<-PavB5MeZ7gPeA02UGjckk|-4bE?p@?mXUeA@?!njNO( z1kx69{=@8Bgb1a>MNubO!*<-eVspI%NHhFMaYKs#755N)VBW4GKjBq#UbMVG%5(EE zLknH)zI}eTgKA^T1wV<$A#NfD6OG8flqfle7SG>YZre^FJqH^*Z7)+LNu%XI-GNu; zmAF-SZLTQHdt)+TYARtazIKf1!~vu*AA;6h)(wB1v*Fg^?sf?$i6H#SXCZp5t~Db)*+%9}?H$ zDs$~p>0Lho%>n9V)#`|cS(lMi3Mk^LoEI*Di-xE66#9?=`8pGCK z?@|zNL+T*HMlcXkkTuATZ`t%X8V3l9v6M{m=8f!*gCg1Y!`{386th}%8%~3 zPJz$DcQP6|ECnLt4QpRP)BWr&yItd8kbD2b5=c*FO)v%^7*x)e^W$dMutDkaI@Z>| zl>kX)m)^cX*>6Hx@+Up)eZdUXPd8y^=CPT=zATwaR>z19PCw^8D%Lbj?!6zMkT zBA;_H7o}|7J86A+Zv6&Cj~NJxZ7OD?*wRpGbz46k*Vr8SLxZW8%4#-a&vLKDa7F+6 z@(l)6l(Q~aZx4?`&o~|b8!vX5j+38-78K?DJ^9xZuW#75igb2QkjlJU%Aq)TauNC& z{dixbDhzOEPvrXbHCrNVxHM4p@{5h?jQ;{2o2E1{+!!5^vFto2kuOUxYm2|j=>>#^ zjx3-dC4D2X{3S-hPIO3>PH6kZ2{=s*_?pLRcaB{oKdRrN0HTD|Qd##Sqzrh94)UuQ1+ z=@o^snId+wv}RFlM=D(sT@AF1RBiWuk9_{&&wb`7>|S?jXwEw>z}DkaZ+TE6O=Mkr z#|$3?I(s^6zFdyep_Y7#>@ z#f+9nhOS2FPw2u{`t&`z@PM3wuZ# z<2oUTeLK5iuG*J=i{{g?B>+rk{J71o=fN6li$&8NNw?yE4LlaF6$`PmKEbw@q-+ZT zZ_Zw!r!Vd~{Lv`iOQ_nXq`bL4%g0&jehve>x=+t-JRa+E z^wQdK(04-@Au?Da&nF#tlrTJ5!C!Fr-$7ko8s@<|LPOK+FNW$1Wu{mnvSo0m?D%yG=tIoq3U@i#zAbSf$>BfJHq6AoFnc`=%jEIyy2v;9nkhsmVN2uC$%s9ml>A?9 z99w?ty9O>DPenS}4@DkRlx;q~U`GkI7~UJrv9@pFP1|-5B?ZmL7L?cMIJRR(;_>z- zB7-vfZ}-Qky^H+Hu?vHSA&p+lr_~iXdn3zdRrzipt8kxYLLU>qkC{}YJ{q#VICp)3 z$J}do4NnliZ|yQQkO2u|Q?nU7RfnZMlH1vLadW2QS0QP7oA?!7?XJ;8Mb*;G>4!V7 zGr}K&%&Hd2$z&NL4Taf}$&uh@(A%eh8&VQNpB0qAfCL;8Kc?;c@Hl;aDOYD~MtSYg z@Lkdo(uj|E!_d)|s=?BY z+plmBFWPPKCw2`7Moni7E<(d}Nmh73#{oJ2&bC0k5WjK(C$bT+I(5t~JN%^QXwpPq z$bFD%aao>zY4HpDy7Oqx{j0$o4-tj-y3@wb8EC#tb&Z|TkC$f*cU6;p0|laRfh?87 zs^%?@WH;|w-${kxSzN-o{$e(6i_v*m5HZgR~`>6AO#i3{u+@&Ta z5!BoL$j?H9;)AZ_VbThyR#J@bbJz%JaK*n`d@g=ZJ&UHfexh~y{f+&It|5b)dhkrf z_~N!cE&v;B$<228XAwL$a}h~wXx9(1E4Ki26tx=vh#L5rT^y9=7^X{NiUYb?DkLQC z9^vCteRS}#!#k2)gy2?pc!x}7zk;*aV0JiuI|n46#`e6tS3=yfxc8(O6Tvox9Ea55 zL=ruwP%fvQ;UvG}xQy1fb8i%Tmh##4L1s%Qf7$Y8Qj`b(LNY^SY0>4K_U1mlODsm) zs2X`ZPAW@Opl_n3*5vXn`^CqMih}5mus^k(BO2HL$;I@~P}Sq7kqX1bcgCMkyGRzM zMSGaL=^O62y(28`4asLrr%al+>{%13ldII4c=dATO(u~jVjjzWfb-5F*D_Sb-&aZ; zEV^~Y2H!9P0TXk+)X-;lKI>QETl!SnR1*2E9F8E?qKG^0LQK^XGq340+aDs?IxJ>Z zPV7B#FUA4#9zdQpD>);wBk4X_>w>M*VpZxd<{tkiB!6x0D0zwy&YCo8|tbd z2Z(G4;S|AB?N^?+rGY%uR)PV~uRem=)EMd;(&rrI!01%J1WmiF6+9BS!}lom90xO} zQASPR#EH_Si!?XDX*f~2*1eBeMM6Ma&!^JR)RM3ctHn%4D_Y-1)O_e)hQr^=3!ww+ zROTy?i_mZ%d}m;Yi72(nRX@^+YTkds4N?mOa<@5Lg3y(PNp~1YnH@3dY<2ov`9>|D z#yIXM{n9!ReU>al^d-a!1@%QpWu?2+2tUxpiu%JE%nx>9XrO%mx{i z8LKx}?;0GZ14)ywp3kLE^gReq%d)(R?n$F$hs~MJe7$Ra8Kz#|1XU2@)OTqvPh|8Z zVEsb|5e@_8GLWmNrnc7o>sKg)98Z&*^=>67R#)zF%~1L6zxvrLB^$As38wOw0+kX zNiwtN$2|6P(1bw+uHR7|@zUIO?&OTPh!PuC1FEv>`5xM*pn^Q8TllLu)uA!LX7yT8 zpSZlXU*~C*>!U3MTTTHsm5)7X?2_GGBZB$P-<|)Fex%<*UXQ`VB@PGyFQE(5Y_MC{qBj@%JW< zKJG#~Epmo*fG*g+oJP+%K4*b7vu&Rw@dZ;8RL(NHE$`wA;hSvl59eosd;Vk9;e-vA zs8k9Iw29Wi)+8OKeCxJ6O5WGGkSx8@B!P#svdm_Q^7kU4dAi;JI!}beAq?vxX-^=2staIfx|Tz6GtrIgO$Miuck#ce_1 zcC)#t!RpZK8&2_3yEm|Q>Y}~DNhXIuV}cNlah-IY#6=hu(aLVj1aD%jvci${vFPWw zNx6h??}6y0#d@+_L;}DE2~mb!Q`R~5Gul5@=rMp6(hhIcJrm-Vwv@1U@G+SS(2>p4 zh6Luez%no{?C?SgK}8`jDIL7B-e#?IxKxfF3S{972tE_I(%&ROLM#w#L7ouDwBf-% zbJ4t2>Nx@iTR`18(j}m3*9jFzWwQ}}=V2oFSKFJwPI>w~Nu-C^4vQu;Pp_Y6c@tIx zlMeeMpz(%ZZI@>$l_@O|Ct_$q=mBl1G{8gNYPoTYQ`T;^LR3rmYHdeF5mpT_>Bj z!1XsVJF}GS0Jm*j^0b}K&gc@$eS*4$%S`PLe)`{nS#BjiIjWl5`6h_Ft+B{E_bvOf zj0UU(!>1EC6O9wdU22968XQ~`r2lPTO*Soem@J&ar?X%Qf%BYaVBbE@8h&UpD{yIo zOv&3KxHw>3mMN`;5PbwW?jW_R37N}05b_kF7do^BqFcoe5L#Ig*w}DMsys(>bX znm;!G=;r8OzgTuVBK|1a%Z6(Mp)r zHL;y0$5Bii9aN1z3at%4J`o9RK{-VB`Vjh2C-(fr#wB(%*W7g~1!4n3RB#Lnk=8j7 ze!b~gJk~HXHgig1ZE5kB_`j`9=u`av1`R8q0y1s-48$RFw>U~%&v1XZt3W>tP%L6~ zI!lXC?~j}&M-XPh=3m)x_xPG`+y;LW9!>~uSy>%_;#>o6p|_saStS9h(*s=-<7aZh z0nfs%P>Dl8>|s?GXlz*@Ib^P5PA(vwCY@W4PbV}wCF&myZgLCTk%szMu8lgPVBXV1 zsJwX$axbv|cL?BM8ln#Px8^aF@mcsPY+i>*+*fbX0qkG)wTXv!tHY}Yd+a42WO50n~&{mqZRjaIjvlOSb+ z!CNatYVcf4X3$CT+|J*t_3f1m-yW^{grf@*y_05wV3mAqC)%~+m4K&L9AEg{sw)( z|Io{6+`v0K0j>L=cW>iayP5!pxVZ)5HPaAXjMO{1k-LLq#CiTcob(D^ZEB%9BC@6! zvQJH0HR<}Y{Trdf&#e|LJp=$G?lfrsrc?d<<}OAyLUY`3#QbsetjivSz_c-^B~(SA zB-=fhRCWh#+0wSK9SDegtJ`eFNL-BGX#=J9jX@;VC!g#AS8~77>*wgh_N8e}*`Nh()SbqI4A%TK^opl>V>nxmhR z!nk_`^3=gV>MNk~M$=S2HNyUuX|BDze{^EPJrJ^sv2VKB>H>L_eb{<%r<)Ryqb{4L z0w6aehp0ic3>_;j0?x}_RAzObXKHQP<5FkTXm2C{eG|bYJwvzq&2jx=9+2G@R(unKy*seN5m~pD2F_itw}DR$kC`eWqT{cJ z#R(rc?C(mE%J9M$F5VmLup?KJhKRFpF!{^g>_1jqRYTLY8ip&n`ZPC3?12-)(eIdj zm}kggE&E+YXBgT*cId27`0)@OOW&b+>pn+5Mb9EibcWmkdy^3ctO|m`1mALq@-J;U6(6Og4_mghQ4E7r&1fVh&Q5pr-$+rZ5vco;dBK^n|8Ub`|u+r@);r{nGsCGX33h*gs5 zEB|CgR)Ya3pg`WgS3GPp)Xf0h#h-LD+ibxO@^y(Iw?b=4=Ly7|@VFgef z(cC2`-@PKO6WpZV@CjhpC04p;S(%}HkuqDVsYm7lSsXwdY<2qG_igaqcO)D#U_i&{ zzKK5=sjE6BtUm$LvehzA*qWksX_mlt^cnUZ5Q(Pt_mjcPm_95mOK9q#je%Y+c5(AIg8yqfo51W(WmdKvjbQ`<8%cx& zY(L!I8ETzZYkge5HBO~`;yaBOIVzhedjy@y#-_M888>)#51acNgz3p-!|2ne*-oE4 zXB2ymQzBbduo597vxig0+n7tC454&?FQ*22bv}JXy#Bbh@6?Bh51@YOY=QFhlZMsd z*$*L42i)QqaYt04b3Ef1tDNu>^qXzDOL0mO%-f5VSK2Pi|7F%4wiEnx>zEqcS+!;& zIHOOOj6 z_LnM}@Op+wJ-(in^3k8Yx=Om5;Y=`;uIM3W#8@;OdyHx;YuJej1FusDxKAn_E zEjxb|pGZW#W>&rKtb!lM+N2w>o$FAl!z{>otgN}&06M6APuBF)Q77DXw(yGxye_8N zY2CG-Qo#ptp2wd>_GdkPp;+F3JQQ6vJ!(RS_3OY_9mmqy*)~s+g}WW14ZDx8xgZB9 ziM>oqb%RPIZ&tW_k$qIz9Ub*Wwz@R%3x>hnc3@KK-jjW28>+$E=OXVjZWgT7bUtDPG_L_qtc{$Fnbf06;{ez0-*#()!xDu`0(3jNgP+bpkZ#2y$ zoBw5Ew(>6-A_}>~mK#6}1$yAV@VMbI;S-$?wy-;S$6C~qkLkG=K5{M=fO%V!P=NwZ z6Rfj({iSq1dvac9d?$S-T_9aM5Md52%W^T&sIL`u;_tobx;$$(ya~YwaU(jLo-d^S zdy3l&KYPxtjSh3|!~h9+eSDRe#-STq)VhRJ(4SO(^rnZjS|ty4 z7Bf{c!C99Fra+?qEbNOy)83gmIjAeI!dHReRPw>KC^J;=AT8VWa`7*=FLkmb_x%W*z6d#v$9crnafJv_TS^X6!-X5erhQyz)Q*VP!hurZjMfr{IME9zXs*f7_z7xJxjO=|bkw0>MydvAS zz~-P>+n%g`t=uJ7JmE`H83PqZJ7I=Qs!y1V?>~xYei8ZV+%3mQEUnr1+>_b zOEFd%;Sa!7)t`}2FwY#+-kSltCC^s#U?g%-zMJFRF&@d3Rm-8ououscd0n-$sLTmP zOMm5kfad7P;qr((_Q{N#A8q^H69#mqWd40qwl`g&REFLqh}5$ti=OLf0Rv=*quaph z2b-@1Wgut%DL|QEYf(AymppWpvL}LP`+P|EhyhI;9f5J2nBlbyi+6n#{1qbVT#3&K z>Fy-1qDygM7Q&%N%6@Xv$~b}H{n5|HUSK2+1nkvQo6VuGXadlR_+oUWHO3PuHjZOb zvi|AO?fdHtFcZ^!v>OVguwUZ$p4Hj>#|uy!h0v_|i{pv#3sWzAmYnkU3ly6H-Dbwp ztuoMi;G$uvzm;P7{`b~Kk7I5TG@bi;o{12M6-E6`^;^l{xevgRqVrth1#gOWI>tBx z{aMcvAU zEe-AK1!Hgde?CvXCP7oINQhFM_5#8?hWaYdkZ2_K4Gr9cPY)%QXEBIu9SCuY^Y^2r zy(_6AI9J6US*k~zQ6I6n;|%W^#qw{^(u4|b_cJ`Gxu%SdW(hapc?gL}1a4FzYlokG z+duBhi8+q!_i?-7ClsSwrkyGq0a+t$KZFElHEL!1(yPw35;iPj?a7=#I?!^4Y)yE( zdsKh_Q>v~UA;9_m+M+;NX!T4Q&lRN2LqVBROlKrBn0cHSeO;rV%L zx1i^2UxyJKAB0CfM2f(ux#7V@%>%XKUJ0}_l)|$?Lh*;XYoE2pyyh@8eqIg3Xs+d5 zd2(5a)V?#jh;ZnPMi0{v->MMC;W74TR36(jRAL28x9XSl z1|v6|W?I=uObOCsf@5-@>2QtrtSVoTY9-&=k;!ZBVV#VM@e^4}5l;H>Cvx;~pcSEN zx^AZM!eFrE6#Y~YTbs}URsRRwQI*AY^7d&*rA-xvaa%a6`|(wN@}$X}$UCSGG~L<5 zj-vY2Uzym~px@8@WT5=yV(@Ojk7g9(ru5i&=|2oqo8oq2Cs%%Tvxd~Qv>sfbe$T#r z`>I09+Tky>6JLLhH4SbD|I$s~J7VYZsX|k#j5x|m85rK?@HTj1rmOvylSXU)VVI_U zW>BwwJ}a|T3Ti|7m+Kw%sJMeme)a(@DR(1m*ehK?NzR@$)jey%^~|C{u157yfMBkaxN zp$@+`;90C?35Bf1O!g4jmloTM>}AaoNwR0(M=8mcF{o@|gzVdpbt+O?)W|xPi6m+) zl_6tzZ}s~<&-1?jynpfeV0^##eeQFvbDis)TdX>cEzl@cwi6Qblrn@V7i`-8%pXkh#}Eau?LJ!N+73S@fY2kf5)ak!pnu^P-w-2U)<1*=B-Cvo_I_E9?T$f7Dr-QZ7> zJh$Jl@|q(yHo;x0e8!{|yxyPb5)$7d4ytEz(o zb?S8jE2)*(mk=^cvb5F_@sn_>tDH^m)FMX5^zef*M-rU)lo&=R!i5-m(j_rBeKWE@ z<^KFOuY(X}6Jh({RW{tQP6shXwN8ZHzH{<_p;VbX`*zl=qnncRz1>DX=x5!$(6G;g zCB7W>HGq{%N{D|s!RBPOJ94J$)huU%lq}D{usPA5aygqh-PXHV%l#z_2BHpuaUMPB-OmoiWjcInTc}r6v$`WgdSJCB^CSod!=5B!z zzumYV&!(*B?@K>o66N=T_3cj4`iQ4VCwg}hsSd<=M9rDQCHfc=d&GN?ki59B%~-jJ zo}Hm%ieRk9e>A|iT)6b-!)rs;-nhQITjaRAjY~%@a|8)fEX}Bi{1ew!uNr52`Uaw9 zTFld#*v43}{#p!&hf2 zJsxN28%UaYWWaCnsQQv+3Mc4j{nVzb%-2>aJfjJoR~>xzQV@1)qL9a8e?Gg8KOOh~ zG1~RpaD-Wj{OisW^CM@`GG)y23ru)10XxQ2`%epCWxh0_@ASi2pZTkpn2nQx;GMYysyuc`RYTyq-}wK*!v|P z!-QmCjU?B>$Ks}GO>5)oa>_4+VJ2F(Bqa7FEZ5-jDkoJgI|PHzLntVM?tXRSkk$KW z=jc8@7{LC^Wh;5s=;R+v_*q*w1rW)!Oi4*{MY;jepbHGma{Arh7-3g;2E}S)B%pUF zgT0V7W{7sLVxfBMx1gH<`6k9fwc`6J6t_u~+lbuIcfUPcBn*JAgxHMm83#T$!N6>M z>Fk`(+zdOhT&^Q6H7i=z6|!Tr2zi?t3e{uURvS48vsc>@-Jg2zciuq5MC*zUTI$CC z3&g;V@Uj>~OC`>IOIfp0*w+@zvHC{z{3r_t%QRdEbvP*MXvtl&cz7G08`c5mLvS`Q zR{s3?ha(CwiFi(+pBK+4c}8@V_BjyJZ!kc;nTZWcKEzdoYtE(47+w8viku~>wW&wZ zLv=uXpq&2~!r*S*JdXVxXt3$eA)>8+Xreps`pPc%TJy6wq8-BQaUx6X2{m1rW1{9| z)v-#Eap_<=DhI%ON-B-ICX^oZ%H3si9WK|-D8(;5Xt*wuZlL~eAiT-8sDw=5%jSJ7o z-w>)d#&2-K0~I(ixg zq%f>nh6g7s4E`j`TnNc@<~8@`J!(Lo7pviIBH>giqy#v8g`8IS!w=F{gS0ziU!o{p z1Vx{cb|^NT)wVc9%s=_(d+e{hd@&4nVP^~K)9Yn1QFyRU3c^6vz^dIl)Sd*g&l^l- zmVx;yoR1UXUHSw1y!w1|v99QHH$zGkxei)~+S0{Y?H7__f^DlkPrf!o2g94Jv`j1p zfAy8Y6X4LT>gFgZ*P~!tn?R=UDKre{NN$7!=4L zY$$CLUW6pLvCZ@A$4nesocU;QTh`mX7k=r>t#`YO*Ty!w+KGs*bCp~i9{sAzrtyqM z*>o7B)oE8O)FcuI292@@XVAjUu@b8n+#=n4sf5$n)L*{bExOHv`{crZRe=Y&rf3X% z_~CSk%RA+@;A5+t17JAGtbyLm6P2r9$HM;Ng2(w|Mado^Ir*(8Rxe&&{j6HbWV0Ffg z4u84f51*K&J-;2h^FGzP;EHID2L{v_eOWLH*_{kBZ6Eg=p;)tvgjOCofILep}8 z-;%Bq=8<3I!wR{WRh_;Z&?MnjK3^Hf^F>9ud%+dSsQRh>LvhgvRn*!vRDr9E_)VEZrZy_eAD{lJ4#nVnB25`sLV z+wf+HDe)E1SEWywVT+K5`F8J*nWCjY2(HbsR%KfO*UUo#6!wM3qr7^*pF}v9-}!z4 z8Kti0DplL9Zg=y(%OS6d-nAW`&7y&wvxuofc5AIBjw%DfeZST2N=|2MW+5drb znKO-~&5%)8LWbH!#YJ|M6na82uGJ4alE%mw&KLZ=j$kNHthssSwFmWrC6AhRA7`)7 z*eA$$>0~+NMS`o**n7)IIp(dxfx#Eo>#ow1xt3z|+(QQ+8%z_zg#zsi*8Pnlb+{tr z0w_XmyAhqW{^t}uzg&V3l-_ZDgkLGfDgcsYPIWT=a{f#^!& zwQ}0OJAUiuxmcBJncaLCi_t$ZtOLn;f)4kOFN)%td%h=FkmEE6eg}s-L_I}sI1rn# z%XfZqVxUAn+0Tiw(o#d|?okWLk~z&BtA*xT+69LL=qpw;MKa&zPQBhIXgg);Y4s?M zP?s|E#>Z+}Iz1w!gQ23P0TzeIJIr1m`*dI_v;(e=-V#zu$2RQB#B zYdR|-lscl?sTw}Zw8dCq&&)^ZY@o6!&2tZ_B6H*7lS!QvN=Qtpz zj@KN0ggymAXPMy;Z@jh}iqC@UqOrqTK#{aCQ#DkFaD+UPn#yUuM^0p7kb_DC9uWca zTjWBH-+Tfn0vAOJ%awXA4#A24vKb(f+5HBtZ9O7zpQT#HJD5D@p?8WJ zMs&qUCiqA;ZXQJoQS@+C42E=aimGhD0iW#^qqM>Qa-H&*e6^S7iewkbIKz}e7#BPa zevY{iVM}Xb+{Sk$3?UUP79l^*SFTv0=vKB$+ZvvSKkrA1vTvtoR;j4T>Z3?oIP+Ij zuuNbzyWEm9IL%XX{_ah!&q3k*VA$R^BF~5Y&sTnB&_gSby#eqNAuD#vbfWcV_nXWf zELT?Z87Z=e+~S?uPXHNuKYN{=kWx6BU}36t^m*jNkK$vwnuCks{g;SkM7dv9{V{L; zy#mPEes{9xvx-dbfbs=`>JX_f=~Bq%E9Z^HPs9NtstMnZWK=f}j%U8#xQCxB`Eh_U zMJ&KBr#3nxbp?ZZTJ0V-G~lhUg?AX&*5mXflB7^tcGg9khe4aBUp4_Ch9zcA-ukOr zeD|$&Bg1E5`TsjAGvKziVY!^91NaF-iFz_)1ATDmWkMSQbq^`+p_A#chw)fpmuu?z$!_+?( z^G*6=ak~B&bc`Je0*%q=&k?AsS%wyokEn$;&ux}lb-%fi_xCiyuOr+(hVC_ITq^rf z1DfFi;5mzKyQ6Y-UQkn1lz1Rh{Zr~LTIh7}+B4A+Q+8PUD_ZzOfXExc6&MGr-u{@U zDgCAZP?!M{z@YCQBLGte5inS@!O1PpSlWJZ(i(6r;TR0Rf~0u5wSx-s6vm3W6d@+a znvYzJZ6QOcM(~La(KZ*745286%qsV?Vfrs$k4sJx1&-n$2`@hp2Nk&(8Lu~gS^IF? zgX>u4JrDPjhZtY^f_525R`u7ftpGWR<-;YUJY(Uwzi?!}cAFl2Z-w@u&q$ zSiC>>x8J~AY@V_FYCDgpjwyV0L@Goc1IyjF;aE*O5y8fDNcyqhIc?<19NS?5`aT3$l0Cy$Tc#7)IYChYow377Y&cO9J;#Ondike-V+NKgU z$TKMwb8yUDf(ORgSAR(QgvQceD_VkT@+$Q&NK1vx&Rp?lzsP;@Dt$I$hUJI+VmX%3 zqN_U)&g_2;XyR}@NwFBY_7Cqf39dDrJvF?aer0YxFnQWObB`o*mEat0T)lFLII6`C zS-Pu^nYc5+H1OoM<#jeA6D`QMp{omj-Cbd(B=i(wj0*9UeU0P8%1HgWW?UJYxNPrc zhsy1UI7hkyY6f%2DSvtrj_;S(6YYs^SJGpmT!ZWST+h#=Q- z`^5QOVK>=Tgy;RPuCodIXI(a^L=^Uljd{0gxsL2ce-vxW)DHjYcR|EDB;$_eIHRC3 zwhEtyiT1dBiDfl%p!daN^6>kUL;-{@(mqlRZ7lX~GB9|{Uyh2RH!XxTzf^d9&-g<_C#=JwjK zN|ATs*LK(*)lof=oaH*mz#vxoibb-FzkakhYNmyeH9!Xwb1Mv~)4ZE^sqk4wCDDcG zNbqV6$isUi945pc2c2u*9CfbCUH&gw_Iocdjbb5HAe*paeZ)TFXXiR33OOXo2w%0W z4)kqhT~(*NC>Zvm-?t5efQMuV~ZoE*m)A!y%`b@uM{#=A)oG}I8bRSKN@UwPCW9{RBd+QJcY_2v_40~yc1r2x!7d(K{Du37jr_YY>!~8_ z-(t(HuQL>XyzH*CbLlzMLr!2wr?7H1=-QBM-X=3*<^0EJ@kq{+{7(QWmt8DdVaXTC zqr$3T&4vd)?ju&cb>Mp>2@`AVx==6}#!7(eam84W9uvNYvHW)v9ja*?!UNbofoA#- zW|Sgo%dK~DdFXPBiZI8!Iu0EHQOqS(LCrgtcGZ1dCB20LD+eCL9SP3S*bxDf$LxCb z0$2-i&1d+ic`Vh(y{p>ZHK?w}QFsPySU{0WyF0*@a?9w@e@NLd7=NlO_naV`6gy*%+k&eB#y z#D)Bf_9kd{C&DYOiD7i^fKCnJ3e?l!i!wUN!*k&3GjD?Mf6VhGi{fR(dW&=3RQ$pE z$JDbO^}A1qHwoH#iXR+w_e#-SmhZ;?qQ<56R8E(WAIBH9aXs%`F^s$^E6+nOtcZgP ztvrN`q8Y8dvp3nuSAVY|_E6vj^^Mq^>vg(&FlrA4mLuNPPl56@{GTV0`9A=$)!_H4 zD9=W82Yw^WTJH?W8@rtO+W=`EVTLM|q(wZz`w4v6BQlUE@HycHTo*4#ADOr69nz8k zbCt$eHU%wH45kIzknS0*%2K%$1uPftHwMporHk~IFAF$^J=MY|XD4N;kxkx#*IlL8 zr88eN`RTvS-<(||=DM@bn)&s7+Bx+%rP7tuhE}Ry@W=pSUR6-0I}FAxE6U%w4f0;B zbP<=yR46y{>jv+D5VMDtOr0rc;Ts|h<~GaMANI^FYyTfFS$SB_B&z-A&Sgp-uHv&~ zLOj&uiLzK;06HXQ0)I!4Lo`{%y^`~A<4nV;G}JR6Gi z;}*F@_Xs6Czc*P46Kyv2i~MY zopo*hRwBM%mU@&szH>FDYLZ1z&RY)6Hh6{Ln%gW?e=a3s*i&~k)&{sKlWDGRnsTVE zn|N>R`^?{J5YT7tXhtH>{d&!l+Yuh4XFzhs9y4h-Bt5i>yMs@XOy3w72nu8NFTtBt&^d4=R1zpr$)EhK6JF`+7x-Wq2bN8ihuvVn%AiFrQg zX<9;Pf<-Gm#*X4ZzUgki{Z(*6UvzAUc7Ot-^fxf9h^!Ln;Sptpmx$7o|E1o^q5l8j> z6)_DPc0c298ge6Fa4eW`@3$UBkvL6^9Og!LL88U06D`Wt*`>029*FUFotDT&Yf)17AG$ht>gC~vqO z2{bOH{&n4Z5nk6zXMTqsMJynOQuSsIYM@BIZpT(b$pO8WJBAQ7=l;<1_vx@)6!I*Y zERAQkAEcF9xw=w9P*s-x0^7;geI9)k#Xh#I{h}}6S#$TV4g7SV#7nAeiW4m!PAcv( zNC2i8;_!Z$L9*C%FTnzO)=z(Cj`RDafAxS-X*CUF7{3)^g=N|00~K&C&EFiQrC87p z8y=BAps^#kkScs@Uog#P?g3*hNW80DR9OF)8OaSLUemdoh%a@t3J30DI$IK|AW>;OtkFViUQ)$0K*4TjeSf6cJDMI)3NTe+sm4bMbhn|#KRO8kpO*elAb zWWs`mV{`Dv$f;wCF9*D&Y)Kn&E|m-UY-N$>Nc|--fC)T55p)x63tE6owr+u`@3!kp zoWtjPddP*GZgg+*Zq284k8GxALD-S2zq^p@nZNOOFCgAwn*mg9KfN>!B036)A-H8j zEox#~f#6EG&e-twGsYTy%$9V5$eqw7`8i-^X{G!^e9B&i?UA|2^kMyAhXtG=!ydM4 z%Jjv=@z5B246&ruZEX>c{yDWw)Wqg|$D0L|%TKG^`6)P~vyNVZ`yTkL)dSTNlltIl zvURGX{iUIEX#!j*c11AgKL3oLFy*wH6Y7n%7&0b5((m+ZPC>RGNbf>+iBNgZ==~HW z3M*j-k`ArCD{`}H>BrEM9z(FQVg%_>So=fwR?bzj^e*ds!%55{(FXv%SfPkA>%jnb zdVhixhEv;n2vo++ml#I^#c^`+Xjw|Qbk+9Maqs@IWuVxJ&`r2b`tdC~14>9K;wy;> z9w?1kpS(h!$$S;A@D91<>{PB>;5|GutMCui^Q2fyJ(5hb{_*t^-E82(+AywaIIl{) zbteDk+t~Gu^P-{=HEP_CZbpSyiM^nGCj>OcBIX}#TJ#yK=q^OQa|qFM^-!(%6ZvK2 zcE~MSh?O3)-tjDd#z%$f-NXHMW~QXw`LDy|w#OY~2|L;6FTZMt5`b3OnBU7aUD{vm zMmIuv$k=V4jP9eYz(P+syt_iw_th6(=fqdDe<)aq zjmPO;qMyueVd*x~d@$0~gb%l#jnrq3IlL*gs;?}sf0N6+_mHAhoRss&f*wQXzg&Dx zQ+*iB_TG7Cv*pX}h3?^;^Gw@HtLg)>zZP+PW9vaZuEbVZ`gZp9>(1yw;!D2VQ+4exd#3;kWuv-VzZorW(i#RZV-Ot*xUjuV8>qF}y0mV=Bn?MQA= zKxc&@7)pB4ED_Dmx-W#oj19}@5|0s*mKh2l0lK-h9AXSxDS+eCBo*41a1-y#Buj@o!ztby)4}T2@ zaA5@yGCBMbnGs!!td#q&X~$}v!Xlj=BYSZ8cvO3FDMPCwps>OnwUYCRN`~_kHhC5N zEXJBwwOSPT8Hdu&_23mGb*@@(zrClb;Nn^xmS9{Xv1pGnZf>9cdseK(*dq=L9`XJY zL5uYo_(I5OV8|;CqB@z^^&oG9J)B6^YhxGfs4O6?KCJLM-&tq2L+*Ki{uJ~(=uPNC z#DB=uSLsZN!ZM3-mRDZ7TG3CDw2_SCvse33LW1+LNau=1%-}&V8`4(V`y`l8HPIzh zC2Th|if(s6Ms0Xy$9D66Y~L`|>Y2K*Vg6A4ZUlYej^RZ!S6+*w7bUzSQFiDk15zmQ zXM=N*phJa%UP#2epf)W2$CvQ+Wfs2x@z|Kuf#*gx$O0);!_?7-d@IqOWz%UM&0u_g z()lGu%(mV!Kvy9(8|19s>?J>AB|5y2KxE*#d`niCfF&#hk`6yMv4g{lVp3#MW@5ze z`$yYAP%9M|9%D!Kc{L_ze%P&6?P)g(9Cs=oqyyzli!tJ3sXsXwqQox)dJLIy*mrQ_ zhGX6PjWNNom$WKCZgsjxmws#eB!&{<_}!#?WTG9t-64d$TG1rk6*=Kg4|tobw-awQ z^MVjBSf^NgnRQ!CV_$@;&cilz*)(UuC0sw_F-l9=KBLi|G(zw~Yo%a=0)y5g*6_r- z1WvyW=RGN7)R=@WuUquKc?4b4{X)lGKj}+aW8HB33nVnrocJJHYe!fym&KnI2yy&4 zxgtBLiv-tFonPH*^Gxx%)ZMW{_HDwH-a7-Hj8rEfOLvT7O-zsD{SW`khT-Cw+FDLW zYx`)w6^-RkI!B7dPGCg$1W@||9}IY83_J11-#OU3kgy@7uT5I7pBlQ=pq_!6> zNW^Y1)!HU&xV!=5ftMfm3T{vz6_RC8nDVhWb7XCVAvwO%AODx@V7`{Q!qhtuvo6-E z&EIwk2#%G036yR}P~P5ORZlq)PMN6i$-xgoC6QgdovngPqPvGt`o(w(BZ;@mNwld} zz;Mzk+snrNhIn!BL5n*-F6>1GuW~ zA$PLTx{mzfRm#ZKm2>F+?}}8lzlvQ)4FC5r%5;flW}7K=6e=**T`Q0tt-2~jwhL=t zbC>u>_BAKIWZB5^KvE43oA(^rbPf>tL|f|$$_IWTrThn&D@Z-}4se>yuN*`Qxl9x! zyg5<1#;b!&*&pz_?e)7(pFzCC@yGp>%W}pUM>Yq{NIMB{8gx+Gh5aUZ_uKde8lSM% zC~KB}m5Dju1fS>W4Zg-q*mb9eWWV~7iCuoAvy+6Elyr%>i=UHSmq#w1$R3-kLe?B0 zgI0gLRHezi#694kF_1P?CIR{8uy3A?)n+Zp;U}~2d8T%fm>R_!PM^Pj1CXb3I z7bWA;U);u-Ly0rK8EK=r*0Xu)5Ee+QVe0BfVzhgnQBZHd>s}&A*A8ofhtM%VX#
)TLxL)N*2GGp$ERe;<4MnH|?sCnwBm3#0;a^q>D z5RTnf_wa)bP?zQYl!Bj6xZtNRx&V5PYZ5y4G!^4~{Vlq@g5yh3|9MA13JbEl^%cm| zKKxD6I~AXa8(%ir%E4Ez1>569Wft#6#G(y;NO&jR`AC)YHuy1gY;kpv%j*zbEll!~8u znt5_HI%>F3*K-L4a8 z?p5jf8mc;y%Cw!x`}LQPTRf${?LtF7^))t*8;tX-2Ez+|tOosYw-T=Tv%b&$ltenL zabPnph9*>>L=`A?o-6sKqMEMDX8#b&YtL}5af=Q#V0Asv^X7>wtbDB72`B_L;lfa3 z)vLcQB18qL_(62lD0xptsQ$&|RPb^u<8tRTOWS+e8-kZ*ExxrZ|6r1dBYT8sTkiFr zlR2c*5iomW(jqpj?90;G69Wc+3n;Jca9JZUT>$9>0dBk)&-1G`uK7d|1;8nuJVpg1b?sw@V*SJvIG|h+L3X7Ymt+9iQiE&n+|4upo zgDJn5_pr_h!Xo)}-oih*whGYr_Mau*V=3yIe6+1V@Pb)b*OFF>^EZ>ge7%gZ9mRQc z)IrbUeAm9(w6Ab*vxbThmmZhAKz}528|Nls)q&C|tq&xE$T6>KJSVc|?CYQLrOs1! z)<*JiL$xvbZlP{>zK&<%&d4KRpuwH)lC!AT)CgR~A*5shWnxN$qu2m`4NI zZSp9+mHxvHSGA`6@#!hR6_YV)s5~3~^+jU_*GoYP)9k+PDdnOjz`rTEQKiNAgNejU z1Mw>2@b^_eTGa!~LH4&8>hCwXF9zJpFrhU@!?XCsHJeAz{97X+lsRy*gl_{9W*up; zdUPQ9r#O`meeVQQygty*%8~iz=9F>cw2g@!sd=%D`%PKw7G^Zcm7Da?62X~G2h?wA0_V`vZL z!G`F+8sX7-lT+#@4-KF0I{&H+%lLGmmC8M7`3CyU4Er8>Jb8hd@#t+^eA@LQMhID8 zBP=fpeT?NX&U%jz@~C@RdVPO~Lc&c1CuYmt9v{{A)bHXJpR`cqU=tksOftQ^S=m?EuO-qDUrxNxB=Id4fy zgU0JPfz5WR0MxhVD!pWE`Tm_BVBl$IgiZrL9o(?NiaCpny-11;>eNR&N)o=yEk3_G z1E6&B&nBeqk;S8^{tFZ9ID8R0>cE&O2^zHhT9)UzTyI#kVICM{GS#Sm9;}2pkn?-I zu`_=@YB(NDd{0m>)e(<(EMRakZNYE)fk8f5%_8$3pLh8Mpby{r6XjX7Q2M?}#sRJ* zWgD)9tfLHT^-plNY1VGpH8Tuuu3W!OeK!}@_Y>#E@X1Lw=ytUvF|{@`py&!qD(cpX z%?XHF+DeEqE?#k2g_B87WPIPrT|$?G4kOS{B>uoETd){Xhh+>opl?<88IjcfP)c6(>M6hk`<(qw*oFH-biC;eV_zlQItKJwZp9q4 z)H?9tV)gQI)mGT&`nKl*@Gv)X4rStn?9mmde=;?_+P9T2@QPolqY2OIc-usgAlWuv zd^n1=mklk9d{A$@VvpV=K~EJ$asDH2_voEQu3PUAPK1WYC-FYfh(6{vR z-j*z(D9s6?a=zq-ck9%3Fh8YGd0&uTa6i<}Bh#WhRmgW=Od6N_O=MTb3C9MHRIcsf zn^DFPR^zUIWhs_OjX>3Uex=i-Cu!-q0Kl|dcXu1D;n4AmCg2sVcbC@HC_bR%egQJW zeh$86>NrR%lD2vg9vbrKn0sgvG~9N&2$C=3y>ef0EVuFE>Z{G|Khk8rw)UGVb}4c@ z?j0*32P~bm{)iIMI6lVj``Y!w!HP~7TO?M)vu|b4szfEb=VEcgg5jkhEIU(=(*K5g ze$c5`3);s@@UL-M*Sq>|ffCZ8`@CeT5B=l-Z*Nc9(Y0~h{i*a2{wi|ZT5*$1!HqT9 zD(-aX6>?m{^>zL1#?+NfuJlOX<{+45+95r$2xC89anM(KdB6{2obX2GEIlozh_^{6 z=c)DyslLlEDsi`RkA+(r1GD5GsDET=Kbf-YR_)ei@T&e1z*FrU`yDy@hL`}5v~C4; zQUE=@*#SA#b&kYAj+Oh5R!x8$DCt@FeE-x~c)U=v9Z8q4z;5xRX{v$9LDpYcS`z>> zH_|WT1JT}>0H2M#N6nyFcCC~6q7ipNIh(Zoh78@$^Isvv&Xfz_Yio0VC*t{#RH?8Y1m$)aM84}mKGcD`=XY9(aJFJC>Mg09P*CyLu zPW|JHteg|tMkEu;XK8vNz8^7V#%}(E8Vm^FIeR-=@5)K=O0mGYVuz(?QAF;%$$$e& zB4c;3%Byi?CrdHo?JJ%g;SeXQGigS!a!b-5we0f&%HSpo6~6!&=vFv3pvctCpV>zh z*d3Q32%9(vxD_5QC+>BM%_w@a)pIKeZc5ijdUljzxDCcWtVX%&{6+O%z=v&ID80jK z)A%b-d73uk*Tc1axb5Ts`97Zt$7*!$f*u(YKjGh`D;!ZV6?XEUzSRY&l}Psbjf8IQ>6r{^#>%vjGx| zes4ul+y7~Md8^wxx2{G0M6Pw|Y7+7ta-jz%M_uAuKZ9EuFK9gW>Ut%RR5ll=+7 zrKL?dRBex1qTVUj0l(z`tuO4){gv=tGH2t;!=8uB?5@StIU0G5FHf&u*=7(=;tsJY zwoF}0ECMmd*)W+YE?u*sFBW5ptl?nOsL{?)08wD65FC|I)RIpJNDrjl%*aW{DOdiM zpF+=qSFW9KCWTAyrfoBi#XnP%0=rzbmzj9dWhqaXr_zB1>jI|O6oQ(8)5_lN6q!Zt z>~{N)gv#^$5r!J5k9D_S@S~plZ~ehdS;||E;sNGB?bRKE^`n5`6r2D}XiCq?gaygV zY~(>W1L3^?$YK`OCA&ElKabGmnP)W-QuJ=b`ygsQd_0YyN_)Ha3c4Qg9={{D{6ph! z4Bc-6DrNDl){Q&jSs^)iZaAL|Pq!s$`>}ONj6T~Ze?D+`LNL(Z8%t+!j3B)=-I(fI zsb(^g=UfAR{+~|>Ub{bYfO3lBihCVb#JVHzEjgeCk%E)0%s+X!k3t*REQRaEJsAl` zYL9xk_4!v6VT6=nxVE!bU zMeJz(&^MvKRtrRd4rPx)c)k1i_*aA<C z%?^B-j3jh0B=EjB?pD%B6GLi1HYvQ%i!=;8lI-_CLM)T@RAxP<11g(#9?SU{&@c39`in;_NUE;_ z<;s%PiJUZYf;8% zowa|8skL!oBIjBZ?1R2b#;x7K>BuDVg->)kqA^v-=}B< zoS)s_Mx>4qqA=A356`6doT&6Q{lB_mQTao|){8s-y=6bc(6zW3+K zw;E+Bv+ecWgk7XJ;T54AwZ$ChQ!O1KpmD#^;Aw;4_z-wR(;|3XAZ*3I6!k zp-N73EMigP?-vyIvYMkGlS#WN>3!&>BvUO5Qns#>>b>Sxe37Z+X%c5cVa!8(-t6`f zlzMZvd9N;-#1*uS$IojyJO)$4zEe)BJWK>rU5wvUt3);wcpUEj4EEtu?)U%!x>x?sPz9B9(Ld6;0&20BS!uu1@$(t6ZRL;K9H=s*Oa^ zx;FL>UXKtzo;JU9p?U6U!0E$9Gu)fS)W@7{wL7RyAAz0M#V=_mTx z7`;`6w<5YCYiwlbU+xDQo5YBv9p2&ezBh6JHLCWs->BzOJSxMa{a#~!py$a}CNY`C zI~scOQDMhS+nXK!V8IF&77rIf$aN+{rje38Ii&r8nwI)`fs$^FJ3V~$ETE`8vJr|U zlvT^@^4CWuW@Lt_8%qDmrw+nRo{YPxF&!Hx;Ps)oC@`u_R70^ktR><*WYB7a5WqRf zx8OqPvch+mIzOPpa$y1!-Ih(lE7RE_T741Wmu?z29rjF~%sZ(0K8?^1ok{nqk4WTB z30)Cqc{#pQhy4mf@=e)j`5un7862tb6Fldq02z<_cz2j&^U9oj(u@26**=8)0SL zj+EWl>cY<@2>WKFeh-8Cv((3?;4et}+PU4pJ9=u4&{Q(N8r)5*9bs#$&Zf8X15MY5 zO_!6?P(+3 zxaNRu#o@byVhX6Ov!Lf{0c#7ZZDiOduAHlE^HCM%s(3v7L(FV$W>ssT_GYQv=%^Dc z-1i>1wz~rFgYgl{m-;y_J|_NX(E5#fN)FiOkbAUht~UP7YJ8e>K+T+RZ>4&_s895% z7~9rZ^QK-uee@#gK1@V3V8Bv{x7BvG%bo5{-esQT_7yIlu0*K6F&YJJ&#AC5D^seY z%JlF6!<%f3o^V#+TfCOFxfFdy-upn=^XU^8H~BDq52wPi=8R?pV1x=>RS|W<;Dy76 z7v24C{H_A!7>aD_2(y1o@*xSW4?d~6-Vz#n*3?ZDgk6I_j1{}ADK?vb&aio$&n@~k zzC+r1IJa5yofBrp1e_mQ=^YOvYn`=zE7{2@nYqv6tS$|)nfOu6%FBDi=h^BXsWQ%Q z0?>}U_MDrnWqDmq+b8tmVLMD8Z)*Hk3y}BqWk*#)m5+cScW-*ojsoQk7-tkmtg?D} zQYLHdnmp5w(}&|WwG?y@S>8UfjBVyr0s`E3$7i1&(m1H0{8QX5+MV&vz~c2B!6NO_ z&2^cs!{MRJYpR|78{VtJVaI|F6@M5YtYAa9%W^9fR~>yu%aoP=dXzflRbI4VTeuUC z-;B`Q_YFf&HTdRZDl4LZJ2kDsi(L4qk!j5UwPGW*pVg{8J)jQJp$rC)ZAc$l8Yiq| zw64^y>Vrvc=JgE8mYE23enFOMCLo2$$IB2CuwpPV=o9C;07#zUmZG)nj!=N=)QuJFX|yAqO@nf17$I(2N4)*;&I&sLvIJv(t%yA|c( z22N4G6`zM&-6R-49lj8HSdZQ}W1z)-gSCjd(Eu$-R%f)X4LJ8SxHZ zea&7l;!dOaju}eDcf*gdBqldBjZ4lNJR#8j8yU+3^c6w64=likkQkRGANh28Mnf?8 zVjO$4)cWPy*POmP*(lVFX3bYzqHEoia;v>JK>`1ASu&jGhn^9v$_{>BL-}Bb&8HHB z?(?Jtxit`Qlkj>xJ&!Ny9eK}9g z=#7<^^nQGI`~b+SYKjN07zc@$qucFBbNkGi@V5{JwIyNQW+b!h;QmTO(d~}q&7lr0b$4+t3(Y+X&SK(s{TYePT$l)=#S`KIX4@WILrw3ggr|Q zHqydK#MhAs*Pc2A#fx2=(<6#vN9um`0pp93?bv2KqxoaSiluMa6{{X+K?|LAnA^SY zu6T2wob`_zKGsoewW$jq^htjNJ->aq2+H{v;XXzWY(xR9I3e)55L4UGcK1nyh@s2* z0HaBkwqDvfa1(SmJkL7h71_|RM@~rs*QE`m8$9&Dc*-nYl8*W!H5;+d@M~}$-I{Af>|PVeDOZ&^ZadEA%}!RY^!3<|aAGg}2OM4*of^D;vdk%#cmCa$@kddv z`7}lyu_aq9u}Q{bfx8#clPf*F6E#xmH++J405$x*^$`bLheOA#GQTPY@w;~gaue#F zH&gEY@kmB$u+79T$c;<5NbVtt8CL1DP*ZD~k9{i1XO+Q)f3WA+GhG1g(lWQZ@CI9m zk6_*zu3`2;^#u4zx5$@;U;2)|Suynw(agQIo1oz5-m*TK7j~!ZmJkE9h9D+jE825? znGle%<(U_Y+)J;2@8PQSCSo-g+sAjk_r718DLlD|T~6y^AkF-Yw^e+;e?`XXf6=fx zvlNWQ8&0&vf!?{L? zh9m1t=MVJ=Kv>~DepDFQDO4##0do^6YT{7adW$-GhV6H(ThM?(H`mAH>mmEG{H!@G zj8y!bw8W!Ok4DNqqLDkBr-di^D-W4tFZ(wT!9{67;vcvN5>KMSd&%J5 z0oNynSk=;`eL*nH}!r2pB_0F`U=mLFNU zb3;6TpWsNlz_hN*nr9+3eWYL>$!YVEcgA(GW%JzRpaD?XDjd$`fZYZ$Y%F6|DMD&_ zk(r#^zkYLW96-PrWRK?aQsst-FDK8N9elO-zJpEReIbuZ-Z119!g^X0ru=%uvcFwL zjXwR;m<&&_@#Ria-`3;lmRnUvnL=ab!g`FFA20i*aLPRHS&%l}Ca^4fFSL|Hq{!XI zBq?c^8!ghX;+uXMcU$NIcFT)G1BGn66(`-FBsPIb`W}=Elo9(J4T4o0wa7#ZPm&ut zmvHf&N4#4+M$c4X=Dm{{c%%vU(@X3XGI2%a-+Tj70-^oATbpDVT_!nIbC`4&n|{`B z4@y=s{g(S~-irt+?}do(vDVf#PCX|>1DsO9UQjm@k`LCMiXMk*C=|X3C0bi8X28s` zA%gYiJaeDZRF%}2ZYK7665-0c9l|O(*@_Tatn6-GAA8&NZ&zvYFb7=P&&kpC^ zKL0t5U0739h}R2RA5kEo6_bbX6Q7!YGZuGzI>)O*I;tVo6t8{A{=8pRG`Zx-d;!Wd z;C*!ScHujc)14C*#gCE8UeULybJDcueKL9cH8S28D2oRUGsIVuzs-NMb+kGHk{g8X zTbR0t8~t6xT$d4Pkw_w@6faJtlT5Cn&!=aQ^-i{b8ZAFx7=EEdbbtQQJt|V#QT8k0 zQ&+(}3O!1HN3_f9{TKX~Juy@;siH}j`M!j=%>WmMai=gX;>rS~+(e5A+JJ_C_iRAQ zUs?`S9n7PM%e;W5J%>(bH=F4E(meR8X6o{_o8WY{XE0Yvx$zUEAXzephAiFqP+*d{ zG{WUpjUL@)B4=H-+HiTBzcl^+rwcBP&=7op#^yPu2TX{0tytXTg0teI9RI}%?>JV^Ur_?GRTJkEd(lo8*-E+yB zCd_N>ZR>-tJmw;I_Gz@gv5)`@TYfyAkNLrVzcm#J{GFFJ)t3+F>+lgr>le1@;~0+3!*i zu}#>8B0xb5{>glK5H<7tsc`{#sZUvHn8-x@Etx}0xON-YVtdFa%g+9>6SInE9K3px zsA&no-s6zPGnD?L;t$U_T(k4IM9#CC{^Ilb-m8;UfLbShx19GvuNbYURnM zb|HV?Dws*&k-95O&M@43Pi%FR>6l%SM=HG)8W|g*oy3aeHZ!jZ8fvNDb@!SSY||g; z)>xGY)UAJl*SCI~+^RP4iRN&y6(a5!lqS*xLiYdD)pf^19smCuX2>3yWpB#NPS#Oo z_AD7^9VL653L)gIB>RNQ$T%`jLYcYBI?hEZSw}iDf1j)G_xJcce*NP?$9?Yod4Jxo z@f@!e@kUm~-GY|N5L#BC#FF!22x$0XE}$|>lI?F;PZLWA>sVL`34tDpe;TYsx12M) zi?&;IF=dt3W^@U}pRXc9@VZ4y&(KVg>6y@_c0_9krG)@f%SuNQ1|>b*VceEvWgdg` z3_1{51-Kc0x1WTq3ec5YvCSO~H?mG**$B#0Z+4D#Nmob>iZC1s?rl`IhqzyzF^#-T z9Apin4X#CJ2lhy=RA5mYvD@(h%-K71!B)=95`Xvbys;`IN~llLS-=8X{On<$1+)8! zV9roDd0y0C;+jW}MUfenMwAU!K9G@uyLr$NfP;DL0P`$qJK zPWj8gciX)_-2qf4PhgJBJ&Gh2uPcY19DVcczZwH!%aE}n5< zh+v8k*vnmK)pjLdhPW1(X)~a94cgjoXu!tP1i6h!c8Z4zOTD^u1IH5IU`4f_`LPc`lmuA8~l!_ z&+$FsTZ7D5|Iy)TD-l-lyvm+Sb`wKNmmV-jVFs|8~Dqvj{*p2VPV zG+IUEkO4Jd^5pDF7)-`s&qp7jd45bzs-_;TDXPtqidQh4J4OjUA6N6^Ry{q-8mcxGot&W=5-0@-8gbOje_RZI_XWg?nFyS9#K zVE3NDqYAZ4+8fWoRZ0~|45pr?w&k71&0BnHXO;^@;l(>)z>Siv9+^r9jn)ucp?lfu zcO+d`+|x--$jeKk`*g$|x*po;H{>La_oJD@hk$R@qkTp+K#%2{))xN|NPDO=Ij%M` zMb5>l6Zx{n*f=UTG|G0hH8#qaNpK(|z9VS{arO-KpvB*l8eZccn(xI@PZWN5=>3F{ zG+tE~0E!;G%}XECKI!WxF&cNz9ioXRfc9=wFy#KNW(2QyKV{eR{JjBiY6GU;3__2@ zep6#0b-p!Ce=HAO>Dy!ny11!}ACRoDFlmjs7XiBLw~9SQ0~tD*cc6Z`ME*ajlD|St zFE8@L)Ie$md*85+jnt%8{7j)sR``~U-PM2|&Otm2N)XR%7IkXxT1E5S!J3adn5~$f z!>W&QEK%+Nf^R`oo-Iw+G6H`$Yk$hszZLK=sq}g5&Ii6-9bR!OvWiVP`$n%bT|{ll z^W97=3{dR94>X2M1IGO6*zZUy6aX`q@*JvSj_S}73A4`O6)`~6k4C9hJV25`r^^Dc zHuKHjFL~gHR65LNsj5#4bWRX;enw`_L`QO^?YMn@`h?I2KaTOvy^4#f1DTaf^oU5C4Xz4lVY&0h417|1V{w%>fXmAvL*pufZ@kJ0(~Hf*WY%g`Nr<-m z;ddGqDgMpl@eu8rkel%Af7`7>dq#RBCL$x}ops@ykabv&+KCKc)jUW4l5LAQGxa!j z2>)j^XXr2rW+Ul&#M~;f@JmW#p;Z#`d1~Ns7jo0gNiYIW?g0RHF}T{0nw%}D+N>)7X?d}bvCt5;-r z_w=Sn4+|U4czRfC;wYtAd%`E0@ynvI><;hAA-~#XfA35-{;O@4BwKpBnDK!dPt@vv zjC%cz=*fSgQYdi>C0g_yI>mk#p0wVbyLp)|eO*g>oC_O{EW@@m%U-@;KHJsBx6NZv zKnh1_E@o88PDS6pu;3y7fp*U@5K#K>&Js+m<2_{X+{Sw#;t~e&)2~2t_--B3hHMR= zISS1>!)}?}?mp=33Q@lhI@n^-!3PS=@n@;LfsjeJ1r(-JdCEcD!(=kZytco|)$D~X z>9;8x6u@6RoFn6iyp%m5#KBcT=@r?Y`Yn%(asGaMu@20$b<2BE$0cD;BEF2PEEt!^V26%Axp^^qJT>9iv3Do7N z9YvwHt+OimyRbLl9`tSBQB?& z{lUt4Kp3PGP(Y%+7B_EUJAmT6NUfnRz&(9CmU9}}7`g#Yz0)vI-g2f0C10n|v)&?F zL_gAS)bT(qv3xNWW0&W_T{^4xT1I-wR%)>{Do%gxG|x)6o|ms7?mV^#(j8Af(eICu73I#GlP&@IpEvu< zQThkzBGJ8WT5^Qv6?cX-fv{R93pw)z^rVkz+=XD@@=#8zD4 z1tB6@KJT?t-QkRnvSc#a0(cW?kUwX81&W|K|6GU z7;1~F)k?qC*@U4AvOLbT3P`c|T=b+;J81iei)aZ;HVQvZ!bmiS^n8vftjQ@v{cBr! zCOqMxq+EbA+d4Y!Rs!7BP~aHYWs%M}JZXxBYc7&o zv@he>uyh{rc;@CiuCzmqY$R@cN0|MSU#b5fB>qa(h>aT^GtYF>)d5{xPRbqbP#_l= z+Gg~M)2Hl{5n(=X7YOf;(6pm`8>#?cP8x=c=MPgF%RSBwZFdXJ9$WBD{iY47zR0Oz z>UU4mm{Kso-`-U{ued^UW4X^3tAd#-Rp;1;^b}Q5Q_dd^162rWtU;TES^otLUPnKs z>yZQ0u&dDfrhvm{Ob+_!d5VdXL{1;OXMZ2>?LRue?{N7xvOWq;y7SmI@ZtJYLcC=j z>*<_kWs+dS9fLC_j(;qd^@ur&T0s!4kCI9-U@oQvd~QUou(p^26=;|OZ@BR-$ivxm zIbP(0TAogwHG+$30~+_N@#2Jp%r)foU6@C$=JI9u&`I zWd!(t?jD+uiMh6A?oTG z;pm)53z+U5K2I2?_2p4d8?qF5$9J84s4epfZ@D3l+eC9UR}8KU!zu8L6)eUR&Utuoc&- zsCXEk>SsX$XC~9lo>*NxE<+!P9Jw1$CyUKX0#I}fiv084JxZgb-H1%JqqU0jNZ0aG zJ=%DM4!Y>kj9y)whjzjQ$2p^us!(BYs4#>z_{>NetFn*G{=G<0p|I84s+z44jjn73x^ zmMGEpE~3$pZvv2vEafw80zZt;2!kSq$UoEx{5(MimD6RLjdr+B>EjIA{lP6^th?w{ za9!!zzP*Lg?S(M|5zsVKo6Hy!w3|N;Np7%-5eESUs5LLO4N{3_W~_0fk37x^D4za<;}YG(vq2OCHAfhk`bk*IX!Yan1>ehbjEf1!%g zm!?Fou9j)}Gz+|#htJExE7jf1aUH1BFVk#3Q;$FB5ds>K;kkc-61Q9G9`YUsULGKh zVIjpn@}?+oJo>Ii{YAMYhNn#lY0%->IPtq=DkB>^n&#(n8Ow>$p+1q;d~+B7(h5Wx zB|HcpjdAXx+L9}i)uH~pL|qeJ+QUrrFR{_*mNE#uj43axHiM0SJ5hZXZ@Hb3*Q|e^ z0y9g-Y}yZh(<`ajvAgo9`KG869gmyTrU#K$ug7UqPwCnW+QeE2CSmufm$upV7&tc2 zKJSgNojy!N3(OSQ4chH=vDMe)R@}nSZ+F@t`Y#`7uy5&36cuO5G(a5bq0^;SpCLcX znwnt+^z6ZCrANZ2@6LSgm4V943NpBy4t@LkM8G5JYll=r3EI|4Djrx%T;JDVZ0C1+ zd`oKm^Mk}m&R&%b+Ogbby5Or~wI?4gd{QiKgr4O%IhjTIO(}@gDD+=a>yLJ512MpN->psFP9{uj}nf+`?4)DnoX3*GAj%`gW9%W z3)@|WrnFdsNSp$Ufpy;AnUqw577!NORK$Tb3JR|0>pBX1T=hZ!a(^320}BNxc4H1cvsuruMJNVe z(;SLt0Q3-=mvaxLO#6FWjE748gMW79w0N1A%ydcVs-~GQk-|a3sTTH<1Ph1+hNoFBlVdcPe#8dT) zW%!4ps6|Sw*#KVMm23qJLDPN9hFwNhN`G&KbgL`9roSu@IC6eci-%Q{w{1kCg$Y2A?x8P-Kvn+YsC%3@{gkG+ym%GO6R^n z=v^_=?Ji}2j>HOkPV4c394*f0eUl)Bt0ipr6*mF{_O+SMv2n!5CyNM;=!f$qud|D?#Yb| z#5Y(lN*<(R8u{_$x@Mm)O#rQn%X@?Zv28Ef{l3blQ_xm0Ei~D9&$ygTjTA^c1=GdE zYI)Ip`R_^JudfcMod89C^kcL!GHo_W@87%W00?5oWBoH9d)nk*)~^G)(I+@1#T4s5 z$M49$0`DU%3K&StPSX3lLiATjn$17rnW4uVUl?pUxZs=r9DA4ys5HQ72Q_} z=0vU+plECcj!yy)LSg>k-TsC*jKsna*W5U41ELl=b-0 z)yB~K|1#jG-m?@72Vhf+GDu$JZ$RGYIQiGVyMQP_L_tJHbCh3guPDITVO3!lx`J$e zn9e%m#>JSjcC1}5PHj*xYj!X!J6Pdrb2pRCqJRfBx8V{h=)n@ej7nRA_Fba<=^g!V zRmI5G0Oo3jXtp0r(6=3sD(gJ5tM|d9NSET7hNF3Tmu?0xOniDT_6Tc_{5AV-cSQax z{t-~syIM;<6%`8jR#=QQ`qY&G@PS-lePY`3D-EWdvHI?sFr2##EI?+3@Sw+7EKX#3 z9mt7z;8$!7N6lXS*8Wg@Yhd@IC{xN((mug^*`_Q@IKp!70GQmJr>s0=bRWSs2!QAk zE4{N_hI=8XXZ_kIb=FC)$U>1ZKaQ<&1z*RjA7(diqtPOMQ>Occz#u*&QzxZ2yAPua z&^Ipr<>9dXva!G}qQnQb*fHS<7N4s_PJ3br#-c^wm{eMhg4%IvO_n3^kb7d{rbC(YI|y!177m_4jh5jmQudoaJq+ zlCLkp#~E4+5l;hE!Z=`t>^~4I%f35JyVtx94_PMwE^{Wtk0`r_BYn*cW}+TubOt51?12q99-vQ(6B)741|w`4L(_RdAhp>ziM*~ZldWY0vx}AUDW8K} zU@lQWk5KO1DONjMf{tDda;o&@)Pfam3q>+5^1 z+cA|`jr33TK)%A1q!j%ThaB;J{jCCHetT4VdB)yDgQOaqfvyJuIR0qD`CNZmXui>Y zA5t41f~fXQZY`%v6o%+CyPaVqDxn|;c+U26OxTuRk=KjX7xgc)-id9fNt8jMwGc6$qSJgGl z=b(KfV8cB`zY>lZRjq?Mq%Llh)HVKEsKb&XY~0_FucC~sRLSRtBK7&1X)>B)1LV%b zEKK%qIv32wX)kWT4^kh$Xy{&tQII3H?Mmc%| zRUzfLA`k_`Ur9~Aki6&wOS6jN2c&k9#6bK>hI+J3)TN)pjcQHIXOx%tumI2X(o7@? z*OtsKR?GT_zkJS@^Y)fqI2ua@j_a@ zBv*S;I+q;dB4fXHfE8Z@l!Aj7YvGDP-wHpjT2S!iB2mg4_TcMkBk}xgAIUudJq#{a zY98Siw?8oG>N}pepFHcK2+gk%!#P}owJU(iN8l6yAb8(L(9iJ=MnhZ9ADh7k#q~ME zAl;nWP|xx!{+3~)hjnOo@ak-_Rs8k;WQzcNx*1s^5JK$3{bIBb&oD<38oQo4 zu`5YfuMl%Jp4iRE+i^4%*$TmL8aDT0Z=uNPn?m``&({Z6Kl&pj7txyE)Xy=c#wg^3 z-d!(SH&FmS!iq3Z47xr9$4S5)ho0#~LwlNzy3zKYvL~B40w-?IU0SQqX_AOZ8EEE2 z<0WP+E~f}mmLhk4rz<<*y|ny^1@y&4V>)S;!|+zmkV;Sb1;LLQ(H+!#2w3=_8+8fI zF*t@XVu0+3$}45OryNN24?Z|}_XX*8f87UpLY-t22Idd!P~|)x%t_sGBNnuql~50W zr)&m(pV)*SN2C_-f}bD^LJa`@-W4mc1=E>xuO|H!AD7eDU3f@lravsesTc6{vH4i? zmX%QZX)M));sbo5fR6^_2BLM0`3}eh-ZA?7Sl~){h{yf)tN4dnz<*GR)Is12?p#2R zVL?A7#f{Mes+gFJb;Q`}1xhIYB>^lAwaJs~9f;)vmZ7n`$)V>)Pgk9TYc+6^=tziC z%$4B#>wOwlNymUQ#?<1@1*@pIVr=&0@}5XdCYpU||2^vT0}`iLdbRI8+OYK$O0BvMv~jxb z^?z=BK{Oy%550~?%IW`!mLgTq2~h`JeRZOJ`jhnd^DoS>4yZ0zhZ{lep$fxvfl2+Q zI=|DA9nxO=ZueciqCd8g&k;3Q<4y&quK#{~`_GN^P0&ZrmfmOBxQPSOoz!>L&zOoG z{&$n|pZ+1x$(eih!-ZlYcYBC@+GrFI7#@(aI4S|ImCEjc*-zR|zk~E2xCI^D%zN@` z$h;&m29^)CH;hYz$b2q1;bo$IDYN36y4|YK?+mK^vbC(<{kUAb&PT!{78d<>w-P=< zQz8RrCGz5LD?^2o(0(Xq6ucC9AY_uo&;<}X z;ryTWG#f-oHBQKNXo9=t$lawrbM;5Kr4L-+p~(i0aidT77bjVQtJlF>j{W3XjIkxJ z(zrFR#6jrUQD8Hm8Gv@wX4Uh<+KUITj+)WSNW(xtBqd0sD{bc`N)2rw?P0SY$@j`= z1)&eEX2K%8hAgq8>ypDLtnO0n5nt}Dbee9{85iG8@hJj@e`b!~G~K`E(!+1acbGqY z6f8n~<4tYyFERnmjII)q1eqIu++ueRd59D0g7iBT8|egcU(Tt6Q?M6SJH0mg^U(^5 z^gL8^uK8hi%=K!mj~CwE<{$-&ZG6G*UcT6=;k9rtYK-O?nAv~;3$Yx=SIp#CJY{8Ow{H)7J`fUxoImkhR< zXR2Pe6%q_xR@35X<9C=M`)e14i;bPm`3!Ln;;QPPJcbWGaY(?v1C@^^Wi%g150?eR zp7hDS@dR{YV9!)aKo6vId@Y;gw?_9cQ!M^Icc~^^ZZoKiVVrU~D>T4k#hn%U5PeyC zAu~U;0WBcPlphLJ6dQ9@_)DsfReQsgxAO$Oq(2y4g3e6T*}aW@fBte$yjbQ{q$jd| z;I$!M+JgT?){f>1Y6nlJ*-#GY*2gWTZ|Chu!NQF?X{DDPt#P&}!J3!Cdbnq(jf{gX zN4fT;Xwf2BIDha1bl2zd^WA{15J(VF=&L|QwEC36MZbV&igr5tf>n@bYApgt3Ldl_ z%*Kg%f6UBQe%R=|fWyvX;)Pd4iFizAb|`yr<+}g#GqZvcE0U(WCtnnuE%f@fP4*#P z5TZ9`0kt#nAU<(jNhEy*wy4XKuY zOifitd-84Mxtvp^@m!LcAFUNV!fb}|N3G)F=jM*jutcSm{Y~6Ut@JjQ>Cfa(Jmu5n z_aeJ&F4pC`VsGL{d6f{?GIpV=v|$ww?yEK*`Oywjs-@7o0aT&PeMomJLIeWA<^w0@ z`hs3wo`KcN9bb*q+|1aXqd9cIRknOV{$ScuB*j!Cd(3CDf-#*H5?{n%?$vy!eFv0F zOMscsndui9{HNm@F3s5n0=5e@ds_Wb)6J~^o{|j_37RnIgtiU@AlDvTEuW{8JqLI| zDjW9Tx$;4}FG_f(3$~}b6B=zvZ9g#efy{?yL*{Wn$sOL**#kb*Gh~Wk{ty~WAZzA~ zJ~U6=W0yo6q^mmu1}k6RcLZ1jZpKnF8&{E*-gzWCQPT6ky$+wDHvDn)Um#toPNDSf z+fA-u4>U=w1j{dE%r@nocI7{1|6mBTj_eAima8Z5LzDz@$BpZU5mFQ?F>`z=Mi=tK z|KMGa>4_il?vT@gF|ub?N28k=nlu~Krd)R^>IjfK)Z>YB!4&uFAKlwPsmmZ;V`Lt6 zmpWFRC_t0}Jjcp*jKR*mFS}?7Ak53B3v6wz+VrrWoJ^SgTh$GvCz=4PT%h3i;pA6b zrf}IGwHJ?A3(y5-&s`WskyA(vV(Sk1BV7g}XOG>OWre2d^s}h672xNA zzRfJVXdpNIbQaJt(S*-*R@-&=i@8d#l>G>C=$v4B{^LOv?1}73IBQrpT1hNDd#4&b zFWlLK&XRT_(u#iORlFyBsNv!C_67WI6-362mwy>>KHqB#vfzXYqmGSnOCg=l(N?2F z`M~mw2t@Vcm$klGU~j@CJ|&hwo(3EU!b(6v;K}mNc?6S|p`(rNBjLFjHuY-x^et@r zEAu!RVvxsY6Q9dYQQ*@w0nyqpe@H8Eus_AqIp~J=9m&9js5;@%azM$+{As~qM`!Ky zOE~_C>o6X0T)H9GX$H()Ps3(l7V?^Dyb3%5RacBSu5PhgWvEEozVf5$uZq`4Rh{vT(dMtT0$MmqF-A2>$@PIvG6Kx+XPxt)*??jS6KtOu4co2m_W+^%s1mtmv1H#7n0xNaOA5 z3K*{hvG`~heu>T)n#3aP#$1B{es`u7uaZ9`4HTbp=fEE1Z@&l>kp{~LHh{in>lro} zuh3tIyqpjisLQ;Q+br5}Avh!_+Cyt_a!8E9ziDqTUtdbBh9aEt!F8y^B zDI?`X=&`k!GOl7w>jVY-g(+@zck{2yO?6>g0m1SY_42fq-e!x&rL<+$~3KLxLb`_(X=BjgVWS08IZRRw~H^jx>|MA)Zs6Wrsxc{bElUjic-Fjmy(gScz0(unS z?x|sI+7GGC)4y*^13G5UWkN>kIF*OykjsOWz?}MX|7~MQlqN1fKifi*!G&+{x4^Lp zxwk!$#!C^R{o(Nz*`b@2*BWCM6f=w+1{jfQ$OEayu?Sl9YrDkxFj<1ZC7Budmv5=es! zupgVXUQGVo_dAL;Om3j8P@R6Y;N?zvGvoiH$5wxf50q$4qngDXp4OpfbuL6bH z-5N5QeSRPveP;dLk_0NQu5p!M08^3~{4K-W&I!YtXk4~l2&Vlsxtf{Nd>{SUGZzZN zBu{r+SB=a2b|M6>owxKeL=n3EOmK}1K1G~DC9f}x`v$y#Qr?(E9*hMjc43+KL2 z?F~MD>Zb}T9h8a7X@KNifNu*(8K#Du<66S6N2gi^8xm)RVs!$dF-CejrvPLm3&=7) zlU3B6`b8r$(N&_cj<`*cdOpr}57@Ygh7nGbGkehp6_mRZ4m+^j{sWu)eiPR7@~ie$ zoMo!+^<}#aDPS2^uIm70Jyt`xVdW009tzA(tVQc!*;u=wcbpbzo}PNjlGFv%7kYsr zr7BXlidw~D^Bc|MJ%^kRD^SNK1=o9?uKxycglWTMK#1w$b1VEr1d5!x?c#B8;z#|c znagmxDRW&46;>^?B#kY77cWW@!|Of@)ow7$IYXq!^BKGzD|?r*Zw)XU4RPNkhxyfL zspin-XXDOq+!4Yri3SpW6ay&&>UH1U4|I>2VDaVGoKDIl?`gg{0yIfn;JR0?d_D`* z>hNo2K3J_w9q1d4(SpGgEJL#kkB=T$VR+DqBNyyQkjQ0`!ulIlN*&1W7m>M2jFr-sPHBJGeaAE>=^lBfTV6;cbm#~!~ zg2Wcd@W9IzMxVB0OK>LT+p%B7w+L_+3+zO0wCg1!tnS}uEHkg_7Nm?Jq7luo;QST+9%>sMQ!NrCI z!GQ!DXZostO0zwz8stWJy8=|gY@fCN_X!QjGj-~O-h-FK5;!ivLv?70>%cO42oYa2 zk4MHU1}C8rR>cRdtdnkb&jOl7Qoo-J<`|iMe%fU86fypC(5NU98^*xDK#y@m%*)5`g^=Ln#Bbva5k1=b?v5i1@(lZr!tsE;#;q z)jJ^>ehp(i_$*+UWbIPKb-;RCqfUP8<+fkg{C1bNYd0m9{Q4TK$Ni{Ttbwl~YdySt z+c`AoYv4itd{)M+9Vg<_Fx7y7l(Xcf)Jj#5r+&)%WS&SEg|_nk@Tzo1H1`bq2NgT2 zW3K}NKo-(?^c3x$WDQJHXu3g;UQhqC_hCinIoCRAQJU{WOLWDrRGd{G#|V=!M)V21 zdU=|&e^ZbmVP@Cw(X_+;WbN)mU$@FTkU{JiC)I^>knCZrZ||^I7<;BaXyqdLdi`1Q zAaW3euz7*n{I;rYsGUB^KHxyeXkdOJnIh5OH2dP0t|71>I4g=oDyVXAQz$pI9X)Qa z2gj(jbjerhFVx-|eS=Yho~DiCyiN;7%(}_EQLTFmK&xY94eWfb|IY%!{rQhbU4v-~ zt4ys@*6U?mpF7`lFWCdIImnqN`LYuW9w?a^h{DgOCX%9vY^L{0T}@_F8e>9~JU|Vv z(1B9V`o9MtSjL}go5@jf#vp*ahlDIZf~MB)fIF7vQ%EoT}?L*1Xz6zW!vi!~bTk^+Oc|FfX>gc1qaj(BG1n?7>GAJrkd_Iz=sQPEL z!r!djtEmKvoWNcHMv(a4O9&LzKC_TtsT}Ngz|fookQv6y0G&K5=_1h=7Cx=xm%-OG z4jF^&0b&I7G@zA07gCC(M>}xhNozQH!s)ZE;7QD~*Y$D~EF*#DSw^3=fsKJRw_`zt z_~WbJ-sX71981Tn`3gh)D#gWy^Rup8wb`mX?{h)ShgZ=9l7JJzyYBu9oqo!pAcs4maBr zjm}MimlBQ=q)@6$mwI2Xx8wpFFjP>AZ>~Q};$UULyy!b=CD~qMt2+~HTre{*=GUZT zGDA^*W@I<^!jcu6`tbFCf5+zn-H*j)wNos2k~*Q!fES2rKb#ZhF}VP<=gv?_%{?mm zd~C5Sl`byRB*vZfaeusbG*E**`1@u$zJhFTd1{H4VTUSzXemLq1P#KXVM zMJ4>f`Vzsg&0g+9PTSp#XVT+%anuuX^y)}7;@-_IJ9GfhS{!{Q0TcReqL+Jh&uu5Z zT6-etaN`0D`t`5`J#P4?2<2zPsDQl(TKqnaObA)G^yn(6%>}yI>l0yVXlCO=AJ`Ll zxT@ldf$pTnzC;aU({|nN%-m)->xH(3=aRY-#hY6ZgmA+@0^0`qX~-Al?=OqVHl38X7ctA_3QE(3hf!L2=5!XbcrKkeQgPt&LmOLaZoxVjOgQYI8oG z&VlLWn_b*O%I;79)($!F>AX+e%#b+xHSTr(BwBi61=!mgPz}&MmRiB8hpQ{jjkx71 zqd$h+Ac@ zNG@2*{4WKf^?>n!>YG0(Z?57c52a{3+)7(0>3zt;ygyUEGI${hRzFWO8QBcnwVToJ z&XytzjxOPf_Kx>|C)x;6C-n=4R}XED^@+vXFGU|o+-Di{_a=LPi4qbTwQunS;k;_5Kt(p&3^FP7&7(tPS@f^ z?7bWrB)E;{%|m_m6E_o4Dw2l@U46c?#H{Qo)*=w2z34?q*kI*dHBj2<+Ki+-jf>n$ z2lleJY9_BWCHUSPeDo3Qd|QB!HeYFJm$e|kT5>5%%|o8>LWe8=ble&HUHnf&u8~3a z&WOfP#=VJ8k1bBs*^Va}G3)osZ z_RwgqjB#kj1L`0dU%9Rhy1l@d5?aRcSKTL&m{T6-_E@y#sSo{?@cehWnb$-ui~zCW zOWxOns5!cw{NdB?M*cHjgwsg*$8+j#r(~O+2Yl@@DEfo7S)aQtRqRZ($1W!tT;>d- zwgYAMV|oi~ghB-&vUxrlhvLD8n!6O%o<<6AIqjVP4y}++dK4>pN_v4t-(>j<&5Kpy zX}~B#-VPsZ*z$C24hTeN1v9vG?XvGTeHi|?R{G6geD#8Hu@^He8n&N>wngRLM~=bq zo`dAG@Eo+WzJsqp&hNZtbKIVOml%pyUOq=z9|yz3`*QZQugny$R-`wH#v-EYDYA79 z^KgPd17Sp3p=%eS3kmDv&R_S<=

PX@RaNHT5t#6PTawpPsh-QlD@#;FW2-6#bjI zpIat_W+ShefdnRQsm`7O^MenkFa!tN8DK!Lpo#`W^FC$C(GS-oYZikv*(~3VxV>>V zU|(+jX=@r~f_uCdSB@UMvEyME=zOl|;Pz{d%}A8p+d5=4!)J4f{*^gEv8nJB=A~*= z&4iun%A9(5NZFyYm7Tr5J&soF=t9&lCDC=)hGmhx;u9yw#lmW7stl^U`?Cx0cxrvK zn)Pt*L$-_x(6I*-xk_*H@S<`V?Vf#kcH8~8{wy40QEfpF&@)>uO`_|3aS^IG|%0v|e&R}>ytL-;tL8U|UkRh?h3|Y1n zt5^0jIplnig0*{jtG>v}9CT5Mjr((fphADbCzBsTyK5HI0|SI(B_smsGpuq-^~ubp z*l1OIS5WA5_%pOCT+V2RBRD{kE{>xOH)5Wjw!?qjn|+C34`~`*TZN>!qbBz#dcpktCOuMimjW;A3X0O18;ID zwhB8si}W5`Bt~k1rg^-~5~4-5k<14o`P6ZrM~g^Agyf~TE~HAxJbl|ER&R_`G0P7HnpR zke$k8mN|ltdtt_4wI(C(j)LFlg_ykLX1&RGE|tBkoe+=4f_azk7f;igzYz=d0qaud70yhw+}ZjKn&Qad2E{{Po>$7= zk0R|co8`y?8c(M_KVmmI9nOK5aM$9t2nD8A@L~Jga2_Hl%apU6 z_M^yMB+s`V`aQSK!(wQ+@PeEoT|E8W7x-9r+=ro1y)t9`U75|RfKQH7Om$R-%jrF( zh|D7c7e{6f)!<6>?a{RX$!PoDW+U8dCFHQ!yr=i-jnL~N#|PE9AC68J-`ew4a_0F6 zrCs!k>4O(F`+$SN#Zb^;zb>_dzjse&<9yA~Zn13}naM@9&G$eQmi?wGxxkTOz3FVs z9d3DTm&o@D8I88yre)SPLghF?)7HkAR z_;jC&cudFQ_GSvi@?9w9%jU`3no+rI>jep9NFxyi59djyyK47PY1*HLNDmt2o@-IimW1i$8=lUY8%ukB^pw%jDH|+y8ldPC4XQ?d7*P*1T*XQxu^{p)m z+Pa#_!a&KH09N>a4_z_f4|Z(b^XB`I2wPAVkF_b;G4nM2Qs_cq(x61e#Qy&&P5A}q zvliekYuu)AhbKIRV;mTST5gF+MkkAD3+OJ)U*RiEM8}GbW>taQ}UoR%W!w(t7#YP9;~9 z#Ls0Y5B4sY0b^gP%Zn5u8AbzmidA-AY$3#spa}3_;Y?XXV>3Ho;o8mM;_rO`t^XqR zVffvjwvm`b>pjY~YAUkjo49#-^C6=XUR}l1z#q@Jl&a?ba`149DWQ27ZJhp7`0)&{ z(u=RBBB3W1u`DY>BaYn3v5TJAEo{6&q*Sa3T(MY%JgLqlwq-^GhJ|~ukYc{<#aGDI zH0Br7rfm8rbUlGzu|I3=B}5}Dd;|?Rvwh4|thIifc!qdK3D03WwBLG1fTZGao4+R+ zMY$-Tt7PE)-g@&W7x1v64^AjJDvPKaIX>UiIvPNw$Rl)Jv--WbiU6z%q);$}^2XyB zFNEvi1R}uGRl!>7Lnvtl(^*ZN@n-t&j%f;7Cju0lSuiiuzfuD6Cby$6VkfX5SXafA z^FU86Gq}oBgZ>BY8qJ{$aQzunqVvF@M(B-}Aa|k?c1Ill>GR{$F*@Dxf)NcV80GZG z!$;>x=mJ+8b=#;D6JANUUd+OoJ)Umw8>dM%)pi;Sk7uSv0~!jLdQT7qf!-yRqH(Z( zEZUjHY9Bz(iKhwMC{tuKSmJP{(3ra>r_L9%Z{glWN@ zikj>bGv!td4GKfX@Lak--_Q3sp5r-=-@m_(LuH1!uIqfC+v|0{&U6eyFeh2 z7!q;94FrOKfv;*I0pOJjX9HNkKYW*tAw7hEKS@I8Zvx*7Mhq=~+fzM-z_g_xKq3j>4yeP17U zG0dQqeM1%mQUxJT9QBC5|6?ky{mki!t)GjIyM^FKpWrX>9WwwQ6X9dsD#c&Ls|L-S zJb9wGWaEj@O;k?Zir4O=xAq*hO+X?L$98G)fy-~Ix{3W&_!oDrKS6z>;O+gqOBadv zzg_bGHt@E%Yb=1PsLv^E9qY))+;u}~l^2KQEY#To{~>kQn?ZJ7QPx%f1K+wyyVdN^c{j zqM%VF?1NaG_@pMLk6fE0%F{tP_$A<@Uz5{>>?^tMLX-?CIT1 zd|jKG;XBUnRxwIHbOtu1hpr)~6FFB481Gf?#_Tf`_V%ac!>shtdm6B{ipYMXg?a!( zgLNKRc8>8p_g7lql|EGAOrI|L+M$KBNNLz=HhUhNO)r-0R2I6=zbQRl(JGQ}+WKpQ zOH{t~D?1zOfb2L)i$~stu^GjIm_IiW4C$CoquvvsGr*iiUP4Ss_MI5_q*0Ya!yF-G zHK-q21a-$J5~3XkTOYIa;K{qz_ce$t9cZX#$9?&l0yk_}Xjj8GV*>Z1jY_>R45fB4 zTbh*X^fu^?n>-(OZXv(L@65+MJiZ8qm8cOqf=kREugBe;kq{IY{5}%aOSx|h_>;nU zXWKQ&B?qK5z7s!kZ}lc~AH7w7y;d_@Dxis{92F}P5}>l31>WeLmjKBk3xzg?y?dTV zOF*`DSb|i0Y>yJ%=BOzIZ$(I)X`aV-!B-2LAE#ZuT@p?84)RBp1s!OJSP2rPSe1Wx zPBCb)de5N-IGABH0GFS`WB6ja>@^u*=9NzTR)6-C4W_2z;a{4~E#vFrW*Gb4&dvUI zB6SIu3kEfAT*GWju8S_2MOBj@!1RQ5Be=iE*|tHlNN0EXeQ%(at&IVYl#oQ*&6*JI zHpWIAV}};KugMzc_($$oI|n%OIEjY%7&KHB9n37F-lkL{Cyl1fjiuJx$+Pfe(0KiW zZ;K+EbPks)TQD+WbC-M&uYoNQ`y_-pweL+7E@@g&PBiJ&Wg9vVk8_h3z(!jxg&-a5 zuT&#_k+dgNKZ=2%Q@N=S5S;JS4y%{mo}iGE@g`-RJS8TYd5HPrdxeVFX6@^r+j%jH z6kjdGXFH7U~>E zs066h|10lgHu~FW9!Z3_1yjDgsr$X)B>L8rN}|1h_4Dx|^J08wc}5?^7(TNMRrKNj zw;#qM|Jt%ZmSF9#I7)9n5l-=cSm^wI)B%fB~Ti7 zEn@r_ZS`k@0TSont2?-M9<%LxhOyp04G-p)YexuW@HwR)Fwa>jC2PQvYoGs4Kw7jC zrPgg4lLd46UKZhB4-8WQFEsn@h`HRuua2-NkL3DL_fb^ttVj-!+Ez6g3vK+x;9~Nr zvd)ZOwcROXu3XSd#6JprpCoD|XE6gc0e~Z@@5R8-{!H}M^^T6iS#&<9j_sj-nEP>fEPL9`FNSTkm7qN1GM=~Fif zTSJ{n?k!vI884;@9g;Y7h89kZpoA6O3gh}Cvt1(be(v3_^+(aWF(|YP2xI>#9=q*G zGqJ6ejH+aNDR?9&GJhNjy^7j(me=a&<k0w3-!v0d}$#5X3VR0vX>Vwh;8dty7_3Rt#kzJ}CSo{%8 ziLe5jy!rP`ttW&YOEX&PADZ%oFMzsFC#s=se{gjhAnzHRyHqIEh*X4Cd#NR|l##tA zt=R=pc^ETv{ONv`J>PsRtrKfasHH(Xi-z+`@e*kUWU!Lw@xxAZmwP@F2xn2h|CyfLpHebxrOJ#Si~28Bu9pZDTR=qcTi_h0mqPGoRx28q}WQbMDKhq+%bP;q$7E2Z-MY_)CLaY=T95CbV&&a z?GC4%VonL%|Mh#nBDac?>OZAXTvTmr78E&jnCP>-ZK*4;tQX9^KE85g;8vQTTQRrI z<3<=kbQ`Hv{@a7Y7o&!ZKo;tKi6N_7K5r=3oq5S3 z+MT@0^a|#N6P0f+I}uGEmm9mIv|@{a!qXG0h5l>a{p)Cn&<}+0?nzHtF;+7;7PY~s zB#5XzteX(# z?)Y8GWUpau1dcc$zgGLov^#}d?+Jt|m}&;gMdguk;ACwUe&l+lI4FE*z5db4u9lHV zYW}0Jp!363Ht;}ZH8I65U8>kOwUjM_m1wbQ7$aUH@2UjOy;M>9J#Uf-S+_3FFAYua z81i#ijT;t>lsz zJ#OeHq2>7fHDhGuc=sc**`37iFd=Q2x=;9rT(huDdD3#XjetnEdQ}hkBtCgAi|*Vz zNwSAJ4<}E{#_I>DjDCMb9Br|B&Z*ZF*b7pUa6)~pc`6(5d0T~g_GP9* zv_HbvK4kS}HpJl71}NV}`5Mq66bd$J1X-Ws1`<%WkSy|@t!6RTLUI8}NA&JY^T6Sm&n{&3;mJe~pV!MvRH zw@tTAIW)&P&>-7jvgD8ah&RU@P&^Ro0u>~;Z?9ib`R|k85F)T`7L1+;vmAl6@##k< zZyxyl8$$W%gew1Y1_^@{0huNv*6HSyKvkCe&kX~je#Y1h2a9fGbP-B^KT8-Hn8l0Bi76o$ z5z-rL&+=gYa%U~F5f&7;e)rQ-!WsyR!vb5$yAG)he3vy5kMu$+DoUA%-f5{I=V&{~ zn^&6?yZ6jy=f@yt%aq_^`72~{@;QbzalsV{yYC`=%tF{(V=l(6`O*$tIb(I@6!j;m zDryl7g<}x~3Fd!uR@$$q*b4tZpSKCJLJdsaq8=xvfsPZN6SsENh}P`pN(ks<-A3)G zs-+T!o^I@iYqmkj^leOeicJeId`0e)4$GIhcR(x^O3!PlVQ-^4atCaWA=e;*nRf3f zRGj8>>u;d2iLEj+&iqLW*-=xh>S*-VthP!$A4Xy9vRFvyb2@dJ5}4m21uy*`%Dh4K z&5-S^hp3f0FOQnYV_lNH8|yIFzax@Qv$$pmU0Dd2X!*Pxf) z@@y!BsxVw_HC<~dLETScK6>}ad?xU1K?+bl(8{cwU`S!R$a)gHs0tO%u=gEL)r_*u z5c4jet@;;Ht)&j#q6x{NeC~&7;@QnuiJK*|!P{MMJ!LC_YdW(nQ-w%C^j1^&vNiN zaiN3kPw=%aRZo}*5gqSkmeMT!^o%5{<`I_9ensT@j4 z-pY}XGt~DoPBy~rD&ETL1?+9a^+mg2*B^ zlpD-L&OE_>qRcFdC2ABZ*TS zvs9-r&T((N+x7SVU*)}j7Y41QZv{NF5%8YmL_hG@5~D8asQpxdZUu2)#iuGoU1!hJ zy#s8Rp>zea^&i&Edjn0cM9P1|jT+zu>i67yT~=0%z>AO)>>Hs~ae2FfjT=D64dqd) zlDfqVpXu>eU4mY-sOeVLPS{Ab*D7zZonvh;7dsUsa2{+(z-l#F7D$QSAxdNNBh+6F zu&x8FJL4%nqL-`XolGHL7(F1JzD5=3G=+B+b@4OYm2(JbX;*Lq*@2{4QKw>8=k)-% zo^6+Xe9=x;lLdRXOLQX^)9FF`tqne&t#d5VHo2k%D$S4Wz|kpgPc4KR4*a;*7Bfg#2ht%1%DZ{QZRQazV$Dw_WAIYtV=jhl`A>Wtl~!6Em3}7kP^= zur+WISixS-xd$~7C^+5JRZPy*dT!sGK7At@9~(h9nw!l9`#~byAZeqIbQe1TAnj41 z9Dsan{dgq!INkZA)duv&r1F0B>4A&AMbP?_ytN9^w9VA$%^>F9+_(7Wr00L>jTiuF zO?IAT1s+d%a8cUk$wHYwo`FcXXKc}(JzxPnPGHY`I}%jZ-q;n|X;H62UxWZnc&VRz zg}5~Wy<7C$C}NAPS@x^ZUtu;dg71@$>BEMaH|HmVVLZjV}78uiImrz80M~lA2((3<-r|a=14Iw z*;<+Shqc2v_1wQ_KM?JP;v-OH{s1VAwav!y{bi!%PS1OS@#7osFs@7mdT^~v+k*W= z$y5hww`mFF5YU19sehf#4)Rnh)tdoNW0LdxzN9^ahgi%M+s2l^vIC!FfVYmPA5%sY z7?0N|V{6Bvm=4t76J+D^vGd+KtJMMh*C~RN%Ht8QyRk>G0QMd|uZAy(ZW}Y?Dy~`L zaU;_R`Q2P=hk`Z6|1{%$N7Y^uwjaLjy74PBIfAK1`o?mJ%o6OqGMY7{98o@b9B=T- zNCBcSwz%6$HW|x6J$;UI`yFqS8&!HxD_c{!?EHUlJ0YNU_+jXtrD&uMV(ugo@vP?} zwv{n-D9E1aPj~mN3IuLPKQ9yS;}kr4&c;PqLNo&$aks!~EfuyD|4bQ$>`p92K7FZW zJ|TGaYumCc;X`yY{~=j#SjXpj0rA`R!g`0ZX(L;jQIL?$qg^5RBDmwtjpVjp6E<4r zi#-tgSCjnTAU9C*&R34SufTCB+m1eb-vdy=VHs?NnVE+qd+_md53Yw5tagT1?f8C& zcN+hyEm6PxAF(s^saSNqs0eU}oCp~ilGVRl?W{( z;l#e1YvN14J6zZNqqkn-36yNUhUD=xq=O*ugT*syEEDPm#d+?pCzL0hQcx3q!}1ox zLIVY`$N^;6mx4I867oNyKb(DhkvMA{NyoI|YaD264#EKPVd+$eqh!EZ}fCE$W$kT|7pCTq86HvWP#8AYfHAhA2 zsLiTpKG2hBz<4!om$7LOVwS6qGSOCE@6!v<0IbcsExk=B`ADSPY3fF25@ zN!1RcwSvfON4&j4t^xo78m$V9#eRN_hFUq&Dq=%2Z#JcY0wXR@eVAGDK107uYN0;Y zej`w?47OdR@LAgzpxR5whXrn$HUPXFp-js`u}4r*}1po_zO;1-vKg^^3+DPx>KY^usSydf^h^j-7U zh{4j;pYpB$ywKAc`j*dsx%A4#vx)U$p}YXPTggUn(889?2=8CwfeJj3oVeoddWlEB z-_?c6Ej^7_?lPVgn8?}FRY?FhCdUpqMu_W?I!&Uyel!;hoU?qa+tXS9OD-XfZI^ovv}av}7N0^^DLAlF0tDKPiq~%UX(c4z++&ps$Ccc= zs9gR$Jo#+aMR+ZOr5CTp@kwv89s2S!WzSO4;oF6dFXt(|I&zp+grqH6QBmj=#%=KN z`hz67_D`G(Af(2tupw}2M7h38$FJ1KO%1gA$p)L4A2@*0uez-_oK7I-QLGLMlx9LG znPId{P8Z3^>BHR^!==wx4&F#f87=NP>F~#1lg^G(&~IbK_`!?K1M;i4!8VJ3JBCG$ zcP9lDeewEorBOvh zLE5?xlju2^xOL{f`A(tpyAvw-_9#u97@0NJkKFKwO<8HN9uK74IB{Sq9+~=hPh)a& zhyRc5WT3Y&>hGtN!=|J{P7zyDF|u$}+XVjk#N58cRB6V&oRt=`JIpa7rn}YmNy#nu zGI430)$#pxyh+5@&I5Cv4%-TH^+UH0uVoL{=~3G9E+gI+ddsg1mm9sGWPCe>>>tj` zjVU4<5z|n<=9ER*G2;NY<^r*uPy;+u`n{zc8G0lnu|$AdBk}{WFLvu5c^TiTWnO!f z5}4O=CS=>UW2%F+$&G-s1y(9g@$ZSci-IlQqApX`KzBTf8oIR%rztbVojv66-9u*B zc8V6ooERe%LU=go(RFyv{9s_?VHv^ z2M^5L20D!yi@eN;nhK?31yADlhN!==AbL`GC1z(-01kAYtTSSA*P;BTJG4fs2FAwA z5(i}bE5S$SgyStAg$tUZL7-1kXO9>_4cw&WFFzuWbcqIWM+UYsY3vPQz=T@zmd|~;bKRVIw6MnH0#t+H3wJJ1S`H#R# zL{#07gS^668yG&&Hq!DkN;T>?8a=7M_=QTqGyqpHUh5k zzO|olY870O1^#>L_Ra(E8 zlz5UBPV{s`ZY1hd@E+{K$Yk@$)b^kcE{QgDlY7hFB!24{TC3mW2I+)|l^?nIyB~cuK$sf@Ta)7_CC*#;#ysx{)q)yn`%fkYU4tLMk~)^iA3goNg}o&p9Os6 zAn5&WFYb8aW?FZOkAsMxGgT2|bATmFKjzX0)aL?Qc*9fh6cX*e? zDQLI&kAa$^^NzfGc-*+MK1)7GYL>p--VtoAiH6J;B}G6NB1?}L%Q>?SuBTE0AB(j_ zq_ck#`&^0OlJc0|<8+$1MCr=a;jvjzXzKa*Z;w*15K|yYcwhDcyPK z8-P`p-q_j75@Q6GGT0_FJT|qtweK4FBfgnV7umfJ8aJNOoy&6qrHywx(2_|WJr#jv zaI9Doe>pZ24_<}^~~`*mB+f5m`;E@XUF5mE#^j9#WA z`Ob3p*eFVAGWpa_q^K!?{UZ)Ff92t9_sOlNktLq!YCKam^r1}=`|KdhfYxhpo(CygbG5u5DDIHIAs45n4%Lg=Ao&H){@(4;_hI-`tbk<#Z9N#nK=vygy|8^ z0FS!CR8Vt*ir^%TIm1H(M{K?>+vuZ*4h1^&pZ5&{n&`45#rM}SHU{Vpa<)r1*hZ+v z4lQ@;A>ZyU{vW~ISfma}4K{V+>4(%TWB)}cfS`>i^|>*y+`43BPx@Pk$GMy}zAYNr z7m6Rj;N-YtG_V(_Vxm|ID|C+gi#kdj(yB@yPw}Pwrh3qOvUuIcgf%9KP4{SBPfnOcvQ0Qs2*+!dq%{#j;p`#ep;?QpjRs363yDYsqhD?Buy>G~v!4 zM>*Xj`F=Hg24eQ;h`8KQmhj_D!9zEHi6t(_3v8==J+%j;{gqQ9@*^Tqjrk}qtBogL z9{1TAwYJ&&(>3-8h-3sVnw);7R1F>-GRH=5Rk77H=PhcSkRoTgU#G}UDqlzps)uvU zCgDJt5d=oL^J0}TLp}0Ww(B9l02A_((Eaa>PVzB)NepV;wB>m6f3yI4=yb#iz1i)n z0tv5jFZN~XVNMZN)VAw8C-4;~mZY#0YLpffJdgmzo~}LqE`=!L>Vu6EV>aexy>8hd z#RGux+`J?C?XLCUDN1?p>6beAo)cbM7f^*N6qQ?zU|=KwmDZXO0_pP)=C7EQ8%0Z& z=YIxLzvo=Dd=&DnCum)=;jrN#+aYU1BxIzw3yiOD1P zerZ;MO?~>Oy>jMCVl2H4{=nx-DuLXoz1Rb1{RoY156SWx^{B#l&EMCC>cId@v`->kxOsV&$TDR zJ)gNi?;?`+`%8tf%0zlo(gGYr2?H^}-HJoAVZ@eaWJ{RUqo%^ruew<`2(4-(^#)6q zF?3Dq`Vf9qR%cGJIg<9Fv9<(tju}ECq&8<3=da8lz9oXZD?jibM9tof@m{(7N!Ci) zruxTr7&7=vhj=}vM4M%boFQNz*?&2Y4AyFf2q5J5qpy+`JlrI`h^FdUj1$DuSMS~o z$b&2FV079ufUODzYTbdj3dAq2MuX>6w+&ReA^9rVN>gOfCGN+H(5DH=cd-nG(;*#}t!4TMl0nX22NI#lAtzDp?j`qj0YOp>1+HEe3VTecSlC$p#lVl*Z947@mL)0`Z0D*6XhwBl`w zoML94EVc(;<--fT)%W*jP}fGy_=SAHqDptHz)EdaQHSwtKTY!=cD^Xl8mnF7;_c5l zMU+Z6Wu$1lvbn=-=O0XvwTzXeXWznc)ikXnc)?szW=BU; zy}-?YtPm_ig`VpCn>SpSN{`=uvmR$?*pj>Pj&$}YP!0|@Ng8&(CLLZj>1`X&2Bj_r z6|_c!=`Ql1Y{>ja&QB2T^3pTg+f_-I$lNO3)lQLyOaM4Vzul#lprM@I(iVAK)0~&> zmZvfO7mX=5iQ?_}QX_`%?LuS_5_yCA7L2O|=TD|oM>6(PWzY3Y5hTpCmX8iVj_6FL z7(uQCKsX2bpe~U&6Z=hmmE)7|tvWs}*dKighkOGniEO!BSow>sjeh!_!?2vA$;Rt- zu*NbI+6Fj#m-wH6bIk8C&+KdzWh#&1s4ly`TsK$T+*n0*0Su&@@;IkyH84+kAFX^!(t#l z=PQy>89wOI4UVpx$4fx->B_Z4-}t}C_F6eTnaamaFKNPiqmTn%jt1UJuvTi;55Kmh z3=GsFpr-T%xC9%x8I6IGEnz)-Bp#16&>rf>kpcLxyL^`mhb0+f>#yDCUBdk(7y z?cdMJ@a?vJ)?@WcBz)2N?utK%o`2cX08ci%t^}mXKQs5wMkWsoiTqxr|0oZ)9DdMX zg^>tPt_R#_xeUXndnC=hV*jzHznvk|H~;DGC9L9K6BqJKJ!vO$;mJ8ICt*Cj{pc!$ z$R`&X4xX&ed3uz#_+>R8&N~p`oS7PTlkY_Yoaac}YoxjxS#k>-40}-PoqCkk54TdZ znK_qte5V8hVgX&)P7O?W^=tHMx@VcGXaz`Gi-qT&*!5)>RS0Q5k%FK(QqxK2U%tUQ z6HQ6R{o56q5xIw^f=WL$y)1H*R~>RsP^aXY%D02Yr#bG#x|$!UqDzkSmoPoCXCJ>$ z{tG$nIDEQid{G*Tb_Ho`Z*H!4-M$zccsL87-uB7~-It=Lxt&WHtK`$-+0(R1X(!9< zManSSI=?{50vq6Yi1TEMHmAxAk_N7Hu((A$bg1jY$&j7&8k-3i>db#D+tagSeNaWd z8X-(%B4|k^6b{jM_A!bsm^7mgf!{z%$ZwZbb|op_3+HAEd`oTnl^{^NVme_hysllo zcGjD3&(6WvH%T@`?GyhY{46{%jqRmn{&UiNt($Z`u>v`nBQ@)H3B2Ua+{OH7fFnu$ z@HU)J@%TJC?Q}Lc!sBW-r#^W%njnoWIVEiQM^g6gIN%GPjdP53nAx%PJPNOgyi=fz znHQKikmTJX?>H)I+E?1i4={}5Pd_h)au)}d z(ql6sV)oz1E(Sc$--$+}RQ6#A47X9qLuG0qf8N?DI28*k2az`*w_QEepOu#J|L0eL zG2(H=M)ce5lHJR{+K4eRy6YdOoAh&AaL>9Ag-V!)a7A~j3XWSUpkoY7(B=dtq~Ajk zlWE35Q6}_7J3Hz*>Iij~w27zWjZ|+;bG$5@>vmY*2S0?r@ACu)P~|P*)UFzzU2U%lOfS3x$w^`k^EsLkCH3vzfsP7eFO3ImcKbTAx(zIT9*bb}{&^$PD_hOO{HeFb zMp(Bcz=6aV#Rk{Aphtg#U!RzXS3dCK+CnqWgo$8Y8X1BoXGrn2G_x}ae)n?Kg_c4U zoJ;_E<~{{(6eZMPwWJt@{%7wF>Hr)KFt4w@+x9>Om}){*Al(bXTay%cr1-p^L=Dfg ze9iJof*y0Lu1p(>0YqQGZ2r|H;9SB_4vK%@mnSfo)1qsrv~D^3fl463dcI*7HPMRj zlS@7W7JLt8FEB46Z3H6AYQlvYpi9ZXaJ0&{+6w&NJm#K%TlZ=k)(;>j2$Z!sgwOv@ zMJ=)7o9gGTZHpv5E#ub{N+&4gXkF7PUud9a3Ew%7%=el$&}PAr=4~-&L}nea4cODj zvB8r{Ve0cESQSmy53@X@OUfxCT#O#8>K<-8>g`ynZa|WER$RwIE5sdhV1Q`K==-G zR>b!_wT#MO&p*1){lfbmpX%+mD`)r(Cqw*x&+)ITzjs7ikp#A|P#dH*Wf)4(iBLiK zI?+nhbW%^~t=rLPME&%Y4q@V4nJi2F{goc!`Pgntr8>euKY!I*X~b(UyZjz zc06A2Tho_}S#Bp=1#c^bTgm*yZb%T*z^QkJ{b;9&%DFMn_m-Uby;dT3A1yGd?gxi4 z>pWAus?Dmn9>_|hyaYy#%E%cekF7WigN$|1`hy-5Bu@>rH2^kMwEK0=UmBizSE=u0f`M_pg2) zTO)x9<6@Bveqg2&V0xy{bFizBEml_drmsiGNV_$zgZhr?H8**m3yRRC_J+buP9iJW;-x_%pn&k=M=Ez-wrkze_OhRTI8gc9>`_{7ji1SN00hR^dAJ(DYng^^dkPat=`)V(ChRrYD@)&k7na zeOc&-=~0-Md?r+Lid8VK7>}U6{Fwq&g(Ao^=w=Cdh<1K|*`ElnYqT|oyl|w}R~^~) zy_7|IOm}W+80yR&t5yGUedF-G%&+Gug?+M_xsG@)UQP3}g-ajw(`Z_PX*Jif_1iCE z9%zuClUYo>eJ@wOU9kLT%f8vK0hZmaPa!EPZv-V8y0X|ab3?K-DiprD@|8m^vlcsT z7xDT-$t6o>JY9O8B2gZ5R1GaSpq)?;je{_1*dA9Dg9e6MW8u6~rEjS>o5lwPXZqHk z0@TRemYd{*T8uQ6i1KIqN!MfVwCtZXvahA5=E!ZXNe4B@2lN;@%1pEHlVaO|;!*nA z0k|HdCXyS#6toRQfm}`Epj?!%R#u=BTq(*dI;)$4{^w7=k^zR6<6E-tFLX>r zQx{>5r7?;S3!XW^a%H-r7Wt^*ja{QrT*>k`$!Fm8sdeL9_2k=lBvphYAZ}}b z`Vts8(6-qe%m|%5mA4|z%zC_Nih4O;(BYpCj?7RN0yD6+S^v#ymIQJ+);Y5nuYhMv zbe~nezotQD`1wr7JtY3in1mDM?q%YgcDvIrKa8nlfRj3#yB}0e=yjt~>o0yUnDWnj zN@U@I&ZyQ$E$FPA^m{f&MHL}#P8Pcj3 zQYC9l2T`cby4jIjoE0r%GF1EY)R`ThZv~oiiSd+jGdJZ!Du>hpBtX+R_WA%~^NN!j zF6g&hBDg^%1kHr{S&nj+DVA2zMnD4i29&mR@`vNfhwn{Ju{9shyqQxqVQ|L^F0Z$ar^u9RoV$IbDfZwo7dJ3{ zPKQM9)5GiG>yaDYBC91x+Gp(#ZvX++h_B%}Aj?yHnUzBNe8o-voj)@l!c<4kOr_1J zJUVrK6SVXV<+BKG-MhEnMaKK8F+Q3%u+nX96qqU()d4h4^Ey-8bT@e+m&lE=SM$}H z`^5APx;(iIHLF_*T`4!k7mlQ=(`6yD$M(sM_bmf<3_ocG=?F~z5&$S*!vR6wqi^b8 zrws&x5^s{(TInhID2pjh2x*ls-283$G3Ej4sHDo7SR&aE?+ktkOTJ3G6F`u^Cj_g6Ia>I@onXg4)XGeT)MGHJUpS+YDLwb^sv zDRkYFok<4&Tr8w$Oj;NGVkh~BrtWDlYiMDQU;x#W#QI*WoT^+TAUb5M=d@7Bz;$mI#qily#-8_PIyCZ4J1pgkN+h6gb5%jxN7nrkS2Dt(m&LpVTUpmDi#cLV2M^ z4b&>wY87}%AgPj{%xh-rI$b!nU=)6RYqtC82StZ?za)yt8rAU|7lLLOH>^6K> z8~d>)7fcTh3wp$M#7eNKKWirxE;LFSwsn{Y?}Um3nh#_NUL5b{8z4R>tKt zX&>H>J8_lKORB=IDhrI}4f};$nQ9BB+x`5liaHKPGBRP$ki@JkEDvU-&N3co>Z%?a z`P@%b&R+pFIPqQwpV-!-2IRDib^e+VZe4!G4Mc2Qezrv*r{^4qcf)Xf$?KV3NU1Y! zG}Qsozue0<55jBVth#Yr4f){A9tVdGPZ|T}FDa%E!|JnA0L|l+K00?ipyaRiz|BaY z@uh7#1LR*-^C}6D3%Nipg*Ndz$f=Ns5jNL^38rfxCa)1=?57$(!ZXWYj8y?Uh%@LK ztn0+SsNXf@cLW2lpR2sI8hlFPnVs;!VPMMu-ySE`uW0Mz733O(xz=H$%kmB?Wvf;9 zyF-%d1P3#e)1Y`gI9vP&KPH5$hkVn!HP*j!1ol8Esh4w@7zv4_Bx94zqz=92h!OKj zO;x=F%`zE_%cL|wWwLmf8bApow%C-9&Ay2q>vXyVVTFcQ4vSbPXvJyl`vDE8C z>7`S(V3)8c#br;$OYVux683a8`m#>Bcn;URE!!2@a-Xu}26po{GJKXRWRTN0NNi%s*bRcwL z0d<^Q$aG5Lu!gceinSX5ieu)ORd9t($-dLF7wG9T$nUT{v_T7?M9$%hjn$cd$P!zh z4_U-3sc3dlbnotgM`kBvHw24Fzf~I!Haud>sy$kRqw={8<6)W&aYw=eca3XMTF)aC zKU#JZQahB!d@ezkkOMQfCe68)1cQ-2TMuPHUFfDC{PkifY9H=Z*mw$bJ)hh)Gu}Jj z?>2lz)Z3M2*0?PQ!@j>@pG$s`L&+}R-15Y=?5HFL$J7!a7(bdd^(i2}L~njVvAXNy z{y+4|wp#8x2{)Nf`&76YxiMOX+SWbefNqHA`*_|P>1Dsq!0kX1y_b_nT;ShQxTe~e z>?f+JsK>Gj_1|{Z3YHJJl^Wq76v%%D#?nL?49F5hU=Kj2pqz-=O)ey?pZfYF!K8o} zcly#3@)l|OTIWnh(ZK&mtJ-(p0uzD>yvg?VA&8nZ)E!mDBc&6puA!(y??}(Di=2jn zEX<7zKZ4v*R{qZWq~8aR7h@8|=!^)o4bokw-e&JpK9$^<6WAXo>>rE0zD|_4N&_Ux zrr9BCr8n-jm_(U1bh5)RB{*)AzBP7dHw$fj2Y_v-XdDv!)>;cMd)(|&?N!8@r4Q}# zcP%+ZdOj&8ll+<(>EiP;C@aj7D4rFp;^`CkFdyZ1c5(djb@I+^G@WqwfcK8N;>ev~ zNJ3pN!3JtMzU3#v)eBE_K$birYb`*Mpz-fG8$>hm3H2d6TEhP}%YSnu;7aI3+aGI( znOEqEuejY}1OHkC0-)|oj%B9^_tj*cI_dS|MB!q)QBq${gD4tcX?evqlZL}fE->K* z(V7oIJ?YfC4>N}29MXmoCh$UHDVxxhcfTwX*ek2L22}P-T@p#fO?9>oL*FCP@vWv* ziqujf9r`6qiQYf5c%B;_WP%E2zVem^URGv4yRvkUS|j?8@n=WL~6nf&@?WPxrKZcna*eDf%0QZF{?R|Ys8sLFyS;IbcN z-rbJJ5J>W*B~zX8{+J#uVErnNApPYYz%&b}vaT?LDU93}Oj*KzDK0Xl;{$+*>BNQd zPn+8!8BIJGo~)yVzPjilFYpou))hG7tu;S4FfUBqOWZn@Zd81YEu!^tmrqje*5L=h zSjGZr2BDoIj+Vlp-9j~9Ytg)SV|o}_U~L3ibbs#Mz`PZnO>l|Sp?k06Mbq*92Zx0>>aEtjud(*G}%2x2*P zw*WSG1a{JfMlEI5svIRZp-~BUlQlqV5FLA~&W znwL(joL5DkM2;a7G*c*X$Q z(n3b=0v7@3W}xmE+@3`nxqbuwj0WD!g?mY2ha?Z(ZW4G7ta?H|4c2Jgn1|9QQv7I# zsXmnYn|<~ljdtx+{y;OxS9fBH!#>kBGXUQSVT2+3N7Ij}+5qzZtK$o$ z;z(%xE-I(GvCCkIyDktppi8j3{P0MjYF4UVK=&WH6sXga6KHewDrjT)+%-bcffyka z{(Uw)S+0GWBkhCXiV|r! zVLABw5;K6V;PxV6@{%sK1yw;64LztW3#L%4R8u^gtqxij?b~ynn@tVFw-Nl{?BVaQ z|1LOkuwi=vRsTU?(e!t}6;+DZ9WXIEN$s{K70r?2m3tCro6YedUsi>JxED-at|-3$ zcUR&cZ@eV|H#!XzZqrMGz*^H5RGz&@_`36?wL*JNll4&`!mhvoM@?V1>oNyaj?PGV z{>@?{dF;nMfa@7(=Gj1AYO4eaeNtxy&<$KWKGx@(7W+)_DnUI&)2s;Yk z0LUF)VWuCXHZX$^BP@dJq4}?@ah@DmpkUgByLi4lf0S+y2!6()a%$*H^!i~H4EGpn z0erijX7jBD;AJ&l_k)2;Q;Vt9l(1I`&^K<%!lJl_?I~(E(eo-1rODcEj+_3FaC&4T zCE%DCfw}jeKKx(e;A5%}rO8NFTi08+Z26A5*slA#c>Hs~t6Zx~Q}qN{`{XSIZa*JF z?fMfpvd~r4-Qhxui`fTz&VPHe_8{*P@&0-1;QP^>fW+1=XS>lemugoB_xgt0(gr9h zP06}T+6_sS-A9QqB<%o87*S}Hb5Wc5tD_}AvLGt$Ed^MR7LD?|uX*oSj(kepbu*`Q z=E+BLk~5Z#+eqMdbjas|Xtju5Dhx^F+`UEEd5!qiR$uV#NyG-MS5JJ2L2`_#@8hLW zZ0@Tm72Uq4bc;|Wa}V}<^O!vNl4PSviYlHwgMUp)^?6s;BxgWZi3_C@Wm_ynXJ_igb4Yz`!%MpQ|v{s^>eX@f6 z#t_W^KvjigLl)Wf!}MRizk#PA&m+}JxeWqQh3qZTgEf07eLO(r9w^BGmOKRNK9{&V zN^2?Ab?cU9kN)gts^i~bhD%EH2$ZkF_}+0-k8K&gZu$PL(C~U%+ZeVUx|w!BmoG{^ z>LTXE1hl&6?8_{p9>% zB~YYYjg|;9Ky2^<1c3q=(<8C_irwUv{cxvVh^n%`D=$$wz73gpuAH9l5IK0IjM=eIUx*p>Fdcs@XZO6t47(jbL);2y>Jd53R>ut=dWfDP!dUVb50@tX z0xeApY;eEq?^u?5??p??>24smVtT;Ow9(%XfgWx{0;|*DAN$d)zt>(19T=|Zl27bg ztT(c%qblubRDJZ8YG-f&4X39zCkw#4srbvOnLE}$PL_Nx*2vq{U=x)~{z*ETaFDJ7 z>I7G!3PBlAvs>p9!Q0ZTHK@t&5iGznqI{h0fj$Z7(rda@>73M1`@|}_dq5u6Nf0z?@<&y-z0Nt9b#8wu+kK;~-cd%!*uVj@GsIFneKY{ST zJ^|99q5=x6!%j!2@$mIS=Q?jdGtH#cfsdXdneM#ln)OD>b=#I^i0nMQpwT~@PQBwY zTb;{oA^X92r)jTqjlW$VV3ZM4z$}?m5B?eB_G~XhmZ0i^{SywbM8c zl2EEzmHnpZT~n<+f?)}je;oJkS^UE5!_>d#m{Ys#q4ty0!WDXgqI{!e@iN7vm^}73 zf(kvw-%Wz)goI*Bv{>6zvq7Cib~y$=028 z-BlA7%(SKtok$I+Kf-NhOJI8Ja?}H4#s%c~GH#XO=^!1jGgJp@;Xo6o`ej;Zv#3i> z8O0k5Ma@eCI~U1a;fo1$66}M>deN*8h;|BXHb;rf+B`nv%r8S~IS>VFAh6A0Vo(`u zSWoDa{71^`{|{5&9Z&W5$A1SGS=nU9wf9!WRaw`_R>&yXgtF(AA~J7C*<3}k!lkU+ z^hrbAWL@JnB;y+4DqMc&_W68&zu!L|9v<%dp7-mV^P11s^QBKhJsegF^zcp~OIT*7 z(iS(sZvQ>?6_`twZ~G67xz-!jm3&{Zx3ad{og1);818z722o0eMNc!U#B+~zc?NXAYgu~G|TSe=_oQqqQ8Q90NSTO5jHfiown zU~?~3uOwq-qLyv^jSgmAEsjV9p6i`QA^Y6^q|=boN`Vc(|D0x8MAcI%;OnuE^DZs1 zw9>+cT(^tA2kqJy{!$4$RU{0bEs8wso0M>h6oz)=9`7vbpMp$%Xcj1W{^DN0K z_NhCrmcKXFABwMulBcL0=Xb}-KaSBw7W@-mfhi8SS123Ulod1$df&|UwNvkh*fJ(F zh=};Fx6z6zv(67tT7|!4EZwArIEx~qXdJh3ARs|J30(%;0}zRG?9Z)mV6?Ea?l z*#ziSh-6x8u>5lZyOQI&*M!|M*%?wegz>3)?=~BK#{Rpo>O#Nendqtzv5*D*Q3G*V znBriJzA3TzW5$wmA=I|8<4htc6YG-uYp~&kjxkXIyK*BryXpHegN`aDtFkDa-(BEeOau`S;OM4$^4-5}TJFWtMpP3wTXwQ)t zO?W^^=WTf}fp#AeaLQr?#w3zuI{H{uS~f$nQs6PN8!07clad;SZ_5q-wk=40!(I_) zBh<|@{Hzpf1XY5c<4l~O`V_<*C5NEl^3RSpn(puu`0V$k(J`hwi-bu61q+F{Lwxcq zOx?;W;Apkj6N9qd+RSj9l~!g`8p~??bOfL>G#7XE!`*SVxPK6~r- z)p9R=%w>jQ9~yGHVBtD9!%x1Uhw)G{&1LcMT0OFzLkup(B4T5;c0rau9)8e4Q-4`EBSl<=Q?q|1l^C@r zbDuRM%Ge*A1R*Ysb=YFkkXR=MRm+gVL2MfJ~C# z0VTK!LK7kR%WGo?uj>!!Dv7xDcBujrU)O62XjN>Wo`__q2UgX$ssr<%{Z z&*pQV0wpx3{tc(XKm4#}hF9?W^&uGEm&QW2_WTC;Ce@3(vsklwkt=(w9}3cT65s;` zkp^?6E0=b4ifryk`3U)Ftg#PyW~TqEIOo-86%h|i-je>I79N|vJ#k_=qnkj@ZSt#N zMgQvq*2-k1ZuD{GN2>BKv_IHgPS`11LF5Nr1qV_5t`Kx%rvk%}zv+X{d*!-kexcUe zeCa_2ZIxU4InW6gscJ2&EG4U%HrMo_OQd~?7b*M|&!;Vccz(c$JZh_-G9<${p%}^- zrXL%07wT2GS%JGQt*o%HV1be-+GB|@B16cE7hMM47^-hLaeU}J-E;C?ckGd-5Ry{%W# zbu?VTv@V=k%^<6}i95|(a_;vRH)XB%;{bDg|LcAXFs`VeQ~ErZH^?OT@A}vJWnl@e zl&6OA)JuhQ_iq6L9?LXd5wt5tI$#xnC0>`b=#ZLwyD!Qs{rue>BRx(yN9G-xZK|pM zcw#Um5vrHL?SH-yH+3JppGK*Ll((2UaS_-CABi;)-@`^Cf`Plvux4vovg%yi*@3<&5r1F!3V~2Te?t*)2|Jo=+ew8 zb5Uh|C*nl;L?!)bj9N%ZEL^@km;#jW6#5ACwbIc*e>CTHH?k;btls>Fqrg*VVM=*3ek)|=LI6YTie#;GuNHUz$%=7P(Cq@#D>;i0vN zkV?)nPU*sM*=-b9XTP)|^!3Bb{Nd4ZtjVQ9MU1lzZ+2s{W(Yx@3?wG#Amk0)2buIJ zxTh4XYvk{;;^C^Vw)&gCC*?}ICT8L~A;_kX-J_uW;96$!>Z1y}gQc1O28vGjDZg-i zh}J-e;H@L*0tP2O_Xh+j50;vxp%1@*?O_|pC#)+M+5WwV@1=muFPZ*5rX7{woqn+V zka3JS0opHzHip0A5jA$GxG)SUJgKSF@$G=qHrdJ#<>NB;n%qYWe@u{ z+)Iq@WOLKp0n@lrg)-yjLRNI>ENFdhuGgo3T7<}4^4^8OOX@t_Jub$%nGbSY>;xYO zcHgUh$_5)5ixZVzXzez#A$mmgb>iM2xAL`=hO7%CP3kD282tz31s&(>7jtfHVsM|O zXhvwb;vc|()r=dqj7KKFLO-~^Kh52J-(jnWaOT_28>ja_tQMs~`=U>6p4UTz-AtTp zZJ#1iRA^z_;<(ggIWq9MMJ2zYF;N5CT%e_p9AswEZX^rV*`7MZqgLLTs%}%!#Q89E zR|uVk34;mSM|Yr*3!dJ3Ybe4U-VZh(Ou~zL^t1A9=%8CN`GTw z>POpnrN`E_N?_$^Cg72hV#lLxSi-K5kCRr%E3EIJIjh;S(vZq5iI8j@Tg53k#IsKX zOM0~yZs+)x#L?Y!qO?zb@TUy)J~Y^LM?AIs8DX4Lkbgl6>-t&ox@nWUN35th>s zap3H&P8xQpVEKI=$HF^o;x%;nA3wqtezuFI6Yk^T)dE25;;k3o5gJ;R!|^zCjIg9_ z3;&J*96#J;I8G&t87Alsfn{PNF#{@?nf$`Am`0~S6J|QD$fm}M32&gM~0?E7s8@ zwxM~d;$z0URNc@q^FNQ-^*W**NuNI8hQY?Y4w2kuU{JSPJyfQ$z*M-k;D0B=P?Y2& z%?=mK#j%Fw-CX)Y$V)B2&lYSNePX}XPk4z9N+08tugHj~Xdds7@Rf&>FOp-hxllhn z!LWpETo>l1;_Hk-0&ra#*9FKy3Ta_m9;seBzu9g>buI5QXWv`4B2eqch1F8Oik2`t zG3{)FlJc^^c*}{t4Cwp|jptW+r537Wk}ehes~Qa))WbQr;d`?oUP9ZmwIO1A$%=DE zHm)vbpHl~IeksAS18|2wKkcVJGIVvY9g;})7Btz0m`_$HYb5`t{0p;EuZZJQTzZN( z-G`cY4BZr@0>#Pmgo9u|h{?3LosLX2|Gd?r?S#~tKFLSFZAC}3hZpYHr-H`*N#);W zuz2E5q(%j1SUovQ{Om!}&fj!KgUZB1Tq!c=Hb@PXev2#RqasDc%_;etArC*s;A}s= zALy#JK4sdk=YtX?Q1|h=k7(ztLdW}GP=DbM#&fAD%7L1EEy ztw|@PlipBcK~|DC9b`Jt8X1A_c)}UyB?6!N4fY=YC%2G2d=TD6 zGLo7U`cPqs+`3`cxq%G*y#nGSMh-~sqv;V$>F0s-A<<5ns;17_@?gL3w0A@wCkK&P zvHXbq5zgOQYl&rEE$_0!?Ck&P(In;`^6h59Cc8CS=M+)-Z*R_*%-Ld{NP#L@g!gB& zIw&27@pxIMopCGTXKaO?{SU{&6c-{I`wG@Gs1)0^_y+A}ZF=Sa(|wSR%kU}Q6XrWn zZl)yO{(AsWA6X`)IAk7M3)m_=VW6)}TrG5R?wxRt3QCBYyW2n!m0j4znn4C`cevE8 z@;E))kPNgT%aa^Sd#!4pq+34ef32^xBTRL)=jmlA;hpt=gsU8!-8zAO<1+c6fnAKh zqMQZW95OmUH^0FFA9=h%zZ9pV-}f=cUPy}fk1OOQI9&4J-+*QPj<8eV_nGQ8;*2H1 z3O@jmXt;-H7gIBerc}buNiQ7Ey7BHM-s{14ch=a<%Y{t}xf@}mCG$T0k*&u9bG>`g zc-73Omu=qI{iK+2iuV=LD*8C9-gBz&`Hs(QB|AP>fs<^(5IaKkWM4co`BPLrW!o&}xvpHw zMp7tBa5f==e1e23j?{R`svgQ|60QXb_MBSngb!NaT!TIJIO(nf5G4#jW`uqAUsIQM zx4LIkl7j|+#M^@wjcY_P4DK#*Mw!rpEN7Uy*b|Mr#Ps!_5{kR?wXo7q>f6mghr7~->0_PW$K-2bc=)Q+%3QwbKe~m}3`JmrGK?X1w7iKHe9jxWf zQ9t^5S=8p+z!!GH6>Yf0@5A+!F+q4@^NCWrgG$SMQd{Eu*T-qKsC3@YvjUeu_9K5= z)lzCGvdQ*Nrw(zfMPZReueye#D~mF#(>O(SIX zSGaU}`e%Rjq$h26qF-d3F_yF2RXW_>HcMpHs^c`RE2zn1ue5bp=nblkuEgXTfH4ZCkwxET*; zb@8j|gt8Y|Tv3D{1kCr0UQv3PlXQA&mSveg$&{Fac6&;VDuQ<7S@*B3C#sXJc++Zh z*U~95&fmjyn>#uocBH(uD8G?ktND|jhF|34CaHILpNB$B@xNDelJnw^^!Zo?Wl~O> zY6ZrTV&JH%!~sv`+w|b(_$~bV-eyR%PdxMFz43nK(J}K^$OMhG96!qh1@ptU1)J(> zjCv(sk2j}}ikh$(Z*ch<_o+E8<3oH7O4kj^l4x1de)7YjS$_Bk?@;c}{E@;0!EOX7 z?2S+Z_=@_{kcJ!vEKVNZRw2S>v;#@RepPKy!q)PMiHmxSv3Izm)?$Z#yjS>a2(=sC z7gqnI57YW1ObvE0x7viLu&3D)?%)qTx&4>wHTYrq(ikn^fGA;de^;huI(PAfnab0g zNykfa0Az5qX|83MS+EB|uFhubA2_jS>EBhwe&6TLEkd^gZ zF^bY$W2EOvw00N)&qt3Hm>I+71i${mR$wE67GwEiSt)L=PA z^*Zy%KZI&Lld0jn*{Dw{<&^vR+cHt2a)BMVkB+lVs1u+>fsHIY$6?V5Fbon|JF_ml znLld3Mc7P-v#rfpw#8q6s;~`)`lGX9zLQ9)i*TIxRjfGcjh6JYo% z2mzp~7zXc4O$ZfNUU2e8kz_5O2z5_V*;HakwbG*WNF%)DDbI&i6gCKmc-K=l7D>fg2)*~z94vpGV16TH2_6h>fpA(*mRvSjWAhduwV)?if1`#n z;TW+_b_J{$6TX9H**?dHW*Qx$p1piWXODgfu=sp4g3^WEFzifm2S+Pxt(BsC!A{Io z9RkVCce?e;gX64FEJN%t)k`vo&Gd0g`)<2(xV_EXFm=iPqOl;a71Rona{-bF10+{D z_Eee$Q*0|gh(x4}QRJko^Wo;-7ofd%4Zj`?Z84L%(J9Ekc>q7fK!!+;0mgI(1Yy>R zc)wxsr9>}dYsA|Zt4#bkgW@hjBZ?bQekn&HSXyf-=r)tK2z}B{)n$*R9t;bHz%5Ulzt5$k7cW_bR)*^Jc?M$m5Gaow`4$D`CCs2FD8|0=&xq) zPjM{E2C8F*E)%{I-eCD*{WJ9x!9uSbX-1^-5vwEbV%dHw20s61AiVdAl*=QU#2OEo zy(+9{MvMM*wFQ=+3?Tz8+=y*olDO_`sz2Enod>mraduWODgsWZ9dS#w3V;1caguI> z#a3>y7GrmT#+n#wc8vwq=xyZc3${>4-h*Tw;X^2fe&Wepaf?ZIJx3z8a1P@I&C~fO z`7Vx6ekP3+VjHwD{kQyt+W=SWv@sD@*hy2JNIt&%De8ZkRRIyr-UeMo45{oMGa|na zr7eU2r+ntKxU z1TK`}?wmek;l>lIfS3@6GLe#52~>A{iol;-_F+&!o>$~pYpg#~A$BNv_EtwbE~BPT zU%@h^59uL7E0tJKEJ&`veN<4mfoj@Za^>rM)<#&ta(syNeHI*apA|`IUdT$_j+zvw z>%_n!Ets2M+mJ+}2ad-2yNt4xYM81iT&SOa*$mKULJ7Xrk966_KT(hKs=j?%q|stp zJ`XiFn=By2JQr4Hh;2FHt`F;a@h~Nmp9(DtO@Nbv;WzEy&yAfOr+SkHU@P|ngdQ@T zV@X8)+GB_Xk6Awr^5c0v?XMx^b}Yhak=8}o3iV<+CroK!HQ-nlkIQAm=WTifU~ur~ z9|R4zrgckuJ?XjvWUc;6KD+X+d(u%d49$~@g3*KvN<U-gSyCCN{!{$CDL)?d3{} zIn~}P)=j@)Y;6BY-e-VMhP!MQqFyEO3n-F3(jEjm7ME7-!#KTP(w4><#NBjM%j37Av9I%zpB$4L|+m= zSQ5(IF7nq{-3!FehicEX=lTM(Qt`G7{ib&w=h=A#%!W6p`tH`9g_S4;*6n0HXN^#4 zb&ox&;{8Mn^0uBF!~Zh4m1B+aBynr2*<#%#gl8rd)n&J;M$WI_zTcV1#kejA*mSdT zwmQM|g#5xe`ZxBarld0u&uCTj&2S{T6R)b-l&_+zDsj$|!!v|FWo=~OoZgl7Fp>XZ z0g}SGO+WbOJW+Coe*Pzcp1LO*hl-|%-{XASf?i}?9v#~46CB$e?fVp?n6%5#iuA2Y z(WG)LkDu(bf*d&6%S<({h|&=drmX>g_!sH9;o}7cq92mqGd5>F-QxEvql|VRKFeNm zcrj66+{m4%n~F-0P&@QHN-meYXSuUiFwh!f1&5N+8V3alupeS(kkV&bl!LlE5ljd7 z2=FUaULIEu{aFP&aghUiz%p!T014q93$`C!oh{zXJk00DBPhF2czEoNT%c`}9dWG4HYAL~PI9 zeFRcjWh*O4C5?>vLy}>D+c;M4$2pFH>hh@7H=R-O6j9 z-7c6a1sok}-d~+;7LA)yNq+S*Np*;Pz&X^P!6Zcs^p-~Z+iM{%1#j9TMJ?>l;|8&B zwDvE9BaiNRJ%@RGbFv>3CAad6NxuD0^CTx3F~(|lF)i3KGbz;eQgv>goI(ca43VMC zuEB?oG?3%}Dc33eXq!qnXZYc{fVsEj)_+sIDo1m`qnPAW{)~m%vOoS(CzlRbufx4< ziy)?N?EH2(yYiF005^^4x%#1sqFJeLJ38bKZU}UzTvpDDt5t%WyU<{ZofEj}L(2kU z49Kk_tx(j-y4<={#t^Sl_Us{Jff@A88U<*A$2T(zwP|mbi17d?AbsPb4DSh1ILP^3 zR$Op*q{8;n7T`%awib7d3zYWVaH3{hjCYOyY)6Ru78~6o0A{jRL`Z4TOq~>;znQ9{0vs$esnLC@AIdeV>= zKA1tUr@vS!9ZKNKMYbgr<0}J>&R)gqW=p3X)ZN%mWQu(roq`UA=RwAeJc*;c0tY|C zx5xCblFV9?x%++M3&1PO^{V+P5+bv3l&nO)iT83YP~Sf`CwG+ajP3@?IP?mt-lIbx zUN3_>#q@1?UJ8ch{yHXfPYk|!a|s-MXoxLLrlY!#i_n1OfEPdLUKa->p_DxNS0<<| zr*(P(Sgbk#qI9NV>A{ou4D@lx&yV%z(M*;{lmjmVTLFCzi&~TQ$J%od6hBX zLAX*NS|S%7G1HZ#UTF7>z(q)=lRiKs3K{cqmcE^0^*(|fJ*55I9BFfd9n@XvDdijt zPU@j4m-yXuN*5*t5(7W=)rnwE@GJ0Two_$IJRF`*NiCeq6nOIJ6a53(I8eaV*@n5> zAr4TE7g#qLTsmkMJ!T3Bc}N=M>{Dt&j>5mXry1xToRk5A?SYJi8~1NEwOozHmUnxD zP$s+iW1t3b3=A<53%~M0xg_&{bv0&-CZPB{~t?5)R=<^G%E9o$ zxnR;w3PhTAxOdgj5NC?M4b7%ineVAinW+gh%~VQG+yuEO~WJF6@N+XK*xtm)(m_H@qD zDmwmnGoZ1lX-?!sKd;#{L7PWT-2Qu5B@Lk)VmDu2+BHoz;?4Au>)DR!q!r`pQkkTu z4-dOAQafn?FZnVRP)(mDzAn77k80GBT=+yl^Y#I1a}qKs^YS6`Zb2yXS{OPh@S&jI z;h*lTGRVM&(|=%ey$Q4n{k;HZt0#OM+Kv11gDLrFAS|5egFyYewaP{z$kU9%dW@Y( z@{V?ZKb$N^YMI<;?q(Z*Mt#FuM3BbJrM{6rboErppAz!_YDa4>wE~uZEfM`R#0iq5 zQtMKEF@0aRtHw3g4!v}Ttey7wC|{8r9jVaj-Mu27S^3R9a0f~*CENmxK+LTyYR@lY zD7u)a)C9Q*29=OsV*mO&jNdO446?yw7BRv=>I^TmQXY$kxdhmHaLI>z*R2>4?zDBR zA=b3X4`U5P^o){Ufu1)5UQO$7waXd!mV!-Wc;N1=26*iSIZ#kf7@;y4yTZoDfDQVu z@`0!*DKZN=a3p>#tWSmQhwSde8k9Za4fpDxCElX$zyz!w#Nm?1-FlWbDerz7aNh<7 zK^}Nh{}=K4$y!|vRI9t_SeCdP-UQ1Z$j9p8D#pa`Pj;)Z?<-y&CwXK58bgqt2q`1A zgfbYkrzQOaWCG?x^s=r8&=cIC+{+Byx3tSO`As1MIvG7h;GjkV=Jt{|1@tHgnFB_H z*z~FTEm}2zUEMX=k;WRGIWs7L%qi@Ml-sd6q)m7bJIp~)ZrYrKplfTEwXyMLJ44k< zdiKQOMML3&`x!XLnmq>eZ0;r?ZfDH{Sc_ABl$-R(FBGVy$7wGWnzzm6%$I_uI731b z49S-F8rO3mI`Gk&8!ID-VH>&mO(>|8gV`8=N+!fvL&6d~yl-3TZ_rIVd_QxV>F>1;` zISaQEtME6k93wx_yFH+`W{u;#FSl;URK_GC_^UT;JX!YKj=Q-bX`;CStmxm8dqLfVp33tNGl#!3AKXuVceyXc*s@}NypaSAXd9Y)r^UkB4$e^&lnu)wjiD)RE7*+ zWEeLR*Aw?HFlzh}Q4C~!8eFz3D1WH`pwceM`plo6JdIuPllD^yeB(Jnb#VtAO3;Tc zR;@{g!`bFU4g}Ga*~eGHPI;xXtJ{pA_WzW)I==Aar{0colJ1E8(sYi6w3P2YTzqR zRt^36hMR!$8SOtKO?w)^L~gVhnmHsQ;#<&h7xz-S3DSFE7nT*WwiEi(99(813%DRt z!x02==|1Qb}&thDEzmUXquB;@KB>}Y<+HJrb~ea7O4GxQ3-hwTw4I;Rt({`uNr!5yY>9aFAw z3Dd;-dxyG@hc{ESQ@b#$PFV*e>JGjI$4nCmN;o_x`0X)%_TEq75&mlfmiEXphuOCO zXWJ&9P5)mbS+L(r;fhF-Z;h*a>kPrhLrWcU<&0o^h@U)hDh&NXW3vn@mqxlN8=;(d z!*288newgEU`-o_^!F31UH(;>j+0Iuw!4UlfzH4$6?a5kY(ROr^`*!rt3vkf*YN78 z88BUgegx$bV@{G#v>x!%b+Bf}4&P2!`AZ);&q+SR+dw`*RN#|j!VT3Vh7ti*ErJ$x z#Da4W`%DuXofj|N5RWBuTlS`=d;WDUmMq$;E*`-aGreaVtrEPU>o~fW2caVFK~x

JZne=WM|VmtoB;1a zkp-I3B{P;mUpF@L!k)EM@gbu}v>e3NW@ArEI(KCiS1J5V*GtIX==-)740|jc*De=y zy)rEL4iM^bO9dX8*KYw@y81ms4_Zs$I4H$=D;8 z>Tdy@|D7om#gqv8%CncMu^<>kbb4W1(gRW z40Hd8V2#idrUU4?KQaV(XoCf@Z0$Q6qtSE)>`Hwl{S%4+A)qO4{~|QEK1Cw%PDw*v zR^>a%q#9h^h56k9Mg3*fg3ZTIg2W`UF~5_fTCEE`3b=DtebF~9pXe=$$p$voU#Z6l zBd1L#K6+7RFJPP57zdUxFOT#-=fLiteLM>gHxY)9vHhjE^HIJrwKo_&_!m=eUO!GI zt|zwQ629)}p$C9;e)r+Tu%|Oubxshwq`bt@+onmkknDjwx9MvHB7q57 z7+i7ICX-GV$Wp@rq#;ZqkPA5YB#bJ&YjQtM#A?~q3teb2|X>C&b8de%!! zY|LRW<1lY$Z{F|%%eNTRL^AF~n;JORjNyt^iG zY>ax5Y&5i-!feV3057^(5g%@Ffx;vUDGb61)?yP#O2)*v4HG5Lz!L1PB62uHQ%daD z!#?VaZgG7&5dD0+f$CWJ8`>GxRYM_#%$on z#gR?#B7FzqSL$LVIlN!hVa_0%;+K`qY{*GFQZ{U*! zqCCx***o(&UXG8KeT}M57q~=8DvkIX?D3+%3M^_`9JiwnuDaj9>nGf30}iDdFwD*0 z&Xa6O6^G895YlV3W-yWkjZ(mzvpnQ@$UddAz(p4He*6zAwPxageW>8X$)dF=(rS9Z zM~ST7l}3UyHr-{ir{-4=e`^2_`B(RTQeECVVs-saQpm2l_e6AWn5G#Fh24aEU(b3* z)&d>(|3kj|bkc7{FzEJ)8ma6n`(pHLzS&kCku0-tHtWGmEuV8=R7jYBX}@u1V5^au zrL@K@2QOEJTe)NCtj}(W{0_o-T}=1!B~@{!=EfRE<^C|u5HF79lLh|$uEf#y4_)-5 zE=qrTh+N>yv%<5tj(?FrSKedTeax$OU85U?&Xns$e|MD|eJcPd?n=^KgJ-QItKM5> z0?aj0OAB!MHnyN;*FT0D&Ek;$BV!5b9zVKW<1=Qvgs?8Ke=Y1gXAXMq19E z+|p_zh_uH(8+tM6nGy#Hyku{Z_$$92P3f(Bdr7C6Dqt!(TK1zqXAv%KG?S4rRz1bs zZ%GV$IX8L*5+w^cP>_E9zzhdoL|%>3(Zu$mP1m?tzh&q$=%7=D4+O|x`4@u>f~9er zf{tTgfEQEe(baZ>H>o8mZtzLTU#BDx)gY*scYZf{^5^Bs+jI}@j;=-2tH)_^mu!t~ zikdH@0LJ!8D@xeviGaA3kA8)T?R~ofC;h)&C3RbW%rya+Qdu7aQneizQ5zb|y z?Su#QVxGKNDc^!-uKhl(Yw?7&ThoAV+v15Ekq4`C%hLKHS~lnj_g7VSniM^HD}U9i zXXS2f8gTzr3RL&SmJlHjzj~(NSs&k7&5Esm4dMYbBtaA%4Cz9b;D6OmAI}lw8<-C%BP5vPDt+IM4!Fg0Vtm8t}JyNwp+-+c>)hb_a;e*d>-y^>CyLX(>8^F*jpmM3| zt)=|s4hRWG^D$1ZiJ4Vw4y&*K9D2Io{YwBhu7CqvQ+f4D25u0;2U;+To=N=HG<_!E z-7};OikamP%8LM@MjvH6bz6G+?6%Pv=VtfClp=b)DFxD;6U~n(Zl^^`&${5fZgpt* zzDl;0>iG{hi!Cp9fZNHoQP-ew0w$>`~}n-M|**g4+pkTMUC2LWa}-R?g2i% zjz|3io~%h>BbQXGx+tacZ+MsR_vuZF8o_VFDlpG6SDXqr_!(AwUfoF4e$V*+X6IHO zrW%i`uZ%eJ)5?ClQOFsEW7rUy7y4YXxXl2#D?Vc{RWUHfU+1=}a;@+6qYZF%AJ_RI zYB_=IR`9)-EUPBg4bj6l_xDKK)GeFpO;Q!3hC$PsbPiKGbO4^48>0vPjmoO|axHe- zKVafUgFg#79(~iy>%c3R@&8q*RZbGs2>=T^k>1-EVp}|NOQTghAR$DS>U)d~Bk4!G zlwZmEPZb5#2$q-;&KWQ7tlCbT-PR|`zWt)|u2YHV@4P*+y?Jb!-tjpx^iV-bM-%p= z3)CC9NnT-wXXd%A0Of4T!C-1q=m6>DzJKO894l6TgN2^Lm@fGf>f`MYtIEqdhA_gd z_uojzLGyvwRzadvql|lB06ojRHDHdUnK|U`yyeqAfutFm9*yY5@kmi1eA>^~6&BMC zrIJc;n$m_63xP%XuPqj(7WxCOU~xy==bGs1NelMF-zkz7!vI>*c*c3gm0lFz;~qqo z7EW{hmTWDcM5W&P_OTPMd!u78m8SS|$L?B5bd3e~sZ5*j;Eu;C?72>s|1-6uWwHs_ zRHEl)Tf!dN*)2|Q%{@zLRl?gzAidZPzDB zCvjpq>Ag|L6%L8Y`EO6tl15|PX45zaf?HPIRvA@0BXT`3H-mjxz~ISJ^l`?sd_PaU z=B|G{Lk;o1i_@-IK2ILQ7H3j6v|)f-1q|N+!_kYaH%t`aCgkC;kQ9IDupw-Gkcztz zBIYpRV#Cghp{Qe{aX8`J{LL$*+e+S|py9q#!ix!aw+BO$GCYi4z1?wIco(qhHT-&i zK(p`XUOSoC9=3D5TBdouhQgY9Q;wAraCR+1CwTI~+(Ttp?xnoVfjfkPx8l<0NC%@g zlmT{Ll*~`=A*4V#?Z0M;UzjQRVwMh>#cJ`CKoi@V$~FHk^>jL8-Al{AlX3=q&)UV? zmi!u9*c8?YI)6q=Ih9|lO}Wn0K9?n+0GDz*@;cyYi8moCw>=|YI6-Xd+}@@vcQxTy zrJE!IFMfwu7ex->jIcZCyOTUofJ|eg?~!a3qx$9j<3m6Hq}7J7db5*XN9TG>QhPkk z-hN-PdX}tF6=)DX&eP4O2gq^5Ho8~R3nO5F0b@oAd{kQ>t{LiOrwHacc6$+p)@|al zaA^=EdqJd^5|@E;zadJjA`=_nZ|=}iZ`Cw2=)AJULntrwt{iY#*=8Yi$|v{L zbdlB3T~>>tV`0Vo-JVm!yy*LK4osTLV0-xiD}0BaCbz1QEb9}WsS=h$vlB%$JT7r* zmf`GeEF@NE&7ifNQeOK$cw$Bg3?gKc2-F5cvW~9>lNr#QFVcEa=8n)(H$uV=^&*x9 z=H3xuDbPL1=B?X9ag#Qz+5b`8qyZM^5=!cu(BVfk$#B)ysF0{6jmZCD0fhZ`?+o=1 zk5_PK#^pg{9$UXFfo(RHtvWye(o#IX<8nyPM{4PMoDlgW+7Z(z$GLYm0)N0gcIWJ| zn9rXGPq2U~muYQSZkD~zYX<`h>hntHMhBL+F4g$WC%GjC!P}z z+rvBLWyrh2W#Ofy{WED#E+lkQp5mFd-Od-8_0Va)t^rB@P`AWgGVk@=zM`!h7CkpV z(V?SL8{hv8BOpIp!32M!^Z5Nkvw1uqF4MpJ=qlN?twBeu3O~z60`OeUq1dao_$xVF z1l@1K2b`EW(vzbkAB?Dci>R4JkfxLbxFchL(hwn<`UYycs`yE=a6zQKoA z%7myDDF-Tmx_P$Ih7r3>u-?P7)B(ubu1PQWf#lVM8d8cpX$&$8N4z8tLQQV>;_}e( zUWuN?MA8Q}z4{tgH*(tBB;WAxCbds6N6Wx3LlaQt)=)HH>Ovof#7T?`7yrtllPQufO}_@?$kB;G!Ow;XYqGBhZM1!xA%ypVsT= z@0m9-m5Jx1)nV)j+Q#no&%mDNF{<2(yfD&5y^z8zYQcK#Ut(22^2Guv`iG2~?5`1i z-v{&kC~0+EP%tQA^?jM*U(%;<;9nY)@wN-EK7}!s3HKdpfqJbhXVTRb)%VHyAm?0` zv(^@O`8F1UQ+Bk+{cX@^R0-N{HhhUXulPo8i+>CVucYjTgq=^oP((uy+KTz;WK~~Y zS72Tama13wS6gr=ijAj0n?D9U@ILiftqu{j^l0P-AQAGA0t}2kSdLqfwYZ+t9;eq^ zXI}3gc%eTbJ!BV-qSJgxf4KTLN^s&P69x@e?eXr{7y&@42xnCECPkkcGKh9VQBkhM z_4T+8Tsty{DYszri{2Qxj!r8_9RbBz;L+D+gs-(RbIydQqF*Nn`}mj#qyrS@Ola6i zp-!)N$Mn<@H`pN2Sgk4}XSFB01LkOX5r%B0{r1bb3k6K!D&a1-j;jhEMWFzTR)zRr zuieD`=@G(T!LAgv!1=}Bc`{9%-xX&c>bh?b+h(YJ4-AD8yu)PWILbWEP;xG24{vXT z&z|>jC8rKi-zcV3PT=03aWP8Ce(VYbsOiCZK&mHs8`|80dh9V@{=ol zde%iL@AWZDGXhAhS%U%I!C+MSkrUr8qU?_do+>RHvN7s%?)n2LB+Q7p1kb_|LM5pm zmpnihtEv}MZ%hs&2Sa`bOKV(Vi*=ly?d=YPv_iMv=?4eGoZ8v+t1`4#;W6K`xKaC{WqT{uO_Q7+;-lF-kBcK`3+g5HW z_!Q1q4Wj{7PxW4QttI994)Fhshzz3N9Ds?Gd;lZj5;O)TJell& z^h{{##lLi9=fLESIF~BxZTIwF$p@(8laLz^4~Fes4wbPdmOoNj3nz&Vap!L;0bsPE z=&@!`V2wteSaVoYz|JNVQc~=Tg;sdc;$V;g+ap@Ewa~d@jjsczQcr$V1QW;txo*MX zj+#mGRzd^phiA##{`!q5Y^Hai7FKpF+7w=V%q z?p8?%1J3Uf(`Yf6*Xw0D*>Ixj!`;F^`{GOpn7h@aY_1nqtlTJDH)?1Hq6?_BLNJDy zd7sL6a&Oq^^Q4bXFk7%sRGdHy8HmIRb!+&sI)$=l<7t;4va4~AtK;9nnj1(52=Z4; z4g#dK&#)?|)}22QyMgamAaH_KntTe#q>1epM#5FAlweCA`2s8&Ae!Spl5g zl!&%jR5$pV@mFi+&RPJvqjWkm5VoTlw_j9~O1Sb?SWYYV5tR_6{yR)AJWTk$AxkWu zo@#TO41nFg!D#+dRRtDne@tIO`xBF%Iq?BtwGx+aL8NPhReew+iw$YLu*Zi5#J~C~ zIOGOJF|NSg=W7XLLewgAh4PQKK-a~-RUHMVw(-5LBJc$dUM{4JY)Fq!B=n_H}91Kfo(BM01*4Z8v8Ggk5Ei2qDF8K4tP zCK$-=ImwUdn(I{AH+l3dz=kL8amZTkh@<fJI-Fw3xkpHmjh_BF$$Je{xQV$-U+gQaj zP4vSA5g|f-qUKt^4Lh8-mE{c&mx8!h{8ooS_|dgM%iqHTx;t~}p>nPexEwq7DOM+U zDe*1Uc&M@DR0t=0rUP&@9F0g!A>YR9GJ1y1S5#Z;pL;{~!|O7sT&leU*8gPuf~E|C z%7%8g7bEC9axbS(h;j9t6HY-rn+ogcfmRkc1@kI#Cf@jkF**Z=QsYm|IeZI2IUXBx z!MY%35Hfa0;QA2rK_e#1<7K~kmaXC-w#|+EKws+gm#MNE*i9t+&TU-u#^IJymxT8e ziUaS1usmOj>nGD&NJSgXsnE;p&f?fVq9FL(^l@OO&!Q^S_oGLA? z#mrwA(aGL7=*+7X_(Wi;92 z|1}2B*s5PQ_RScONKl12*qF{XhaHrCx(ihJ#kM%nsvj)Tp^tMkT&k#-65q&qF~&Zn zhLBl}-QmAhY7Kr4zL=N7n0vtZUG5qDzGvkIA8)^WPTO_$gyq=Yj(r}VwDZ8zv6TpU z?@-b zxS+`m=tu#Brb*P7z3jhVDo$CTzP0qwKH?^Ce=J_)>7Qf5ADZV0H~ampqr=2t zInc^A<%6721Sr;_&uXBt4a=YJxa1K2bH?QTyL=lHJ5UgfA$^jl+qH*S-`$L(w=6yN zKC|G9AHGaY~czHe~ z+9Ii6zJ(n~zU6~sqE9^;D!hbCoksFc$UZ)Ji|`zD@)HVajSvXd7%c;%CV`s zoK9u+Wh4~V#iipr5&2HiIiYp<)1NH{WhN|0y~J0wv4M3S!w*6OK1B$L`;aAc3`j_z zyHxr<&JGNQ0?!H@zOXAEh)!Q5;hJb)!!{yMAX8_nv*@woG|e;!YTh*ZB1st4V%*$r zlfi{u%vsCB$02rQs?M2^NVQXLhr`B7w@HP&wFs=MlXE5Om)v6v=U<$S~PgwS z*z%r^^6TeO#_Ig4{6)jPyQqRX*L}@8&`0BOa?2 zpftSL2oD&n4WAgr8FFV8<^;Z)BD2$Yf=y;zha0t??YWYho=5#B`eY!Vas{i@wBmy< z_WDk2_QT-FGf1C+-p>TXmuai|gM_OSly;7lUc-fyO$`L!$9qEeHq)$o5Z z)Q_?4=BU~j0afTpR!z7Wd{39|!JH(Y&^!@;vHfo2cVkK{%I(?CdpFo6*jsafy~8@>>No(}H4trmty4c*QmIZ?z1}8T=OkEn+t%N-3>b^8 zv^!Zi&<+k%(`#2LFl;EZXAzl|_4^pmHw|!`7#McF^e_0TTL5?8I<5!Dr9pkO)Sg_> zP*eW3@+?KHWN_%oIau~>1?ZXkuUFEm7HG6M!q=EZWtz?<(p{-hhANBxa_5NszHe=H zfBvk$GGTgK|0i!>IbF+RE%EN0+ZzdvK5I&g&P03(g<^vJYD0arhjE)w^u%r7& zf5|pFwJhS(^D2%{4lK-Ce4FnzR^x}|@t$G`*y40|ASXkdU|s%b>41bGTD`?L@Dy!0 zflg)07L^QlJ1zJHn`GSl`c*&3_R2M?8u3%8Z7^pf>Jnswpa>kLvz&ZCj!E8tl8qh3 zs#>(=Yj5_cwXtEDOnC(gEz@te)e=iqsJn)!2%akj*!B|aPnF9g&Sw=v(NK3f5>S-Y zZ+xDX4$GA)E5x$``rZ@(2LM-4JsS2cQ^}D;QT0l~3-zoERh*MW2ppNsMfjK{?|%jL z$(aWmI}2!z5x%A&TIPWSN%`^gIlagC6Yf$?5maW)pcpv_ssTlHf@NMUh2b79N7&qo zw|{zjDYofdbRf(>i2nKd12!1b$X+sjLPC*&@buGAhczi3XLj5EkAc5i&R=w4rt+nJ zFzQW%gr^&13&MbBWtpl`*v2uyodj-D&xylmTZsW!MB}bQ!^7h**jT}43w#I|VZb%^ z%iRvAC}c1^xRz@AV^)$_g|*13Po&OSw=*xdG<#GRt*P>}IZtAuCodg31#9Z0>HJs? zT$#1*ZKS73q}{Tg4|{;WYh76F(AQElc_r}Yvgjvsp^D0!<#WA3g+mZT zTj48~{$E(LDB;I{9|TET2g}qXbXqN{0nKN-lpNjw{oq2p9nk$fX5P}>4mEltW+kq?H}#W zyini>Y9Lh>o$+pmepjKWvhxFm)$|j!aI7fS9A)}x41SO<^ny+OV9gr19t)F$dh`-T z?>JY=UZF?z65j(t4>-VOQ~kh6(p!MGUuOg`n=+c}@Z-Chk;_er=2SCMp!(Ghq1xT= z#vfV?Nr$Z`y`l>Mg1m@TI!`)^iZP1P$=catEq?wZ9M$GQw!hJiQo2lNava`_b#wN( zg{Ml-2+gTCfgCrF`B@VFDP z9h7exaGiniV9Xvd>Y!foSge10A5;7zuQKxPtK&priZI0=@;O&u^~i_`DIH5l_X{|G zIk9NF-6zsHMw${y$;k>3VgRB@g|*c8m+IV^i+FGAJMRahrjcm}dEoYE@Ho{a-I(h^ z!IgFLyMP2IMHP!aVUQf|Y`*=P`TMr$bnquL9FKBV zeg%WMwrD*JS8Y_mPu($#Q9kH`M-0}4w*NpiA!aTr+3Fi)q?cxf>bLKshkJHh)?Kog z{B?r}Dg~OUb+k|siu)?ejz$lAyI6h;y+>t_`hs zv^ioYZk^)*6hbc?x^6B+$@_gZA?H=|L#V2PAWL(D4I6KZ1WT`^wO!_ZN(H90EM}!jv89lP z99lAD)^uBN=3M77_QgY#k?Vt>m;^oc?qvT0ez>4(5_VSR`k@mZ0`Y+@@iiXhJsWow zc%&g7=*|Gk-y{?J|709_Pi`}MS`xX>QNm#t=N7nujE?o{Gplo8= z&XZvc21(&16(W(k$l@YNGP$AA68zI0aXu((=@o1dK2yXc=q3Jp1G86br;ZD$iA8Yi zbZ?Al^9AJAlDd@b4gz>yd95jrBYoB-giibHZ|+p!3tu7*rDxX1LwRm?uI?^!W(jnW)unx!`=jQd84t|uPRN<^CKd$~6-dd_G$rdRv zxRr440Khu9g#j7V^0+bMcY6~vsF`6>5mbg*8z(?dGsHDHDl%iL&q-H1)W2Acq za|2^SD9%NMPm^+J#eiY#uI$T&jzcx~sZRl+R_?0nJ}_W(Jx|vjIU|9pz5B`~dy}FP0q`VnY1;i!^IEpPOy9oQ0vovq8UPmabakGgC80 z-!MYQuS6M9Ua8Jr>&3M^86{?|Y@KzF;caRC8$os2mc=m;?-J99y$!GTh-m~rt~O4{ zR8}ag#-b!P;+OU#9ma7Uaut;J@Zv|V>z3zk1jCT5MLM1)->bfAyh@}dSw@mO|8Z!C z50}?RegKby`e78x`r7TRdMt?tQBe3^9zn*<}5BaXph(In#Q;ydapX8ftmY|rqF1tN2@WF7zS zv0yJZ>jKYG$TN#5pKY>2VmX>RKB#fL+}YKQZ5L2| zX)~3i(2o7a2>3$Eo&vX_xO3c#cd630-^@23P~!=7YkQ>sdX{cy*LiRhyCym_PG~-z?IYb-K?sTl|kH_L)QN!GGjVEL7zUHJyFJ&q{CJk7{s0y*? zotQDT<>fO{Ql;qvg&{A)e4wt%;w(VkU|g(XN3*F|Wy4(4!<9_=8NNM7Ap4lSY`P8W zCI2;6=0QpP;hF=QFM9rRSeMnMcfcf} z&s6e^%qYtx2-eHmuu0B*u3Kl2##b2|6J#endpBaOL0y2Y!sv3-^%`nWxPjJ_hij+Y zdB`AV2m$-az=VU%Sw3h?@MOsN)YBC@O?K$Q+o`K;ZoIPvUR`~0I80#3 z3sq6la_J!ViikjPb#J^Vf+|<$u;6C;jUMeUBr>O+As2Yk4NMl6z7dxs z%5HtM=H>Jdxf`THxqqWCSpuWkz<=uoq3~}1XDp4D64E$BJh`OXjR7`ZO^sw4& z{G72O_FDY!T78nzY?ynjZrvh41EKbeNmjhfX&37l#+-e=&{}RxmP^)lX(?wP*kOWo zL5?GyUkQv0>usF7QA;(UnBtiIsox{`mf3-~wDFiO>E60{0IvQ-H3RV2-BA8hceX@9 z!G*+&b4_^(ZgCn-MUQ@sd~AHzP;j7EPB@j3cE1+tXT{57+{SyMI4#lfMdZ%<$1mi0oN{x9>|V^@(>0cL0N1-n@vAUzTI!V@-8|9i0ff zjH&Fuyp$W1eq3_MP;6Nu0gP6A_d3F?c$M`e+m2K=C!Jlq;^-U!1KmE5#7IdWJ-pdZ zvjEM_f9IycvepHX0nq>e!x6LHJvyc*o^yQ5@5rE@QaBmRzg%mQ_`>tQJ96m;p`*EG z{!4nU$J+iYVutzv1ij&PmGVr&md)1j?9WGNiwB`sKh+h=_&mdB=x^0x?O!ZJmO9&NJR0n?@xw-4^<`hBH zhVDQR<+(L1Ld-iqOi;6<@@$F&ilxy!4Cm3DCcceYrfnx(RcIBRZxY%Ymn^m8T zFPEaTJq!(r733X$EH$^*s~w{+Acks|9vFMD^S@kxUVGfyd{d(lk}B}VSO@><(IbgD zVU)(Z*}Jt!h@#PVP-M;0ZZfEE1hV%2s6d3HyYlN zQuX%@(T$fskND`wX}2+D7zp%UB(v@7!^ZBOMuEnrot^p3NCVy}$@?r`pU z7A`bW$-cWk+9P`R*8vQGOG9(K(t?lNX5}260BvYUS6o*x58lp%cckyzBH5o9Ler-WS8@8IYI(pAOhBFWxYSVytyT?k?*Q_N_W>D|9#Qic~x+Z>Oo> zs64nE;2On&t-mr6LkC^Gl`S_MB#-c^E(0Hic|INXmL1qJy`%%5v!1i`4R$?joM4dvBe5LMlvZw6|GK8lZGGZr%=u=Gm$DRVWjaMIbtG$5@?11Dv z*R=y)M6~fQhEQja=04iqkX<&qdPl?k9|wVa@`U`UM@S!TdDtb6&0F}##3{6Gxdyoa zQC5lTFpP&d%Yv!k4cxo5UthmP1@zy0gHDDf8;-JKldO;LbIJG8*yX*mI{c7l3?A<_ zN-v92WZZA!bo3tE-QWyyLfsuJ{*%^%R&nXZKUTx~Z6xxX zVh;me4YAvTmqzTONTLrTo8G*wayUpuAEu!hblE5^>1Wx4wa8A;Dd@Ks3z=F*k|k?` zz)AXIoud2zjj;hn&P2On7c)aeJtf@{E<#$28Sjd8pTz>e#pos_QDGi}DmQI51eUe4 z9@YguAdJ)>0Z{yqzu_T%-)l#JJMvgLM$X9cjXULf)(i$}&mfrklc<1`OoDVk`s&-x zA#J}ulL%5dbL1Zc)@&NSRBE4Ej)Wx@BdL6a!%W-o1m;O-VESJp30uaeGOy}U`b>}t znKI6h0hkf+ml3b-Mj463oC@PA%X3BU^OXZ>SHq<`!pt`$50&enB!d;uuiyzidk z5%#hFWK<|MS9%HZqRk^-C}AU0so~D9+>1|`eM?k^=@ahNU!cl-9G)(8#wR#7-k#(; z6djs$0NJ-ddiE_y%t%0SRsv2wPlV?%m!8%r&h7+y&u4RX*gbyB1C*h z6>yJf;c)eEqMSz=L0YU0yMj3U%`dxDM=f8%Sp{AHVciK&y3B$^CG zpTb9QgV*e)QwM->J55XHZIEE*S|Ux#sXQ5f`m0lL*xK3D)TXKJg2XopVbyz@0_KZ+ zu+;2&7;o=Ux@Wx-P*u^;s8{& z4oA^a6Vemn9MPUw4nzxR(C%|mjap_T6;b376dl@6o|KMvEqQZ}gPG%BXZ6gaFIZ$W z8I%?j2(UBk8D2g*n=Wx8*w@UhC6lCAV>oRKDLL`IMIkLvfZXtcJRvzS`|GsN#^yJA z1>Ui74}%qhWY`G)&JCq#caQGfr;ZZ!i`DZ)Uv|(qf|SLgFCIeqQd>8c`_R(-_g(&XN2{CL4 zYh#+MimfXB+xBrhq2Ft^9J#@ss^d3WaD}c!DaR?WdLRQ3J}#7g!W49mB~~I@tr$g|fOKJkp#Arbow{x9^Q%_IliVxWvt^ykJ z(#sRJqf~L?R>LWlmC1IRyX#}_P7N2&tTv0Znjp$$lVJ^Pf5#-=~MM^CHFbrg%83c4(is=awCAr&T z0I^xojTv2MhPgdZ%KYp5{URlqIFuFF_q^i8#shpK<`hnL!zjQqXYIQ4Y`^v7v3Ll` zR5Q?D&1nZ$Fm#cZjktlfMf+eUpDA6lc(r>Ae+6gw01b#Ekn8pqm)Wl0Y~_B}P3x0u#ZHK+$Xnb*}t4pj$xw6{POc@vY3O}t8vI|a47w^0LJT>^b-4B84OR*o4 zu-R2+YQO}mo&_+R3{vm_+OFPlHb30zKw`%h*ne2o(MP@p!@lcMJ%w^}Z$^Sr@NTBt ziFmH8Rc*dv8vPxC)sDm(I;WZ>sXTG2UQPr*eZJqy* z8Uid*gXQIqY$A}xFT76HcwQ6Z|N6TdDNw~-ry2i^Z`JeAL1Pi`&#=}ycEJ!n4JG@k z_H`26QWo}ftbgt39U7f;7+oq&(JX+qo?PAcv)zA5AJX)Qxf&bK@cYCxBT#bF#qARo zA88!uw{TZ85`uy!Z)E-cDS)2$@8G&(qGC_WWlP1aMVU~(#{TE912pI3XF_cD5oZ`> zoB*%+aGuLnl=5miHL~T6b{fqubn>z}t;|8E1poDD=CG40C(#wyeH0`nixRB+1GXytzTP|?oCru>?a-lR!3G zs?|DA$|52tNE0Om+_95#wwKkch@%ZNIk_MH`KPJ_f)g)xuqQmAeqX+*n(A@C?-XK&6QHqG8trisXR&UxGsJ_j!Vl@4W5-BskJ;3!HcuabeIT8!y-(r;`6DuEXN_ zRE>4MRxHNziMz>M8v^7pN&arA%b#X_+#4QUXkzvJT1-pV`asKHnLbUlyeihkOPp;k z>jlq6T>?-D&ctCHt~!bk+@RmEp=Z#*@3~FV=Q8S}X|#GT$mZNg4wB`vd&VSVijsTs zdt+5l8gNA_DZIV4Etf|Is~>6G&S4zzT0j*=$|U9!vv7|g!0=E2U4~mOEWt#%@{F__ zlW4@xgz9W12GvR0a|j|IzVnu5jQVK9bQpNB{Uf)Tj}~zGBxpc1YFXV1yW|8g?%h=OY9-_&L7#%?xRTNFVHi_ruUKbAtD%U;v#?RFS;# z#sjS-nYg=%M=%9iGV?(dbe9#0xx_PA?a6B$|5AxSkp2$h@a*%G1Dp&6#hMEljDj`0 zXP2S9&vb2Pbv|nDF;-ku+ixZg5c-({iz*BbtXY#mwlkQmO;oGR{>N&Y_*-pjxSeqq zSoiHO()7f|;B_KwJ`6Sd%Zw;ROb7IN_?7_Z0QgFE-XdK^0t;`Gvgs#x7-#0uAe8tV z%BqG(ry$@ujl26lW~VXQ1k3DD2Ed{-9aG(tcL#8c@(9g^{MD=elbagxz+AA zY;MU=AiZyO>gMOg=B~LXQTMCFn8OWR+`o%6(QsyBz!UTK!lB=4LGZ$?ddFQR@`?H( z$n`f7^L@iN;kpJ+`vMDKWxOE#nQ8|V&-^is2$!3H%u!-srVNYjYas?xnzq@o7U>00 zM1a6t6o^Qt%hZ3wo1+>{qD@Ga9{U66$=dz*66I%h28>89STW-#B0ftJOX8p_l4E7K zRt=PyZ9O`C1%L`G6N@}UB%5mCD-PXU-w&9TC~4G&3E=bxV7CpozG6$?X}NvuNW;Xhzs@b zpXcQFrN3cea0EOuhyov4)vJ^`cJ{3vkV6^RvdF4Wr9P%k)Z;zTAqT_pGIPR|9%7E< zcReu16i#gh3n$u;#;_(#-e-`7rU%w*3Eq+(jTgT6$AR4Pkrql0f)1d=#$MwkIOjj$ zf>!;kOKDI|Z~B|f9i^HodEzSG1n426> zduGDDf?FprGalsmhJ62y!~W1zrgVtxJ@b%mxRu~$Im{NJWr||)-^kKEvJCk5E8ZdG zmUo0U2`xk-IvM#n!t%d`qt+*y4tl>tiQ!LU8`F*{$>`Z{%5h5##pdyOz(2nhQ;N^` zA%z^7*fSk%Px^Z%?g7G@dq=E0P!Cf*w&>j=w0s3HNu}$pIsnT78K+d$XjUQIbksBZ zjTZ5c^_2FR$pes(5$6Fro?d8ubCYlDaPU+7D6vgfdUvW*(t}-WM4RCSQa6nu5Ua#^ zl2dc?=Vk+tzOQ3whx;>X`jS_QrV>e}Aa@uBrs%QFZM~!M;!G?BXMB$JCPa7xCC?m# z$LPA^(_p`VUMT=S4Q+(T4PSRV(d~qcIpT^CL~JB5s8u&+c1v*ChBp-hf*2tMdb5M(flNnI&zdyBvq8Oou!129E#J}@eGM&DV>1` z$Y2sQANzP+#4!u3QWCgJEipc*X~Ac-k>iBgg9uW)K(5KllMZ%khviuO9W2`> z9~mxD$J3YYlABe?upl_Q_vzO7CGaBBL9OB2pG0IO2qj^oueW3`0AkF}UYkfT3#Isz zxq2&(TWZjL>k?1`sD`%j+6n&`7W}Y!5(zJwZ23f=>io-2E87rvN4h8W*>}^paOh_Z z7^AEAJa)DJv#fwmuW3OGW(FbPD*ZqS&Hb(JE`H`JkfiSVB@R4*2KzU%4|W`oP_idl{g72jP_Y=K>mOhJY-x<{{@8dQB4hVLdiKQlG>6 zAsO9!OI`Bor%pbRcB~2Aw9bbTz zjLt_Vz}hg(n5D73j~6NgZTHmk<2wz{e3FtOoxK8HJQr~HUj4^m^&)C?^~T=602lT* zjiSI~rGG628J`jjj`+z07F6^>n(;PFs74!&AM3@KqCm&D2RU(iF8fl_36vA6*?}Yq zs9%FBz04-j@}$kG%(Zq2AUM2cycJ_Z;;?S_!I`IeY#VKL6Eg|kcG7b{%qT&`g4!i3 zl&uJLX-z`o0_jx4G(tdZZhUiRtM}YK7%SRT6zNj{`Wh1(Uxr&O>3vJrF>g(L+s;r)c)XYK%~iLJlBs@=hJ4(6d(01jO+5{@!=o0zD>wP6j4; zgY2Fb#)DdI75Z>9RC6PtMh)gSz;$Ny0SHzZ^#tXw_E^Lj0);*{GQGYf@MaZ?Im7l zKonr+8tlZ7_bP$M84xN$#O0sm0N2ysc%$l!WXRS~x3&X>8I}PbHju?g%rnJ$x93Vp zpIo$<%U3b7%STKgY#8lv}X=a73CD#Vr3cx;dsN*NlX z$M;I#j+wV~M1peee@n7**2#fu2`F{m-=h4PtEh4>(Fj~%9 z(2e#DQ%56`FVTij{ZyZs)0gUS5DTTRSrVVk@|s**QUdVx#`1vZ>!1Y6!X~XlDfqbO z8PG6iMN~pG&B-p?R_!+u&Xde~-8*bCLNJG6YD5x#A7)>)c67m?F3{_j0!pjIf2CE; z?n}H5BzHvcgy#Svjw$&!n|MGStRq zY*Mxgx|A%hw60xoR_PYbLmgs^&f@l3JD`C^#_CXhv0MPVx<2J226IRvaUVU8Q6LPb z$=piBaDJoau=jusmjQ@XFSq`0WK0Xh{)EI_V6SlkBF>c5`A~H;u{SC^8yM0GAzTC! zkC9C@G#yFxs{O|f$QcS?s^VO(jhBd$VhYy2DHA_|-Xki5P+N(ho}>q`?2u^PxOd5W z#rgG}SBTjU!z1;JSxwcQNs*{&?>2?FH;W*9A@Lu~W}wt9NeC3D(N{nq=PHc2uam)T z{T62kB^Cx`r1j@ma~~=9N#>CRx$!VtCgvelo3oYtLY9zB7W9t^u0A&Q(GcA0;LF&K zTwg&rt$f#={+?yE>~l{{+pB6oD%vaja|n=_ck^rq5LEdE#s!wxC)}Q`uc=9Cn1gL6 z9RsuZJVE@6ZMT+mditRqkomF)flz{DgOV;qui>H|C4{)EgwjZTQ1q{?fmFcO=146E z-+7V7fGCnV!7mLhkenkEKjMP+#jTF-lr6@@RIqL8%CIQGH#I%uZi%Bsk-JZ@(UI|d zKFR-cHV1Tkv)B6XU{2|O3BEvb(egd0bsTei?v-iXpLqm9)gjDrN_HeWto?&QOVZ#S zm&TWm+&a8i>FZgcF|mtsb6%)~dur<&7fYwsn|vpJ%z7Z(>|EYnA{{}g^vnXhj;}D| z0kD3n4g(i$FOv=y;9C&p50nf@leIw|#yz>S%?d{X=oV=nZ_uaRo{xgU#y*BGNwk$T@BET zZ&z!t+`uY{L|c^_t5;P{S-MO-s22oB(}qMEM%f@PBWQMtf_~ADKzWSq4j)XrdLExQ z)Q#nv=Np ziG8tXo+qacqJ5p}uOEbXov^UPSJ}j4xTN8v21DEXPj>n87#0F!SSgBW92fr$`8Hm1 zW@e(TVw^A@80dH~a;>1F4YFMtIc|`X{f~oAg9tmXsRpBdlM43$#A4h6i5A z_f6KQWh?RV$~DKWVp#ejCYZtsEPRZ2q$Ufe_-BNmg1(`d*s5YB`GR_v`S^~1bEGjQ z{Bi`LoHhQM^Ti=|o@2t0`Fc^*;24dL!tG}E5~bT-rp-*M5Y?RU`jE6*;7qm8>P-F( zSPGJ9EZOs9o#%BRAe^}D%m)Rh#k|^&?|;Kft{?Y|r`r(y*6GP1XfO_EO*%rk20365 zF~)MA1Pr3yzs==vr%|wPE*H@%TfTKFaT%MDSu9HqD6_fv6-g}Y5sua zkW{U)o}p}v_xOpMRADw^93=r&l`0uzo@m7-XRulbkrT6#B z(gPAGgDEE;>gZvfVw)F|`zA%{+qEgGcWjETM>^0I73+=_SEn<`l*7^Yk@;+FMb5+V z_ip~$_d^BQ^!`f!M9ugJ-|fNGt&$~~S96h{@y_#w6KNZ}ZomLx$-3`lLhkSaW2_r^ zxw|Qm%)%m*ne`eoHeFjpKb-!LHFf%a|Bkbwr1w6vQP+<=Rn;7u+NH~5zfQ5i_l!!M z<%p>DZ6lIUxkoWDh^*|STYjQF$x&2)v7rLy-$0)z=2fMv1Dlef(+y{Z8q7ueKC-Y# zpMR)~z&Stvs*~5f2n!dVUoFan%-h;KC0wjX__CG8G0k)1n2O?jz&aM46>p&%lz9}} zR~a4Oinn#3?1{gWS+kAO7Ed0L?hnEZdY&$PNu9TM#DykUm@O!P{8C9(Nbb*vjkAh% zv^<82$orU}pNQ6iW%-$K4aDxTnLtcHd3*<$F4xeoS+WzTkQND__npyIRGdF$0kdz- zkl3hCsGgQXuzyfoFWahfA@t*vRJ}iUR8=&}&6%JyB1S$RJ$vYVLJ(8ZPd_7@z`|I& zdybtU#u7O4PH=Ie#va&YCfN3l?uHXhaksRm(bAIM z>qg-tJxcD1sB#-Dnpwh+)&Ht6G%3zC~ zdwJs51bdFPFMlh5;vuf>T|I5VjevR!!&pBv=u<>j(stjqbH{-c^9 zow{6}k9K=;Q3E`}taZ2`{^%iIPG>fMS)Y^3Ui$UYKIaona<=C^wkI$uK zq6M+uV=7kMn0p$Mrf|5hPiP?hYz>FJl!z-{#y?aOsrJJ2aIk8?oiHyeLq=r=DaGA+ zJD!D4*C;}N&*eg$21mS>s*9yR9Gb6P1mkF!pTSS58SyL4Ug@@gZ7 zz@ops#+`#nr8CN6l@duCnUd#r`o6QcLm;dTDE;#npR&zweC*+bd0SyIj-^(=pm|W! zVdN#2R(>v_S>^SYhr*99y~EwR)o&xkZZY3@J!2+7J2v=xB?CFQsjSywg>z^K_`b^uP#KVfk2X|BPW?q+fBT zyyCo_mYq+1f8U`8_4=gDsHrVm>|TlQl|0W0hZZ`yrFIvB8dzP42ELPPS0|bGQ}As$ z;^{M|efUs0AhrHF`pu2>tYY77G|eU4d~e((1iI+tuB zvXROlF5%@e7+M`J7rK&~ah{RGu=sJ-r8ceQnqEd)E?QdT+1aOoqV5@euC2GICa-_B zKe`zK1b98~6@Hv`K!E|gM|}>z`Pfq#1Lqg{O#cXR30W_GcheBbmKhe8SFB6=T_*}1 z61jSMMmIFnzRxehUUDwGHQc2vTt&->b8)Uo4h1NCG4}l$_9R6xo!ngITjwJ2k#+yf z@_Bt{n`0kMxo%upEHA`|Tzm=ddk`8qM9;Gt+ROBJ(j!%#A`f6`pJ{TaXyN`}OAqSf z?PN4y5vw^_402ETN1y~)sX-Sv%4z2MJ05JQ@pkNSL3Q>K6(a}Q=S#9VYmtF1-rc0C zA4PZ+QP5zm>yKHXolw7~%7{SKwrkp^o!@pHF zrr}THd?ThsuU6q3GxyhJ=LH50Crn$n2SV#_O7qGzQB z0p)g5dpyzK-FecwhG%&oWyFXiNgPR0RiC0iC$@3jFpj5z`aPe1$?=AKqszr}QXz_- z*M1&GB|}c=ce!GJLEP};%Bljuj6uOYQeU%L=Be|2XN51HDvT_CS1oC``wL==sgy(! z@7O6gKlGl0vb`8^;6ZB*Dm(nJ#W}*QI(`V_Y686~EU`lm)-Jmrs(GNEHQy|sc{a8kDz8Frw@?e-6<8KU z<=V% zoow?9zEkmM>nN}Wy_Ld(%CPx{7`bQTc#<*&2tHSXvclkt)dNB>+TE0J#w0|*=f8IR zd1jY$-6et#2g7RM>*XR(9$)5klKjQ+Q+^*wlzUaMtLa{kw?nW$=Vy3&wCq&%t1&?V zS!T`iWp7nbB&#e9_9UaOI3lN{_ZPTNE+-^d4z$&V?(f7l|5*_rK2*bJ;LR_J%}ty? z)hG0b+KH%?_L1;}7M7z!Bsv#EB+3~AbIBYJ)>NcAf$q8(%-#%8&Zy{p7SG$$Ln)Ec zK!#;?b>)p+bzCyxnNHS7#)pmbr0mfCqwXECv5)}ftsY5HZXu&C`l*fYgVp!0dwFS9 zfOt?*_3B7Jr1$ZD^>q#D_(wOD_t{GRPK2UcOXE*2=W4!}!+(MbC+u5sButr{;^;6T z3HM%JVZ^~_W^bMs{OcbhN6|#-6bzI%r%Tq)a_h>=0ef`(t!O!vL7^A-@TUa)g zm(?izC?U8I%*e2dIZEyOt<(}7PnTOm81ZLu4bPJ?tM3uQBFBGf-u<)A&{yirp{l0i z{VtApcl5cpl_48w)h0EW(7YoK!vyro)FUs%PcB`PxsPl!b7~+mOCpoK!#xU3UtcYH zJbG{X9_FJi=2-v2*-bd)PC{Y?cK z(FXtI6UzV5U4YV`#&Px3T0`X1rFRRFF|Ka+U#t9>kPt}<^Qx#-v~ruv0K3$)NUu7`Mq2xw#KJqm^H4 z?K71uNuN@w8>0jQs9UuP_v1^y-hhFiZKtCxITwKHIp-tLG13v_RCANsOYogn6?Bh zapIE#d^|CP*hiEmUUc72i7b7Jv3pprT@$ZwmQyb#&pyJs8RKrPzhk5auh1iDy8G+z zynadbr=+E*D)LnI>vwVT9rHM|mH&v-pFK8N?2iX(8e>4r;;Ow&7+M(6yd(f$Fx-;S z$w;Zp6`ni!O0@J>3DMdf{J(fZtGT0?m5KCuC?Ospt@?wKi=+mWbND$eE%Cvu zZj@_NPrr5Wx32oVln+EcfhY6pa|O6WJ$+zMK{1nvF|Uji{n3}QDN(3>*#AqeLRhKA z{AKE5d4X(xP8lLbMF-s?iu~>W0R?6Pe7{Ango?|&`P)?rcLxx?m#YIQWnVX ze3_&2@k?|TWDy61BCd=QT=iw%_f*5?&xzGrP>tyOs=2Q-p2io_?kv$x6RCFnMkdi0 zNN_A5(Y)aGjbnb&me2#OHt1Tl3uqhbuz-EC7e>J`e3)sG9|4rB?jG(+H4xQC%=e*J zar&vyaK`lBryon6Im`LK^h?458v{suzWL|L9;%W@;WyDaBj80bG+GZCkryE_v~xO( z`cxXeb11QlV}7|{Nxw!IrVpdg>x`?I?{@tv?+K+MJ`g0dNnIo!euN8L1U6;!WK*iE z;JpPC{ZIV~Cty61D{c0tuzd+9lx5#O31=)d>hk-t6PNdA-De=a5h=j7z`_6EE~{F_ zUbJ=r(++e5f8~6sMLYcSc*ia#2r}$2#`_iARE6B5!>L%Mv;D9QxY#+>((u1ylX4hu z(I4J+)S=;s4W@#{%`wA=^@bK#^+~)$29wxKbmGmrMD&!h*xTl@e64dKLJnoa&oj~R zRas1c1W(uT!Ljo}*m~AwxO+xQWaG;?V~bvWz?-%v-cP&x%3OR3g92_IU<+Znm!{hU z+ypeBb)rAAO!P#zhs#+U2R@$aHG)S#cF`Y!sAXd3pX(YFAIW)4v!1ZSy7O^T_vRtKJ@n0FZI;rmSrGaSQj7_qI1VU ztMc*S;s9A9f~ghKYWjNM>8T%Dhc2-%{)1beABJhII*3c@AZoPp|9=XzfA*mb&c7rpRJz9@ P;0I-3p literal 0 HcmV?d00001 diff --git a/visualizations/10-visualization-quantities/images/full-data-bar.png b/visualizations/10-visualization-quantities/images/full-data-bar.png new file mode 100644 index 0000000000000000000000000000000000000000..af85bca36b5bb4848bad5acc36323e6b9b183f40 GIT binary patch literal 44033 zcmcG#by$>N+b%qSfYO~34$=q?Ev*cxf^>ZuY6yfGq6B}e z>7Klm;*mhvHe5N|5=DfGhZ)dC_QB$nZfq~M{TT`6iTC3O7#EINPr!XCjzq81aEGUw zpMU;@@xmip6KKd-k#p=F!ne7?^PqDOmdQq*ql=83m1Bc*TLHI(suqtl%hc?b(}sq_ zhFV!0$vH!25s%d<xEs2Vm(LwaVEc<4}!v>}O^h7Q({tzXK*<$nm+g{coCcLHDJV3F$K zmtiXVK}~q=b78M!SqBAWED=39W#)sKRdlDJu$67mlPR3LmJyt;4oCjaWu77;zH{?w z1tZIF>oGSj_&M;_2%cmc@jgVEW4!fy(75}lN)f)HWmVAS1l`jMaB_vL;`pR(E>N&$ zfa}y0MZ4lF1&-6 zbo@S4ny{t<`G+*dIJ85Ibes#y7pAB|YQ+Jq@vm+q6ZwQ}d)i3oKPv*^lb^PXLr!fq zi-dLDCG}8*yCOSuppLeGs!qZ?6nJlL$YQAc7qQ^x1;{Om7*;6%efuqWQoY533uSmg zq>hT)xXp=gmc|c4iWn8>K|OLQyrTkoP=XW;KP339kHowEV}dk>#gE%RdNFx~PLxhO zy+IEC9!na#4@V5kQZD6&XHORKjGUR?U0S|cq`Kjoi~=+MX&~%XL((+luOP}f>{CSp zW>&bO0I3yGGEPv=cg(-I^$>l?4Y9j6JYeIewckKvu?&`uHvId8J-0cGt;18!z4yp6 ziWnCEc7G?sDqM{4#n>SR@#!nOR}r23s2;3ar^a)lU+L{7?Ck>hIe!sQk|?_z=#Y-z zp)e6YpG7^Yph#E~+wpFsY&=9ISfCOl?@oD8Vob{|aUgn#5IxN_>qhtzHW7M=h;hOx zLW9_Jx?GY|dhHIwJ3aOe`?{79U*1G;Vi+~%jO$}ZN!vx74aOe1e2oupAaWn2IV^x> z{-F^d*M&sbw?Fl_A+@rJ7`KVo-zfgvWfh@k5%Fa`^+b5ibS}c238^mr0we%CH7z0$ zBhpXY?u%9S6110;~OLQ7^cWg z>M@+XT90)dl(NkcLdwPb`As{GhFOFMc}@EIAKfgutCLGiZwT3Cy-bYxb-rTMtqQ@M9=D*?1P9chare35%eNB9BwDG53p9C)|!50#37TKRG zI(FMzvS=h*!M1HLqYl2( zO?_15h_^TuRZkIdL)n!+gkDR3w6Xjy{G@a*e$V=gw)GnyIH9p&0JyWcXzzb z*Ry8n5c+IRw#^m=&_SGp85;X&c%2z}LQJP616>SU)%d^YfG^02 z`fNjD)*vxVe=1Gw5`yHRj9E=iLKHQ#tij)Agoji55)=u{O*FQ1gHR1C4q`T+*?C}{ z7Q%Qb_BegEN88k0m06GsB~6KeGxe=;uoJX`aA;m z60pN6 zaZg%0Es|bj@SAK1Ue>1`0<(uB0tPk4Hlb9Ck z6N8ac7_}jWE9VA{hs%6^I&D6I?xfnxoMGx%oIE_5^DkORNuwUE&~W93sd6w!z?^R1 zyy&QLC^!=u@wRuqtT7#>MU0r}JmL)di1E|@=h^o~hIN%Ua%%iUr1RCA1>6^g1_sZ% z;~qS^xje*3fFW=`v8zTUp(cJ=clPxa40=hOuVrja*Hmn|X=`gIms&GsdnFjEQ7ki0 zMBjMo54{vWs|{Mc>#-EW^Rhg``{H<@(gE?RFIj1_JZ5;GMIp+3sUya!S4YnM?|?$p zPW7hf0+J<1oSX8AC8!JY`z-PibGyD3&Fir`M)MoFg}mazZzlwIDi?_$wzd26s3?Z+ zua5)Q#)?^d&$^AD3?1ef)g{iigbY>K8LNnI3rc~@u3Y~d7w34fT`}~_TBlFy!bU!V zrpfsFfSS?w(xLwP-1%Y42{{i%|)4^1F1%fFwmAIbuh0>Sv0TTmUQ zW9%K<-25bt*HHQ9`U;U+<8k>Hgwkrf2tqioJ{3n^aZltIr{f?~s#r z4U)EEcJ*g$)}sX$X9vr*e+QrTB#99F6(iamrySb%n{b)-zynfb+0TeWK-2h<^{MF9 z-=QyJE^jQDWMk90*wCX-O&N?77{?vP(*sk=Y zbT7vn8&OsG-dtC%_k0lu>E>%l7IWG7UG1{zSQ`AAPVn`MSM2MP6?_7gea~|8hJ*jP zv$z-*g@d8A>(6?nuVT{Dm=0^-6Vk^8FFxXU@ZiA@@FtH@t>|C(lJ(YfpR03=-0+Q& z{HG2M4guUb)LJl*HN{iTL(iWji^e1;CzpM9`=h2X@J$vsQ#Fl9_g;~C=f}!X0!E1h zks0^E!9n$MoAKs6z0$5IA*;b4!y4Bgtaiix|GEy>?FpFc))=1gO&hiG?*hY`l7{u6 ztiywDzQe83{=rg9)pvi_nkMbq-L~x4f5Za}2?{gV7R7jKZemzmfX|he*5<(oE z>zdPf|B?~@T&@B48^>@<7$x`GNd8L~%MAHq5UG-ql8*lV)z2C#^BK`n=`Nci!zuZ{ z-D0~=nE&7alBllKCw=4Px--@3kA+*gn(Fx`$X*fmA9&_c`n~fa=>>hz|37}CS?5QG z`;I3mT#r|Mw3_--#61o=*}HxE6NPe{JtRM`p=Xq0xNe6Qs>L~ zJLvxKIpTh5&917{Sr8a~u*S^}hmfw7+Sm)DktJH9`MJpSEg2&t#_{p-WvMmt-iGTV zJ{+REiXZ@$mj~VBb)F)S?a2zuh1Sr&>q8-6M)>3BCd=P0f(T|RL^Do#9rh->FNAu5 zVu)apP94tG8Oqh+^Eoa}!*F$)wum>BA1yGfI-aoRUYg9#L6c@>d9wa#H}LM+UJJ2a z*=y2IY|qV_gYG~g=tZKma<%tIUfRLl{e7M4bH1Lyba-|=Y3DKLk9&I3aMRlyjK4lw z$V4oCX+OSC^+3PKe*TGV&9*S(yS00eotj-KkZLH)G;b6b7zFfC6`Su(vcX#(avY&%s;S%wP`*gC#Lq^`7B-z#9 z(H)(&t2?5CfZWOQI9!1ZNiToaKqEb*?%k2u_QbE`cN^K+Qt!EdYDnjxeahoDdotxj zEE__!oL@16K7fFh|NGWhS1fmDSJ%R3VMA0>IqZFDzf_Wrkq7JFO1CRRwTkJ-qw_+; zM-@2<6mp%qW>puw92^`1`l?C7`39F`#fUGGp2BBmXAaWRVkV6cfT}Fo`TE#ng-zaP z%kd6}0`7YzM!r`rjT3yJNHEL`ChgF~!JMaf%KPSWRT_k1H`8r*W?6p4ZN`Hgfr|L{ zG@e)DVyhHA&-pJaFttD2GW6Y@ZAh~k%5*py*7=l_)ZOTh)g3WVoFM7|y*VFk=;-Tv zb^dp~%yv4F?Rlbo53Kzm7`CLev^(O@7r*KYZ35 zleXb!F4eOB=p*E^@8uacq;eNj27r18pwsv#TO(KeY3vhp^pq3Vrm6(OsUGC)*nB7a z_4t33Xdu`MP`6ouS3M>NOPvlwx;3s3Kzq#8DKz@KHC~#m(O^!?Z+<&8ZZd09=d{jW*skPFN-8RTkmZh!j%(93B1~R;7!c677jtq8 z(qC5C8hGuuZB14X`vJI!V!AnPx3GGiA{Gl8gFtpI%JKR2xMi9{7iZRQP;8D)PI^_2 zte(eP^RAA71hCh0vszG#qT!Jr7#bagv4R3+O;749|x%&Xk3zc~Fnq>53w z5XOBvIeV?WB6NJVn#Omr15Za^l$1pm1uBxheW5KJa5)T+$BSt?WH zopH;VYckgtBA2SH8L3IL!vF(S_e8Glh$n{gRwL03sm{|4^Z|9MU9D%iI)y8ssF&kj z+G6BQ+S-Y%P5j~pHwHEKIb$ug?B@;d@9kw35ux_W%i}?#1-jR+runLJ{oqfCYlM3z)Uup7Fi$u6AB;20+=_**UM%a83!}HOJoP)4gvo z6Evl?V_VHNaC7Y6RFxz&3o4!%3D}p-Z4IxtUY_d06GIj0-FBWKdR!r-U+xf4$LKYx zp%S7EFT)$<8l?v{;J^&w7MXS??@bh9VP_8kyJ}<+<=h1Lcgf#?+JB8DXN1f`@(n5< z6y38Qm#3!Y^Fb(jja}I_^(l+a2a&6HR)g4n(A}y3)HVsYs^IJ2U-Me(u8t?Gw#z3w zIy=7^)xCR`BpeAY+Hvx21-kD5b|YV5JH0kpVORCHpmG6^iqGioIct@BL8n3_T^km$ zM5D)QiVoGy`DWqa;8Q-e1|M(z3ftbGJLCz{zEaW`nD#&z%{s(Y?RvSL6pE& zc&L5p_V5wUrsSG8c3!IG;JTbJBpvokr-7XPB+xHWT3w2%IWz61jt+>_9?l*(=Q(v< zTXvNFO-1$T^TvJu?#Zf3_x3>Q;^(GTT#$Q9O4mX(v+MD8Ves@mNZA+Y#c5cT-miYnj!st{>U-g~> zCiO+i`<;s=YyN#iAPs>5@lq)AMsVs`Tk$J}^StK#OPxvCGR*fOr^wP;Ka zA(~do2fzF`!wrq*)rPM@!;6f2@Ny6!A)3#jJO50br-m{MH#hgrKFHB~&}HF@2S&9t zr1RfG7;|3K=hC^Haw}^MqD=*F)zYY0W>m=;AJ1BKAGSGMP501&rkzuK<^< ztE+Hf!?l>mte1d^WX6y5IbZLgDsOgoTHX17SI*2+4DQwc zVpi&;)Dw%SNW^fCR_)QqOMn=OS!q6rEK#DEexpX7ks#X#%HO^$x0~(5rZ#{yM*I9_ zkq1c)vI5P~x~DAABy7^QCbG6x0>F-j>+Y`a&4q$ zsVYDTvyxewp7K@&ogJ>0ns<_c;z0qPg5UUE>680z-HC3A`5n-1A)w&Ry{6PLXad(poOlF5i^L%n z@yO)ly8xV)OT37IcA&Sbjmg%?Qdd{U464CW6+v_HPF;1EZ-nTt1AP7z)VAyp1u1Xk zT)=k&-}ZCoUP6(n#Af3kIzr>J?9Ky6@QLc&P=j319W;>st>E!@HI6B#X~?3UiGIw2Z#0a zN8=d!64MDHfi$G_12FmpTs&b>#<_{t2lQ1dFnLq>?M&A&eZEFV7%07Lz!s`bf$|y1 zd`=%07S{En>fO|R)8;(_?OTbSETwq3e|LBS0R;O>?C(~|2Ko5Y7 z?OxceJybzO(8|X18oD2kThdDVNW84jm(G~Mi2HgC>`>fwxr1xz$ABX~_{}f=72owRE zYU*8)$Z)>;%4ChYPby-exQy;!w@yIjbphtz8Gw!dC zr;h29ju;l&M~>!Gf;hyCJyTUqRcqn+fz~jx4{Pj`3?6+9I zh*AKf{TS2gbRzk0m!h${jt2Bd5ZZJ^dz8hF5L(ZHFT()k$xCfuj{($K3r!2iA31;o zR@2o&0IIo?zD#-U)}e(pkQPBv4B`i;i_!7ZhhSb-zkgC$_@kk^j5b3qZvS44mR330 zneGIF2ar*&r>meAEaw{iop+|bfTF=H0+P2+;_w*&Az2j_l`lzq0Oh3#f~k{>y_16oA`vI_#78w%2RY^5A7Ti0AWvxcttYz9y7Q(MnZbw?{eW(cRja?ZN^K20bn8V`D#A^m>mEWSz@Pj z>Sg4){p)gF)t77a_yW}BcZWq(+3SG-;L-tQpJoza3gqz8%8KKNo@Fr*S0$IOYrp*g zc4KH)<{Q?O^GEY>{=1AFPZ*x>Wk@`}aRS2h6=+Xe6TiY&dXof98vXb&NUd>5pXGwG zSWd=xzYhd-3JiflYi1Rxv!#;548!2?+k6d|{AfWxq$+IzRC3vy;hdgjx15vb|2P!? z2uqc?$ALKefceLJQ;Ug+#79eCCjff$DJ3PvSqzNJd$H3BFv(+;VRPX}S=nb0frrj( zFBrY{9)q?qhV~Hb8m@!^U0qsT6|f%R0mGYvPehN$5ZT5JQb7DX{#CQ}TkF}s^(Q;p zg3~R1Md&u`Edn{(7+xGhL@$GoXQ`wtwfD29dGP}gb{|{{khC$MKFJPcKIi1*MB9rQ zU%x^S1fVj|PLm&{JX%x((`-4_b7#JCF=`RrYybwx-MyZb)(6;@Ebv60^w*utc%nslmh_cX>`HdYPQ44- zw2e;`xGQUeKk(5?3<4U&au|2PSMZG1(0_Ml z)3EWWUZ|@#M~ciS0yYQQl*B;?i^V#c>42JwNlEDi2}M>x0Fr3&<5OPK)4h2#)&c3d zs&yPej&~c;V`Jj^aozBC?VE^kuo#D@i=Di1tqpAM%JHV$#$dBLEkdm8g#urUN{%*u zjxa}>|7(ZKDhk-sCDFM4+X;O2r)I)7V-S*22V(~Z7#j2dc5tA94+8AF`@Kmbmca0x z^1Zo2uf9NljhgU0Nf>|(KZp~Ju%DB9=H?`ecF0qfP6jUs!ic=i%Xj=Cc+a z&qZR#Iov{!QxF~q(5YLH2}~y3zVWpMh%mhEq&+9rl@1Xm+Xq%qLeY)^Ha2zyolsaT zw+<9aK}m`6;$O5)9&~@{%X#ANS2*ZO1m24o=-=RgnAli3AmQ|Wy`gkk?OQIW*}>~= zVU0Jy{Or~sY1wxdXjEJoFa=drRS@T`u^6-g2l_P#f%!)GF}S5vmk zK?HRSNAi%wU;|`(>g5kKU?R|fyH%@DMr@>Hv1yFyjLF==gLoVe5TDZ0jE~RMic$@ky#J~JNA`9ju+}`birYb5 zHa=!>mq2p};0zKq0w1!oyBli`pd1=}pYqjx2BgFfEv*gFE)a(6@c>}*iNbH`N(n+f z;@!DTYDIqP0W0bWwuI<}D#})fWee=xdC0WJ1J*>pV~l)|Y|+&zVS>b0Z7N{c>D*TZ z3w}PWjwe?@#V6P7)+d2lji)!91u8g#R^UCaVf7wxgZX_f-OFvK@y4ROfjwY>nXZ~9 zWiwR?%e=ZrRWa)$4rU?)r03;^PD45{js@RNdLGoEtLR?L|LP!k%2JHRrl-(MfQSmr(fO$F#=!NKoJi zrmG#MX}VDX&dZ;w&-u@OmM#r$?A9VZM2pXHGM;~txT?(GT2J!pSuhc>Am6;fOu{wl0P`J|yLoSM|b0InU{p-#F^ zUis>?xbF{S1YYY2WsHPd?;;es&ifsl{ZXv5hdC3YC1U}Fbpt~=<6JNLU?t-_yZTl@ zRQ)MA8sT51?eQKC;8VKw5o37ouxB)}I%KoK^>|AXmFR#%h z>VrFIfQ`p?y7hOn3Dh4ykyO&J@9jeAo!`Mf^l_Fi+fuHam+ znh&QhB4GVAh;v%R`7b~-1N6|#-XFiEW18X2=|CefXNX#7=d=X~A$ZAL8v*uy`n7$B?ZPeQlX{>3aGogG) zS;^2yQ_4`ul(2ivRwX+1$k%x^59eBKp!ssA>yZ0hHhNCv>fr1&h=M4GwVn@7gb&%| z#riS&gIoC^CFIMpYB@=!r6>q@jyQdoW5-V|@$6ya1~BybPc6*ms6BAqpPgUi-U1~M z_EGA;5uyLxCM)z{|NDIo|1VEemd8iV8hZGkRU*ZYk&graZ2HO;Gi)YI@c%qNd{eq$4Y+yk3oS}=dwt)QpBjma(_fejc5=S zNb@FQ-6CRr)h8PF8WFKhaM^x^BTButb#050ipl-LFI2{Nj>06J8e|oR@{t-PS0=tc zwZSR&T)NC6&CBy%;54N5G(FTprOT z@A@JAkiVOw{Y9Rt)gQqEk6QZAKLpJ*rJYx^c(uX5?%6oxuz-Z$`THLZrtbbfsj6-Y zDqkT?k(>#q4VziG!3c8`zoeYveWI*-FxBbC$ ze+u^!^A$#2YQR^p3d1{2{9PI;cP`!hNgKIL_#V=M1UH25;I7mhve6>Sb)f&;H{H)7 zzlW$ijCb!_SFtSLx6(5^i|4{tfGrue0t#17NxJ%z{(swkqnuAlvi|p^aFz&I3)ym* z(3IWqyjUwvb+lb1Zk>k2Td=68d!OyZS}vYYep%`SoWT9iMw1Z^o*B>UfP2!_~CzS)y^~ z+()79yd4Lk(WNmo{76XBS9yE2h>YZ)Pdyk0hKZVAB?%d(Xbc@@{qZ5<#vt9=`n9O@ zzL!oTLt$NCA$DU09KEk7f0glmJ@L7mm?y&zZe<%ynGas=AA680!HP#}F?~h~>tSR` z`Yg=pE1Y(wkpO5({I8NyN*6S{1yPCtb(p@}A0#={xsiFxhlwMC9!+A_DYH`Ef| zz3KJxaa%t7#+{;h${ivALi8sv_al+nINyJ~&Y`1}S zuSgxHzJ5DH{KC8-|IM!#&-1Z_gp9l9ALmn&q{u}V3ADR{uk1@@bxy|xU5opgS8YhT5W#z*GIWRPz^=Xs+ zMYD7WN+G0W@Q%3lfPG%Ak%L>EIJ+h375tGZQJ0@Y=3EGdi0HSDF1(jdZ5~E0ibkHvWx)Ydvv$E^+b3`vzlY zpXM1;XHo6?D}jK(*_V4h*Nj8*dE7N@tHH@7d*l`M#h%=rhi~h=+EDR=X*-Eip@5=aZ znM<;VhNUfF3?bO8k{U|{dO1nCHzV^W*cJg6s@|jb0#UGjrZWYOZyOZ4?LXu{Jm#|b zz(2CFxKU@Pj0LL!5scwVkBDPR&x^kY?e$-bggxbUf9qzVBUhjbHc8VXdV=5%zZiZ! z{*IxOeSx6QvKwp1wDwasdGsN8`ny>KY&Q7&0OKT#2V(?>h}J~JUXz)y$<}q8qOzW~ zXqrX?3SF%%^LZOF9*;^#!QoNPXPB??3EEtB3H_>MU|PS||MkWqp z+e6t)KKsIO%g3&z zKI=i_fd8Juj(feQ{E=Uszaqs%x&!C_Q(M1e_d{oz=*%d$a2Dq5d^F&jY1eBtkMpA*h6 zCli5*gNU~h!lpyezhLOnDe8)#SP1@h8P0){a-MZK>zlE+#|ka@+0-Yk=-iHtD>4G7 zeB?f*fn>NBV)&A>pSxP3iKwZeuq(5QiJPMtSVTFZ3)v)WsS)SHPW)dN_W<};>p*znq-e%ZaVA1rr| zc{S>!#!ecWj@pTT9wTt2#3Nx>N;2}dZ$~4Y9h=CDhW^OX_BH3cdk1lvGG^a;`bKd{ zuJz4WHr{Ptl{`|rgok?>yK_SI_ufx8aB;tLt_r|}#-eCP?s$bT6;?K z1(&bN9sx&E)!y`5HGRz!rLGVf#5;Cn!J%8NzQw7=Ep&U|*!0yeVsvT`7b9`*)n+_h zIcFYVDV2S0U$*Y6BhNrnI8`j)99j^La?>8bWY2SY9;|s_4>`pYU+ZX}fL~^^VW_wO z1h~2q#!^LS30_a=2KBa*4cDxV=j-S&kczGh(=H6ohHG_thy0=~V?Ia@WN0X?sn3`U zd8=Xcf|iKNuT7U;2kR?~J?uA5t~_TO-C5HFk@_7s3>4xmV_U)9U|oirV&3SNnDd0X zlqpTTWTJh`z7KxS{GjEooiLp2G^`N`wGNmkFAAvVEZ$6}zT0g$25$0wvQAV4840A1 zvR!5lC+}$#O0zDEGiIZc24UuUAF9q|E%7!izqO_)@;iAsw7p0IFukge5GWbe7v z@f~u?H-fC1j$M5gA7WP|c6rx^b$Z^X9lx+exLI5GrL6Z!aw0^sxZgLv#!lL%y=?M| zugR71!e9z7e$~!js?mbi_`$T(RK)hJ62Iu86gbvajo94IQDk>GaYbAGsNs%JZ;=Z^ zyd2AVW#^@z&=Wcv1uX4LK@me+V3=W7VvNvrFe&W&h!>x z7KMApJ)OG3^EW1kZ4|hiCB2QP8h!w6q&Za6^x$ox>+Wx?uUVXSIxJEDTrwp}D6ygu@0$d*?Plt>NPz^qiTFD#XXcU|9&OQ?V)JHiznC3bXV$@n zGPib}8p~4hn%j`AfVd$1NBqhF^RmZciKtDPWS&3N^zHX~)Y*^2;7`JCZ0L@ZL$?EFM$&7GLvmDFY}n+F7&;92Dex{q|5EY>0b2Rb+GE;M7P|WpLv_X6+mZD+fN9^|CQMyF0mK7OZqot2>`m{KV>3`Gay){h|r|TO>n5?b1%g zGz~e$i*M$MetWTX)%(N`ej-%l}Yw!Hnk z%-BM})s8Rl$YUsk85YA zzrx3lT4GZc&2R;lscV=bqwB^<=hfpkEP-9`uXZ1P%)cC1#XgahIU84m#Zb!B6l?5Z zjfMT8u+HdcQ@J@TW*B1pO7BWRXFy~y>^>Y>SsTExyxZ#UMHx;)d8( zO)B2_EK)3-O{IGwM?N>J>lxYP`p~85{P1e*{a;^H0xR@DG7ln|8hDa)f8#gZtv>E% zSF<$J*}zpE8!X%P>yX$Riae<*R_(Mc@fO7NjW@I;3HjKAkCd`MRc1^&jVwM52fAQs zUw>C}%C{*;^qyIG0MecVC$*WE&n}YkYuk=bq(S9vae6QM3&}H^_;wR-{3Ip%IcuG$ zDBUJWtV&33znzN5W6EbNTi*BS{BFgkW|0+yXgvVTh9-{5_YzW0HpZrAghO>P&3xw)-@^^`AqIFot$lIn zhi5{2B6+znc^}Hci~4PNwWGabVVR{!f?L<2-ZwLB#|$Hi6L(H~Xq-wKLXi@|-l$m? zXh()ZEpCxOn6U0ehvrs+-Mv9n!2FZBEZ*JrkBpC3yX$ACJ;nAiVXvN#g+fb+#oaqy z)tW4JDb;#2q4&L{$uvoKzIk16wD#G=VFH);6&sg?d8*&*kbIt&pYQ5iOWcp1jGdp& zeJ%^?;Be%0{eJ2@wr+YTqd(A`E%+hz2B~h(`b^mMeqtcQBMYpHNLZwtc^ZsO%llQZ zeU5Zmg&ac%jlYG(DJ&4yPA88J1?qnf>$4rR%K!-T7OCS$bIA^kI@HjIr9fM7rHg? z9U8nR2Iw~z?gTv9;ws}SW?8A{3@T*fH_4T4dnH&bY^ELSx0iS8V+r4V*~~l0FJo$F zp<@GIN%liDzO3t&%tN7EKOX)f_O}ig#mV}1YvIbS;qo`VMj&6?Qy*#m$!LZz`7Z4> zCc%B7t+S%qpA?tBw3CwzoR6q)32-&{5p0;Gg&JduFBJ!xe&q;wUXy+__5Yp-CR z_wEJ5>G`_WVXOb`pZ|pG+)7n)o@*D z5mCy{>X~6C((OyXWg2hDaJ|e z51!HRO3SRe4|W$DG($%^fUh;@`?1L||3#5NLTOQ8{G8vt*Qd|e_*iu@+?YlL-q_{o zOjYZ~66&%Pm=ONWmu;pmE*;cB@)(@b%wXeN3@=Eak+j$dQJ_>Xw=i-vtXi*`*hwB0Fa5!E=VWTXuaef`On z2!(5-Jw?R{$|n38vpH_WGnFwVs5-Sc;!#@1MwjL-jnIp#8 zvL|kGrH?emshBIxb}Z`tutkW^ zBP;vk6_**-vFWm14Ih^evz5Avtt>W5bCpc@=%G7tS6nF!J9mNeu1Ekkr+au;yg6$5 zPe1(Xr26vp%c#-p)fz{^j9PtLzT32xJl9Ws%$yE3G%Lw4Bf8bq9o8xaBq0!$+2569_!o~b?RpJ_5md=L1u;o z&}#}h{3(^9CtJNm%QnqT+w?YuhurjT2wX{QUf)Ub8J3n?t)aSUH(45`HYC|9oEe40 zcu>2oV}a0LjlPkv6AWaBVjh0boM1Jq+`%_EpP;w6G+NfoR}r(Yd2d$olr`oHjneyX zwRqcUV_mZnB-CEGPm3_E*kir~oD7vxaToP5r-vzz3O3xDd`wv_DBTiw<+LTf?dNTG zR7B{?VE-t_4*xs;Y!Pwg#S#`DBF#ImymWS1DEuJcf&K%k_e{TSP#aC7HP*gl)1*}c zuJl_b3xqaVU(DiVF%0?~;lLt?jnRK6J)|vDVpkNbJCQ-1JOy_Ah+^CKB z!QUsGHf-9%r(fbkcyU541r5R}1tUWRkG*w;l)P<1Xf?mJmPFo9|8TIQdwC=FnW^m@ z;e)L&n;h11wL`)}Ksx)3oi!#cW$YbYS zgPeJ&W8N2$&lQ&Nkd}hb9~)DllqKDM&)3h#v@&nsZb<)*8`3vJLU3^tUMx&J`}(6E z`)>SW-bOrRA6&xtJVxJYu3^@T^75-Pr*`m?2o6fWtqkvFj5vZ}=?eE$YQ%4ZY?AiW z`#vG(ZhIF0{MA@gms_)Vakn!rBG`fjnnT*8y+*e6M^r80148mDOHghJaUwB$pTD{G z)}-2#R`RTNH)W|pR``^FyRTY3DOII4y}V%(0XA=429icN5Hk~bz-=B-$}+pZ<1#9U z%Ar0q(D#;Yo^={6Xr17#jqIM?eYsV7SW_C^f)`T=Tz6(;c5H4@R}zm=qaxe(zE|90 zfirlgv0Ac4SP$%ovv2zhk5uS-_PFMq=bPfq3uI4Svo%O}dX7)anU^zh*AiYli+(?K)7MdMk-mBymja6QKOXGsf`!O5xwv4-& z`=t?dK_^7{y`{;OIm4S-T@qf3x;M~DeV(nv*DmDutXNxow#1*d?@W_zy}QhW*Cvi+ z)P9o`J%n5^*0)5l)yd%JOsGH5xKmzg*VdFIz#U-B^C6-L`(^65Zhn*N76Iv2M4q^| zu8?axb){&-H)p08JE6Rm^1xKi_e~Qvmyji=t+0|^^6}sLB)1iIXNV_+0=kP^noWg2 zz(;Sj_#Dpc!|Ma*MYh`B6w)9r^Q72l7sESg%P*^^<%cP7UcZj08eGn1b;a(uwG}eq zy}Xxe)l3&lG9c@=I@gP+$H3NEI#n@|EGJvSJrE+V30qGa8%Q|0njzz!f`H{jD$*uf z{#tzNn}m%WO6NOv10}*ZgBkUB$~V#2TF5`?Cq<55?{QZZy4C)*A~5qG{vC_ zH{?x}tK4PxjW)Bvbs})RRW-vP-LzacCRN{o0?MCTo52w>85;O@?D^E$6Z2_bs%66% zJ1jOD#5KL59Y5)jiFDp%sI_14nB^o!Zoxxct;yoC$H<$$a$-Ad#^#9%VH2H;dN%M$go4dnu;b~zuSk5Hkb_=!7^j=(hVMh6CKu5SE^1Hn-Omj z#asI9_7C4q-^{7+YqqQgf2Y6y&R6k;s8^^rvCoS!Q5ART7}_La_G&hoW0!o^V@ZY( zZ(Gy1WylVnZ*yDXpPwZ?zQld`J9RAEcK;qxV18LNLMQdqWjFR-oN`A)!knNO)8rlR zKn6WVYzgFB3GpKN5?!WT;+>NGH_Cn^!&MRC#e?YQ zyw7ih%2Ym!sC(9anJk`lTSvY{IS4)|Q@;lh`2?x@SlYpZ|XVuRu`0;{di3IF`t28sErwVU1?nh;%wUy(Xel`+uDIV-}{U|WFdSzc! zTu?wnFPw;uD~<84PlO~9cN5UD)-9oYI}+A?FzfM5d7i5u8*=X0B#~K_!TKfh zvybQ%XR+}2*iXb5{Vw*o^}?!m3SIgA=F+262!DeWf=6O!GVzSg!40o|Mc)@#`-x!t zs(4|NJTENVgYtH!FpmO$wOj!eAfsjw03y;DtCMUxD|h@Tah*G_J$CfG7~26RayL;K18k}kV^s#eQ!Dog(OB*ZQbj~g2A;vH zMJ5vaJ(S(rUrKoon0|Sy@92Xnx_AP@`!DhSG5o-xApnR~ksqtFzL* z`O}YXeO~>H)^~>f`w?L~*cW46c6>(Uv$4_mO`YFhRYkwY&h~t#3gzud{&#d9W7XS3 zS!YuvtUd&fZNknP{W5gogyS7c6mI73a|ZDj02m@(9gg>_$`X-L0zyPCz<$J}H5K<+ zQrR#>D*bG118a|6ns)(-1%cO#ufdMqO0h06P9ic|6q4^Oyeg{zJ3>7U+X;MzRXqj2 zx);pJK8md;AEsZW3V#U%}%$_d3|lE~swu9sXRb0sjma*U_DyMMUKT?SfJJ<*-BkBCj@cz4W)^Rb3` zZyRes;w6{C<+Z7*Mz&&SD$R+gjDkDU{cJK1`yRl~c>5BmgJJjEiG7w+MI;-$;NVJ^ zZhgYNyZViNbFsp>Ar)UyR)>i3cpbKV`V~@sb<}ZKA=(H#0P0A2m9Dq{ND|@T(%6zf zIN9s>V;4dgm+xTz7>!?W@Rl*=nnVvG(*(q)*oW7X$cQ>x7g?3z=mr%0yx&Ib($@lP zW$`}m{S?&eNb6zUQBS}&>S%WuTd^I*F+?`~G$Z-lq5iuEjj$a?J0ca%tFC-S{|MVr zeunLUDjNP8JGC#st|n>`xL>rPH(i3s3(^uIn}k}p`|TmJS;&76!H?{{T5k(hH4*$C z_;*;9#Rgyz@QpFX@8UlQw~Flt*a1RW8N+t_ipY`Jj%%-r3WjsBLZLI^AMOdR4ohUD z_GR&l6%G(t(X`&>)qf)cBF+h;cfdnrRn7lr@4Un9s>=NTS?Rq134}n11PFxQ1hI?V zvEYb5N0ed2KG+@W*hdE)`;2uQ6&=Sejt#6MMGyo6(n1N4Kte)DPi~Ui-rpbJ^=7TJ z?>_aOdv8v-@AKT}u5->VYwx}G+u!fogM9N|BjGh2)fjxyHP?sM#&3}TyezAW@c57) zD`#w5;@`gLIr)2W6KQlOV)I?B*lNd45ceD1Vq+=KkC-$TsUiv~9X zUx?S(YQa+R^DzuP^&*XI21$T;TxT<>ZRsTBcASH>Oo0C|vmb{LK5J%g4k27g>JA5u ztv3qaHKW;kyu!82U2$%UNS5l|q<3dFdVU8}nUC+5>8#pUZtww%79BtL(Z_^oC=3MJN=tb-FzfhLY>LHwmH(z=YdWN}Dk>BfX^xQ83 zzHer0nmR{^35fqf%<^%hjD?Z(PkJVdYqO1JA9=2P(aao6%7gY7)gN@VV|y*YbTiu( zLYRQGw3m`lOc$e`&F7$(d#I8VYPnA?Lk#A4#C#haQ}Wwa&Fs@5g!dvr>sf6cy#FJL z5Balkgiencj3-s*Iz!2G#eL32CIADO){Q9NeHnn6odgg$$4zpy+x+=7daqhl2J^J=9%RYfhpg1xHCap`C|=v1 z#9$p8>(_`!T;bg@t5K&3h$$!-c`og3E!ZsiP4i&v3S=gaLm3`hNCCn9XfBt!4`nC) zFY;ZN6?s+Le=DjwJ&@|wOHZ8hW~ABX87hMrm(A0K+fc_m3^C|^(Sk`t4IZfdCVf8Q*M#$L|VTiC2;o{%T5CX7 z!E{nkya#wcT4V1gVLG(}&yiP$_oJA}zNFfoY7E`)N3~}*5|mpO&Bitx*(V=+?5Q7R zl+8fA!QW9&BDfQ+v3r28n3>n?RHaT65RN{$+oVT{yGO?@N~x@r$Dzp-U6 z%0}Q4;6f6v(+pA&F|T8AfHg-1-G*MK1JFail2kx;J`xr)sZ5E>_aBKD$J?roCt+I^ znN!)g?6+CoF)M^{8G@&nNP=x}T%>7cHX(#?6M&hy5X*auJcagHq7@kXA%qv9XYu$r z7Z2RmB113uHE~{38GH-bH6--UZnP#&LP|n6cB~mqjy<`?S)8xl# z#Am&elx5*nub!`;Yo=w3yVbE<4mlF2L!(!_j(X#=ecb$CAJ4fSG2qVw??PI*YwK5` z7(g%ZPjSB-_WHY2GD#1*uSDz3v6*%QojJ%^2;t^>H60;@_nFy8>TI(OS(_kj{Vr14 zvu9$JVHuU(Gq1ufqkhC}SCWLrUr_*iGFo$GJ^VO4l$`Q zB&hb6#yPmF$?G=U?OGH*ptU^>Wu&b`uBMxiP+Nm6{f9_>>zf&05YIJ_^z8GvVDa92 z<@p#|6B0hAg?) zL|W*%$fB7<^WC?qX-xej_sNv_{VL?oo;mO^O;OIsj0E}Z;}z(6o(O#0%>GjCK(Th` zUyugg$aQ_?8=xE2^4+8!Y)f@EU@$z9`#~ z&>IW<1=wO{uOFiMR8R=v8g%`KQXMSO6AA7j))tvr-HgDF5D-ow1b<1|1ySA1_y#H& z)C8o7)`I%zMLzMjAr0qXWV(I~XdQjS@Gq6C? z7*?Qogg278+|2e3AuK`JK1U&q$W8WU&F-?Xr`*`5rU--x}MsOd*6HA=lN* zsq~pcZA-)%F~}0}o(YY(;{5k6qsI*y6| z9Zx`O`V*)VV?PPx@C!&Fl*QhBezU18JZom`7J>IF??aXHr7$regd95C3pm}Ht~d6K z%x3n<#}A-)a%{Zj;`_ZJZs#={02^!7`0T!}4igZEqjLVoGrSl~^{5xQ1h$j3+3i4= znQhH7W*q+4wT@~Pl@3#JR0HSEvlA{tn&7<%&ims?({niF@ucojv(SqikOp~mi{rGY0Kbd-IV~i?&d)}5FlSL&!CcSMDWi3ywx+K9Y>xYmBSF1SK<~+R^!&Uy z@YZ;olV~m8=sh@EvB=xuwHVC)UBGY6?5q~%K7cw+KwOCy!qJqQ-9t^e#yN%*2y+lJ zNHq>)(1P`1nXM$(kh?&<$gLMGOivSBg=#%cLh*xrNKAeU2^DrT3GnNBi`!iE^iEo~S-+042DLI{sW8s$DHSbIpElUo{IhfuYl2}uj}#!2pu*crdSC*G^O zk#MT!X7gGR??vIc`o8!#p?kj?37LuLc|9xsz7T1yE06^^wlLm=p8sC}a+gyGVI7r- zzK0+N{nyUx5v z%WSlkT2+ji5lpQLuwB4ixusk61RW+Iu8+eUye@YYFvR1s|ITdk?Q+D`I}lTNkmMsQ z2Hf%r)|~udK8VcyLlLyYK9mQ-et-bhCdA|AkkBx=m#`6XjeaL$-rnSC3cAJzfgd9+ z)VqSMsx!U~x!`7I<0}wCuBYkEBBdm^;~Hy$Csrd52;OF9NBfsC09_A6upYT)47H&) zeC)wq(EOJo>($B8T#K%^YUFN^J|wJ+*l)qi-UtvvxD%~UPgW>n(!QQ2qO~wK&cm^{ zawv2^r+?RIfOaUzvj5A0D~oU{A%wv&(!pNG!ziA#3JEBObpa_1Yms8P3Gt(~$X&Lg z-hn$!KseynsiZX1Jtd>b1KDHHL+M5HyDk2|o)iOcXag5AJ4j$>J4y8ejao?l(%p() zQg@$}6$}+$uy&FMBwbK=CdEXOFm+#RS(;$kIM?=lf7jU8k#f9yJBi*X4` zw)lF<`HGYWd7*a9#S<>PirR6dYC)CspqR;Fqzu4&&8(Te4giD@&H`SD6s^k!jfXASh(@ocjLp*k$r)zZiqA4!i9`s_~ zi2|1=mt4@KHz<1yJjp7phcgdVzx)bynmIYa+HRB`+o zQnjg*TYts$(rOl^r5#^49?w7 zUfkyhsf}1U4y!VmftE|F-h)QTK@T^hd+PIU<=hOze7Bm}jCvb&gn$SkoDheLX|7#m zyT<!HdF*bqF^i zZKv1F4hbPFL|U{%FXSy0+vR?1gq#@_f#C9d_gZ6*Arybxh&0-lA%HYcz07x!V0sP% zo9Q^^*K$4Z4d8tw2ne_8e4DcR4?_%dCSnX-z(ZzsMhM{>NE2;Gv70kX80gN-$DU=h z6ID$A3^CwKvU${dZmUssyjxVc_3#-pdus?`Ia+6T$8FAv3e2;Rka#|Du9^M1c<>Oy zC2<~4i1YqC%ql)(-M?w)N-%Oh;D2G*YIB2aq2|X6iqog?0e);r1cH z@&M)J1na+{g0wX#uJ9x(JJIDeLiNbw91oJ*YS)n(5KSh<-@LNgl@E`* z6#Iq@MkrJ(&?}?7eq|GS&tHt(%FE*1s*P!IyK3Vv#$$MFw#=>UZs?nQ!h21j9N<8G zk4F`k&!lk>ypbk{HeN==u8-dzZD!M8w*UlLBp`F%D|EeiO)#?oum~mj*ZGUxYi8r4 zfPm&2;0#7U^q?1H1}W?1auhflOA@5D0T0mzC1G2&a1 zcK=UEyPr#fQFuYz{vc$9+<@Gcu7wAbG35F9ZUN=i(7ouM9}u_QQ7k@+@r5x+3x?E} zqKMYJ6FqBh$?460@@+is0p%_x*A#Dxb9-EzTbcj780+$9m{;HWx%)^hQ@<1M>r#Z< z)Eh$B5BLvcF}Z8dV!WY2;uU0?$gk_S9UMmZMYr10}nTnO5HI6!YMXhc@ol+pG&GcfT3l6#c{F9 za{;PDSb~_%q-?whX%&Z(vWvXez>TQzt%uZS+YvlLi!axB$7Fv_J}++;vWVy%Zp??Qt1w@9!*7HOk~ToN|`Zv{4)*}PbI`DioyrlZ!zYrPR^ zw(i>5gr3DRQkwS9fXA8HVR4_C$O2gcEF{$+Y$x@f7?3qoMj?cK;<;y`cVS-=%*?tb z$1f$d6?itX4!@QI8SW_*am6MgYw!iYV@RC{9by9{=$z+#%*^htd+bgS5Fvz@qN1h8 zQYjFIlZwK@LDd{K;C#dc7a`4-Y~kq|A2@Z9(gU5zmQ~yOv78~V1fCXu|88!& zhYZ>h^?f`%8{U4 zL;n?808b-nra3^DZx3258-U-K*~^+a(Lo{U001BWNklzms;x5N+mRdX@kQTm2w{H|A2<^+M29MQCK7J$ zUw;>}LeEEaFZo=G0?MhHC70tz6|LT0G8TIq4jnMO4)rm zDkAKT^B!#DuJuTf`ZHquFGMl8anyh3{n>9tx&0^9*}g8tB2Q4w(LAK+%|_SgS!nKR z@^{~Hq+CJqakX@0cO6ftF)rIDAA5o2PGmjIq_H?{1@dq$>J$Mn7MZ*+MomL}@r@_SuM~MPAGYASH{4>h_I}%wpk4M(he^H74dLaYT zYDb#f73%d^{RnzzDSAIPAuOi#RgVyfb!jrbwNXnM?SK0pZJizx5h>pa{wv6%$r?G4hMsf{5qf;`9wDUh})?(3Db z?TSITfXoF~nYLT@eKX|e^=3hjLKeaX5(bb9>2atwopHRS7R>yC{6X7abCrs zJ=y1-@g8)cD)XsGk;>g<`EkdP+;3Y^M%EEg0BlFX_h=+2u0V*q#BHaNwEpKHChBS5 z3y?6|g{-;Rh`BGMvUTX?Bp09|D`p9msjJJ7_P!nUJUJODTf5@;x#;qXG#mI|OJs}1&JFUU_S5QX? zh!DbY$hZ0b5JMPB0JwINSNCp@e|c?%H^EsAm( ze<}CTIxKn-569gP?p}dPSdLc4&b)l_I*8!9_}gZ*@I3|3=hjZ4XyU`2iP!pa(gHnWWYA%ug??EVnK&BzUQ zSKR0D?3y5@O>aQ4igvDT*TU~3Rfp&GC|-!R0x_n;&1_P{kGcn~QBQD~Ns5!LBw43- zkYL=Q@wk^iU$-c7D{iE`1NEqw=>?TpU%6$L!{;=@;2Zg_+IT$@4wFf-vpn0X7YXf~ zQNqD}s9}&dV5>@aHL6YT!fhH_w#oLm6+=fWyq}gb>0LQNVasw(nZt4`y~w2;nd! zOfHE4Pb9%ExaR2CNQcszhS=yL@BrBl&>}bp`Ku3X zVBg`SW?r1)%K~~SuR*SqhY$q(iIfL%{d~2q-wU){P&e~(_8}|jC%|{i>}r4z!n2Wv z{T$@payQomDiKjVrZJZ4ct5Uy__dd{!d(Us;~!VX`Q=Ev#QAuu-owr8C)I992;u!m z$R2{+V!MzKc_1Ep4uaZvmzhnCsnjG7U#bSDFN;-xg7~r7hayljJ`KOfDoFdH3?|iZ0%IR1c@B9`zuX-#1YVW@qiq8>3DU5T~IA z@Mn>#L`Rb0^^hQNVpO4&t4oWzS6~i!v=9|0Jqo2oPDf0w3s_)g)3W^VCnHzW z^mx3yNlQ+yeYy#pXNP!J5Tqb;D`U^0cV^cc$6JwLUu|Y90YV4?xzOGf=YIpzMw=Ov zeLe)m0A3L9>Gn8>pO7kheU4=i=}!IV-v1~b_bg;ZHqs*1kfnKvnY}#!A!_0uBr%?9 z$MUtaGj8Juwar*HpnLAFnaSDt{CW8^n^@TIA>gxSc43S`Y$F9~cOeVS-77uFQav^v z@2SWo_j$yq9@u?R4Wv?s5T1@|C{8D(=5C1BFprdpGlAsWFWyhTuKSU)Fj&5j-`Crb z67f7UJEbspkGt(D7J8APJ74m+#O`*pX7-_a2kSTiQKS&U$ta_#Stc`>@m$2Dy`+6S zssFN>**S$dUV^eTjw1yL^I+FHQu?beddvQHkQxnntfEX~@^sr!Wt)+rt%!j<2MLEj zWe~5{*xfH)+~tgI2MHbZy$H;$4_S5xQHjq312sYqvU^&oTUoAox%JhE$#3x*e`;ob z4|rXQA&ssmSbZPA#(tzsj73Vq{U}!8?jTUiVOgCqX68Lp9G(U$QFr~E|BC$l#p`nj zjGK^4*RyK;Sht{c_zw;#9YUCoT&`bcV9cQ&`MS+}yX4Po43$hjcL&`{ApyY5>cw~( zq8RtQ4rOoo`&4T!_`G|OlCl-WLYjq>Da%r;Htve&T8-AdL$Np1>!A_qC;<`ETR%;? zCO#J3u%R5gPc^T`&C|*TbXJS=_6}ot3&b%bsOTIk>29Q%eGtJL)Y61pE0`2fW?z6_ z)FaVLJq!3XvM#)j!sT(_4QBS68pm#mqD#z!r!Wwt&6#~M%cYSqh3~v#ydSwLW+TD# z8j^5%8M@Do{OWV@WBPM&IP3hldC*L6+cpH_VhtH3H z??CQ7Pq}<1>0PSUNXdnBAC+#Vky3c_d*yS>gUeR<4s`$SLLj4#4_0kl>$h5CZ?)?2 zt7-~OZbfWD?&-@dHhZc?osur<^i8CR&n0Q%IRM?XAs!b^+c8wSb{-S|?}$OWZKyzK zHYs}vD$RZnV{%RTzIdLq<942ru>kl*{H>S|eq0FQGsq3#I5ggu+2{F3RH*kFKd-z! zLqfh7Au*^NYPuN#QHG-FDZCpq6lsAWmM<~ zg0(p_+sCbkCCEzlwX+p5!o_ChN={Bc4Iz9W&co;LSxU}(wvf`GyV3joOC+2QCe;f; z%8m;pP1*&?gCtmtiSgQ&(wHV*)au<@Ux0YcuTi|@QwW|MlvaLAHg+q`@6`;_{q}dU z*0|B_^0B8N2lO5k!5qoP{w__3*VK>;uG1`tYMS_9Abpz|=h_2QYQ=eQu#bexe7KvHTTKrW!|6E*krJ6FpK0av!V+ncOTUA z!fIfP!OV~2nN)V;Yh;d_fEzt^Fof`Cq(QGi z&*AZ;``~NHEfmK>awN{Y!g~kGo_j+)mltE^MVa|`t5N@lZsgL;@4t_CR~c7B^b8?P zL~t4h$NwL&tk-t7-6g=;rp|bIlcar6U5A5C<_bgEJ>41qW}$e_JtT0;9;7Y*yP16= zp4T;LuPxe$G7UZM;#I`WYUR0Be*ucG1Qegzfl_hDAtt*z8wd7`b_8AMU7thpP;{X< z%2CMD1G&OauXnIcvmmxpIp-9J{OM zNObQVm&Ud2Mts?RAGaVkP0m0MLJX@K&>d8+We-jp67DleO!Xk5=1%RN)Sm9@#g}8K z^zD0GYIn2xLNDchgtof-=eXbFfNMes4o+(>G0 zk(_sUO^mymCT9QV#Q)9*`Uf6nAa$AraT3xB>uKV{Ma2MUk#-{O=3>O;o`@FuH01a8 zY>>4m{p=>xweGf9tn@;p)$T_s4BCbQn#DBNTTl@AYbe9X;_>f5OxsQStw=EJM}v!` z3G&?aeUL`yU}E!0pk|v$)zw?#oa&8XAduNuBs|U`1?Rm7Hl&wqb^KdG(w>%}p!SDJ z8tx`i4~D#%PhNRlbbsy0KHmmlW~b&iBz7Ns90Iv}A`)7SGLC8~oVCayRq|wrYUDxr z8__eHOX>k$6h4OBl&{)7IkV*<1h1u-hl1KWNHqv6k>I=>t${g6AQY{ZXOW;LAYHd# zg9pyXBTKIb38tIlIfpWnu@9}~RY%sNRxKvhlrLFBs}j`17NL-FP{i%9MjU&P%c4gEHhwmOT}8lQWL z--bAcM(MLi6F)f4xlypVP9k^7Z9qcsFNooP4Kb(}Bj(}#H$3p{>6$kpWuphZ_#U)7 zl?0Yot0%QhO`V=by^JKeewTdl2mtQkZXEFInK!!%UC3x1A3`kKrBFuZEE~K zjpPHYmYU`%l%CsuRQ$gIG2HdY9NiBHA%r)QzyKdasIogr!RiUwamS*VM~M46MD$?e z5AI4@L-nRkV@TEFD@n+v^~RL^mb(H?C>Z(`i;b#c2p zkf51>tf~XheYub13Yw5tUn3!R4hj0&kxX5<<`(SK?Dvz=8sCpfwAV(3da>etELwl3 z#lLouD*+2>48Ssf_Kx9HZJcZA*5E$**kiNqj_XHjYBLecGlXzzS&~6L>NE>tX&fGd zZptK5(6y{$w%z06%V|_f>uG55--R@xxpC}m4EHB#cGaL9cE$6pj^8by`AW?^8>&@o zmv)h-S+G}UgQZ5{(Or-Y4zsnmB~HGtgpx| zk5%JGqxi#fNsW2(^Ov2+tKRdp&SDk3KjS?A-Yt@i$U40b#kKw~`wd{LnQg6gVKEr| zX2f7t5X~m=#5f8QV_h65lE3742=D16b$z{H$%-PfV2aw?_s16+(vSlfh_keNZ8+j z+-MC|TX&j(n1VFKgHh0HD>6+N#!c=U;_-5{=#NG()T2nQr`(M1LJ#Wuz_%JjR*V5n z54?R6Wp_-XvI5y%P(3Jkw+p>kry-^|0r&^>vO7L}ZvA*;nR&D)wbjSID^BCkdFZc+C6xGG~%mft7ibsij#IThU#*ML1P(2wFl`ylIPbNt@p zZbi51Ru2q^5auGFzZ2tpLp(>dYt0!=A6l~$kV0c9NnkEoBOb_KALr)l-k)hBu>e13 zE1J0P=kJ-jY$u^u;%0P@#v|`Q?#5e+0_le$LA4dtE|ra`@mnL~OT3~Tc0ZH(XnlG@ z%QP||P$WdxlHsG(qK=9|m|0f{;Q{ngj7P!W2S~8I-9tR?Lq7JoBn{HDSsq5Njf>1| z89;u1HOa;i7!Wf!9KYD81eov^=$`K%TqBZcl_}hbKc7DABbee$hz|?V6 zLLm&7U?`fbx1a^Hkc5|CBtwhe;WzRci9Z78=h-qbpZh$dO)jD`%V7*!j1HdW`TXP1 z%QGG^%}bFf`8K3g`qcR}dPjV9sRzNs2--Z~^ z3R1S%2NCn`M~wV$5TkP~&>8K)P0phc+UOa@wUxWjnsJBKn@7ViD>-$Vfbb%jlc~gF8g2pMbPIYh7n<3)i2rjgdReYTE}z3l zaRjpCY)21l7YcNi^>dhtUUv5}AC2M;3#g9T7~(dMLQP-BAjpT2(rC7$wx{PYuo}9V z@qpjVY-@~5y%pi++>NZZCn7Y{1CX}r@r;)tcg~H#`_aAK7cszDR9YLaG_!9E>dG6W z=-%;|kk@g*;2ET$%&I5VIQKc|-Z`ZGEF@&NAT9bEC}8|2;N50+cgZm}QrVu==We8U z$M>iaEDa$Xh~kScNAI`Cw0e;hvm~C&Tk#$qk9RK#wbtLW!4$~VB6l}WC&duDk?^jS zomOky%0BtHH~y_d>)o@tiu}Qq0`J~;Us?KhkvdI4ydC&k#PF&?+YTpr8e;CgC_Z%8 zobN!wVj>AMXD)iEcaRGH0%^hJ$G8cZw6`Kbk%O>#LEq)*B|j|AqYQ$emz4MKfMzq= zFwUV8^7{h={r>HGiM|IsiKHRjj(p|Q5cAoWl;#Qv7iwoV&ISJl5`1#MnGK6j4I%76 zesqwl@or>=)zS{Dfl2N_>tYS%sGYuzyK8dj^beca$D+_!R_HD9A>c1&_KTAF-++AY z%d@W+#m_F#FOUB{$;26%Q_hHr7EUiImgUzI3fuOOU?k>dzqg{vSEFs{+2jceOGvd? z)l%21ja%6#A9o>sa4Yg0EJv*njzjO`c;qVWN5XSG63}-7U(26wHR>n<0T4oX8p4A) zousu4R~-b1v1~+)*r?P#{YC9XFWyvA9l(vqr81qQD{71KWd^}ow`;aO-J=mDvn`X79GA8N5@m5kisw-~m z4Bnv{0_6h2ecMKQwi}SU>Mq~{Gh4?nQ1tIVfSBnbWKk}lG50|}c0oCbRFUtD#A88u ztYteX(`_X%FRsNdRCM`#GrJ{(@Hyl@yva)1)W*b-0~uJ=oRim#_&wiBijm~kv;}Fy z6A_b}$>6Nt!FUeJK9?Qe@99V@t$vRmA~mY&L(1h;L;-OK$|Twk zX(G#!|9LL*uMPG1wTMZdOL`!#3AskF12Ob6t$L`*!Nq=n81#H3m^{nD8HU$lv@6wh zEJ=&=OcbazgLBx4!3YRv@P8%sQ3!~+_aJTdrg+_XH?=YgViO7W;aP}5Z8o!e7$%CA z@yDsWFRfDXzHLMIVEyh%xr3$&(jf9`WTc<@!V=ni=vC^gm@fxD;^n-eLJu_+be|d9Mt&BQ?`rmmiKse zOZM6`fVdGYsACz}$96b`ME)OA{`Db9t2s3O_8=+MbUn~zW?smYUr$*!Nf~WL z4}1)IIhG)|(c@5BUM+IC@0BEr3!tx&EQUrYgz$b89A1cC@aZHow;h^sHF^NWrG89$ zDLnPj#}CIjO(yjW-a!@U^x>uu!uOG;z5@l-Pe5yG9l8#Ol<{Y`sLJ?Anq!PRQ7?_Z zAYpPb<^5KCz28y>guB^>001BWNklv2BtPUI?DiC&rmk!7(FxmmskeA3Jwj2+Ow;_qir3DHob z8_M7rB7*N*QQg2VhWFtZJD+Z-_N1SGtR?x}9HX1qC3Pn`D*5@Veaf1i%l zx5ok7O+BdA;n(q6*2Z&ff^=OYK_P_wk(GBOjlszGpnG=*@HdS>es`LH_yh`0d++Dr zt^}{;7tf2p9Qu1IvL?FB?8sJ6nt>E9Mpnxaq+qw3*;7%q@Ls-9{=Ryt`F+S;W%**1vs0&Ro5)^UR&O!>+e*QI;Zo3DNh4)i4`$NOW?l1u{233i^ z8U-Tr;P7z9AsT@r_F(8Oz=dY^lRDd1r4YhRapRD1{J?MJ-X^2w-Ll2Ybv;qK*;}BTbnpeGV#wTZ^;{kY)2{05kh>=>b|l z@9jv_T1e`Pun@&!Jdk)W5)@;AgUxJWw*PRt=0=LHK>mA>hS?X#*P7Y$V7G?*PIRy4 zA;z;00uP)S_xFH$pP3Ddg&G;~w~=dXDoK!eI`nsu_Pvx8rzjhP!1}I4&tnNGR#zsp z4Xvl2179+;+v0q7AXtqPvN`Uc1R^?wa6z1d-}|fL-=9!gY{RIgnWYShY19%BK86IA zHwn3ZCINR2CdL**cqXc;c_I>O*C4Ctt5vptJF)`1xZ8y)5gHra3*1XEAiu zql2Z~#pHf+qXFpZ;%~VHky8la7!;_^vofZjb@CTfbary~TfKF&3wW}bU0r9pA)ye$ zg~&Q`#_sp9SVvMEJEQDHuFbS*Vdz^75iw~G)A$p4wy3u?^! zK$5U{9FX|B}PNuCDyK-i+cnHx5TeQ;a<{(+tYjqFVy}RmPC6 z)#EJrIUHwbK%#>@N?{2K%6e8AeJD-0wQ|sUI3|v-GqZ>5ojinaBJdHk4o6CXZJYJmDFVVXAC@5h z z5B;Uxf-JB+!)YlgmUD@jy}ac+(g0;yLvt7yLjqm*vrr0kvml2~yU-d~j-LPi3=|CA z=)L;3nSHvMgNG1)i>%ojk&E@uW_Ejx?f;y8d^Gi|uZu!7x0d?i{|)h)X3_e6sz%e}B>%E3@)yja%6#kIAe9egb@_ZPu@u?eTwz@!pLVa&hb_a5jWv z|GYf@dC;&2X~_MELH!27{vO-r>;F=G_|ACqzYWMe@E{7%dLTH@4Dkiz*Wnsu{@Y*y z)FUh0#ywQNuvT*Z{I7ToWq*BDzVAkr?5{vC$F=bubs_C>yzqNEk9x zXbcK?Ck^(0tw$k*BT<#~IVg9$tf&dfEs1=)qT9jRGS(+~);TYxj%$X6$a$1k7mH!jDiT;9^{NW{Y_@`>la;+DVz~qWRj$I_^djGB(bt7STAFB2~76tP?7P$MgG``M!42gNKLc;S| zmUS~MQV8LB2(#)8T8G-m-=|jg-AEg)-%b$_bI}WM6pa;x3^nCiMKAD0v?x7&Z#B|j zHlQ@uhWfuYL$QazGf)Mwqq7$8Oa5?2@}Bi0E9ZmA1b-zm$0w68c^VzBMa(1r%`3Op zBY}Jwa$n3ue&qX+X6XfnTS+p~iLtzOh8 zX2-h&J@17`2!d))ymxp}!1u)S{nX6PZt)r>qJqQ6l7z%VR#HzALYRlv?uiI-_vz@F z{u~9xpN~4@S)A8g2D*-#S@vesO$l|6%{Ep)c>^}g%G@z;=%EJ zPewuKYtReX%uCaYTw=2kgV;96@e>ilt`(Sbmx;H$bU5x><7tS|KZvx&1L84OAd6u> zDwg|x{QbQ6-2pV#*((q3-jB5B_W1EG0a%ACpV0JfRg+z`S}Gi#+IRx@)tmDJ1PMx+hC89guW z6EPLtyF(ZpfS_x6?jj=_UyB&TQUoFK=6Jp?#2^=vDsvYC`=iOyOyW(Orcyfo_V&JqbA4%+_W_gcCrn8n0ZpHi8+}qL|IJ1-T0kCuxRb zh|nL%N~>CRZe}M1wX1zBD)5>~iu*W?Csk?ZF`%9}{-v3n6)l=&W;Pg$rrNc-`wJ9D zT*tsTgDV`}@fti^F^^x>qx}7BMk_C7<8_nLUd_x(6~c%#{e?Ksd>uFA(i%)0a2N7w zTu&RV-{HnGYKhFO7x;br^Mah0px(JhP-#lq5RUW3Gp6uAC!fz8WTwwA*`^ihA-P|s zW#{$MMkD!uKjcsCF2J7x{&KnSu3CL%C1#qgFJrqLt zaXiLUBq%`IveTM~rt4a0KX6+J;T>_D*JBI`g%D0h){QsZ=|TdnSPQb9bnR9B@G*c~ z5kw9lI5dU}lxHFz|16TQz90A+aBa-vUkc0$A$$~B5zZi2*x` z5&usiVJZ1Ll`9vUkyWuCSr12|VzDDpu-(y0o6*F_Fi@*+q)PcS2nJ^fdM=JwP?nTY z9K*opT5q3x?9b;Qk{i4&)Dad$8AV(sXB1CD5AkTU0Ec7zc~T$YV%MuY>t-zt_J3{Q znwKCg{it|u4^B@*rulc`Tn;g_XAky#4bJJ7?Bh66_Sef%@P0gU_3R|2*Sf~KhJ>M1 zZG1nv#sks4+<^q|T9nHA&xlFfjp{-!M}F}CKmkKT4A%P(IJtJXF8;PJT1(xCDZb9k z)(`6D)S-xZ{{OA{PJ-eQ*n@pl22GfsRLh z_df&wIn>N%q$q^&UId;v2VK86l0O>-jzL=0{l1Tx9YLEYgFIf0Ugjxr9$S#mcuze4 z7$j62&U!6+PWJ=9vLV8282=wd@B5CQ>k|UZG3}xiSvSwzbF|?qz zt83A7^y_HU&E#&>Rt4Iwxc_z(XS>79UQ*+F8m3MY5dH!!AvIq2=>Jf|ZR8KIkEDq$ zM~nS)NDEztESvq2M)3gf3p4XR%}rCR7Cwx|>Mjh}WoDD>ZrLV^u97Dr26Pq)R(d$e zVLZGk`xU_ZP^MKa@)zJP^sJozXl5U2_at*FSP<^ofdX>vAkX30Nv9!1(z4@vfVdAS zG~YBchfH@|qD8Z$4p6_kQ?|glXRr&YVBSqo?^rCz3 zYIkdFK^ACN{C*N@)N?x0YP-yAC_0kmb8qEZ_xZ_L}(l2XWJDl^VjlA6+tLGF%6$KSqy0M~|;nqm4)(ic%C zlQ*dnN@H=;PtIHWXI^g}nZbus2wtFGYm+&^z-mjpHVa(YwzKOYJ1t*9st z;8RF>ScjhJ7fA}1zfYdy=IdVM|^(6 zLB6gXAap5hw0=8LKzs$6kM80*AdY7vrZJS`jij9UpCG0J1GAjQ#_jTqiu#c-Ia~60w1?w zY7{htbQ)T-Idjcv8(NoL$R)CG_S>`&!c;Tc?q9^p=P}f-VObqQ_-9nG1+rjP`;TV! zU_90dNDzP&hA#9TU4z`RFG4O_FRFAwP>Xs{?C%g{u^)f}>VxUxctcDbUTUeI_Dv<5 zZYL>(MMT|JEf|{E$NwB%;K}IuKOzOhPteUc1?BrrK)y=P80a73@%H$?o8-^$Iq9??~3$3l8b2}sjv3SvblLY#5={+vk1l^;Q$hN07t|$=2j_$5W0bJ zA%x|~RXL})k;P_Iaff**lkkaD!pVC9VZE`}zKm^RpM1OnL7cbE`t7tB#H$eA$-YRV z_wHYLPlBNw8woagRs4QG-~(oM;ZRe3S*B$ikG_|z2;{Ul|3ZN7+HSZgGqUH+Es>35JET<35G{g88dMKRd3u&B`QKA z`{d*82pXmB)^A4%2!Ig6KcWJ##U!N4+_W3&ac?$;6r?Uovoo~#Z!BWiw0P~$1HO!e zLM`T2x{!y1LI_iV7bBnZu?$bsl#Rs-*XWiz4y7PloJ&5Qm%CB+Hj2oAX>-MP-^rM)*wR)smJvp z4D2;t6bznJ(g?$)WcwcEy?Bci8YTtx6F-?`G345Ry|D|1X7eoy)9C(FZyf1^K#3&;VUX1G^My zTeHnDV0|yj(D|8}eL5CBE=JGk0faU7wOX#Xn6*}w z%a+0=z*8`9MXrT~ z@#|*C`R7NW`*9bFO`VJ2S9T)T(<~%Via0wi*e9a6()8A@a*w3HMcVnHXzjUD!W^71rl`IRco*=&Sg&z4>f>;E4$7AafJvlmqPxwk0`kGk8os|l{hfPA5G3p3 z=X`t+f(JhxDG7Nz0+L(Uc|~7?<6X#wc`I5w4+H<8WeZm5xHsI%Aj3@^VL|MP6x2HL zXtbzuTqM^%eEcBLZ8aK=G;z+~p@sYyBp}?i@bAc{Jq^9Q?Nmx! zTf7e;*d7Lm9Hl!_hVcHaQrTPzR_A)G}j);k4ZK%EdjPeDTM3E3{kk_y%G@#%3q zEP#rUM$C0PQq)lbBB=lEIJ79dXzp}m3QmomhjP4))bC*h(lGjw#$M)f>P0T5x0;#b zxwK5tzaNmc`vQbPtr4FLoxGC6|- znHlGP6B2B$P?Wiu^6$LI#d!3-%>(Xi1&=6%@J!&-2!H9rHUbT#_9W^w0kIpahJ;~r z9JLFs+BweuS0HY-3mTyrip5JWr6fzIoz==M&h7b#xlBdE{3W#BhOrj)pqH$QKYlji`;vgEc(t3gW%TkYn`a#@@+)TeB)g)Y21c3}8 z+(k)nIfO74RbC%n`2Mfi$HSw5aI0WG5^x@`Xtv6A(ssq)CZl@`3WR^z z%s%8Nk3M6M)s$&L{#{?;bH`FG+@od>h3?Cn(Hj05g1?wowryGFk(u>X3E*Cbl1(N6 zy&;4R=w0bW&*~mCD^^CAQnZ-HAfe(&v=d3qy_zO7dweVV?XA>l0^+?WPkJ1wiWw>^ zJcn{TG5cR^>Yi8fdI8;uB*xgXfB?Q7k97bkIA5&1G~`=5+l%30C4acFHqfK%9ai|t)K3Zd*aIh4)e}5f9_(d@-b(ET;j&d;p zUTE`l6sTPozurhf?Huay8nhT+h%^=NMCCMw6a)=KSCpBZK#P=_;D@7Zouf!W$My05 zeki?lbF1fRC&f&Z1td)_AA7*w^T5l-kWw*yd{1@?Kc46J-;xEUZ$^*cO3? z1kT)3;x?^P2*E9=SEDsKi=;?+nzkV!u@-?yzM|wf&jmh#81IEhNPHNz9Q}A<+xe(Q zU#62~G8Bw|gJsCHqtqOA zlm!t&cmmQSo`4wQOiIe%hmdw4t!xMBWpj-_U#wn9xf5w)YX^B=&jfKT+|ep`lKL!6 z+f#%?q-#iB%O1+ckSv5<*>}ZpSpm^ZBqZjbmw!FdAa`T_L^3mb7&W?o#E_YNAjYL` zLu>FfRP+{qwjWg8xsuL9F1ye97ts|opj%lK0H;Ok#X%{5WoExGJ8%f$Sd-#}v}q$c4S*Ozl95+aai0{}i-_CIRn67WgQ&Kpka4#H!6x5rY_x3f;j{ zFKPmFwwc}6>On#Xj?vOEjdXr?td_kL3G_S#xLxG21w&1NUXJqre}w8FAPJeW^ZLHK zkPm#-V6417i9!e-n>h-_5CF*2Q|s*Cg#yec6~4Q}t+YYR?J5!$)1k=9ds6&76~X9S zfGn5kh{@MeWIblG6$y$X(Q~zS%=wW_9VH-&6hb%{p}RI)joYp2sAMk1b8JEkWesqb znZ0^Y7rTd02;o8$2tEP{QnxH`Kq;=v<98KluCZq2<>>wyDSqUIn3tQ`nS-2Lj);0h z%wj70?r3C9oPwU^%=o*znD#^KDQ{cq;Dck4)jAo$+&p z2WdDCB(|O88};f;$7jFH%s$-um5x#?6n)uwN_53|BvO-ygBnbC9gyZ4LO28Ui~c9% z7WLYl&A=}yG-YaWZWoioxJO+T7nnN;^K7)O#f#FF-(x z`;sh+Nm=bh$HKMmNz_pS!ptrTA^eKe4+4fa#nllVXQLvbQ;|^EjA9R~fz2U=W6f-L zqw`T3Qcu`jT>t?Pl2O`I=EV-6U)ZMLavbx?6-?T2;WAoA}=I^WNCYi z&b}y+o7XRl2c{0ieF!1^48=ueQQpJdm9S07lJGgqMo{3z@gY=Z37%x z7gLNid;nGFcA5#f69qtz8|jJcO%$tWK^@~BLJfnw%9=8ap+^dZ5S&pSN@eZHl3ITG zvh1Zc&S@Pf)!7RmSCRn!9!7}=%TX%%b5KmelRlujJGlp0MSBfo`<_CbA|T$1Oj6HW zc$ftI<}eIU8@iz#V?&E^7b#bN3esRawQxJKBsL)v_!g8xxuTV8AEk1Nf!Jz=QdWjB z^hlu)!Vgix#K~y=x!`=Y#oo|W_UlFKdwG>jzFvg8ZemVjkyY~+RG;A;;S7QEeaHbV zLkJ%rH99(g1lX59>mp8*!?64n0XBZSN|pF1H9?&sAeN%VbT~3Gd*gT|@IxwXb3A@CzJdvSxusMb-=do%yItV(>8nxjsMK{zgpk-O4D2uKc9;V@h-A#W&;C-J(nM?=6?iQZ)Xm|X=%nqox@hCM; zogyG|z_;Q!@2ob|V{dB-$!wpLeZCzDhRwhzD&)}8SAeI&ZU~kO5fI!7z*m76joj2m zhD_bvE(1Of5JK1&VNo50+%=n#`?CvWFkN4Am>~(&hY-Gn;tG>VnSnQ>o(n&X+ngLX zzZJbdkVN-2wwo!nb`;9=NtDH*oz+!bS*)QwD|70i|Il$%iF;o zN|h!;ZJ3**^)^C>pyD{k*s2(t*`H(cumj_^n}Oe=s%uC0z1qy4)~4w{VyPnp#GXVg z3aina>^4&f;TGToGwTf@EJFd<%l)@UVl7GtAx9P1j5O?V2&2fe|HhMw1^f4;?7CRk z=yV(j+I=PoE@URkSUVFXi1Z=6r4xz`#U6=DLc6I`TugfmnOP$~(NP+D`Yv!;2;pI5 zyZL~ zp|RKX8XpN76%eD;kz{5c4I%s<;r09`%kLk9ViAu-x*x?FjMQr(pkC$vuJ@4QXnUIb zpwamlN=7&m35EHj%4`EJN08;CG)NkCF^$qF?Ijc;)<1#VFAhQBy-T`DMRT6LwA{=- zIo$KCMs12Uz6I4#T$aaIMyWL#6%eB|N_z=~5Z;X}s*_QT(7O23H_U8l)gAW|3L$vM z!UKWTX0~7?=d(A^sEcWoMrrS%dr-CVNvI{S(?7;;ZA(#uo{J-B-rh#l>X$~TMH;mr zMroAxLJA?A2>b)^Vp1Ier0#3$QNM@(GP7$(WRh*BQ46B|G%6rQX_WSI3L(ru)yc0y z2(SB~#z}p^y`9ua&(V4t*tE~gMm;2hq|qBVN~5%wQ3&B|RN?<<1p9I-O8@jWtKP=- zoo04J=|T2TGPCLRw;H8((WnJ6N~5%wQ3&C$akv=OJ&Z-^pgnQC3#G(vGPBc0WRj!Q z5wxenSB%mqjZ*XEJ<-P?VbG6a4_)#9LvcKz+5tvslwedqjM6CWjkF5I8641VB62TH zCskILVKj}>C{@sC3}TcK&Rs!F2*Vw6T{FC#PS zifu=aM^NA1BVh}2FKq_CXJ*BI5Ti6o6*L;89;H#*%P55KCg5GjYVbIN7moe^_UK=iJ%b5E<{)n8T2CRgIOWk#hgOZ zpomHwQIfpmEy%3&p&qQnYzzjc{P(cd$&>BTadhU)+4K9rVa{25pFQh5%>2(@|F!-p$%*tmWX?O`z4q_x}CeujLm%^pbQ@MC`6z7p=SV9fVoQNSX=UO-f8x z=NuwG-Tm$;trGU6nc?@Lce@`FlkSP*K5){s~gTin3a&E@uUrct^*o!a|^H^ z*aj?!h|g-&J*yKQVlpccNxgy3^UKk|mdde+7*~@{S>5swlUa#GL}h5Hl4t0XpG(qN zHS3twB@Z!~m5ihnz<5&5;pnm&f0Krpeg@V=#A99DJ*y)gVlpeAWuz6;V@Z2apFyhX zdWbarbtkZkw4&OqO}>LLGqXazgD@)zNsamG9i;qX?>0^i(gM0&F86K6;s9Y*9tVLz zz;D1lQXuF{Dy`8>s>$>_X^3erDGy=RCI<+!^4JPYCsl79oZAApl$3k;09fiOuGU`8 zL70_{q@lpWz=Oa!9GT8uDZ6n1cpI1(5#QCMlU5fTAk0ck(pA6`;Ie|lha;k`JcXGT z%9)joq|+o#l+*-#1&pXV96&3u7Pzw({j>Vv9E4d(WWwyUeQ{srs+<^YWm z@n=msX?4XzOlBn^X%#6sJ(M(SshL!EV;=BUMC`9&_pA;%K$w|XA?F~>%&d?DgqfKY za)7WNP0|ID-jno$q)n1OmNcS`a~mW*($#%5s}%#-yWSPra?h~W`226%?F61hkN z(CGm}l4loMx8ML_J=r**H6rF$8X{sV@U^5bByEQ}iikfXoeQj&v=Vq47!?tt0VGWz)j7JBwB}%?q#HGfDN60QyG6HTl}ZfLnnNfhoYUh-f{9pWW=Z93ag8Pr%FhpZ#HA2*txr z6Y`@{{B8g#U!P@my>cA zi#iY-<^neZw{%A5%-X|u5N2jp$VqB5Gb`i(VP)AQ&x)@kjI5%e00000NkvXXu0mjf+xl@K?9= zH}Qe_BOLr(Kwb|1zMek*o^Fme0$u!`y7_oR#HGX~#curL@9(Q9A@RTVi~IPwN;K@e z;sAkefV9*em8qdwrVj!pF)_sV+u=rW6V z>zd7-h9dTQ_lBm%iGemg@ms83zYwCIIvVl|rfo}8j4xRCM1K>vo~F>m?~|9_(LIue zxYp`QYt0Y$E!~seSDtkp(j9U|49KaPkEP(AZ&zn#f7Dyc*ovI$p|8N*9h&OwvJ$dpOJ0uFeQxV zM`W8Ltb6NPCNgXRW9#wF(qy~*R%pbm%%8?02N9@d053SR_k9+YBa(@8W~#h{6Fxi) zIz{GtMx&~R4KEI+BEzl)ab+?6x$q3EN`uC}h0DqbB6~kN-<(heCnklc#Nc0=_F&LF zlX8tY*xQht%ksNQu)`E&08<__r0xJV3F$=JUeK4Vn_k=V$0P2;8)_}Oy>i`P?U)1)~$ z#SMKp-LxzPJA^l%zI3LU!SF!pl*)F9LJ+b*BKfz#7U$kIJO|;l8s+npNJ%)2N7-Fz zn!5r!WQNRgP5z``T5UnThSXhwnR~;|T%y1om+{V!SvS~xj?BLNuCRPg_59|U&L?m(CGRSCl*6g=tzO_LWTa0XGJI6E(I)Cw<_G z4_;H?8=7m)2(}rHCnR(teZCWkWEW`$-~Y)=`9ybbrw#KwX)$eS)hmE#10Npf+EGUz z#%2|GG8rTpZFw`D9qQLqKE$J|<4UhjKisQC8Bl)ZObCb|1tCa?M{~zG_^c?^`?!P^ z-j49+;Tf&Hwg=&@WStIYe0!t;#N5M{Lv z)AhGsRjd(+D6;+Y?Ddh3cG*3Te-7S?2_QwIs?5nT++%dpfH*MQ15^!{KwV6$oE-*H z15qllK)v{rW8MeW`?tEB7YWvMGaZkOh|W@M&2t#)EGSL>CKnju;R@p)tk9WGtmRfP z^g5aCTG6LLKQJ`W{yTFm0j1>2?^}+v@rLDg>o1RCJl&h8FXM$_fnt%!0I52i(YYS# z{3>LFNB)}<5TZ9b1yfOiw7E1itLeL)T+tXhQ!bsxrJwfDBbQ44`lJzZ{%OcBtg~oD%tbQb?;7Nf$;$RcNH5`kw7EE&j-J_zKJY4dnLl=%xA?`hs%@m1d`5|WWcb2b z$M<pWa?P!pO$-q>V+;0uU?8%GL=tC7>2b#qBsfj@>prU$`p6@ zQAZ?J9Tu2{Twx0}2@^LfxRkOCC`XVC-lN+CcdqA@=g3`8S=AXd5(H4cC*y3eI~u6)^9}{llcAn z*Y-jcw^0F&*IZ^~#;Gx+>-+w0X4ScMa{4wf%^DjZ=IOW+Oe`@e z(Z6_I;f?G2;9~dr(-U&bMsd#i$VZyT*WpxY!Up=->xb(flcnuDKtNaS66cAf1&wt!R9C+cLF(pJ*eFaZ`~Lg)?<|!t#g&y63=;B+h9@WzS_cz+a#lMa?zD&R z^qi@Wv-W9A@8gZQw}C!AY-)%1T(Q{0zhJHn-iL+nz2KD$CHWo_a18g)PEVlq|FFz9 zdO7|48kfi=8y~PW3Eunhh*`>K{$7T-&G%G6ozz}R$&f=&LhF|JDXCAj7QUpRuX^Gy z-u7p-^*WE6{#;v+-U}M$z?5QROUw1(;NbZp9S)zd;@3n1Zgv3}gu;PjUe$S@=0$1* z;tc5I^}R6iVK5YmTw7f|8p>5F&j2o^6Sn*7X10}jhV_Bcmo*Yy)!i@q$BVCcKU)O?-3liy zz9N557fnNJxbZ|98~E9p4L%g0gbik^2M6B;gy8Udx&I=k^vi>-Daz`gUyehHTVl@+ zx3x0GZL*|Yw7XV|8a$>_^YRRAZEek<4h{~ZVHxS^@ZC1zD6pf| zNyjE+2((Dn%+%C(qbSqZ+`QM!!lq}rKMngO7y?M*I${oPM&1F=Ew`xpJY!xqVtwJl zg?l9Yi&xvOKt$g8eHUp^Q5g+A*VP*o1c+>-H|~2Rm=ZKy<3t0r^&=3SJYrV<*TL~uL=}$ry6^7Pk0~rA zLar+K-jK)nvkB*gO5eSEH<3p<+r&V*!5vrrxiy|RACkP3tok0%=6*Nt>6>T8-Erh1YsGqa3b#F;^MzC8eKQ6lA|NuQV33Z=PasYdg4WhPe`yK;@L}4!TYP{ zv1E+%a=~otAtdx=41k2%MZlquN(k}v^z;g7UCgXE>UDy6>!;H0R52iF@ii;43F`}} zs^+m7+)DvdQu~s3n&bm4Q`N^^Z}R!C|A>;G5BgZz{YI=f`@edU^Bn(w&C_ZE#=WW0 z$SYac0oY*@@{WAnFNa`xNRAIow5$EELkkjn0y{(_+gxA(sZM73{=EW|6EcxXh}CpN zRzOWDuiarBra9!#6cAjv|a-*d5d6zc>giKTCr zwZ6mv0$L#S3nhu>2Te057N<#qB|B_Z631z%@0K&FxiuZHs@h zv!rBm6%BV`;v?CjdhSag>^O$3nE%l862U)xh8q;cbj)qTc%23-#xdIR-gDFWzY=2W z133-YVUsK*UOY8ofk##1%Y&d7bB5ixlGczK6h|L{T8NL2k^f_V7iNZ4Af6R*=4AQh zrl&36F25kYR!c^U)7->8Uo|kZ%(+nM^sA17_ip0WKK6V=!34>?5 zR?9ddpJK#Rx2IKv#n@O(kf($Oiv?DWjaEj1L9K+lR zq{FRat3w$kSH|LanI%Oi<2E#O5ErpX@M$4OS$;UD_A@v!Axc%i8jInPtpivX`UEQg zv37##bZ;Ct2dhfe5eK(zAWHI|kH1uJhe1$91PL=WwaqfU_~2ZO*ak+@ZCj`2)TzVS z{#nECg;sLa5(5UXD>isbyj|o4SfIZGxjnKjYNF#B?63mWp61xj$2ZzxESR82CA|K9 zFF1777yr%lS|HJ4u;SLBf;cFA7jQqxnC&q9z~UDo?&J{&LJn)L07?Ox{Mr*215~T8 zknHR)`WB*iS@cEN)L(94wkxZVw^hZqC@bQvVF8vI61 z_1FpFl#;YTTqK@7c?dZj$!(N;qI~~{n+mNZ&75_z7kAhH)Gu)xTlYaul#fsCiR)ri zW)v@_N#sCO)kJ_R0o{oszT#eGhF6!mF&bWK`sY7&Twpo{U5=iDVyIUsxT87=r-n8N z7_4pSy)D&O4Q*wH&?yWPgNOKIaKwdqP?B^VKc<5FfiS5q0M{NHJFZv8L@=D$K#QVUVIW@Gbxtwp1FU(Q;2!yt5upGBiQaA6V6xm%GO zkx%eO2s_&ni`#sB0WiY*pct$ZmGFVu9Ion{so{aylPB9nMMZktF|nF;jxe9r5O_hb zmIpiG^dwPTfRArbyG$kF+TiwgsuhcDEF+RpM@_9(t8B!Ozclzjwu9~dq}+qJSj}#o zbg>zMqr1$Av$v0`R)NI9E^b!)O{&gzf`Kg^IA8#f*D;M`A0{RXTH>q77Q{meh(AzM zD~#5X<#KODdQo}PB=KL>KwT%bpoTpPNkEB*p|JHOMxAM9p^u z+EYtT;t=xsv4F8(psK?JnSH;}0rV)O@Trk)NiQvMvsw$qF!n5{N~h1mhUD}XaygP-8`!F&_{jAv zJzu0uqWZD|9Z3~mj%3sWwyU>>vD;C6pF0u5tL5MOXao$Yxt1_=8%|UP0geN8#-<=t z=MbmqWCg%u-}SVkg`;VwWS7OR=zy71O6Gg_t8ClWr)&6gd;#ta-lJ`9xe&`l|7B__F3vfeg_CxCUi?-GJCgLAmdvb<+S*iL7}&)uK^;KDn#lyz#zMO)4ux?28q4B|tu4~P0OVv5 z;NMM)7jUVizT^@B2mwZc1nt?g-?4i8C!qas#^W6D`~e(&{+xm*WLpZ<=r!95(9j09 zPB=O`dJf*lZKn0BrjKW-eoTL9HOEH?U=98xh35dROf0SIIM+(ngv44=rY!|t$L@$#CsQ0?>pM>Zu`W;i`UQccSkik0;MciU03Y}M^)>lg z{|#emMlPz3gDJaVpvR=WZsy>Xbc=JJ1O%eo3i0b_&-JGmsdID0dq(Pe0_<%L`D&C= zIH$Zq^@X86IV4|@h7*+#h={){nQaDnDrWoi3=AhJk9qDo|Ly8}n5PSeo#GP3SCsp3CKPi-SYdt`?CIH{DNgx31_a}w_aVv^!gTSqD*akVg zUJ(@)Z3AopI`r@FvRV<7ViLf;bGWdXdbj!Zh_kX_0J!}+rYfy7WvJma+RFXGvbjuz z1}cuFp3zf>j_eqHE51~#_V5R6;~!u~mLys8&lN494<2;h99|pD>GNvB^@i-W^#QW` z^yw3x!H)EB^u)|g)fNinJjdO;cWJH(13m>??LZlJ^d~O#PW$OWRq%4kV@p)v9a!(- z&Mdax&E)lpd8L&)V7xru`T#==SO_CaOG`6zOUrNBvNQ&Ic_-VhAK=JbC4@$= zP+ZZNYYn5NH!K;6m9ghE^o9|0uqQ}H12sp&7q+gaw&~qW4By$L>dN{;h=i4&2@y~8*vP`B4@S&+3g+OIqC<&3!#NivoPF z?UyyP6tB=TbYAp(y7*X?{`<$!qm7bn94hm@a>!`0-ZkLHeR-#UN)-E~0nQiF%`yzA zoo|No*SQYsd*Ha00)GGpotsJ*7r~~5aHZKM;Zv_sAilNsofNR4cjw!I90}VPEm~e( zm3I6}3tXckiCgKGsOXY>``_1}hri|f#|)|P=Yw$lK zk4-EsHOYrNX>!4U4Ng9Ptk3;zrL{cpEPY)#J4M`BcOD)XSo+4FynLQ6fC|G>yr@6r zux^d%gdqrGO?y$eIdWGI&xRi+ggbqGmQ1k#Qh^hfx@x^Ucxk;yT3N3GRlqx+cIRo{ zF`I%G5JbU6MW@K=^>U?AEknRp+FDt0HDtxcewC_|$F(VpeDTlz(ArE6#9MdxBhKje z8e}FzE-F-6VefP#5W+9-Ig+m1U+t`#;kl4_frplIms*z!O%ckOb@i0uGeGeL{;BHM zAX|)yp!WudZl2?p!3X93;y0RMFZOn$;VWa^Bi4ZV=ni|&fI$%N5YSh$3<&xM&`U_ z%L}45%H!+z$JTfOd+X^Z2Nb?Z$dy;zvuiJ10OW`r{o9hf6lH=7Q;kF_ zgTyHGDd+VYQ<2K*hN9~ZuyQ&LSsWuqrcRWO5GTd=Bvib!8cU>$8M0-<6Ra`Y939sd z{hClAgL#bru_S5>LzgMJ>9XI0en)x}&@ti8uoB><-7~?74sSXFJ1`rz-mm&r%oqnQH@BZ|9~9X1p4PAh7uHJ4Gf4ghu#8!+bUA^YlGz80q~cu?Ydq;h!N%+ z{SGiVOl}PKI14)~Knk!#sH%KS0q!}eX;ycY_w+==iHeVp4=ZX`OG-kXT(JB}NPm6h z4S-#Fru_vHdrJ6y2b1xvL#@j2GZPR#!c~-_B7R5`E;A|1aw1+BcLU*l+87jBk(Km z79AnFjq8?AVm{DkRN-cw!Z0Q=KM+pu%jWwI=>&c`elmb4p@;(65ysYE5^udQLOgVzhyp4*@>S|Ugrm_iqcsKlG0{Sz&iv=Lt zw`IdWdwVbbYY1C`$^`(ay8lfr;s4cGu-cFiz#nHr-7F^uF#z<%@A-rSNk6b1 z+2#ZDL1H;__+Tt4lNBN!?5-{38wd%eyoLX*#1N&CYzoA0pcwXvA+oQ#FPV~~H{F2P zv31`9vW2@020~!2mo9dll!k0`gE@8A+QJdb*8lnBR-zQelwSUq=k~nT;FfNTGnY-% ze@c{v9dg>EktYyf*#w0Q_L5sCm_(I=fZWtzWuc~K?2(!ctgh0Xg;U(44CS1@X(#-3d(J&ENuej67bTTKkHsVvuU`pZt-kZQ z1pscY2PQI)4k+GB)lHw~`4i7%>*OPmus}gW>O|ViJcf77Uw|B$DIfj~h@SOFVL-!| z6mCBF3$y>{xgX7Eua`dnHN<&xDFTiVs{Q{Qq0zGRxA%=$mY1m_bhNV-`BJvWP1_Yk zN0+s=?YAvIeWHDznSNmytdZo|+N@T4zOvx1m*p#I^wrdqYK715mLP*$gUV@h;0j+Q zGF6>x{4-AaV9NsKmoljv#?JD&g}PW5%)HxH61bD`p^z$&PywC)Ksguey41&?x?@_W z`Jr(6hZ@V6@oa;&4&&{~nzrEm4=Z=?O2TxH>?o`TezAfjtHOmm!9d-tt-ii~{<)c? z69`0&J%1NqR^&FlJ8N84XB6eZy!zxP6=~Y%K3J2I#xGo^Wkgxr)LeE_W<3w=uo%T5 z{I0|~<%z!jpq08Vkx=bs(uPQpP0hW}z~Hd*y*Ejy&bX}#)Y7s?S}HX-s@w?D+Df?% z{ls}Y+LSw2DX_i*_G(f_`c@fb$k}QBMnJr&Oaq;tHhnsjys+Z1fF- zgE#W_l>BK~qoF%#>SA)(ovUJiKpZCq8q zF|^z#-X}dy-w@VGCvSAmXkpqU_m9co?zGfF$eSURr+)6d7UOHTM}C#6$iDUbdtG}> zD_zV#SN)wShX?o~H$4OUxOa}AVCSdoWL2gk1;Up)7%H$9es*W4t6j~Qdtc5gzxFqN z|J}P@Wgf5Dhp5164~tb|`gUvXr{O|QU=gSL3GH;Y>MPbC0qkzA`$KqMA!Md)8MZX5 zZ0uLI2R>wh;S`HwKK*QZEG;P5PlUEnwh0FM7IPV~=iSQxWnf7@l+`bY%zvaZLgtkH zIn=fo<12hk2$xFjr>QJZ?kBTW`gzcBqh7YJY}sh=X6elMQd3Grn%txei$}a023F%- z*1l?4rxTW4F}fq{&S+Aw`rbdu;9%&WRr3()Ii(-QUP-rE7n|W-;#{HJh8B)7jS~`H zvoDBsukv0$T;_x@>G=ahPG&ZKty1RkGh6DTH}~)zxVHbOL5UOkrV3?$s&QyvTYacD zyPKxmOyOPKIQ`KLe{+i}k>!<%-LJU>t@5Mr*@p5nsZSnjesX#f2AGXd=s%xkTxyAJ zH{I`?uL~3gyvZhx*EsDZqEY&wm(&t4Zk8j6JyUp+H8@WEQx*)(lA{49y0^zi0qM-)V{$Ia)F*g_TKK0V8`u}KOMD$*v@ zoc0_U)@qJTSnyUjEU)t1+vBQ9%QYbq0+eo=`J|Tbkgb(R1gwiolaq@lm3rh|Cu368 zm0ilh>`ZXQB%fCs{uF%%aoO&pm4X7BM6HAUtJ+tyv;Ex1iVx{NstYjS@8NCmVfYNw z0XhF#UuLFfWkyQad9e}JV&~k-(r_gaxgz&r16fa*To#x9j8ZSYvBJ_1B{NKh{~Y#H ze7m3mN}`$pN6=6US*x)1^9eys%uMUlYUQQN334tm+CdJWu1bF8U7{T&SO;RuRj0qk$2F1wNY{y>9N9IHk_ znwgVO;&lIAtok#lfD?!I8QqP>_DR=UPEHqJ=r$(%Cp#!|Ja!+wtlH3<-P08HYUzCh zbJi0tWX*jM!1bQ5_@>&(XI!U4Y{Or}9^sd*Nejtm?A+yHJ?;jj z+3sb@1^vZ0-|BsM_WRRmxQxd0p+A6%43*6Gy;h6Ov92llwXu2GwXntaq(aV!-xb4j zk`r-!BU*yFa{EV2O=-m@v*9WJ+4oS0D(t<%&6C-j+}o(P0kjRQU&a_;>ej# z*sGbzfcUCK;rI^|NipvFgN9h4vcV^D1%C(B*sNM*acUf&1yLMv&g}rKLFa%4g&EK; z_)(N>$F&X@0{Y&_?|`;EpoZ&_u^GPysypqPT9?48Fy_Ok-3Dl%VSDPo|x zFmcJI(xpo*Zm<1I?*01^F#aR{{wNq%?khk literal 0 HcmV?d00001 diff --git a/visualizations/10-visualization-quantities/images/max-wingspan-labels.png b/visualizations/10-visualization-quantities/images/max-wingspan-labels.png new file mode 100644 index 0000000000000000000000000000000000000000..00e333b036ac087ff1940b6fc5f63fabde64ae0e GIT binary patch literal 50075 zcmagF1yodR7dAYAfW&|(ojP z|H0>d-uL@st)I1K&7AwhUDv+$wfEUXsH@6@@u~4aAQ1S40#p+O!ax9@h`TsI%S?lp zBk*;{?fDDsyTG6ST?;sHjOVPN?*;-9+`s)`jL!vL0*xZ>vU=`XPFC(-X0DbX2QznP zdnb2$n^zA#EnVGgoE!ys9`o>VJ$&u%?kvX3`@i!%POjFxpZ|nYfItsHFQCt~y)%Dj zd1V^OPMvm)9{+Z%-FVdY{u|!C=R0k1h$g8l#xw2eHgawIU~E#(s%vd^<7e!7!S3(p z4eq|Udrx7f-!Wm%e)#9wN$=2aNk6xp;kjk|K`GSeTHtn@+v<>n^+=|VRkn{+Yzar0 z8D-d*LH~vg24NQ;A>)Ih65u=9IEI}AILy~Ij~w75>{_2l&Ep5!eFgt_I)C&bL_VVL zLXunF5Z;#qUB(4|2^}))$7B&}Y0HU2YL%hsPz!I(Qv*mIgr9x&lAa>oN&Y(S=&S&L zMiyqGJ~6kHl*_6y!CSH!*Kp!bA}R~briiB|DZLlJ23=+p=SYDYGC_EI*zLkvSb7Mnc&+7}E-oXA5!g-vp#y8pfko^77XVU@ircdUe>OM?7J`eG*aJQwnDqJ|ar& z%X_EJY6BB{N&~JAVpUF5mov1$Hd>?op3{v}LZLgH8N-~;=hcuq-`f{g`^EJs?2KWcG;1HinE6a$%|7na4f8;~D}(LZ61bkeaVSwl~I( zxSLAujwy&WUmOX zikUji!gm?2sf*5+>_YM{cOD_573jG|WYzD|V*S8qaoU;&I*7{%!9WH+WvsSN-@2jM zO)T)Q!rl-09^z}N5P5LCd!{_%%sYCA{OlqX*Pp>#)YUK~JopRp&PPm<35J%t-j50N zgVrstGNo^bOh57-ggs=~g`r`yeO32P1)Qxl(^fn*k6AAz89UIBHTinMBXKXhmoHV)8&Xb(C4QJ(I&HNKZmfoc93B)VyD!W zU{}EOX1(uDqcN;Z+XH)-Frs!)=VuPWR=}BpkM=YR@v~%89NEHDc|m|Y(e_C0SkuK? zv*4StWW4Y|G{1n+v~pp&;2U20qz&|}n*(Uq-19;wHfA3=^yA7d-y`vno4s>wW!N>o z9h{4RHJ&8~1e-W8R`IEMkUBD9@4jNPFGTQ+ItRLMBk0+VI(k8zjJK3N6Udn47;B=$qaQ z5 z=Pn(ZX3Wkn6S!m%&0;FXQ+@Lb60kN67;$$D(hIAd>_CuG5)QBpT?(j|HHHflD?|m+ zEDI&-iD?Jzju75}DlvI*dLsK)sP=uZg&UkPj5SJanH@)#FzZb;=D>zr5Wh%;$KTp< z6rlLfWi5#2s*3K!Q-krd$y0B63~RI;oT{p=MIDCSPIUPc%0nLiY~E}^fuyNl{^G%| z5y=$IQ|JJ6d6w&w9&z-8_&2H0>j%5vO`9LYlR#XHq;*0#FW6t~efnSoCE914^Plx! zB(HDJkz?o~O^&}0Gb%@X8mDciZPbC5V`VG>(mUvU9)!NQKk=aD*Sm*bo^5Nzf1kuiZq)ekM+7$p`&zHa zZbwM_2!-r*VVo2cS=oPp4h*`KLa!l>uBq3siY?PFzazzwVkA@dLK{1}VxHe@4gP_l z@9|no?rNc#oi@eY#Vr`#x|x=Cr`ZT&3U@zj7*o18DJl@1MYH26$-t(Zj;k2!#kETe zqf6n5HKUx1iYbZCA}0}5g5t|s+^r11Hf3S9q?Fs~CQYspIPm#Ms~3I1fAMNG(wwsA z*tAIcAHT);kN^6l<+v{5f9jm|#70vs>ekm4dmju73zyg;0!00ivNSbR(w{`=e;W7E zp#fYW;Chr>kcX63=K}u^clZC}4gY)k)hn2#l6$OTN$K+UXOEnA z7zywH9B>z$3Scw2R>07sQ)@&yy5JOAz!d^Qz_IsZSxd^tX6OBU%{YG>i>e73jg^7R zhf1cd2^n?%{!C5(_sU1tGdTZwI-}$5x$=LW>hW)*)zG2!e}>d^m}J%+1?U4fm7ALI zf4VZa9pGF1N}6oe9Stt|x2x329J6kv6m||0DqhGaysrha9}D-N2qz|sXN6ki-q0_0 z$wD1T<7FZIYEUcac=NYj6E+BiXYx>34P&Y=e{^Lor@S^dQdrxA7p;!QCz&ERCE86w zsA6UB-(aX>6`hS*A{oB03!&wakC0!Gac^7&qKzYLxVqrUJX+d_W*wOI1xgU1GvUI6dgi+Wb4@Rs8O#_fCgQ$nZS$ zRK&R!PPnH^%6h@qwVwQU^!;0%b#Wjma4R>&&Hon+d4!yUxZ+jQii|S&-4UVFyYmB! z0;^<`h2-qW3dB}!VF26N$#ZV83|4U4AOXBwj7DuM46{#0B~p z37Cs(C|voE)MIe|j_KAd9Qb2OvN1fd+X;T>A(mhsOwLTZ9J_8LO&@72olhVHFd2d7`^@FFCX|&#ezxW>u}pTZAYB1QNbvz2IhA+aDU@p%eE4Zp84J7lZB#e))y>}QN(+LxC%B|kMy6^q`& zj(kYck_u_9F}+G{8LPFS5WY_ih=TLKzmqHxV(SJ(0#J7Y*ms?^=H%BoBZr z!G$haEE}Wp&h;Hb!pz3Dw9-vqn8VQsm2e{8P6bYnd|vE<*+wTgfAW>vEkCCH)JQ({ z&_2P60~I1e5WWY;RxFTw#-LHmH}YsKBrCMwTimZAj4CWA(08asEu0ih%R~Qb{t}!o zUVRHXB^K*QSJOw%DK|Q%Mew0J>Jxqf%v=yJ%wEhcSqrjVMzkKu6sq_$;c2Vd79B|w z%^K4freQ9kLMn?FBMz$x$&EN4@iZzmbARv`r2OoNpoQ$FxhvL4Oe(TuM0O73w2Er+ zhV;}Xa#!A&5isNjw>C_|YXh7${t@F!DVNhrngrNJ+GgNiuHAdPgM@2TavgtZM2V%UV+LA)*+~8i z*V-ot_cRwFHLbEwC7086>u!{aJhZ*vSt$1NiG?(k(#W-1xT@W>!wH9-FTF`b^X}f`E^v1Qh9fvHOQu0`IbXkQp$Lu)nT}e^_IVc$OFPJ(w|g?5W@` zF`6Iduue|`&aW~{2gb>?L`xQo;OTZyw4;STx_!lBEDJSp9Lp7)1JJAoz|*&|qHt?j*dTar?e_{~c4As`m#d)R{A zfz={&uj`k7HOB4U2)Sv)`|i!s2gyEChUM&V`5ocVRM)dA@2~)pkHlv zUvF3UmcUZ%S4(sv`b+_l{Q#ng$F=jahA@BU)!#jz^1jMi2{Pt}jDjqY=0+UJW{1y| zpHaz8zOR@>5uz0`VN1*~hfU2=!hB-$O<=~B8E)E;eHpZlDJ2lyNRyle>JnH{27KW8 zsXfZYW1DytYiG$ z{}3h=xhZvnCov*E8IV4*J30C!;#ZiiRgQcmO$s)KRB+!m`Wn`XK_>^ zzrM(i-<|of$HDh&%?E$?Ey7WALJ^HuuM-$H*1|WFY1XX>%=;zU#WWt#{s^KK{B9-< z#RfCl3aY}AJ42a=B*%M~`Rg_BR@{ppgj#%n4~&gmCGmGAv8hNubWJxzAkB1~4<;mZH8;ox9dgL6$bSW@@v7>JKNti^6D3c2!)B50Rztj+)FZW;NTdTh- zPABplW`F@*jsqf|xgRK1uLSsP1PvHW5f2mDY1;~EkzKw&D_${jFvftPic5}hg!~Eu z!fI$BVe7(@Q5mA2h&pVnj8E_%^QFd2S{w=hF(cJs4rK8??yRMoXEsDx?;(|#x&<%R z$k89TmY+l$hy10SS`Fy|lZbqNen?J)0^Y6##Q=cegza&yBI20q=RyW-S1>63 z7w$&vMn%}Bd-S&zkp@AfM%%sl>3X3~9_rrh90GrAP05b~C6-rP4bAyI9@oAhH zrT(`7H|?U5=<8?2^SgGGJ@p&yq6o+S9zNg9IzZNL>r5O#mmM_q1hhSTQxvTz<>YQ} zrvS7|`)0@JI?*#ibL%g&-vJ2)II6g)zColt%wdBkgs`iR2#|YM@025LX?G1wiJh+f z@Vu$Kr#$(DqYvG$$Q9=jV*=1G z>D=eZ9ALdW-n+yObU*^z;o1wvvK>?nm7AtWKqf=K73@?3x>YXd(RbPjU1!G9t`MtM zJ27X1+jzhrcTVERV{3fib{nW5-YLbdG@`lQulsRyd)!|l0$f%=n>aRbtn9w$a8i-a zFKc;7T9D184X z_X9J;jInW|`qs1Wed8M+%MxQuB_H0mKBVwf)L`E=A@R|I@*J4uL!9m#<3{gy^kQ-{ zu2t@v(fuE+x6aW7SOZ-qd$Uex-DeLqDIjg$cgS&GxvT&);)XDW03q$O!;c6A+ zdmR^eXk=bO0a!(qNUKLrU85#XFIM80fKx|uIC~Q zR+MdF+wN*kC+7l^fPpp}X+$VQzzGRELJ~vHfP~mPsc9hkyFS4}TDP8{a*?a>h;Mwp z*mE1%j*J}n9b*rQIy8_0ko)@`GBAb*@xsBkjAkn8oE>*_*IBIkZV4{Wc3?c1(XaVs zP~ADhep{c7xma3azVMmO~o_-r-)B# zFe?WcW!xI!ZFocIuC012nEy#nd<^yT)r~8eZWapYT6efjABe2$oVedwG{IkV&6V;` zPfu#3}_)oP4V|`fM{TY&PBeL5F?kYX3 z=%?QJMuhNXdN%*9J=HF6>vQ_}O{`{tIf-G=3z}W-4jYeo&FsPGYF3Aup@K=u}Z|OFW~E`my0&WO8M~)8?QvE{1TNe%?=h zNqu!kOIyF%U4{-sCK!`6X}@7+)BIud+JT&S#7Jg|NQ~mp^QX2Ts5;PXF;M4+dnM!e z_~yX+88JsQtY)UD?sfnZLh7&&4&~;fW1%3u>iVK^=1sBZT?Fcrzs5ro+$GD}@?N$y zVCC(Yexj7v) zxxE}|3oF!8pD?&Td3K`v!R?sAWc6CK?31FomQfy$`{Wx`y`y`maP<5ec7#KhqEFaZ@ z+Tzo>hwJLuKgV$Yaij9v=I>*e@uAr*X{xGx9N6%ua&=o+XMZsd?7y@;mnu@uWIj8Q zY`}>?_!gI}RU)Q0^-Rqj7$+r8c~rO^h9X2>xf||goX?WcY*D>@`P63NSlZL!mg^oB zm1sK8^5$5|R0wQkJ`Q*SN|aA}pTYP8Dn}M)!OL z>mr6>h*@4$)n_DZTCUw~bf&eXzFEdQu(B?$LX)AJfpcbJv>g zyT~Kg{qfkb4>V9lBYGZYEpmc%nRVU{oCz4dIT^1#M%`Kf07lJwNux2N{)hLc;s zkD5;Q_bBN$xQXN*Mz}KlfMY%mW<*nsCCw(VxFUu8L)}MlJPOO-v3(JRpJSE+kGN2x z09`JN+k}mM|3y0?RN`c7newc%hDI-GvaqOw_i{-^%H?~Rq)>XPlj8EsT%_$vk?+VU zibAit(sw3avZ1}T{OTkD>_NJ`%2&-6S4gwjczHZ!=;GHKV>PKQxI1*Q^5>?Pm=5$* zBakRGF-h|W4c|a!GVHf>AYVR?hjwtXhHT+(uQkO%8LJcsoh3L?j&OI&!oqj;*`GV2 zy%@Ciah{(pukz6F`J;1SYxJ0+zP2_bIfJ_K{EOEswHdy8AhY_SK=Xb}Qj=V19bZ*w zir(yy$x{96&ELM+jqnjAkA_-*Hy`E$U0t`I48~SU76$nMer9OSp86b-t6u#%XsvgD zfRc0|R-JVt1u^1~YYIKgX$statpa-$qivAkI+sr%mO6O6uS7&jX_#41a@pkIFzvWK zXNVd~h-^-Zw3V@Vd>Vu@8XaXYKuVe8?p0`c7T4FjBmOzr{DeCFY%59$BlQ#H%21D= z_4-^iw()v{$jqn)?WNI_=;m!>b{Rp_CGWdWE3 zu5*9%Oy&flBK=&UWJ%9t+&DY@Y#)IP(hY9$cls@cx4!qnGytqScOpdav+2lwZJ2fx z9)b-b#_-Sv^Ns^Z z%CFm^hnRbHelYH}v=m@K?^Y_~ZC=~1Y~s!@?3Q+&ZW_5wFVPA*h+M?b3|aOn=N7_z z{IA7Kw~Y5z!>oX1+3U;$8+s3J`TMVW?|+XjF*c};FJ)Ak(wppl*U(CYgca{h(M$6H z9)OK!sPOY}Oo=UxLA`6?b-&Ec_^)v}r3`*gXObK#drigS(2?5G%7|KwvuG-bj{zBo zb^i$h0%3P}P|x9*GJ`N>@B&uWo4!F39H>R9js1f8&5q^qFUyAnKPS`;-w&b}F^Oh8 zD8v73((1Ik&uZ_xzH6mj`=S0mrK{H}dZp%U>-1+w7R3UIR=CTiRQ}nQpj9kKi>tIQ zmYUr9c+S|20cn(8e@`<@Y^K;7KdUNCbYE%Ll(jw8^G^NeOndWXRoQ$oD9O)!oB~di zk8oIs+~`ZjvY?BQW!OaZ0gt`#Iek$HgmigjH_ELjk+JhM_p1RNFZY0Xeoj>5#u@Xa z+fT)7Q9EY9k}bE@o&Np~pKL4^ zLaS*7Yq9gS^5p1Uu;c62morJ&TZpq$l`74bsq$I{X1>-cf)_EITXmCq9Q98cG*eS# zjI=nJv3=?gw^(Zm8lk4YnI8LNSyR#))^U24{4~&!C`a0A^3RBPV~A6^!z(=-jC>rj zdd`v+nys`a<*6zjDu3KU&zd^(O(dJU)|pcmf|C>lQt=Ykl0of01KXh4Ei&cd4_1Kz z^VgTZ%XOr#CMUhk^_jK8Qua4wSZha9pV94K_RF7Oo9^%47y2pa@}q8nwxRc~BL0Dh z<4HW7#jT%7T44Uu5|mjt$)-qfaJs>`qX9#8qZbd0>Md!u#4Z_(Up|dhNJ+gO2w*Km z1g;r{nH@?hYsj*(4=uH(Eq$lY;j2q+F4C#IJTbh!*!CsLev0k>TDhc&z|qQwtFr<3A0S4G||);^a%=l*X2p48emQUc!nttDEpxBPc77sf#jR) z-k3E8Bs}DugoxLcUHYfm$YJns7CkI^(td#;DChyn!m$#unYj^Tmm)r;U*$yl(o$gc_r`Yrt`|i~ruQLwpbSv;zGTALdlvjCrIJ*IFVDe8)BM}b_-A^ra9Bt7% zRXn)pGFDad@!bT^2g-V!ZeMaA0KCkpS+uvN#?ZHRbIk$@I$b8*&iRxc%1XS#O58C? zZ~dh?{aE8^l4&Qt{}$??Z;(uN&hJU_)wYjR&`@P&(C(d)%d4nA;KlPz?%Bh%G=sv4 z@y#JGX`fR`p&vqf=vhG!t%MDmaCQ*r_S4YXn6w2rwBGB}`(B2=Y{WxGT_F#`cl$$G zou}Jdc0+GkyCgs9?yX;XTrU3J$n^U5Q}I)2VNBKR8F>X_dF8H&R3NoqEPdZ+;`W)! zw>Kvn@9Y7rPm&Y@%0?lhGnzsA3&3Ei(|)91v3->3^aprHUbLxuqFfyP%G|7D*D8e# zn-~D%yERc1j}#o(R)6nvO4o6=$H6tBS$UB{->ioz2P0LE41Iqj)vaL|dY>{K(+jW_ zCSZzK_viuP#H$7)oc*B-vS1p^Kay7W0E@Z>QYb5U#cOQ`Rmq2yv6bQTJIf=paZMrH zzbZ3sTRJSEQ^J+$y6xJQ+TitT$HIb#De2tYb@etczdDIr?`^s|2Abi;1suJ`@s_7$ z3{=+ec=M)}Ht=+zjZ(lH1Upip6|&R|@7Z}H!^+=W4$t?Z8GEJyW*;f8ogaRYReQp7 zxj%cQ*U%I~timuHUKA$>n<1OEz)w{g+xiz3SDrmL#@ z2<*jTXLr}}6eFuZfFae|o`Bwpuq3g26h}1XHM*y^q^bIuz0X1fL@vWt`qdiP^ z<@1n9TiR6*u@#^!y+&V7JVMD|WzseJqyx5nx$>^?NqwEmx8>YFF#+n755leH@$pP& z-@p1`bn^&V(d&DBg*L`S!!qN`Zt-|nZ&1zs%U0-W!Re)}kz;id93W7T4#!JL4O%q<3^Z}WK5 z4k;n6pYtMt_!1BVyL~fuR7N^Up3o+4p-JKIvp;|GOqw4|?vLliEZ_BieNIV~Es@mR zLmqhj3sWwMe7|t1*ptu3$;PpeEoesZDNG+W_5Mf_MZQy6y4q7r?z$<}Qr+%LK*8`h z4S<31%eoNYi(@POv^}RGv#m3xB&PD2XAfN}P}NuZ$!d60gNh|!ZQ&RNi1ypa(0m}$ z`>chvAUf##LDbn4BSGUzUK(vjZ%N%o{bzQqN?)dxnz&)gD2^c`{jUjNx;4RTpQ&8h z`%`<6K3&cCgIFd~2@G>LM7%uH$OymKMP3R|+7P2Fq_~7o5Zy&A=Tgerc0+QS)6ZI! z%h5SEKu7-C=DG*?0For~l>@-!0m@-2is4w{<>j*c@$tFi#qUR4GkU$Oj=ss$+}xLE z0=WEnb?*hPPh@eH*IWS^VCc3wPfB5d%CWW6LQtoR4;fevb{+iW4=~iX2OIH&RVpqQ z(q#R&*Vzq{7nGueb`N^V`5GI8Kf}OWhx1+_6Hzm26KR_UqCMX0j>#E$>wfQHQFSmOmC zcB=W}=Deu-%2$#B)YMHT18Qe^ZMCjSR^098vEkK1n+7^Ww5;hk*DFn={4GF4=BOG= zWon&HKt7gN+M>&`diFOHVn|n3_PhPIn!Ju}uLJwP*dy#-dD}daSEf_7%h=x$)~%gf z=a(bmD99^{?`)+7yn>CF0%Cq#8Auu=h9_5B$Z*GXe9ESw59*L<`ar(wf_(dhZs-WW zgWe|}0ze($=ZJYj%yB5<8?aPWk5ssU)yYNF)!8V9mrikVoSkHpy?$+L=>fxXa2VLQ zh+PHvruLN<-H}SgpIEspS?Ij>M1=~Uq;igiHpG=)PaH&q)kpi!L*2d1Z`bNnd zo7Nu^p*%!@ga)neoR*>QvPGqcBZrJ4zW4E!E6;g{@ag`Z)>%(~i&HO|`175!W_fZx zFBn;z{|X!azNNES~T=4*=PTw%7$MKKb}$>OgHXU zzZiPi9&sCKf9Sh2i|mwOA>>@m5}ew3d0)i0f#io^eS!a|-ZMuc0aoxr+vf>w!6*6n z55mb3GZ?udTKBDh5dnc_t*H_CB9_~Hvrm&KO(N+T*8c6t{-_G0$+Ohxbvg$Id;uL% z1jKM|Iy#TdJMZbhCIlRvA0OzzGyqXu$*4&6e%&oPT{By@BI`5Y|Rw-62A zevS8xeGkjuoR>0!p_DZOc?N}k#Ah%ParM(aXDwj*2_ebM1=Q9OvR ztnud_B!R#mlzFEda~?FJJK?4Ebq5@23&@%5m+B+qU=Kq;d;-awrEv1zR|h#QwUL0c z+;@E|j?()ge@xT0yufTDPj7OwmPtep54qrxZVeS>os%n{k+I7dFDmtWD|cz=yTz65 z?<9FpDV3&6?zAlJRAJTm?G^P^$;KihOASDY?|eivgTCAS7Vx|WB%I7uU|8}yLT}XQ zB|^ZTRW9v*4tRc_xsm$({x-#d60s3(_wRgieZHt^Y|G!_icR-Ff?B131eX`lulwq>N^#K`!E3|CDwg;KQL<`&3$q2U{Z) zw9&(h++S{4A>sf14c|wg0&ThEc$m^Y7r5q1WaFNwB zwcJ^NJqAHsDV;wfvKMcHD4xQql*l@S*%0&HKn5&ZUtQHFMqqeCu%53`Bxf)#t9f`V zV@&wh_^hIXxsuL-)|96L5Iml45h$I_jwOEge50KVBz%BEISXeOjFuP<2VFz2w)Qsw zX~tP*8F`J5PuI(=wzNmHBj}z&M=(@j6G~S%YFObVn<)?%9xNWLR6euLkiit*9TI(T z7vDKY8%*QRlR2FKqcZETPUN$V6!E3-YXWFAx$(Pu%z4wAx< z_}0Zw1zb4yG)E5**4&VNX0%JD-#ItJ*2xp77hK0Z#FNGT2o(30>NZmY7m9NSdd*)=#=nv z@mNZq|LdPq#oxcvN)T<1k2Y0B^E4+&%=UJU{evO1F{;<9WIq{}j#>0QZ*L=ynz^ue z;b)IK-C4leO$ ziB#c@2E_FP6Uhr+)_rm6d3rS{j&;H?14AOIkR~*2K?tv1A4(KWn~|ENo7<5cCA(~j zK7hCuzzrWlfLc5@h?4Ppan}Iz;7_s^Q2Z&c7&fE^B!LsC&-d=~KfQtX0i_keeN78~ z!X#-Jv#gMds6JAXDJ5w8-J}BcxZD?JV_S5IOiOo3MEwm;P&uxd@JvefrLIdsmBSo! z=rT~vN+8mo@&`C?0NoD|WrX-e^|>H>FONtq2ZUc%LR{a#{RK4V6QKo^sq7G9`R#b< zw$`CS9zoF^$Y4k0AV#364pxTt;=`8`n%< zF||p!9LX|`Wk(;O-o@L|Z*<|XCL7u8ODcFdB?LwF^(n8U5@qC16G5TwG}si2@IKO6 zNbAH?&fQ0*WV@NtQdA9${$#sc&XV6i{&vgKvQuDQ+CQUOA(Drf<~NY)qX@a4t$VeMv+K^$HMV@nXKDyDo;3 zFNr1Ya$)lvFIX=KRnsr8Na6MAP836z)eXZ>%#rNKEvYQ3M&CnSG|W^uDDK13=KLP= z3K`VeItcpm`9%f9mE4(Q7dwa>3wBiT4eisU_H`ovL9q1cMIFsH)tPYRb_{kqW@cR3 z$*15?E=LDuLEECpDCBcf@HUkpD6>^X-i<0|4IaJN znkGA;Rqm8*AaHh);zfQYk!@Vd#d+N`ku?|aauTce{KA9DaVfL|w6>UiCeu13;Nszq zU#$$Y!+=@@nS_Bwj&VFOdP+8dnep#h8n#V0RtP+YQ~}rwd0z{l0pjhFopy;gY^aYaDNet+?zzw6P6!rNJQFM#Ni-9yqp!QK$P$7 zeq=ZsOIw4g&TfR4IA-k{72Agf-FZ~?Rl6jeD~x+^oyls+UUy4sFFBKmP7Y>O1>T0vb5jh%FGu0l!*9?1;{)o7I zsaDd-FCrA)c$4ZvprHMZuPG)aRrw(i?a`Bqn-h}PVmw%m7(|^D$+!Xf(qUWovQ`H# zX0CmO(A1}X&fs%GLo5_}(6hNixN1QRhvDnQoRy(u-_a!BJzbO)7VE{u_06T=pEp{~ zCs-XwNxNc9d60DHL{mcmy%&13&qriMFGlMF>gz-kjq~WXi*XplFo14r(1uY}6ntE3 z_|8vt_1w-0_)nevoVR}4^j#iAo?j;>?gzz%pVd0w#Y3YCi9k_f~&xpX|X{C3AMrmRdDG+DA)ZZCF0 zrw+TYINM9!)HYPRo@|UXOoGhYG~%L3Ow6bQ-o5TRV%s?|Q)#5vD3fj<(@kGhkS#mt znDNIRFF-Mz-hdki45Iwrqq^90gBCf0D6^ihW-*KtbEbe zDMePR^K5BmqQbVQoQ`wwgQPXT&X6`0mq9G47oS|1k6jpS4NCOg8xY8RQ29w{-zLWY zx$n-os{=-5_rwzB>|J4Zh!B=^&(VkhWUW1#rU~$$V)s2-*zeD$lk&cd?O&N&{~l39 zvTX8u>8)QAiLNwn=fnmd#3{013i;DDY)AW~VIqeiJIZ&~%`J}DDJDrHk#|Xb^#<5Y zrvNSY~s^!JLRlP7iHsKkMXumH!s z9FIn8p(J_E$_f!0UEDl}FA4DIjP+k30aT~ePCGo<+1(!Qj=k)=WR2&Chz=9!uQA(F zHAW6jYQon6e?qs$Bo`Rc1+-{$BDc)ucQ~PRmGU)@HEj?sR^d0Nim1&F&P%W{wGW({ zk*xA-?+eGf&zC6aPjQ_k+r={RmLUw*q6X5)F*PvWgB8V~5rg)GFr1GO-B?uD#ad5u z9~0pV!!lR4#Mwb*rbhP8 z1W$LJQPT+{Dn~E8Owt+G1krL)W3>k4XQ*{)I~Rv%jX5eWHXI|DDK=rX&+%O4E$`wB z6f{M@?erxqhIR?KFgX55-Avbd2fI*XYY@A+pvsY7zsKywm6x?TY+PyJ!dRW?KWpba zI-lP@M7|^zo3g|O>F7**O&sTW{mI5__%H?AESq)zh7j$Zx$i?-Oo}|x#>J#Shn-oU zR@=_TAijV%_Bx^zQq!iLyACCSh~jrF(p{_y*&N*6V@ zcjYomS-XuQ1q?`w6c~+~H&^VAP#cxpnGbxEuox%rA5q#PlTBVDIbDc{U1zU;VOx*9 zVAi#MeXypq9Ml+#<|Y@T>T+gDSa!>^5nNPuKSk{9wto8ij((>b8M9GV$?*o>cJ?ZI!1ih67C7cqTtr~wA+I@Jgx`2t zbIK*5P(owxf(q^9AP74!^|oV!V#daCiKo zGB8g_*n1Q>@&%TpGyBcU>3%ZvkViDjV~w^79EoplTJ|(nwBzj9x>U$!y9D^|^Cl-K zu^i4vGTO+k+&xz|u zeB;+W+`Je+A+TYIOztDq5zaKBSp}cG8 zMscsbm?IW0J`maz@y9?_*!qh;tryok*eDucJ)6$6sxiGkrQEv}HBi_{@2yfmD=-}T z2Od4<6V111(>1l#b!GR$#kkqEMV$T5a#OPX7P5YI?u|r+2y3>FREJo1cTv79Tn&8{mA>hyJZ zNqC7=pU9E4o}k*mdfJ3W!!iVJ7$3kk_1pTi^^K@$^$pz+?#$)_d*vQ=Xc=5)yqkcf zlx>1Z?roMOL8WjGLZ0IHadP7T-SXS+3-8V@$+z91cPi}#Wt;oWN*4uONzITdD332Z+8irX1h-Lms~2*)m$}ccRNm9cWEMFZz>2z%$sE zIAb~Y>2Pc*k|Lyk({L=Oi@kIdZD?ZPyqY9tD8tZ-K+a{l&UX6{IZ8orPpX+`LPD>k z(@Of858rgk#D^P9-eWoI3jI#|g0oqOL-F-58DGY>a_;NKg!Mn+r|;}l`UDh(Bp)8t z7TQU4wsxtD2^mHTSQ8=HYfM=N4szTTBT3E1sR+EYyFNtoJJBbUi>`+XYc^I;acI>wXC?ZDzkPzv785_&mKOR z9jkK-NMATTzIS8=j(G$WG9`=1C+irpB7&i!E9jp?;E(20P;s|@CeDl3qT%Ll&MR3o zcmR58X30c@9!B`GGJSY@hpJu{p}8$){ckP6h^8|F@n}JVY89_*KT4g#^deciPr4~H zVFv!q2Y)~2q=VBXYmsc9`a1MO+$Vt``bj-Yfqi(CLm`9Qd$Uf;`)vce$Uh3boD+S_`jve6M2v0U zoQr6{%*8F(*3?s+u3Y6A2GMjXj6OfIDkYlVyf!wQ zXGAo<@!^eTOBkJ_rwUE5%{5=+Ecba}Xr3wms+&RXOMiauNA#@Mo-~BN_e`Cs#0rcxa5fBUX%}}HF_%#&FO<0Fg~~pde2jS- zijZoSe4d)87z+0XH>^J)Zd9DZKgvOS;xtlEraB>y%456Ju!R#8&=GIVzG zP-DkSWcMadT{p@JZ<0*Fw3n#+oEf@G7-woLy85YMm>P*HG$XS9?&CgRGD!z&1Y$H8 zE4lJn^7s}Q2DlC7-4i5IBXiyGUE~#Dv5{K$WsQ%&*+fcdX;8g52r@W(=Swy;wGi~< zlN;H{fb)B4UU$VewUJ`F7MtZv8Jp<}BGzx?Ef3Eex+bz-8fM&Ige`Cpj*)288MCZW zwdWhRmTqbtie^XIUAQ_QEp{{>MSXW}QRMm>BQeTUW8NRyX!MLFfp6jlt5FXoIK6?Q zSJo&*I;FW1ITk#@T}wNWgav3p9eXNvJ06_uGRRmE^BBfK4lAb#!x;%cAmw%Jt zGG8peNO~p~XXp2Um6DrpKeC1G$o%jKJWc3mMn5{3cb$~p=<;7E1XfP zrQ$E=CGe?2O5P1IO^>MLRa_y@=84npRdA7*W^`bw$F(0c#J#=nq10d< zz3CPl_`d*XK$pK;O2V8L(hbkY65Mu7uyyA#YQfkZLOn`0Ew_>AOk~rE*cRzV#;Kg5 zlIzzZTw73%Gu^H5GQEx40xaB@>u?I~tMbezqw?*Vi z;0L&e=)<^eLjDIg+`a&30th`nAu;isPhvm1ToPVs!7(8;OwhT?7t)JPt}BTLILs{- zvUSBvMUbI{gtt^sT0?P4A($be@l(kK+gFF8jcRm~UT~w1=1ADM6nTd8!$@aa>!va_ zCh5#It&!seNpggH03FxXMAM8;v=71E!{;M$f+I{wFI-1Zj2bx>?PZ7GEs;3QxKVYO z%gMtzPW%U_5Q4)*8?IpvP7qN-BN-)JXD%JDIeMMxNRAuKje#;cj$jIL^>KIH2sF$c zMNM2G&uBf^UaCp#pO{CYOd9?7X54;)&~a^6$TQhfHPvWA(}YLsez-4TJFLx-bHj*l zTi2QDcyR4cmNCQ)ZAG-61+!-u@$Z5gnV*c?3$V_|U5-=Y1zzS-oX1}aZqLJ!euL(R z;!sjxii(JmIup0~=j}eM5?4N_ipbTtia7@7!Ez*So+(tO;Pn<7gjQS+Bg~YWvoSJWJo%5;?}y=dbX9fc*24zjiRry|Bkm~K)PZErO>lLw)PKTrSmWcZ#mzmB#g%K=*AEi&R#B2onW3Q%*B9z}*g~xh z=g{)J{~vY+iFQ`Pn!Fk^d&LG)jle@^I!aEOxGj$B#74lu26{-O@-&(pOroLqQt?5tP`;^*LwNgX|;ui8AsH(g9yW&_?>BzH~fy85TnPR!+FFFqNANYTa!~Z@iJXs)U20{$tjrDLIWJiconXb z6GmCJblj2(-1UXBn2qzA3bIAbV@gL)(k;08f?8a|Hq6Iwz+3?j9qZGG zmV5H`CGUn1t_w0-1)_C4+6bpByDcQv)3xC0bR~)1+M|jf4#FOK$sW03)K^Plz0|gx zic&dvgzu=#Ve{R={(rdM2HgD5fj;edI7K}!l1^vMi|NiuSBIl!&2YU>;gr%i5~KHb zar5y_B=%k$=C7>^w>x_iaEGei+ew)-)6+XX^w2I7r{h*k-wpiOhwY8qgX+deykgvb zeb3|UwXcv^A-{#h2A-jUhlP1T5riGV+alqqK4H;jbk3zUaxC=Hp2I22I{rUf)Ei4qNq{7iHXM8dx^#vYm7CP*rL(cG4=*lY@kB0A{Kg;Ds5(9 zV1Oyi4AbkKxpVve{qcD|zxA9o``o!RC|A(^dhORaXP>>-T6?W$J-uinFWpX?{%%At zlG+=s`tZGVbb39uojKbg-s?W{@73{rQyO!x_O^HCXNP+{J6?N()$_T%jg(lIJlA!5 zb^@8`xVM)LWSH)8Ux)0d>rfexWt8$QP9R*b`FQhG-_vU>ajH@-7-4m!3*CjuOV?8pH zQKz+PYpZSiqo_1Xjof>syBd#Zk2lZx`Vfk#vHSGe^nXSy_47M|xbEn=J?89ox|skI z@|qc_8H0(uL)-HnPbNAp6*53K(`R@v!F0+Z|7W-H+-Doym>4_rcrMeDVQ&;kBR5e9 zS7s{P=F<2e&y5+AOmNnxe)3!lQZni{C>Zw$RP|vla4N!;7sUSqz*hoK9vkC4yTYya z`J>_O$tE0kGLhOh7U_BM`_V`zeLPA(KLr_c&kmsZ4Dj{@5H}+PkpUZ$m5=f#ImEzNiVpl*E^qEDf??YNpeTW)W#6CeSZht})A=O^Qs#bf|?=VI;w`_v-hmru=+UlpM7}q1i@M)9+gKh6t zuic!qCgxIe-7(j6s^_~VC_D4s=9X7ch}72Vc}s9s|K<1EL_0EXd(SqN;r8ICCXmDF zd%ZTEtIV|JdwL~R-kv(W*L_(!+K8lxEYa=AUg*{DXw`pyui0tcH_^LR+m7~``<}?y zSHxHb5K-zwP7$}q^XrlA{%TYpG&9ogMot!sfcyT1Q2lX;)l*}_-Ch%?l-4R0NXX|2ixxn8*b>Eii-g+J`t$wdZ+-1JDv3kyP zJea=c|7(I@6R!HbHlj=xCVn?jknAG1g{wPiU)&y?<-TgE-KRb0GE-L*q%nH0cN^nS zS3}O@%6q`7wpx?KAI}wl(RsUgM27ujL>jh*|5>hXP}l{{hxxM;N>7t2uu< zN*Zfz!tF@qw>qw^M)rFbX1y6Pz%zk8?i8Fo*+gR!iPe+QCf^%*!MqBUS3Uz}op8Bu zCx_fZk)~X^b~F}sdnxy8gL{4YSsN)gAgRvPTvw-!R6kd5RwH2lwrwiwyxR~!J-&$& ztBIC#=%p62jb%sL+u5^izVdsv5zU&=^;Pq`u4T+^M7F-RJ#|_AZ2s;sZ$ZpcJ;sU7 z!$j}z)kc;S{h1v-Y@-=Q9Jv{m>?BhYfgNRvYRyA#<3_ZXMv?3E%DBE1X;Sjo*HHqc z7pMQMhOhh0>zQH5>biMN+elbgq+7t zi?IzN=3-^c!FrUL;=!oi-cLZ4qVJ6J&(=L1pwsC*4H*%S2VQ~-fISn%0XSb@hZ4N& zoNZ&sozd_Hv?2FH-%ybGp@S?W{X%e%2WwCeoJ6 ze0WpTImm|T4v=)=JI9t?k1_x_PGutH2X^*o5Ya!d8m9xNS0g8y`k6crW?o#ac`bsC zoJBt0pPwJ2JF7;W)OM6@-T6n5y83~XBA70EXeMgk)Lt(b*csU9b<}G;#s}xJK?Xzn9(a9sc6II2h0W6EcPTGlJb~DV4iTurCLmg2F^DMFjq1z&o3!xojd6 z@`pJ7tO*rBr_*@>O5gu=mb5wILvOAZg0Sjm_h@?y znulCkVZ8XPwj=-VDy{kGr<7L7@lGB;v~PAFD-bcBiRRkGdAI7mnkbF3ZIa>46lCOD zx3L<<)PP`PKJv^O0zQahq?~+q1Th!;Pzb2sBg3i3W+#S;=7wxL43D{=egt<8BJGPY zIgoUSvNl$SPN6#oVTR9M>t63CBW2frg92|&`hF%#i#C<+`d}t1IS#I^w7UsoCI-Hz zUdLesH@hI_XKNbsbV@wkju6Z?hG0C#gz7&hNghGoeP+V{mJ+^Uuh^^6T!EPRy^(Xp zr<00NwR_Xt}4}e7(lh>&OVoV_${l#sqa8-H5s-GBpFTmQonbZF)X7AUMdm``Q9& z+kUrw_nM5Q|8gew&B%rLwRF!#9#b2^ZR5DNcWiI&YpKRW#{a?3} zlL;(~XIG-yXir5<&1N)53xWH`IfOj?{uVf`X_^;zI-L%1kEUtX)cH~W*vFq;3Z;&Y z>A;JCccSS1slZDS*K-e4nbML}EmEw$;x8_%w!P*TJ6%3P6Eapof1B*Xl@E^arIBK0{<&lugrEI+>@o^y5C%;ndJ zqTXQ&xtfNYQZ`U*OiR+U^`^6gkmq_|N)btCiT1H)_1mg3zh6HkjZr>3uLA*pPi`taP2SJtMjoty-DI)dS~h)JJAS&NzR{Y<2u+=2+z6~F^JozBsXjx_*x zCXpgK{IfezR&s7Um{>|u$)h48ps}F4Km2Kd4}aP|DQdPYD4QN+j`6pWOU-oXz^WNr_wueV1Ux#)Lb?6mU?X@^)a0ixL9+A;~lNBWQIx9d?&MY-0@mEVeNm!3a!?Ddh~ zW2pK)lD^jxT`y@S&sB!0sYp^ELvWl`wRVzmc8o*f_kPH}<}x_W9`F2q`4}%7{w`p<-O?;nCQN6iNSG_0e?>@$ZOaHeU<=u&K*&aF_dHR_^`Ez?mz9;YTrpI^a z-k9)_G=RyIxZL*P+O)6AQ|xc_L!pB16%bUMd$ zI-LViyws&=^BbV1piQ%gZbUVPY(EA@t6_}1+jPwth_Yvsxt%deGDq7XUW&L+m)xi~ zZ$26Xj83Nn0e)QL8P)$2u|>75MGYT$yi+KNV=dKK1vrGHPLE*=-K9

+nEP#0*|&|Ojj_mc;{7_E!T^tYnW*nwd;H_qY^HEFQjuEq({dY*Zx)>$EHDlQq*Y`xlSC2!^WxE0=b~>G@ zhyk9|n z1Gf#cy$sLeA^x^@cJ#j5QN*8i`K^um84=uyq>%dAon@9X0{|sc!#yZQ{TmQsn}HD9 zLFsv`p0-!RtM)FdJp{AUgRfcjvk%=zCUUvG4#l};IpWe?@?!rq)+uy5p%^*!@*3>b z=gu72Ii;AqxF0wlALbsbUM?Jm+sz8(_FEg`MFb$yR}3WUMc|h?{qqk z1&%>UWA{c2c^Fb%)at%0jo5uW>xg}{QTh4EyT(TbW^+fkP;5euzwwca>D9*+B#~Sh zzn9RB^z%`VwQeUr(@T2E9J+tk{~LMM4jwil+eze5in^+kp55NjYrfrY?r%Rz&8w-v zLn!LB1L!`c(aumTO5d}Ka<4h^^<3O?20{*X(YRWo%95Gg%jSZVH8IY+rX?sU5UIwtpa@=T9?C6{L_&!uDwuP z+h&B9P5^EXZ@!VHY3Bc_5GlBuOH`ds=O2K7MagIPM_kMXw5i^X7SK9oyRn*RnFBXa zn}eE&3dOZ%Y9wLLIM=JPC(c9y9yd@jW9*K>lUsg_{cj#?sWv#)ik?^f$Tu|Z_+ z+U;iVHNQ^|O0=WEZt30~@pj6;?M;@it)mpHyb-C+CeohWx$Em~0i*SM*GIOO_;)YW zaIH#PONp6Ugb?xJhy&k0-D_zkOK@#{?d;*PwY`51E(S4s>ktz#4Z*b~DN9~v6zcYO zc5IosS{`FM1ZhcjM+n%SxXaL-?n03`vU&{K-NpqGzFs3*$+- zZAX@@w$Same+}IM@g9@o(6&&DjrPZU{1~Y{pN)cbPebXNRsgR?1aKCTI;|RKOT4)($8LqxQD%g=b;!W16~JhxLpxJn1YP#S$}OJRa5phF4Q7; z?V3JDw+_25N1l(oHX||a2T)X5dsg??aUs3hY%{|9s5$X0Eg0d{@hj^olEP+$Fg}^a zv_8GVt`tsuyiGga9NVE_Q@YojuZhTCv27Jz-&^;akxebJ)nm!Q*KHDlrNpi2eyaa# zhnWtN!sk%pS?+7HE>9NK+(55$!ZBk6G(vdNga zvE-H4Z#=tcePr)gDD$@{+TRyR0&9>Ynr$;?SWMJwW@H9sP7S|Jb&szPA!4zKVkfls zpl!+~AV<(`JA>^LDUa9vJJ{dH!zrqD_w68Qhlt#S2=gAuX=ekP>y2nX+>YWz4@4f$ z2cz}88A(}-{#1z+-2El07ogfwHco#N1^5nA5W#)X;yZPb-O=};0FV*g+DDtm#dCD4va2(?tS8reukC=L)y z;$0d_TBhp|0?Gtw6H=`nmfo+Ha(8rWq-W}Rbo(19IqHszd-kTJOUevj4kq`pJ&C$j z57zHtH~m`><8})|#(PjwOKqiOBFQ#2+ko@CHkAEP_haU4AzBm19ob}X8*o2L7MnpN z>D{01dEDMQj3Jv*ey&Zb^)Bt0D(_uh*lu`P&qIRr^oD^QxG zgMq<2Jw|E*$K8rhg-z<7lpGINf~<0MxorusEeB1y z-l2O_SS+^`b7$`P`F&H%zlg13RBYAOPx2KBgD=ecCXC@+(g2h<@rd};BlC^ z_DV;yqeq*1u1#H&k!sr<_hJ%EoJZ(3Oy|@((A~Bfk2bYw+nhT!*QV%i79vLd6l6EX zw(8CCke81;I=|z!>GCzZ$M@xkpw2{w{V7P&$_^wGfx(&~%Iab}n6#^Z7te&Gb!-A7MTR>exL1BnfUF@IyflWjvrPr){aV<(E<1wrF_w& zW1RPov3?=`yEjE$yaH*Aeu;45SApL*O>^^3jQLJE?ry5TCm}V;ji`>wy(oI}{gA|T zAX?-_lnt>S>1ng*Ye1+0&Oq2^@bzY~dd=Q^TPdYLpb$f=it6^=mQ_tt5zzhv#k;Lm z4c42@M67PNK5Erv9gLgXvm{j`{%OcI@HCWt-Z2+O`Z{&*wO)Hd}BwJA;xeJLWWK-3*Gq@+a#$rd{cW5=CodhpZs2i%?^?x4vuzb&^_OIjkd?6 zxxe~-_o1v8@%~VJ^R5K_B)mgwtkT`7bxNOIHAbS6Pv~Z83r~{!J z*xRJ3Hno<4E^~+-1bhckHdrs$a<@N9AxIsH7n!}k_NE|1d%xA2Id9H3g6pFmi@h9| zR@XPir#VS)?iGkQ4IyNHPkB_a001BWNklPUYB{u@42H#jhwT6VJcGleUXy& zBCAY2*7~qS4TW%c?Wa))w)@CPIJal7H%kD9Gbk>_^*eVc34@o@Es4yC_wdnck2+r- z6!-Nuo7|2bh9$$Qs~}H7dEfRz_T1UXMwFA{W;g3BWsK)dSg(x67*0SAj zO^k65id}s@a-?`_-17pY9{fE@8~0@tn|BoO{-$YeZJK7hHJbcmveOye!Bj~1Mtat% zNLPI`lBBjG&hJ|k7tynkV?{qDP0|38z{b*PBYa!RlCcR~Gm&u-z8g|oZO{80p;T(k zh-X>Vc7CRxZPVP;ebs&Tx<1m<)+R&*JeIBTUVW6z6s~vGPf2ZaYW#mkQ~lKA%kPkj z96FHLo7QXDt1YWjN2_Zq(sM&CZCIt8=WpXU{p7J5E{ym`V&0a-*iB%E<2@YX=Qgau z&SSRozzSqD8SkC9clz0_RX?MsPTP74ar{0C^RP5q*QM$OV{LmT6NI{7e-6+M*Q?Up zm{5$cE$p||%Np-AfilCpO~ekrfzc=x-%Q;|LEQj}%l(Wt)O zLP{#Begs#`k-PrIh&g{tT>l2}gvrL?6UOzEJ%Bqvq>ezIMlS+p#kJ#N5gZXefb`fK zW8r=gK;`(3TySm+#p`OKo4N^LGmz%%BS@XNkwSomTb|FS)9cR*z+6W`$YYc^mVAG% zabtkaeT-Gtd%cJ6sVftY&|RI@33QjDs-LUlzagY@y*lQ2Io-&kq4!3vkyG2bv3iI4 zUUSxMgsK;Vv9y}Yv9w0Mwux>8xT$4s^H~!>OU8~VTb-ybHT<20Up?IIT+(~AvcIF&Sr~6({H^CT2Oxq}u2FwI4O6yj?cMSu*m^P0g zzeCQsI7%tc-lS_a4%yMu6?F3$>U~<{7SGXA)7m z($!y2HV(hr6Dp(|p9{Pueou+dLjs^~Kzdsvf_{o*wUX|V&`$DcBv)^^US-tV5awpO zH=B`B=F-}bNZv5!&Tgceb8INmU+&W`sF~x+TwmKbbDy>3FhV;5Hb=Pyxdi_NsrSxG z@8)`1-qhQZY-)*SN03>sXL|MP`50}vr%iI&lJ2SJZhJ71Ie7M;&b2%ri6Fx_)BK&hBL(K)V9&*vy&q$m2E3FHXcdmlu5e?IWmxV8ep+yyaC z7p=Ss1^iwMJbSWn_>P`;Nw2?7r}HWlTkw9gC=W+DyoQiydobcSE&|?w5a(99Q~21; zdlVtp`_b(!M7p=3+bC~+Zk_rh+is>&^!C~KnUCxe?M*iWaXg1oT-~RpXWQJy>wYF; zK+cE9?Q;;RN}rM1^Dzg_^AQxa&*{KxD7y5`$Vp&4!++gweiy%YeV+pxp%lq;z;s*i zabB~PNTqf=a!RTDuE#S%@s6sG{%Ge=dV6dxK#bEMLL?7~d)LK(k8Bx3oj%L$<#sc? z-H{{13F*5XRHh)}x+|LFrN|~_M-uDl6 z>D)#ySL!^THcz;vXjAT*p34N!W8Q?+drJ|*-+(sAf$@J^R)!r#u9*>l?t*ifn3_P1 zAR=_n^vvyOqmEKC6}X}*h&efkl91Tkbtd*kR5Ot(^WN#d^>o*uY9l6A>p9<=RdmZK zOp}kcIIgyqnE_~nrSZnq_Fr3W%lf`iisZ+B#r~qH8ZEn;`&s&t8MQLldz8BKr>!ulRAvT^{#Bs+#5NGy#m4S zp79R*BbDeLaUO)`^?#7J<~2>zWG9Tf)Nxn!`s+grc8~ZzAL(Qtj*!tK5z^WRE#h8r z?R>f`j^0K|OO(0GHh1beBS8llG&je8&KXv7Mw`<8(<#PZkHhK}C_%FJrfVo(SkB#* zkF3^kADigTH8_Q$KJjlTHWRE35d5zZd>m4}zl-kG#}L~RKdo;8U)9OB4YJ)gx?NE_HTPU&O(}@15p9QHz0NMdl0U? z>mHM>d)x{8)C{DHJq;m?4)8U!m>)$5ehotGHv%V80MHwvpF$u^sM>VGSzkSdxT4$A z{R2ovb{P}bU5`;5CY(gFK^t-?-80nER-2)FpyfW>^wxgly`a-(xLF?0a`jCrsuQ{&2ub>cO+W`kDHF(_TR!RZBO>7Gr zwJjyv__FiJCW>m**E90Zw$NVooSm7^UZ?x>yVW)>?~l#t%yyYM)xB+n6DK;B`uYVIUhQc;g*tZ`wxxM&y=$4e*@F#@l!Fyvs>cP16hkFF`h`m(U$N`*y@t zoQW3suTX+a1GM9&&ZMY(Tu-Noc5a|>Ia%l4Ag*XN1zAo*`LiBEQU7JhEI;e^&1qY0 zbx(?IphMx@rqfL{{48{AsgDSJx&Ky>+O{K)=8HR}83(!07PD#%L znx_ZTt#+J94XIv7mdcv={y2)KC>@Uu&vY5 zw!IobIAbp~56)!MtFQXVxL_*X0mONH`Q9vfTK)eM3Qm}TG&3ury{Ym4FVNb36D2=* zJn+7zX?~F^N!%rmyQGZ@pwsCbgFKDw`nw*falEN)1fPjK)1E|8y}8~G6eMY`#v3>% zE46ck4Xvw@By^v6b{68o4yGV7Ka&pw;(7|eIv<%g>^dYVwmEee*laJDh|QwD?sv@N zGq-1A041o<`PbCDF zL+LgKkT&9hl(lzmJR?SX$=<8S7)j&nHJ|kOZwSHuJzJjNOewvx3NerwfqP%&oP3s8 zdS!#CZJnUKI~A>k*LF36y}c;83fEB5C)I)f6FIVaw#|lD+xIL%??urt*jsr|q`A2- zvb*1gB+z@ue~+X{hMz%pDeNq9S96?bJMMB4RXX~SLI0k}Bj`)Wpn4G6c;7&(zv(F9 zq7m2b2q+z(It7WxxiB3RAnv4VR(b4$;urQoh`ob!!xBVSvme<3Eb&Z<>$P-U z&-cE_3v~`cq?-}(J%Cc>bqd`s(&mso4%;^~@@mTh-|NWCfRC+obLWRp@(g+mBgoF{ zYpzIJzo*+Vk*Mv0^?lHtmTVfu6U~{({r@bqb{E7w3n&OZ=ZV}cwbx;M=Y~w^JkI^- zt`%jb#_+XU{I?&)(W;hs>Z6{6OgyuO!uW*rf0m;5Lbw40M?XfP3>#w{e}&fNVBneY z?9FJe%mCIkP4mHR26q=HQUH^#d)!Go)t<=1<<*FrSdWO-KU2~rtwlDgwP*ugf`H## z*gCp{1UIJVe2)>i@3CF$GT{FxNT*kPkL^*}u3={i6A-sKLJ8>g{e7t&*RismKKE7Y zyz9W_F%++nb>S{WUF*kv|N59S+h9CS|3ARC@7qg9pU1L-A_eFB)>7iZhJX(vuJQMA z-R;!2yTSB3kEyn8jHN!?<}8nM4EQ14adG*%+6Fd=T=e_W`Z^}ZnNV({+b-pExTU>% zY&#N6Yo~xb?hG#@NMgAtt?8Ml_~1&42W4BPhuW^yw$}AnMyltxP~g4J0I?R;kK0uB z(`IAZSoM?tYs)I)EH0j3+gST4>5#S}0P_nC+tu2*3FaF2Ez>y)4WK&*uW=>I#e z{}N@G$N|?Ikr$u?dC#A0{QO73`I9|>og`F8A`b9*hzofQC6&yz$aTFx&etNFK@ITs zysNV(*x0=`T{i+-gIr2Lu{d1p}4mQ92()%&kk0P=X}R^(mij5*f<|At`y=SXV00C-gVeiPE@ zn9;ZnX=)w_Ja)42^B?29%c=f4oz9WK50I$7ThlZfo2EGdI0-HKXApP$QzS0`2THBv zpjapy(_Edo8Yn@T*^qsEeBT?X8XuDGua5?)eypxo7h~wB7}s|}qWWi$q~jwORRl?n z-Y~Us*wR=&vYN&B8yVMSMf^F9;ymDVOjeW5K=B!N@Mw#7v9m+%gyH`-Qj%<1)#6IL zw)weAtK*W)EgyvD`|%V{FFQkImwUgvGmvKo701Z!L5T;lO3(2ze%DOM?C8?V2A2b{ z?fQE;LN2>e)L&C6&MkSpY_RuSXIo=iJk@wdJ@%9fR zh$U9rc-x$V#xu-kCm_S_E|hSHWr)%IP5j;k!RQRM-d2AeMcJc1+%EJ^3Z2I|#J0st zecvd>yKyFBZbndS;Lg+;YfEz6HZC6y`2fwqVQ8&vL;pJz|MUpNd{066;!()nehPA) z_+K=i7dB0EQxn0wJ239M#BrB$rs#A!dm@hFBm}5`jcij5@NSg%Z!yJ|aufo(K}vvV zwqaa{>{>2I46xj>%dtk zPAT@5^t)}QxLDhXVJ!NXf#%B@A1u*1Fx%df+nXOVAD#4!wJQ6hv6`T4rZ7B)cW1oV zSq8qL;Ei7YcdAd2Gsis;(HTRq`eL*%)*wk~J*8&Ze)0V|XgxoJ5*++@(=;dVvl94 ztDdoU+$hq6uca8-EhTwFc~e<3s}V*`q%skQ;!QV|lFBFtm3|rp+P^xTiU<}Be& zjW%wKHjQkiAT`!^o(`p4`oeg>sfb8bChzXJXR5v}P+qTdfOQ=3uN^q)pwi-Gqd zsp=i5%uVe!fA={iTlctwwyC`l5xEuRuR0nbzCmOhUQO{{x&Up2rF843>oNw}{&WGw znEZdy&($cPcooGPua_R&|5;t=1e#W-tftsXmeFk^X*<`ZJ{$nqRQ+c)iycYa$4GkC zhGdU%DE09IL;x05|K)e8$JR>+U#opKB313ic>k{=B)(_#If7homm?KaPC|MLA_QJ5 zC;44Tv8QaNWZKTQAtPsx>k0}&Xy^{Ut+U3refGsT)*@#bBjY8=o^V{c-+ip4eV&~4 zKCkU~aL{%-2-QqSf6T=)WZxM<%+)4JK)RC!524^~uhmVIz|qa`l|GodePL z7?NmDLfV^;#C-I}nruZ{qov4>dn2;VKM*;R9gOn&T@O5PvT^hu4fjv>0Ctd2JrHgF z>yRpLZ)6Z&66bsh0p#?tRK6bA?c+Gw=>a)g|m*fx7rxs7_Gu8(`K zphUU*xg``2KLcuw;M;y@LXz z_1b5rsgu!u%uLB#N*b++o`yAl&)$T+2;SD}yXRyXV$}W}G1~*kE!}gw77?M%F=zi2 zxX@;sgHTrchfOwq{tKbff*gq?l=Bg?_!ZLQ9)R4ajl9l4#4M-98A6-Xo>nGe-l#dn z&_DpQJ(V_6kkEN-i)gY(o;}vg>CRzWE^d1pU~|hgBi@YovXqe#@;bT+(w5i^gDq`t zMG}tH50}u55GKOuZ|KqPQiQy$itI<8O2e^Ec0v9fr84juicKk}FEZ0$gfoH|hchYm z4@+7@l+rCm2-&l4YxGmk=XeORW+1MM&lPkdpqkLs2&`>B>rjLG|N0p-I~ig6wD+N< zs~h6JmB7=G1H&hgHwOI?kH)+Lvu>R$q5orW$@+_|dR5kAf?%LOAVaWWu-& z5l^RkbEv>p;HbcbQ!Cs!YqIh4AN#yZ*r+<4&aOzc@&#l-TnIb?_%>S9hoa59DmS$jUI~V_Is%&q8;wbA9-k zhITvER5W)!I>;l>&KhJHV;D+10S}VwWXD^tuVK7aE#IO zYbPudn>O#k`sh&Xw$N=?%=>yOvM=TS?OD5p@_zdvlfo60?CiTBCzQR=eB6lQr!4i~ zhE#quP19wIYMLgG?e2L@Hl^GFiRyqPSzV5dvd5!^ycFqqZ=@swHRrbxZC-QG=5nt= z5}C#RC1}Hb6mj`;DQc%W0p~JGK&K^;>yWy|sxGSp%~1^@0+{1(Hd8ig=D4y%bPFW` zr|k~4+NeQ9GIQs7Y?(V>i~#?v^!$G#V%$e>uD0!Zj!Qd@!cqF#QpB}igIsE_L2kDX zK=!~J>E`C!INTi9H4wk&P$aW#>ltI)M8X@==a%ZfhHg9ISWEu{h~r&A$qVN(FRj{Y zo2xpYx7S?eIqmgdj*yh!-Gab`uJRxDMH-{ww!J0hOG-C=KbV88oI0L zjwc!UTD=xlkLUY0qP*7m9ke)t)M!TbR@wN!71ai;gHP)c@b%`j+GIG!XXE}TLQpret)0VdI2(X7 zgU_ef2ZoW#@8fZAcxtSlOK2>Qdv1x1mHORNwC-QZxf3v!HJhf_W zBlne^b^4JP*hVDfY(!Ggazvo!A&tRB6ekdm0Yae zoHbKu`&YeAgQ?$q-P(z*NQ!z9V%VI;P#If&%R7&<_a$Lyz01V$hh&a#_1K4kljdUyBx@K>#>};_GA+$Nj zt8I+p-DJ)xbF8_HM=xSkJ80w$<+LewOt2S~H*4+Gu_4~a{oF#~L`P#T7EvTRx80U0 zAroki$@khO#iAF-M<62=(}w-)AC(_Fu^Ul#%S z32T4)?2q^V9R-27kL&1`j`BR)5ul;e8?%$bO);;FDCxM`+SrOD%+cza5%zfAo;9J{ z5@Xnu+WBpKUl;Fg+v~;{^SoGxH7FI-Z_>Lt$n_k=@QtN*J+{?IqhMRu5b``TksOZp zJug?sTwBUqMe*cYk?z|XZMT)ma8l`&Y5n})aI9AilXKF04Oai#d8a@1-!|Xdv%^}8 zkv$^&VxIDT@HlTw_l?Conm{i?F6ZBhdrye}=TqQrRjkh%6k>B3+7B z>KICaz}d0D$5D`r7u()-w<6D)0i-ruM^Qm6Mez$?pb!?@kFvL1ZS-DE;rxe@wBXHY zF+L-n>~vwEu2oedXw!S+t*@Rp!5X3%T5IkuBgV1R*T$HGVZ?PWLu#6JY17qSYd&iN zn?3!uAUERS0dHnMGvuFM#0ps1|+ko);1(bsv=j??aBgq9KI^>o)rnqT!(8{K;$ zP{V@jmfe8tJ)2_;t0Xp2%+WcqHMNh`H^h(Z1E9Udzm2xu~Ykm9d5%`}OI4 zZ$NoAO)&eAN92YyFB{YIIbBtKW`-iKkH_RaYE4HbH2uh{Fsm!aXkVZ4&icMlB>6iO zVk5#ShP}Mk?OJX)`(-@ieYX(7tr^415j-7>_P!lL-imBmy8?R#-s?;@?)?j)nmCc# z8^uq3GyviB*hGui)@9V(-)0m{+5`}s9YEp#KZjI+-Wazcj@gn(9cN=Ti>q;F`$tCX zbyC|5_*UU%;qE*KAqI7VRI6fZ24oouK)!&YhWZ_{w+zMa*)8+q`CneOHC*!tY{zouK!6O5VOa zrnP9_mGMJ-001BWNkl3sjl9@neaLeX?1MEpCDp4C&p{_>9r`E$Cu;Y%}C;W2=G0Mv^y6O z9ESn)A%xmTiGjNy<~>Wgmd+eHuq4KEJ=*M-r}Ij&7CESAZ8%B%^wMEtz{PnHYOqMv99mLCqgQu~8yyMp9A$Yuzq9*iM z%rtpT2V&fo2F;+IMoCb-oKh{@b7(c=_F}X0X$dXE#lKPta~l5EQk;NH=nX3#_|2aNGY2fY^j=9eqg6 zG)7VL^dqN;&m#n9DPjO2>lXw7eI0l`63x$xdv2uLK_JK3EI`Qln{-F`_amKi&eGkB zOU_OTS)FK((VNc*(OJZE42Y5VaQc4?8C%WG&qK&0tFm0e!KzA2Hd)n@KXd$8CRPh$ zV=aj`yeTh?xxF2!$z~vq&^r2ak+aD$G5dWU=OPk zD3a`8Jo78$WMJ>Z9Q-+k2zL%5&T(LtvTmo?-Ih=|=3FYm?Rh@?(zVQl%!~1xxu}VR zy;Lnlm{{52VIan}EavBOMDzy{LHc%#@3*lQF9BW_b3A~UhCu}5hMkp^?ERjjEOlgw zZ&l1!KVnFJfdY1)8{@kgA=jIupC3kF-jBJ@K}5U;(O%j@(M}j1Oi-*K# zaatd1b2-|u7gN+bry_}9VVpmU|NjMfN!=d(98clEuS9mPms4zZmq-80V@=E$Wa6Ja zM6>$NwwKw_-mj6($B26o@GgY7vKrV91jo_sChg!?*WPNAsPZ|4h`pU198~L+NN~p@-}eVjYu8Au+LG9`2x=6uB35l}wG>6|QPkdQ#2(e! zdzBjXwl@{4HEQosTASEGkY7IE$M5&=@BH=pBlkXX@45G$`8)^V?*>lcuGaL(Jg~~m zlcAT*dA`n3x7fHK9VH(3aO#b?ZP4a`eSBBq+9iBVA(?j|x2_RP1DRU_IL?u_1ECFF zN(m~blX7{AZv{n4|Egz4qzEg3#J7WG(2#HnVoEax*5hQdTIYD}t7kESXw4X|k5X&b zbBY%huM?$l5g!)C9+5Mr$F0>A!qFy}o7l7L(4~255`#9@xyH*Cg1)+;F_XuZ47oCa zxF!m4Oy`#%-Tc3~Sh<*}R(5dn%ffUPE_|sG$NMyYFX-xDQtX`V5IG;qV7$;J{lZ3_3@>ue{NURF>JO7 zg}Q&dM9RNgbmQ{v+c`%pEGRN5IU^NqkhJVhVM@uR?1b^-I(vLfZJxO5$RD2H_^=U5 zHqWFG(u|=Zlewd_eEkJv*-QfdL0WJWhla#=cUVU1owyJmPKSN~v%&mz!2!UZ9 z0#A~M$#OJmr{@|v2&)sGC{SupDX7v8)b70U2dn^ad8*)ZF2}|Mg1;+ zCr5$f=-gf)w{xc3c|cS7nxmyBEW*w0`EtWJ?jUvl->D__D6--E)*lw4;3BeIvoNxi z>*g&gfj5Sa3~C2bx;=Fz?EKiA zsx=uY!w!T#{AdzEdGk_VdUgL@L-KlOJ44B`RAFb5i_Vg16?%j=dn4_?#U@~{YB?3_ z;^TAQkHXqk*MjROB3gm3tL%FZ#**m2CmFyt($haZC)<$`$1?TRK^KSQN@eK%S48w{ zB^PZ*qpvPCoJPk${zI%GQbj&Z_mh-v`36TNNaq=y2K+!NC^JS!nV8~mTTuC?6L-t2 zm|I}qpMSs93mbEOIeY>Z@4jaB7`O2_Wsy-jP${emBI4tf5MFOevfN{e4SJ+eqtpn| zs-6W|?w*ekL9}#ybDK(6RggegDj=I|cV&WSaM18M2B_lBiOOe>_>aZ-=WguPq9(W= zF_$%Ad!TOl_pYefOE!f9_VCn$PF1^w7-(qA&=L{$dsR!Ixh30Rvwu{OTo#x>+{6eVJ9wS`AyOu;?p9%)s~QBHYJ|6@mq9SHfx< zN?b^wVtHD9_m0h=?`h4N`tS&COsn_f1(7^8td-=^%}{?6o?Uq#HC;AntvLzX!mQ(D_Clc%)kf$a-$4a*#ODqBs=c6??hxJVu@Ak&l_OXkSa{@z5%h_YQVUmn z@Us<8t2^G5Y(~B8hc>F_QK0a1c9g(Vm%mxiD7AYv_L-Zq_ze6ZbpziA$`*Se1K{xY zL=k$hM=O7>p#9VkdQ9O|*6UC_#_bRFYy6$ z7i6K20;!8r=B9j(j;)kMUa9>T&!;&V(3imv4@Ba8fAKtxD<<7&B|q&bLbE2Jyj0rv zdIhGfFiP;ZPnD-!l?^5w>UA+nabXQ)QHGiclm&sl<`n;}d@d{>EO}*`=m1`Lkf>>A`O z9Rxd@tBX4y%tEGKkEvwexD(O0LGtDA5uy&%<5sB%@9fFcUl0Z-5{ymzH-Y}HQ=L1Z zGUPe_q5UAr_2R$VofQ?)rf!I*O(=9Z8NM5LpFR7t@v=nyq-nstvreC=bEL|xZn1%{ zWBcS2q~h(9g*kLIYztg`yj^OqgJ-2Q_diqMMu2sD8BkqVk}TpA#-9>2>MIgH6$SWD zn%Flbkh&bE5L!GhA2P2!8NdiWNQ0cO0oBisMZ@vt%cW>cOAB|>;cB5Y&r9vQm#Ac1 z;0=t%7mAGeeU`h{=XH z=&gL{iLZ22p8b*t4>5}YTxI*%@UKkvk;{%BMp;rn`<~79{bPDe!*Mk!iX|s%$`=;~ zI8ni4kYJ&x(GvPCS)xm$vdQ@(d%UT5krk8lb<$z}i$=RYUoNK#s@t>3rq6V=aLNj+ zBo{2eLuo+)*}XrG(*m-Ya-IfBKuSf5h=^8Wl5T%AH?sD%xhFDBYC{nZJC->AgxoJ$ zjesiP{iWjLFmI~=2sPuSWuMI5SsmQp!G@+@s%gD39PeZ)G&(a&xcE(ug!&_fT{#zC zK7^G11CGy}7UlE;|M)!!`;`V7_~Z-C%Y)k>RkbG{5nMh<-gSG{sQ$A2>d~KrFV(kX zmqr1>ybDKspnDg}LU}j(lhf!}npXVEiUm`SbhXa_d!=fM7$3U7cC1V1@Oc2Progr17m_|7CBp_tTX6P7db|Dz}CQ0tlQV zzhCgT)y@9bPd{BUrJNV#<}+Xd4(9+|{AT*$?+paWtI2Qr&6*%E0o&2wZ& zVy*bJj7QWqW=OL7=f80AYwMiAx?`c@nOmQFU$^1&x7|`!@+;v?)!(dy`?p73cZ_r1 z#{5}*OW{Rv#Y9~ChQs)ehVCaV;@tt4&jzrMH~yt^UWN&0>%GTip=7(a6yZE zPAUx^lMdYFnd1v^Hwos7+=h|gr!JQ7wghEA8!vB(M!CWlw+!wLJ4*!!xzA;AI=*M* z@xdzBi{v7ayV*>qLj2^#A}appQqWCpD5oys=-f7o(LTzq*O~?-IS20kwvJT+SYk1k zw~EDSU1~R-55LEfv!+zekp8Yhs1Fh-#5Cjj2)Vymas{%xx!DqT=R_7KdDaTN=ws4R zxkyX{kGcaPWRJZ-Ff>)BY_2$6KL6d7K_c0e|(NaRz5|Rt_HRzviKbt|0Dq$jsW4@zsvx zj*0?V+tnRL0?mhmvpJZZp_-vTtxm)=~{}=r}uBC02Nahf>Z;~t? z?#>Ql|JYdI&$>Q3F({~}-2AfQNKmHibp#e%>J0ZL0_sk9Pz{NC#bb|C_aEwjt<@;T zqIqJKV(t&9lGO?;I^I2B+p({KAybqcgdo+U2DQwpHC*1aZ@zM9U7=mdrQ+n;0!vXZBP4_^Btk1xH-CNu8cXtz&#C+`k89??@^0*S*i)Ihr5TtSCHBE_1K zwEllTm>4GQVpxiwI$2ibh9{)}|F}Sd>n!E78;7tz$(`R&+$z?0jw&>BDxcgAl5YT! z+w#D<1&NVp^_Xj618h*4eI^FN-9n;K?F!$!u?bJ*jGxkAwRDQCqk>ky0Rrp%&%-Xq zE~eGE(wEZib?M^KyJI_eK&3K~)!Rxf(w-fE0m(8ItD7{?;)zlHiUJaMaNS7?5ftvI zeX{99GC@Mg)v%~sd?!oMGySwa5tCmm?p{t!w~{eFFqQss+{arh@?lY+nEc%;?SX>a z$`wD6kcp+7fB%-dHHHo81>+3l4CSs-5n#TZh1j@L{jl8vx1Zej%r@Z@C#ZvEc)jo; z4sL_+d~Lr65hl6O6AA6C;OrK=Pv*M%|0)rtKP|)cNHziGp z7|u3I2dG_OFAv}3vTP(GT+ju+^n9ee+l9z(f6g{)-x%lOy>U)<%v?*wRs7*i`+#Q5 z;+e9w_tS`!5)JIM_nI=ELn{$y#H->;B3(v!O`m&IHold#y9X%v!N}7G~ypO4kXQ2s<=rJ(l zw4`+BG5z+rGV_CUuiee)?jw)uJXrf{BCst=q7u}^3lrq^_lE9Ll1-H z{R&v*+Q}QYL`)>6d>Vr;u-@)UEsR_uU`v~^f$^+vXI=&}Ox)dg)ZYdwYn`Qe@NJ{; z?>HkCcI^9s;J3*JhCbZLEI#SzS$Mdvin`-lf=dRZkOH6NPcdurdDi**J7~z}LwdIW zD&-$zij6gBF5#WBRG%VG!unWCD|U9)Y2S;W7-=3-8WYSx{8Xacm(Fy_l#fIr@$o)S zm4)+=j;BdeGf_#mRmVXIwtg(@`DFxZMyHoD@FkIGneRbC+V%gmuT9|G`=2kdOc-Be zzIhm6DOlghy^L%00yCI!Jh(kcj5doSyOd4(+e`#3CFLsIa=URH#wM-@2GeacBMp{6 zFe|@k>bqWf0IYooQvMGBt{>yF-9bAy?Wg8VmfS(nSDdj1XYYZN4mEkd#1m$1MRRp3>T9|%$01G4_^_k}@$c)$2 zH^S8iK(rIWR;EuF;~ow=otrTfa}MC1S=UO{9Fo%exhls1B^FVH-!a&6=5nG>-xNm} zGjHHnAevo?XxqLkKTW5}7^aVO?N8}@cL$#xk@6Q1s*v%%Ft`_!_2D|>eA<(a8()NH zbhv-EaLlkU?@4N49btJbzF@#7j@XN>Y@a-gp~Gh?!>}G#q&M#Igx7vldixkCK=K{l z^Y`W;+v(mDVz=ln;=9My@^T@2R7A9ufb{`^f0gEJiYKh$NZr!Z4C9!jg*MAxd5P<5 zL1j4;D>@jAV9$O$kta0^aDpY_(K}yFW^v(xm?lzzaEv^%KRoH9qDkERwfJ{)p)poH zGDt40=2?e`0b%Y(z=)Q>X9p34WWg3_v8M|Xc5>B>i9lja*-w);JU3DP!+5Mp7}@va zvm2(#U@-Zi3fa(dh*8AsfU%ij)t_JEBxWI!2Lar~IdNpuG?wyP{r&;m3)f72O7G$f zKG{hxECROb04do~MnbyL$0G5tYJ{lUPAu*-^X-j0yD%=BZkL~l9D{qU7fCU6jLS-SG- zNB~fd4Jwup%97x#06om3!#p*)C9XBACio6p=?m|j$j)dVgA{K1D5J9+tz6_WHXQ$X z{C?j)oB1J-fhY95O13eJMBdY?hxF$tKm+RSkx_zs^7-O zz3(naZSNZC)v%j&J!U1`={=wRy)f6<<6AQDsSse?_r7YxS-!-f6vW#5 zRb>yxvU3(?nhBC;?@8PEEmzh{Uq)JUDi%|}qW7O;WgOHMfx3`{gJ3bpk&l+oFv^lW z=3J2P89&-P2+ITT2d7J0slQBrYGBr|Ir!VuBh@*RL-FI4GOl&3g8G3}B1FG~qTC}G zNp}4Jz;;Ulbr%9WyJKC*dQg-{V`va~&gHWZ4!}_zyLc2mCOtBXxp4RTDmpI10p#ob zK@c|fgx+4(|JZjmzRz#@*|AT9=2*Cscv!Hld)H^k&_QDR$#DIReBa*bwcX+~^WeA* z`k1EmCA+QDLB|t?(BO0@Iscb1v{Tpzg70bp!GNRDvsJtoB!FG)OVESpWnE-M7p)tt z3Bq+ipd98AO_X3Ha9otb2O^rISyH&g7}fvj0%rX)sfAX<$#BLLVOL_xWP8b}9`q22 zJ*(4O(sdRE^`}+ITa@z<48f5XpVXQhP6|vMWC4zw0pO3W zknmG+dh|JeI4U6)>#g=|sNbhcii_OaW4LDrD)kbi;T;^#gl0hRrdI|hwA?-6nMZ4) ztmW9i>rtwCYWEV=_wJ;i=6Uf~GFj{A&9vno_t{${R?z;?yfi%uUKgdKE9V&aJE<$) z&D~GPmMbPme_%JMC7b+db3w-uJ1V=K7+Bqv0IMmGjVjvk(kV%m?vk0Aso?kTt3vt< zD=vg^8Wi{WLyWJ@>OF-lv-g{iX14e0(=kvYks1|)a{=U#duhPpN7usQqW@67uZB%H z!!SaCKd_9H@gI(B*+HXYb11)eL(sM|k(fQ(e(%MsFD2OOggdO2&KCoxfD6GJVV(ldZ07It8>uP1n&}8(`j7F?&G;uU;>5v0xwK zfisbogE&%DpaLg2eSYwPEAM)~$UU;f>!CBc~w)Pqgd!Z!sp} zsd-V7YwqEx2}myy_|m))N?)GV`Q%i9hi6pTD*=bdx;7>nyr^z9U&1KW|G{w(o&^HJ z0+>(!`Vp?{xT+#=_sEo91>e0Wt`0Dqlo(T+7>mU_9OSKXUvOE9a)KQIO10X(W|7zd z;~JGEboF4+#q;8R-#0g10Ox(qLhZ|m=B+y9Z?<^uQs&x(K(cZ9h?Km;tK(&*fjoyy zn+N|j48t#az2W}9igKPK)0b&I8nh-QehHYp@xWUY(tj;#BOuUGMdZ4~+9bY!jZ3%y zNoZR501JKZueUzK6 zo(gI@m$bdH_3i`8t&=MV$Dn+t#`X6Cj2e-n0sj{Wv~4Aho-PA}cI~q(aYb|OW{J(; zJdwSyF9zXbtQ>q&x$-$s?J2Bji`dxQ&lciNzmf)LWUd`5rrQ7@>y8 zEC?>n30(hoY*vTo5VZ4Ecl{Yho*EhcmOc_Lm9{WGu!0{fy-QHIl7=*+mB@}QQ4F$A z#)T|RaU$25%z4;>x-P_^hnJiJ-+~Vx<`xwjo~4l-UOLlbnaAb%0CvxL$#by9aY!q?It}bwjEwE0A0^+Nr>r z4adA3T7Cg*klLbBSE=RMys*>c=yU~XSW_*yS`8{~LDio>d6N5z)oLzg?cW3SieQNp zpErzsW;yp$A3+0CO(Sl{XEl&^IUH8f0t+59ky*(vHiS}5<8@Nn7!MjgZLlkRo*5I= z(W*-;?C@evNfIeDn!hFCd3C5>f6SxV@b@7&-6S+Uv?jm9Celu+ebtkms=sd>@6L)E zOZ1{y6QP~vjEuY)mj#@(5nsN$$z@c$WI~NA$P!#M)i&!s8-qz#*C73a!nxz=?l&hc z4?)@KLNK=kb7KR%a)}1twgusOu!N*);F_CT-lv~tS)s}69T<_?SBV9HPmA}C#+23f zK&a=!Dit|9wdF2}TjmkcEu^4?<3EF)CzacKpK9M8GM@yU{C~LsiTf|=fMA6*T0JN1 zP%ogYHQRs)4Mk#27(Jk*(oYwH*p+Fqs;mAW#GgT*Mv;CQRy>NOlwQ?Ty<80Y*Qczk zznuya1{GPjWLMU~z!Ml<6TC0Cd|?yE`k^YBQn2g-779tg_M?Z@*;Sek%FqMg=NL!+2&@^aV+SR$ zE|!1($#wE;jO=)%v#iI)LKA-i)$OtH>Bjt|)f*VcMgXH_x>+RIh@sV;j^g{f=WrvP z{JGRG;8IJ<`EKDN>yKA5sz2mDuS*}#8LzJP1q%Ox(m)Mr;)CA2TZ>03z2USnkH1*x zPscI1-8S0oeS+%F-p6W7T6VSNc$=w3fJ{@WN4_4m=tFS~&dxqkI)I4Fb>d_;bTfEsNez%QY=ruI!I}J;W(F6>s(1 zTv96&i6m}elqQz6>1*)9-~`43PIa_0#8E+pMHH8I@R`%*TF{lC%yq#V8@S?1bkf1G z+gK_ShGcERp*l!Wl=2umIG4{E*RpsYjQ4SQ1U&$jpb>3q1yo((mg$|;;G7P?k2d*! zTzGoyH>=7mI^n-$p*hiHvku{?&d}z?l5VKm>bTL>1R#uEad5Y5{mKeRYXaPQjk=jr z5l%a~)M%gFOOo&B2;(gAsgn6}Sn1=%Vad;-@n@7~N zW_OvrEiFx(gL!XtF90t#ib-MdHb8nKgt{7_V6P1y!Zwb!tg=f>0d`&s*`WUDnB{>w0 zKa`Z^&w~)&2PLZNRmVq6dkSTeD`Cig`Xs}bH#jN(>8%a`q*a%oR_g2u+1w$zvSZ9$ zb(8%b$6Jo%&prl{>5r-nZoE~e_5AM_-g3>MW8HZ;*f^;~J1n?%@OUqo=SNm(RKKfM zUY=UYAgSfyiV}E=Gr=)W=K%JoA1|hhh{=vQIB~c1<#9o=Wap;g+|GrDU&Vt{Am&kZAI`uPMU71 zOM0<^?XH=e(}7pW$VvpzY3!OS!7ZHQuJV0Izl~JEI*5Ve#OkkQQ&T$rbRv&sxUOYG zQ)H~DEJdqTUVo;lePOQnECp-)to-2OJ}RU-!Sha4?o_;fb}xNc1jM^XsTujnFv;4M z!IsnDlW>vI-wyERLAb=|MrayhF_?VwmMhykC`$F7??dHbk+{7m{pJcDB!4>zvs4#b z*57}GmtzY(FdD>)Pa8Plym8JL|7xOKMrul@)^Nzx?>lRb6R9&Ytg4m;oV(H$6FzJJj2fdAFGh^oUnP5F!OL^CspQAE-TYoD9M`0&-u)K2_ z+nSCGztx7Bwp`z4rmKQHRrC-Ybj+Losd^Xl*tQgsgoksw!>(#SekB(8S8)6MA8U@7 zoswvj;Uy#z^!d8=(q&89YsdIEAL<@EE!G5bFWR2l{3Xt~m@DZ_hG~9~5465Wb*0Ne zeDPIg_Mtt*zCIdSbs+*lU}$+qeWF*C!8>~4`3lJ4$Ns>ef=mx@HKH|DIDcf{gU>(5 zi~Zatf%?p0$RC+sb)R3E=Gm{`oZ5xc`x^X$gazuyT>&h`0+Sj~yVNxg``d$(KF~x$ zwATzMws3lI3j^5nd-zlvII@XP)#GRU`lUT`EgmAF?eJ4=+H{Nnl@3GtU+BWq4G8*f zkG**za^-{ggv#T;!0yUf7naKyt+SF-6yTUXttCES$W#ecE*|Td7Fq z)lFUiuqX*7K>@6M)s0?H_l%b0tdhor7!O({yE@MM5RNI`CDFgFS9^43k5uGVn2@97 zyW>=6<>uY=+)q^L#Yo_L)NP^Jj|W}@8K)md)^`oSEq`QzDwc7 zwPI#p> z0P*;1gH)GdK3PFE4`rK}P&k@XDE(_gf~iZ2nIUzH@kr<`xjneX(1;>0o~b*0&YSUs zwd6y5?QwuGNkXCr2l83;LzJ6tq23iY=&9JaE`m~^Vf~7%s^^nF;8*hCBboYW$HPRT zmbT>XOauCA#Er8GjARr`M{w&69-c%~WFo=Xc{Xl`uu76R!3| zvh_YBLE?kL_YRK+wN2a(#gd;AKqKjSZ{wvg5rZ_M3>h~s@WKAOe^(8sEQSJQeMu7D zhyXJd;13fZ*PYUi6yB%LAK>%N&`3o$*|?00QPWgc zbEB#@*+PI%fz;4Tn*qgzbweb75EI5v)Dn@1^4^2s-oyysa6tN_KvajxGaEDrpjC1HnGF`Q~DN|0NQ5S>JY7&Fv=T{X`z_B?Zc%yprOQ#I&? zpowH^ip;}~nnXz5`3U{HVrn?$raZk*(gfWd0LlE)VxyhF zm5+s<{jlx815V6VX7in^Uix|0?_p07hOu+{zgt@N++B!0Y?$;cIX%mPn);_KRsB!y zPCMDZUZ{$nG=_LC3Va;hi)9Mqo->*}d_utx^#0LTVn&Z*c=5!#lEK(eiPekfv=jB1 z{D_~7%$Cpc;vb#^Vjf*!)1?%g-nVlLm8?GT=nO(CxhwC{kee%?vVY8r3JIMU96f;LdE+R<(2RT|j z6Rr@Ki12v#?opun8WSN~mYt#yTE!1%Kzm`#-CW%1sb-M=+B@#pR^QUVcWSO30%o9yJHy8CCQ;QF-}n+J8>X5 zkW>SW&>uT`k4mbBQ(ulGpUKnV!MR+g(@l62E3s-!d1WgXsbtRL;VXXFOaIqnDXWm> zN5pX!7e7njMTy0Y^SdMk5X+Mpxs4VZ)PiSp`jruPNF|bKo5FWRcP}@9Pfltwb@VuY{(@P_I~(gN37}E@;Qtn=i@Nmd0_rm6dnviP&)C% zY`-cZ|Kzu_+va%_;`iGYaxeS!Pmu_TP^t~$cE&6I%=lf0KR53npB)|?#uPVcbT2TN zX$AkVj$%5X8f;Hae=lXt+QqwRbTL4QI46B5fuP}@?qHiutq90d9{*w$(3-~Z=4ESC z^q*j2XzG=qVv(5fY+pwQO@>Zu5kcHX{$al;x(qCmFcCg{o`qz_>%g}UKk^51LMylI zd%S0VJaK}LBmSlsKTt_3mJ_J9C8du$nlyIBa(#NY%Xdb7^45u=tBWKf>>8rn_Cglz zp^z$juGvl}4h&r-$|yG&{moLc%Jxy>+sY$rehF29%2bpYHSa=$4SN8U{dC7~e_xG& zrpK0b4xo%r~hkwd{bRs!4sI=-9+Wrbw{eo zo{RV+&Z#yIdB;t0B3<9&IAjvobWNkDuJ_IyRXZ4PW&$UYict*)rg*s!NxBZCmsij0 zu6u|vKhK0F)EBlTSKUhft(oJhe&;hX$7TOxd@-`tU@;|6zy9&7$7YRKGI7g@*)Kn4 z41XnFxqBpi!exNG%3mz)9S6+9!{wiU)h+qLQN;f=yP}LUu6{>$eI+MGBK{cu?j|BV z*x}@oaDoIu>V~C3Stpe2_(dYd-8UL8-+0GVfCa=F{GY=g5IMAKial(T0zccS)Hcr-H<~#M^0P#qUnTsjqS|Yy<`Y4l zjq)qoQL6IZ>L#PE9Rj>H0rdj)P~D1*TB)~pM6*9j3P4{Cqq(Q&q(B$WFBULbYn5IJ z&lel573h8I^M;?jQ1U@AI-mC{S;CSVcs9`Vg+6@7!9L-hx9pw3khBpR&l-wK4T zsw9!P>D$M_8a5i;S3G*V1Ps6iPa?{aK~_^!;&H1NWnV2s0apezLOE@mkHh<$Hq3&B z$!sbv0{Jv;FKJK6+0C9d4h@b(ut^cqRj~voB8ImkC+gUv3*8K(>&)oiHD+4+tlFX5 z8AZ3aB`Oyt0{NHAxRMlQ2<+!R0Y;cPgGE&8w-YW8-Tu0^#fzH1aH~0;Nw765i>No+ z!A<2_J)sAmk-Mk6#&EB^Ne*8WL8>`unfGZ)n}<2}&1RewjXt<%EFA6!`@@eY9jUYD zh1i4p4-%MqxCJeCA25Aufp1Q+ItbGVEhio%Nwh*$|3&!o3p(wy;yo&2_A4v{I4QA@ z@y=)#i`_wvrPa z$gOoug@Ul`yB1Z0i^_77PambM3^rylUgd)v__z#}D`@3&e$Y2RJoz`Z!ILf0(@=O? z9hyEqb9^O6|Fc~_CCt2tejF~umGT(sM`w6vTHc$uJV=a_K$NFl;y`df^-|k=8lba>sVkRC2Vl75zHZ zvvn*BB-HCoHfg@Eo4Kt_>|AfTWDSvz`%yL}TYbw5`Auj)P&TeS;a}v$A9ow!^U%L2 zB-3gG4YL04j_67N3o5;#O_u9%aGHfNjv-jBfUG0evo%;?y_)8yj9;X3A&!OidV$So z>SwLON1~YfnU^jt7G`uIB57L-gC;wHy05VpN{P8t{fiH-W;n{WEk#+##{_)r^p-GG zPqBU{rH|#Oyn2Vfs8yVj4)%A_h~?c#AiFpDF;*;M19EZ2Ew8$-4ujr&*r~EnX5bnb z8J0vOU`U56rT*Iyp)uV*Ow5`$UNi9SYBJ(CpQt#A<4QY zKB^byjI(;7`0U!q zn{&1HW%Br=iZ!oc6XNT)+yZ&X!grNx{RA1}QAT9{L4BtMS)?sb9qQ>0PQqy`qK zccN{1dg1))`i+X2E<4&#(D#(&Ek{fsC*)6wT4j`f@JhM-Vgly+tB<_qAl{FG`~Q71V*LdO8VimYWI!jegD1(0qTG{dg2CIF(IQbMbivT#t-)L z0Y|AfvP>CRYJ|;-nq_JluL2HR6V^!3PE?WVS1@vL5**S;3vmbwBcK1CSLaxfTC!cJb>Z=>K%B`$I2hGnV zH6vtXm}bWZZKr9Vd$O|F*C#VKGx1)aXQZ>FwJj--E^FsC9r4A78jn8d8;#6&U)V?v zEQ>gg&7DVPP{C8?dDIQ(h^}&~rRu%`Yq9YeZz95!@a)I!RbENnTMCTHI9Js7u(3&y z*nc&+?=E9`W;p(O`##&o;ip}BDe*mWN~tF|(~}?a(A+e#6GAt&JwS9rI;ho)pxpM!# zaWfq?AW49EEpoA`719 zvZgidHfn|m{CFi#Zg1${f`yBV8~r`Cj``b~ldR(9)kaz+KI|kaww1GfSTwQ^H(JJO zph83la=kD+InpDM@G3@HohvlNd6#63qsH=2gB#4Ik@~0VQ|c=*4&}WQfxmjIsBVnGF&h>^UDiG__2WUq(z@J^G9RBHOi@Qm8#f{H*zZdqjf zUK_T}=7PZTCpI6odaDmVAwCRpE_)_d^xU{I=2J74Yfy&#y)wMtIW)VW1~U0WcJOZb z=ov-#GAH6sPg&Ny54~oW?0;KbF+XoAr+meoOu5$?e^4C4s4{LhL6#j(YGVV#jVhtE zH3cw@-lWpH`zI=Q?EgM$tDja=yw$`vm^bs3s*@jaf_irmXZ(^hd^(llQ*vgzZYgW#}|4G6x)~B=#v~-y^GJ{^@9K20 zJ!=V=Rx~(z_w^OtLXe~+e&a;dzDLF4o~NI0fFQQ8k=6U~sDp+lAomrGho)N3u%wdL zzWCB@<=pJMVMwePL~lKc|HGBd+Q1=9HcTiIWaBA%70LK=t4G6DXL#F>Nt5n4VNLSg*0otJF%O!5(T6VGCi{>COV*+9Ta7qr{e2);XULaUtM`>Vy^t}FadV2O zR0YVLG@edoctAc_??p;MjAM!z?1~fAuQWby?kT>byR!B#xYtfo_T@74JnE(5H9VCiyMW93(~-4o~hki^};-aL}On~X>OLp^zX(B zn#nQbjos()z_=azN;m}8W@WHbE#*eP8vqBq@P?RMq@8~f+5MWfBf?eG`#T(0Co8!9 zl)Zs6gSj++BQ#LR+CW|}ssE>q0Y=1+UyB<*y+ zc=`Mn?}koq+-R;M0-K~AjGw@!kwWvRosa?bhCLz&9V19{MpPZcRw3wssfrUstup4l zEU^Q~P#Du)^&YB3qX$~B+6Tqd{25YvYJrBAyfSlq$pVl%mXODHbO)XZc|eU-3F;T_CR0o9eL<5{}hzufIh z_rB12XKfTxssBzw0#fWxUlAVoWS2|gUPGVgRInZE+9U6-#o^XAY?rK0LJPGu0>PfF zhWm>oAh=hn0ar4@?@ljQ7;jM6a9|glczl^H}T7kNiMn*V__+Ape`$_*kZjma4(9G zk4s^?e)RD1nSd}VJ9&I(kOe=H;@OvL_M>-3#MmEmUG;5a`%^>jtgWXQGW6elV21PT zn-{sX)RetH8qIx)Kp+B>|96JSbqRtA8%LiBa#@WljTZgf7JH8g&YF)<#0(dUi7~QU zPnzR@i$JJwW!;JWk62jn(^=z5LPD(Q=OCW!?5q)=lkqhEdoWIrt0+gbPR8aUJVV~z zCNX3FOD(R>#>-P^%q=?O;MHn|jr9lZzejl9Tv&Z+qq!$q#~vac;#^oc88AFB+}eWO zr_QxPAktK4zKV%e^x1}B2!@@Wi~IB5t&R=j)f3rJ*=N#Y!*>ogpF$WW$cOiziDy~b z=w{4+)oF=|iz89~-?)XulHq-F3k?e%i#D5tMW(s#<<%#3%b}hjq1`dv^cL9}k4XdQ zm;lprX;rv0aWNLwSNNsaDcH1NLEfAM`(&msDz44?4-W5KZgB6`D7^FNcz?)R;jrCm z-F-d7?mf$KsvQ5@1|u@>JjyfTFRtr*%vG1SP8Nn!BR&t;zG(8LCyx{V@0K7UMC%B< z*SlpONS|?7xQd%B4Zpb87{7|S_r(np-L2mpd7kZxK)h7Ez)x4tIiyBx(XHp5H(7t~ zD%{UyK1098W8uD!rZTm)(dutWs2)od7i*<<*I&S2hq$;%gyil2FEhBfxQYt??|=Ls m55+6~-(mRs|39LN$C1JVtaTnt{8%QylZL7eyjs~J?Ee9QIlWi_ literal 0 HcmV?d00001 diff --git a/visualizations/10-visualization-quantities/images/max-wingspan.png b/visualizations/10-visualization-quantities/images/max-wingspan.png new file mode 100644 index 0000000000000000000000000000000000000000..ae0f72653d10a13ec46633a224f324efbdf291d1 GIT binary patch literal 10240 zcmaKS2Ut^0*DXaskRnJCX$ne_4$_-a1VllaNJoJny#xp)G?gYzx`7Y`UqD1^=!7OH zAfYS0gc^E>Kxp?weZTL&<+(f|C&|p5nX_lDwfD^Is3$ra)RfmLiHL}(wKUcAiHL{; zfzOAR$bfeuuv8rIegUkaWq1krgI=2T*C+kp=0=&g?cNfcP(!Y~R=&Iz?=8WEFKzFxSzob@mg)FJ#rIC{uH0Ad zoTU_>Ngk;6|cA- z9|tw;tb8`8UYV*}KASRV0&fU`dv0=Zsj7apb_QX1QnS6Jw-g;ob(1oXF5#wH zwg{K_n_JWeWNg~^?}rKq39+wrU!n8UH9>;9pJUCR2ghgjXIq(?{#f}{NFE@erZ#1O zc6O_1H=LrQV^Lwi12>QSf8UgEPhBniN?4<&h!M35s;1VnR9f{G5744v;&69C@Z{HZ zxq8yq4g6fBI@uxvU5(sAuNx@1#6I>h|GBZ=Qij^Mc%Z(XOfr5}nKCee@8=-1vi{$} z|L2=pc6#Gsf{N8G%Kg3H^&9wBzx5K@@tyo_{|nL8d=ZEj#} zcPRt6Zvt0_^!&dC3+%rO7=A$iT+_?>|Frl&T8apt7!-({fhYQ;kz$~Ow=fqmWH-ns ze;DBg((ZPSz)AEvNlP3jz*1nNWD*%H+oqRM3y}AtuSOb#=;)SvqxSadLrP?@Jfz@| z@or~vcji*GtTe^5#YyrSviI|+W|tH$wYoOBp6iTN;?Ip4#w^c5`=?-H?+g87z}576iN)nV4wWwBN$%f7g8i)D>@OK92=& zIFuZ{Gp=emHd&}NCbHo|Sk3}nFw1fm0H*fhLPDr~FO00f>y>A-?L+&h;1`=`BM;0P zOccN&{v}jbKNN>w=#pb|f1CS4EDRWIr zfHQ?CCm*S4h%TuN))BoX-+afd)=eJkNH%W~*%l()dLzhdq7Ty3(9++d>z0N?qDWoi zcTD3+;t^=Fw^U4a0DyWr82{q#)4xzKkot?Kl|Oj;gyQ}K1=wG#?EV3q9^cL%pndxI zr{Ey~3;@SbDvEzl_8%~W+b7}A2Kogdy6NJtxhzvMd-u)@v|BPauDX1aNX-R`SXF{?+-uwf3rp{_b2l? zKz+4r#BaX*5dyVr08_u&lLGlYB)yk^if>V>Hy-u_U_*0ABJW6yGxQ%kmM9cOdQUYS z(Zx@?fb2k3lj!2NFPp}k1SF94WM@T@RD#}sMRfkjKfjDw2^tH=z%w>Z%}A_4NujKv zIKSSb0@&?z6RxeRnCsT!?n%{OI#{%gM;VkK%1x2<)HcCPmMI#iyqn!J!RyVg5(1>4 zfcO+ytPk<~QMU%WYWN;gbX&Bz6?DnV5f3nltmGsKTgeEZHhvLS8`n;jqp(GLl1~EakV_Qu3@;A)R$QE0*7~x3&+-fh$NSgBf%XEHePt}vIRMQ>!wKd>T>j--Uyf= z$nndAxc^P3_4xj!&+Z?dz5JYa2qSbK*7T<$fIz}{)34>9{g{-5V(PnII&QvQf2+m? zIG3EreTCEWpy#aQE8`=cA8zKY(nbB|(e1yyDeHl<8`_Ezsy^ZSGrGv(N{E-9ZdCqU zcq2^F5o83a;?EJ9MyIBa(rnrzhFw7i+!6qqsXiOnYq z*M+TNU|0H5bUm#*wP@#Y^%dVMugEDdtj%G~&KTBg(y$KLLqH^ci_R(ar{!Nz_N^Mo zu?OZO-FlPP{jN}R2?3H~l2kdYBOF}WtdHl=RO`7kBci8g48Ysa3D2DgCT|!|Y1Z8I z5i3=GQR`VEWE#K;s_H{O%@|z){tPA*5(b%fN9DzW0u#>Q2lt9ETYj)@4hqf$N5jEL z;6-`)GWm*~y3R9HN$p1u^Qe4)396Q(WSjOW!J-_RFYn&_@s-BzN zxJznJTq=`u`qYi7m+ixp0BHk}xdX^=ifALnGUI=66?AaRo&Sk7XyJnW%mlfD9jKZ( zAe0sLEsbb5RQ$um!@D7X??E?`e%VPqt^yb1Fr^(V>HtoE+hdYpA-n6?WQe$0!!J`K zR72NsRgFyVi##5G>*nkG_VaJmvNf50!;`KAQ9~n4uM4Q!eWpu%2e*R=FlsBDFGi>N z67Wk`Qt0e>&v;hrf9l|D$~WTuz1wlW>p~HYID>4FZ2%Z7wm+azyaZpreZ9j-*XnmG z^)->!D<=h^=7f@t8wUUWJR#ir0i7oErxVekPLtoG;G31!Rn`%pzYp|hbkfsdw4!}N zfLCAg<3GW|cHwfny&~6#KIY}teLRcP%CfcsAl?2H_UnCOxsnWr}k+3#@X4afZw0I=@>^1O-;UM$QL@yG>S3YX>cFFSEN(8zn@iXA1e=;K=)obJq(QE1T6H%_h3)8q~x!auf?4Fx>wvb=n&QjTNgvdf~tDZ zPXkIr4(^kco|KjDst^9Z z0~{HmRVJ1vufY$B^{r-knHDlvL)sh0<4HMVU!Lb)Hl>+QH_@XS67l>o>n|I)c?IBL z+u(9|BdO(Gq$I!vCsslbGg*A$fq!*$=qX*V5N^z06#3r}W^pkJ{tpLfZQ0|wdpDE- zeMt67?``UkHGU4_4#@>o3GLj+!X=PN_*kDFArdBHbh@N=Fg3mLHoTnW&MM&Ux4ldi z1F_~|I3%Sn*?Vd>$`lt=meJHKWAppS{4`%6GKpz~z%(_@{;Ra*BhZUM42$vFTv>Wu`1LbDqL`sT0&D}IWB7UB0# z2zC3$Mint7EUSDQG(eQnHvR7MDYKNZ{?lJFBN;bIzf{^-t0*IO_u_-VsleUsHN(!j z#%Z>Xtcqp?nx;iZGPp?pscncB*a(g_o-U%S&U|Q+hm^l}12Ze9YeiZsel6T^Nf~)S zL`1$~O75rq!fj#WdgEFCt7igR=!L&mb@$5~wP45hdC$59Ux+^sN{#4FL)Cs;Jud4X|MB+%{ zmQtmW6dN_ZE>-8p=X9Mz$raN$AEH^w$I3e)Ie?1g-@J;~NSA-uZc*%YwjB(`M-CmDhu`e`m|xPD zcBplIjXE;-px70D8Bu!m4k_F?nfjj1cqi>agYjLBM^?@ozMElZiLvA+jjNZe4(pNE zGBbkEb^>^oWVbz0O*KwIw(uOw;p%Ar%#^-BE2@2> z%7y~q=IgfMY~}ON;ZYOzwV7aN5CzdyN(rsfk1ZGtA-aZR+(X@919e4g%=HJx)pK#Y zQ#UamynK1GYF|Q|x`wO0b~3Tmr3E?Ikw^Nk!nBo+9q~bwmrTmHtq(CZ*pB{%x&W$q z4vRB)19?9denaUh32c4WVLom0PIpuAv{qB^yZonVoEE+OO>a9ocfFS)NH{Uyx>Ia( zc@i>HA3b%{f7DtEU`iNGhMvUs_bvm+(WNu zA_M?tQ3kgsusU9|kifVmPv4L>Id0>&LHx?Drt)}2Q|E5Ee$t5X;MeZ>FBt76i(#81 zfCOiC%P$)mM+As-d3h5v`Xw;5LpbF?@Z_0XUTmkGp^s_&!B{HdbzPHx0PXbAE)&tv zT9I87Zuus!B22oA2HX4_;<0N#V>GehxH_f0yAc4Roxpj7yipvSVjVNc4dp}g=wUcE0gJ@}qQuKJr&is5(y0vS) z#9?OYwwYg`hWnNM@1r(+Y)n+2o-A$dfXwZ3*^5+)N6osD1aP~fk*4QximAI3i*fF{ z%98wt!BW2OIafw52#~ZTu8_T4KulW}d*GToW8e)it=4oQ9j+ek9a+(Ygdj zk=Ix$0e#}{?;>0OIX>9(-qJ}_oTV{Ith%nU7vhzQl|L{kO{@DfC0TlCBn16YMmp0e zKaT9xLgx2_#)V9y0LKw<4XkJ5UY6WydP602zTIu>+cau$6AuSFfBw`it5MF3kGP(L z+cVxMo{11?2za=;?wc-O*ZJ@4n_2G`xie;A#pnpv#t@hd zxOV2$=4)3t4cpx1S2u%jgRCZX3s*{QL2RYlfcrTt0e7+9& zWogb&_Rc|M)GihiTgYnSnz`3kwH~sK*tltHFthMST`(t!b+PdBCdYr73r<_Vf%zbC z#k#H3P|4>$1q*-v`RbFw2^}9(`fq;AY&%NJ&T%rwN034s?%7#6SVPq9h5H9FhN{k} z2mU+#eI>5W*w372v7>XlCbjk9Uw+=AEZ48apXiwfp7Gs~k#_^j-nM7nQWhbjt&(NwoDjEXtEZI)Va^ zVzq%&_DlLbmqlRBIZf*?rV|#Gy7sE_hsCjscDn;Zsud6#XrR5@V|R;&U@LVf3m&vp zd4zpVmfI?US3snsGo0D@o)jqx;>U$Kf&!U|K9&!Da(-#ET}LWt2?@#k)vZwLX?0i& z5DmI5?Q{(R`(ZH*@3NZ?PKoAW3MY@^46=dvx^KNR9)$FGd}xfNJzt`J3my!hV%jKl zc&_q%CUhjr|$w|9v0q*8p@k;Zv&xJELU=fH7K4TXiF z%QMqytMScgQR*8f%h?4*(e{lp@!?fEuD(kyRYp?c4z^4Xb16WScE0wqCS-n(SC+kc zDM;>FeMww2FQYi*t9$uC;@2!1;_zIa{*kF~hp!&_1mxyBDnwURSzZX%YaxDfW$q(*u)uA7zCL*L2j_6IMCGjr zi(lRIpj*3mW91GYD46d|Y2jGT8hX0t2YC9H!QFHcQb~OFuuz^A3OYgj9%}>fqMenj6BMRzVgV{4DL){%#)P7ZZZI$R2kz?$u&6^YQ zXu|FDM8)M(K7aQCBGD=CZnzb^8&D^k-ULw4!I-csLLzRt!N0FFN(1uZq5k>!b_e5t}{z)pl`i2d^M9pBY(@O~j2f5JSF)!x`@g4ILeNa(g-gFm2z3`OS@b zd`ie_U|O3z$F=9{C8p^ZH$MkG;=6Q!I)DB^Oc!?*PjtRtRsh|PZ&}?5#@6AsC&FK& zGezO#sq2?SkdC@Sg$F+m{9Lsx{SQ~(5m}vd%L~>mkO<4xzY8|6fcIJ`AOHbgT#PV& zlhxFe7sfdy^Rd@S7JEtNum@~LaN8wmo7`e8?`5UZ)T_}s5?3(U#*ppia>!BJYq#B> zSnSROo)qQgC3P-}e6yMtzi8I$GE=)x?i-DdzBZaQR9^blk4O25$ zuEl`O18?q{`T3c-Z|&NbtpAf&``V*b;u?T=NVCV$X-OFnPp4%`C(f7@Q1w2v>n}Pw z-53NvxM)9v&eCt&ox05citAp;4D?oTpYsCr;AlR~Cf?7QGP8wswDt55O<%?CjL8yF z6j<3Ma!prE^*Dl^k|{MuXN3+_RI49y?Gg|&b(B`v(mP|Y%hHvQ{)zs_K;#AJrx!U}6vdql&MshqvemI# z@4Iptth@SX75C~U3x1hD3c5LGzyeEpU;*Y$gIkQu#lL7Ff7scr2|7#8;mFR)NO%MQ z8O9$qv2`X^;pOE~+8ArLnCjUzp$`Yo^qn^uXR11BNZZGD*h23!0s80hDLeBB%bbv! z*jyC<#nx=0A9n9@aAi2JvUJ4$@oLRnROQKLxp&<0anv1=Ak1syhpUVw zfC!%jk)q<^DhHTY(;$F(^QqLpz-YH|iCo&7!r0xn;l$P#XrDCsf~EPjqR`hev;l?a zjH0m3Lri30cPumxTLvH|*zP-W_Vc1cX~TmfLt3s6DBad%&>d@rJh5y(`X#Ib{fr;v zF`Bv*;j?CT5q^MMMaKy6#?PP3vdPtvoE$E&Gf-(S4Ati5S8!YkQdtgEnJO4FnQZGl zuZnicWAG>~PSHhQSAFrSEGU>ARuJ{`E@UT{_ciJE>cKCMnKv_}(VnVrUm8In$^ zW)1%PA6!+JEqWu|A{=YgWgSp~xP?>Ub7c`{Yr zh3Z*Dbye@th2XkC%lLB5m&b|pG0MTqT#ZL-pw!LJGX(ECb8&NXdm=c{k)069IeG}w zPAMQYsM#_5?7t?q+s1-cn~~oa06+C*!lE@IpGmBiFT)B|8KF1ops;^bn`|WMF_%;A zu)em)n+5Ou1ixE+zHCNhF6MXZd^gIWT~K#_=odTYo&~GTF-wvxg4cLs4w%T9u9vhG z->Y;Qal~u-ygw2tza#f-+N|!nT zc!FaksT6_-N@b%OJ(UzX8NNL3u(}2^_P&~hkVa%+V=gOW3DoT_|A?i6&c31#YRZEr z|8t=@Ln?hbV2+(L!{jUE{5d82B=Mcq@oUlwAKUZuRjFN)hpXIMYB0p^zzUF7aJ+?8 zo@Q`t^f3S;Y~1zl;QGrpt?QbJNALY5%;rK#+t4tmx7TpcVfjh#z-_8Ys zs=mug7f!d&vg1KMl3PUYE-9?R>qW-O?M;_-1v;Mx`YC3i+y&1?9`^Rjwl9)W!{r@E zJnR?L8httdrXlcOC$^j{cAHntl|Q~Wt}-rz8dHA+Xy2I+61Q>YFp70SH$qqlCT=np zi%LXM0ZY0YR)_oY(6dB}3B_}i(l{C0Zkp^B_X^0xPfqI}3dgrOqovClQHbh|x)@-6 zYZ+Lb9?i@2F8Tcxgd4}_CS%Ep{=Okbn(=P(6(F=@-&ICP7~QyXV)3jlH!+rRU%_|x z;tUb((fW@-g{JKrgn)14gz9Xg$!dMu_u&f?K!$ApxurKa&~G1i?x#MwR^ss7Q0Kax z(PQYsTjbID=TpOWxq?sB2=$W$hmWmUmy+mXU~@aZwk?9dn!)q<>Zbca$MXsZ zSj`}1P#LU8CDf78FmcDSze6)>vzeZkcUO^FZn$*_vfjGGLdQU1T zHJjth{7Pg7|F;>Q&pyEBl0G39K=uNv>6_*ej31B+Q6A;YvLhCPQ$Il)Dk)S(nsJ)6 z;CC2g4PjQp&FJ?xNphi++ax+$#CUpP^ zT!Ed3lt+AM+lL-Bz%Iba|C1L<^tjfoABOx;(XR8XwQ@799td*UHAd6 zIsdl)WyGR&X~K&}vO>>fnn{UHI6W-w5eBI5hb>j(d>LN>a-)uKEQ^>$dGW+{%zob0 zNJvj^wvskVTncnVS(|gnE_a>)%VUY}i{h@nTdyKZHf7LP1rD|gWNjQAHbJ9Rcl7CF zcca1Y#iZgl?uDR#-U4?2e4Vg#KAf(LYY8U*@bZd-ojHQ1+}{CxGzP8P0$C3+KeSpe ze#kCLBK0mhO?CG%lHMN42*B@G#YTlKP$b&<)kw+jUEH4(BC(vt`#H) zc#E|!j*FULc`y$ZFR!93^eM!~j5&Aeh)cWLFflFR>(&=BzLc~4m z&B*4k0(ixjuA5xI)<}J^ETkEW@4^5_a5;Geb8mi_K3=!5&AY{cOER?3CMU>jleve~ zs2R%qV6x1I^)bX1<&RjDJTA$5Dv)-0c-az5AmtEaZtALm9a?A0?#SB6%xzS%rd zW+O6E4{@8Q(p77tjbp^yo8$Uqt2=;`20#=`OWjMQHPqUS0c|Ag)gRxs%mC6~?xR$L z8AUtM-!n`o-MP1%;nnxmY&+hrb^-^&!V>kQzM+`pZjDTE##}8mkl11}(c9tOBSef> z7SK{td$AJ33gieRjQo%EnfaJTOghYnG#~8ql-S)jM5>*(LK#1xw5)ynPd;w;>>3un zic`y%klWKugB8X3JRN)T&uM?!ftJ-6ui}wQFtCjYq~8EXNWkHKQ^Z+L%T$O&%z*|_ z8t9OVR=mG^)+C#X}9=QG%VL2*M(}=CI=tebfW3Ior_?nqxG9zfwT2}xW)(^Z?j~xErv%T zL!riuQM!q!c;lDPe@=EHFlVsesVmp=U1IWuF#Go))+!!#=UV2&XU1G_i5i>MqTkZcg1Y9Ocl#C zp6gp1w4JWsOMuj08rhgUV`&k|-9*Bz&WWQ#1uAsEZik$2W%aXu{rkT;VKL<%T zIw)D`tDB9wDDm%dA1I$uu3cDxgDs}G5;o;gx~TTm(3$PY*_y+fTShl9lbmt7xF}9l zs~q>1;?8#&ADuuZ&77ek^4RNKoUCt;+hm8=;Tbxm5P4P^$UA9=C$Q1VdnsVoZfiGf zg+sBueMOWayEu}Ih;S&Ybn74qcKa&T$+Qd>agZLdr$ph=^NYCTil7B>5VoY9!Zi)? z&GL=M5^2n$3d*Et4+A8|Nl#L(qp-x#I^C0Ncs$1x0&$Vax0?CN7pI6Zw|&qTH1P`e zLyksk5SaprvvguEpugv$d6zjv_39~OaC5rXJcv6votT{zkQ_uQQFWVH8KE$#UgAQ$K48IWU^zy}<2{{M5#-ksB~;b^UFci~ro QY&{|^bse>073)|33k3PESO5S3 literal 0 HcmV?d00001 diff --git a/visualizations/10-visualization-quantities/images/scatterplot-wingspan.png b/visualizations/10-visualization-quantities/images/scatterplot-wingspan.png new file mode 100644 index 0000000000000000000000000000000000000000..92702da2a13eabec7126bde619146fdc4572d557 GIT binary patch literal 12069 zcmc(FcQo5!+;32u+M`s>+B;S$+St_Idz9FtHDa&YTPZ?Os&-MSnGjV~t*8}MBWM*x zgw}{6-1L3#d+&SBJ@=gZ-_1F{lRP8O?-}3m`F@{IrkRNzJq;HP005vj(ATyA07z1a z4>=VDv4*bbyny(1Efi#6MMeC?Qh8<&%hVzI_Mrd(E%U#JWCjy|L9A2>)3FP)3$+*J;~4)=wEU#Yx(;o)c{p67GVvpBgxR!g6X@BZj2;o*KuhA)M&_DM=I zBPiqge>G&(yhphNfamG@ZyCFT8_E}AD4p{eb(`91d4yPn8G%baUOfD zMPI$IIf0e2K;rW!i@LC-%Y-G|<&p5Nto|}V3U`^*e_pXLK7j=R;gcw(iiI8&_Ugz% z1{hNWjcfSS&;H!s{vsCQd-ko?o;Z3bccQY8CJH;BxLxukoIfOT2mgJ@6jI=Q1=Xem zgRh$}%%D}3VLfFFUEuBsl!hJfg1{h5~%Lp_{P!86={UP>90ks*=q|{9{*OntLT!zeemP-Tw^HIaw{^W zaT>!GNgbkjaMbBfS@L1)RAh~M2$n>dGQaN3_c?*9N{}{iU6x>k4Ll@ifqOGC# z{55Wn?NmO*2XTQ;x1)F*gL4~c5(Q=^JhcW*j`)@panzNJcU+YLv-IeX0gCC^qt#4 z68PH2Z)p$D{2*lEavPIUhCM@t4=A!A_4O5!43XBTJorg~Y>(Dr7Z-s) zw?ry`_$V=O@>KQNo7+Lx#!oQJ2{_x3)>lJ|c8YK5zZs&lSCC23!r^fWmzVc0qV)U- zWKHW*QQEVSehWQD$7oWgPH@WRj|@W}&U1%;}{3AlR* z1)d0Kw?=)yjE)sO3I0HEWP*)vn}uR=S#K*s>E-iKW!7R>pR{%(dgIFt~5H@U*p^Xe~o zenM5P9&tNwLaw0j;4yoG%^Cq5!CUx74l{nqSonF%^3CO`&)O64$=m0L%ch<}PWL>m zOiq=|Wd=*kLh$WOxfarV@(!1LF2`;cQFI;CDBNuel8O2VBu{UJPnfKpC*sl<(e`Wc zJPn>e63H{2fwiekyLd8m=l59xnFi@|HrI8wAqi53E8{i8wFn@*C26PaHkUKOHg+{0 zaG~ooxi`eM27lB4tAi_iwP>t2LAkIwnD*ce#g3GP9r^~7$K4EPsdhlb-pmpt7;oV= z0Ou{}$z?3c(53PCDF?HySZD)xGnh{vj_Z)#rz#{K5GUmd-7@t>&e)RIoLh_F$S;B8 z!hg<;OYEP2lbtcBXP0vLIbI^g9j2JV=uy{u`XhV)F~0S#*GnnZ5-G>gH2SEOVxmXv zl!Yy0Ni2A&|8H*b-*{8yX0k903Y!i-VFAKtP$qe$njcWo@~~aWa+^o@5wY{9`0(Fn zUV(GQ4{n8qb_CpbV60Oe8v3NIknz1igpsfoT;@tiXy%MisQ;$ukM}S>cd;4coS2H%5W%uPMoT7k4l3XiA$X#I1Au*zg9l zXCZmnu7q6@QlQ5%7A$gUtuFLSJ^P4&^An#wMh|a?F0rzOyFhrcsQtoUZR+vvSMqi% zsJtfpiAYtnj7tK8+Ge9MZ|Ey%pe&5OLOD1HcINS*_xGsZcxsua0~-zQvJuW}sNnqL zFjIILcU-o+9M=bzaYd*A4IMKo?K(J5Bm+|_Bmm8prO5fRYpEuAwo`eL_1GS+!?cwiTzri1wO(pad za#!E{#?Ozffg?N+7eYWdQSfrdv(Os*O0ZoNmJ1jYxhdvikYqdr96ZU(DWl>#3v11g~{;MOONT;#fi+f4be48NWv5*7|=#mwQ57? zw;za3zo-9gP~AZ~g|P_a8bAZ?ri;8DVvhKgKY^78s!gCyGE4UumWvnn!15^>(ANqu zdT_V<;pRl{-0xBD7UCIaJgN(?aRbB2T(7O*aCp*c()b%HtiAN7OX43x@!`0^WlX7z z3!?W;w6wiNU>_&FrwDT`*J~PbV1=m=U7&1za zQx*N)qNBIGW@o1#%asd7)EZX|#idv3C*RMAT|Cl|Uz;78!(IMH{~=gZ3~==dT*gZu zL<5)RP*tRN=}+Aqk9WZl>|b9$d1drY^318nM0e9%H$s5FdA1%uO`G&EkqB{TA{Sy3 zmCF`t63Muel*xL}iASXr!dAF7vvjr*b_l<5*utm8UX-1XHgUm5Z8C@z3asjy&+IRpC$37p!4?xvT=B zGQTfcwg3WF%!9osG9RxKbu)=*jm3cHWWe)gD2DoiwRZy5CJ)PpE?A!1PMko|+K)g~ zh4nslAtVRmL+~Wm$9OUfA#*4@kr%)#2YY!Kp#&qFz$V*eIQfD_M#u4ru)_)L;%R7g zWFK@v3>;Ajbq0ec1F_;{(7LE{ksE!tXbVjX%}xU$SBY@fOcfWuLerIQ2$VNa4EB&$U0PO_SjK!zZVba1jEt!|F9t}QSKVik$X^Wz7JGSkG2 z44k1z*KiD5dstjg-}&v|`18b;Btp{5MBtB!F8~*|1WlULR=taV*7am}?~k@}(TeEj zW4jEGtmJtdX^`;FZ!$Z-N;1mSsu5HP$s~z1Y1L0$&xe*E$|}}`Ro-5)uBD0JolA_l z=4erq~^3KlBlz1*h^Yj$gVkOV`gW~vlSk_>4u1RpcIyNt=a_COZgJ%dsz zTS%LzP_|vLexYmr?~g?itjmPGp_-vBqQvu7Ea**O#cC*(VSlwr-M?UvtTKaw=CmKG zA*18LB-bD8#ot4;!d?E$Z$v)wvDQY_DQ7)aXRj?AR!Ox(CXgJMtXZw8to3MJ4**ld za`i4^G^-rKrKiW9oE|<$|4|-w(N8DA*P$QO@(T}`7w^7d{9sr2?vtH+cfr`{xvHDo z!R@sG2!n+}*+O<=Fj*;CCVnO+154vgj311L_TlGW?J_RZLxehbRK8%8St}p@{j)LX zuJv75;7Q+|32Vs_p@(1&`1v1HI63Hh{F=jB>uG2Mz2(k}B>sP~@thbljn0Z*wFvVy z(|jW?5w1H#7{Dp`I5ioLY|1|-x(T^!tQ#6WstP?I z>%Slh+-4eFe}GwuchUPk!cx&z!}wm0D0`d-*1(ud=pIvPDXA;TWxY(-E*WuPwYH;~ zrO92!fQ8!WWX^=F8K+qGNST9pH^C6H5cvZQh^AmL(){6!VC=_dF6d+(9?~YZ551Np zn?L+`rhSKOH$J>jLYS zM|cj>V3M|LnN(a9Ewdt-m(oN)2IevC%}ZLKh3-BmiI zOwA&Wb5m>(?04GnmmAHTf2A2oTX+UmNmkq|%A ziWQ}0*WMlRfyED;6EWCiM0Ecm%o({7w`~D|{Q`Qf)_+;rl}iyN`?hvxZ)b#}U6JY9 z?X)7V@yM=x>JpVPGJc#ZT9fxySrRj=}G2oa83r| zj);&VuLnHFuaZ`g1^9Q_fJV@d4zXJ!2AKN=hnqUp;q)WrM+S7|j5P;=-v)a zle}srs4FF-aeZ^4ovy)v(bJw5C4iR6Q+8fQ@Z^pielS8WB@D4V3|i$ zV6}Xp`k-Kh7$|urO)BJdDZ<1l2Hu(?0ut8h z(Mrl6$2)gm|7Efje=qg2%*?L5_0?NnovaFRk*-g1S74N2OBWUNtdpg^=!aiDgI}=~ z8tup_PU6MZN|UsbmJ*S#qX7`tE!;RJ?(dHe+5R>UL-ea1bEm2zW=^XkJ+7jMVX%<1 zZS%E#hEe%(H7b$NZE&zQ8FA>cRlNs5pOk=t#+db zREd2V_3_iV@FMz7mS}VdcwrY+-k#1F{({fQFN5zi*v-_C^^jQh7gCCr~}VnSg8!K*krFv(VrO{$pu{&AA)0RMQAm z>|o4E7YaqEH;^h?t1p`Jja8cRlEb`p*bj152zB1Xr61MK`X!sg#2%Y*{nb8fOL2@WbQ_s`-OGS zmRZTY#DF9~hhpCM_9CRdoTLXQ)u*_lD2V0=W|iw|a0TN!8$UPFYd)tJ&zNLmAN1ZH zHU0@@-4pa4J1Q=mU7*0x;91O2wqQydUDs$dF zT~^1CK&R{cSt=UuP?v2V`ZML~vK(Foy|9+?D??Pp%SU}dJvjQ?WU7-JVd*PXT%=D& z%b&K%3y=xJ6U7@2Sfy~e=0pTuJuc%nJ$=|QtmMy9ca9HF(tRu{ad%kRB@<^&b|(t% zioWbGdl0Rtuuq1qIvZg8rp(UFpk$^gci(FJ!~FJdd~=!@SLILR=EEtifrfn>69GAe zpMRT$$yJg>efGj?Geg@%vh3}sVp{{Ql*UCz#U998U*LDo&bG*(y&@am8Ko`efzS7w zKBmk5C3D2w0I1ZCFwmXl?K^)xk=?MPAE)48WnPH3Zuq%ZT5lp<*LO$dqxZREx2vXM`;Oo%!Cx{_zS8}3^0Tw%{Ta=F zpLAAvXY@A&4b1vVfw~zc;_C1gZ|T)HHTo&Obp^oh7rUe;GnXEhiszo7a?UUQs>xJn zB75B>{Sf0-j|w%AeqU!@xWflZYXh@VKpAJhqWMB_Ez|Bn(yn;P)q{w#%G{$rUOPM) zV6)wowgBYR*4Mo`OLk)?#m@fu%m7vxABADnTYZ`Xoi)`p-XzPX7XK!SDFoT)TdQ}T zQ0+}jR@f32e)7bC!5{m7_HIw#v!6t)?%d2})n1xf*Z=OcMmB^`%(nFM6#E=3NPHu; zv0$M$T53^qaz0^ik!Sbmdc7W*m-=D6se4lyxt!Ubx(}ko{er0i35SyJYkcw$E(eGx zwcW$rlakr)Bq+48j4l6e+8gh-GV*C*^bKNqVd3}I1~|eVvR#4pOR9ZP;@FKIHxc6) zmi-g`&inZrL0;ye$%M<(IIZY$gP>Qy$(&8UmCoCKKeBaiN!WO{k2|`g_V4RdqL)Al zpsKfklWfgW@G}JA%zm*`%xdrU=hO}^FUtV1dPTEfui27Lg&_F=hlgE_i8c&6P&t+t zLd-+YQ2w=ox(JjPLErqjTkr==HV$HHotQ=spei<`jF}f=QF04QHc^zFQ!)H$&-$4r zC;8Nudlp^`e%DaQsaw(L@VUyOSt$s-o+p7*@A z5B9r9d^78(e~F&!5MsuzG!a7Pn6#cqyd`PYm}?I&KRDtXp>toq2ZLk zovm$(1k$^l1c^pyK>-?SfahN$c#{*4)WoYrW*Ik8K)YcJT&VoJyT zDy-;kcIULy?7oiWgU_N?NB64UW~5M4T!?o(^+~RzA4(t*;n?HYk5M^rS|ehKeA4|a zB$D=2|00h3pzAa?orL2V&+7SIi?Ps`t>u!hbL#VzQ7I>1vx!-U`!4odzf9iRHh6kP z?A^|E(JZSoZxl^)>8#T|4+R{kx=9@X-5l5A$NN);6|or!-xzv@FE8_lxI4Qg#0kV0 zB%z*>7cV~D^q$jsNf^U4W@-6-o|k#n>~^Rh$`1Cb&7 zq1-ooDlB&7ce%?xFSYM-VnFVWJMh~`;_Zrz;p=mXj=NiB66;LkX}66^-o_s;XIlbW z9juqnn-|q8j#h{{hnk973e7(6nuzSWn~z5F*5}`-34szgtJh`oTt?g)C0I4CBZTWd zx`gC7)i7QSE=ka&hBW~#8jCFJ8=1otY3TXv-%kD>Uih`u<1Kt-2DV+zCjPuJqGuE1BK)oO8i|(XQ_EB6_#kfg%DfrV&h z%fxJ^+oldj4vCW_JtPb)eXuG3im@rJjePJrmOI#gNF+0Wqm<=^>K`tmT?yB!;s@5H zs{o4# z({$%rIp5Fz3Y%Oj>o@d|FUg_~G9KLn)npgAMDf^;wo*UL$}3V3;=eozEC}ZXwZVNS zn-HO!3x11lXVIAjCH?w2T+B3zzZBga#x4!kxqbw%=I+a}te>yuSvRFSiTL&0K(LgUdDCrI@l;?-=JMwsE-?F*^w#iI zb0xp0cH#4vK33DC`uu3SrTnxA!r2OWEm{?nB3NTqgrNH6LJq2GQ*D8)*t}N?pqNDz z8kp1Rm%GDn@uxurYNqxxHVXwLwg%NuD68xs<6TGB^>{0h z#!oH1*GC)q<9-(MkPq4T$@KkD>*CHLt_(+B`?9rBM0uokau<=6w3k=fas zB=*Sc{9~E>Id<%mV!$HnfN6!2&i-nx4)b*nz|ZYxx-|-cmQ>+d6EnZlzj1Y9$#l}N ze-8yKqi1zj3c`4w$S!|eD z+h-+eoa=A1bceO@#tj<^rUn6FZtB!~%?dM7P2F1DF8FBN>u|1&soljm`~mvr!1JC@ zRl(1M(se#kF=+>W2%r-%(RrZ6Oq0Z_C|i>oIyRWOAJ;CJI;Gp3bs%Q+$ov&QcD^-q zfNE-L`oWS?N&LsAj8D3t8q#pCErptGS$1hj7fs;dshHq+?TbUM0)dACY)PzK`Zf_O z^)Z73&qcykhf!5FJb1 zP4Z4JW2yeQm~PXAuU1cIXE$bZB7%_-fu|>on3v+?<71(P6YxPs2zu&8Pdxd@V+j+T z45$CV5lXr=_UZ>g^HbI>SuxxEEIq8x7$Kj<#fv28MoBB+m?8@{|Y%}{XG$mNyrMLgH}S(>soTQOP&-Rs~vA_?QI%eQZM z=Qrd0c5GbqXwYjq#keMG%ie`hJY{;sLY+#{w9{q}aY?Ja70#xNQXR#%u0&Q+v=~69 z#Yg{idx-t%Zi&u^?KGss*H-I`S_$n>y3U7pICe2MJA5{J==|1HdB8K=*vc#FSn4oE zoNF3|Qeeqv6o0-{_eC8yxDp@bm${Sk(!rFt@lo5Iv;Dh>Tj9UPJN>L9UpiT}yF|a( z9_@3?RY-_0bEp%&t^0Tq#Qmw@Mfa4#CIRO>e9nNG#AZG!$vjdTzY(w70pqT zJBE7DCo3Lfp3QZlt%%+`>vy~Vtx?FgBMWEGR$*vQ_ASnIx4EmlzAZ~Ou+AoDI7Gf} z*nv0&o!o>Bt`7qU$n;OTpih6b5Dqi*1xmNJcwmiHHS<6q%Zl4q^JjG9QyP=!K7P%o z(TCSQqjIhd%gVO-sZ*!Y6d&hlMb~=`WV_@djZf^dT+V8v+Z@;;CZDFsU_z9i1q8E- zGM5>Z<^`LEIdRT!SqiaIFeAWVZerdF2uGuoM*bUyxQ`B;C>OPp%oa*)4FJFGyw}j` z)}qQvKArkhnR?>s?GN}Lh{K3jnZ+PKn!G#0XYrd*^Lt+xyN;hsFzb3*l-C->+q6#Q zJbG^;lT;{ZRQ1*e2H;N8aUR#8K}cL)O0Nleee@ka_nB*6xmeYT=J1^}<_WjRFj3d; zvZx=VvOf02z*^01p7n3Y8IB@5%bq^k%gkeWUt1f%Omv&Yf~;*MC)vn-N+-*R=Su6W zi#~6eUp^{n@o!AjSB}@AH++@`8=JD%nPd48h}M3n>__hl^$WDR_MDS9&0KUD;6&;~ z*P2rrX!N@0XumDamXte@-l#;QQb!tZ&Jhbfkj#|eLX0neyP9`ka#r6`s+L4)a(IwZ1(5rC6c z`@$zszB}W;Pc-v>zGBTv&vlm4sd}d@*kh)R>cTRN{Fk=d53l)56Z~R43-CChwvPl4 zPVR5Ds=0@vLBCRlP1q8P5+QUIXN|tm;eoWrc7`sC!g@3~_eZqWpHUAKnoKph@!fMK zUOR|_vRoyu@ymGXt=b#?%caFsLw}+LhM)ed+a) z>vql5E-kx94zAnM%2(wOOG3+jq$J;HxoAPwwHNB5v`E9Vz2UW7sT}NWyJq$o7e1?g z+Wd0yej&d4K__dze@-%-q0&r6)aC}^S}(I5k4!bmAc+%gEYG(dtldi?)@Yurw4)i= zmm9Tu(%EBsx9KA*XKb|O#tK1m<~FtU;|{jgvaIUJyA|d#$u)+o=X}I<=h@iDerg0- zfoeX<8-m^q^tia{?@RbsBUsse%dKb?%@-}i=swq*p?4+yia&E5PDOK6Hf-M;7Es<4 z{xbWskx1QH4OV;Ls4q%KVyvLAlWX+V3L2GgiVGa)YK_lhZ8rI9|LlGwZ{Iw(n8MsW zwuS6+i$ZkQ9qT<#MKSa))vl2J&ql!-*=q`~`p0$&-hGPf1Izs3MwemyNxsI#s)v#} zG~vWN!f@|7;S;l=j*EHCUqsfg4T8SzUH;^L`eWBhRiikC5wGGDP?2uS6laE64dc_| z*M?kJm(MCJJ4waMhk|*H5tCWbGnjo8lO8Lws7C!%bzl$2yz>m5_PyuJFWt0Fe(8Vv zx4lt(T=yr>87#Sb^69!kCKFekO+$_rgJeo4ngjQJVBa&$`Y51Nm&NNNy>-#gJ~q4q zyL9YD-y)}2@f~}*_c4npln%Ab#nCzKiB4ID79LXo4;sQudCkoUGaHi`;MX zs25ABXP+K@p`Dd!?k)IAe|_9vJIjOBDxw$@A#o`qoJXSLhyDrqbM@;IDRed8pOhDM zg%=QFJ-avih-%<+8y0=tm_|C6wY(n|&++t!@v%GDsJ4f-V>EXPwwOp&$_RKrl)Pj?HO60r< zGtrp77+)c+D-}#*;jM&dYbkccpT-I=_>cEXRqN-|dVX%(DKi|8imB>qlKprpAM9e)jxd?)$PfDYv|RkXs)f(+xAGIEPg&9Q z6A41^_ah5}I?9i@#485745{Phvz#7LvI*Hn>{IgemX?053+kt(PGujPeb>!&{4F~e z=A^AxUC;GO=qvxOv)^z%<5`=vL1t&j_q=H>Hg~(*GM0^t{$|~&VKeXR(eH`Vn`z`b=q{Dp_c21?|hz1;)3b%ca*Gdc)i^#oUim%>~qa*mXK-jU%9Mdxqh6LGF--@ z`rH^HIpSkJ2a|luPsgNWtw;Mf;8$*Z-!l$s^6anq!sDefczSLnx_&M)?*;j9Z^Z(Z znBtdNCYEm!DKE+^R7NF3<%+UuOG|PM^_{Dfz)0*H9^~qojmj~)1JV%VD)+o>;R9~) zu0O^KDIr+yJ;7C0CA}K7f;ia~SR@7tNZNe2(?a!G#x!3GP)?mkYQNr5^tChhU^}Oj5bJ2lf_?9< zv>o#D_prMkjm_(<=va`DP-W&3l^dqN!(3nHJnK977m*tgA=JTMMtK2)C#VEFE)aPq zwW@*-EoEU*Ln2AG07|l8S=bXwM+yFvvYTm!qJT-twov>ohQPljxzwX;OawfE27W_Cg}O?Jq%f|3>7Y)vSdOcN%RulO*&H&r!orCRs8&v; znh@F$w;epmZ+YUqe4JY&f_UM@v6hf1n33`>KT$ITFA>_kN_TDa4-J1xhW!o>+Fas% z=3FGOOke_@KU~wybh0oVXQBFiGDBobX+NQx(FRs7=-lL-7TQgKq*!b@;O z6O=H5l9q$5=9FqKpavNub0*6c{Fh!gF&^I#*Mc!>eIdieizY$`Zk{q8Fhh`Rkxp8{ zV0iDjU|icvM)jJ)WX9ufEWO-As1oP`+iyIP)Y}I>F<#?l|BVMn}0tHUA zC7TR^D8mMp+6NgoeCqhLRTz5DYjBrzYx-+2F!;t&P;pjyeFG0b z0yKDN^Y#L5T{0MnoT0`fcml88HBWN072b|3L2dgaBmlvDny)J%s%`uq?NIe6qC4?M zpXxbCiFD*Ba5wLPjQMEM(U5)h?I7KfsToG J8^|sBe*mXxXe|H$ literal 0 HcmV?d00001 diff --git a/visualizations/10-visualization-quantities/images/superimposed.png b/visualizations/10-visualization-quantities/images/superimposed.png new file mode 100644 index 0000000000000000000000000000000000000000..97fa4772c4b3b042aa8814273385d77473e4d00a GIT binary patch literal 52709 zcmd42XIN8P*Djnw5orQSFK!75B27Rn0Jktz^DL`ndqN=?L0lMoO@0VRNlbO=Zd z8-cx1K_fk2qKHTdMIe+Iau$0(&wIY_{5gLQ*A=)(vgTTI&N0Wh$35=xz~0u9|DfbS z2n50pSe)@PD3gEB6Qpgjaa~1tm`> z{RZFEk2H6SbPBr~8FTrDKLmX_GCU+KG9=LVXte*0h`_MWlj>UPnkSB4i;N66)X@0f zpR0%62+(Mv-xGsCjzWO*XPjf7E=}JY_xe1|UfZ&C?mcY&>V?j!p<8)pho_FKc|3F+ z`Mad*6>)cQ{WSW>$f*6{svVV!K`);lJ|+0zys*TTL*~}b6_Tlk5D7`iuUCL*+rc;Y zz8B({%+_k=fB|!y30+M!b|V(6_JYGFF2(OyD7 z{HR}l27Nh*fG3|dCp)DR=VmZ?M`Xq0f&a_sAshtodmYZYu>I%qJ}w2_e<+Qd^#7MH zPmPJ;bPReNphUXPYHbsZkk}rT`w?eKCm6R?D1vKgG9mJj6Om{|&cW@e2R50(+9?fJt?44fT0WKxu>?QA6lni+e)I`L_AjPK7798r50p z7+Xbvv`Ok9jx~00u9}ht&;~A!pS!Z?>mfdq*PGDSq)^W7U-)DB#!ag$&58FSul9oL zsFoMP5!v|+lTRF~MAsS%*dNwCJMkb-cXhg2(O+?8 zuHMN$- zT%FhA@q~+*8LS${6&sJ?u^DV?p;sXig|~TXRaZ~f7SNl&{Yc`}Y*}uR$DBm_s0Z>C z+l5f!El14AIEOFE(05Lf9O#AR$BprqKD%HrQVMj)26tgoN5In9>g6s%54H#DvN9IL zeI8sz-GM^PvOH}LrwEOKRcg-(bvqG*y;eP)WEI*`Oc~lM(SdgLJsEDkw6PVqI$lR& zTfX*8%8V>z&y_5Q$s8{fqL|w1z%U({_-_rt*hIu;e)G$_(V0a&q*#$!pA zYhneJq@aCJ@wN1B*1u*Sh2P(Xdn(j#i!v8>6x;96&yc#X3NsCQKh`gW^>?jkmp`5} za$uC%3t}m*ee!zxHRc zLrl3sYy38_(rGpuq!&NT7W7tPOdiD zXoxDf{g}Rm(a?ye-i2+uFHb3%3&tP|CHfbS#k@MkVO*O@7m*y~E`` z_~nwbaRz{6^w2(BPmzI#zyrH*%s{a?dxA(v#QK=WfZMA>)2F@uStiH(yXo&WHZD@S z^xd8*=^Xv_p9Z8Rt(;XC$t~>!f$dv_d{P8y2rGgK{PRW`{ zLGHWR3Tkp|of^F~BZSxSz~)w83*mIk_STRYTc1%v;-d@!9**Q*2gdC@1AEVtGz%aG z9y2mhQ!_Bhk!jT``;$VGB;q5z+P`>``2g#;JB9b@KB ze&MEP(Jy+E5lw~0GoaIItwLQ`v~10U>pnc+`3EVHBK<$h zrU7AU&6RnCam@C$y{5Y=SFZCvC?ckD=TQ;ePcGv(Ay*w=JZ#P^@<`NxW;Awa`FGq> zQ0*TrYTLVdiS12lKHk-kIa$5Q@m^ik3GRffU|x|gwoUll`GkDvj+i`%e`pQ#lIbgze9*ZsChLD4h-*a zlkSdwaouN(yy{9OEJo)$(mXNxn$0k@Plasn*B8tOn#UKBOh}-8pQz{HPf6 zPwJcFz^w*M&o_s&)|_B7{qlq?zr9*y@x&4U`;w z@3_K}f|wJn*AI$0h-yjJIPQpH67$CT8kJ7f@(RPtqk`ta$QyCR7v=F1{Do9$D$>@{ zR1bMKZcl{bk{vm6>yjntYX`H9pCHo}cM7L!*-U zHX`C;AJ>VW29_rS_Sgxj-3jj|lhkz+GwNS_J%gXyQycjjc(f-ObSC$}a1@FNR0Et8 zyaZ13y*@Vo$cp#rvH7_=>QdO)+MXF8*1Px)@k|xO4gCnZ5G5e_-Qz|Z0@LP^&ROy# z|3ZBPfnkgYOz=mr2T9X8UV<;)Yr35yA4j)z-a9@P-b&EQI=VeF-ua5aoN0GL@CR1B z2c4LVk`#10%or*8l?(r7Qwe6|0J}}hZgiCza7)MSZK=?1S^cbx;}8#uKS?XUo)Jgo z7HBrUkMm!3`6uoUz|N2k68oXagpGrZBVS4D#O8;sNhir-g3vwbxoN!iB1#=6@L0!% zJTCU-J@z%Y6%O@6A6a{$ZMsv5!L(3{#$+MSZ|se8p&v$w)CQLFs*XZ_P0&r6N6wMG zB%YA*;xr*rKCYAVge$=PT0JE4sC|52vO=kAaaA;T=V4=bNr`Q+(=X1>*<*)Ob z+>@Oo28xox)X1sp-oG7)HnxJT57OfC-nX78ESiL=b*u!C(8QsvM$xqoN!9Qrk&B|6 z6C&aYfnrGcH6BWXZ*vMJ2a%}tMetFh1&2bD1xYW2dTNN9oN@h&wZb!B<}Y3RV-W2^ z{q4+#v?a$?u8N$n-T9H|!zY?xPM*Yx!WmUYp~*)U?Pd8-dvDz|rRB#ax|N7ndwgaf zC|$)T%o^2Kd1xAIJ6xo1LiwjZGR#2J$D-Sb6inFLs6PU|az+GAVW-6w;g>Gl6S$*=P61uCt%sw833N9jNwH|Xr1pDA=3PD>#yqPZkDk= zELXWlG<8SHd_Rc~xm9?D^T+D}Fo0F0ZnRoJFmx4CkxB|ZgHyeU6$ALBoo~B`cqSsh zCWUKsL(ps<-0oueGIww$5;g1-^S5FXTL?1+hnw>W4mjDz8?)oduD}+ul_yV{A~|YD z<`gPhuO;}YMxDN>kQI(2Wc$&mO4ySx(y&@HG~JxH-Iuj`AV4ruvZ|hNy&+D1-r8aB zJRs(3G6|5a06VKmJ%*PpdHVQ++u6s@SSdjlEuPs1MOW{ixJtcD9{ob?Bg-yptsKER zi1US@m~vIaD_!U=X=AP}t5&Yq2RC}CABhTTVN6q8=yUBy_GDv{Yl%>!%xW;Qc4&f> zPh=mRr=%ZO3v@!B3$l8ed}p9vj)RyQ-1bDf0mW6DNgqQbJ`%Q%6j`N`JhCLmf1bYQ zB+TvJ;d7T0%)Kni^NT;~6cmVCPzw8gqQ@)h8C>Vtop=F=Zt;bcc)=D; z$s>9rMb6}34mH85P6vb8HX+sz{@~g+PLGF2b5+-~w9V+$fm0HBh`^Ca6>K&FEf?i! zLq;|p)8RikYHc=ve5%>q!+<8gXh{eTUta@SlRK4#LDJcb~ueBE>){ty4a?R zP1FfLTq>mbv|fKG96|}0kUeZV)W65Hic8)Q=c~eh&fQhBDFwd;mbnC88gspjm;PvFI&kc41A@*q z9CzUA*nVz2HcvN(HcS*s!?%{xpfM*^rnlJFZv1r$U%dg~!`@S?riSmqjm8TV=iLWd zFkjW4CLIiyt39?VLSg4NUYA>JEbT!kio|r#wfXg zmRk`DGTbMim$)tvbbQqxZ*-B;ZIS{+6rREOvUO5%SGIFRtJk+kMSitk#gBc_ua3DC z(lxC_4upftaBtVC;?*IRb!{OdIzNewg__aN8lmw+e%6?}I-c_0QHu>;&2VG=_ z)kK;l)&%?AgkuXr!iH%L@mRm(?}Rm;w5n*;mYEpTW?c}uprUpnj+uvP#tt?5-`-7- zJd?kBk8nf<&LUPNbgF6At8rHN!Bc*CCK@|$FxVOUEX6Q|J!hP%y}4wxDQC5yG4BBg z_62P0{NmVB>^4SH>xR|H8Y+GI~ihHj=L0l9dCSwZ0qpjGASJmEPlz$pr7uU#9DgR4V{&P%olzWWhdBSY?BI{_!5 ziPz4nE#2K`iLP{XC_yMS4x!&HM-m%VSAzjT2aA4<^7=tiIO^WEf!MfyXh_X?_26PZ zgF@=TOa0WvSELBqOLCmcJBdqKWN&a)*gyAdhpWo-b8Myg zlca*2p=u(lklwG7p1+CNa`^L(B0QOJTVN!uj&)_0}E$nU@006(ADlic-X`+jXR9kZ%BFib2}rHI0b74PSLMi`L; zQ|#w!5gMzoTDcG9kc{G~?cDU6J0*Fa4_tc}i_!C-me#fW5oVr0*dk`{rBdf$_9+IF z?DXOhw^JFPZl$H?;wj;6;ZD@%`EuZ6lDd0&cxgw95xZdn~ za!Y!Pf(;w_VkLQ)X=0PV)kUN$VVGDy<@6K_3mDrxKVEQFim6Llz|YOwhh}j1-yD4~ zB#SPc?7z>}#~T zSmUR-gqY;)8a z@Z|6&Gjz5g**+8`WiswJ@eV>el>?8>u9+2d(kXjl{zAp^%IVLp6T|Lj-gA=W4n?GjFon1pHMEvPu94**)#q_3uZn&rX1Kx_it^Jl`;3f zTttNy74w~)%GW-$qDG5|Dp@v~`F#(Xf|lb!F>5)MgAZvQEu4{`|4iZ{+AUyS5vx;$ z;fvYOlbo8RjmirkM{*~NV6yhUEz8dS2A4qb3AOeI^eseU9;Y~qYQyDlRbUE+Vp=>o zp$RTkMS$luS&%}Sp4PHosXnk;QA&NL5J(^>fw>?>EITrT(1mP0M^?)jn#_I?lSlAz zUAUf2keS(x1j>8OTG5_XT}%#t$d}{qB@#2~$$gF89`2^uIu2yzoY@Cb-pvFPT%mJa zJ0V7aeuycUT3i%Y3ADPBXK+c5Ds8&wpg{l2*NRq4@%03)HKw@ab4w-rT)`wOGIWG$ zXUS3n*@md}J7q$Ur#9|s0U}885AHcbF3&lZmpF%8OHI!Ky%dc0G}<#y)jX_6dGRgM z0Isq=y2UY=-FQVc%0p5d9q&ZTvY73|zllQIm0mda+j+{&F1yj)%e~~q>&v9ECtfid z`lltwh{g(P;V%d3yDQBh_8nE2A;&V|WsSf>=rR5iq4BD;YXidlE0BJet9kUF7x^>h zUv`;;Ud@)Mc?w1>MGT&Cf1Jb|2uOao(N;kks6)roGV53d0~@EVB|r4G{=!*}E}g1U zaXMJXvO{^%k}+GDHUwRm*#VzAT+{Cm`b5nu=G2>2vARTSTDM|UM-RiA7yud5+FGf} zpIo>*vfEfzvM1W0@()gRI&mQ#lj}S;+$^r5C#MqEkjLC|rpv@u>IxL!xv}-Ku!lh* zvVECMkb_G6R+3+M(r4YvL$1cbT7Bx_uY{zVD9a~GV#KXU)Zj{!+Gd3*m*`TM!?eaf zgNy7Bo<+j0?V_Ggmx3%HMd@>&RGmT}t!KZ`;}<_naV?o@{PF4Rn>I*HpGiUG31Z5? zuQrhH;K?gmls)%AHc8`FlI#nFh%R_H8}dQiuA`)^ys}WY9KO-_G;+K$rxns}%d-=h zxwGTBPqJMxj*2EZ;`ZEcCL1dJx#bH`%fD|XSLA3{mrh~I9UT|?oLY+>bB5lZW4*Zk z@XL+!4+{ry&2|sZXqX7Ktn(pV7dSvWIG#SczlqZndKY6KYdpL zQ#3ea6L4m{^R?>GSWna<^;jvM+%Ed05CW`d$GC2p;5m~8ni7W-@G(3x8y|egSke=` z`lizi^~q4b)z0#3syS(X-97W7veV(1%q>f&vc0Mh=EyivK0J-y;S4C@BRN*f=+2*QUmvCn?IG51GO*O%2=}^2Drzabw{M@8>1VO{+- zXhkScp5Mwj7X8w$IhEC=G2gBKV|$#~NGK>tQ^5(`r@uHquPddg?`k~5s+o~Gi7NvP z&B@=b<~%D)cPsQyEoi=R%#@j#ta)&y^Ib`3(?(bK+U`_d1UsBQ=^Gy$c<=4&2mTm2 z2T6DpD={NG@&errXhupZ1-1}2eVKdL)kG9d6--x zI2k<^A^6Cd|JwwSe~j^po~|H+bVt3^y%<)w>(Gf6d~u=NlP9+J#`+ZB_@UTbZM85X z+Fok}>m%dcao}zYFnRmewyzJWqa|Z@MzS*So_*PIZy^6cZ8aeW&2Hl#;|_=V_w~-; zh+KouPY@zctX`)K4G$K8QwZLl!pUQ=qV2P}AfyjMee1_oPb<`g1|U7AQz1m3>Lsf3 zbm-Q0zS&N6mu#tnX1?~=-WA|n@K8@hf|G#j#RUUp;a!gi^I2+8$#eJJFGoPWQED|2 zPcXx1)ya0p*i*3&fd3vw5doOX9=2hSyd z?;B9Sb#iS4-bhg70*ye)EiVo>`QnMoST4TJVm=yV;+em9pDCaP5`^^~$X-OdVjXc4 z%D_zz>mL!>V`y7ya4q}vn8thwNsE+A^m)*I&w8>@Ay9ST(jE&VuaaIq5qJ-$Tc&e& z`MzwXg7OYe)vUDH8wOiP{4H#W2wOD5{l6r7p0IRp-M*Ofz0>%cq^FG$VFM-|5RdxJ2jQ~XwF*{h zVo9zN2&|a|Tw`Fn_h-g6O26Zuk6eOhnn3^LVV3G)M>-v1dSX6+lz99zpAzI=Q!Sg0 z8|9Y0AJ+aEdk)itaZ>2ue$UY^(;z3kVW6ZVivkn*B(+^6`B)=?yN4 zqdilbh&nbK(;EGBt9m>av?1OTItEbVtbyOm)R4@esJS2h7fRk&CfD^GAB7H|`z&zs zU%!-UW^0z&fLULOZ@gf1L8a8(M;B(8ML3Bm4`CnwLghN`6@1#tkYB&DqXUwq72ZY< z@SIrTK;_Ym6sE0#&EVZr9%NmTE9MF>^61!a95PVt}gh1bjh$37guz-5WeDiQ)!Cpiwo~6CC<7ZZ|M+#b2SpP>3-<3 zO!sSlFHJy5tKuI_#r4mVe-Qg!jy;J%R9EE~HZt?}(@}XT=(Au%#1B@Om4x_qD?#w( z38i)u&5L9&T%RS3_N6IBf#pUn!7V?IyhHGF#=*JakFDdZ9DRWPR|sj_tVpbmk;$}{9*~A6C@pB}44l^Zv2LmuSflS_-G9Xc zq*bFz5~M#q2r*R+%q5JdP%&~4mr@-*?^2FK9Xw0H%u|3Wv;;A2_2yG@uC~`oBA)i* zID1(*w~QlLG^WVWQKZh; zhJ2G0N$E;sb)Mx>ntWKFM>c+S{-~b8RqcGye`*==Fhi;p5?(xdAh!5d5{G}#)R5mp z+B3Yxp9A>6s8S(gW%H-nD&R|qz{n}*n5)Z{0-J@9(MOR)f*qu$mobf{s51G}=WjQ| zl_ru}_{ZX+5Yi^HbAjkd-^xJjqX$@!Q*;L@%$=Yam~Po=0dezro|oy|`gy57!6;s2W*sbz`Ra|_`fa}E5Oo@Y*Mb&Ie0d>L2_2LowOf_XFBmskU$1HDWw4iI@r zU8@X|31U2M%o_+w35H}6BQKP3g6?cJi^nNG>dB*V+0K^ZGfHkxS(}T`j zxxN1Tz;*#$RjfG88dDJB^ZD|T;G_Q~9mBsyVhQ}pUVB}OXrCKNDK+hi1o4pAy8ooe&0Ia_nqtqs5SJaL0T zE@G6TX5+sYam3_LOQ-8t`apjp`=QZYdXHh7*uDayACxSZ^F3-4*v_UmVWTkqn4%8> zSq&oao-#92plLoFZOiBUNq)~eXIC$w2&5Ulev}VAZv59Eel|jbtCpp{Dnom>b}300 zEV{OOk$a9;^5{NkV;rirCG2j(uf8Rw&#Zg6KyaN>^EaIkGBOmdR|qa|q{Oz~*w34Q zX+kq9vz9%umyFXk4WxjKc~s;EaG zv#AKQdMg}ROTqQ^t`#8bk>SFh-qkyo{FAFo8YrSdr5uml2uMYAB}0No=u8n>5=F^s zGP{0NAgX`xA?cYKwv%*?b{%z}Af^mIS(MwzxvGE)M*8_S5||iQOcPdPG*`7cotWt- zKtMp$Z4n1`TgvNWmuEQq-zvv_X&ZoTMMa?>b&J(FWCt4 z7&_jWf1@XqQ2LfMS%RTs7tvjp;|*uC-hSL(s_=jp4}R4DVMD2b>ggIJH#m2KHNGqH z7Ei;N<4Mj56gl(xn{GzLF5XL?u8fP2Pw(p5=}cedigH)c=|K(x7JiUsdIbg$<$Im{{E7j58ANRk>b{nr7lKfmVoGDG;fzDKX-! zJL6%3G`P(`0;V2fmrNP5JUYZn`tmjwGQfYmDAuA=r&c4PQ$_FOiHv#GKzEu`dbH!Z zbLTXo>d^Ea^SswCwC21XE6!oXWg_WFthr;=);C_WDp!<#_<_|Hu)O~mYX{rLU=WJhD|Q=QfqAO-}IAAM=+7^mdbVRMvB1_k6rCb5Nw%&fD>TcH}si4g5Yv z5pm9?qFu(;aMcgB3(Idh(khDf6NOZzlW9dANr7xh4XDW z?7vp5VQyUB`#N>9xQmGu?3d*FurPK>48di)I7|lFkh#C!lDw_Rmq{p!Wps?!r0TyX z9sd9unDvqK0k$eo#o>_lMKD`m{Ywj)dH@I*{>Ax?h0gM^k57I=Sb>dq5=!Erh$fXK zkScH-%1+0a_b)~MX(f8;0WRMD^N+|s8MVfQ%?>a--aJ2Xz%4S3aN*qT8|y`|cGbFsBx)1WvmbDzG<{Cm87@_;z>srtM! z@*C~7g;>r%an7J#sPV3b}H=&6| z&|GelGx>9-(%aIS(~L#_L3Z@)W?Liq^A#q7R*C;|Pe{mqpE^msB9Ho{Ej-Q}JHcop z`jkz*4W>>p9YmM&RRWce_^=No+~#s$&~|Nn+7KQNhj3{TFuLaHPAK#wWjETfyAcm8Ds7*RS4z}m<( zgNiWbd~IeV2_*(t?Q(@z67=$nCRTr5OKZ0ToPS$aaz>x=MFp2dElz+YIRjRU7b0=F zb;ib5d4J!n&mc*xJGuOW`k5e$yv%MD>|E5BN?xQ_qkxOwA|5ioRmtWf}!MCt(+#L#gc3c!42l<=*ID7 z)X1C&d_u@pNatqMh)SzqQ})@We@P`kwV!cnhIIu{a&hEx&C)p$r&wksImy|T3U0_B zQsA(3Q1d0b&s$|qn55#CnzQN8e7ofONLeg0f&3k|>CV20)*mq<*{sD$D`*`;+IGv$L`6AIr;r{aWVl175E$iuoIp0H zWO#gkwKyKl=Fk`34%v(VOTsrf z|2crVusA5Ni1cWy4?MJbc-2rrQ51QR zkRm`l5@bFo@KYuiI+)vdT9bEMYW5T93?9)HfL=ia!W7I`0|yK_WM;3?v;k9&(9+jI z2WsV46M>W1d9y`h=zlB$eD?Cx6SpLYYV&5aqm=j|JNJJ+p+A0rtuR7Ee;fLyu;B?e zJFOR>53sy1+$T|Gd}a97p0h@ZW;g{emz!NJ1Tn<)F!{O~UazB@2*p*qV+;pvM=L2N zZe(}#2|vc^-=d5O3v#v=b?XClAK&np8?Gchjwe3M7xR0|(PI+sqJ`?j_Ah_HU-dJq3#jAQAP z5Ag;+xDJLN|C|zmge!!HOxf!}lX!<;1Y~k6j(@Qv50Xm3Ow5$aJAK0tkyz~Fb|Jk@ zXgiB;gy4T|L_LZ+Nkh{dfB>f-J?uQ~4tf+V6y-achb6gyywv?KO_G=Txk!wC7o!f+ zPMalPwL5Pt@8>j8UM7295426$BV4mYw-}0@ljEKRWzQS0H^Sgq+ug#S;@;!?t+)Eg zEgrRle6t8OawwBDIX-_0rAC9GjKJFDGr07H9jW&wMT8?*HheVoOv=cOfb2+pe_eRx z*1Otb5K1faM%iKL0KQ=94Bi|2ijJlBC&j>3ksbo$IrU|URcWr@W|^2a3_F0Cp;+Gj zj!{XZ!pdNB&!=cB4Xk>4{(GRW^35b8o+!s%SUjb(I4z#3Q+#{wlFOS;ppM0Z;s*k( zcR5x)La5J#d8eLOMBO9be?zRN+Ttv%pYSbR00a;V*WVD%DSze*4kfapUt5C8P3_VE zUtZc7K(Lp2O7iK-MVcCojYzz!$SVQ5QV`l@+-Vg$6v~kV%sP+~o|r#qWySI`+r4g1 z2OaZ%S(Gwy&Gu?#V8SQ2iNh^o`nQCu;r^#dRp^(N4Xs@l!-?_M+Ozx zct=UQ0;kaBrWvUmRa#74!s=1V;-pFSUV_%%WmTFaGV`2gwLFLtxZMv+Lc2IKnvLIt zGQ*K#I=E=U>la&+;oPeqCT(;2p=B4mJnhJWlh^mSRZ{5*M?=$!s+bAMKq}yo{R_SQ z$z?#w!rhG!&3}bWhBRy`;gu%lhk26GaGx%^_*iY$UK6A3n+cvGtS?@NF|0VM9+dtT+Sv2E%WP0dg5*s=yPK`TMPj zWxXwTCgw(Ait796HDixsmZxk-@=SzmXu$qP+6FSNsbde+1}x5pek-;dxGC zl49Tsr0=(Zx~eWh@I^-`$jf_$u-!_VeQy!`OY&q?J_`p6z&g2Kdo0RavxrbqXJkbN zJ&nK-*g;i$`<}*C7uHIhB!z{9S-D@XG3*V0aNuu)syj2Lf>WZ#yan0;tu!)8nNr|b zCX=K_ECS{qjB5{Gd?%&PwS5(T^6<+$Vjl+oc+@Ca`;e|h8o@i0h`R?BDz00jtZBhG zlgYCz&5k$7 zC&iUBpZKmffd#5;aO&LEm67Z)%fO>%Z{~euYHA2qbQ*`vDkf#d3FLxLnPfXn+<#k`ZB^P$EqdPcu@Qc1zA^Q7im3nz5zKCcD|}iJ2FfX&`1(RK z`dxRM1DE*56~Coa+TtQlt^%mrgiI$%VLM8a62ssCs1`|?VS$PoOT>*}j)Zp%^m@X_ zmVZ{y-9*4G_Cm>RI5go&{U|i+?N%5?%(0cB7gqZ8zm-#VbzpowJzIr3IOex(30;J| z8}}Yzm{H(ZpO1H;x4!Dq7T40{fJG~hIFki1Ij=~$Vn_OO<}9-H%lU!yH>1}7jo_r` zRrrX*3R>5NXID(q>P5Rh;i6x>cZn6>=2iIIHHy-|FMQiMN^Lf)mk0flZH~8;nUP=K z=0p`mk0t+M&G+=*_6boCI|f;inOLE8;j&hz{{f9bVw5nr@hd1K(%l!OHm~uS<%mqJ z_dcm;M!u&oeRTdhko-8ZjG*wXK}KPE_-_zph_T2xdS%LO4#mT)uD?q(FzQ zC84B2k|$B)Zv7Qaf7Y&swa2U0667G8o<)lh@(=RtxQB^CY+iKtj)Wcm5Kq;s-AbB<)8yMA|I(?ZTV2-CZ(Wz)6#sBmQGY+tJ zlzdbPE$Cg@a!2+Aw2g0tpu#8`R)!ez;;&i#IpHSgahxJtu9=lam|aXBs~h@C`UmnjkA_7Hjajvz){SrK#k5s7-Ci`*@p&2%F~inoTx#WFd}z#Gm8sDSX9nx z*Mr%ONJ66S_GyLnY3UKme-X=pIDmW=)Rl2iG%8L+C0wt%MA7K~L#p>f^34HxoW*66 zcd*LIPLqs8RU$mCqLddIcVC+yY%;MR$<*1&(R^}_RRZ_rmH#;7>LjU=Uj1*0Rb(UA zg5-><9$7-DalaP$%|9MwG9Y~>-=_<)DmCyS8U7=bqw#zCXiR>X81x=g?!^XQ<9A_{ z97RMy#v;F&D!cjMUaC`^u`ICzo$Ytkr;RR;K-++bUMY~5qS4f_pHcrf7bYPRE>?>t zoO}NIn&sc^T?EF57GH6H2dNjltbN`DGS2lgjJb3FXCjt7YjTVsA+RJeH1U{=k&afA z5bfVc52Fu=CV-Ugq=Q05cq83UrK@X1k`Bs1D`qwy7D6bwjT+$@1UV;3(`NhD zl|`BVgGphB`>(_CoH2@hpc2RnmiAysqaIWekwg~^y~!6H`quFWsL^$-3_?7H{r0F; z2vrh(5Ja{2493`g19^AFzELNI|8#|kAq^jrQ-5*N5&$L0Ni56LfSp8g*9yOJo#y(U z)%MEZB6$-3C8h0KYr*1+x1_*lNq52cm;}l=4?KioXRs_vOUuw%`Tt>8I#Q6NAsc-6 zom6Ky#Etfr5n(| zjwSt?`(qLZyODPGrY`B-i@sU|gh?H1pBG?!iQ7+(Bj^@tuO2+WZeIzNf<7 zXZP=8mcjG0l9C57olKt-IXRqQYGp=Y7|n?zNrq@nFJuj29Omu zAaxVjp5!bdcW+V==YAhhd(j*=`5$*Y_g5k2OR%ESb_Q)TZxC;C)TyBVBBZi?(wa>YMAYL;LCT-lUeH5h1x zsTr5lD8NR^5DJpC5+eApC<-m-+LcZ3$9zyp$BOvb+}^L#90hZ3H-f@4kMxO(CRyw& zAw1W4H1b;?KjRJWxE-0>uj>dR5n)mw!E?t-64D;X)TTKjQ}!unF_8P}cuIe)kO&hO z<++c(F0g6@IAOaSage!%zGmZppqqUAHN{mMn#zE$SvDe_TfLOP)hWhI=;%GEf%2s_ z?wDwo;zfCnhY?{9nu1xiNLx z?}!sJFzXSR)?XmE;h{HI;8z`5e+<>Kyx%iThZzo={k^Yltv4!zzE|xMSR`rt@bdi_ z`{*h+%7CUs?1w#@Tv4yEL+AV>pVSE8MnFPL?RdT$IQC}XLT^o|-0FI~fg$uOB&rct zlmp!md&bA-+r>HV6Q=#xYq&k-!2EF&HEn1goM~-%9LKE$wAL4>n}T*$y2NAEFp+eO zi_+T-fC$~e33RIH;^pR zU21_l7MuTemq>&Cjp(Qpx&(<2*s>4ZWA8V1z|6=;@H*Yi%KRxpI7lu;_9Z^*;_N1Z zb^}O$@m74Ohrx*tyu&B^QK`J)KcMJ|4OtR@g*1oVTr{cf+G)K*hb`A8+Gjg;INa<| zs)etr(7-}3(YUfB$_@;(Nd}5Xp+_rB!(~^4^#n4z$)eVKwwcvf6kW_L|lO;K{nvI^E7KPGz^~y$)wOkzw1Slhr6lpa=nQd;c&rP z;Z-NfP+vOh3~h|$v9`0R)w`-mI|!^~&Lnf3c5%HbN2_-;uqU|_*`IyW#WeRzp=59s ze)fiJ1%3r3m+`6viW4S{-PJV{Un;xTV&I;-<0iGg;uQV)&VbZZC}<9{=g9*k3B1F0 z4P*sUKHiyRGGHj#a#WNjXr(R%10{w9`j2(liymAsl);PZuU479Z$M81@#^7kz`XrUgHHOARxIE znwyR(^b4TLQ07K-_ub9}P9Qt-8NpNj^&EcEWSe$DCTZAm!Xig)CzX=uAK6M;8C2`TZ$UXgiz$qOYoz*6v1o$ubB zP$!O^y=MXGdffP&pmn_vz>O|1`P=|!Z}5xaHdObAX6KzDZfF5C3=V25D2&e}K|ceU z3CRnmTbGy%($hv0Nm>?rJ_nXiOaM?lpP$TmcfaiKN}D5^s?NKiYU%P|py?P(^K zjnz-uC)(sJdcFsf9+2|!rw)KEjfUY;5oOY$kdUzWyMzWT*#0P+o>}I1cwg_;4!T); zT+%rSoh^Y?DVjQ^rZ2z=n+dUl7p0!>=*3=C)|&vLdeP@@zF$RP=#Ty4O=&S}{8M;$ zSo#w3rp_5@HnKf|yG6x26CPc;)OCh~6MDimm7gm#?c*QH(6grajmtDcN~Ye97l>@Z z8{Ptoy%DGRLcHVsm<1$tGxqpKv_CZl+pCaxSf6XWm!U}dK*G`W=j^cYAz|lv76XUs zASYGxVPJ2g!yED1bo!aKhFA3YwTY$Tqm*Qb3IBUYXjWrHN%r{vv~TRU`YtGghG?+N zm5bll93YNzG1M&IRCG!X&1}6)U>Mehw99fX9ZKgqo(bQD4!vFMc_PjGPxf9gFoU@o z%H4T!BH6y=*|F!VJd^;ap8cp2*t=WjcIZ@NAVcXA0m{ zVn+sH6AQ=CLj+%Z=aQB-AH{L%ao%;naY8dVO=Kyi(+Xny%`n8JKAR6|1RYQ;Qx31} zTXfAodF1*9wL6c5L%^aT3c<LpnpJIBfTm_w`mFHL4h-htnTM!D9B28zvRHLL9yhGdGHroD;0A6d?RwutJbi>= zA~6v$bZX29ZI_w=e`lY|are~AWVzZ*g56mM1$<*rFx<+chfzYbgDJvQV-{o(01i=w zE5r~aM3mcL)zzwtNAh_BUWPDv03}#Vf5xqf!xdlWJS1k`TX`cM3Tah~%oTyxG@d!m zr8xc2nePG)F|S`Cp0_{FlNW1J|J4Hg&G-EV>GW-ao&D4|2-}9|MS=93=lC9~`a+2J z3*N)LLrer92uLc-4;_i>Y*Lt(TSzET*vx8d zAaE;8Tk!0jBX=Je>Ef0DE7PSf{tS5@r)U-DOkQy4Y$r%5q^Io>AO0#rww`sgkw?h` z^1khBO$=~Cz*siO9bERJg-{lqj;+{1qU$>(G-bC#t#%9H34ceM(vURv3)ZPmNg@M# z>?e=xl4%s;Sa#zdwR*KSFZa~=5)6o}4?5odplBSb((rBnfPH+G2`GTKq#t_>Zxu{#_To*Ya=FQgi+XN~a>|xn+YN(ENzEE##1M(n zZljDU2$2fEZ`gxo%kNI-|2ih??!bzdjV=E>_Ehx)sw=eo;;u(|ea`9(PBe3-AULA< zn!r=>CosLqJx^A8xi4yeZjZpZJ@xd`lGP~SHi3Mz0ULZmrp}C zavRO@8pi|Slp1)p0$pM@6D z1Mac=#`^b(M-Q=ohx{?mi8@DN=Znmg{rqi}ee1lauH&rJUITOa9I zlcxep7vR_u+fvZ9gNN~OCoN3?$9ZRi zBhvH>cc&ZgmtdttOwHhrmVQY3EuL)f4xva%=yax_3S~B~HUt2ANqVp49fY+PYE8KaLnepJFEHETo<>3 zk0|^}wOSA|O+nc3^>*hktAKNuH@sm`9Df6<*}3~GG(`k66S4yR{20CqD{wr`YX=w( zG1f_$Azg|U+~GxpbaavGJR52>nRJnSgQNhK2a0kwd~)hWIiopp(~>k`ql6IosZoYA zAm$jYdRkzE*m3!NaQ;LrXaop=8?ZCed&?*w9U*-}kD%``L%M_p673+B7CT8e3n!vj zsF}mT*8!>^j0o^E`Cm+ZcRbbY|NmK5LS$tY=j7OmP-e+EBzt5>#*rCib54t73M&3AO>1_f@8!rp!__DYFCs^Ojr;sJLNyOr?FVyh2y*voqic$8Lg`>7C4x z!Kqe9OtKKal(QE2(RrlH`)DbriVF4!UDqdyR%a!FQ2F{i?)_)b%wLQlr`UR*0g?i> zly5{Scnu6TZ7O zXPe^~FN5xe9la~K3T2&?lS6J5keuXOBM;DYAPTTM&3;)svscIgLJjZL@w3`p010IB zW#P1&)x5 z!aXXzQfV*DF~OmheHeFJpF{J>K*YmM$GIPihDY7z zo=y13^olgRb^HERBgw%H$ONa_+-q@i%GkarYw+UQu7~~N3Cawxj3a1QRec4uGw09V z0uS(f&B0eZFXs;BQ7yi z;KsJu;OwJ_PEsXuj5o1?+F3?QomAdd1EK7?gwiftMft$UDAURAA4vslgul`=yUSee z30X%5da)FVrO|$3lgYbp0V4jCPe|!K1D7t7j+Ae`QF_XEtLXtL!B3__`C^tp_}kcP zC(eRV9}X;3&&2IgfS81=HYaKOt8W}7vtV0zvGVbG;_KD>I8><7C(E+Bk@4NFX$_T~ zrBV3Qknj`3znQTNFbkX{4o^1UW4H2gV*8_L`t(`pblZXB#_x4q5xN3Hy}+v+rU!of z;Y+VV8)fC!F>`UAeufE7KZYL&+I~aO7nY>5vm30@15pNaW1mo(JEQ<+e&pwr68&;v zuQtU9#ehBL2syqqyPVsUlw@+>)fNo7;6rEuJOJ?IvynB3(I8fxU8nNm$|Yu`-=+*l z;*;kqHV$5+R|CKCVPv`T;bB1Mgmt6p88>*Jox*2Jnky0$=tV(n0*O_TDD7iHm%%^` z(CVMOh+@BFE2QXtO9^NV3#x2zR6!HE-d?ijw0lPV*1*q&1njYHqNam(6uO+Zla-wK?3iAs=hQp9+^uUa}@V7huAzcW6#pBf3 zn)dzY(_@buX=ncCTomxpOFyMfL>kxGc0Lk=ji0X&fM(OiW7c1*+-;trxTk3MyD{0=b&eTpjHIbuU$eOb(JDLJC7oVqS1x=Z!7&N;?)&n&O znAff4YlWYBkt>LK7(b5a#)CMN6B0ejBPui_(OLe6C)2Atll$AVfF}qQ! zeEGOz`eE;cb+w2mq;T7I4s!?_Q4a_a2I%=sMdC%4$;~*SaTJ(Sd@sR_JMATvsaUv+; zkL?n#LgKFEZ-EGq@DgL^QNfcy*TU8@KbjCLq4bc8x29RhjaJEJvy}DEQYGe}M zTKyXXkC10wjP188julEfLsYqCMuFiNSh8%>Ru?6QQh>gE@|gp3Zo@(aj{FpfR7E@vVL|CEVUF&n&)Di1!a1m1SKE)2 zc<407?fPUGThbp(5A}(2Bdla_ZPQd=2pTAgupm@#HSaJtrL`14!x0+pf0pFv5Jdl^^|| z`?T6Y%;(Qg$-f^)#~ePmAFGqI9OO*nCq^d+_A7vI+%}+cTeKBttl5CSbujY#Z>u61 ziZdT=dD~q8S39|ZG+`yNYqPWV{WOxVpy@Fw31z+8|HX4YF7RbQ;M0N;hQFWnQKsF2 z4ZJ=|r7hM6wG90cZrDnzn2GQ$RTiO>H-z!~Q7xF^saU&|U-g zrx=NoSC1YVlA-a;|vKNV-L^{tjU)+9CfFcclnsx##@cQE? zI2JClrr(EOne%j!pFA*r@8bUdSOP>v=eBn~J*e9Bpmb;-3FZg>o zU3w4!=eADKwF^=yIep`an2w!3UG%%9KY8bk@|PVmVlqin<(tPb)2~|hqCy3~e~RL; za61j)+Gek8-g9HMr-21L$A9Y(R5gSeB%3i?1a#DDUFu=&6#_AYa3gYeW;W_p1P9pi&z2%s3dH;WrO=36Mn^g`E1uJ4$- zm=@T?69Y$kb$Z9oz!fOnNeAqbGbqB9fIGXdt{~~f*hj%oN)@RQPtsKZ7tr7j4+G)Ry zUSzEoJ?H67o5G+DECvM_c+;?v~jTgoI^!Ks#K?I~$Vc;IAs--Xv?%KIG! z714Gk+1)XSnb$@m3Ys##kI1F2gt`4(k)3-` zUB(k@GocBV6-QhA9)lr}axLWVUSlb$ZN3C{LHj}C8<%~s#N+lh7%NDE`5DGYr0^Xaj_%cJ9x-8TxO78)KQ8! ztk^Q~`C#U{I?Vya;C?Le-2@K^tD@eE37?y3MnCGM7q2sPW@{(-q@45~c57+fjsgpJ zIQ4ZQZok*(1b7!=IjL`B85!VV)5{FPT*390|Foz1O~!IB%KNl3T2LM4H}M}NTRrUG zFK$4)|7i56rd#tmnQ3H z`q!&*?kH=Bnf;_ty@8xByvLy(z85!pbK3yphhBoEYW-XdqF;6ma4qyjN{^rGuhC2e zPG9ukdj<~@L!BY{(mjw~iz$ssp~Wc$Li%eR+9NdI8_RH|hAY~wu$sS`QIAswaO}Z%khIQ; zO2olSqGDEVWkT|cdbA3?CkxC^*V6G$rtOY(R)llM?|vzSU<52inrr98F$Gp_o#!h# z37sl4=7ju$=sToH0s!BcdxW>VC?z@gR!b8Oc1vtMeuv%IUgdAXR=pNWm}9|*wy!f( zLyZPU#L0E_9SsblOFo<4RwK@)mGt4h@y)Xg#!IG)d{ww7t+oX75WhB@AR0z~e_nLBL-HQVcw>N5(>{hwX2;XIg@UKb$t(rgiBhqz?sKnks_tZz2xJlyL=s4Z9~r5`RU z-vVN4RuX)3lHSi*j^U@NlS*wHsXgn1NCQ#tH(hpupRup{mPFVt7`FS&f{oHqE}6Rd z!)fOO&DWC%`PClBY%c~UTx1kIWR$4PtP-xnK;z-K|NN8_^^Y9ZfR3eoDjKz_=;X9) zd-}#edqa|GXScT&pYymje$^pH&L7-nZjNVwBunNST^AKsS2kwz{rJfO6ujdVdk zktj!4@Xp)NF2{#0&_yACWp^j3=?SvV&E%NsJ5lO=$?M7?-h%3HxA38UH%G4#lm579 z#cH|ReqES=npw0Ncuc0g(sb4D3$Nb__u=s&G5k;^h)wl~bIV7ngA*XX;I!dn7r^d1 zO0L^gQ4>J<9KKiI0kvO{9!cZU`gz``B7w9yCb`AuUAg&QfV^d)zktG-hp;WE`-IhB zEsLko5k5y~3+Dsy_h!(4!{fHAOa$lGd_*wNZ<6@@w3m54vfXO)Gx_~WdHeo&LCXXP zA=ok@2G&K4J{EC@F_PalmZs`QUa%MJ9M1f0FDd_!*^u}+U&`Dxr&d7KjB>GNbnrc8 zAGt35PYK$cX?9ifY$V;=dSraB`szqhi21O6OjDn>2`+D{lWjc=bGh?2&vAL4v;^9?Y|4C|M^f6>dam5{jr`beXN!62)RN1KvWvbQX`J}B!<)t_W z<=KeyBio^k{h>zIOUP4@WC`y+TZKwM!K1m*3~$M)G$wh(cTvZ*0<=Qh95y6(%{|C( zsYcr^G{@EXvCd%6^%kKi7j3R#pR9!9MDA zPdb0zD^ml-3+?J3wO0ln)x+`LzAc%48y5)nXM{p_8i(bEu z-k9v^+~2@u3*LP*QE!uL=vKiM z;V+&D>u=sF({{gj&zDY8n>hmFqjCRI$KAwe#qS({EbipxKB$_@7^0${+L@2=AvS1+ z4K;01MgMgXW>2T%$z4ZVrZtRgY5NX&e+0(7#I$U+_H_4i5UO+BHr0R{o8Depa=oN` zye^HiDwY+CU;YSkg=kIi zv9aB`#3Ka$v#c+Dvp3k({6TXK@8vf>8}Z-)c#BtCxA|ggIHDpb2Ga5J4m*AIYiuYiHkl z$00Dk&<*^YNmv!aXRjW}L^(3s?IWn*HWHYbOGs?4t{3PN<;=z%MopjCi95I~Y>Z*1 zwX5wGUdsm-bu7Pj8U!@Id>tPv74eKTV0-wmmvHd4o3@8_vntTywWfA_?dp9+I}W*| zoAlHG4<38zu+2`EtoiTYr=pcXsU2&nW4pW9VL5JL_I98BLoll>5K%KuQWcaGuX*nj zG21;~9Bb70A$FcMBkAGpMdil$Aw%V7u0>48tPkZK)3e%e2+X_fR5h<$OET zg`Y_Iq%*vmDnqMglXQ7sCJU}{$2L4~9)MJY$jbP=JF(iRf2mSKa$u(pG=re-)wpA^ z5yw6Cx!xn#{US%bKI@Kv+B$)SZv%tS`RHPn_l6??Bp$AhYX;)59S7E6y`H_SV< z;b6~^@^F0b#}LEF&6l>@k_t0{c9&vfg?lg?epRgZT4d5rFKWficM*om{%kS=?KBMa;0#Y;k{Y}g+F$S)J|y;2%xDY0 z0y;gjG9kb>8sKvXVUTfHKBr7W(q&R3&LpJl;0!-Ko~GG48k$Xv-c^5(;pf9?WBhX6 zVr1`-G$2DgBWx?rvOhBGDzZO;;-mT_S$8U$evZ~+>6YPZT+0)}83JjC>B|9@zv%NQ zTt`Tk(hP*oM(goI;y=S2ky{)?&zZ{a^EHvu&gY-?QA_5REC|RmJ{Wl)Ag8K>3CE0Z zyNblVWByvQm+?9Tfn?=5=Jt5dY=fysDz(Jio`HBd(E*2!Av1D54hZ zSn31}uBc9#aO|tBp6#}ZP4KB+6G{UNfv`nA;; z89EQ^p@jv!bNs?7z(FPj31#FrJ!A~(>866sb50b5)&1W%eQYf0^bYG;6~1;+P6{We z7yVpS?Hh~>d^asa--Edccg%<9L%i~vxEH^e`Sn`GT~JZnkA31w4eHrz9FB26xn(+4 zD*2?1VUCl9*TFmVqAS53d!v$DiaSkVCMaPeyvbX3xxp>)R7^Z9c2{hZw5KIx_hD3TusUeCjU?|+_=N9~$Vif|!@072t-r+`XLe}h+r@GX!vUCrO zm0dnOnMZ&8?#3{|xgu6zo^0^s%bj1G>G-I0OjH64SiJ=ML-l)aHSO^aW%H8D-mFJU z|83V&BZ=vFPZI=v?8J?RvR~?>aiNAKro9dHl0i+w3bpdW!$r;Id^zQ~xtEtDk{sx>AE% zusBv+j%>Zg(D5@!USM7-SF>Nt{rr;I)IYBS-V3PS?EP^3gh9AP)sM{lChIH543JxL z#Kj%}p6ZLS|F}`Mf95bo_U3O4Az5h4+BS%3wc*&!d&rD>N{<6s!=*2+J}e6}A4=X! zVcsF9h^?I7H9!F(hsxTE)m0MPO2V6+%2*prc2Df8GjTf})29DJ$BSA}zA1;1cXHg5 zVt;!ODboDnBc+qT?{xFTj}FG15M zg+9v3;IEkbxNsiO=O5V)OCsjN6XesyexzC6aj6)%iJK~))1~Wu%M^#S(|jI};q|7f zQ{FgFLi$@eo-+9G-HNQ==T(A1iO(A*;Lx;No1>PaQ|w~$?)I|@6|I%5icNFDkcLBm zD=+D?vDLzOAL7kBDn1ns+vHd?`+SsV=t$pcIh4T9YvT9MKQV`I0Y6J>1Uc%(@#Zm| zHoztQ_Ppk5*wD-dn&4}YQ_NE^KyVgcz_g<_Xs2Ewe z{_Xf}RsZ3FT7faKQ`=q{Q&)b?&*WG!_Vt#Pm(%Gb?}tkQ$C2r zU)nv#%&1uubK&L=qe0IJ>DJB*$$}qv#RaEMb0lMT=r7QNF!kP{_qs=atR3?oOKC>4 z6}u^g7E8{Xub7#H9*7NWz`=v{e(jJcD)Pc+EyvMPMXYMNFFlFU>bzmmO;I~X9W6Bm zxoEND?zx^*aZQ z*ZRUv!B~yJ<{8l24JT(!@u7dMhGRBj({|NxW#mK$r2RT|3%I+Kd)mrI-c$#|Jcr>K zNtIWL{b?K7UtpprRWV;f`N=>UIvg$PI1_#b^AeS$)}NitoH{ReLg|E+4W>x4-18nwRF4o`-_p(PwPXw#~}x85y>0&WCb-V9*C6Giez56 z^+yF)Sy!1@SnK1%bCP78^!>fwrtE1*AT3$<#|5!&$Za)I#HSdpJ-u%o2%;rHEE#|u z-pM~<+W-P)u$YZD8e+;5HlQ6Q6mHDhXzJ9C-yS(G0sSNT60N=*ifcrhQM85SfhxUp zgtY~tOK#?X&mZT$mO5e=a%Q`2srKQfp$(00Xec6um3PUBELabuR9 z1ya3U&&j}3#jEA*o9yE^5@L~kWl-mWXc<#K`n;KdDfO(dh?(=5W8Ig*gOAgEVJ8ChU-V!deLQ7lA9*DFm<(!;@W4wSN#lM*fLj*d3lAEbY_l-)_bJnnSfKfL>f zH4fCy6y22rOV9n=z~BMR0{7h&t^as88mRtrz2KfW>?J5;ZY%Mm=T{`o7=5)|r(3S? z5{|s5#Bxa%$ewzJuLu@FerZ5!3-Mm|)t7=jR-R$mT@s71h~0DRvpaP;_Nt}qTNv+f zC%#-_=-wDVI3RE4a^8YhwHJMU!(}jUrD5xlrBFqU;^kwUoq??H+I>dWH#pX~RMj^m zWDB%P<<4y8q4kR7c4?LVUhvcSuAFr6$$q&BJOc|9TFJq@JYYsqC54ARNaB|f?>O`tcfV0|2=8p3*6J8J|+gDn9drk<;i z0Te}s%$D(2usWueB}=KhNCoNa$HrIW8cEFlRa3G;)7l*!F}5*A~>j#wSk&64BR(jsqnh<(3f ze=f_r{HIii@{Ao_pZzbQO#_{H^2YTJ~`AbEdhlU%7zkqu8BRvY(;^MA>Ph zt+p0u?(%cQYe~2Qj0*=TNh)Wil35op?mUI34sq`6m7~Tz zi0CMQnZfD+Y2-JIkV^*uz}*H|;%of?j=##Bd(h*z&{$faqMnUD*ga1WnMT(pc6nvhO z6c%wLQ?xgIVxFH9m~#yEDM_#%;>%L?Ie4>P-olNi72;YZ*qIl9B1!l)?9avHF{wPq?@Hp0hP`-QC4ZWJgn=*~(*_PbvhhVFel^6K zAC;#Op%Rfs;zEY*-qUwkp?gX39*2fBM)GRWH&@J*yfH}8khe{C8dSR^ZC|B6@MBri zWhrn9Zb)SDKz*p=KFH^{Fj@X$zh~3ajA%3z{OG2TAR1ky6Np6E9Mg<1sAbUgDR*&dpv(s{Qm)NPW_g zda*^d2=jkb3vc|pt`eXF7;ue+D<$w>o@s-3Avn7mD1RuOMD?u$#D7dQ{ke&t?4QAi z!r#GXPQP0Q$+ytXGdMhiA22zYdCM+ztfljFH~uRJC|xf)jII*&gDkGpGT{f!2>1B# z%5CxUV9FR?uqe^W|9MU=hux=ac9w#mau;~f#Oow11(7bbs71G+z5Fr%IN&7p3MG=P zw~gt-p*b&|#Hx!dfY;_kM+OT0kGPU?!dr`TjCnF?8N$kyF}hLfBhY|e&;@J z5QoTkKzepC`_qX<2-jHbCz&qQu| zVg_C<%@VGEZC*HlwQT~S^N?DC(9T9XMN;tD_FGCLd+&C|%PsMu;#0zD;g)Wqu_vjj zk)f(|A6hoV!VMPtikXcpIX*ni{xrKEfcsBZ{^V%qA61>*~M-8 zPo>S3NNp~eCWB#SD#Z!(y}d!3RgLHIZVzj_JyMi+G{j#wS4tYg=}3Qtyxq zzY4Dkm(-pvmgzf+vT!(*Lc3^P+2+6SQ_JUD#8`G_nZt;9y!hfpKrFeL0;xZu@$v$W zF^C5)PB9Ll7J5PU-&4f_fT@WYq>FeNaHY+CMVR5==F3Pl^HQ~RrsjGLO19mq-F$@t=58P2LEG$n8 zD$b*SRPV~rb|q;q`V5?7G>rA5RsU*(u!e3=a_5`a4*Xlx7kzu9peVYC&b8d>lqYxp z&D2!(0Bjev2E=V(TLJ%cNW%b%S@neq@>=ea7POwNB@HFHT5bMiR{TlG| zBwh>Ky0j zaE}Lno|fFm`2L51#5%#g%X^VqP2-J%7vn9CX^vzUEZ3mDk5lQ3x~GU*KFm^A@QSFQ zUQ?*!+CCXCYc=fVGWB1lom$?bBRnKJgp+G?NQeuw9?P~rGNNv?_1KEQiMy8SO_em zCcMxW0O3HJUXAOWy*O-J@0Tq@B)x<4&|`XyxE_3&J(HE7Zs)2jQjMNtfl!^6Nnw3_!ih{}C91 z^lfx7%tOmg9+Gl?pu(~FR66R6&{|+(v#hOR3bF^fb|IG>12sPhuK7~M@?ffAbwiz3 z6D1;6}qhM7{t`M0>&Y35ZSIo?@x4f{b6i5Esi0K~ycBFW`s0rCj;PoDV^V{dvxE z(PIHQOwssPDURdhAq~Y-MKoYf)4frVk@WB#^FT~TG>Jq#`(YV zkqe4J02~Z?*8ttK4DZiY-(*8l-!Wem0kDW?->B_RtL}E>?F8VbPARm*#310t9Mdp3 zkh(j59uNiYg)CTs?b#-{PrMMa$9qY~o;*`yI&AlWcWpR?NvmM|1sRR*&%}{>{`HGK z2@-$(A|Ggwy*NIFsu78UmJ*}$NL?0fo#p#=LC2F|24`I_rQwj9zh8PbZa^-?+1H_<9uH6gpv91 zy!miX>^(*cdV{l>$w)K(j6C5-~&U3Vy*jzbVnY`VSnjvEAf$1{V?CoU|42d1jjK<1P5xu*hKwr1apz( zYI|53qYM{={j%TvN)LU0trx}xbHEoUs&C#$&jO`UnX3vocxabAR_H@lJ`UZ$;dSy1 zrz@iMD^oF&(WQvVajxGgBmemKz)LHDR7m?qA|gS%HQH_SltTV4!=|lf&aLH#dMWvY zvb%yb=wM4PWXD|{D*&(W>2=Z{bnvyZ(3lF49Ou8|L%oQ%zpa4@IOqqPy>$-L^|%<& z*Z(;^$3BSht|~S{&AjSc=Oc6u;kP#|g2inWW{zVtpQap32bxCGV!d!wO;7@X!53KR zO*0<`f}@`r^?G*EYIhc(R1ePl{+WX;?kutUlN?5^RTZKiDTis`ds?(-FHKh zXcD^Rwb^!*>jcsJ;!pu-wYkw9>LkY+zYk3k<0jVXP92E^s2M+69cI>HhQ$q-a=$Pm z;^JfU@p%rl{HCjn7W@|eJnfHdh`0KT1zndW4<$KwCw%21H*VFEUgC5@!qsN{D7N6* zF>l0t!&c)^{!n9QZcu_aMaio2FYq-GG;QD^U5Yci=t1emr!!0NE6VDf_fH6hbJrVm zbGLHqp0W?8uf%?IW+i)5r-)+f&Xj#1ahFUNv~{4<_;uAs^c820TH4Fv5`a9Q&nyi- zZFXmg(4*7ZB7hp>nNysJPY+pG9a%kh?47E}#pj;5%$Ii{^;-3!8o)E40)c194%L{x zsW`rGqi#rkwP}YmAp}Sh#oo{fNPZPj6%pcO*ZC_nVV6eX?-e6ld8*OAp;TWfEnoEa zYaJvI!Ipyvql!!f+no??fJJB>=xkyeA3_9=?x0C>KI_aH3aIdc3;Fh?Ul@-Rp1Lde z5*H4gnoQL1R<7S=dvjS9CbehkvGibRu;0iP#S?}WBez8TyW(ZaW99h$d+y_0kTnX} z13n7}LnmPQkBe=}O~cl#YThx_=-kcc_&nUHLVxc#OX5KlPy%X}|GE=7FzsVqh%9il z_&oN6F|R4AkG-54sW8sgl>uNF_`We8aep4VW8r)`TMTtzz}#;71YHiZ7wt`h`zhXQ zUiU(H>~tu-tKRN%1w~|TPAP6FkEhYF2+8i;Lqb2l++E*KA0&+5f2F^P0Maz&Bd!j^dP-fMY~Qx-BuBgTNR6o)A3`O{{~-LNKmy5GwtKtX%tG`4~aPJ z4FG?<$SBK54JVFVj!Yl|b26AUSDmmR`T3~{^>B&q4>^Ka?@~6>K!&y0YdO-;*n{=s zXS7Z9{lPxEutSJ?cN7EwsZYj|OE#HLr2PlBzEWf;0fKtCajf2zWWfE@vIG*j&S}3ZPzHkD>tE8g$8bgt z)aA}#RuZ_&VkG(D;UD{yX0K#p+%)@G7Hviw?dphIZpyOA84t`$q=CcmpNSt^+6fi} z?X;trnM+@1iIo78NNB=HfG3L*8CQS7&)X809?fyKpG(NKcoh{GQl|HRSadr!!pDIo z`Kdu3>SJ!{xIG3Ek$+pDUouy(Gcs|16eYM{xpv(&tdqNX-AysoHzdS->6qgu-j<79 z?{%egdoOvXBbRtrM3Db$g1#~S3ZCCDmx-&LIz$^7D&_PriHmf;4M{Wuew1@48Sct8 zvtxzbPi+^;e!Egxnd>B~QUB5x5uD6R(C8Kt++p93IFxbl>z!@8%HYts?io2?s3 z{#oz)?p19hon!I%tn-hCYhH%~YG{(rm-H9(=n(J!aJ8p~>Hm9t#dhw+>whfDp6%-v zUwcT(ML&wqc5z(MZs@SmT9-mqJ`bR9=eT!{q{PNFdIz#woTze z25uNtKChR%(_o3UK>hBjVU&^+jV-qA~aAVelbdY}o zCVd#zMvvQxp-W!D{1N}dbPkaJ4=wCP^(ClftN#P4IT`VA)Y$*XSj1KCBONzB{ut`3 z*Mrt{&Y`w+iALGCT?8$mwXlkHt63Al(WBa(vs~bktsjR^Q|W!S&p!Izay+vu zw&QSFk*sk(S?23x)a`}D~k=bo01NH4!(+NGo@}(lD<8RwWY2QcEU@?3vxh0 zPSrB4E9g)5j!}u0_%r1)GO2Vz@5nZ9D=KRM+E3o9PZyr|q{K&tCIJz)1+Kcv78i=lyc$7HQLCVj$6o=daoaUA@*O zODKgna{%(Ez!mzX^sDL=wLCxcTWEr#0_gM61857-1x#D>d~$8IREsuS>Hji1mA@IC zWruWVmlBq*PmFctp8k;6C6Hytso}bDPLpdgv^u9*!vNN`!ndw{_Alir36yZBhCSNv zP6n}j>AtvaW#(&!%HK`18H8x+IRP%@dQoz^-Ekr;P}Zrt9ZPvZ_AY1w*8q1P>5`4$ zM#<104;M#W^s0HEa*QnCf|1`m>H`oM!UAS5#}J_Q>%IO9o_*0L4Ayy$^{{O{YGdRB&++5ap1Wa876!{B&A^uE?5Edil4t z*404lSlYut3_SpIv)hC1eMj}LDf!m~od)!hXWW3Hyn`;)n`Jf_nA+R)-Q3auFwjUf zWoW_Bct_(#vHO2yIlH~x6fM{fsN8HylBLhsLP*)Mf=aCcYD%|^Oq^?lD*$Z%5Peua zwDPX@g|DW(&vAGDLWL(=U&!Y#$~-}6;D4{Oc|n0E#_gfejn@YIv96}4&|oLb^r!@Z zlIpiHTb0p0Yq*|BK|Tz8KX`ZB2QqQzxKUf`gig`f6hG9KnSJ&~pU9Ep$Ruym1Chm~ zPvvvAB1c|ED$QOus7Sm;ibC<_E@xQwokP~_$3|ovwWH#WUKj+A01le>uu|LhGoTex z!!;)mBI#@ODJ_&>Ju=UqC^JL_DhB%^XLiaX!|cF?_6o+MzK*R;Zq+>q5jC+rY0DBP zg!beJ5tWqoAMt%Ix}?NNMx(t>nj)TRr$@jo5OVvap);?pa$mi5nuNYuEq2n@*o5!R z0?V&c@67Npt2pWOX-r(%p?=--fKy%^#mLP$GN>}Z;-de_d;9fXTA|?yJ0X)B))D5P zpGxzQ9W5o)u$M_Z>h1aGcZxr4=^lIQL+qWDvpLl61;uf}1$v!dcTy%s(0(>_>WJIr zbm<65OeOq0WDBi^m(Uq0<$ZUn=@Q9c_vQ)euE^wjr;R0cSVV29a|o3?DtDbZxxWpl zho<-mzLnvT3QDj<-$`}ucdEg|>J7}OVZzV8SzwIFNyBpF1K`zR@x}ZW!J}{~A*M01 z!-{%6^q(%?wGjV)wr5VK#G*(0uujS8D#45T;Ve12uOJh>atDrkbQ!xZtogBgwm%xiHTeB;~u zZamDGinSLds@ReKVzj16D(ExEVlN35ljFl%Kp#+4VeeSE1dVVm5;=%yN+SV1wLFp$ zCjKNfRPb!X4P)w3^E&I&Zw4U6VX7@8L}YL?;6jAYHufo)PYLDkcQ(Z;K_05QM|nE@ z?&DG;IVu_cm9sQxdgOa(*VwhtnUJ_%xC_L3h4MU^!k|PFITC1Q9d{hQ0#r5uX~lC? z=z~N8q%qXn)e7hcwR%&BmmcU_Q@=q7*DWO^4_pp>Mf>A-_I-lfc>O9-3s6RZ6Z|!f znlS_Sz8avh#w36?x`3I&y{%|}LO9qn(4QA?Zq=qeD|!FL6G|KL!}C?l?B39a&8(|^ z9m(9ScjTD$ZV~VQhXq*g>f165dq(cAv&j(ER{|{Oq>AkTG9_~=8C)^rc~<(AyAPP* z0-*%=b%-;TbbO;1Uo;bDLl43HdiC@;sHvZK;JgDdf|1k8Y;5P^6zrY9z!SL&&m|a> zoL1k4bIf5A#7!p~3mC_R-%cFOOQboBZvcs%a&gE2w3LHc-(lVqXF#L9y0d*BLikFG zzT^c>h881d@Uao$ZV&w&=!rCUxH_E6JYLhCK7cDT^-Ot4{8X!|F_PD_Q5#ggHy8O!m?P#a#q@d}E8n!Dx$=$7(#PktYk7k!K{E;tQTM&qUG zARb7pLQe%fV|(9B0zAfSD_5~3tq~t%cj~gc^Zb1# zC7ER3t9|Iiq0C9{p<~nuSq7r2b~(OqQbLz+=qs~JqDh1%A0qI?;9QN#5U<~U)lzo+{Z`zrk^&EwJY4lc_@E~Ez<`m>DIHiKUIa$)VrH26a^9LSq{xB zkmkh35N~ibC;AtU;pk~;d3;@uBs&I|M{7Gk^8+%xpZMib%?$3p9V6l#aDg2ZOTzU* zA>YnzfBIsfpZCq*#*$s!D;X%21ONzEAK4DPk_f`pZrXMw?i!FupnG3!Rk*%Y(3m8> zsOn>@k}PGs`;FBGjug|glurD3{rcqHUGGEi0*6!j=xJ`gBQS9G;|oTmKfr)Q@qT(G z;WTXgu0=yuCF0F(7`Q)#(PcSOp6gU%#`8ckuOXeSY5jXks#R^gI6Uy1U8-3IB&=XL zq={uOqPd@>9R6P`M*-hDaX14%m z|4qAV1^9uBZ6sg|4BkziQw_;$k~~;LI1kI;gM5EuYq_~>o9{PhkdK&FRXA1C-?_Tj zmL*45bSIH}N5=b^5ZbfhZNK*-x4=GImN_a^|IcFlTxGaLA)<_f|IF26Zq2*2NlFgE zAINHr2X_KkPm?T!%5#fjmeltEK{0RF{i|+ro83&>M+mzG+QJ7S=P%z{0H;hZhm3R5 zpfdT-d^ib|31?j%ZvQ$9ky6Lzz6RR#d#7TXNM)8q5GjS34!f^fm`a!V12sErw~mvS zVEIxT&JSQ=RU`oz|C5dc&uuoutD!^0|4Z_hs0d4yJ^LVYYFOhACync@F4HH%{IG)% z_8G;gyhUg+*Jcyuj?3;h1KH@W6yC|AX{ET4X3htH?P9{~85}A#;1e`vc-#ESvL{-= zE5s%{H1!BS@AUKEL~*D))Ztg{gd(*!Zzb_Dx4!Ms6#wt5HbqVAvwcfkg$uh{rF50E zWFLgw^Z;x-U%BE`h9FTjYxkKJ8zyYW`J@4-vEDSvU6@K*wVxCLx<)9BJT`>6_x_bb zk1=*(7e<|FqJ4p&Vm5}`Qv6DhrFA|w^xio@EB{1OsBd-Y8W4;-lxDV}hZdLyN=r07JfU%vKQk=Z|GGbGLn^T zf2^`ADx`4{TPc@?6eH9YQI@WBL9*UILbtT`iufOCzPl2kUm}3m<~dXE!BN!g0!eI+RXIV@{x?W#KpQZBpv% z)5g?2v_^FP^KTSh%9khZcl-Fk9UbZ?LvVJKu*fj}2v5)LJ2)$4861}4Md&9qRWn>9 zno*fMTX@Xm5{&R*sMIf^i4hL>_U~M(6B(~Js8kD;st>;^41|k?)hSwZaPy%ywm0pA zfWVpaA{RH!cE)}EoWg!=8tFYM)D0uSt^e}!iF-@LA^7>8$*!}Mg%LEzj_zazF{Zaa>0d^{D>UCJhkq&p4kUY*%=__6cMS_pSQ@5s`#3Q4RG? zhB`8{Knp{K=8St&hh7`mQTuZYwW#5o0TvrYB)_Rq8|0W|uPjkZDN8-gU@qHo<1|V7 z?Tdhp4wS*36;Jtx-lTzyq~Ck-CMaoT>~+#ZLhU2A&N>jI(PAB!mTaE#|OG3w+AATD92u3HS-Rum+$7#z)=tElf%BPnue3P z>>v1MH6S~ z1AW};UGcfoWP`&E9YVdcjdUgwa;=%dW!_D9oC~LSOJR{>%c+bMocU|gGE?RQCTNddP zZW_-(R~!g;Jl*B?FdW?Bh_Ap+ILQ3J=HB|R>F|9U-WVZL0uqt}n{+89tx^MN2??1Z z4T6$N4GSa$MuULL5R{M{NDd1{LZ?zACWweInhh9nU+CxixxcUb_51;kKR9J<@4But zkMlS_M?wl9v1#jSR7{Zrw<4mT7niEYF-Hn#+&KukdAP9PiJRQtjW}Z&$wH;e1`MfvxWVww`Ul;Z?Qo zU}V}!l}==XyB+eo`sS#P0#jumO_zlA_Udf$7xvM@yX(gy1-oaTad;$l@4I5Q>6mO( zI;oI&lkFz&=~j3E|CU$xx{1VS`)uxsi~W>Ppd<{;I&kjC&CW}rSCw`=0=@`&ly5bJ zRd0!SY(~An8c&}B3ZDbzcVCU)W|&0HA2U1lD;7^#%T!;gh2Y8{8B!dhZq_3Cszz45 zx2PjAaVPVGJQ{Z6%A1OG@jS{s%FG(wluw~IH3?zz4$d{}V7%G*puO=R9LI#OYYT-v}=OoT&bYu>N)VsKzED zffqOpknw7m{`EK*xZMr-aUVWpz5mcl^WQw+UUzffSL8KE@=9!Xu2f81JA2Nv=v8c> zx)>5I#C-6D80^CZ009zbjicTlSr$PGHe~495CAic;+!-x-e6l3^ZxG5pcbqv@x=i$ zd``2DJ1rzTSb7f)#Y_DvU@0g)H)2=Af?#}`mrh|OJ*?rp#&mu$4hQP>aA2qBw3o{K zljxfttp)|k3X_b8!S2K#qv;f-<&h&A0e&>M4IZRGHCOTF*DNn*1P*pwwK(ufmNu#a zhw&8tM6s29bUH@YH8!2hiHjc=sT-7e&SnA5L+0;!Ou~%cuB6}9f1a{_|8Dg1O(GwZ zFXOMb7jb`(D4ez~P+_udHnWx*=Z-c*M6*ReH~k;^WltnO!4JXvp3!SLdBZ_v06r%I z5E=hBHIzK~86b*sJn;-B{(90y(6-&yeJae1ly6dVoR& z*l*33*$Q*K$a4ie-+He}&I#iaIdz*x8vV>#bSbT=ISsbhVg&%{pO$j|*>QZ%2^nqz z_zgM4Cs#2FIV$phba9I!OHV#T?7h5EoH}ypG52vFZe#|W4Flvk1ZBzm(sMD$0TWFt zLh93MXN0`y)}HtrE7BIOBQ!H6J!gsOaC|=dvw7e-#-i$*j>K6Gy~CB0?{yAvpyRzZ zdR+R)1d4|ZJ-#o5P3C}b3PGS^weJ$AgnEv?y@T0?H9?4PU&*7#{X50xSdIoypn9Bl zxH0_>J)VpUxD*Nw$L}b5`KIsavR-quYv-;nS?0afXIBT&iv@+r5@j1 zvXnE8y=HeGzRNhQKFYe>KqfzR&9S!MIK8N%`vq*uuEZckMBwl)JeP z9e*D*hYLMM%wV0yYKRUedvg38VjI!y2s)VH%C8 zL<$Dh1KJoL>j~F%UAEtDAH#zY(Km@N>0X-V%RYDe)+wqay}AKYD+!_7yV{Ct+fOxL z^nt?JnC`>;Yi{)%V2)c7JuYjKtYzo~h;C3_`bvhjzT1;sJpnx5?vGzHMn!3nkJOZq z<5ud6$V1a(6`?mPJljuaGLa|apqc9HF9CDgtlvD;H()1+JntWStXZZX)+R)rc$K0y z_@~fp4sN~G7L^edsP;jUwBFNx?Mmd;-FDn{OO~|1N%-QyJsM-Fl$-mM)iA2GcOLZ^ zI|HDcH*?iX)5k3cgLrq`Y{S=wt-YbpK#N!achjt7IL(;sh z4sjU(>+%)PO5$kf3`0q=5XtP%R!>YYxS0K%xK8_sge+4nN{#zm41EKq(T9>4>nm*U%LKv0ap83*28)I%pmD zk+*vkSM&fkhd1&ZV%+9qa1plTPxZX)ToVR}uz#;F>J7GhbD^0`+Y z&W*ZJ+IzEv6?5N2K)Ac?-sM1{pqp*&lX7#H&f3H0{A5maKF4%$`&8jrAjDYM9=$(* zXpy52G30oZx{hn_THoEX`XCRc(VM}BC+UN7$gyu%CRR>8 zSPkoBD7F3U+sdA!a(Z;F)bv$Sk8`gByWZ<48cP1sYd&dCenCv#K@PJhW=sd9t)J5W z7_rAlbHHsyRs)VPbVF&T+gU7@CIa+P{2HzV9bBi`O(jv6_Ro|EB$4jryU_1n?J_P$ z7jA@g{qch8)wHMGeEBZSHGozTniKZn#qiycqE0ps_LU_CBkl=M%m(v@L5_e33M5U( zjp+`@Lvn}{pTlAS*CzbzC#dtg9;&KT%MTeac+9B`fZAp^%iW-l%xkx+`lHB!I+CzS z|1{kUF8xD)G&#tCQ}>ml7aF?(-*uK8wVTX7V?A-)sTk+YhZH2ne4so(`rzxft6kW^ zD%L&CWyR0<$Sx;L*rR-J2p?ivhT>ug7DAMN=8#TW>(5rn;esxI!e7eV+P_!hs%L05 zt#veGf{Ol9HF1}$Whc&{dqjez9&KsED}o!V)~tr<$^(GB80mpM@hhE|*=Xj;+t)d& z7SbFKr^Nj&C1K?1v2x`F=^@HNwPdEqR(U(#p|D2dztwHchoF=s$0nEZ9$)lq!m7DB z?b%!SoNj(7-3@d7q;kg%k(6C(hWi=k_`bMy!v%8j#PMiX3HjPwc*-vd#4}Y{&I$L7D3J zPFzl^2uPW(weB`RYB{XRUlmVY-^Z*sV`&K2=QS)Z9ASYu>n54646$Go_40>%F;YHM z{)>5XJ{atG&Ar(Jd#VXia;IqvR5X}$*nWi_pYNx_Vqh*lw5MS`EfW-WToY_h|I5)g zQIQj2_-+9gDq~O@Na;lIsVZ&?HPS&H15G~@~fCe=y;bM)f6^|I_21ky{8Nyw@ zOP^E^I(x2$7EBFj@sPr*y*?=K5fUT#%;5p;Uy%s4NA6C(vo(zpG2=j^z} zzAT!@eFs{x0J|zSr>>;P{-z(V%EL@B&AL@xt5bGkQZHL2k#J_)EV{%$^>K&{f8Dj> z1qSf=LO4g5z0)JSQy7iR@)@HT`Hz+HDKQan9)a+n$7E@l#r-GNF_Dxu329{rBe6){ z$Fp=yU3TjiBwFicfh1(Wc48r?Bw1IVoBIiNx*)S&X!%ClxcZf%na`9w%(c>C)^6lz zH^sfsKlWgQKyPS*MHL`oQy>6~^O7kBhq4jD?w^<&$JjrWlc}r~Sbl`%k>a2@36n?G z?3wm>h0!`_HllAmIVUa$LFPgl8=w<;_Ezg4Nw@`)1@Dv?{43?RduoW5iRBjUwO&99pfJ~pk09-% z{}hm8t$QOC-!6@wZKf>T1Uckeske7qP8O_;cxOn@3*=i1UfDk#REV{NHE{n_HOK<@lU)rqBHffiZ6U%9rPPEZRM<zqqSdl@QgK04^GDOMAzEu!_A->a%o(=xeb(QrsD#QM|0wa z`~#2q+>zaKU^sD?Z8<#4@6XM56de90-co|>g}3w{>W$%ZSpC=M2~t_EA0E=9FK3RV zlq_)R6M8b!A5KCXY&7ZRpPYDq2IWS&NF=@s4~@*2|N6IH&vsQ3#aW}1w2Bw87+DPu zJ%pyDty}re(vH`J&eVK!0At+SH4Z3jFy}ELzy1jG>sSL4T zyv8_TO`PW#^KX6jI~ub244Z*w14D00`&~Pnqz;X6;h@LZeB;MDFWz@OILe2AmMMQP z^4;$b)i^hwklO#Im*oDl2hTyv3 zWV^u-q^4Bbbt8&kHiiP@S^I1f>r0>NBcap9Q+XS}Ld5 z=?bjQKM0N+$!z2d0Nt5u9-e{fAcqzKwce!D7|)T#A&a8C%(-~J)|!b2c$)vf;)|25 zxBu2$LLPw^;n$R@(<+^J1!026wg`{F=w4v@!G|9WdTi4BHL|NI%l*!q zk+euUqPiCoIIXK6;aUJ-=h$<$>1KIQ*zoeR@5vFDnZ`OXfmrN0_{M`B)%uB?sU0h% zyWML_zqjY8?Zr^_v^u^{F^s~YmHradU^lGdRpDfcwlKB!KK8WO))@jnvcMEHd~RmZ zG>i#L2%XX`qc<~WpRMO&TjAsOr^BCNk6rKFALofp0OyER1*V)Op=r%1kR)2Bo!JB% zq!-Cnxi7wdnzh-Ekcf|$lAYGGRNf~asaWhrww&q_p!avD`5>8W&qvaXcN>wbWB>xH z`sKTC>%T8yphq0$sPT43`zIo0IWqbqz-ilxD|ei{seO}p5$hAx26_Omxj z;^W_=nV4<7C$J zCAk!f6x&E!`ZH|l>z7Cdq;s4b%l5nt$JFZBA3jOA9Y%i*HVCu)B0&Yb;Y8BX&n}Iq+Jo8;OAI7D ztTYUKe8QnJH?mV`$HgT#039vp-LTRSat*d ziH~(>s+oV&V=Nv-Q*06D+3Ou9dY1??SwQ^}*N)8R>7F^)t666zb^cUu}EtO<=;Nh{o(bq z&@E#9PP8%Mtb=-zb`4%jmt+posYZ=__ZXlu%HUy6|Ds{@sW5S|g{-^X!Y&^yusL_Tx{ zLb&mep)MrK7UbObFSA#c$$y&MSfO$DT!0-F?c(_|;T)Hf|E=BXmDutt;mz_y_M5S! z6Nv~QTgE3oP+smOnYgk%SH2`_O_{)dysRf=p3bHECpj4wBP1d1XE5?VWgsyvXyI`c zd`Up8AQ%B#7SG&}CAnv+lZf!>np+(VpWOOBtH-l1P`t~=Dx_-JbPt`c*?swNg3sgd z6e)2x2u6%8A2`Z+s1veY`qp&#DR<~WrLYhnJcJDhze3k2Ao`u!bUO;QaF$CmCK%yu zl?#KoJ-jYihIBDQj_xGMUb?xA$HqnDt149|?Vzh=7fP?clzNlbVJpauAgE|qWz zf<=shE!Mk0W(1Aix9RWkpb7b}xFnep_mOZ0q^Vfr-=?q`%!j%weZ8vCkJ|9vRzSJB zizG-~)*h>DBK{>O;{bIiNCHEYx)lz3%|B9UnGHoYEfP9?&|gdhOQg7 z7}4;QtdLWPqe_@-$?3O^-K~$O>zWa$Z-h2c3!3@_Crow5deBbPal%*L1Dr(?xLMC@ z*$g$lCH%tx0okDR+hX`ynICab00?CbCh_<1ox(pa(92 zOq~njuXTSjR-h{x;9Y)StNe6JE2sgh2T8SU=ptX21FY=NGh>6@rM_^dE~UvIIe?<* zy#0$jlK`Nzi%_Ukqf{Rpcps`;LUeWEVXrLYfBP6zTKT(!7H$ffqI%8rrufL;{rJ+ zDHuMEORyTwJJ~rhLILLvckMp;l^Jp=wV6VM>_a*T6AZZUMU=1>l*3e0V7Q=8JjNNt zWE#@mAuRW@p8T5&zQHgd>`Vp1v@n17$Rk0=$?@jbj6lO445z`eOD*)Xn9v&#_(n#E zW!pGt_Ug-LU@va)nT|RUHu>#xWqiJxOmaoMrU;Ral0M$xypwrd1WQ;;&QhKAZYaTVi{Ep;S_e;Bp&GDuQd7n5{+-9D>uqGW?u|E7 ztpy5mm8Q`wrDmGkzXd~6FbyxT&h8CYK>|ah=^prl>dSe~+{d4DEQ^saCbwW3A1Hd$ zV%v|g1>;fgety9Z_@`nT#6L?Cs4##(Vt?#b=u%d65Il|ENX0^NWw;0yBFq^!U~^SV z6tWn&GMfKtDF!JB35PhJoE%eEfa^By?f?c2CV#q}z$$KALqZGwA|3^x1{O#rx@o~u zqV7e4!yB%If2By#V!r(4)PSUecC710*+F1xQ74x|zn-OXY*Q8?)$f|FKuR9&2vhgC ziz2@_gm?gM{o0gk=ZLD`$-0^3V3y-P#S!y`($Cc@V{@?&@bDg3bOrlZcLXuER);T_ zb$ton7)dw#jv91|rGWO3VX$U5>}O!;_h**t<5H+5HNt!z;{sw%4hewbrMh?i zo8th3aL_^nPZB@BLU|=N)8*#O9RvrnQ5yYv15vPvv%`Bl%gTwfdul*#`p2rOzn);= zr+Rq1`syU-j0KZ@@;Y}M$A}1IY}6h!)#`7!G_JPy?R0w8uloM#_}g8$h#R2q(7#x( zWI^D?sL}2D)8t91ct+)(FQvmVx48;X0wDLaZEbl7ZVXoWlZ_+zjq3V{|(u%y68VB zr>0@m<1S{3QIR;ebQS48Tfx|HhDoSG`nnD(Btu(Rnd)j*`UVokq9L3sHpgaa{Oba7 z0I8WrVCD*{AQwRLOKopM%~Pb)Km8BX8< zY!>=@%7RV1`F|^u!_jX$wo3001Erf#2wFjvQLTQZ)B~^;c--^2X09J-yCm{iTwqso zr%4agq{^M;?uI@2qY~J-F8at5tq0 zQ{tc%Wh>P)VL$n-_09l{@7~9yaDCO9fe4Z&Ne9n^BQ^ku1gSY+)Zu0I#C(2J`uDOI z#F-9jl<~&Al6LiGeKdk71>Yw33S1a~W5wY7Dt0Xy2Wz8U6xC(_#wmrz!He;T8$lf% zinc@Vr;M|@)$Lk2^OE@9wBKia<=2A|>Q*0JOhi6U#AuJBaGRl)CGgJ<1a1W~rF-w|^YTh-@ILF)Ivoz)j z$T;ed7Jysjx@6D`tR%WMu0mQ1>PvXy8aH=zYhV>m_mv)}nBBk~cbo zvvhj(I;Mog%zL*Ff(Z_=jdPw`+&0$dvZ4`}xG@kib|0|z@2Xv32(q1}N z0_X$ILe#CVaDt}=*D*M_%r6`o>Q|WC*mlxS%I(W|l1KDj9`L7 zkZduYuvmuv->ZL1!17rxq?<+J;H{313l zrN%TL$Z^dv-+(`!jo{vF#;VR+4tLa4vFo!$)mOJ=Ye8fhHkMF&rb;DF-#YIA9P2ny zwzXdf1f>``&#RK)Q-b`^M^>?C2|mgv(OBWvMe4vLVP42C4rPV3VkHr~N~^`p>nS@W z;#ItxWyRP?xOt|E`9DP6G)AGM^0%9wTABf~`}Uo1Cc zg9D1?<|=;tdO6DmsH^sqITL^qp3tlsgRVQR>j+(ySEL|%m`&g16fsObd0B~M+7s4s z3SNbZ42x8k_hA4!b&vzaZ=p@y<mEQ}%MX$4h0Rq5oA{lfn$iHN5<%r9H zZMvX$Gb)wr02&*;5Hs7Cph5IsoH*UfVgksa@kM zSsh(}Lpz>geB&YgARS}3N!J>_=lbGzrxQd)C=pr`R}z;r{jF^SlF76ufLB4DlD>}* zE2F1_rjCm6>k&sMwED@G$Hb1&Ys>jOiTnp^qJo7k@}8oHcC*!_+nBw?xQCdFP7g6i zde{F@jCu<+Iy@tR+K%_h8%N&keH!U_xSFkNf{|kE{FolVzsztzuD~?GvVic(;vJ=G z)MR6+#?i6{^j$Mjt*nbMi$n^=Z>8wK_ZfoGk9BsvrxBZiD>uP}b8y@w^rgy22M>CW zsxAZ2Hg8m3v&IL)&0!}Xsj9DHbVvk1X%+~%6NkhJb8JUTmw*TY2(|6vjfsAb$W2$` zNT)IOWjn1j>1FyLLoBm~q~_VbrUKw4-mxNg{fF$S#jKU?v}Sgf{cEVFWXd2*gF}B4 zT5t4HrTs$Lzfl#HQ;fe%@KfD;n2s}BL~WSR_doYAgQdOm`_!juuPJj$P6xQyx`+%3 z=%?eDy~2}1ov`JT9$lmrT=8%HW5!?JqJ|3r0y|Zb)$M*Z+oQoA|APu2@u!JC-O+Q$ zgJ8>ML}P=|u*|AE^5F+TJ_b=dCS0>n%VY=%xh&sBIr=yi>+I`;=}&6f&40H{1$;*W ziaw3LaTv;h?6T?`qliF$$WnU4nV&w{G2Xd{%S;6R0u$Up4R6FG2Fp_UsKm9sA2sqkLf2yMN(>aiaIH z=rp*VqD80Gb;j-=VTZOAZ#{eSN!sQKj?fL2Ktyx?{#p+G2Za*>ScrucsdrGT0ixXI z(&ZV(n}4>rYXoX8dI`GIyb~XLN0ZWrryPqx5)B^3xIVyH>nt+ZV^rF*kNZFj2kW!2 zS>pG*;-}W9@tT;hgtiL1Zyf^=CRh$~RFe=h5cTy(I(`^OKm_>H#E75^ZlwwP_e@)1 z*~+gW5l5D7k&@QpZ2j~P%YG-9!7O1J;``2=8%r+8Xz6(jeHoD+x15l*l3DTA+{~#UkA&P0n{Ms3_#)!{{8T4FL&Bk=)r;Nk}+SQI?346 zc$J>;eJ0W=Fw?mnNz|fVo7X4Y%luArqYq=+V_s(vq3`gaDYg%5{~L39sdo8#$-ZD` zemLmf?MBvuqKcdkSOWuV2SC^+=!CfVnmoHO8YS5S6D9e9Dc|58fw;&w0PO;PlK~jj z@MA3gbO2*b>ar+4-&z*+%`V$*U5QVO-76fas$fhj;zE>0( zJ>_*ZQ`wxrJWjPc$ksQ&8RR4cgwd>@F}{cr`px0b5S1uCa)xmD==_8jjtSNY=@1=q zVSIE{t-}Z3Bs(J?7-`(|XWwc2Ap7H>zYl2?+uKDGiQW_gR8oR{1g{~l%8}tSggAUC z{!G?RJj}sxb}EPjvz`^|QR|As-@-N3w#x_k2!Db^n=Qu4vd#6W? z{|nq}7)E!iXlOd1x#Up9Hwulz=T*4P6igGON7evFv$uCS=nKTRtorX7;FhCGnHEzb=&DffW!?SIg;KNDAMa|Ig3*lb0R!P_?IU^!+|Xdptd<)sxuqxhO} z3X>z4Jr>7%Cv9rt0XfgtBa*h7Y;@Neqq%`~E5II?MrvAuuIf2|4syyZ zcedA-Qm-H9NS!PZ9qoAXZXUD??;bk9UR~_{crT9GigzEXPUr3)cvRuG1e*G7=F>xW z5SQAV1$7qzQTmCx=mS%H3OB&EHVMXxN-Nim2|yM^=zZ7Hg`SI-2vW${w2%Nfd;d>i z5g;P5?zaQm7Orzpwh?f)4HH*!Kl0ALxfSqvna2rB4|aB8!jhs2V0umM2v8M`ZE)Ap zJ~piDA8)Mw!Vyr6al_3cel)s#$Oi$o-M@*8HH3NkdJufvgC=^tEqv#^_=VS*7EpX~ zKx)#otQ6zh7v!Lm@0hI$JaZ2xW7d%*vQa>-&TGmM;<-Vme^Vc>hW$$?R7DurtD|dn zv(mP{QKs9SKFX4qaQkIW`f{w5v3Ba_{_$OVfUeG1T4p*RKz)Jr;4)mz9@4{Aftk); zpD`VkF<+g4Mp@YCL6Gy`{n2QT4F#9>Kh7K|foq_%y7vp-%0elo`3oy}8 z(`Hfv{U$fkjp@?kw%uX_=1tqaNG}7%sN-~WeRR6W2bRkk%RI==$BrC|-fzM-|G8^` z*$z-s0jq)SKM;hIz{zAw{b$JR03alMkk+9GlT&^=STcg`pa&s}m}}F} zbt05Sc6>iLd0DyiLI^382s>v<<29$`C^8B$G!U5~6o$pLhLb_EO0OyJ!I$x)O14>U zeI9F4^bkX(T*kk_cN1GbQ|{pu=d14@RL_&%V@8?FPx21K9|9&46ToA-nE4IJ;=IRP zOI4q*#o!XwQ%!G~5a7u0cr8(6Yq!appBhd1{~L5Pv3I%K`SFC~A@#d;OffgGg%@k5 zcf)5yC=4+yLd+ob_%+H*{2Gv&+ybf$udvtgGZ_2q5T6Dw3|2>cvaM-lGs>*33h0`i zG_nFirBAAs%BllQMsw?K?K@}o>lYYATKdlh26;CCEgEI=UgLoaRB(T=NdK0&9D{EF zQpg&hQG)-}J4w~0(>O6vX-OX=GDn4JjZBC%AKtu$Ej|?Wj-ropFdd_*qwfGhJOE8P zYBnwS-H+zfBSMoXd1QyagRXk>F#OioIZ>cXd&+xql&OZNri^?U?;yoOYbw>wj6GJu z+{b^Y(krr{`4<7#QQU$%^8gXVQ###vv+CNCoS-N>>V?62XhMM=9Z05ta2<6xqGi)bEMEMtU)0Q|wSH$bEfX!V`B47+tI4Z1& z6U|s>t+`lIcl+^1Xv7nvl3J$#f7OY4R>q|W<1QAu!%rU@1W7-I|FLKDfVEsdK=|OSyhPYe~C)KyG4od?}{be6F%}jE3Xl{DepW!3{g(`*dFN z2vf6qpj!L|otNwRFhmL@F^4@dizai?V&1xFV{LCDYrP47348PCB!k718~c@s=7ccp z-Jg47L#5c~Z{X;#Jx0#!ZCGJs7Oc!{+sUBK^_^~C@4_kH-#}6)A%Pmlfa!qwd>o59 ze)qzYYt}JQSLakQxWt4J&g)Pgt}%yIoY@V!WpmUgnTb6Zs-$gTLcchnS#VR#D)DkS zDQ;)e2*rndcX`Fsj&?ldwonnZQ&lP9LZz3O5|F;bFk*PO&pc;c*5te{IM=eb%)VX5 zPrQsD;Z)YxUuW7j`%@!28kssaWNG;JB9_h&rZrlemlyibNSN8t6$C0KpbBo-QoSoQ z*SjB%nLuRq31gb{5Td^wF#Y{YV#2*kX(|OFRk7E2mS~;$ER3#rq20ciTRq>h1acRh zDlr8^Cv2J!Vz6eMIgr3~t_Q)g3;TL&v-#$lG(8#d?3o95SWI|mm#`j1T@X@iX3qxQ zBkSj}@OJCu6ctg_q}r06SW`~>qc29Kom~;gbHT;hxkQ=ZclxLBJc3oh%~w!t(p8U| z3=JN+%{z|17#em_{@m-o@%-#NeM#t`mC^bV=YWv&z8`C&LtmfWSZ`&kohjYm_G#$2 zxs6Fn`SQ*Mq*wUVo}`rgy6r7pMUL8>qRA7_-<;LGN0zmB%3L=o${qHAkIO#~jA?6- zo&40>>lDoOc`F+_*`Kl8^7<%&9A>gDOBkoq;*04#rPP=&{G9fJ-To*iEv)&*V{j*# zC833Zr{{_&qPX3A*qE*J(N23Kh^B$;Z|Vd2vCgk1Is?erh%=Q#_ng+-d>S6t9pv1zOnta))36|>id?b=!) zn|`O8HPOV?^u1O%pWEA8DXgl;?PBK2-iryjTtIPy@)^IK#xSP)t_GgdY@K9?$hz>^ z>u8YhT;<+fHCisazpRg|4cD@iPe5D%TG;y-gQK0f)pLU-Y?PoFJ_toih$st5>$iaD zCMN{I11$6Y+}m2bUx8F*{{?HhFd}I@OC>^bPt4(b=b=BbKOE6#qQ7+wdV1Q+r_zVS zMY-*S;y(t&G%_vwmHNhW#|_MGLrr1~dLa;28q(m*h1B#!`V=sJgv(HYM5v29@h~MO zcwmXV@fnBtbr`hIm>%jlV=8srj=N2_(^EmZO9}y{8o$-@I4kNJ(Ic$9Mq!(Lemf1JMs`F=szh1)}xN5;;5 z3^siFC8ttGwr>)+LJ14H78BjC9a))&GS7?4v$3MFmv0h>(B|kToGXWYE|=IMKb|>l z8#nDOU3n@=MMmk6RNwl`3+6RC8F8^6UXJh%cl4?SBmGYLXBG1~aJ!fYJkcivIVCD? zh^6>OhsW}o`cMz6_q|!p?0NT?iYf{*EqZnUxt;U+wMIqjOM7aQLv6Go z^3>{d9~{srWkrdC!5Vg#42{9N*h08#p&yj>QveV@?AzEkBbpBk&B>Cza0P0}C_$C#fo+8qA>?g$Y+_>Cv21Zw-m&*OF5?f87JVljZ3Yq?En4DZ zrxP4&jf(NTy}nN`8`C99HRKNXu0BEM)vbw- zm`iCYW`w?beUuaOia^O%lJmNUShj=2R9)Lk5zKp8JElj7x#rijNA}+PH?I+`2(G7b zvj|}fvGc^-mngN^Vr(Bv?EC-5A)1)`-Xyc2z!u; zi0f&1_l*>6*&5D0SguNj-8BEuI^(n1A-3#wt34MEQ-Ms{t-|!NND{dfQ-lwF2=T->79Yqm6UnEugG&Qh{j?IOb?KF)o+ zU%{+Q6o&r39N80)VDT%nI3ng3Y^QEHN@iIYb=}}DRubvQl?>0~W!zLJ{YcQT@)<`P z%dE$PSoNu0oETE8&Xb2pGGp+>Z;nR{j~Ew>W?m!!`|@ru@ig>i?!GB$=vC3~SyV1I z6wU@0rWfOReypltR3rd!D#Pu56i7YqBos1&r*fGji9PjuqM?@w5^>1U&E|S~@c@s= zB-5j``1SOLMgqK@X7XmMJ(vaon8iPqPWahdC~cqNXc3<*eBm0d9lo1FsKHaP56}qP zI9u=2B)u~NKO#3Xo#)vTNn%J@L2($w&X$5O1YuT%d;lsfFVo2?%2X0+}HMX^5U z@%_CO?VV^oAB~+`$Y>LYhV43G1Lw&S~JvF z-)(}3_j0Hm;AOJ`aSU+ggV0=A#%gwCE8S#L!nD>{^St|M?p#q$_3-8ur?&?i!oJu= zdAU9*q5HYZK&P|e+gHMY9>6J$I4Mg4QwHA7fSfv2e_{p>{#S`S&8&3ll%I_S9e680 z^Z$=;NsIdm-?{i59u4WO2o96PvTv=~f>42!iQw`Q7b>Xjh!eyfyC* zSXZ3H=eEu|kLcRn@Y%aG0Ls7?Q^JZq*B%1Otd3XFHQ3a{(a|1-Z=F}Pj?X2Jb*{n5 zc9JU-HVL6muwKEDP1KjO^p4{h-(V5U!`uG=wv7%;qa65>+>_i!w6;o?&}kAkAb#A9qK_&88;4!^ zIElXit~sB>UJ^>f=ze-Bex+M8A)IyD%0MnB1gifqTq(%Qr`4(a$kIsW7Q4x|Oc1vc z*KZDOh`%tWtnabFf=M^}Ha^bTZ%<=&z+FbcmGs0fJxH)b7sS=7K75{);3&iid_M=8 zFAmz6;+vAfP~DgM5`j3i;TcX!M@^Qt@)$6akAmk5m4g(iV!X!swE}7+gd5Wdp0sxxyBQ=_4;ou zx|ffYr7Vx@3N)83Mgr>rPJF|no37VhP<5}BiqIOk zka`T+F!i6$-r*l73_~|LgG#UiLoyw=?{Bjo6*8K?iX+m7kZ9H0hIstzHTfIPuIb;B zG9hC}I6IjV5}L%X7#dX4S3fI=7uVwAOj_+ULo;JHCuG==v#~kf6kgX+pq>VAovrqx zAKCr++Om7iO!M$ChlaMK!q3YaO>5J0c+t2jKi;c@{o#*`XibvK0iIU5LrD_oYv0X;eJ+HP*>?Dc^~81M8mON#PNuILqNJ8h z1D^VS=?_PV2bF`NJvOm-w2<&_hb|HPSVBbmH>;$*4Vl~a)K%7*>-cDW4pM$XuI+Tq z=qSUcF)C~>OqApn_Xf@;!M3kJ|FFV5!Xtq3yvY`ePMn~`)FtFsAY3gBYctJnzQA{* zu1>Oww(|PcA9tiWv=v%la!YvgSdi`vZT%Xd5V{t}fehFDcCO6}G7qKBE_G*cUe{I< z0MPm}yeVljp*#$8$>Dvg^Q$F&gWmKI*=4%9y7v#pZ+hvMMo3Jl@65FEmY><*<~{S* r#{R$d1~^shqyNXO{Kpg>ytOB)q|SIfEiJeU0{$QkEexv9qHg~miYUNX literal 0 HcmV?d00001 diff --git a/visualizations/10-visualization-quantities/solution/notebook.ipynb b/visualizations/10-visualization-quantities/solution/notebook.ipynb index e69de29..365d095 100644 --- a/visualizations/10-visualization-quantities/solution/notebook.ipynb +++ b/visualizations/10-visualization-quantities/solution/notebook.ipynb @@ -0,0 +1,399 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Let's learn about birds" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "pip install tabulate" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: tabulate in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.8.9)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.3 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Name ScientificName \\\n", + "0 Black-bellied whistling-duck Dendrocygna autumnalis \n", + "1 Fulvous whistling-duck Dendrocygna bicolor \n", + "2 Snow goose Anser caerulescens \n", + "3 Ross's goose Anser rossii \n", + "4 Greater white-fronted goose Anser albifrons \n", + "\n", + " Category Order Family Genus \\\n", + "0 Ducks/Geese/Waterfowl Anseriformes Anatidae Dendrocygna \n", + "1 Ducks/Geese/Waterfowl Anseriformes Anatidae Dendrocygna \n", + "2 Ducks/Geese/Waterfowl Anseriformes Anatidae Anser \n", + "3 Ducks/Geese/Waterfowl Anseriformes Anatidae Anser \n", + "4 Ducks/Geese/Waterfowl Anseriformes Anatidae Anser \n", + "\n", + " ConservationStatus MinLength MaxLength MinBodyMass MaxBodyMass \\\n", + "0 LC 47.0 56.0 652.0 1020.0 \n", + "1 LC 45.0 53.0 712.0 1050.0 \n", + "2 LC 64.0 79.0 2050.0 4050.0 \n", + "3 LC 57.3 64.0 1066.0 1567.0 \n", + "4 LC 64.0 81.0 1930.0 3310.0 \n", + "\n", + " MinWingspan MaxWingspan \n", + "0 76.0 94.0 \n", + "1 85.0 93.0 \n", + "2 135.0 165.0 \n", + "3 113.0 116.0 \n", + "4 130.0 165.0 " + ], + "text/html": "

\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
NameScientificNameCategoryOrderFamilyGenusConservationStatusMinLengthMaxLengthMinBodyMassMaxBodyMassMinWingspanMaxWingspan
0Black-bellied whistling-duckDendrocygna autumnalisDucks/Geese/WaterfowlAnseriformesAnatidaeDendrocygnaLC47.056.0652.01020.076.094.0
1Fulvous whistling-duckDendrocygna bicolorDucks/Geese/WaterfowlAnseriformesAnatidaeDendrocygnaLC45.053.0712.01050.085.093.0
2Snow gooseAnser caerulescensDucks/Geese/WaterfowlAnseriformesAnatidaeAnserLC64.079.02050.04050.0135.0165.0
3Ross's gooseAnser rossiiDucks/Geese/WaterfowlAnseriformesAnatidaeAnserLC57.364.01066.01567.0113.0116.0
4Greater white-fronted gooseAnser albifronsDucks/Geese/WaterfowlAnseriformesAnatidaeAnserLC64.081.01930.03310.0130.0165.0
\n
" + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "birds = pd.read_csv('../../data/birds.csv')\n", + "birds.head()\n", + "# print(t.to_markdown())\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 19 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAALJCAYAAABFmA9xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd5xcdb3/8fdntmU3ZTe9FyChJKGFLlVAFOR3KSoqgohesV/02vXasOvVq1hABEQERBEbiCJSpCYhtBBKSEjd9GQ3m2R7+f7+OOfMzs7OztmEM2cyJ6/n45FHZs+0787unvf5fr7f8z3mnBMAAPmkit0AAMDej7AAAIQiLAAAoQgLAEAowgIAEIqwAACEIixQMszsZDNbWux2RMXMrjWzLxW7HYNRSm1FYRAWSDOzVWbWYWZjsrY/Y2bOzGZE/H73mtlnM76e7L9Prm0TnHOPOOcOirINxeSc+6Bz7ut7+nwze6OZPWxmO81si5n928z+47W2y8zeY2aPRtnWPO81w//5lkf92ogWYYFsKyW9M/jCzA6VVFOg93pY0ikZX58i6eUc25Y55zYWqA0lyczeKukOSTdLmiJpvKQvS/p/xWxX3AiZ+BAWyPYbSe/O+PoyeTukNDN7s9/b2GFma83sqxn3vd3MVprZCP/rs81so5mNzfFeD0s60cyC38OTJf1I0tFZ2x72X+s0M6vPeK9VZvYpM1tsZk1m9jszG5Jx/2fMbIOZrTez//SPYGf6951jZi/6R+XrzOxTme9hZl8ws63+e7xrkN97cJR8mZmt8Z//xYE+aDO7ycy+kfW+nzSzzX67Lx/geSbph5K+7py73jnX5Jzrcc792zn3/ozHvdfMXjKzRr8XNz3jPmdmHzSzZWa23cx+Zp5DJF0r6QQz22Vm2/O09TMZbT3f/0xfMbMGM/tCxnulzOxzZvaqmW0zs9+b2aiM3wFJ2u6/3wmDbPtHzGyZpGV+u//Pb8sOM3vezOYO9LljDznn+Mc/OeckaZWkMyUtlXSIpDJJ9ZKmS3KSZviPO03SofIONg6TtEnS+Rmvc6ukmySNlrRe0rkDvF+VpFZJR/pfL5G0v6THsra9O+N967Pau1DSJEmjJL0k6YP+fW+StFHSHHk9o1v872Gmf/8GSSf7t0dKmpfxHl3ydsZVkk6V1CzpoLDvXdIM/z1+Kala0uGS2iUdMsD3f5Okb2S971WSKiSdI6lF0sgczzvYf5/98vwsz5O03P85lkv6H0mPZ9zvJN0tqU7SNElbJL3Jv+89kh4dRFu/7Lf1/f7zb5M03P/MW4P2SbpS0nx5PaAqSb+Q9Nusz6x8N9t+n/8zr5b0RklP+d+L+c+bWOy/p6T9o2eBXILexRvk7YDXZd7pnHvIOfe8845mF0v6rbydauAjkk6X9JCku5xzd+d6E+dcu6QFkk7xjzRrnXMrJD2SsW22pH/naevVzrn1zrkGSXdJOsLffpGkXznnXnDOtUj6atbzOiXNNrMRzrlG59zTWfd/yTnX7pz7t6S/+a83mO9dkr7mnGt1zj0n6Tl5oTEYnZKucs51OufukbRLUq4xmtH+/xvyvNYHJX3bOfeSc65L0rckHZF5hC7pO8657c65NZIeVO9nN9i2ftM51ynpdkljJP3YObfTOfeCpBfV+31/UNIXnXP1/s/8q5LemqeENJi2f9s51+Cca/XbMlxeiJr/vHyfDfYAYYFcfiPpYnlHmDdn32lmx5nZg+YNqjbJ++NOD4o757bLq6fPlfSDkPcKxi1OltejkKRHM7atdc6tzvP8zLGMFknD/NuTJK3NuC/ztiS9Rd7R+2rzBoZPyLiv0TnXnPH1av/1Qr/3kDaF2ebvHMOeu83/f2Ke15ou6cd+iWm7pAZ5R92TI2hn0NZu/3ar//+mjPtbM15vuqQ/ZbTlJUnd8sZZ9rTt6Z+nc+4BST+V9DNJm83sOvPLoIgOYYF+/J3zSnk70z/meMhtkv4qaapzrlZejduCO83sCEnvlXfUfXXI2z0sLxROkdejkLzQONHf9vAAzwuzQV7ZIzA1807n3JPOufMkjZP0Z0m/z7h7pJkNzfh6mrxymhTyvcdkqbyd5VvyPGatpA845+oy/lU75x4fxOtHvRT1WklnZ7VliHNu3QDvNZi293mec+5q59xR8nqiB0r6dMTfwz6PsMBA3ifp9Kwj7MBwSQ3OuTYzO1ZeL0SS5A8w3yLpC5IulzTZzD6c532ekFdrvkR+WDjnGuXVwC/RnofF7yVdbmaHmFmNpPQ5AmZWaWbvMrNav4yyQ1JP1vO/5j/uZEnnyusp5f3e4+Kcc5L+W9KXzOxyMxvhDyKfZGbX+Q+7VtLnzWyOJJlZrZm9bZBvsUnSFDOrjKjJ10r6ZlBGMrOxZnaef98WeZ/9/lmPH3TbzewYv8dXIW98qU39f554jQgL5OSce9U5t2iAuz8s6Soz2ylvkDPzqPzb8kpH1/j16UskfcPMZg3wPs3yBicr5Q1mBx6Rd9S/R2HhnPu7vF7Ng/IGS+f7d7X7/18qaZWZ7ZBXSnpXxtM3SmqU15u4Vd6g+cv+ffm+99g45/4g6e3yenDr5e3gvyHpL/79f5L0XUm3+9/jEklnD/LlH5D0gqSNZrY1gub+WF5v7J/+5zZf0nF+O1skfVPSY37Z6fg9aPsIeZMKGuWVDLdJ+n4E7UYG8w5SgGTzp4QukVSVNS6Q/bjTJN3inJsy0GOAfRE9CySWmV1gZlVmNlLekepd+YICwMAICyTZByRtlvSqvNk3Hypuc4DSRRkKABCKngUAIFQiF+EaM2aMmzFjRrGbAQAl5amnntrqnMu1jlsyw2LGjBlatGigWZ8AgFzMbMDVEihDAQBCERYAgFCEBQAgFGEBAAhFWAAAQhEWAIBQhAUAIBRhAQAIRVgAAEIRFgCAUIQFACAUYQEACEVYAABCERYAgFCEBQAgFGEBAAhFWAAAQhEWAIBQhAUAIBRhAQAIRVgAAEIRFgCAUIQFACAUYQEACEVYAABCERYAgFCEBQAgFGEBRGTV1mb9Zv7qYjcDKIjyYjcASIq3Xvu4tu7q0DuOmaqKMo7DkCz8RgMR2d7SWewmAAVDWAAAQhEWAIBQhAUAIBRhAQAIRVgAAEIRFgCAUIQFACAUYQFEzLlitwCIHmEBAAhFWAAAQhEWQESoPiHJCAsgYo7YQAIRFkBErNgNAAqIsAAAhCIsgIgxdRZJRFgAAEIRFgCAUIQFACAUYQEACEVYAABCERZAxJgNhSQiLAAAoQgLAEAowgKICNUnJBlhAUSMhQSRRIQFEBEWEkSSERZAROhPIMkICyBiTJ1FEhEWQEQoQyHJCAsAQCjCAogYVSgkEWEBAAhFWAAAQhEWQMQc06GQQIQFACAUYQEACEVYABGh+IQkIyyAiBEaSCLCAogIZ3AjyQgLICL0KJBkhAUQMWbOIokICyAilKGQZIQFEBE6FEgywgKIGqmBBCIsgIhQhkKSERYAgFCEBRAxRx0KCURYAABCERYAgFCEBRARik9IMsICiBhncCOJCAsgIkydRZIRFkBE6FAgyQgLIGKEBpKIsAAiQhkKSUZYABGhR4EkIyyAiDmmQyGBCAsgIpShkGSEBRAR+hNIMsICiBihgSQiLICIUIZCkhEWAIBQhAUQEcpPSDLCAogYM2eRRIQFEBHGLJBkhAUQEToUSDLCAogY1+BGEhEWQEQoQyHJCAsgIvQnkGSEBRA1UgMJRFgAEaEMhSQjLICI0KFAkhEWQMQIDSRRwcLCzKaa2YNm9qKZvWBmV/rbR5nZfWa2zP9/pL/dzOxqM1tuZovNbF7Ga13mP36ZmV1WqDYDrwVlKCRZIXsWXZI+6ZybLel4SR8xs9mSPifpfufcLEn3+19L0tmSZvn/rpB0jeSFi6SvSDpO0rGSvhIEDLA3oUeBJCtYWDjnNjjnnvZv75T0kqTJks6T9Gv/Yb+WdL5/+zxJNzvPfEl1ZjZR0hsl3eeca3DONUq6T9KbCtVuAEB/sYxZmNkMSUdKWiBpvHNug3/XRknj/duTJa3NeFq9v22g7dnvcYWZLTKzRVu2bIm0/cDuYCFBJFHBw8LMhkm6U9LHnXM7Mu9z3pXtI/nTcs5d55w72jl39NixY6N4SWC3MGaBJCtoWJhZhbyguNU590d/8ya/vCT//83+9nWSpmY8fYq/baDtwF6FDgWSrJCzoUzSDZJecs79MOOuv0oKZjRdJukvGdvf7c+KOl5Sk1+uulfSWWY20h/YPsvfBuyVWEgQSVRewNc+UdKlkp43s2f9bV+Q9B1Jvzez90laLeki/757JJ0jabmkFkmXS5JzrsHMvi7pSf9xVznnGgrYbmCPUIZCkhUsLJxzj2rgv58zcjzeSfrIAK91o6Qbo2sdED36E0gyzuAGIsZsKCQRYQFEhDIUkoywACJChwJJRlgAESM0kESEBRARylBIMsICiAg9CiQZYQEACEVYABFzzJ1FAhEWAIBQhAUAIBRhAUSMKhSSiLAAIsLUWSQZYQFEhA4FkoywAACEIiyAiFCGQpIRFkBEKEMhyQgLIGLMhkISERZARChDIckICyAidCiQZIQFACAUYQFEzNHHQAIRFgCAUIQFACAUYQFEjKmzSCLCAgAQirAAAIQiLICIUYVCEhEWQEQ4gxtJRlgAEaFHgSQjLICIOaZDIYEICyAilKGQZIQFEBH6E0gywgIAEIqwACJGDwNJRFgAAEIRFgCAUIQFEDFmziKJCAsAQCjCAgAQirAAIkcdCslDWAAAQhEWAIBQhAUQMWZDIYkICyAiLCSIJCMsgIjQoUCSERYAgFCEBRAxehhIIsICABCKsAAAhCIsgIgxdRZJRFgAAEIRFgCAUIQFEDHHfCgkEGEBAAhFWAAAQhEWQMSYDYUkIiwAAKEICwBAKMICABCKsAAixpgFkoiwAACEIiwAAKEICyBinMGNJCIsAAChCAsAQCjCAogYs6GQRIQFACAUYQEACEVYAABCERYAgFCEBQAgFGEBAAhFWAARY+oskoiwAACEIiwAAKEICyBiLCSIJCIsAAChCAsAQCjCAogYs6GQRIQFACAUYQEACEVYABGjCoUkIiwAAKEICwBAKMICABCKsAAi5pg7iwQiLAAAoQgLAEAowgKIGEUoJBFhAQAIRVgAAEIRFkDEmAyFJCIsAAChCAsAQCjCAogcdSgkD2EBAAhFWAAAQhEWAIBQhAUQMabOIokICwBAKMICABCKsAAiRhUKSURYAABCERYAgFCEBRAxZkMhiQgLAEAowgIAEIqwACLmqEMhgQgLAEAowgIAEIqwAACEIiyAiDFigSQiLAAAoQgLAEAowgKIGDNnkUSEBQAgFGEBAAhFWAARc8yHQgIRFgCAUIQFACBUwcLCzG40s81mtiRj21fNbJ2ZPev/Oyfjvs+b2XIzW2pmb8zY/iZ/23Iz+1yh2gtEhioUEqiQPYubJL0px/b/c84d4f+7R5LMbLakd0ia4z/n52ZWZmZlkn4m6WxJsyW9038sACBG5YV6Yefcw2Y2Y5APP0/S7c65dkkrzWy5pGP9+5Y751ZIkpnd7j/2xYibCwDIoxhjFh81s8V+mWqkv22ypLUZj6n3tw20vR8zu8LMFpnZoi1bthSi3UBeXMcCSRZ3WFwj6QBJR0jaIOkHUb2wc+4659zRzrmjx44dG9XLAruNyEASFawMlYtzblNw28x+Kelu/8t1kqZmPHSKv015tgN7FTNjrQ8kVqw9CzObmPHlBZKCmVJ/lfQOM6sys/0kzZK0UNKTkmaZ2X5mVilvEPyvcbYZAFDAnoWZ/VbSaZLGmFm9pK9IOs3MjpDXU18l6QOS5Jx7wcx+L2/gukvSR5xz3f7rfFTSvZLKJN3onHuhUG0GokDnAklUyNlQ78yx+YY8j/+mpG/m2H6PpHsibBoAYDdxBjcAIBRhAUSMhQSRRIQFACAUYQEACEVYABFjNhSSiLAAAIQiLAAAoQgLICIsJIgkIyyAiBEZSCLCAoiImRW7CUDBEBZARChDIckICyBihAaSiLAAIkIZCklGWAAAQhEWQMQoQiGJCAsAQCjCAgAQirAAokYdCglEWAAAQhEWAIBQhAUQEU7GQ5IRFkDEuAY3koiwACLCGdxIMsICiAhlKCQZYQFEjMxAEhEWQEQoQyHJCAsgIpShkGSEBRAxMgNJRFgAEaEMhSQjLAAAoQgLIGJUoZBEhAUAIBRhAQAIRVgAEWHqLJKMsAAiRmggiQgLICJMnUWSERZAROhRIMkICyBiRAaSiLAAIkIZCklGWAARoQyFJCMsgIiRGUgiwgKICGUoJBlhAUSEMhSSjLAAIkdoIHkICyAilKGQZIQFACAUYQFEhDELJNmgw8LMhppZWSEbAyQBmYEkGjAszCxlZheb2d/MbLOklyVtMLMXzez7ZjYzvmYCez/GLJBk+XoWD0o6QNLnJU1wzk11zo2TdJKk+ZK+a2aXxNBGoCRQhkKSlee570znXGf2Rudcg6Q7Jd1pZhUFaxlQoogMJFG+sBier1vtnGvIFSbAvsrMGLBAYuULi62S6iV1+V9nJoeTtH+hGgWUIspQSLJ8YXG1pNdLekzSbyU96vhrAELxV4IkGnCA2zn3cUlHSLpD0qWSnjGz75nZfnE1DiglzIZCkuU9z8J5HpT0GUnXSrpc0plxNAwoNXS8kWQDlqHMbKik8yS9XdJYSX+UdJRzbk1MbQNKkmM+FBIo35jFZknLJN3u/+8kHW1mR0uSc+6PhW8eUDqYDYUkyxcWd8gLiIP8f5mcvJ4GAB9lKCTZgGHhnHtPjO0AAOzF8q0N9d9m9r4c299nZh8vbLOA0kUHA0mUbzbUuyTdnGP7byS9tzDNAUoXU2eRZPnConyAtaE61PdsbgBizALJli8sUmY2Pntjrm0AehEZSKJ8YfF9SX8zs1PNbLj/7zRJd0v631haB5QQylBIsnyzoW42sy2SrpI0V94B0wuSvuyc+3tM7QNKBmUoJFm+8yzkhwLBAOwGQgNJlG/q7P+Y2ag8959uZucWpllA6aEMhSTL17N4XtJdZtYm6WlJWyQNkTRL3mq0/5L0rYK3ECgR9CiQZPnGLP4i6S9mNkvSiZImStoh6RZJVzjnWuNpIgCg2PKOWUiSc26ZvIUEAeTBQoJIsrzXswAweJShkGSEBQAgFGEBRIwOBpIodMzCzMZKer+kGZmPd86xmCAA7CNCw0LSXyQ9Im+qbHdhmwMA2BsNJixqnHOfLXhLgITgGtxIosGMWdxtZucUvCVAieMMbiTZYMLiSnmB0WpmO8xsp5ntKHTDgFLD1Fkk2WBOyhseR0OApCAzkESDGbOQmY2UtybUkGCbc+7hQjUKKEWcwY0kG8zU2f+UV4qaIulZScdLekLS6YVtGlBaKEMhyQY7ZnGMpNXOuddLOlLS9oK2CihhZAaSaDBh0eaca5MkM6tyzr0s6aDCNgsoPcyGQpINZsyi3szqJP1Z0n1m1ihpdWGbBZQeylBIssHMhrrAv/lVM3tQUq2kfxS0VQCAvcpgZ0PNk3SSJCfpMedcR0FbBZQw+hdIotAxCzP7sqRfSxotaYykX5nZ/xS6YQCAvcdgehbvknR4xiD3d+RNof1GIRsGANh7DGY21HplnIwnqUrSusI0Byh9DHQjiQbTs2iS9IKZ3SevHPsGSQvN7GpJcs79VwHbBwDYCwwmLP7k/ws8VJimAAD2VoOZOvvr4La/RtRU59zigrYKKGEUoZBEg5kN9ZCZjTCzUZKelvRLM/th4ZsGlBbO4EaSDWaAu9Y5t0PShZJuds4dJ+nMwjYLKD0MbCPJBhMW5WY2UdJFku4ucHuA0kdmIIEGExZXSbpX0nLn3JNmtr+kZYVtFlB6KEMhyULDwjl3h3PuMOfch/2vVzjn3lL4pgGlJa4y1KtbdunDtz6ljq6eWN4PkAZ38aOrc2xukrTIOfeX6JsEIJ/P3blYT65q1Htet13H7jeq2M3BPmIwZaghko6QV3paJukweVfNe5+Z/aiAbQNKkmPQAgk0mJPyDpN0onOuW5LM7BpJj8hbhfb5ArYNQA5MukIxDKZnMVLSsIyvh0oa5YdHe0FaBQDYqwymZ/E9Sc+a2UOSTNIpkr5lZkMl/auAbQNKUqGP/Jl0hWIYzHIfN5jZPZKO9Td9wTm33r/96YK1DEBOlKFQDIMpQwWP2yKpUdJMMzulcE0CAOxtBjN19ruS3i7pBUnBxG4n6eECtgsoWYU+8KcMhWIYzJjF+ZIOcs4xmA3sBShDoRgGU4ZaIami0A0BAOy9BtOzaJE3G+p+ZUyV5Qp5QG7MhkISDSYs/ur/A5CHmcVSI6IMhWLYrSvlARhY3NezoIeBOA0YFmb2e+fcRWb2vHJM8HDOHVbQlgEA9hr5ehZX+v+fG0dDgKRgIUEkUb6weLuZPS7paedcV1wNAgDsffKFxRRJP5J0sF+KekzS45Ied841xNE4AMDeYcCwcM59SpLMrFLS0ZJeJ+lySdeZ2Xbn3Ox4mgiUFmYrIYkGM3W2WtIISbX+v/XiOhYAsE/JNxvqOklzJO2UtEBeCeqHzrnGmNoGANhL5FvuY5qkKkkbJa2TVC9pexyNAkoZVSgkUb4xizeZmcnrXbxO0iclzTWzBklPOOe+ElMbAQBFlnfMwnmnpC4xs+2Smvx/58q7EBJhAQD7iAHLUGb2X2Z2u5mtkfRveSHxsqQLJY0Ke2Ezu9HMNpvZkoxto8zsPjNb5v8/0t9uZna1mS03s8VmNi/jOZf5j19mZpe9hu8ViAfToZBA+cYsZki6Q9JxzrkDnHOXOueucc4955zryfO8wE2S3pS17XOS7nfOzZJ0v/+1JJ0taZb/7wpJ10heuMjrwRwnvzcTBAywryKKUAwDhoVz7r+dc3c65zbsyQs75x6WlH3y3nmSgoUJfy3vwkrB9pudZ76kOjObKOmNku5zzjX4s7DuU/8AAvZJrCOIOA32GtxRGZ8RPhsljfdvT5a0NuNx9f62gbb3Y2ZXmNkiM1u0ZcuWaFsN7IXoYSBOcYdFmj94Htnvu3PuOufc0c65o8eOHRvVywK7jZ04kijusNjkl5fk/7/Z375O0tSMx03xtw20HdjnUYZCnOIOi79KCmY0XSbpLxnb3+3PijpeUpNfrrpX0llmNtIf2D7L3wbs8+jBIE6DWRtqj5jZbyWdJmmMmdXLm9X0HUm/N7P3SVot6SL/4fdIOkfScnnX/L5ckpxzDWb2dUlP+o+7ihVvsbdj5iySqGBh4Zx75wB3nZHjsU7SRwZ4nRsl3Rhh04BEoAyFOBVtgBvAa0MHBnEiLICIOepQSCDCAihRlKEQJ8ICABCKsAAiRhEKSURYAABCERZAiWEAHcVAWAAAQhEWQMQKfeDvXe0YiBdhAZQYylAoBsICABCKsAAiVujjfspQKAbCAigxlKFQDIQFUKKIDMSJsAAixpE/koiwAEoUmYQ4ERZAiaIHgzgRFgCAUIQFUKLoVyBOhAVQoqhCIU6EBQAgFGEBRCyuI35HIQoxIiyAUkVWIEaEBQAgFGEBRCyu8hAdC8SJsABKDCGBYiAsgBLF1FnEibAAIlbwy6oG70MfAzEiLIASQ0SgGAgLoERRhkKcCAugRJEViBNhAUSMnTiSiLAAShTXs0CcCAugRBEViBNhAUSMA34kEWEBlCpCCTEiLAAAoQgLIGLxLSRI1wLxISyAEsXYCOJEWAAAQhEWQMRiu6wqPQvEiLAAShRZgTgRFkCJoUeBYiAsgBLFch+IE2EBlBjzr35EVCBOhAVQYuhQoBgIC6BEERqIE2EBRIyxBCQRYQGULEIJ8SEsgBJFBwZxIiyAiLETRxIRFkCJIpMQJ8ICKFH0YBAnwgKIGPtwJBFhAZQoLn6EOBEWQImiDIU4ERZARNh3I8kICyBisV38KJ63ASQRFkBkLKb3ISRQDIQFUKJYgwpxIiyAiBV6llJcPRggE2EBlBj6EygGwgIoUVShECfCAohYoXfiQRmKk/IQJ8ICKDFEBIqBsABKFGUoxImwACLisv4vlHQZirBAjAgLoMSQESgGwgIoUYQG4kRYABGhLIQkIyyAqMWUGiz3gTgRFkCJIioQJ8ICABCKsAAiFtsRP10LxIiwAEoUy30gToQFACAUYQFEIHNmUmyXVaVjgRgRFkCJIisQJ8ICABCKsAAikFkSimvgmTIU4kRYAKWGlEAREBZAiWLqLOJEWAARKMZumw4G4kRYABFjJ44kIiyAEkUmIU6EBRCBoiwXThcGMSIsgIixC0cSERZAiSKUECfCAogAs6GQdIQFEDF24kgiwgIoUVyDG3EiLAAAoQgLIAJFWUgwlncBPIQFUKKoQiFOhAVQYsgIFANhAUSgGCvAEhqIE2EBRK3Ae3EL3oY6FGJEWAAlhohAMRAWQAQ4yEfSERZAxAqdG71lqAK/EZCBsABKDBmBYiAsgBLFNbgRJ8ICiBizlJBEhAVQosgkxImwACJQlKuqxv+W2IcRFkDEOOJHEhEWQIkilBAnwgIoUcyGQpwICyAC7LiRdIQFELG4YoMyFOJEWAAlhpBAMRAWQATYgSPpCAsgYoUODrPgfUgoxIewAEoMGYFiICyACBRj/01oIE6EBRCxQk+jTZehCvouQF+EBVBi6FGgGAgLIALFGGwmNBAnwgKIWFw7cc4aR5wICwBAqKKEhZmtMrPnzexZM1vkbxtlZveZ2TL//5H+djOzq81suZktNrN5xWgzkA+zoZB0xexZvN45d4Rz7mj/689Jut85N0vS/f7XknS2pFn+vyskXRN7SwFgH7c3laHOk/Rr//avJZ2fsf1m55kvqc7MJhajgcDeIBiroGOBOBUrLJykf5rZU2Z2hb9tvHNug397o6Tx/u3JktZmPLfe39aHmV1hZovMbNGWLVsK1W6g6NLlJ+pQiFF5kd73JOfcOjMbJ+k+M3s5807nnDOz3fpLcM5dJ+k6STr66KP5K0Ks2G8j6YrSs3DOrfP/3yzpT5KOlbQpKC/5/2/2H75O0tSMp0/xtwF7pUKfcxG8PPmEOMUeFmY21MyGB7clnSVpiaS/SrrMf9hlkv7i3/6rpKTGh5AAACAASURBVHf7s6KOl9SUUa4C9jlUoVAMxShDjZf0J/MWuCmXdJtz7h9m9qSk35vZ+yStlnSR//h7JJ0jabmkFkmXx99kIAQ7biRc7GHhnFsh6fAc27dJOiPHdifpIzE0DYhEoXMjKHNxBjfitDdNnQWwGyhDIU6EBRCBOI/yCQkUA2EBRCy+hQSB+BAWQIlhrALFQFgAEYizNJQ+z4LMQIwIC6BE0cNAnAgLIGKF3okTESgGwgKIQJw7cMd6HygCwgIoUWQF4kRYABEr9MAzIYFiICyAUpOeDUVsID6EBRCBYuy4yQrEibAAIlbwhQQL/PpALoQFUGJ6V50F4kNYABGIdepsjO8FBAgLIGKxLSRIaiBGhAVQYnrPySMtEB/CAohArAsJEhIoAsICKFGUoRAnwgKIXIEXEiQkUASEBRABLquKpCMsgBLFch+IE2EBRIxrcCOJCAsgCrFeVpWYQPwIC6BEkRmIE2EBRIzrWSCJCAugxHAGN4qBsAAiEO9Cgv6qs2QFYkRYABHjiB9JRFgAJaa3DAXEh7AAIhDvQoLxvydAWAAAQhEWQMQKPnU2/fp0LRAfwgKIQLyD2syGQvwICwBAKMICiFihD/jTs6HoWSBGhAUQgWLMhgLiRFgAJYqT/xAnwgKIWOFnQzHAjfgRFkAE4p8LBcSLsABKDMt9oBgICyBicY0lUIZCnAgLIAJxXuqUy6qiGAgLoMSkFxKkEIUYERZAqSIrECPCAvu8Oxat1camtuhesOCncBf49YEcCAvs03a0derTf1isS29Y8JpepyjXs4jvLQHCAvu2YCe/fntrcRsC7OUIC+zTenq8tOjsju44vfALCbo+/wNxICywT+v2d7gd3T1FbsngUYZCMRAW2KcFPYtSQocCxUBYYJ/WVYCwiKs8RGggToQF9mndEYVFvLOh/DGL+N4SICywb4sqLOJEjwLFQFhgn9ZdgD1vXPtyZkMhToQF9mlRDXDHuU4Ts6FQDIQF9mmFGOAuuBJsMkofYYF9WimOWaSVcNNRegiLQfrDU/VaXL+92M1AxAoxG6rg1+AmJVAE5cVuQClobu/Sp+54TpVlKb3yzbOL3RxEqBAD3IXWe1nV0ms7Shc9i0FYuLJBkpTi00qM5vYuHfvNf+nhV7akt5Xa7KISay5KHLu/QZi/cpskada44UVuCaKybVeHNu9s17LNu9LbolofistZIIkIi0HYsrNdktTW2V3kliAqLZ1dkqT2jJ9pW+fuh8X8Fdu0bntrrDvw3lVnY3xT7PMIi0Foafd2KNtbO4vcksJrbO7Q/BXbit2Mgmvt8H6mmQHRvgcHA++4br7O+MFDUTVrULgGN4qBsBiE5g7vKLRpHwiLt1/3hN5x3fySXI11d7R2BmHR3W/b7srukZTa2AcwGITFIDS3e2HR0dWT+FLUK5u8Gn4pzhLaHcHPsa2r9+fZ0bXnYxZxBkR6NlSyf0TYyxAWg9DS0btD2d6S/N6FVOInqw1CS44y1O4OcBf7M0r2Twh7G8JiEJo7ulRZ7n1U+0IpSpI6S+jKcXuid8yi90Bgdy+tOlBPhJ04koiwGITm9m5NrquWJG1v6Shya+JR7KPmQkuXoTJ6FrsbkJlhUYyVZilDIU6ExSA0t3dp3PAq77Y/2J1EmTui3T3KLjVBGSpzBlTnbo5ZtHfHP35FQKBYCIsQXd09au/qUV1NhaRk70R3tfcGYdJ7Fq25BrhfQ8+iOJL9M8LehbAI0ewfgdZWe2HRleCw2Lart8TW1VPsHWFhBWGRGf4vbdipw7/2T63b3jqo1+hThsr8tSjgr0ift0nuryL2QoRFiBa/7JQOiwTvRDN7FkkORal3gDvTrQtWq6m1U399dv2gXiOq5UF2B+dwoFgIixDBORZ1NZWSkl2GyrwQUEleFGg35AqLoZXeIsyDnfFW7DJUsn9C2NsQFiGa/aU+RqTLUMntWXRn9JqS3IOScp+tXVNVJklqah3cjLe+YZExS6mAu/G+ZSjiAvHhehYhmrPKUJ0JPuLOLD0lvQyV60z8Cn8N+rATL5taOtXW1V2UngX5gGKhZxEiKFeMGOLlarJ7Fi7n7SRqyVGGCmZGhZWhPnnHszruW/dr6aadBWlbPq5PDwaID2ERIjhpa3g6LJL7J9p3zCK5oSjlLkMFARLWs3hoqXfBpNsXrs15f1xH//QyECfCIkRQrhhWFZShkrsTzexNJDkUpdwD3MG2fD2Lts5u9fh76e0ZYxsEBJKOsAgRHIEO2+d6FqX3fX7j7hd10ncf0FOrG0Ifm6tnERwY5AuLFVuaFXw0O1qLezZ/6f2EUMoY4M5h4coGbdrRpvrGVpWnTJI0rHJfGLPInA1VeruiWxasVltnj15Yv0NHTR+V97HZPQuzzJVoB17G49UtvZdhHej6FwMd/f/wn0t1/P6j9bqZY/K2DdgbERY5XPSLJ9K3502rkyQNqUypPGUluRMdrK4+A9ylFYretUZ60rfzeXnjjj4D3GZSVXkqvfPP9zPetsu7xG5dTUWfsY2w6380tXbq6geW6ycPLtfKb785/zeTR3CJX4mps4gXZagQ21s6ZSZVlqVUXpbssMgcsyi1kw/XZyzRka/tC1c26E0/eqTP2erlKVNFWd8/hYF2xMGldccPH9Jne2dX/s/r+fomSUqvXrynTv7eg6/p+cCeIixCtHR0a0h5mcxMFalUoq/zUGpTZ+sbW3TEVf/UI8u2aE1DS3p7vlLh469u7bctZabKrLBoH6B3sr2lU8OHlKdP4AvkWvpjV3uXbl2wWhub2vRc/XZJ0iETRwz8DQF7McIixI62Tg2p8D6m8jLbZwa4SyEUn1rdqO0tnbr0hoW68bGV6e352r5ya3O/bWU5ehYDjVtsb+nQyJpKDSnPCos+17bwPsffP7lWX/zTEr33pie1Yov3vjWVfZ/3WhSiCuWc0w//uVQvb9wR/YujpBEWIVo6ujWkwvsDLy9LFfT8g54el3NKZ1xKrWeRuTpscO6DmdTR7bRwZYN2tPWf1ZQ5QB0cBJSlTBXl1udxAw1eb2/tVF1Nhaoq+v7p5Aqop9Y0SpJ2tneqvat7wMftqUIsK7KzvUtXP7Bcl1y/MPLXRmkjLAYhCIuKlBW0lv/1v72oQ778j6ItUFdqU2dXb23RmGFVOnRyrSQpZVJ1RZmaWjt00S+e0IduearP451z6SN8SRo+xDt3JnfPYuAyVG11Rb+eRa4QeHaNV3pqae9dGqSjy6mjq0c/+OdSNe2F13MPDlYYPEc2wmIQ+vQsClie+d2T3hnBmRfkiVN3xvcWd7mtrbNbP31gWd5pq9lWbWvWjNE16eujV5WXqbI8lZ6l9NKGvstxbN3V0WcWVLCES3mq/5jFQD28dBkqq2eRfW2LB1/erHXbW1VdUaaWju70GEhXT4/+/Mw6/eSB5fr5Q8sH/b3mUoj9+c42b+C/qpxdA/riN2IQMscsCrmQYMq8Usje0LOIe+rsHU/V63//+YqueejVQT9nTUOLpo8emt6xVVWkVJ5KpU+qC86RCaze1ne8IlgcUurfswgrQwUHEIHsAe7rH12h6aNrdPmJM9Ta2Z1xsaUe1fvls/Kyvu3bXYUIi2BJ/krCAlk4zyJLrnJCUHKoSBW2ZxHs2waaiVNoxZw6G+y4g1lDYdo6u7WhqU3TR9eoodk796CqPKUys3TPIjsAVm1r6fN1UIZyzqkia8edq4fT0+PU1NqpuuqKfmd5Z39eW3d26OAJw9OX4w1KTp1dTlv9czWqKwY/2H3idx7QzHHDBv34PRVMKa4qj24gHslAWGTJtZOIazZUyk+L3SnFRKmriAPcwa566cbBreQaTIGdPrpGL673Zu5UlqdkMm1v8dZsKsvqWSzfvEtlKUt/b8E1SnqcG9RsqB1tnXLOuxBWdqBn9gb/+eImSdIRU+tU45/53+i3qbOnR/WNrf7rDX65kHXbW/td7rUQA9zpsKigZ4G++I3Ikqv8kDlmEUcZqn2AwdVC6y7iAHews93Q1BZahnto6Wa996ZFkqQZo4emd2xV5WWqKLP0iXPZZaj7X9qko6aPTH8djFl097h+ZZdcvwdBj8WbDeX9TgQ9ou05LphUV1Ohof75GMFzO7t70uWwvXGAexdjFhgAvxFZcu2og3JBecpiKUMVa4C7z2yomM+zyKz5P5Zx4twnfvesvnbXC30eu7ax9wh7xuih6cHpqvKUKspS6UHszJ7Fyq3NWrZ5l9586MT05zx+hHcW9q72rnTPIgiYYIC7sbkj3YsJegd1NRXpnemood7ldtc19j3q9x5Xme5ZBN9fZ5dL75AHe/nWgRRizIIyFAZCWGTJdUS5xa8xe2FRuCNuK3rPoie9gy1Wz0KS/u2fMyFJf3pmnX712Ko+j23JWKqjNuOchyAsAuUZt9f6Z3jPmTQi/T0eMNYbA+hxSo9ZBKsLt/ntuW3hGl38ywVavnlXusdSV1OZDouxw6okqc8Z5IG6mor0db0DnT096d+xwYZFT9bP4rAptTpg7NCCrDq7iwFuDIDfiCxBrfr0g8fpV5cfI0l6xp8vX7GHJ+WtbWjRhqb+R57Z9oaeRXnK+tT14xKExcia3sHjzEXzApt3tunJVd7Jbv/671Mk9R4FB2WoQGYZKnjN2uoKjfF38PuPHZq+v9J/jWFVflikL4Tk9SZ+u3BNumxUV12RHrMYO9x7rVXb+p8ZXldd0X9ZkK7esFiyrkmbdrQN8In0yv59uOT46en3jVoQFq9tnhaSiLDIEpyM9d4T99NpB47ViTNH63/fdrgk7dFCgs45nfy9B3XWDx8OfWzRxyy6e8Mi7os8BWWaEdUV6bOdcw12n/zdB/WvlzZpcl21Zo4bLqm3vl7Zr2eROyx++/7j9aVzZ/cJi2q/dxKERbBDD3aety9ck+6d1NVUpstUwU57XWOrRtZUKFNdTWW/nsWu9q50+Whne5fefPUjYR+Nmtv7hkV6PKGAU2eTfK157BlmQ2UJdhLVlSmZmW79z+PT95WnUrs9pfQFf6bOzvbwmS/psMjTs2jt6FZjS4cmvcbVS3Pp6nHpEk13zFNn2/3PffiQ8nRgL9vcGxZvveZxbW/tTB/RZw7ABj2LijJTd0/v9szyTRAWI6orNG7EEL3vpP36vH8wLuWVskzPr2uSc0672rtVljI1d3TrB/e9IskLnOYO7+c5Zpg3ZtHjpDHDqtSYMWhdV1PRby2oHVmlp627+g+MZ2vp6Pu7U1VeJpPJKfpAD8ZTOos0fRt7L3oWWYIyVK4Bvoqy3APcaxtaBlzzJxgcnToqfOduwXkWeXoWl96wQK/7zgOhr7UnepxTeVlKZUW4bkd7d48qy1MaUl6W84p1i1Y3avnm3nWdtjX37mR7p3lanzLUtuYONfiPa2r1FoTMPpkuMKQyY8Zbt9N9L27SXYs3aFdbpw6ZOFzvOGZq+rFlKdMRU73rnBy3/+h0wAblrcDQynINrep7PBZ8rMFMrCkjw38v+vUsKlLp35WoBT2pUlhIEvEiLLIEC9JV51gd1FtIsO9OtK2zWyd/70G94Yf/1kNLN2tjU98a9C7/Dz27HBFY29CiA7/4dy2u357uWeQbs1i02qvXF2LtnqBnsadjM69FR1ePqspSqqpIpXsPLXkWVcwMksylOjLLUPWNrZr39fv0438t03UPr1BddWW/1/nR24/Q995yWPrEy5RJHz7tAEnSf/32GT24dIuGVZXri28+pM/zzjtisuZ//gwdM2OUhvq/K2MyxhEuO2G6poysHnCV2a/+xxydOHN0+meeT2tnds/C+x4LMRsq+MwJC2QjLDKsbWjRbxeukZR7KWlvIcHeP6Kmlk5t3uENwq7a1qL3/OpJffx3z/R5TlBeyXW9A0lasLJBHd09+skDy3vP4B7EmEUhzrDOHLMYaIB7V3uX2jq7+1w8KAodXf17Ftnll0yffMOB6duZJ5Bln1wnSf/3L698lL2yrCSdf+RkXXTM1PTBQVeP02fedLCuf/fR6ccMq6pIn+2daUKtN/U26D0EJSlJ+tp5c5VKWZ9yWeYMoxFDKrTfmKGD+hxzjVmYFeYa3L2r4zJmgb4Ys8gwsXaIfnX5MapvaNGEEUP63Z95BndDc4de9537dcGRk/s8Zv6KBr3nVwt142XHKJWy9FHyQAHQ4x8ertiya8Axi/aublWkUukzvINtUU9vDHoWpoF3FnO/cm/69odOO0AfPOUA1db035HuriAs+vQs2nP3LFZ9p+9lSTNLhtnLdmTaunPg8YFgzCI4GDhz9nidPGuMHlm2VcP8GU2//8AJOUO0NyyqNLF2iMZl9DDMzNuxO2/wvKHLa0NNZZmGVVWkxwjyGWjMohCC8SJ6FshGWGQoL0vp9QeNy3t/UJ55fl2T2jp79Men10mSDp1cq+fXeZfOfGjpFt21eL0qy1LpMYvs5SFeWN+kqaNqtM0f4FzT0KIpI2sk9V0e2zmng/7nH7rk+Glq7ejd3tbZo+H98+w16e7pUXnK1GOm5vYuPb2mUfOm9Z7xvDPr+hDXPPSqysz0qTce9JrfuyPHmEVLR7cm11X3W+YiW+bRe66eRWCgxQGl3rDIPI9mnP8BB+deHLvfqJzPDcJi7LAqPfH5M/rdP6yyXDvbuzS0qkwN/gzb6soyDR9Sro7uHrV1dg84liINPBuqEKXItk7KUMiNMtRuyLyexQvrvWAIQuCmy4/RiTNHpx97/0ub9aFbn9Yrm3b5j+vWI8u26JFlW9TT4/Tmqx/V2655Qtv8E/46u126JJHZswjWD7pl/hrd+XR9ensh1o8KehblKdPfl2zUhT9/PN0+yVuKI1tUvZuOrh5VladUVVGWDsvmji6NHV6ln79rXrrEk73eU3YbyvOERT7BAHfmTjKYFps9SJ2td8yi/5iIpPS5FpnjVtWVZelpumGlqJw9iwINcAe/z5ShkI2w2A2Z17MIFq+TvJO/RtZUqq6md2dR39j3jN6dbV269IaFuvSGhemZPEs37ewzqydYjTSzZ7F1V/8T06T802v3VLcfFj0ZR6xLN/VOX12f4wg/quXU02Wo8lT6e2vt6NbQqjKdc+hE/fvTr5ckzZtWl/d1KgcoQ+03Zqju/NDrBnxebxmq93sP1n0Km0acWYbKd/+wjNCpqSjvDYuQUlRzR//ZUFJhxizaQsbYsO8iLHZDeZmpo7tHXd09Wr55l47ff5TKU6axw6uUSpnqqntr9/U51goK/OLfvddseMa/9KbUO7sl2Flu3tGmz//x+Zyvccv8NZH1LjbtaFNrR7ffs0hp/7G9S2FnTlfN1bPY1pw7zHZXe1ePKsu8qa3t6Z5Ft6orvB3q0Kpy3fK+4/TLjIHn/rz25/KJNxzYZxHBbNljFlLvJId85Sspo2cxQFgEoRCUs6TeMpQU3rPIPjcjmP1ViNlQlKEwEMJiNxw9fZQ6u51+9dgqrWlo0eyJtTrhgNGaMdo7EziYMWMmbc6xVEXg+kdXpm+v2tai7MpK0LP46G+f0cKVDTlf46bHV+n79y59Ld+OJO+I/rhv3a+P3Pa0uv3lPq5/99F65Rtna/iQcr2S0bPYkNGzOPewiaoqT6XHXPbEF/70vD7xu2fT7Qh6Fh3dPerpcWrp6Eqv2ipJJ80a06f3lvP76c69Yx8zNP/zgmXoM3sWwQypsOuiBz2H0cMGKEP5r5M5w666siwdHjtDehbZPboR1RXpdcSili5DcVIeshAWu+HMQ8bpqOkjdeNjK9XS0a1po6r103fO08/eNU9S74DjAWMHvkjNj99xRPr2FafsL0n9pmW+sL5JX/7LkgGDIrAxz7pCaxtaNPcr9/bZ2efy5CrvPR54eXN6zCKVMlWWp3TIhBF6ZNnW9NHm+qY2jRlWqW9dcKh+9PYjdNT0kX3KaLujvrFFty1Yoz89s04tHV3+SXll6YHe9q4etXR0p1dtzccybmWfm3HVeXP0zQvm6rj9R2c/rY8hOXoWJ/jPuXDelLzPnTOpVkdMrRtwpdagZ5E5eF5dUabhVd7PPaxnsbaxNd0LkXrHbaLuWDjnesOC5T6QhbDYDWamE2eOSZdjpo2uUW1NRXqZ6mBa5fRRNQO+xlmzJ6RvX3nGLP3wosP13bcc1ucxr25p1s1PrO733My1jCQNuLd4clWD3n/zIu1q79JNj6/K+z09tHRz+vaabc19Ft/72BkztXpbi25+wnuNDU2tmjKyRhcfN03lZSmNHlalbbva9ciyLbtdEvvHko3p2wtXNng9i7JU+gi/rbNbLe1dA57UlmlirXcW9KGTa/v1AkYNrdS7jpuec2A8U/o8i4ywmDqqRqu+82adNGtM3udefNw0/fkjJw54fxB4mUFUlrJ0z6IhpJRX39iiaf7vVLASgEmR16GCoKgo884nKsRsK5QuwmI3HZcxfXJaVigEtf4jBxiELUtZnzPDh1aV68J5U/pMydx/TG8gHDOjt8b+mTcdpDfMHt/n9Xqck3NOXd09uvSGBXpkmXf2+duufUIv+4vw5Vq5NdOyjDGJVdta+uxUT541VkdNH6nfL6qXc04btrdpUl3vfN3RQyu1aluLLr1hoX758IoB3+MPT9Xr369s0RJ/arHkTRAYMaRcZSnTU6sb1dHV7c2G8o/OL71xgVo6u9PjAfkcOqVWd3/sJH309JnpnsUXzzlEx8wYqVMPHBv6fCn3AHdUPnmWN17yxjkT+myfOrJak+uq9dk7n9d3//Fyzue2d3Vr0452nXrgWJ164Fhd866jJKkgs6GCwB9WVS7n4r9aYil6ZNkWXXrDgtiv/1IMhMVuOna/UZo7eYRqqyvS50UE3nnsVP3uiuP1tqOn9tkeHK1nX7ktMCKjxHDhvMl6y7wpuue/TtZt7z9eh02pVWV5Sh8+baYOnjC8z/P+vmSjzvvZY9q8s12PLNuqy25c2O+1B5pNFVjX2Ko5k0b0tjVrNtEFR07W8s27tGJrs9Y3tWpSbe9aRodNqU3fXp9j8FvydkCfuuM5XXbjQp37k0e12S+dvbhhh46aPlLTRtXo1S271NHtTZ0NehZL1u2Qc1L1IMpQkjR3cq3KUpbuWcydXKs7Pvi6nGde55IOiwIsczJ9tDcTa7Q/AD7a74mWl6V05ZmzJHnnrOQ6nyS4qNIBY4fp1+89VnMn937mUe/Kg55F8JkxfTbcpTcs1CPLtuYdo0wKwmI3VZSldNdHT9KCL5zR70QqM9Nx+49OT7kMBOWGYBbLY587Xfd+/JT0/ZnnBgyrKtcPLjpcsyeNUEVZSnd+6HVa8tU3SpLOP2KyvpdVslpc35ReLK8nx9Fg9lpVgcbmDm1satO67a06bEpvTyh7NlGwYN71j6xQW2ePJmasdnv+EZN17mETJWnA63U8t3Z7n6+/f+9SNbd3afnmXZozybuIz6ubmzMGuPt+pkOrwnsWuezu84IeXyErL8GPefro3oOMi46eqkc/+3qZSXc+Vd/vOcGJngdlHSiYom9rZs9CYvrs7mjYw7G7UsIZ3HvAzPKecZt9/eIgJIKj9sk5lhevLEv5ZzH3fd3MM5LNzCtF3dn3uZm9h/f9+sk+921oast5hvC5P3k0fSR7wNihGl7lnWWc3fuZOc4rrf124VpJ0qTa3jJUKmX66cXzZPaMnl3rTQHu6XH62l0v6LSDxmnqqGq9O6u3c8dT9Xpk2VZ19TgdMbVOnd09eviVrRpSkfLO4K7o+9lV5/mcc/nBRYfr1gVrNHdSbfiDM8RxzemNTd7PacaYvmNPU0bW6NDJtfr7ko1a29CiN86ZoDP9kuOiVY2qqSzr16uMcjZUQ3OH/vh0fXpdtODgJu7ps1t3tas8ZaEz3uLS0+NU39iqaaNzj0HuyFjRgLDAHsn+Q05f3znP2cWzJ43Qs2u39ysDZcsVUpm/qA9lXJI0UN/Ymt7pBzJLHpPrqjVmeJV2tnf1GwjOfr+JOYLugLFDdffi9frIbU/rb4s3SJJ+/cTq9BFqsDDhW+ZN0eS6Ibr6geWSpOP2H6WGlg51dPeky1CprPc/ZkbuJTYGMnVUjT539sG79RzJ+5ldecYsvf7ggZd7ea1OOMCbXfXeE/frd9+pB47VTx5Yrpc27NAdT9Xrx+84Qg8t3aL5K7bpyGl1OX93mtu79MuHV2j66BqdlTUesjtuemxl+mci9ZZFg7B4dNlWTR5Zrf2yQm5PPb2mUTc/vkpdPU5vPWqKTjtonLp7nC76xROaXFet37zvuEje57W65t+v6vv3LtWv3nOMtjV36C3zJsvMtHVXu4ZWlusfz/dO0iAsEIlgcbvKPGFx0swxenbtdtXnuJZzplxHwJv8lW+f/+pZWtvQqj88Va8bH+s9l2P1tuZ+YZFp/7HDNGZYpVZubc45rnLp8dP15KoGffj1M3X4lP5H7O88dpr+9dKmdFAEdrV36cvnzlZFmelLf3lBZSnpo6fP0tUPLNfE2iEaPqRCp2fsnM84ZHz6nILRQyt143uO6XcUXkifyFjJthD2GzO03yKIgXceO01NrZ06clqdfvrAcl15+7Pp+7LHwCSvDLVia7O+ec9LkqTj9x+ledNG6vCpdf0G0sNkn0AajFl0dTt1dPXokhsWSOq/gONgLdu0Uyu2NuuNcyaorbNbl92wMH0xsB1tXTrtoHG6/6VNWrGlWau3taixuUMjM86L2dnWOaixpy0723X1/cv0hXMOyXmJgd11/0ubJEmX3+T11vcbU6Mjpo7Uyd99UEMqvNmAY4ZVaeuu9tCxwSQgLGJQkVWGyuWKU/fXq1t25dwxZMo+8pa8cYHKspSGVZVr9qQR+ljtzD5h8b5fL9KfPvw6HZmxKGDwS/718+booAnD0+sg5Zpi+vXz5+Zt0/gRQ3TXR09SV4/TLfNXa9OOdl3rn6V+8MTh6QX5zj9ysirLU1r4hTPSva8xw6r07QsP9c+IH62dfk3mewAAEK5JREFUbZ1645zx+tp/zE0vAb4vmFRXravO8z7nE2eO0VV3vai7/fA9OseZ58HO9rAptTp8Sp1+M3+15q/wz5n55Kl9zsKXvItwTayt1qfveE4XHzetz7kjaxpadNx+o7TAP68nOKfjnB8/oncc2/v7+Odn1un8rFWW83HO6d4XNuqDtzztvd6hE3T09FHa2d6lG99ztP75wibd/uRafeiWp/TAy5s1tLJMzR3dumfJBr3ruOleu5dv1cXXL9A7jpmqK8+clZ4mnctVd7+ou55brxNnjtab5k4cdDsHa+nGXVq9rUWtnd1q7exWY0unrrv0KH341qeL1rNYXL9dnd0u7+oEUSEsYhAsPT7QbCjJu77BNZcctUev/48XvO5wsAPOHmCXvFJCEBbOOTW1duiDpx6gS0+YIcnb4UtSY8ue/dKbeVepu9wvsaTDYsIIjRpa2eeodFzW8u/vPHZa+vbwIRX6xaX5lvRIvnHDh+inF8/T3Yv/Jin3VOxgSvHHTp+lw6fU6jfze8/L+fMz6/TfZ/WuBPzShh26+JcL0l+Xl1mfsFjb2KJTZo1Nh8WR0+r09yUbtWVnu375iHfQMXxIuT79h+d01pzxA54oGRxhHzzBm113y4I1+tKfl6TH4+55fqPueX6jylKmY/cbrY1N7br9ybX6u3/OzSfPOVh/W7xB1zz0qt521FRVlqfSv9u3P7lWTa2d6b+RlVubtbh+u86aPUFLN+3UfqOH6qUN3npt21s61djcoaqKVLqtT7zqlfPyjTUGnHO6/cm1enpN38kZX/iTt/TOkIqUrr3kKI0ZVqW5k2s1amhlrGGxaFWDbn9yrRqaO/TAy955UleeMavgPWPCIgbBrJJ8y2dHKZUynT13gs48ZLyeWtOo2xasUUvGSXMtHd3q7HYamXEdikuOn65fPbYqsjZUV5SptbM7fcIidt/dHztJz69rylmC+fr5c9XS0a0Dxw/vc61xSbr6geU6dr/ROnHmaJmZfvbg8j73Z146tbvHadOOdk0bVaPa6go1tXZq7qRazf/8Gbrw54/pufomTa6r1tfPn6P33rRIf1u8QZt2tGn+igZ9/MxZOnLayHRv9KJrn9CKrc1a/s2zVV6WSu+8//2Z0/S2a59QfWOr9h87VMfvP1rDqsp1xiHjdNTTI/XFNx+inW1dOvGA0Zo1brguv+lJ3fl0vQ4cP1y3L1yrUw4cq9rqCt334kZdcv0CHTqlVrfMX62dbV268MjJ+uMz6zSpdoi2+KWgvz2/QZ/74/MaO7xKj3729VqxpVnv/OV8zRo3TN++8FDd8/xGdXb36Kv/MSfd9uWbd2nJuia9cc4EXf/IivT11rNdevx0vfWoKTp8am+AjxrqlXD/8uw6nTV7wh6XwJxzemH9Ds2ZNEJm3iWcc41V/d+/XtFjy7dJkt4yb4paOrr04/uX6cJ5k/XEq9vU2tmdPmiLEmERg2mjatTR1aP/efPsgr3HNf6SI+mv/SOwtxw1RQ+/sqXPuk7b/YXp6jLC4oCxw3TXR08acJnt3fXAp07V9pbO8AdiQHMn1/Y5ryJT5jk+maXJ97xuhm56fJUuuWGBRgwpV2V5mbbuatesccO0bPMuzZtWp5c37tTHb39Gdy3eoAPHe7OsZo0frpE1FenL1ZalTBNrq/VcfZNmjKnRkVO9Xumn/7A4/V5LN+3UrrYufenc2br4uGlasdW7WMdPHliuNQ0t2rKzXYdNqdXE2mrd9dGT1O1cn8UWx48Y0m8l4NMOGqsjp9WlF9CsKk/pLfMma8rIGt313HotWt2gR5d714gZWlmmPz6zLr1EzeihVdrW7J1zJHljGA+8tDkdWss279Jbr30i/V6/mb9aP37HEbrp8VV6xu9FnDV7vL5xwVxVV5Zp664OTRhRpZFDK3Xfi5t09+IN+vL/m93voG/OpFrd+XS9Fqxs0JxJI/TFcw7Rg0s369zDJmn4kHJ9656X9PEzD9RTqxt12kFj9Y2/vaTRQyt1wgGj9YbZ4/XpPyxWVVlKL27YoZc37tS7T5iudY2tWrS6Ube9/zjNmVSrjq4ePbFim7bubNeCFQ36wCn76xNvOFBDKsq0oalVf1+yUad+/yFJ3mSJd58wI3TVgt1FWBTIBUdO1p+e8S6MFJxQFZW7P3aS6moqNKyqXEdcdZ++c+GhOvvQgWu0E2uH6M/Prtdlr5uhI6eNVKPfZc6eonhojsHrPTWxtjpvfRmF8YFT99dJM8foP29epO4ep6rylKaOqtZt7z9eZSnTXc+t19N/fUF/fna9JK9EdeGRk3XW7PHe9cdvfTo94y0YM5o2aqhGDq3UwROGp1cGkHpXB7j+kRW6cF7vWMaP71+Wvn3Ood5g+8hB9jDNTN84f64u+NnjOv3gcfrh2w9Pl5IW/c+Zamnv1gdveUpXnjlLZWb65B3P6ey5E/S18+aos9vpndfN1/PrmnTyrDFasaVZH7rVGy/Zb8xQ/dcZM+WcN3X5D0/V67YFa/pMJPiPwyfpr8+t18xxw/SZN/WdUXf23In6zlsOy1kd+OzZB+mVTTs1dniVHnh5sy6+3iv5/eqxVTLzTm7810ub+z3v9ifXpm97S6x4PcSbn1idnkH45qsfzXmZ4zNnj0+X1CbWVusdx0zVkvVNOnxKnb5wziGRB4VEWBTM/77tcH37wkP1wMub+8z4iULm0ebKb58TOuc+KGNc8PPHtfLb56SPHutyjG2gtI0bPkQTDhmiay85Sicc0P8E0bmTvfGEMw4ep29cMFfPrNmus+dOkJnprDkTtPxb56QfG5zYGFx46rb3H68NTa2aPXGEtuxs160L1mjBym2av6JBB3/pHznbk73KwWDMmVSrJz5/ukbWVPbpNY0ZViUNk+658uT0tue+clb6dlW5d1S9ZH2TPvGGA1VbXaFrH3pVk+qqddac8ZqTce7NvGkjNW54lf710iZ98qyDVJFK6cSZozVsSHnO9cgqy1MDXuhr3PAhuutjJ0mS/vrcer26eZcunDdZV9+/XFt2eUu1/OaJVf+/vXuNsasqwzj+f9JSWsVSWsZKW0KpVGtJoODQVCWgJWALBNSQSKOxhCb4QQ0oiSkhmvjBWBMjgneEpkAMGIumDRIJTKtgwmXKxdoW2w6tlNJCx97ttPbC64e9pnM6M3UNczmbc87zS07m7LX3TN7zZjLPnLX3WRtJ7D90lOkTRrPkpkv4xV/aeOi517nzmulcd+EE3t53iI7Dx3h5y26uOv9DbNtzkJuXtHLJ5LF8uOn9HD4W3NOykUvPO7PHRQ+Lun1YdyioHhcLa25ujlWrVpVdxnvGgiWttPyz6z+b8yeMZu22fTxx22U9PhlstemZje20bt51wontk9m6u4OJY0Zl/8n4/p/W8ZtnNnP7lR/hG1dM7fWYLTs7+M6yNax/az8TzxjFT+ddxNMb2tm88wC//usmvnr5FO6Y+7F+vab+OPZOIHq/arAvImLIln+HYqHKoP/nL3fsP8TY943o9x0hcyS9GBG9XmFSM2EhaQ5wNzAMuC8iFp3sWIfFibbu7mDl+nb+trGdQ0feYdeBw4w7bQS/+vLH+3R1iDWmLTs7uPmBVh5aMPNdTynuPXiEhY+uZuHcaZwzrnqflbGBqfmwkDQM2ABcCWwFWoF5EbGut+MdFmZm797/C4taWUhwJtAWEZsi4jDwCHB9yTWZmTWMWgmLicAbFdtb09hxkm6RtErSqvb2nusjmZlZ/9VKWGRFxL0R0RwRzU1NfbvhjZmZ9U2thMWbQOWiSZPSmJmZVUGthEUrMFXSuZJGADcCy0uuycysYdTEh/Ii4qikrwNPUFw6uzgi1pZclplZw6iJsACIiMeBx8uuw8ysEdXKNJSZmZXIYWFmZlkOCzMzy3JYmJlZlsPCzMyyHBZmZpblsDAzsyyHhZmZZTkszMwsy2FhZmZZDgszM8tyWJiZWZbDwszMshwWZmaW5bAwM7Msh4WZmWU5LMzMLMthYWZmWQ4LMzPLcliYmVmWw8LMzLIUEWXXMOgktQOvD+BHnAn8e5DKqQfuR0/uSU/uyYlqsR/nRERTbzvqMiwGStKqiGguu473CvejJ/ekJ/fkRPXWD09DmZlZlsPCzMyyHBa9u7fsAt5j3I+e3JOe3JMT1VU/fM7CzMyy/M7CzMyyHBZmZpblsKggaY6k9ZLaJC0su55qkbRY0g5JayrGxkp6UtLG9PWMNC5J96QerZZ0cXmVDw1JZ0taKWmdpLWSbk3jjdyTkZJekPT31JPvpfFzJT2fXvvvJI1I46em7ba0f3KZ9Q8lScMkvSzpsbRdlz1xWCSShgE/B+YC04F5kqaXW1XVLAHmdBtbCLRExFSgJW1D0Z+p6XEL8Msq1VhNR4HbI2I6MAv4WvpdaOSe/BeYHREXAjOAOZJmAT8E7oqI84DdwIJ0/AJgdxq/Kx1Xr24FXq3YrsueOCy6zATaImJTRBwGHgGuL7mmqoiIp4Fd3YavBx5Izx8APlcx/mAUngPGSDqrOpVWR0Rsj4iX0vP9FH8IJtLYPYmI+E/aPCU9ApgNLE3j3XvS2aulwBWSVKVyq0bSJOAa4L60Leq0Jw6LLhOBNyq2t6axRjU+Iran528B49PzhupTmiq4CHieBu9Jmm55BdgBPAm8BuyJiKPpkMrXfbwnaf9eYFx1K66KnwDfBt5J2+Oo0544LCwriuurG+4aa0mnAY8Ct0XEvsp9jdiTiDgWETOASRTvxKeVXFKpJF0L7IiIF8uupRocFl3eBM6u2J6UxhrV251TKenrjjTeEH2SdApFUPw2Iv6Qhhu6J50iYg+wEvgExZTb8LSr8nUf70nafzqws8qlDrVPAddJ+hfFtPVs4G7qtCcOiy6twNR0JcMI4EZgeck1lWk5MD89nw8sqxj/SroCaBawt2Jqpi6keeT7gVcj4scVuxq5J02SxqTno4ArKc7lrARuSId170lnr24AVkSdfQI4Iu6IiEkRMZni78WKiPgS9dqTiPAjPYCrgQ0Uc7F3ll1PFV/3w8B24AjFHOsCirnUFmAj8BQwNh0riqvGXgP+ATSXXf8Q9ONSiimm1cAr6XF1g/fkAuDl1JM1wHfT+BTgBaAN+D1wahofmbbb0v4pZb+GIe7Pp4HH6rknXu7DzMyyPA1lZmZZDgszM8tyWJiZWZbDwszMshwWZmaW5bAwGyBJxyS9klZkfUnSJ9P4BElLc9+fjl0i6Yb8kWblGJ4/xMwyDkaxDAaSPgv8ALg8IrbR9eGs4yQNj661g8xqgt9ZmA2u0RTLUiNpcuc9QiTdJGm5pBVAS/q0989U3D/lKeCDnT9A0qJ0L43Vkn5Uyqsw68bvLMwGblRajXUkcBbFGkG9uRi4ICJ2SfoC8FGKe6eMB9YBiyWNAz4PTIuI6Fxiw6xsfmdhNnAHI2JGREyjuInUgye5T8GTEdF535DLgIejWMl1G7Aije8FDgH3p0DpGOrizfrCYWE2iCLiWeBMoKmX3Qf68P1HKZb/XgpcC/x5UAs06yeHhdkgkjQNGEZ+6emngS+mGwqdBXwmff9pwOkR8TjwTeDCoazXrK98zsJs4DrPWUCxAu38iDiWuWPmHynObawDtgDPpvEPAMskjUw/61tDU7LZu+NVZ83MLMvTUGZmluWwMDOzLIeFmZllOSzMzCzLYWFmZlkOCzMzy3JYmJlZ1v8AVaRhv0hSJ0UAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "\n", + "plt.title('Max Wingspan in Centimeters')\n", + "plt.ylabel('Wingspan (CM)')\n", + "plt.xlabel('Birds')\n", + "wingspan = birds.MaxWingspan \n", + "wingspan.plot()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:1402: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.\n x[:, None]\n/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/matplotlib/axes/_base.py:276: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.\n x = x[:, np.newaxis]\n/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/matplotlib/axes/_base.py:278: FutureWarning: Support for multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.\n y = y[:, np.newaxis]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAM8CAYAAAAGL+SBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd5xcdb3/8fdn+27apiekE0roASK9itLkCthQEQFF5IpX70+9XnsBUa961WtDUUFRkYtXEQQsgKG3hNBCKElIr5u+2V6+vz/OObMzu7Ozk/A9s2d2Xs/HYx87e6Z9t817vp/zOd9jzjkBAJBUZYM9AAAAciGoAACJRlABABKNoAIAJBpBBQBINIIKAJBoBBWKhpmdbGavDPY4fDGzn5rZFwd7HPkoprFi6CGokGJmK82s3czG9dr+jJk5M5vp+fn+bmb/mfb1lPB5sm2b5Jx72Dl3oM8xDCbn3FXOuWv39v5mdpaZPWRmjWbWYGYPmtlbX++4zOwyM3vE51hzPNfM8Pdb4fuxMXQQVOhthaT3RF+Y2WGS6mJ6rocknZL29SmSXs6ybalzbmNMYyhKZvYOSX+QdLOkqZImSvqSpH8ZzHEVGgFXGggq9PYbSe9P+/pSBS+GKWb2lnCWtcvM1pjZV9Kuu8jMVpjZyPDrc8xso5mNz/JcD0k60cyiv8OTJX1f0rxe2x4KH+s0M1ub9lwrzexTZva8me00s/81s5q06z9tZhvMbL2ZXRG+c98vvO5cM1sSzkbWmdmn0p/DzD5nZlvC57g4z+89mh1camarw/t/vr8ftJn9ysy+1ut5P2lmm8NxX97P/UzSdyVd65z7hXNup3Ou2zn3oHPuQ2m3+4CZvWRm28PZ64y065yZXWVmS81sh5n92AIHSfqppOPNbLeZ7cgx1k+njfWC8Gf6qpltM7PPpT1XmZl9xsyWm9lWM7vNzMak/Q1I0o7w+Y7Pc+xXm9lSSUvDcX8vHMsuM3vBzA7t7+eOIuSc44MPOeckaaWkN0l6RdJBksolrZU0Q5KTNDO83WmSDlPwRudwSZskXZD2OL+T9CtJYyWtl3ReP89XLalF0pHh14sl7Svp0V7b3p/2vGt7jfcpSftIGiPpJUlXhdedLWmjpEMUzAh/G34P+4XXb5B0cnh5tKSj0p6jU0EQVEs6VVKTpAMH+t4lzQyf4+eSaiUdIalN0kH9fP+/kvS1Xs97jaRKSedKapY0Osv95oTPMyvH7/J8ScvC32OFpC9IeizteifpLkn1kqZLapB0dnjdZZIeyWOsXwrH+qHw/rdIGhH+zFui8Un6uKQnFMz8qiX9TNLve/3MKvZw7PeGv/NaSWdJejr8Xiy83+TB/n/iw98HMypkE82q3qzgxX9d+pXOuQeccy+44F3885J+r+AFPXK1pDdKekDSX5xzd2V7Eudcm6QnJZ0SvsMe5Zx7TdLDadsOlvRgjrH+wDm33jm3TdJfJM0Nt79L0k3OuRedc82SvtLrfh2SDjazkc657c65Rb2u/6Jzrs0596Cku8PHy+d7l6SvOudanHPPSXpOQWDlo0PSNc65DufcPZJ2S8q2T25s+HlDjse6StI3nHMvOec6JX1d0tz0mYmkbzrndjjnVkuar56fXb5jvc451yHpVknjJP2Pc67ROfeipCXq+b6vkvR559za8Hf+FUnvyFG2y2fs33DObXPOtYRjGaEgwC28X66fDYoMQYVsfiPpvQreWd/c+0ozO9bM5luwA3+ngheWVAOGc26Hgv0nh0r67wGeK9pPdbKCmZQkPZK2bY1zblWO+6fvu2qWNDy8vI+kNWnXpV+WpLcrmLWssqAJ4fi067Y755rSvl4VPt6A3/sAYxrI1vCFeaD7bg0/T87xWDMk/U9Y1tshaZuC2cYUD+OMxtoVXm4JP29Ku74l7fFmSLo9bSwvSepSsF9tb8ee+n065/4p6UeSfixps5ndYGHpGUMDQYU+wmBYoeCF/E9ZbnKLpDslTXPOjVKwT8OiK81srqQPKJht/GCAp3tIQSCdomAmJQWBdWK47aF+7jeQDQpKTZFp6Vc65xY4586XNEHSnyXdlnb1aDMblvb1dAUlTGmA771AXlHwQv32HLdZI+nDzrn6tI9a59xjeTy+71MqrJF0Tq+x1Djn1vXzXPmMPeN+zrkfOOeOVjADP0DSf3j+HjCICCr054OS3thrZhEZIWmbc67VzI5RMPuSJIXNDL+V9DlJl0uaYmYfyfE8jyvYt/A+hUHlnNuuYJ/H+7T3QXWbpMvN7CAzq5OUOgbIzKrM7GIzGxWWrnZJ6u51/6+GtztZ0nkKZog5v/dCcc45SZ+Q9EUzu9zMRoYNCyeZ2Q3hzX4q6bNmdogkmdkoM3tnnk+xSdJUM6vyNOSfSrouKt2Z2XgzOz+8rkHBz37fXrfPe+xm9oZwplupYH9iq/r+PlHECCpk5Zxb7pxb2M/VH5F0jZk1Ktihnj4b+YaCct314f6I90n6mpnt38/zNCnYEV6loHEi8rCC2c5eBZVz7q8KZnPzFeyYfyK8qi38fImklWa2S0H57uK0u2+UtF3BLOp3Cho0Xg6vy/W9F4xz7v8kXaRg5rpeQbh8TdId4fW3S/ovSbeG3+NiSefk+fD/lPSipI1mtsXDcP9HwSz0H+HP7QlJx4bjbJZ0naRHw1LfcXsx9pEKGli2KyjTbpX0bQ/jRkJY8OYMGNrCtuvFkqp77QfqfbvTJP3WOTe1v9sAKCxmVBiyzOxCM6s2s9EK3qH/JVdIAUgmggpD2YclbZa0XEGX2b8O7nAA7A1KfwCARGNGBQBItCG5oOO4cePczJkzB3sYAFBUnn766S3OuWzrcg6qIRlUM2fO1MKF/XVWAwCyMbNcq8AMGkp/AIBEI6gAAIlGUAEAEo2gAgAkGkEFAEg0ggoAkGgEFQAg0QgqAECiEVQAgEQjqAAAiUZQAQASjaACACQaQQUASDSCCgCQaAQVACDRCCoAQKIRVACARCOoAACJRlABABKNoAIAJBpBBQBINIIKAJBoBBUAINEIKgBAohFUAIBEI6gAAIlGUAEAEo2gAjx5ZWOjfjx/2WAPAxhyKgZ7AMBQ8bafPKqm9i596OR9VVXBe0DAF/6bAE/aOrslSWaDPBBgiCGoAACJRlABABKNoAIAJBpBBQBINIIKAJBoBBUAINEIKgBAohFUgGfODfYIgKGFoAIAJBpBBQBINIIK8ISKHxAPggrwzBFZgFcEFeAJa9EC8SCoAACJRlABntGeDvhFUAEAEo2gAgAkGkEFAEg0ggoAkGgEFQAg0QgqwDO6/gC/CCoAQKIRVACARCOoAE+o+AHxIKgAz1iUFvCLoAI8YVFaIB4EFeAJ8yggHgQV4Bnt6YBfBBXgCaU/IB4EFQAg0QgqwDMqf4BfBBUAINEIKgBAohFUgGeOtj/AK4IKAJBoBBUAINEIKsATCn5APAgqwDMCC/CLoAI8YWUKIB4EFeAJMykgHgQV4Bnd6YBfBBXgCaU/IB4EFeAJEykgHgQV4BuJBXhFUAGeUPoD4kFQAQASjaACPHPU/gCvCCoAQKIRVACARCOoAE8o+AHxIKgAz1iZAvCLoAI8oT0diAdBBXjCRAqIB0EFeEZgAX4RVIAnlP6AeBBUgCfMpIB4EFSAZ462P8ArggrwhNIfEA+CCvCEeRQQD4IK8IzAAvwiqABPKP0B8SCoAACJRlABnlDyA+JBUAGe0Z0O+EVQAZ6wjwqIB0EFeMJECogHQQV45ogswCuCCvCE0h8QD4IK8IR5FBAPggrwjcQCvCKoAE8o/QHxIKgAT5hIAfEgqADPCCzAr9iCysymmdl8M1tiZi+a2cfD7WPM7F4zWxp+Hh1uNzP7gZktM7PnzeyotMe6NLz9UjO7NK4xA68HpT8gHnHOqDolfdI5d7Ck4yRdbWYHS/qMpPudc/tLuj/8WpLOkbR/+HGlpOulINgkfVnSsZKOkfTlKNyAJGEmBcQjtqByzm1wzi0KLzdKeknSFEnnS/p1eLNfS7ogvHy+pJtd4AlJ9WY2WdJZku51zm1zzm2XdK+ks+MaNwAgWQqyj8rMZko6UtKTkiY65zaEV22UNDG8PEXSmrS7rQ239be993NcaWYLzWxhQ0OD1/EDe4JFaQG/Yg8qMxsu6Y+S/t05tyv9Oueck6eKiXPuBufcPOfcvPHjx/t4SGCPsI8KiEesQWVmlQpC6nfOuT+FmzeFJT2FnzeH29dJmpZ296nhtv62A4nCRAqIR5xdfybpl5Jecs59N+2qOyVFnXuXSrojbfv7w+6/4yTtDEuEf5d0ppmNDpsozgy3AYnEorSAXxUxPvaJki6R9IKZPRtu+5ykb0q6zcw+KGmVpHeF190j6VxJyyQ1S7pckpxz28zsWkkLwttd45zbFuO4gb1C6Q+IR2xB5Zx7RP3/756R5fZO0tX9PNaNkm70NzrAP+ZRQDxYmQLwjK4/wC+CCvCE0h8QD4IK8ISJFBAPggrwjMAC/CKoAE8o/QHxIKgAT5hJAfEgqAAAiUZQAZ45+tMBrwgqAECiEVQAgEQjqADPqPwBfhFUAIBEI6gAAIlGUAEAEo2gAjxhZQogHgQV4Ak9FEA8CCrAM7r+AL8IKsATSn9APAgqwBMmUkA8CCoAQKIRVIBnjrkV4BVBBQBINIIKAJBoBBXgGe3pgF8EFQAg0QgqAECiEVSAZ1T+AL8IKgBAohFUAIBEI6gAzxxtf4BXBBXgCYvSAvEgqABPmEcB8SCoAACJRlABnjGzAvwiqAAAiUZQAQASjaACPKM7HfCLoAIAJBpBBQBINIIK8I7aH+ATQQUASDSCCgCQaAQV4Bldf4BfBBUAINEIKgBAohFUAIBEI6gAz9hFBfhFUAEAEo2gAgAkGkEFeEZ7OuAXQQUASDSCCgCQaAQV4Jmj7w/wiqACACQaQQUASDSCCvCMrj/AL4IKAJBoBBUAINEIKgBAohFUgGfsowL8IqgAAIlGUAEAEo2gAjxjZQrAL4IKAJBoBBUAINEIKsAzuv4AvwgqAECiEVQAgEQjqAAAiUZQAQASjaACACQaQQUASDSCCvCM9nTAL4IKAJBoBBUAINEIKsAzFqUF/CKoAACJRlABABKNoAI8o+sP8IugAgAkGkEFAEg0ggrwjMof4BdBBQBINIIKAJBoBBUAINEIKsAzR3864BVBBQBINIIKAJBoBBXgGYU/wC+CCgCQaAQVACDRCCrAM5r+AL8IKgBAohFUAIBEI6gA76j9AT4RVACARCOoAACJRlABABKNoAI8oz0d8IugAgAkGkEFAEg0ggrwjMof4BdBBQBINIIKAJBoBBXgGV1/gF8EFQAg0QgqAECiEVSAZ47aH+AVQQUASDSCCgCQaAQVACDRCCrAM/ZQAX4RVACARCOoAACJRlABntGdDvhFUAEAEo2gAgAkGkEFeObo+wO8IqgAAIlGUAEAEi22oDKzG81ss5ktTtv2FTNbZ2bPhh/npl33WTNbZmavmNlZadvPDrctM7PPxDVewBsqf4BXcc6ofiXp7Czbv+ecmxt+3CNJZnawpHdLOiS8z0/MrNzMyiX9WNI5kg6W9J7wtgCAElER1wM75x4ys5l53vx8Sbc659okrTCzZZKOCa9b5px7TZLM7Nbwtks8DxcAkFCDsY/qo2b2fFgaHB1umyJpTdpt1obb+tveh5ldaWYLzWxhQ0NDHOMGcuI8VEA8Ch1U10uaLWmupA2S/tvXAzvnbnDOzXPOzRs/fryvhwX2GHEF+BVb6S8b59ym6LKZ/VzSXeGX6yRNS7vp1HCbcmwHEsXMWD8JiEFBZ1RmNjntywslRR2Bd0p6t5lVm9ksSftLekrSAkn7m9ksM6tS0HBxZyHHDAAYXLHNqMzs95JOkzTOzNZK+rKk08xsroLqyEpJH5Yk59yLZnabgiaJTklXO+e6wsf5qKS/SyqXdKNz7sW4xgz4wKQK8CvOrr/3ZNn8yxy3v07SdVm23yPpHo9DAwAUEVamAAAkGkEFeMaitIBfBBUAINEIKgBAohFUgGd0/QF+EVQAgEQjqAAAiUZQAZ6wKC0QD4IK8Iy4AvwiqABPzGywhwAMSQQV4AmlPyAeBBXgGYEF+EVQAZ5Q+gPiQVABABKNoAI8o/AH+EVQAQASjaACACQaQQX4Ru0P8IqgAgAkGkEFAEg0ggrwhAN9gXgQVIBnjp1UgFcEFeAJK1MA8SCoAE8o/QHxIKgAz8grwC+CCvCE0h8QD4IK8ITSHxAPggrwjLwC/CKoAE8o/QHxIKgAAIlGUAGeUfkD/CKoAACJRlABABKNoAI8oT0diAdBBXhGYAF+EVSAJ7SnA/EgqABPmEkB8SCoAM+IK8AvggrwhNIfEA+CCvCE0h8QD4IK8Iy8AvwiqABPKP0B8SCoAE8o/QHxIKgA7wgswCeCCvCE0h8QD4IKAJBoBBXgCfuogHjkHVRmNszMyuMcDDAUkFeAX/0GlZmVmdl7zexuM9ss6WVJG8xsiZl928z2K9wwgeRjHxUQj1wzqvmSZkv6rKRJzrlpzrkJkk6S9ISk/zKz9xVgjEBRoPQHxKMix3Vvcs519N7onNsm6Y+S/mhmlbGNDChSxBXgV66gGpGrlOGc25YtyIBSZWbsoAJikCuotkhaK6kz/Do9tZykfeMaFFCMKP0B8cgVVD+QdLqkRyX9XtIjjv9EYED8lwB+9dtM4Zz7d0lzJf1B0iWSnjGzb5nZrEINDigmdP0B8ch5HJULzJf0aUk/lXS5pDcVYmBAsaHgAMSj39KfmQ2TdL6kiySNl/QnSUc751YXaGxAUXL0/QFe5dpHtVnSUkm3hp+dpHlmNk+SnHN/in94QPGg6w+IR66g+oOCcDow/EjnFMywAIQo/QHx6DeonHOXFXAcAABklWutv0+Y2QezbP+gmf17vMMCihcTK8CvXF1/F0u6Ocv230j6QDzDAYoX7elAPHIFVUU/a/21K3OVCgBiHxUQl1xBVWZmE3tvzLYNQA/iCvArV1B9W9LdZnaqmY0IP06TdJek7xRkdEARofQHxCNX19/NZtYg6RpJhyp4o/iipC855/5aoPEBRYPSHxCPXMdRKQwkQgnYAwQW4Feu9vQvmNmYHNe/0czOi2dYQPGh9AfEI9eM6gVJfzGzVkmLJDVIqpG0v4JV1e+T9PXYRwgUCWZSQDxy7aO6Q9IdZra/pBMlTZa0S9JvJV3pnGspzBABAKUs5z4qSXLOLVWwKC2AHFiUFohHzvNRAcgfpT8gHgQVACDRCCrAMyZWgF8D7qMys/GSPiRpZvrtnXMsTAsAiN2AQSXpDkkPK2hH74p3OAAAZMonqOqcc/8Z+0iAIcKxLC3gVT77qO4ys3NjHwlQ5FiZAohHPkH1cQVh1WJmu8ys0cx2xT0woNjQng7EI58DfkcUYiDAUEFeAX7ls49KZjZawRp/NdE259xDcQ0KKEasTAHEI5/29CsUlP+mSnpW0nGSHpf0xniHBhQXSn9APPLdR/UGSaucc6dLOlLSjlhHBRQx8grwK5+ganXOtUqSmVU7516WdGC8wwKKD11/QDzy2Ue11szqJf1Z0r1mtl3SqniHBRQfSn9APPLp+rswvPgVM5svaZSkv8U6KgAAQvl2/R0l6SRJTtKjzrn2WEcFFDHmVYBfA+6jMrMvSfq1pLGSxkm6ycy+EPfAAACQ8ptRXSzpiLSGim8qaFP/WpwDAwBAyq/rb73SDvSVVC1pXTzDAYofTRWAX/nMqHZKetHM7lVQfn+zpKfM7AeS5Jz7WIzjAwCUuHyC6vbwI/JAPEMBAKCvfNrTfx1dDtf8m+acez7WUQFFjMIf4Fc+XX8PmNlIMxsjaZGkn5vZd+MfGlBcWJkCiEc+zRSjnHO7JL1N0s3OuWMlvSneYQHFhyYKIB75BFWFmU2W9C5Jd8U8HqD4kVeAV/kE1TWS/i5pmXNugZntK2lpvMMCig+lPyAeAwaVc+4PzrnDnXMfCb9+zTn39viHBhSXQpX+nl+7Q+f98GG1tHcV5PmAwZbPiRN/kGXzTkkLnXN3+B8SgFyuvWuJFq/bpRfW7dQxs8YM9nCA2OVT+quRNFdBuW+ppMMVnO33g2b2/RjHBhQlx04qwKt8Dvg9XNKJzrkuSTKz6yU9rGA19RdiHBuALGguRKnJZ0Y1WtLwtK+HSRoTBldbLKMCACCUz4zqW5KeNbMHJJmkUyR93cyGSbovxrEBRSnuGQ/NhSg1+Syh9Eszu0fSMeGmzznn1oeX/yO2kQHIitIfSk0+pb/odg2Stkvaz8xOiW9IAAD0yKc9/b8kXSTpRUnd4WYn6aEYxwUUrbgnPJT+UGry2Ud1gaQDnXM0TgAJQOkPpSaf0t9rkirjHgiAPcPMCqUinxlVs4Kuv/uV1o7OmX2B7Ao142FmhVKRT1DdGX4AyMHMSA8gBnt0hl8A/Sv0+ago/aFU9BtUZnabc+5dZvaCsjQyOecOj3VkAAAo94zq4+Hn8woxEGCoYFFawK9cQXWRmT0maZFzrrNQAwIAIF2uoJoq6fuS5oTlv0clPSbpMefctkIMDgCAfoPKOfcpSTKzKknzJJ0g6XJJN5jZDufcwYUZIlBcaPwD/MqnPb1W0khJo8KP9eI8VACAAsnV9XeDpEMkNUp6UkHZ77vOue0FGhsAADmXUJouqVrSRknrJK2VtKMQgwKKGZU/wK9c+6jONjNTMKs6QdInJR1qZtskPe6c+3KBxggAKGE591G54FD7xWa2Q9LO8OM8BSdRJKiAQcCMDaWm39KfmX3MzG41s9WSHlQQUC9LepukMQM9sJndaGabzWxx2rYxZnavmS0NP48Ot5uZ/cDMlpnZ82Z2VNp9Lg1vv9TMLn0d3ytQGLT9AV7l2kc1U9IfJB3rnJvtnLvEOXe9c+4551x3jvtFfiXp7F7bPiPpfufc/pLuD7+WpHMk7R9+XCnpeikINgUzt2MVzuKicAMAlIZ+g8o59wnn3B+dcxv25oGdcw9J6n1g8PmSokVuf63gpIzR9ptd4AlJ9WY2WdJZku51zm0Luw3vVd/wA0oSa9KiVORz4kSfJqYF30ZJE8PLUyStSbvd2nBbf9v7MLMrzWyhmS1saGjwO2oggSgwolQUOqhSwkYNb/9rzrkbnHPznHPzxo8f7+thgT1GgAB+FTqoNoUlPYWfN4fb10malna7qeG2/rYDJY/SH0pFoYPqTklR596lku5I2/7+sPvvOEk7wxLh3yWdaWajwyaKM8NtQMlj5oZSkc9af3vFzH4v6TRJ48xsrYLuvW9Kus3MPihplaR3hTe/R9K5kpZJalaw+K2cc9vM7FpJC8LbXcPK7Ug6utMBv2ILKufce/q56owst3WSru7ncW6UdKPHoQFDAqU/lIpBa6YA8PowcUOpIKgAzxy1P8ArggooUpT+UCoIKqDIMGNDqSGoAM+IEcAvggooMsFp4oDSQVABRYbSH0oNQQUASDSCCvAs7gkPpT+UGoIKKDKU/lBqCCoAQKIRVIBncc93KP2h1BBUQJGh9IdSQ1ABRYq4QqkgqADPmPEAfhFUQJEiD1EqCCqgSDFzQ6kgqAAAiUZQAUWK+RRKBUEFFCkqfygVBBUAINEIKsCzQs10HMU/lAiCCihW5BRKBEEFAEg0ggrwrFAlOSZUKBUEFVBkCCiUGoIKKFK0p6NUEFSAZ7Gfij56HuZWKBEEFVBkiCeUGoIKKFKU/lAqCCrAs0LlBzmFUkFQAQASjaACihTno0KpIKiAIkVMoVQQVIBnTHQAvwgqoFgRiCgRBBUAINEIKsCzwi1Ky5QKpYGgAooU+8JQKggqAECiEVSAZwU7FT0zKpQIggooUuQUSgVBBRQZZlIoNQQVUKRYQgmlgqACioyFZ04kplAqCCqgyDCRQqkhqIAiRWChVBBUgGfsOwL8IqiAokUgojQQVECRYuKGUkFQAZ4RIIBfBBVQpMhDlAqCCihSzNxQKggqwDPyA/CLoAKKFCdORKkgqIAiRekPpYKgAjwjQAC/CCqgSJGHKBUEFVBkCCiUGoIK8KTQAcKagigVBBXgWdzdeBbrowPJQ1ABnhQqQJhHodQQVECRovKHUkFQAZ7FHSDRzI0DflEqCCqgyBBPKDUEFVCkKP2hVBBUgCeu1+fYn4+gQokgqAAAiUZQAUWKCRVKBUEFeJIqxVGTA7wiqIAixRJKKBUEFVCkiCmUCoIKAJBoBBXgWcFmOkypUCIIKqBIsYQSSgVBBXhAYwMQH4IK8KxQmUU2olQQVECRIqdQKggqoNgwlUKJIagAD9Kzo1BNDuQVSgVBBQBINIIKKFK0p6NUEFSAB+mRQdcf4BdBBQBINIIKKFJMqFAqCCrAg0FZmYLaH0oEQQV4RnwAfhFUQJEiEFEqCCrAg8EIDSp/KBUEFeAZAQL4RVABRYpTi6BUEFSAB4XMDOIJpYagAjwr2KK0BXkWYPARVECRsfAzlT+UCoIKKDLkE0oNQQV4kFHuK9SitIV5GmDQEVRAkekp/RFVKA0EFVBkiCeUGoIK8IDJDRAfggrwLO7MousPpYagAooM+YRSQ1ABRapQBxYDg42gAjyjGw/wi6ACihR5iFJBUAEeDMqZ6Av/lMCgIKgAz5jpAH4RVECRIhBRKggqwIPB6MCj6w+lgqACPCM+AL8IKqBIUfpDqSCoAACJRlABHjC7AeJDUAGeFSq0WAEDpYKgAooM+YRSQ1ABHgxGdhBYKBUEFeBZ3Mc3mUXPA5QGggooMsykUGoIKsCDwWhsILBQKggqwLOCdf1R/EOJIKgAAIk2KEFlZivN7AUze9bMFobbxpjZvWa2NPw8OtxuZvYDM1tmZs+b2VGDMWYgF7r+gPgM5ozqdOfcXOfcvPDrz0i63zm3v6T7w68l6RxJ+4cfV0q6vuAjBRKInEKpSFLp73xJvw4v/1rSBWnbb3aBJyTVm9nkwRggkATsm0KpGaygcpL+YWZPm9mV4baJzrkN4eWNkiaGl6dIWpN237XhtgxmdqWZLTSzhQ0NDXGNG8iqkGW41HNR+0OJqBik5z3JObfOzCZIutfMXk6/0jnnzGyP/gudczdIukGS5s2bx38wAAwRgzKjcs6tC/0RlaoAACAASURBVD9vlnS7pGMkbYpKeuHnzeHN10malnb3qeE2IJHiPqYqenjejaFUFDyozGyYmY2ILks6U9JiSXdKujS82aWS7ggv3ynp/WH333GSdqaVCIGSQ+UPpWYwSn8TJd1uwYJlFZJucc79zcwWSLrNzD4oaZWkd4W3v0fSuZKWSWqWdHnhhwwMoKD7qEgolJaCB5Vz7jVJR2TZvlXSGVm2O0lXF2BogBeFihG6/1AqktSeDmAPMLFCqSCoAA8KObshoFBqCCrAs8ItSguUBoIKKDLR7I2ZFUoFQQV4MCgrUwAlgqACPCvU/iq6/lAqCCqgyBBPKDUEFeBBIcPDsYYSSgxBBRQpcgqlgqACPIu72YGAQqkhqAAPCrr+XlT5o/0PJYKgAooMq6ej1BBUgGfkB+AXQQUUmajkRyCiVBBUgAcFbU+PPpNUKBEEFeAZAQL4RVABRabneF8SEaWBoAI8KGx3OgGF0kJQAd4VaFFa8golgqACigwBhVJDUAEecCp6ID4EFVCkWEIJpYKgAjwrVH4QUygVBBXgQ0FPRU9EobQQVECRYWUKlBqCCvCscKU/kgqlgaACPCjsqegL+GRAAhBUQJGJZlIEFkoFQQV4RkkO8IugAopMz6K0QGkgqAAPCrsobeGfExhMBBXgGQEC+EVQAUWmJwhJRJQGggrwoLANFHT9obQQVACARCOoAM/inuikuv6YUaFEEFSAB4PS9cc+KpQIggooMqyejlJDUAGeFWxRWvIKJYKgAjwofM8fUDoIKqDIsIQSSg1BBXhWqCYHSn8oFQQV4EEhGxxopkCpIaiAIkN7OkoNQQX4Vqj8IKdQIggqlLxfPPya1mxrHuxh5I+AQokhqFDSdjZ36Gt3v6T3/PyJ1/U4g7MyBVAaCCqUNgs+bWtqH9xx7AWaKlAqCCqUtO7u4MW+o6vb22PGvygtAYXSQlChpHW5KKiK58Wf0h9KDUGFktbVXXwv90yoUGoIKpS0OIKqUKU5AgulgqBCSfMVVIXt+gtPRV+4pwQGFUGFkkbpD0g+ggolrSuGV/2CLUxBYqFEEFQoad5KfwUsxNH1h1JDUKGkFWPpj4RCqSGoUNLi6frz/pD9PFGBngcYZARVnm58ZIWeeG3rYA8DnhV31x9JhdJQMdgDKAa7Wjt0zV1LJEkrv/mWQR4NfGnr7FJnEZb+6KFAqWFGlYcnlgczqWFV5YM8EvjS2Nqho6+9T/e9tCm1rdi66IpsuMBeI6jysGDlNknS7AnDB3kk8GVbU7t2t3Vqddp5qNo9LUwb+6K0MT8+kDQEVR627g5OAdHc3jXII4EvLR3B77Kto+d32tq+50F135JNWrGlqaDhEc38mFGhVBBUeWhq75Qk7WjuGOSRxG/zrlbdu2TTwDcsctGbjpb0oOrc8zciV9y8UKd/5wFfw8pLz3FUJBVKA0GVh+hFbVdLR9Htx9hTF/7kMX3o5oWp8zQNVa3h77S1o2cW1eJpxjzU/0aAQiOo8rC7LZhRtXd1Z7wDH4rW7WiRFM/SQkkS/R5b036fr+fkiYUMp+iphvivCEghqPLQ3NbzYrazZeiX/ySps4hOJLg3UvuoOnvCaU+bKTo9nhV4bwzt3xDQg6DKQ1N7p6orgh9VyQRV9+C+CMetuT3bjGrPXvr7CzYCBPCLoMpDU1unptTXSiqNhgqpSNfA2wOtHkp/7WmzscFYMZ3SH0oFQZWHpvYuTRhZHVwO91cNRekvgns6uyg2LVmaKTo69z6oCiUznIb27wiIEFQD6OjqVntnt0bVVoZfD90Xh8a0EB7qM6pspb893UfV1l9QDe0fHVBwBNUAokaK+toqSUN7382WxrbU5dfTAVcMooBKX+tv0eodmvmZu/Vaw+68HiM92ApVhkt/Gkp/KBUE1QCig31H1QUzqqHcDdeU1t041GdU2Q4zuP2ZtZKkvy7emNdjDE7pb2j/XoBsCKoBNEdBFZb+inG17XylzxaH8vcpZV8Oa1hVcDKBXXl2dg7GrNP1cxkYygiqAewOZxmpoBrCJbHutHfrQ7nEKWWfUdWGq+Pn29mZOaNK68YrUIQwu0Kp4HxUA2huy5xRdQzhmUZ6WXMolzilniWU0lWW5Xes3OZdrdrd1pmArj+gNDCjGkBUIhpZAjOq9P1SQ730l21GFW3b0dKe874fu/UZvfG/H9Tz63bGMrZcXMbMDSgNBNUAohW1h1cHk8+hPNNID6euIV76y7aPKgqqnS25j5V7ds0OSdIfn16b9fqCdQAO3T9FIANBNYDogNARNUFQdQzhF/CMGdUQDmQp8/ipSEvaKvn9aWnvSh0/lV4iJJyA+BBUA4he0KKgGsov4J1FXvr79P89p0O+9Dc9tnzLgLfNWfpr7r/0t7xhdyosGlsHd5WS4vsNAXuHZoos5r+yWWu3t2jd9haNDo+fqquKgmooz6iKuz39jmfXq62zW0s37dYJs8flvG3v0l+Z9cyo+l1xQkFQRfo75Ut/s57P3/6CTj9wgt508MScY8sXXX8oFQRVFpfftCB1+fCpoyRJNZVlqiy3od31l1H6K65AbuvsKckNdHzTk69tVWNrT9nOTKqqKEsFT66Q3tYUzLbGDKtKXZYGPn/X9qZ2/e7J1frdk6u18ptvyf3N5LBmW/Ne3xcoVpT+BtDY2hm8kJWXqaKsrOhewPdEMXb9RWNet70ltS3XeowPL23QRTc8kbEYbUWZqbI881+hv9lKdIzVhBHVGds7OnP/vKIOwRlj63LebiBv/t5Dr+v+QDEiqAbQ3N6p2spymZkqymxIL0qbvv+tGJZQWrW1SbM/d4/++sIGrU6baeSaUS1Ysa3PtjIzVfUKqv7KfztbOjSypkJ14cHBkYx1/8K9Rzua2/Xj+cv0WsNuPRd2Cs6ZNGKA7wpAb5T+BrCrpTO1YkFFuQ3pFRvSw6kYFqVdtHq7JOlff7dI82aMTm3PNet9bUtTn23ZZlQt7V2qqSzvc9vtze0aPaxK1RW9gipLsN22cI2+/fdXdOez63XIlJGS1Od+r0ccu6icc/rSHS/qHUdP1RHT6v0/AbAXmFENoKWjSzXh2X0rysti7frr6OpWQ9oK5oWWeRxV8mdU6eW+hauC0Cozqb3L6b4lm7R1d9+f5fKGnqCqDYOorMxUWWEZt4uOn+ttR3OH6msrVVOZ+a+TLdgXrQpmUc0dnXnvP9sTcSzVtKu1U795YpXe94snvT82sLcIqjxE76wryyzWfTef+9MLesN196mtnxfJuGV0/RVBiXPV1mZNHFmtw6YEDS/lZabaynJtb2rXFTcv1BU3L8y4vXNOK7b0dO2NrK1I3S/bjCqbHc3tqq+r6jPb6h1AzrnUjK+5rSs14+rocmrt6NKX7lisLVmCdLBF33d1JS8NSA7+GvNQXRmV/uJtprj7hQ2ScrdHx2kwmyl2t3Xqa3ct2aMzKK/a2qwZY4apOpzxVleUqbKiLHUg7qqtmR1ymxvbMpooRtQEhx5UlPXdR9Vf6/mOlg7V11WmnjOScVp6J93zwkZtbmxTfV2lmto704KqW39atE43P75KP5m/PO/vNZs4Sn+724Kfnc8SJfB6EVR5iMo8FTG3p5dbUH5q6xicoBrMJZT++PRa/eKRFfrx/GV532fl1ibNGFuXevdfVVGmyvKeoKooyyznrey1f2pkTbSLtu+MKtvKFVJ66a//ZgpJ+s0TKzV7/DBdctwMtXZ0p2Yqnd3d2rgzKFn2bsjIpavbqbvX3148QRWMs6qClwYkB80UvWTbh1CbKv3FO6MKc2oQS3/pzRSFnVGNHR6cQfmFPBd6bW7v1ObGNs0cN0xbw+OZqivKVG6mHf0EVe8ZVrTQsHNOleW99lFlebPQ1e20q7VD9XVVfVZY7/3z2tbUrv0njNDIcNYWLXTb0enUsLtnvPk64At/1UGT4+8Y3B2utrEnYwPixl9jL9lKPjWVaV1/Mb6Al4UvrNleJAthMJspotnByxsb87it09/Cs/DOGFuXKttVV5SrsqIstQRSRa9Z0tLNjRnhFYVIt3N57aPa1dIh5xSU/ir7L/39Y8kmvbppt+rrKlVXHfztbGsKgq29qzt10O5ApxNJ19XttHjdroxtcTRT7A5Lr8yokCT8NfaSreTTU/ori7X0VxaV/pIwoypw6S96oW9obOu37Bb5x5JN+sRtz0mSZo4dlgqN6rD0Fx2UW5E2S3LO6d4lm3TcvmNT26Jmiq5u1+eFOdsblmimFuyjKk9dloK29d7q66pSZw2OwrOzu1urtgUlyD0JqmziKf0xo0Ly8NfYS2t73xfomoq0rr8YS39lqdJfAmZUBS79pX/PD73akLp80c8e19W3LMq4bXoL//SxdakX1aqKMlWUWSpk0mdPyxt2a+XWZp1z2KTUz3nyqFpJQUt2NKOKSoBRWG7e1aq/LQ6aXKIwCrr+gtuPGRaULNdu77u0UX1dZWo/VPSz7eh0am6LTify+oIqDrvDpaWYUSFJ+GvsJdvxM+vDnd9xl/7MMl8kC62ru1vl4at4obv+2tN+7g8vDVY/d87pyRXbdPfzGzJum75q+ciantlNdUVZxgtsRVnP5XU7WiUFK0NE22ePH5a6Pgqo6Lxj0e/gfxes0VW/XaSXNuzSznCmVl9bmSo3jh8eLKXUe/9XdLth1Zm7gTu6ulML4uYbVL2bKE7ef5zmTBoRy+rpTVF7Ol1/SBCCqpdo38Tbjpyi/73yOEk9+00qy8v2qiT2ysZGrciyIkJvSZhRVZSZyssKvwJH1DU3dlhVqvyU7eDnNdua9eCrmyVJj33mjZKU1p5enrGvKb30F4XCqNpKTR0dzKT2HT88dX30wjw87ATsOYlicL9bnlydaoior6tK/Y7GjegJKsvsx1B9XVWfzr62zu7UYz+1cptWbR3476J3GfKtR+yTKjn6Fr0J6NWHAgwquv56id5Jv/3oqTpm1hi9a95UnXvYZElBKWlPZ1TOOZ31/WAh0YFWzU7toxqsGVWXS5XLCj+jCl74R9ZWpn4HL6U1VkQl15O/NV+SNHV0rfapDwInmkVVV5apO23HTXnaq+3OsGw3qrZKv73iWD22fKtmjeuZUUWdncOrKyW1pBpaotC8dcHq1FJao+sq1dwebI9mVOt3tmh0XeaK6vV1fWdUu9OOE3NOOuv7D+nla8/J+bNpas88tiw6ri+OKVV0HFt7ERzwjdJBUPUSvXutqSyTmelb7zgidV1FedkeL4ETnbY8Hz3NFP0/x86WDm3e1ar9J/pvVe7sdj2lvwK/UEVBNay6PBVUyzb3rCJxxncf1LbdPSGQPnOKZkMVZZZR+ktvDkmfUVVVlOkdR0/NeP6atGOxyixYZf3f3rifdrd1qqq8TO1d3brhodckBQcKN4X7mcaHMyrnpHHD+wZV7xnVrtbMcl8+HZ7RPq2e77dMJpOT/1lvFKQdgzSrB7Kh9NdL9MKRbUHSin6WUFqyfle/S+488VqwWvfMPE7vEJWOcu2jetdPH4/tVA9d3U4V5WUqL7OCt6e3dXWrqqJMNRXlqaBOPyX8qq3NakybjaQvP9TTKp554O7Gna1atyPYv7ijuUO1leX9NgnUVPWEXbeTFqzcrj88vVa72zo1Z/IIffjUfVO3LS8znbhfcGLGk/Ybl5qFjhueeeqPYVUVqRNuRqIJ35RwNpjPaT96n+SxqqKsT5nRl1RQFcGixCgdBFUvf3luvaR+girLEkqtHV069wcP67hv3K87nl2n1b12qreEZZtsjycF3WgzP3O3nnhta14zqlc2BeWwOM7uGs2oKsvLCr+PqrNb1eVlqqnsmVE1t/e/nFJ6Q0V1RgNFzyv45sY2nfjNf+rLdyzWLx5ZkXW/zg2XHK0fv/eongVqTfrsOXMkSZ/+v+f1wCsNGlZVoY+fsX/G/d588ES9+NWzdMS0+lR5Lz2oPnbG/po6urbf1Sc+ffaBOvPgiRmlyv70/jlE328c7enRGy6CCklCUKVZtbUptd7e8Oq+VdHei9Ku3d6sDTuDbrKdLR36+K3P6mO3PpNxnyh0ei+xE4nOU/SLh19L7cDOp+svjpUjurq7e5op+nn8zY2t2tncoc2NrV6fu72zW9WVZaquKEv9zHrPJCJT6mt17QWHpr5O71CrzDJj+vXjqyRl7rOKnHnIJL3l8MmpoOrocvrwqbN1yxXHpm4zvKbvzEhSKqCGhWGUHlSfePMBMrOMEE2/PLy6QhNH1qRWgsilqb136a9cZrHsokr97bGPCknCPqo008fU6faPnKDV25o1cWRNn+vT29MbGtt0+nceSDVaRJ5ds0Nnf/8h3fVvJ6mivCz1j9/f+n3R4y1vaEqtTNH7ttub2jW8piKjrNXa2eX9WJeu7uDFvMyylzidczrmuvtTX7/nmOn65JkH9Cl57Y22zm5V9ZlRZQ+qR8Nuv0j6z6EyR7tartXKa1PHOwU/+xP2G6dTDxivB19tSL1puevfTso6A0rNqEZU6cjp9Rk/DzNTmUndLgints721PMNr6nQ7rZOOedShyZk09zWd0Zliqf2Fx2ewYwKSUJQpTEzHTl9tI6cPjrr9RVpJbHF63aqo8vpnnAG9qaDJuq+lzZJCtrZ/7horcxM978ctFL3Xm3iyde2ar8Jw7WlKXjxXLOtOdU23ZaxErfTkdfeq7cesU/GC3drR1dqCSBfohlVtwtWUnjglc067cAJqet39Xr3//unVqu+rlL/efac1/3c7Z3BPqrqyrLUfsLm9k5NH1OXcfbebHpmKn2XQkqXq3EhKs2mzySjRokoqA4NTyfSW3rp7/aPnNj3+qoKNbZ1alh1RWpdwtrKcg2vrlBHl1NbZ3e/pWGp74wqavyIo/wbvUmK88B2YE9R+tsDlWmnon9xfbB4avT1t95xuE4Kd7BLwUGrn/6/57U2PLlfW0e37nlhg/76wgZ1dTtddMMTeuuPHtXW3dHSOi61Izu99Bd1q9353PpUEEaP51u0j6qizHTfS5t12U0LtHlXT4lvw86WPvepy/ECuydSQZXWTNHc3qWxw6t08weO0f4TgmOespXv0sMpW+kvH1HpL71EOyEMqmi9vv4MC68f38/MMlUiTCsn11VVaER4zFbjAOW/3vuoqspjLP2lZlSU/pAcBNUeSG+meHH9rlTnVWW5aXRdZcbO+rXbM1/UG9s69ZHfLdK//m5RqgS1bkdLxllot4ShlT6j2rK77xpywW38H2vV1e1UUZZ5LNKrm3paxDfs6Ltfqr8z4e6p9qjrr7IsdRxZc3uXhlVV6JQDxuuOjwYzlfQ3A5Ge7LJ+S39HTKvXPR87ud/nr0nto+r52Y8KV1cfaDmpaD2//kqgUZANTwu8uqry1Ext9wDn4Grq3Z4e40kNo1lnf/tUgcFAUO2BinJTe1e32jq7tGzzbp203zhVVZRpwogamZlG11Wlbts7qNJ9456XUpefXLGtz/XRjGrt9mZ95HdPZ32MH89fPuALXL6WN+zWrtaO1IzqsKn1qeuWbu456HZ9lhnV1n6CNB/ppav2cB9V+oyqqa0zte+orqpCd1x9on588VE5H7O8LPuf9BUnzdLB+4zs9361WUp/0XM3D9Dckr6PKpvhWWZUNZXlqRM3DtRQ0fvYq2j5pji6/qI3CeyjQpIQVHvgxNnj1NHl9LMHX9Pqbc2aM2mETj1gvGaHZanohai8zHLuuP/zs+tTlzfsbO1zTEz0Qn317xZlzGjS3f7MOv3XX19+Pd+OpCAUz/jvB/WBmxaEx1GZfvieI7XiG+eqvq5SSzdnn1FdevwM1ddV9jvjy8cVv16oS375pKSw66+iXDWVwcG1Xd1OLR1dqY46KZgVZevGTNffTDPa39Sf2qrgXyH9BToKr/6OkYtEM6axw3KX/tJb1dNnVI1tudf8W9frTc+o2sqczRevR2t0JmIO+EWCEFR74JQDxuv4fcfq5sdXqq2zW9PG1OkH7z5SP31f8C4/miGkL3ba202XvSF1+RNvPkBS35LR06u266O3LNJza3OfRHBbllNLRJZuatTMz9ydan/vzxOvbZUkLVy1XR1dPYvSmpkOnjxSD77SkFpWZ/3OFk0cWa2fXHyUvvwvh+jQfUZpa1P/gZzLyi1Nuv/lzXp46RY1tnb0HPAbhkNbZ5ea2rpUm6UtvDeXdql3qHzjbYfpR+89UsfMHJPzMWrS2tMjpxwwXmUmve+4GTnve/SM0TrtwPH9dmFGre0Zs7XK8tQ+qoFmVGu2N2eUlaPuUN8Tqu5ul1ohhH1USBKCag8dP3tsahYxbUydaqvKe16Iwpbu6WP6D6rjZ/ecD+mKk2fpl5fO03feeUTGbdbtaNFdvVYMl6QDJg7P3NDPa8kDrwSNEFKwRl0uD6adUmPFlqaMA2Y/8eYDtG5Hi256dIWkYEY1pb5W5x42WWVlprHDq7Rld5v+8tz6VJjl6+8vbkxdfmrFtrRmiuBPsq2jWy3tnRkzqv5MHxOs7nDsrLF9WtpH1lTqvMP3Sb2496en9Nczk5g4skavfeMtOnpG9i7QyIVHTtWvLj+m3+ujfVPps7WyMksFVUOO2bcUlJGj73HfcH1Ck7zX/qL9UpVhiTuOrkJgbxBUe+iYWT3vzKMXj8gh4T6Q4/bN/u69oswy2pDrqip0xkETdcTUnrbnOZN61vA77cDxqctfv/AwvfngiRmP19LRpbbOLnV0devUb8/XXc8HJcXLblqQWjoo2wrk6ZY39KzevXZ7S0ZX3byZY3T8vmP1h6fXyjmnDTtbUgvBSkGpa822Fv3b75/R9Q8s7/c5bnxkhe58br0eW74ltW3Jhl0aN7xKFWWmp1dtV1t4XFj08znl2/PV1N7V78oO6Q6aPFIP/cfpuuLkWam1Gr92waG68MgpOuOgCQPcOxDtj4pjJvG5cw/SW4/YR+cdvk/G9qmj6zRzbJ0+f/tifeHPL2S9b2tHlxoa23TaAeN1wdx99ItL50lSLEsoRftGo31nhV5Gqxjd9fx6nfbt+ezTixlBtYfeMHOM3jhngqbU16aOe4pceOQU/f3fT9Fb52a+IEWzlOi0E5Xlma8yI9KOh3rr3H30wZNm6YFPnaZfXX6MTj1gvKbU1+q9x07XoftkHsfzz5c3683ffUibG9u0amuzPnpL5qoYktQwwD6kddubdXhaUPZu/77gyH20amuzlm7erQ07WzOCKn2msbUp+/M0t3fqmruW6GO/f0bv/fmTqQBdsn6X5k4brRlj67S8YXdqCaVoRhW1bNcNsE8qMn1sncwsVfrbb8Jwfe+iuTmPT0oXnRwzjjMbTxhZox+850iNDLsIo1JveZnpU2cdKEn67ROrtTLLqWCiEzLOGj9M33/3kRmnJvEdI1HHXzTTo/w3sI/e8oxWbm3W5gHeEOL1Iaj2UHmZ6cbL3qBH/vP0PieXMzMdOGlEnwNxo3McRcf7PP7ZM/Twp0/PeMzIsKoKffG8gzUzLPH8+gPHpFZiOOewyfrZJUdnPPbqbc0Zq4r3PlBzw47s3Ycbd7ZqxZYmrdvRoiPSuvx6d80dNiW47r//8YraOrs1eVTPih3nHjZJFx87XVL2M9xK0rOrM/eRff3ul7S9qV3LG3br4H1Gavb44Vre0JQq/fUOlnxKf+mi1u2Bmi56i2ZUcVa7ol/zrHE9M/HzDt9HT33uDJWZ9MdFa/vc57k1wX7KOZMyOxZN/scazaiinx0t6vnb3s8bNfjByhR7KVfXVe8X26rUac6Dz9mOt4nWuMu1soIkHTurb1lxS1pDw9uufyzjus2NbWpp70q9EEfO/N6DqZUmZo0bphE1FWps7czYRyVJsycEgfn3F4ODjaPTt0vBz+C6Cw/T7rZOLVy5XVKwH+ZTf3hOZxw0UbPGDtN7f/FkxuPd/cIG3f/yJnU76ajp9ero6tb8VzarpqI8dRxVunyaKdJ9551H6PZn1qXKsPmKZnK9Z7s+RetCzhybuQ9zwsgazZ1Wr788t14vb2zUuYdN0oVHBqchWbhqu0ZUV+iAXqd18dn1t3Fnq256dIVuXbBGUvqMqrBBtWZbs6oqyrIuXzYYOru69fLGxn5XJEkPp1xdvnj9CKoCiMIn26oKkcOmjNLCVdv7BEVv2U4Rnn4s0/NZOgXXbG/u80KXvhzSlNG1Gj+iWo2tnX3G2Pv5epc7JWn/CcN1x7Prdckvn0ydRv6OZ9fLTBoZrlG4taldbz9qquZMGqHrwuPIjpk1Rlt3t6ujy6mjq1O1leV91rBLbz7Jx8SRNbrq1Nl7dB8peOH/0nkH64T99uz59sQb50zQhBHV+nCW8Z16wAR9775XtXJrs+5dskk7mjv08NItemb1dh05Y3TWv52dLR36zt9f0fSxdXrn0VP3Orxufnylfhaea0vqKUVHQfW3xRs0fcywnMeh7YmHlzboxkdWqLPb6b3HTNc5h01WZ1e33n3DE5pSX6vbrjrey/O8Xt+991X95IHl+t5FR2jr7nZdfuIslZeZ1mxr1sjaSt31Qk/D0zZmVLEiqAogepdelWO2dMoB47Vw1fbUPpz+VGdpgd4ULnO0+KtnaXtTu25/Zp2+e++rqeuXbtrdJ6jSzzk1e/xwjRterdcamrIG5cfO2F+vbNyli4+dkXWm8t5jZ+iJ17alQirinPTJMw9UmUlfvONFlZl0+Ykz9c2/vaz9JwxXXVWF3nRQT4PI2YdO0qrwNCmzxw/Tzy45OnXepkL4wEmzYn38fepr9dTn35T1uouPm66u7m4dNWO0vvOPV/TVvyxJXTcvS9ehKSj7/mj+MknSTY+u1NxpozRvxhi9vddJIQeyvtff3Iiw9NfR6dTW2aWrfrtI0sBnqO7P06u2a/nm3XrnvKlq7ejWlTc/rdbOLjkndTuncw6brL8u3qh1O1q0fmeLGhrbMo57W7+jRZNH1QwYxBt2tujr97ysb7ztsD0u/WYTHbrx2stHLgAAIABJREFU//73OUnBm8mjZ4zOOMv0lPpardvRQlDFjKAqgGhGVZGjrHTFybO0YWeL3nPM9JyPla3N+tFlW1RdUaZhVeUaXl2nS4+fmRFUV9+ySKOHHasTZvcsPzQ6PFj3f949V/tNGJ5apy7bO/foeK/+jBkWnN5dkv6wcI227G7Xf/0tOBh5zqQRYQPGi7r4uBmqKC/Toi++ObW/ZlRdZXCA8ZYmHTl9tOZMGql3zZuq/zx7jsZ6WJW9WIwbXq1PnBk0Vhw5LQir3zwRnJ4kW1BFx9Adt+8YHT1jtH48f7le2rBLv39qjQ6dMkoHTsp8Y/K3xRs1dXStPnrLIn3olH118bE9x4at3tas4/cdq8fDF+Zon+op356v9xwzLXW73zy+UpccPzPv76mzq1u3LlijL/x5sSTpD0+v0Yn7jVNLR5du/sAx+vuLG/W7J1fr3Tc8ride26ZRtZXa2dKhvzy3PvWmYf7Lm3X5rxbozIMn6rPnHqRZ4/o/9OPLd7yofyzZpHMOndTnrAZ7o/cuwFc2NWZULDbsbNXNHzhGl930VL/NRHF7ZOkWtXd16fQDJ8R2EHgS0ExRANEJEXOV9eqqKvSNtx2uSaP2vD7/2PKtauvsTv2hjqzt+/7jmbSmBuecdjR36COnzdb5c6dIUqpJYtOu13eeqXfOm6Z/Pa2ntDVn0khNG1Onld98i+ZOCxozRtVWZnQ6/ssR++hj4YkJa6vK9a13HFFSIdXbqLpKXXvBoanW/LnT6/vcZlK4H+ejp++vy07InAn++dl1GV8/t2aHrvrt0zrvh49o5dZm3fHM+ozrV29ryTjU4thZY1MHrf/+qWC/1T6javTlO19UY2v/q2is39Gip1f1LAn268dX6Qt/Xpw6WHnByu36/n1LVVluesPMMakmnugs2J888wAdM3OMfvbQ8lRjx73hQsz/WLJJ193dM8tcvG6nbn58pXa1duihVxu0aVerljUEq6jsaO7Q6q3NqXU0nXP62+INeS851tXt9NMHl2f8z0jSl+54Udfd85JGVFfozo+eqPmfPE0n7jdOY4ZVZazZGbeHXm3QFb9eqLdf/5je98sn9YFfLdQ1dy0Z+I5FjBlVAfQcSFmY9wVmpg+dPEvHzx6rBSu36/oHlmesF9fU3qXObpex2sGlJ8zULx5ZkVqI9fWaMKJamxvbNCrLWXWRnzs/epJe3dSY9aSN115wqD7/loM0dXSdunsd73T9A8s1d1q9Tj1gvCrLy1LlwUhj+IK9o7ldVRVl2rK7TdPH1qm+rlI7mjt04KThuv+Tp+nCnzyqZ1bv0PQxdbr2gkN16Y1P6Y9Pr9XKrc16asU2fe7cgzR3er3qKstVVma64MePanNjm5Zed44qy8u0LFwn8sFPna6Lf/mEFq/bpaNnjNYbZo5RbVW5zjhogs6YM0GfPXeOmtq6dNiUUdpvwnC99+dP6pYnV2vWuGG69anVOmPOBE0ZXatbn1qj8374sA6ePFJ/eW6DWjq69MjSLfrHkk0aXVeZ2u96+zNr9bnbX9CI6got+MKb9OqmRl3120UaUV2h7100V/cs3qCOLqdrzz9E9eH6nM+t2aFnVm/XhUdN1U2PrtD371ua9Xdy9emzdeGRU7XfhJ7DBMYMq9Yrm3br5sdX6q1H7JN6zD3V1e30xGtbdeysMSovM+1u68x4Qxf50fxlemrFNlVXlOnKU/bVrpYO3fToSl187HT98+XNamrr0r+/af8hNcMiqApg33HDtE99jT591us/b1O6GWPrUvt0bv5A5soIn3/LwZKkN86ZqLuf35CxTl/UrVRf2/MPNW1MneZ/6jRvQfW3fz8lr7PXon/7TRie8YKYLr1zNL0c/NHT99OP5i/Th3/zdOqULW2d3XrDzNFasHK7TtpvnJ5auU2X3fSUHnilQaPDNxIHTR6hMXVV2tHcoSj3Jo+q0TMK/s6i2fBX0vadXXrTU+rqdvrieQfrgyfNSh1L9PV7XtLKLU1q6ejSEdPqNaquUrd9+PjUySMjY4dX65dpS4pJ0gmzx+n4fcemZgij6yp10RumaZ/6Wv3uydXasKNVi9ftkhTsI/rHkk2qLDdNGFGj0XXdatjdpgVhB2pjW6f+unhDqiO1sa1TV9y8MPVcf3luva45/xD9/OHXtGZbsJ/u3pc26YfvOUozxw7Tpl2tmjSqRsOrK/TPlzfrD0+v1SfefGCf8viR0+t1y5Or9dyaHfrVYyv1/950gB56tUEXHjlF9XVV+vKdi/UfZ83R48u36s0HT9RX7nxRY4ZV6fjZY3XB3Cm6+pZFqqoo00sbdmnDzlZdMHcfrd3eosXrd+q3HzxWh04ZpV2tHXp02RZt3d0eLLF2+n765JnBWaQbGtt064I1etN3H5IkveWwyXIunoPCBwtBFZPLTpipXz22UpI0Z/II/YfHkPrnJ0/ViJpK1VSW6Yiv/kM/fM9ROuWA8f3efvKoGt353Hpd9IZpOnG/calzXNX3mu3kqv/vqTHDqjRm2N69s8Teu+T4GTp23zG65JdPadzwKo0dVq3yMtPP3z9PtVXlum3BGj2ybIseeCVYOmt7c4cuO2GmTj9wgmoqy/WFPy/WtNFBGXDSyKCRZfqYOo2qrdQRU0fpubU7NbKmQrtaO1PNOL96bIXem7Zv9aZHV6Yuv+XwYF9Rtllhf6694FBd8ONH9S9HTNY15x+aqkQsueYsbW/q0P/732d19en7yUz63O0v6KxDJukzZ89RZ7fTO3/2uJ5bs0NnzJmgFVuaUo0Qh+wzUp8680B1O6dZ44bpT4vW6Ufzl+lLd7yYet6rTp2tnz64XN+/71Vdc/7/Z++84+26qjv/PU+9y5YlV3DHxkxoNgRCQjch1FACSWCSyYTJDEyYDAmQAAmYNBhKgBQIKUwYakJoNjbFDtgGXLAN7t2WbcmSrK4nvV7O/PHbP/a6+51733uSbEn2WZ/P/dx7T9l17dX32v+po03PPX0N57zscY0+3Lf/4mnct22Q41ct5nNX3sebv6CN91+6Ju+Le80nLwfgIxdl3/G3btrEe85V/UcsXcDO5Hf82rUbWLpgLsNjk7z67y9vHKOzzzjypxrT6mUL+J1nnsTNG/p5wqNW8ObnnjptyrBDDVpG9SDBOS97HOe87HFcdudWntKw92lfIGYnuPt900dieQ/V6/7pSu7+yxexc9CMqmUkDzdYvXQBa5Yt4Iu/8zSecNzKKfvnnpA0o1858zje+aLHcsvGfn4unfH1cycfwXf/4Nk/fdYZ5S1wfPF3ns72wVGOWbGQXUNjfPUn93Pl3dv51k2beOy7v9XYnqbtDNPBKWuWctW7nj+l7QvmzuGoFXP4wu887afXLnlb3jg/v6/iBWccyQO7hnnrL57GikXz+L8/XMsxKxfx7NPWdAhib/3F01i5eB4X37aFt/7iaVRpbKqKjk3thqqquu6xW7k4BxO94HFHcfeWPbzk8cfwiYvvYsueEZ7/2DV86of3sGT+HDbtGub0o5fxd7/+ZD575X189vJ7+aMXnc5zTlvDwMg4AyPj3LhhFz9/ymo27RrmTZ+/hrOOP/ynJzS874JbOPuMI386j4Z3vuixsxvkQwyqh2PiybPOOqu++uqrp3/wEQJv+tw1XHBDTgJ74hFLWLt1gAvf8kxOLcLWWzg04ep7tnPtup284RdOmvbZ/uGxKdlTmuB9F9zCJy+9mz84+zG8OQW7lLBx1xDv/+at3LpxN8cetogP/8oTuHLtNm7btIePXHQ7b3r2ybz9hfvX5H2oQ13Xe+0/2jOiRM0Plv+pqqpr6ro+60EpfB/gkGFUVVW9EPgYMAf4p7qu39/t2ZZRdcLm3cNcfc8OLr5tM8Njk+wYHGXVkvl84NVP6Ho0RQstPNA/zB9++Xr+6jVPnLUZd2BknD8//2be/NxTO/JDtnBwQ8uo9gGqqpoD3A6cDawHrgJ+ra7rxpjMllG10EILLcweDlZGdaiI008F7qzr+u66rkeBLwIvP8BtaqGFFlpo4SGAQ4VRHQusC//Xp2s/haqqfqeqqqurqrp6y5YttNBCCy208PCAQ4VRTQt1Xf9DXddn1XV91urV3UO1W2ihhRZaOLTgUGFU9wOPCv+PS9daaKGFFlp4mMOhwqiuAk6tqurEqqrmA78KnHuA29RCCy200MJDAIfEht+6rserqvpd4NsoPP1TdV3fNM1rLbTQQgstPAzgkGBUAHVdXwBccKDb0UILLbTQwkMLh4rpr4UWWmihhUcotIyqhRZaaKGFgxpaRtVCCy200MJBDS2jaqGFFlpo4aCGllG10EILLbRwUEPLqFpooYUWWjiooWVULbTQQgstHNTQMqoWWmihhRYOamgZVQsttNBCCwc1tIyqhRZaaKGFgxpaRtVCCy200MJBDS2jaqGFFlpo4aCGllG10EILLbRwUEPLqFpooYUWWjiooWVULbTQQgstHNTQMqoWWmihhRYOamgZVQsttNBCCwc1tIyqhRZaaKGFgxpaRtVCCy200MJBDS2jaqGFFlpo4aCGllG10EILLbRwUENV1/WBbsN+h6qqtgD37kMRJwK7gWXFNw3Xun0/nJ89mNrycH72YGpL++zB15Zez25l7+D4uq5X7+W7Dxo8LDWquq5X13V91t5+gIVoosvvpmuPxGcPprY8nJ89mNrSPnvwtaXrvX2gfwcdk4KHKaNqoYUWWmjh4QMto2qhhRZaaOGghjnnnHPOgW7DQQfvfe97Hwt8FRgsvq9puNbt++H87MHUlofzswdTW9pnD762dH32nHPOuYaHETwsgylaaKGFFlp4+EBr+muhhRZaaOGghpZRHaRQVVXXuamqqtrHsvfp/VDO3JmWVVXVnPT83L2oZ8Z4WlXVwlmWPSd+F/f2apz21/jubR1VVS1O31P6tA/19U1X716U+aCP00xgf47T/oBuOFyOV1VV88Lvn86Pn4u/e9RVNf0+2KBlVA8RVFV1RESsLs8cmXDrKOAV6Z2+qqqOrqrqu+mZ+XVd1+m5k6uqekVVQHquz5/0P95fGf6unIborayq6pji2pqqqlYB3wb+saqqM8O94wvkX5D687vAbcA7q6r6+aqqXl9V1YqqqpaHNs8Nba/SeBwDvKqqqtVlP1L/Twxjtxp4e1VVz0z3V6Xrb6mq6sVVVT2pqqpTQjlHAX9XVdWLgK9WVfXEqqpOSt//E1hSVdXhRX9WNlyrQl+PSb8PT9+rq6r6uV5jHNrznKqqnh/G+OmVGPzx6fOsqqreV1XVGcDZqb7VVVW9qqqqeVVVHZXG42tVVf0m8MrUn67MO7Td8Lyqqt4axvuESozvrKqqzgfWhOf7wnsuZ3Esr/xd/LeQcFQxrzMmmGEeYx/mht9rqrwWYpuMa7+AcPiE9P+4qqo+UlXV0cX4TLd2F1Z5ra1o6K/72hc+xzWM1WHAX6Z5WBDuzwd+JpT5OOD9VVU9vqqqJwAXVFW1pJYv59g0D48CFlRaB68O5c2thC8VsCqVf2yiKwuqqjo9Pbcm3XteVVWfDG1cWs5Bt7kpf1dVtabXOHYd39ZHNXuoqqqqpxk4P1NV1UnAycA7gU8CC9Bm5EvS/RPRgt0JXAy8HxhChP07wDzgeuAvgOXA36T/JwC/lu7/JD37H8Cvp+e+BSwBXljX9XsTko4CZwN/BTwHeB7wSuAPgFV1XV+bFtRk6sZ84KPA3cC/ooVyFLAS2AP8EXBsau/zgdWprO8ip+5j0WL5a+CtqT2PT209O7XnYuC9wEuAZwLvS+OxGvhDYCNwSurz9tS3X03lvQPYkN5/JfBu4E2p7m8C/5DGe1sar+Wp3R8DngHcA/x3tP/ksFT+CHAZ8CvAAHBJemYj2qPy58Am4J+BJ9V1fVGa7znAC4C3AYcDP0zlPz/1+TLgPcAtYXznAWMJD44GvgCcCnw4jcHPpHF/ZRqvbwKvA65GOPT/gN9L4/OZVM9hwGLg54ErgOPTPP5MXdebqqp6OnBnXddbAo7+AvBahEcPAOeltr8BeBXwCmBumvc5wItTuy+qquppSOB9JfCLwLXAlcCTUz//GbgdOAL4b6ndu4HnAl9HjO/l6TMXWJTmwX1+E3ASsLSu65+Y4KV2vzC99zzg79D6egxaI/+OcO9Y4H+htbIyte/lCEfWpb48GvhBqncC+A3gVuDX6rq+v5LQchZak0Noje4APljX9XhVVSuATwHfB56e+v2O1McR4CbgjcB1wOY0tiuAt6A1exLwJeBMtG5fB5wGbEHr4cmpjW9I9b8L+O0012tT3/8MGEttOAfYle7/I/DmhANfS2O8Lc3BsQg/N6WxeT/wmwjv96TxOy/Nw4lpTL+SxuIjqd331HW9B6CqqicCd6Q2AjwO0Ytj6rr+dFVVL0ht+S1g23Q0NELLqGYJCSmX1HW9oZJke1td1xPhvqWIUxEh+jyarD2IgNyIiMsa4D8BL0UIdi3wBISs1wFPS+UsBS5ARP6ZQD9C9jkICf87IuqjCMlfhgjZVuAqoAZuRkg+gJBsA1pQi9GiMuG8HBhGi3Uk1XMcWjRzUj/mp7r6ENI+HSF8nd69ByEo6ffC1Pfx9DkZEaM6lTme6htK/b4deBIi0hPAhxByrwAqxAjuRwx0MVqki4EnAt9DxOZE4Azg2YggzU1zMT/V6zm6Dy3GvjQG46kdc9NnQbq2Fi3y5yLmW6exXYII/BGIKNwG/BsiLJ7vOakNS1K7LwT+CTGXd6H5PQ/N+2Sanz7gR6k/jwd+NpX3aOBfgP+MGN61qU19CK8WpXE6CeHJUamfu9Hc/wbwAUSMbkzE/lQkOKxCRGsSODe9O5qefSki6CvTeFhgeC9i6D9EeDiRxuqkVM6i1Pfh1MaV6ZkNCK8uTWP0QOrfL6cx35Xm6MepP2tSHW9M97ci4vnR9MzzUEaGEYTrj0njfWWak19OZYylee1DxHp5GrcbUv+WIBw8MtX7I8RMP4Bw54VIwHkPWVi4AAmZf5H6NJ7+/w1iVguBP0HMY0Vq4yLE6BaSBanfT/1Zi3C3L43J0jSXd6Y5OgHh4rcQMz85zdPNSNhblv7PBy5Ca2ABwtnr0xwMI/zrQ2v0PsTk/wbh8Ugap08jBj8fwbo0r99O4/RSxMwHqqp6KRIe/wdav7tSeaOp79cCHwTeW9f11TMR9jugruv2M8MPWjwvRFrDXyFEXtjw3C8hgnsBQtwRtEhMDK9I10YTYk6k+9vQAhhLz/Ujwjme3q3TJ/6+Pf0fQtLZCCJMd6AF81m0mN+BFnh8t24oc2uqb3eq/wpE5NzG+P4YIr6j6f9EUeYQIlST4ZlunwG0gHand/z+WjIzq8nSfp3KvDu9txUR3J+gBT7U0NdufZ/u/jiSbpuevwYtyl2I4F6f5qB8bihdH0yfoWK83EcLDnXqR3+45vH0O6Op73vCZzJ87gtlD6TvP0R4PB8RxN2p3l1IKr8svWtcGUWMq2ksB8i4PU7GgaZxnGy4PpE+w13uj6Xyh9L/nalPv53GYQLh9jid49g0p5MN99yGsVC/5+fS1PeJMEajaYyHU7t+nOZnByL0G0IbBpGgN4EY4QsQM9nT0Da/sw3hUJ3qnAxj9E9orQ+mMm4Oc+o1W45f7O9E+r8JrdnJcP1WpDkPF3M1Ep6zwGFh7jLgpYnevQExxecDn0v9vQ/h0xXAf0GM/FbgV/eK9h5o4n+ofZB0cmFCqpc33D8FSX9fTwgxgDQPI/1oWhg/QpKRNZhhRAw3kwmdidd4+L8lvR+R/fb03J5U32VIkhxCUvk7EuLcQiaOJZE0IdiZylyXyv1JuubFPIKYRySW3Qi8GdwQmRiVCzT2xcx7Z6rDz40D68NYfIJMwK9P1+8EvogW4gfoJPpxUfZiVPGZ+E68No7MgH6+H5l9Lk592Y2YVxNh9/v+vQ0x2viMiYPrfCDMT2RwZZsmivdiXTWdRO+EhKvPCOXfn+bITGc4zV+co9gn4/IkItB+t3ymZNrlZzj83oiIfmR2I+na9WG8f5L+j5MFoEhUewkk3YS+3eHeIDL51uHePeH/CFprG5BA6HKHinJ3FfU2MdI4XxauBtFatbC4I43tBNKkvkxeE19N4+a5GCvKL8eiP302pe+xVN/3wth7HqNwOZT+D5Bx8NNI+zw7Pf9e4E+RiXo3cBeyPLwJaZMfRhaQn4vC/0zobmv6mwFUVdVX1/Vk+P8S4EWI0HwTmcxAkuoy4PXIB/SSdG0PkmCHkZnIgz6J1G8j2RyyaaIXjKdnoxPTZRHKN5L5uV1I9S+dn+W7Rsx56dnh1C/fX4vMECtCGbGe8prL7EMI3tfwbPmONcll5AUdIwbHQ5ttjlqGGFYfkjKf06WO2YDH0u2dQGM/gExFkBf03HTPuFLOoxnRolD23cgstSw8Z0KwOJUR57Eiz385Jk1tr4pv0vvfR+bpTaldTwn1zEHECrLZB0TQFjN1ruMYleMFecxmAmaOS0IZQ4gxnZmubUl9WIdMzyb+c8M7cY2VdTfhqttp3BxP18aQia7sr4WmHyNT1yK0vmzO83PG++mgbJOF13npU9btYJTY5qqhnG59Ba2ZFXSOj+tsmi8LLR6bBcgPfA4S0L+H/FxjaK5elMoaRIy+D5lbLwA+U9f197u0awq0jGoWUFXVa9Giubuu6xurqvoAmohPIl/FOHLK/iNiSHchJLYP5A7k76nS/wppLUehCYTuSAWdSGdkiYTKBCEStoFU/+L0zBCZUHaD7QgJlyDEjVFjLncslftQhvbGhV8jCfCw4pqJ6f4ItY0EdoxMMDahBb4DODpdswN5MZ1QEukm4jUdoe8GlpinmwM/tz79PiFd3418IMOIIZlBzaOzv4ZxMoF8MMC4NYrw2n0rGYcFgsH0bZ9nnd6d1RaFov6dZJwyU/AcmhGW63ArEtzmkTWkWW/DSNCNqQ/R2a8htEb3x1xMJ0hEQdaWAAupNdKaPoKClI5CwtcNyAUyn6ztno9Mqiei8fuLuq53zqiFB9qUdqh8kOPyLiRBfAbZdOchCeKiNBmfRbZj28/HkUkoqv3R31LaoXuZSLo9Yx+BpZ2r0+9tdJqEepVdmgq6+cPKcqYz6zSV3e1eHJdxsvlhV3gvmqBs678GLZQm89RM657p87vDb5sy7aPzODf5Cprm7EvF3M50LLv5YKbr4wTyT12f2rsBmX6Mk6OhjGhC3NvPbN9vMpWOkoncKGII14dndtJpbitxfTZtKOctmtxj+4ynl5PxwAEUpUl7b3DR8xGfGUDr2f/ti+xFN0q8iOs6/t7JVJyqQ9nxWftHh5GQdhPSbu0OGEJMahK5Rz6NXBxjiJH1ISHgKOAxs6G/rUY1A6iq6g1IMzoHaRsvR4zrK0j1/zIKI34Zisw6Fk3WXIRUixAyzEMTfHj6diRbRfYxrWxoQs1USc4amZnTz5IX7TjS0Co6JaFuJggvrJ0ogtAmQtcXJa5tSHqM0E/WCGcLw0gybNIgbHPfQY5gI12zpmemtYI85hNM1Qb2BjxmUVMdotP8NVOzVo3G7oj0f5wsdcdF2GQ+La+Xc1mabrtpYzvRuNRozOcWdbue0qToKLKyXVXD79lAHIM4xpAJ5ABZeh8lazaTSEh5YrrWbTxie+nRzjif1s77wnULTYel5zcji8MS8pprwrmZjE25vq01us39qezSUtBrTfcCj21f8X4TLttCMY78mceQLRnfQD6q+SjSd0u63ocE9hMRzt2K/MaLkeXpf9R1PTibBrcbfmcGp6DQ2BNrhaJfgpjUb6DQ13G0X2UATWQ0VSxBkuB9aLxXIQQ8nE5E8T6VJsnB4e9G5jEyg5uLQtltt19GDgOeyQKBTIhWoAU4Gp6xVOvnD2MqeLHOFmqm+toi9KV2Rb+eF9NStHg3kv1689P3PPa+PTW5/5FJ3UNmgBeTNdmxspAEUUo1XB3KnkuOiIz+BbdjMvyOTm2366c+UzrXcfQJDiPG+rn02+Hli1M/7A+KeGicmghlzi/qM25NR/ynAzMpm6chawwOwvl6avv9ZD+v2/wUOpkl4V4JFZ3t9PNj4T5IU7JZ26bOCTT/Xwzv29TndyOTimPVTfAoYTx8LIi5rytQAIkDsazhzJZ+R/wpmTsN/y3QWAA8BtGyfjRHL05t+y4K3joCzdH5iE4sR0L6e9B6/SDwxdkyKWh9VFMgxvdXVbW8ruv+9Pt9aE/JWbX2UJ2JwnuXI03qGKRtPZVMfB9APowoJd2A9ktZeopS5WwgvhcR1zZ+L5wxppeGo0T4j2ifTpMDeX/4fbrBTMr3GDYRHGbw/t5AbJfrhyx5m5lF7bV8320zc3OgwAQSDI5i6nz00n5n2k/XfSvySy1E5prlSPMvNfTSb7Y3xHC2YKY8J/yPwUJlAEq3gJ29qdfm4vmhjMFUV4U0qAVkjd9afNQw3f4YIGRmMo/emm4cc69Z0wRvVzku1HEHYgAryQEb3creXxC1uhVoTD6MtgisSO34AgpcOoy8l/JMJGhckvqxGvi7uq6/uTeNaBlVF6iq6n+jTadzgXfW2qH+52jX+DnkjAbLUBaAEbIWtYKpCDyMQkufgIhGt4itaAJpQr5I+KI07midXhF13aDJjBOd6b0WQpP5YYypElspfU+E+/ZBLKBzYW9HmqfHxPuVjkvPmLnuD2LarY+ROUai2i16sSzH4xjNO3Hubd6MhIfwnJnhbIiRhZgoDO1CDNIOeQdQxLKb8GB/E8ERpvbVEBm+9345W0UTwS/bNtu2GncdqOC5jSbfLWg9Lwrv+DvOoevt1Z5oWrNwaXNipBXWZgcQ4zwylOe2RsHIWnfJvGLboinT96OZL87LXchC5PZ8B21afhba6rKWnOFjLhJ8zkMbrY8nm+o/C/xWXdd1FPr3BlpG1QApZcqrkaZ0LZJk3lXX9TVVVVnjuAARmMcghlbRGYUEnc5Mh3tbOotui7eXAAAgAElEQVSErrQNj9NJBMvFFzciLkLSzuGpjFJ76ga2U0c/iZG1F4Hal6im6UxFtn3HukbIxLVCJtRHT1PObMFEouyzw8QXkvtsQtXNL1WWMY5MHm8k+x8dvBAjBJtC2k24jVdRy+1GpGsUlfhd4DUI5zald/2JMBMf20x9YBF6PVfigbWoDQiPl6T67kRCyQJy0MLSGdbfC6KAF02sc+hkOuuRpWSEHLIdx6HUBGfTLgsTFlT6wv/oq3swhAVoFjAjLmxAZvUz0v+b0X6oo1Aw2TKUHusFKLvLdjKuzkX+q4XA9XVdf7Dc4jNbaBkVTMndlzSnT6LIvucjRvUslB5kM4pmOZWcZmaMbA5Yiuy3pN8wvdrfC+yPihIy5DRGZmj3oiCO0qHreiIx9vsXoRBS39+DEHUxzSbDCPtr8ZQS8gjZ3wQ5hNoLdgAx50gg9qWtTXvS4juO5IOsGZXMpNSsLPlaYHG4dWTwpWnNUVY2/zS1JRKv0mRcRpztQQQ+7s9yX2ejge5PIhmtBf3p/+FkjWAItd1CVyTms2WUTdD07mXI1+WxjHi2DWkIMHV/0Wz2hpUQGaXbBVkAXRye29d+RzyO896k2Za4fAeicdvT933kTBuvIDPV9yGf3WsRHbqxruvfqKrqZcBddV3ftBft7oBHfDBF4ZP6w6qq3o7U3CUol9VL67p+C1o8r0e5zeahaL8JsrlqJUKwCURYbaf2/poyjLRbVFIJNjvtpNOf4AVvKeU4svO1CaKznPT+i9J1O7OXk/PhRRt8E+wL8Yrtjk77iqkSf5Sgo7ljMlybTovs1dbS52UYTt9mmvZjWBM1mMmVvrLoaF/A1OCW0nQzh8wIY4BGSaDi/EUzzm4yrs1H+Pg1hKeRWH0/PEcow/hKw71u/3tBtCZQ/K6QOe1whHseL0eqOvy6yQReCgTd6m6C0iS7B/mU55IDhvrD/SPCb2uzUaOO9cxmbJx9xaHhVap3AM0jTA0p74XDTXWb6cW1E3HXTKrUKC10jyP/+lVImP1Eah+IGd1NDm5ZSg7m+n1gTaWM/d/YH0wKWkZFYFIvRyHen0vXdqDxeWFVVeegiXUm5qch56EXozccOpqmRiascbJj1hJilKQidENEvxvD1mM9Lm8ukp7LcpoYop83gV1CRtjS5zMdQ+qlzttZDZ3RgybS3YikI+Ic/eS8h2PkUP/9bQoxczCj8Jz6mn+7bfFaE8wjB09A3lALWUNz2Y4EdJ9iaHI3Ih3xqEJEflOqYw5KjvsOxAwga2tPQXtayjLN6OI4jPSovwlKZu2PcW4emfAa5qFN735nMvUlEufpTIgldHveOOb5W0qOcLRVYTvZBL0Ejcu29F6Z+SUyrqgdNTH8MXJezj4UcLAY+bnXI/pigcjCmxnNdOPeZK0pNWevubjuDLbaQGZSTl318whnTkHC8KkoZdJJyOc+B7lC3oGsUEOIwS3dF1NfCY9Y01+l85Qm67reUVXVMrSR98y6rh+T7i9FR2a8HjGmdQhhT0YMYV7676MPamQWXI0kpYVosstw7ibpqCmarXwnRj/Z7OCs3DOB0sTm7xJxu5md4nszZRKlHT+WV4ffVXHddaxHY920R2t/MyrQvFkgiJJsE8FsmsfS7+gIMmu6yxre8xiNhXevQRnYa7LgYIbm33MRQbkP4aQzpK9K94ZQlv4/QzgZA1xuR1ngK7LJupd5urQCTCfh98rG4fm1Wc9mTKcZI43ZHrqnz9pX8LYCm9hsEnXbHKXmtk/XV+idpqkmZ5CvyYEbFZq/9YjGVGhD8+FkP+zemPyacKxXGdE/6me/hfxTx5G3WtyM/PGjKAhkHOHbCFo7N6Z7n6/r+iuzbHNvONAZHw5QlokXoR3T/wb8Wbr2OBQg8dfhucUoX9+lyLF7OTnjuY+usA9jIvyvyYk9nbyzafd3NI8MhN9R5Z8kBxVcQE5K66MRynL82xrMKGKgg3RmH7CmUralTHhr82W3ts/kM0FzG8v7vrc1tKUps0aZeLPXuE401NPtf1P7er3vHfrluDeVMdalvm7j1TROHpsyE/1PkD9hOzoG5H4ybpRzPtNxm831pvu9MnQ4yjNmVBlMY1mTk6PuC87F9owwtX17iv/OkO6xv6uYU89L0ykA99Mbx8fJCaF3h2e8rp19w5aF/qKM6ca92xzE303jGdfRMAqecLt2k5Nqm759BQk+3u91PRLkT0bh6lcAp9tItV9p9oFmGgeASb0Q5eN7OdrV/llgfrp3Oopk+SsU7bOafPjZl9NEjpDT5wySif1ImswdyAQTic0uMiNqQn4jh3d/35ue97EBLmc3YjrjdJqfuiGjieZoKncgXJ9JeqVI6Ge6WHql+OlWTiSmNjvsDH0amUG53cZikpwZ2//HyJndBxBhcBuaCNF4l98ub90Mx6YkDk196NaviaIMZ1JfizQAvzfA/iHy+/qZrm/l0R7+3Sst0K6GcpvqaRLAJtHaiULXj8lHpdzKVDx0Rvi4TibIaYJKHG5qyyCZ8VhgcRvj2r8RCcPGT7fT41L2aSKV67q3k3F9V7ge6ykFiV2hz7cjYf3fU1u+hGjlJWG+/jbRyfelNl5U0NbjHjS6faAZx0PMpA5Pk/WK9P+piPl8HKWf70NJYy9CO60/hE7htBQ0mBAiIlBN82IzMkREKyX8urjna/YV2OEbtazI8KYjSJYA/W48NyguhJlqKNMR06b6hxueL5msz1maCO9sm2EdM/kM0pmnbxRlvbegcSUSCjYjhu7x79bfphxwk2TBwv9HinLMILtJvb207vIzhMxGPn4h5kp0VgeX79/Dxfv7a3ynwwcLcU33zHRnioczZe69tMf4/FvIJ/v63mw0mJl8fGSK6yjPg9rX8r1mZjtOk8jsaP/vi5Cv7G/RxvCNaPvN7WTz7A/Q2VIDSKD+3YeEdh9o5nEAmNWLkankCShx4nuRPfhKpF3ZLPh1pB0NBUQeIZulIlI7UsYLbxhpVU1aT7dPKcmXJkAv+Jkgrd/fjfY+xAP3IvPaG6LjZ2ZiNov1dXt+okt5+5NgNBGtQfJhiDuQGfhLacyiZN2rz5eREwvbtFYebNhkvpwoyvQ9S/Ez6dN4avdmxNR9mF9st9u0pbg+gaTpbnPSJL034Wc3/CsZjjXXXn0boTtuNr3XDQdL3IlMO86Ln9uFNqsaR/dXouWyfTvJhw/+MMx7/yzmfLrPbJmeD4nsRwxrNwqK2JDatgP57n+M/KZu8xDwdhRkcQ/wqJZRPTjM6oVpwP8oXFuKfFHfQyf4Xp0myGr4DqQSe1F5MWxBjC9qT/YPdZOQo2YT3zGibUJMcz0iRF7kURsqs11HAhaRdgtyjP51wzPd2jcbyX4mn26L3/3uJv3tD0ZV+g5cX6nt+VC4+F5Z/+XF/xEkXZbXmghP1Cri+DYR9V7Stk8Stj/jttCncaYe3re/57JpXGN9xnubboeQ38wHNJbMeyaaTFMfup0YPV6UafNYqdlfSqcZzifrbm2Yv70VFm3O9/Uv0bk+fZLwnT360+1TWnNiDsDp5vyq8M4Q0po+gGjNMGJUl5APct2C/OMD6Z07kPlvIbDsIaHZB5ppHEBmdTZa5D5I8LeQhPzt9DEzcXLIPWSHqydsAjGVaF5rWnS9NJiI0CaeE2SzzgTS6JqQb3OxMOICiAgdkbhkajMlDt18B1u7vF8uqiYzaU32tXQjzvvKrMp5aBqDXsRvoCir1Ay20xyAUtZfMr6m+Whqc2Q2Juz+P4CsAqNd3p3JmOyt6amXJuE23xB+30wW8KIZ3HntmsZoJnVG0+F4qKNG/rudqdxPkpnRerTNJM6BhUtHT/qeD/Ccbo7ieJZz5uCDS8j+TNMXa5ElbpZ9bZqnyBAnQrlN42Q/2WQYl3Fk3tuE9tctBs4la+d7yKbwHcg68ziUD/TLoJOiH4rPIzY8HaCqql9C6W0+DvwqkjRegpjXYeT9RvZZOCNCnb5vRlLFiS4yfU+iyT+6uNYt952J5CQyO56JbMXTHVVRhgG73F4h5k3g+/G5+1BqlJmExjpZpxdFmWYm5rKrmJoL8E4UOQQ5VP/B2uM3QQ4/jnMzgcZ7Czk0mXA/tmcI9dlbD7ah/juL/CSd+9ziuLqsOFaT5DD4pjkdRdrc49FG2T5yxo4RRFidE7HMYBIh4lzZp72BmA9ykM69YhU5JNvtXQ58HuXLdBtqmkPPZ9o+jx10HrVRHvgJnXPTNM77A+JcGpfNPEbJ+zOdwNWnJkDnqdHTrdkyB2WJZ9CZ89FMbB5iQCMok8SL0TacJShd3LForfYjH9SVwC+i7RKXI1fJnwNvrev6ipkPy77BI5pRAVRV9SqUvv/fUSDF3yKJIZ6T1EdO4mkpPGYb6LbPxte8QbXcW2KkNuEaQ8zvJPLeobhguy0uE6sFiGCsJp8jE+tz+yz1NSWdLZ9z+yKUC8JBA0tDG+vw7D0oFY2v28y5KLVjHflYAL8/W2Y73bM+/8uMwWPv/G4WPqCZSK4j7+lypusmIlsyJTNAwrWq+N+NYO4hn0G0Ezm1T0/1vxv4KJpzE6L70/eji7Y04d8gwpmSKc8GYhqnmqwdH0Ee413k89cWpfsWAu1D66OTqUyQ95R1m/fIJOP/IfJ+rHJu7Xfx3seY5iriax+d2cwpnoHOOabLOzUK2T4RJZYdIuP2fHI6sG6JgZugCTe7vROfdds3oHRI48iV4UwYzyRbiRz082OUQg4kzK9EZsIP1nV9bo827nd4xDKqqqqWI43nbcAzEAGwWW8r8DdI27L07zN5nENtLdI4akSgjSxNyNFN6rGEdTh50fWTz4BZxFTEbJKkQAv+JrQofB7VPLofIzJCTgtkwuC2Roj1l2V5oXuxuk1N2cCheYx8vay714LtpTFEAuL/falNd6b2Pjr15WK0EJsk9yaitAkRYY9BFAacnTxm1I4bXGeyabrEnUk6yxlABN2bvc9D0nCTFN0NyvnsdR7YTGAPOdkyqV3zyDn6KnIY9Bja9jGKNPbHhHJmI4hAd5wdRuaq49N/m9jGySnOKqZaK7rNS9mu8jkLfV6T1px8HIizyFhgsLC2N9ps1Ah7PVPig7XazQiHx5Gb44WI9nhP6FrghPQZRRF+zwTOrev6NVVVVcCquq63lvlRH2x4xKVQqgTzUM6+t6IzpuxrmoOk5uNQ9EtNNsEZuXw+zdEI8U2ojBwlAR4v7sfsC/PJCTjvRYtqGZ0Z2Ms5mpfaG8u0yeMMcjqaXkwKOk/V9UJqIhSx/pjaZwItRmdUMDOImloJ3oBsrQa6E6heRKsbk9oT/pfCgtvkbAfzkObarZ7IdA1HkonEHjq1gOV0jrW1HI+rU0J1G2cTlFh/hfbsWBIfRnji+n616CN0ajiGyYZrfnYPewcu00KaYQF5jAbIGV0WojHwMyeHMmAqI58OPB7OP+dAjoVIY4vr4FYkfNqU783Q9uu4fm8JiVDOVZOmPheZ7H1/IfLPzSenaLL2vYfM0GYDxqXpzJWRvkBmoGbYj0Na1NGpjQsQrVmYfn8n9WkAMaofASdXVfWkWrAV4KFkUvAIZFRpgF+GJOnXIORehZyI3t8wH1hDZlCelAfIZgUv8F4TFs1mkVjExWBEsga0m2bmUiLfLqbWvQDlK+wLz80UJmZ4v2Rulpy9kHaH+suoJ/swYg65SNBnC6XWs7S4PgctNOdqO40sGFQof9n2hnKjOcfmXtcRnewlY6nD+zG7O+n5m4pnyjl1FJb3d1Uot5r7tRr5EFxvLwEjXouaR5kyaxmduQcjdMOJ6NgHEbnt5MwGxudlSIM6GRG/sfQdtV4ngY1jHE+YLsH1WlCyufke8rpajsbN5TwJCZ8WqJz8FjrHaT7dhawmDRtEOyq0J9OwC1k2HKBh/L6bnI+zF+3dVyYQ580C0jxyMMm5aC28HAnaD6R3zkQnRKxD43or8PfIijDMgYQDHX13gCL+Po0mz5Et3mw6SGcU2wRiXneS1W4zGptlyvDnusunjNr5MRmJd6N0JE0bSXuV5/f93o3MLONE3aOeblFoMZptlM6UTDVCZG+Gvjdc/yFwHYq08nPXNZQ9k7bOtA/lWJfponr1uQzv93zHNDkxMitGWA6h0N1YtsPSm7ID9Gr/t8nRbHeSsyGU+33K6LPJUEavyLyZXo/lNWXlcMSmQ+PdrhE62+hnmqLSyhD9Xu3bgxhiDMO3aa8mp7SaQAT45uK5bUW93caxxIFy7rwBtsS1beR9l5NIQ9mW/q9nZnumyijecvx77R8ry9mCcOca5Ne8HWlKI0hIuAQxpvNRmidvL/gJ8KxEL9ccaJr9iNKoqqo6q6qqo9HehcuRFLaQnPhzEbKdO8t3H/I73IYmviKbYWIghKHuUb2fc3Tf48lS+AJysse4T6Mb2D7vjZx96doZdJ5RNditgHBvOtOGr8Xr5dlKIGl0OdkP4WNQno4WtHPUbSabs5rKnilMFr/jePUhgmVNYUGqM/ZnvPhvaIqinEuO4KzD9YpOZ/xCpPFEiXY+6r/npJf243m/DZloFiF8+B55G4UjIueRj8goyzF+dMOhXubObteazE4VnQdt+qiS3and68jzbC2zScsvr3Xz31VIA7gd+Rediy5qivaV9SGryEnk+SiP5phLtpA0jWOTKdbvzyFHecb1ejid50k9B62LgdQeB2H1gmi27gvfMaLSEC01JQO2BeBRaF/oNsSkzkRr0VtutqU2fgxl6Pkiwr3PVFU1h2arw0MKj4hgCp8uWVXVZ5DJby0KntiGCNYa8nEI0OlwLh2i08FuOg+rM9TkbOcmctB5MCL09iv5vRgCG6/PFGYa+luW2xQoYkmuHB+30YvMx8r7Hb+/t8JSjAyDvG/nCWQf2BXp/2JyeHTsW5Njuhyb8v8oObQ+EsBYljcPN2XON0Tzl4WKeUhQOpzOCM6SsEVBqakPnrc4R65zbwMnJlDk4SqmRssNotDm45GJrR/N9wk093lfwOVZq3D+v8PIZrt1yFy1CM37OnK2+Lg+y3XUBLGvkIOr7PdZR84JeBr5dAMfFdKHNLsFKOrUvkgLe+uRcFO2YRLRp8Vk37jXzQ0oT2kfOSgKOmnDBNlPtgBZOb4G/JdU3/Z0bQnC1zOBp9R1fVdVVXMRg19Z17V9bwcUHtaMypEpVVWdhBzhn0J219PQBD0aaVdPRRMaCdIuhNAxnLmUaJoYxPUIWU9N/32MAuG/j+uYaQRQlJYuR0j+NDoXXRm6HolTL3DfmphjGVkV+9vExKCTkdkE5LGNx8rPFHrV2TT+cUziGMw0rHcXIijQvB2gDNmPIcmxjkEkED2uuVtAJ6GMEX4VIn53oci48mDI6SL7SiiZegkzFXQirljAMv5uQzg9l3y0yQ3AWWTC2cRQXfd09e8mn/4L0gbWp///ivzNR5Ijae9G2rxNYNDsN3wAEeXYptiWMgw+mhrNwLxpNx7BY/NjKYC67H6Ep5vTtZXkgwj/GHh/KmczYnjnA79MpxnSa8r1+OiXbSiTxONRwNhmlL/UdWxA6/ABFES2BO0hfTcw/FAHSswEHu6M6vnAbyBGtBpJ1DuRE/Et6OTKxWR12SGsk8gObkknSikzIRDeg9XRnPQ9gojYSuTPOJnmSJ6SsI4D/4G0v0el9/vCMzHcvBuUGlH5bBNTiAvd5h+b2uK+o0hwtqLxroty4jszJY5Nz5XMfxJJiEektl4KPLtL/yiux31f0zHBkhmXUN4v5zCORWnu24rmFqRVDSAmNUZm7vblzGeq5j5TLbkblG3rNj9x788QIrgOKHDU3JJ03/vASuFlJoJZU91ep7chDcmnGZyIhALvc/NpvHentlmTmYtwJ2qbDpbxeDb1vUY+m8eSt2OYFsSyAL6B8oXOZCN+hCh8lJuVt5E3CDvEHjKTGkD4f26q4znINPpMFDj25HTvG4gx/VekAS9FtOQq4C+B79d13S2w5oDCw9JHFULQP452wf8QEa89iMC/AngWOZtChSZ6EWJkfciEEW3Vcdd/hKYwUyNZjF6K/pLDUltOoXu4aVzcO9Pvs5HK72jEiPgL6E6YY5kjdIfSTu++2bfgcYjSuRf+HLRg7gD+kKx57ErfNzaU3w3Kdk8U9+Y39OMHZEb4THKgRwllvd32UEVGEp9tiuKMZZuAN5UdhZ547RYUEWjn/CpkUppAfbUW7ghLEJFx+qBu/ZgNWFKPPqn70HzGZxaTgwLs3+1Pz/XRGcyzlByo5DKHmDnE/Jl+3/65CaRN/TNi8o9KbRsij/NaxLisBXo8Hc0Z/aRLyFGD0dfndhyFiDvhGQdUWIitkGuhjMgt57wJLBA6mjHi96rUZgvVPsV5YfqMozl4PKJtz05jNJja8hikRT0H+VrPQ9akBWjezgDuOViZFDz8NapXobOl7iPnqHob2bZsR+Nc5Jh9FDnXXjxdtI+c7qQ0w0SiVtq8vcfIKVt8b6aaWfRJ2b9VnupbmoGatIYmac4mjW6S3ghTtcKafPKqwdrjrlSeF1MkeE19mi00+ROiOWkP2f/XR3fbfzfo5rOCqVk+JhBxPJLZ96cmM/c+siY1jnBrDBHYU8hzPY4EqTVFXbuR+eaU9L+bBjdde3qZsu9Cvqa+cH8zCvtfhUzQ25HW4mwPxgG/U7arl8bmdpRMs5z33Sga8lREhE9ARHtXqn9eeDfWH3Emao+uz/PgZ70OBsNzK5F/ZxWiLceT90ytRXPiE3tnCnXqx9Fd2mrYhJimYQC5M05FwuCRSPtbnp49KfXpSPJ83I0sHici5rsJpUl6NDDSmv4eZEg7p9egyRtCeay+gpDrerI2cwSZiSwkS4CW1qDziO5oruhmGvH70SxlibApk8RMzV5W75cg5np0KrPJL1IyzW5BAXvDLCbRuJqBxzHx+N2BpLe4J2wxnbb5/Qn2F8T9buUib2LcZUYGm35i/sEytU4sI5Yd6y8JfpN/w8TQR8isIgsgJnaTZAbWDf/2J/Qytfn6NkQAn0nW5O5D68k+npKwlv+bzJOlQORnarKAYGGxxOc7EcP89XTNGp19aN0Esdn45BxMUTJdr21rN4Z9mZu4xtzOpujiXXQGBn2FfHzRU5HweAKas4+me8eE9m5CFqPzEC38BHB1XddRez6o4OFm+nseCl29FZ2jYufqXDQhj0KEfj4KTTex34HstFH1dcqkEvGiv6W8bgZis5PNZd7UaKmsm4kuluky5oe2HJvu7aGTAEcfkcFBIPF/bGtZd6zX5ZXvxwUU33NY8qlo/8+PUh1N0Y97A2UbvZ+kImfgKE11TYEvhtK34LYuIJuzornKjMwQA0yacv3VxXO+5rbMTfWsRoTY+9KiafWI8E63udtf0FRmjNoEjed2ZKb0RttjkBTu/kVTd5M20ERvSgtF1HCWkMOso8nV43JKqt+br2NYftSaSnzuxpQjODrPPrYYZbmDbEZ09vxS65sNRHxZRh5Hm9SjGR46I4cnkc99E8Jb+6q/i4LHXpSeOQfNmyMkv4no4ePRer1rL9v+kMDDjVHNR5O4Ai2kP0XqsFPrx4SRp6H+D6KJ+zmyORA6pdgyJLskHr7mZ2I9k2TpfFHDe343LhQvNPvLohljbupfXLBlRFeMCortboJycdmGv764vit92wdhf9ffAu8hH4dwOTKN3EU2e5qxlDBTdb5so3PdGa5CC3E3+dyh8v2SYdkUG+fUBDemvfG9aG4ttbNI1CNuRIZWzs/i1I+N5HyPltR3MT0xnSD7VOJRGTR8zwT8rI+DsIl6OyKCyxDRW5Xa64i7qMEuIgt7JaPoBnFebGr3+97kekfxfIXG6BYyQ9lIXrODoVw/Hwl7E5Q+zTnAV1M9HlubbEdTfZDzcs7WNGV/lNsVmXzpC6+KZyyY1UiLcuo1+9V3oMCPF6bnX4UCUK5GUYB/g/bmPQF4V13Xd9V13WuODjwc6B3H+5hh4hhkZ52DpPk7kCY1hHak/xP5COiLUGCFT7SsEVG7nUzY7QvygqmLz+QMrhkBfY7RLWTTWLcd5S7Hp66a4NbkBWgzU3ynzLgQ2122a7LL9Vh2WVY/spt7oQ6lfu0mH33izO3OBDCBDoizr28mYziTT5kloMwccU9q70zG2mWUByUOhfeajkW3SXk2/ZhEGvAA+SyryTTW3uNzL5lQer+Sz1FyOT9q6Jdx1memzXa8m3CkzGgxjgKRdpCPvP8+Yl4TyF9VnsfVDQd7tckMv8y+MNHQt53hOa+ZcaZmfeh2DlsvHJsMv2PWkcHimVhuPMZjpvjss6/imDSdWxfPtbIpchKty+8js95TUaDV2tQWZ9u5B9GPr6Fgo9OAN6fr/0DKPHEofA5ZjaqqqtPRoXFnAYuSffU7wAvQ4j8NeD2aqD1IY3oNQgYfh9CHGFxFzrFmU0SvPTd1cX2yeMa+r7XIfu9nopYVyyDdW4o0QOeE20Hn+TT9xbs2e+0M5ZSRO362jGgq+2EJdjhcX0b2k0ySM3cPIfv3halNCxHhugelRzobjbkJ//4Ap6HxGEdtaC4yYyylU4sx1A3f3o5gGCPPfU1OILqVPL+LyES5mwnYRDPCFrJD3tpvnepbndpuDcTmptgX0LHfFNeipG1N2MQ0PtMNSk0+lmk860OBAfcjptCH8kmuJJvVY51Ro+xWd5PpO5rsakSIYwJj+6R8grLnxLkDa6bm6St9o9NFtcV+uDwzFVsUrPVGBuN6pjs/LoK3kjgPpcctrj+PRzRZzkWCzSQSDN+J1tvr0ZyMIHy7CLlAjkCmwT+u6/o2tKZHgE/VdX3JLNp7YOFAc8q91KROQAT9t9P/vvR9IkLwm9HkjJAZUJT6v04metZeLC2WWkX5v/zsCs9tK+7FUzy3NLwbpTL/3hbKdWivn+9vKMMhqPFk01Lqa5IoXW4pxY03PFuTtY8RFBL8ZWTe+w5Zy9iJmNWGLmV0639sz4+LVxMAACAASURBVETDNf929vVufYoacVN/LbFPNpQf3/F5PB7D8rnpjiOPYdUmqv1ob8s6ZB69lan41jQGsb4mfIlt7jYu081BqUX5+m5yUtM6tfv6UH9855Nd5nMmn4Hi+di32HebHKPW24Tr5br1vaY8e93WhU2rO+nEg3E6TwCe7Xh7Pv1OWVavj/s7giw170Zr/3bg99B63JTm7JI0f6OI9lyDDjy8FnjZgabhs/0cklF/VVX9FtpP9C40KU9EUt8oUm0fjRD6+8AbEeEcIp8iW5NDfyfIB/tNl7W8lNJLH4clTEukdijHlDexnPJdnyK8J/1fTnamWkq1fTo6quOZM25X9FFNBzF0vkIL4SJkVogwjhbASpSCyqljvgH8duiXD69r2khr6HY9jqH9JE1Ha8whO7GjJBsd6tE3tBtFqW1Ae12mc3yPIaHmuIZ7g6mck+gejbcZSbPbUTjwWeRw9HtQyproO4m4YGgaI+NR1eOZXhDrK+saQNqcI+c2kwORdpKd8T7dOJYTT6edLRhXbUZzFGA8QuZ85HOZJJ/EfDjZn1hmnegWIBKj6sr6faii4RZES+5E9ME+5ugz3luI0cHd5tDt8n1noD8C4fNa1O/Hkf2Ic5EQ+QI0R0MobRJo3nbWdX35Q32e1L7CocqongV8BE3eYkRYHXb5DCQ5nI52ZJ+KzBb/DvxvNOlzEKIMIRNLeXy3iV001fUVz1jK8n8vlHJX+URxz6lOSphADs5nhbLtnK7pveepLKep7YT/TRFK65GjPKaFMaOIJpSdiIDfiyKGdpKPc+hGZJuOBe8FZRs3k7Mf+BMPEexP7fBRDi5jHDEVp0QyIa4RThxJTkhsM1Oc5/tTvU43c1S4537H859K5jFEDm9eQJaINyKhqdsYzWSeZ8ugIhgnnbeujE702DmBalNQ0WyYa7d7NmlNt/VjAh3093jyBt7dZKYSBbXZgvtc7j/rJ59WbLN4eSjmbGAznUfMuJ5eYzdG3j93Xnr/RBQk9psoCng56v9qRD+Wpc+xqb3vQT7Gn9R13Wuz/0ENh6qPyki6Kv2+HaUIeSKSus9Ek3sYmsQV6drFZDPGOJKw7YOIEUFNCVYnimf6kBmn9MUsDL8tpRLu2RkaTYaWHI9Iz8XzpryvpkSy0uwQ27op/Dez8TMxSmtz6M9x5JM+PQaO2quRqapGi+BUJBCAtIpjQ3tivbHfvaBG0qLB0q3LW0NnwIFNgG7rcrRQq6KM+WRiNkD2+wyG3/emMq0BfjE925f65XQ8PvfIQoATjkb/wW46zVCLUrmL0v8L0v8TizEapXMvka/3h2vRpBUFpOnAZqwIxgFHp3qcJxETddSchSSPt/sV6y7bMZ1PzG0prQDO8FCCzXU/S+dJ2nEfkbeBdIO64bf7BTm03cEKPlPtKKTJDaA1uiu0e6bg+lan73uK9sSz6WxZ8RjNQ/3vR9aNJyOa8yK0Jh6NXAU2Ly9Fmt/RyCT/RuBKlClm1SzafPDBgbY97oV/aj6yxZ6LJIwKHe61FfgzRKS3Ion3VuAzZOIxhiZ9ECHpGJlRNdmEvUjMqDaTDx+zzfj7KPmmj3ieqb15Y3r+dqYSA/suuvlQyoio0h5fvjtId/t86Z8or42Rtc870WLdST7kL0Yl7WqoY7qP7f6lL2gMeDudkXk7wrO7yUeJxLEpf7t9GxAx9LvjqV8xQMWRf96n1t+jXP/3nPkzHt61adTzMdjwXFO5/pQRhrP1hcykzNgGn5i7HeG523oPnb4hPztd+3vNefw/gPb9xLkepzMK0/UYT0q83VmU36tN0We1tbg2gUy1xkFvuN9MJz1oKq9XXXWos4wOjKHq5RqcILsFvFVgC9qvuDON0Sjw+0jrtI/+TSgs/SfAyw803d7XzyGnUdV1PYqO4H5a+o724rcgqeI7aIIfA/wCGTEsTX+HbPJZRUYQ0CQbuaKU24ek8yWIIG9O156BNh7ayRq1rp82m6nIuoUcVg950+wk2a8VEdd9jOX1kY/+dvv9XJSUfa6RNZBYnv0mdbgWwZFGtyEptkZ+KucaixFey5k9RFNbud/qHeSTRYeRNuf8bAvR2F1F54nBkAmM27UNScc2wS4lj7czbZhILiRvwo0Rl92ObDf+WcuZgzR3+3lGgC+Qs23HufF8+H8MxnEfXbaf21fYQaf2Mhm+d6K+H4aEQI/18XSeLAyzy95eQmlmW4RM3hbeQMLEfLTWvH/IPklrtRHHbd4l3G+CiGteO6YP/WhslpOFMOPMajI9iDhKj7ris/5uOkXYmmUZrVmRE/1+mUwfPC6byObvL6MgsSUoVdzzEG16Z13XX09Zew5ZOCR9VABVVZ2Fsol7l/gOREznI+eineALURj189BEOxeYkc72ZkswRv554Z6fs21/E4qeOQ0t4jmI8awO75vhRLBEeAdSzxeQszEbMTcjtX6ieN8LDJrTw8TfEco0Pq4r2tzrcN399QmttoFvROPmYzCi6WsmAk9ZR3SgD6U22rkczwCy0DCExitmlRgjbzxdQSZApUmp6diPCLENcbN2KWB081HUaHzWpGds3v0wkmq3Av8JEZF40GCcA8gBCTF/4974Q2K/PA7QadLzWH4FeDXZBDWEfHNnpP+lHytCN5xrumdhwITaZi7P+R5yxo7ok4zth5xyKfqTI96WUPqXzQz6yFsStiO8PhaNzUI0VmYC9OhnN2iat3itaexGyJltfMbXKQi/L0LbGJ6MXBbfR37h5cit4ejIDyG/FA6WONQCJ5rgkNOoAgwiIrUG7SD/a+SgPhZJzP+ATH/zUMJFI9wShJw+Sr2PvLu7j6nE26Gz3j+xJ9U5L9VnouP9Roao5fi7DzGpIbLvJL4ziBaozVsGMzjv5WhaPN0Wkttv8AKFHO5uTSDWdx95I6P7vg0tiJWhfSUh6QYmJn4+vj8vXB9GvhwfKe73ltCZ5cIHGJ6E5rsiZxiP0qmDJ2okpVtzMnjel5AzTtv36HmfLp/bBCImf4LMwI7c/FlEXH4htdH+S2sIkUlF4SPi4Lbw/HTgfpVz44wKi8iJg03gX5Wef4DsYzuePM5mUjZPdasrQsycENMBzSebuPrTf2tQHp9LkBB0N1Nxq2Kqv7OJicZ3ok/W//vQ/NhfvQsJjh4bB1mVUatNfS3ri9aO8n7Zl9guEAM28741fW5K7ZuLLETDyDf1ErLQuyO9s72u63dPadwhzqQADrjtcS/9VMtRhMt/RdKE91f8Ojld0jbkszJxvYxse54k5+iKO9yj+WWSTMi9uIbpPGLb1+N+mNJPFe9Z83NwhPdq2G9S+su8c93+Nfs4yr1EpR089svP3Emn7d5HUTftd3G03L3kPR/2t7i86fYSxbpjWzahPGOxzRNo5/wPyTb39yKp8WryKa72K8XyRsL/wVBuzCoQfRuxj93aOQl8viivDr/jtdE0Nt9I8+VMCfZF+CC/G8gm1nKuyjrK+ZxtxoPo47B/w2UPIqa0HhHBETLeOeODfZJlvU3+tfJ++T/ukZpEIdVbUhnGIc9VP1rX9gWN0n1Moj+0zCIywVT8dFDCWHimTmNwX/o9lObpVjr3Os3007THKq7fpnEqs24MIa3ogdSOH6ODFEdQ5N8PyEFPw2kc/hRt/L0NuPhA0+cHheYf6AbsJaM6AwUhvAKZfH47TbBNch9JyD8IvAH5DIyc5Ya+MvDAjCVmQoiE8GrE5EZoJvJGvsnwrpHUARMTZId+dMSXDMaRb9Gx2kRkm4hvyQi8+GPwhcdja/i/mc7oOuc/LBnkTD4ToZzY9s3kIAoTKUuG3mw7gYjpjUjKdjnDdDrOIyFzGzeFumJ0ZSlAROd9JEwmxveT8aQc06Hw32mEvLl8O50E0dJ7JFbD5A2ZcayaCP5sP2bsPo7D5TuLyXokhHwP4fntCK/9/jpEILu1pde1JiK9nbwmRtGJvOeRIwxr8uZij6tN+tPhVrdPtzaOh/oGyGZtpwe7hdmnyYo41RTcM91nK/Iv3YLw8CrgvyHc/xpaG5eg7CRfA/4nEuocEHYdYrinAU8/0PT5wfgccqa/qqrOAD6HTDWL67reVdf1PwOfRZP+ISTdfgWpy/8L+Ds6w0qNiJbqTDBIz2xHWluFJJtrEQIuBJ6ETBN21tcNzfRJok419HtoEdq0Y4fo5xFRtUnBeboMy8PzZei1pcYIpTMWMjFeQF4YfeHbASWWNn1IIuQUPzblOGVThOHwuy5+e4ydLmZXKt+ZwW9L9Y8gW/xKOkPzj0Um1WeQGb63G1hiNpjp9aV37COMh81VKGLU/fReIvc1BnPMQT6AuD8nzoH3GPmoDlAo8I10nsJqs2I0+fn9uKeul+9iJhDHYhHC21XIN+a2b031rkF7yJ6Z/l+Vvj3Gy1HCUr9XznlT+6J5zFqmifVhqT1XI+b/c0ir3pzq9RlW3m9Wk9dfKXwZepn73J4ara+YPszmPEc4ej+e/Wenk/3Xs9kCYBOy/0c/ZxOMkq0/hyPf0zLy6d/PRvufnozoTx+ibU9B/vZ/Rczt/yDB/dK6rm+r02beGbb7kIFDKpiiqqrlSKL4LFrgT0O+qRqFMv8KkhRtb38CWpAODLCz1sThOuRnMjGDfKS5Ha3ryM7lDyE1GzIy+r3yQEPCc65/C51+rdKZ7uftfyn3c/m+645BGH5uvHjP/12XgzS88OPCXVCU2STINB2oGK/FRWo/yCbyMetD5Eg7+5U2ImK2guxPAc2BiX5NPtzSEP1t3m/mcHEfhbAHzenxocwbkMBRISn2VKZu+u4FZkI3kw+7OwwF7byafL6UfZHlURYRYuDEvkLU1kx87ff0+OxC/hfQ3N+CNsh/IV3zXHpzdNzrFftRBvsY4iGT/j1M3vwcc0fuJkdZTpLnwEKU+1QGZTTNUbzuPph52CJhJugTky3wxCjbmBmjFzS1w2Uv6HK/nGvTjutRANj70//jUV7SjUi4OA1pmM5FekT6/XIkYH4IMdg/ruv6izNo+yEHh5pGNYQYx41kaelPkAb1b4iQnQT8DMo99gmEoIvQYthITqpaI+RwyHAfMoGMIVXb0vYxqbw+4I/IfqOSUXixkd6zpmEHcJlkdIi8MJ0p2897v5D383ihQQ4CiUxmPXnDrE08o4hhx5RO8Z27yFF316U2eP+Mz/eJkrQJSNMiLpmU22pHt1PPzEnt/EtEMG3+/CDaaPsuspYxiKLmdpAJyTxkt4fsEO9DPoZ/IW/yNaGsEFM8EvlG+lM5TyJre6cgfHJEnM2kTWDz3e70fTKScBenel+LNIE9aL5nsslyOibVTZKMGob7UqH1YcHrE2Qp3UeHWFBzCP/hqd3OxOAI0SV0ajBlSHXUGPaE3wvIQRmLyGHUaxGBPY8cOGLfXU0eB6+n/vC/hHIDs5+LOGoBZg6aG0cKWhBaQc4Ib9N3RWc0cIReEn2854CIoeK6+9gUkOK9iqej5LKr0PisQWN2CxrjLyFLUY0E8j9CWtXvAx+jeVweHnCgbY+z9E2tROaiu1D+qichwjqCHO9bELMZQTbd7YiIRx+GbeClv2crkmwskW5DRPFzCKHvovsm3NIfNIKY3YXhvjUq7wu5m+ZNuPGzLZRtRhLt35NF/TYl9DM1wGO8eNbMbgDtu7gDbewsN0t228TczQZfbl7clcrfmn7/PSKCy8mJWS9CQsR/0JmE9F8RI3B5Jq4PhLHbk+ZnhE7f0P1kYlEjX43HviYzSZt/o6mq7KODECbTHF5ONk+uA34HmZf9nvtwc1GG7zuV0nQ+x+k+fn+IfK7VLrJP7FuprT9J165OdW1CKcVcxm3k4Iky6KQMnuiGC9E3cxFahzavbUxjsofsi7kB4dvtTN1Y3eR/6pWMuGk9+kiViM8b6UzsPInw/tIZjnfTXDYFwnQLOInP7kCJYkdRkufPIj/TnyI8tkY+hKxG6xHNuBX55k9DgWSPRnn9bgJOO9A0+kGj/Qe6AbNkVKchInUdSpe0Eu1oX5c+t5MJiDMB7EDhzg4SsBM72tK3kgmRo9sc4bcLEb2dSIqJ4dFmeiWy7kr3fkTWjvzs7tS27eTggSaG17Qw9nS5Nxnq3RGub0/jYqJeMp3vIULmbB2TZOd6E5Eo2zcaxrtkgruRz8ZZLMw8dqFsISehRek5uI6cFeFCMrHaVZRtwmNpOJr7xshZ6h3tFoNntof3HUwRgyLKeWyKJvsu8hkMI0K7k6yxjBXPbizej+0v53Giob5ehNgM7/5Q170IRzaSAwXGUhvfkNrtKEO3Y1Mo14EN0zHOQXLkmQNlYvCDI9LWkoNUnGrs39A5cQ5eMEH2mpwJo3Dfy/v2U8bnbOYbAv4f0r7jnDsCciZMMD7TxExLIS1et/Bin/gkokn3IMb+35GwPYyEiLgeb0rj9x3gtYkW2m1zLFrDjz/Q9PnB/Bwypr8URPFZJI1tB/4CSRIOST8WOf6vIOewW4Qk9+cjhLTfyXbzeQgBlpBNDpNooXshX458EMtRiLdhHjKj3EteiAOIUDrwwrneoDNnXB/yaSyn0+QBORuAr9Xpezc5Lx1k00RcHA6+sAnAGQZ8VIF9V37355G0PSeV79N5T6UzB1m3bNEODinvOapxEXk/yj2IcS1Ge0CuRWbbq9BcbCJnXT+THATiPl1MZ/j4ULpmk51TzKwgp0qyOcz7oewD204mzJ6Xsg8VnZtuSWU8O72zIJUzh4xnpbN/DZ3gdsR6xsLzTT6fuuGaNZA+ZJoeRbi/HI2frQ5bUh+WIsl7IzKn3onG/H1oPUH2n9ShHSa0vm9TcNxAuz5dP5dM8HcjE9/q9P9WxLTmA89FQqZ9U4vIpnFCHU0Qx63JZDoHzUu0VowgTXIeOjj1uDQ2LutwRDua6ugFTfsHK0R7Shgmm9znk4WLJYgRzUUn7zrjzelk2lQjAX0O8La6rv+1qqo5deJSdV3fD5xd1/X1M2z3IQmHBKOqqmoRMq18FDkQ16KUK59C/oWfQcxqEQp6ODe9eg9CEmcvsJ16JJVxabq+HeXOmkBIvh4t/s+jBTSU3nsOWZqz9HkC0shsV59DzuZwElqEG8hHp5uJ2BQSpWxSG+NBiNvIDl47pUn1uN6Y3fwwD1v6XkxnwtYJsp9nDvDLqfyN6bmohTQRSegkyCvIIe4GE54TUULMD6eyjgJ+iZycdRJtil0IPJ3M3JbR6bjvQ0drfy30YSk6OsOnDTtCcSzd247mw/OyLZVjAtmfnosMufT5eAyG0fHdZp7HpDofS/aHkdoQx6wvlAPNjMjv2N/ZRPxGi/8ryIcYWlAxk+4n551cjdbA/Uij+hhiUgsRITwTEcHrEcOK/kyDx2Buav9NCBfNWE5KfXgF2f+0COGVnf+no4CNH5Ij3AyjTD08sBcYN7tBHwpGsHA1l5w02cE9jwt9nGkgS9yEH/3Jk+H+BMJxg8duEZ2WjlUo/P9HSAg2g12C5nAQrdE/Jmv996Expq7rDl9UXdfd0ns9fOBAq3SzMPsdlb7PQJL5ecDH0URejsxJt9K5MdUb4taRDxAz4ViPImtuI5ulnocI7ob032aAr9LpO7mZvCnQppR3IyJ8DZ1mI0v/rj/ar33ulA9ILPdV1Yiw2NnqPR9NprgNdNrxdzHVhGPTyBDKCu16/hAx117ml26+CV93do+dZGl2PYpkuiKN7U+QRnIy8iE6I7s3xjaZdGJ/h9P/G9JzO+j0LU2Gut22neG7vFcz1T9SbvQcQqbIu5FwE9/fUZQVTT3RRFWag3rtAWp6vuybn/tgmuctaCPo3Qh/P4ZMqZcjLWI8PfN9pMGeTw71t8AVx2a0qCf2zwTZ/d5ENjmOImHC+PwFZEb2erg31GN/655QnuuImdrdztimuP+tJlsa4vtx/6LN05uL52azX8qBNNFsWpM3ee+hc5Ox73sN3oL2d15DPuzwThTIshtZfCYQ3fnN9PtatK5/GwUbfRs49UDT4gNC/w90A2bJrOalyf0GMk99ICGb9x9NIgnyP8gbawfShF9P5ybTyYQs30nvDqdFdkNaRI7uM2FfGxDRm1L/OdwfQ5FnXlRj4dkJsukxLviI1E0bUkvitpl8aJ99XRNI2rqDqUTeC9FZEjbReSyJgw8uK96P0l/J6EqC4E3Mm1O5tyMbuwNZdgIvTPPnIzQ2ogV7Z+pL9BvtLsr1XjQzkfXkIJVRcgZpt303nQy3JPpmfL6/g855mAzXxlN9W8jEcScZ13qNTfQ5WQN3Pycani+ZUhzjeG8POUrtVnSUgxn9vcjfcREijJci5mRT7GQaQ5sFHZwS/VTOrHFfqNNCgZ/ZSfZPfjaMv/3Bl6E1dzlZUIvvlnNzH2KgXis+kXsw1B8ZT2yX8fxSOoUMW1JGUp0xg0kc++k2DkcfZxn8MlA8N8bUYA37p4aRFvVLSGAzg7sz9d3PnoOSbXtj9mvRNpsLeRgHSzysGFUidk9BRPEcxDyGwyTXSGJfgUxK1mQcUrwjIcYkebFvQ2bF+9L1LQlxvlQgXJ3esbnODvTvIXOInaP3k4nLFvKxIEbWbsQtSq5mJJFglc7raDq0xhUX3SBiPq7nTjKDHgQ+jcym1uhcdsxaUS7aqL2YmTgYxcdaXJvG4VnA2Wk8bgD+Ko3TxxGhfAkiaO9AAQqRUfwAEdrYhnWh72ZeQ6lOE9HB8O3+Oy1T1IivozNgJGoIkVHdmsbY4ei3IQJyD9KquzGXceQXie13BFxJ4LoxKRNdMzlrBYPIZDSZ2rcljWGNNKqL07yen+bl83RG+O1Jn/9AAl/EObdtSyrDUaRjqewRciDF1WFcXw78XzJz2Ez2AzrIwj6uoVBX/Dip9M7wXJyXm5iKk3cU12IGkAlyoIvnbzqhoNt9MyFrtQ7EGaYzwGmIHBTkdy0E7EZ4swYFk4whQfdGhIsWHDeThZFPImvED4BXH2ja2zKq2TOrsxBhvB9pStvJ4cH3hskeT/fuQlLmMDIbOqWLI6P+AkmmF4WF2U8+k2dHQDgTEZvxdqX/3yPn+doaFkaUHiNDjYjv+6PkQI4oOUfGYRNLf5d6SgYYmep/kE0w9yFiuz0suvGGssyU4v894bkhFEZ+Pjnq8HLEsH4DMayvpvG7CDGti5EJ94ZU1v0obDlKppvJ/rmtoW0WBDajhd6f3rGp0223OapGAo0JWGTsMUIsmtx2kk1Wu1E6m8vIueg8T8afyGQ9Rh5X3/PeP+PBTM7ucn9GyYEKO8PYrEu/NyKivRWZoFchH9IzEEOZJJvaanIARNRurG25XgckGWe3kDXJ9Uhz8ru3oKAm4/9utA3B+wP3pDm4nE6i39TnyJxKU23UsK0VR9PtMArljhpz/J4uBVj5jj9eh4OIYV9H1mLNEON68EGLO5EmdCHZD7wW4a0FwytTOe9DGtdAuv575ETCyxPdqw407T1Qn0MimCJCVVUrEXJ8DC1GZ/l+MZr8R6NNcgsR8njD5/eQw/KJCCFuRk7MK1BWi3cibawmZ3JwaqFF5DQ4kB3am5Dzdhtint7J72i+MXLwhqO9vMkWhMgOKuhDxP1IcuDDEvLmU0cZzUtle1OpQ2/t2PVZQ3V6bx1iUPcjwlWhyKdF5ChIRyfGiCdHX7lO930UEaYfpue3IHPG8xGTWoec2Uei8PM3IaLlQIbjUeqevyUHI6xCx4zfRQ4cWIVMJGeTD78klTuQnl2FTFv2wTjKbwjhgc+Vejc5A0Gdxq+fzrlw5obzkNDj0PI+tGfv3tT+pyJN5ohUfpleyYEwh6X7Nls9hhz1B8KRGCRhsGAQN4z3Iaf7IMK7lWg++8iM6AbgpQiPHcjw7NSvu5DWagJ8NDkKcizU48CCOQi3dqXyNyBivQjh+io0L9aSTkfBJpvS87tRiiRvzVhCTnBsU+3d5LE3gyK9S3rXGR4sjGxJ989PY3Qt2T9Eav+CUIb75e+mYBbX7+jRmhy9Z/P/crIg9yjy5nMfV7KMPF/z02cMaYF1Gpd3p7Gbg3xQ30rj8VgkEL8FBaZsQkLznWgeR+u67geoE7d6JMKcc84550C3YcZQVdXzkR/pZxDD+QY6lrkfRd/F3GA3IgTyRtlnIEloHkKIc8lS7dEoGslS0Y70v4/OdCg/Jud2uwIh7QCKrjLSekFMkMPBY2SR08ZAZmxeTMcW/xfQGc5sxmZGNYwI4k7y4ulDJpRVqS9LUzv/BWk37scJyAwxHy36MjNADEEeozP90po0Pr+FfIVL0mdH+uxG6ayWIeL5OuQIfnt671QUUHErIlhHpXYsQwTuhNT2NUjzOpV8wKUZsxnvo9H8/picheBmMjF+AB1l4TB0CwWLiz67b6Opjc9M/f4awpU3kI+IcfodQnmQTVjxgMQPIyL+GjpxArKQ4/yKZmSWzJ3Z4SYkXNgSsBCZj74LvBKZ9waQyfq5KIjh+SjTh3HsFIRPX09jWobkV6kMh6hHv+lyJCBchbQiM6t+ZM4aQHO4kJyJ/RcQjh6HmMApaD7vIR+l4dRiS8iZRpaRzZMLUv+XkcPs56GoywXpexHZVLgY+XOch9F4a+gWeh4FSDOzxYgRLiev1340B99M144gb8p3RhWXdVsak88A/xmle1ucxuKI9NmKMk08Od37EfA/0Hr+BPCluq7XdmnzIwsOtEo3Q1OfN7f9PDld/8cRQfw2WZOwZPR2coSNJaFhlBPrVch08XXk3L8IRb39PpLYvEH1OqSJWP3vR9rb35D9WT8mB3B4UUdnaumDig7pmOVigLyxNfqJHBFlydW+tkFyQIdNJReStYBb0BEo0e8Sj1awabN0dMfvXXRGDrqtlyNNyYTm3xEBOQX43XTtnWm+XoEEhglEVD+BNM/1ZH/SJkRYP4XMIhcg6fuzKEXMUBpn+1ps5htBJhSb10bSO+cj/+JWsjnVZr1Jcoooz8uuMGdOYOpgFWeP30l27sfITG8Kd7BCvOexvI2ccVMBUgAAIABJREFUiXxDqLcOZXiMY2aN25BJdZicieV2ZCr6Yqr319K47UQS+lXIX/S6NMb2Gdo0bdx5gGy29BiV5sY6jdOnycEIVyGi+0Uk9W9JfXsqMj2OIMY+QI6a7Sf7ijxO/alPxvtbyPhgn5bx3oE00XRu36g1z3emsXKGkrjmbqJzzHt9PPZub4009vUoVPwDqZ9eixtTm24npzbbiM7C+yeUDskm8fuRAPWpUM81aZ2cjWjV1Wn8rgdecqDp7sH0OeANmAWz+mVEjG9EBPzdadGspdNZfiGZMRmxLV0Nko84cModE5bNyHwSw2+vJ/sxJlNdMauFnbTRxzNYLJaJLr9jFoDNiDDZL3B1KuN+lB15HVrYbocZ1BgiFsPp2eG0aOzDsC/ChNxRg2WgRvTTuE3u1zidzOoqlJH+feSoOOdI+79oE+88pOneipjNWYiIXIgI7c3IQWwi9CVkyl2bPl9N91+PNLMNSIr9ODnE+CqkGfxnss/uSiQ0bExzZ8HAzMREeQOdGoPxxGm0RhHD/EB45h7gbeRjIOKYfCK1PwZJrA3lRgLbhAuegwvI2oQzqGxL43U8OqNrEzK1fi699wASSn6I9ge9AeGKJf2RMI/G3eivcZSdI/eiYGTfzC6yX+gKZB59C9I+noW2IEwgYSJmNvkxMmHZJOzyHKV7SxqnS8jbOswoyrG5mRzc4S0oFtgcVON58Vq0plWWFb/L34PkzBCO/v0oOjX3DxBu3o4EgC1kHLsktfu8NCcvRanDvokCh8zMBpGAZaHyB+QclbZ+nBwF9PZziDAqZAO/Ji3EMxFhG0qL8iVpIX0MES/vR/AC3IEkdjOBQeQYfxOdqVPMONaRJecaaVVnkaPshsiO/8g4vDCGQ1kOZY5EaSQ84wXiKCJnZ5gkO7rNyO6g8yBFv/vPiHjsQlrkcvI+sP+CmMokWtAXM9VB3UQwTZzXpnLvSHVMojDgS1AU3wPAhcVczUMmue8i6fEzyIz2ErKkehky0fwWOQpzI9oq8L8R0V2HCN9XkRZ3TSpvmKwVXYwk5j9J13+Yfk+Sw6zdr+HQdxPjUSSJf4ocRfgv5GCLmBtuDGnkA3TijTfLnpvqNYOwIBMjPUsBIe6fc52XpnG6FeH0diRYrUeE/lLk1zg1tfU8ZAL7PPLp9SPN8ur031GSJv5eF5FAT6R27yAHkRifLybvS3Joew38OM33KUhruBzh3Efp3LNoRvtvaazjfjkLhbYiWMO0kFWTk+X2I2HOOBu3MEQN7A5ysE23QJdSg6pTP/3/ujTu9yFTnJmtg6iuRXh5KVoXxjNHIf4/FGL+7+TEu29EZu4bEfP6E/Iaf3b6vOdA09qD9XPAGzADJtWHGNWF4dppCWn3oDD1SWTffTOS6n9AZ4TRzWmB2QwwgDZLXoOkvkhAvLjWks0fx5MP+7s0ILTfWRcWWtTgHP0TzXlefHYm+x2/7/1ekSBaar8gLQxL0pYch5DE/1WkBawlH59xVhqTzamvO0JdJqSx7+6XyxhN77wWMZ+J1MadiPCciwj4W9Ji/F3ErI5CfqIvI8Z2Q3p2D1rQpyFN7HVpLieQlvDiVP5FKK3M3amdX0CMzFki3p3aeyPZbDKOiMg2RMBLBhxNq9chQv+oVNYg8nnax+LsJGvpTAbs051rhFdfCe98AgVieP6HmHqqr4m+y4sbRZ1M+U6yJnQPEmCuQP6oDyFCuBz5fz6GmP4Sspa1O42fCXzsf3/4Lk1+FqocvLIzzMVEGmdH7A0gZroQ5akbRBrtNqRFX0oWBmwiHSYLb2YUN4UyN6Sxtu/4diQQ3UnWCG12rxFebktjE8c0bgS3lmiGHU3zxoUYNu+o2o2pLeeTN5jvRKeGfwIJW0NoHV5K3jf4ttTmb5HzCo6nvq1L7TAzfiMSLi9J4/zKA01vD9bPQX0eVVVVpyJJ/MsoBcsXge/Xdb27qqr/gyTJ1yEz1NvImz0fQKr0qchJuQ4RzT2I8D0JIf9yJA2fhRy29yMneYWQ6GnIhOVs6M9CRNiH7N2ANDzQ4pgf7pvZbEYIfiQiLKRrA+maowOXkhnWlWQzzxNR8MfbkWS9Lv13qpb/3955h1tVXP3/MxQbqKAi2GOLCipgTTAGY4m9409jXutrjAXra1fsLQnGCqgosUSNsSJCLIANxYKCgFQFLAjS5dIEZH5/fNdyNkdAyrnce+Os59nPOWefvafP6mvNWvZec+Rksp7dv8Ke6U8iem2svtI8Ze4pV4eUesa9sG5DqaM2RaqPv1q770MH4I2y9n5vfZiJUidNRQRyL1LcSGcbw6bA/8YY/xFC2A8xDedYmVOs3B6IQfkWEZ0drQ9HkRxXJllb/Lyp8YjwfIeQaFN7388Xq2Vj35DkjdbJ2jsdqWtWR0SxIZr/+mieW5BSItWx8boROUnsYL/7keL8GiEk7gdDugOGvz+LdBzHNcju9w2yJe2A1tvOiIgegex+Q+xQvOeBYTHGS0MIawANY4xjQwir2VjtZf0ZbeNWPKKjiKRXR+tpOtJWuLqvkbXjdeQmPR4h4zNsrusiRH02Kfh6MytjIMlLb027txrp2JlN7NPzQBZVgWuTjoJZ1+rthdZBY7TfR6G1WBsh/InI+aU+ySnG++n58uaSDqpcpfD/eORBOds+A9LK7Grf21k9e9o4TrJ6/mNj3JB02OckhFNm2P9t0d5bBUmdm6P1vSGyI05E2o5u1h9ijKNCCCFWZ6RcVVDVlPInpKnDEWdSG6URuRvFPB2NFvsMtJHaog3k9iFPKzORtHGmIEJ0FClp5QzEjc0iccWTkfT1lNW/ISkzwW0kMf8btBCLOnDXpRdVPW4/ca7Vsyd7Rna3DUxAEss39k53hGjeQ1z6G6Ts4h8hLnYB4kjfAE4ujFsLJF15OwYhQu42IY8zKdpOppDiVLwPQxEXfRmSniYib7KtCvPzCinzxMH2/F5I7dEfcfzOWb+IbE7HkSSqGxBiOBNJQ06UZ1o72iNCcyQK4r6KFAf2WGEMJ1v7XPfvWSs+JEkKzt1/gwhZf+AAhEjcyWQUOrZjpM2bn+7swdELrG8eRzPb5qeXlbGotEoLUEzZlJJ7xcwKkxAB+g4R6a2RGm0oIpzHIoIEWvN32vdmNg5r2u+TCvW7BOuqMJdC/P/h9tsJy1Trm0tbLyN72EUIyXqgeD+0RyqsfS4luo23Au2VU2wOXiOtqcmk4HA/jsbHw22980iq2jHWhz5ICnb14KckNaY7vpQ6Ujjj5+vDVaw+JguQ2neMPTOShbPvT0bq5D9ZP65DzhVfojX0Kdqfr1nbos3Vm2jvDkCq+b1trD2Oqj9ShQ63ea1V1bi2ul/VKo7Kj1A2LpEYY1e0eW6JOm7+ZbTQDkIb/2S0iS5CC+V9UqaEuUjamII4utlIMrsHcWBvIa5uU7Tw6qHNvI415zdIArkGJUydj4z7D6AFuaq9+xWJixuNOKzi5oN0zHckHU3eGHGc45FaYB0UazMNberHEVe5E+Jwv0cbow6SlPa19vwWqQ/ahBB+E0JYByGPa6xtLlmcb/2dw8LHvQfE9TUgHeW+kbX3I0QgnFi8EWPsiYgENt7jgKtCCBsizvOPiDPeBDEZ+yKJ9wskTR1tY7uj9WMOOkjxVuuvS0avIyl4QyTRvYgYlk3QGvg7ktD85FPPEr+utb02mvfvbPwnkGJfuiOm4HW0br5E66KOzemRCGm+haSbWSQ3aw83qLCyZiKbHPa7Acn+AkmtdZaNo8f8LCC5p9e18t5FiG8/hMCORESpPVrvl4cQbkIS6M4hhG2tf7OitAxnI4eTAdavQ0iHYK5nz7rU4Tafr0knLg9Aa6evtfs3SJrphJD0hWi+6yFp4l7kcu5EJpCkpfMR0XSJ0XMtLrD5cJf82nbPxzWSpP5xNq8VSJLZsjB+jW2MXTLzOLiZhTLc3R9r8xirp17h/+aIQXDHiHWt//NJiaydudmF5LSxvo1dLcRs7YuYmd8j4lQfMV3NSPYpP0zzPLR2RwMDYoyOJzIsDqqaUhoXuDlwin3fHk38n+33Nmijrmu/GwOr2veAiJVnjpiI7A7uwvw5WnRTSVzVOEQE6tqzC5C08DYiasMQUrsBcaQfIuT7GFroj1pdxUSqRceIClJWDFexLCC5CU8vtCciDrUvaRN/gBDHWWhzvGxXbyQldUAb5ElSTE59JKUMQkj/OUSk/4mQ0WssfOqoZ9Xw7AJ+/zoknfZCKp3paNOdbW15ysfexv9kJFFdY7/XRDFQQxFRdZflrxGx8kS+ryNm4ijEdc9DGQXeLIzfIGQbmYvcfc+2cR+D1IYgIna3tb2YyqYfSYKYj5DkKyRnlNmIcG5m5ayKpKjxhXeetblwm840krTmc/2NlTmShMCKnn5OsPzep4j4OUIdTJKqxiFV6UCrew/k0TgIIdPNkPPQrfbcGMS9H29jd47VdQ9aozNJ9jH3TnUJxJ09XHp5keRu/Raa/+l2vxNwUGHOt7OxG2X9vcza7NLQRBbOizmU5KL9kb1X9Hh9i8SsFW1pbkeM9swTVq/b0jzrRXHv+fvFbBWTSNLyFMQIjLayh5AcOvqh9f8CiSlZgDQfPUmOTm/aePexd101vQeSMkchhqOY29PDHV6x8u60ud+nqnFvTbmqi0S1NnBbCOFUkjrhf0II9yCJYhfgUOMgxwGPhhCeQ5LVZ4izq4sWVkPEbc9AiOwzZNsaZP81sstVOOOQbeIBREzqoQX7W7SgN0aIcnu0UY5BiP9V0nlMniAWRDRWZ+HzZxYgzsq9yCaRcoL9GklEH1i5zaxdm9q7uyHOdgYi2u8hbmw+Ik4BIY+rEAf+NVKlvWFtXt3G71uEkGfbOETE/c21MmYgjrWDldPF+rUNkhLao8362xDCmiGEPZA69p9AsxDCJTHGChvzjRBycCM0iPN8iiTlvWR93wkh1v0R9+6ZNbZGxO1TJFk1R0S9K9AlhFALSXCrIgRQzBzidsPpCAGNsnH9g83lO2jNHWjPHYeILmiOawGH2RzdYff9DDNXH81GEls9NOfzSWmbfF95QlvPeLABsnv1sTLWQ6rbWTbeOyGitzcwO8b4KLIJPoS483/EGC+z9ych1etZaJ7bIgZoNyS1TrO2VSDpYZq1a3W07kbY86ORqngmkiBaofX2Fum8rn1CCIeHEHZFe2muzUsg2Y+8z1MRIu+GNBh1bKyn2Bh6thUPdP4Nab9AUg/WQlL3h0ji3Qatqzmk4zDco3CsveuSWV1Sns+Gdr8OWsdNC/O4FUkC28n6sjXCBe6Svx7pnK9xSMKeg9b57VbutkhK2oLkyDEZMZOTED57DeGVo6xt58UYe5Fh6aCqKSVQ2z53QovfueXVULLNSxDCGYyQzSdowQxBSOAVhCDuIHFO/ZERuotdxyBE67r46UiVMhot8tZIdK+HVCcjEGfqsR/PIq7qFsTJ9kCcvAfOeiJN925yaWoGIpTO2brXWX/rx1jrwyxry6WkwMU3SGqjttb+udafeki10gEhvx1sbPaxct012V20PSeg5zmcS4rVmYPsXXOt30eizfdnkg3vUZuTMxECmogI4hloA++JdO6XIiIxhuSJNZJkm3nT2rwTIlKXIMLzsM3HacjA7Da6K2wc6iIEsjeSfPdHjMIkG8PppNiooh3oW6sn2Dg1QwixNim2605ru0u+j5GCyN0rbzjpdOCppDCFqUg693AGjyUqnnrsbZmC1vdTJBfwbkjFdzWSAO+1eesJrFPYI6cgZNcISTDfIOm1vX0fhdbZXSQP0DYkm6hz96+Sjqu/HRGC961tJyKpdYG1sxfyLmyBnArus3KeRfvN45im2RycYfM7EzEh3ax9p1h/JyPGxZm0u1k4R14f++6u+O4K3g8RK0f4XxXmxjUWbgP2sA/3unSpx13Y3W68wMq7GOEVD/p2KeodUpC12zr7WnuG2e8OhbkZQco3Osl+f4gI+PFo3z2CaYnytRx0oqobYJO9sX22RIjtPPtdCyGVUxESXs0W7gsIaY1GhOp9xJV3Qxu+O+KML7LF+DYiRk+QjpEYb4v0YKTLfwRxSc+S4o2mIAQ4xjZQSyRBfG3/P4s4JT/vytUZvonmIAcAV08V3dD7oo3/IkIuN9u9oYiwus3iM+vft4hAH4g46FrAtiXj+HdE3N8hZQZwTy6Pg1qAEIk7LEywPnifBtj77gTS3t55EXGj/ZC3285Wp6cK+n+IgF+IEPuXCHE1Q0TP23GijfsT1t//kOxBX9h/YxFi+8LmtzEiYkcjAj0aEYs7EJG5HCElDwgdVBjva2ysTrKy1i+0excb5wkkw/6XyBFgRKGMR5BBvYjMinbIbwvPdkPMhjMsxeDgF0hnW92AJNIP0Tr7u7XlCCRROyJ0z9wNETM1Dnjb7q1pY+SMzjiEoAcjteF7JW3zwNtpyMvwRETcXiFlRP8dWuMHoH1zNCLyZ6B9+KzVNwBJHv2tDfciRqafff8Ird0nkfpwCklV6irH+0lhGs5Y+P6Yj5guZ6w8FdpMpPosxkD5unZJ6fvC/WGF55zBcrXsWzY/lyKG6HvSCd1TkBr7MJKa9Ba0PwfZe1ciXDHKyvNg8CE2zy8hbcd6NjbtET7LzhM1iVAhBNLIJvRPdq8FIlZnYkiwBCHeZIupP0KOoxCyexepJV5EhKUV4nDa2cJ5CiHaO0jE4WikWx4CHGj1uIQyHOne7ycFqv4ZqSq+QYTr17YRfcPNJ53B5JvlW9tcA0kxM8PRhu2FOLJ7rO51kAqwF0I0fyCdVNsHcXiHI47/RERQbrdn2yDkMJGknnEEOcjaOJDEMb9j4+SZ5j9G7ueTSGljrkfEpCEJafxvyRyegDbwKLRpR6BN/y9EqB6z+Rxs/bjeyrrRxsYz1Lsn3zwrb5pdhyIiMxSpVva39n9F8rC6GSHOl5B0NgetiYgIwt42rs0K7d4GOa98Ys8PRMyLx7nMRdL116S4u2j3vyCdIVRqV3Gvt3k2vh1JHPznCLm7d915Vu8pNr+dEXO1OTLwb1NY++sgYtbW+vp/SPp0adkZAWcwZpMYALdPfmvfX7Fxb4vWzWSbu7cR49YPqYGfQkzS/fZ5H1KTzrZnt0eZUzwzzDy0rnqQEtQ6UfgOqafvIzGLTjArrIxZpADp0YgQePC6ayg8tsxjDD3AujRwfZ79N4mFU1R5sPhwRJCnof001ublURKj5nuuBylTTDu0Pz3TxF8RXvDsJzcj9d5EK2MgSXuzd1Uj/Jp6VXkDbCO2QdzmSQViNR5oa7+3QjYKj2/6DiHlYYgbGo4cHtx9dwf7XJd0zMQsxCE1RobnkYib/Rg4zp5fFUlXHUjxTwvs3cFIHeh6ZlfbnYaQy2tIkivmHPRNM5PkpvsUkrDGIO72VivnbsS5u7piLEklNg4hkB5oI5+PJInjkOqov23M7gjxfkwKjPSNXIGIqrvmViDbx0Arq5uN47n237GIE3Ynl4vRBm9dmLeTSdzkJKRKcueNfRCRG2ZtOdTKnI8Q1oUkd/vn0eZ/zsbHjfkTSO7QzRDBmY5scP+0cR9q7b0eEcVHbazfsPYtQMhpu0K7z0LI/l2bg8esjB6I8LvqqCOS1jwOzcd0HsnpwdW6Y1mYy/fsGt9Ymz1l0BeIQNyAiM121qbGSJrpgSShGSTm7Uyk8u1rdXYhIeMXSOrjT1jYScL7MY3kEt7e+v0iIr7XINXjUMSwzUSEc0+kxtwGhRt8hqQEV23OQ+tpK9IxKteRDlz8Fq2NIqH8EjEQT5MI6UC03waSCIqr6joipmQmWscTSGrrSQhHuM3Q58WJ5mhSpogxpAM6XesxFhHaF218PiNJwI2Q56VLob9Da3qajfFXJKZvFiL8T1rZbqaYg9bSBTbP+1Y1nq3J18omSE1I8R7bARcV/vOYqdMRgXkAid2tbeI/sAX+GTLSzkFIcDCWwBGzdy2m7hYlvw9AG/5+hAAesI3hR3XfQkIwdyOEMBVJOc1t8U9FiOVc25gnkg5RHGDlehDyXxDSHYbsMuORTeAt64+nKnJpwyWpde25B5AH3rOIGFxr/djM6hpsm+YDtJkfQ4jIN7Aj7OORHcljaw6wqzvazMOBQ63sdohDPBUhqRHIgcWl27MR8XgTbfzO1tfnkNPArghhdCC5Bbexvk5BCLuTjfEzCGl0Rdz7HghhbAA0tvbsiJDH8Qgp9iAhwDkImXyIVKceANoU2Kkw73vaeN1m49OTZCuZhtRWbmCfg1Rjj9n1DkK+znwchtaQS1QepxZtrG5FzM2NiBhXAO2sHYvN40Y6iPBgxFS9Z+M5EzElxRyOUxDj9BTpiPORNreuinIPvPH2zBtIG/C4/fc35G69GVqjT5HOcLva5vlIJJmfjPbMfKv7YsQ4PWntnG31ep3TEWMyjmQfGoaI7wibi/fQ3jmSRADcE9WJlhMal8Rcei2qtyPCEZMR8Rhj781D63A8aW92QfvFPRjdxjef5D3sadfGIO3NtYjQvmplvo/WnNu1/mXvv4zFNS5pnvNVDQkV8owZAfzWfh9hi+ECknrP7QBXIDXHXbYofonsU1fbBuiONnBnoPmSFgQl+uDic4ibnGjl3WAbqAIZrA8kueC63WQMQpyf2jv/tsU8ARGzumije1omz1ZwKekIjC4Imf7TFvep1pb/hwj1iyhW6I+kwwZHIOS8mj3bHnG/6yO13KukgFnPGTcVIbWxJDfaBfZeHaRWqUCEabTVcQjJJboVUv/caOUfhVQc7p22LyltUner9wtEyNohlUh7pO56F/ibtf1ckuPCKBt/Vw12sf4+jpCb2y43KqyhK61v11q9HqjZn+QGX5u0pra0tuxqv3dAxHFXRLjdycFTZI1CkpoTne5Iyp1jz3yOpLZo/XiS5HSxABGmCdauO5Ad6mGEOB9H6+TXS1qrJNvsYQjBd7U2uAQ4jJTEdS5SgbpE585EfUipuj61/gxFCPl768d8m/uHgK0L7Vjd6lyAVIJTEZN0EdozvyCdAzYOSQ5vk5IyjyGFaHyP1sWrNjdTkMTfE6neR9rv8UjyOMH65gTf1eyzSNnK70Vrr1Td589/aP3qTmLc5iPGsT3JPjXTnhuMGMFzSI4zz1g5vr/dvX6KldOHlEndUy8NQWrqD4Hjqxq5/zddK4tINUWcx2kl9w9CG/tC+/1LW9AtEdd/rS36I5EKYh3SMQK3IylnDZbDOImMw240HWCbqAfa8LehzX6E/f4KqTjutAV+ACmTxGCgs5XZACH5g5Fq6zuEWF4mRfBvirjZ1ogz7Y8kgBGImxxn/RqIbBgTrH31gTqF9t9uG6YRQiB9SA4YrvZxZDrDNvBExHnehBDQpUh12QchCE9NdJK16zdWlxPIRvau2yAG2vuDrIyLkIQ1AiHEg+3epYhYPGnvTixc3yK706FWzr5I1XQfIsKeeaE+ItYeRzbTrqtInqOHYMStME47IcnmZqvnRoSc/kKSnNyzcwDJc9Dn/VMbz54IAY2w9hSTprqadzJCeENtfEYDd1s7GiJCeznQaDFrcm9E+F3KHYiQt6vTZiKJezSSWicV5tm9T92bcwhifGba2LZEBOcytO48G4anQNoeOf5cgPZUV5uvwTbeoxCB/AdygW9sY+FxTS7dDbe+T7Oxc0ejCpuD3mgNXYeYtQftmeNsTL9CWpXnrcwhpGNiplh7K5BkdyYLe/k5sepLyvR+L5LYptoz11jd/uxRJIlvAtqLzawPHyP8dDtJhT4K7Y2PSRqMPjbOs5GDzlHW7iZkiapmECqE/D4FutnvOrbJdkec22G2YF+yyd278G4zuz/ennkCcT2P2uK+ZTnbtIstvEcQsrwdcb+vkSSPDxFBuQkh3X3t3Q723FukaP6ilObeey1Q/MUGJGLyhS38VxHS2ght/LFItVPXNtXXKOvEKUhq3BJx2S2QfcVVc7fahvkFUr8MRBu8NykhrttPdkTc5DiSumx35JE01sZiENDSyj4dIdz1rO41EaPQ1N6tsHYORAzFqUhymIEQ6eFWzn7WpwNs3L5DBMNtS28jlev6yM7U1vpwvL2/FeJuf2vj+SGSAHZEyPkE7LC6kjluULKObrB58eztc23sXGV0GyLQnmLoGaSm/NTG51VSpuwFCNn3IxEKD5idgZBvA7Rux9lcu4RXdzFr8gibs96IEHZEKuZz0Vq92cbVVW6T0N7oX6j/V0ia/cbmszcF5xdEYKYhBN/c+von5LzRyuakG2Is1kQI9wsbhwtY2HtwEyQB/4V0fIwTcHfQmWhj3t/Gezhaz/1srB+x/3dCRHomWlvnIg3Dy1af9/t9tEb/Ym242ca4I+lYlKKE45LblzaPD9hYPmjzMhMxjLdbeV/ZO/uT1IadEJP1AsnN/1tkRx1kdfckpXs6yMZ6/apG7v9N18qpJCXqPBsRm9sK/9VByPwEYA+75xzyZkjcvgWJ/6MQYjwQeYBNQohsqSUq24C9EIK8nhRPM4p07IPrpQeTMiTca5spIL38WHt/Ksno3QoR28dKnnfPwgdtA91oz6+BEMt31p4mdr1gG+BwUtxQFxu7QWiDP4gIwwfWjsGk84ymIsK+ACHzedbedxBn7Y4Mbi+7B6marrQxdRfuDe1zG2vTlYhYetb0STYfHyMbwxYk9997EWFshohuW+QxOZTkldnfyumKbJa32eU2sSMRI/Oltf9ghIwH2LztZnWdUjLH+yJu/0609n5p43q9zcNw+xxtYz8QISlX8V1vvx9AKug51oYOJGQ6lnREyXSbl+Ps/mikpm4A7LcUa9KdRC5G6/0qRChPRYiyNynfpMfijSE5N4xBCLqLlfc0Io7r2O8iI7UL2ovnF753QHZG73c/m7MWNl/nkOKZ+iCidLjNzUskD8tpaD12ICH0CTYWzyMC29Pm5SZr56GIYToQEaXTbfy+snJcsvo3WtfvIOL5EClqQud7AAAgAElEQVRf4bskVaM/Px3Z2qL992ukCnQVpbvKD0WM1GlWr58ycBZiUKeitTTR+uaHdo63+18g4ncrIvqfAOtVNWL/b7tWXkWJILxTuLdKyTOb+cZCHnhb22K7iqRq2xNx1wFYfSnrdm52O0Q0Hkf68ZsRJ3s1yVB7A0KAM21RHkvyFByKbEjvAUeUbHzf7AeXPP+YbaQjbDP8AyHGE+z9hkiaG07yelwPIe+WCKEMsE29JyLMRyPp5CiE7CeTjLd/I7kKt0UE5CKEbDvaM7Ws3dOAviVj9RjGMNjvprZBr7axWxNJR7fY5nwAEaWHrNzmaMP70ScTESF7BGUTeAsRs9cQNzsQIYa2SB3ZzOo91Ob7ZntnLEIMjyAC2x4R+paYG3ehzS1ISU//bvM6ABGnb0jHSbg3n7t0R5I0dS9Cmq4SfBetjcE23h539qqVNRQxFDuTuPMtiutvMWuzESKs7iRykpX1OSKEg+z3LSSb59VWx8NI6nAX+3lIJTYc7Z3F2W13R0h6O+SdWYGk90cQ0TkAIeAbEGJ3l/29keQ73ur9zuqrjYiYS5vu6PA12huP2bjcauW9jTK+1EWqzV5I1dvN+uXpqi5BjKznvnQc8irJyeJJtH5eQPuhwtq3D/LW+xgRxoAREKRSH2lz+oY9f7eVcw5SIQ8otKkrYgY+RuvnLlJy6ReAswp4a6OqRur/jdfKrSypGzz7RD3M7oKM3O/bpm2OEN9oW9SjEHLegqRK+sUy1n0EQrjuvnwjUjE8h5DBl4gwjUEqrhbW1uMLZZyDkOdCDhyIa6/AiFfh+cYIEW1si/g20gGGE5BKZQuEhK5E3GBre7duoRznjLdFiHIEQhw7Ikm0AiHah22cetlG6kryfmtldV6wiPkoSoQjSe79Ln3ejpBFOxu7C0mE+jq797dCua6WG4GI0SiEeDvaf88iTvwlRKgHIyTRxOb3JhTg2hshu5727jO2Ll5CXH2TJcx3U0RARiMpYCLJ+8tVWG8gqXCy/faA4ddJuR+HWtvOs/bMt/ZW2PydYe91Rlx4E4RQD1yKNenz+ZDVMQ0h52E2v/1JsVEzbQz+jIhoOxvj7kjK8ODwz1iKc42Qus2l5B3Rmj8VqeJOsbZ1QEh+rLXhciSpd0C2no/RnrkQEUu3mXmQrjMLoxARXouUvWETxPi8bO15EBEdt6W1s/I3s+dHIYZuf5JU+bmN2VuIGD5emOeuiNg+h/Z6aUzmHYjJepl0RMeTyIlpLokQnWn99zyPQ9C+eNDeu9zm5Q9Wdg7mrYRr5VeYJJCLEWJuY/e3QtLTArTxz0EeU8cgbqczQsqfYDaaZahzU8QproE4VlcdtELE5BBEmE5FiKiFLeZdSYcG/ihotKSO+vYZSu67J9dqCAn3Rc4CfUi2hjbWtrOR+q4hJa72CPG+gRDHCNtEZ1uZo+yaQfKiegghvysKbXBOetPCpvX56GjlH1yosw6S5N5EdrL9bcMOQwi/HUIEf8eIW+HdXRHCeMrqfYN0uN61iCl5HJOKrU2usvu93WuJEMo0hJCvxQg4JVk5FjEfDZFUM8/WUSeSl5t7Cp6DOOQOaD0OsznpgwjIcyQC1tf6MAUhsaHW1tk2f0fb3HVBaaVqla6FRczn60hdtIqN/zEI8c8ipVO6GiHkfkg91gYxDu5+vYAUMH4EYgzCUtT9gY1Lw8JaqIv22AP2WYxDnGNt62vPHk5yfR9OSgP1pY3DyzbXnqZrOtoDza1f69n39sgm1oOUbPoMtO/+iLQBc5HE9oL1+3Ik7V5nbRhk47gDstfujFR9rdC+7Ym0GbeR1NEPWpnD0D4ZYOM+mRQUPMHm6F6Eg9xG5QHxx6J9cRklUn2+ykw3qqTShDAvItki9kMidVf772B7dg1b0FfYAt3P7i9pIzrRcFvXRrZIL0Pc566Ia38eId86yH7yIXB0SVm7sIig0UXUGUo/EUJ4C1Nx2iaaiJKLghClI+/zEaLacBFl10VIaQxCmKeTjg7/mpQvrgIh0/0QUtgK2K2krLUWUf5CEiEpTqoBQtj3W53vI2LREKl83kUSYR0WtoP4GJyEJIGHScb/kxCC8XiqixBSr4MI3q3IFtcTIea1bd6nIkLzSMnc/mgdIGmgl83vLLvcPvg96Wwiz834LClX260ICY0jZXFw21F/G3+PM/oO6GF17odUSCcvxfp3B6MXC7/HW79H2phVIDXuUIS4XRX9GCKGXW0etrQ2bbqUe8+l5NIMIycW5v+PVs9JhfXQghRs3w3tiyNImR+mIIbCs8Z0Q7bBPa2tc4DDrLw7EGFfG+3/D0gMyJk2961J8WnHkM7D+tza7+nNOtv3F0nq9OIerIfWbGebx3ttjsfbGF+D1vFlpHOwLkDrcj5iar1tW5Ps1k8hyfMuSjxN81X+qw5VA/2QLnd6CGE4QtgDESJ31+anQwhPxxhPCCHMBe6LMU72AqKtnFKwDOsdQgijgTGWgX0CQoTHI0TyUQhhU7TQtkcbZXOkk+9q5YQo6BdC2B74PsY4fHEd8vbEGGMIoVbUGTNDQggjgd1DCH2QPv7fwJQQQnOkxmmLEOMe6LynrxdR9rwQQi8k8TWxvryANs1pSDIZYON4DLIjXA5cH2P8tKS4imL/rPwPQggbALX9vn1OCyE8gNRRRyKnl4gknUsxg3SMcX5h/IsnlI5Hkt6JSBL8FiG82xGCfQl40sZqQQihAbJNHW7zcpyNy/UI8e2GEDkxxu+L416ovykirA8hr1JQlvhTEbJ/Bali10J20L8hBHWklX8wsm/sbO3d2+7XRgRuA8T03IRspy1trTUE/i/G+BA/ATaffwC6hxDaIiJXGxHspxGyXgtJBX9E0scYJP175pEjbVzftXbN/ql6DWaj9fa03wghnIyQ+BohhI1jjPeEEOoAH/laDiE0IiUNvhPNzyREJHrZuAWE3BugvXwyyQu1NXBYCOFTRCx/GWN8JoTwL7Se7gohDEPz9McY4+AQwlFI3fs9Uk/OsXc3QgzsN4iQuMp1f2vvwzbOEZgZQuiMpMdDEO5xz8A+SDXeHTmGTEB751ob07lIRTkmhPCFjVsDRMQ2Rszl1THGr5Zy7DMsL6xsykjidtwWEZC76beIQ3oQIfQuiHu7HnGVuy1F2U3R4jsNLfi7SW7SR1jZ9yHEOxQt3MYIEWxUbN8K9tFTOdVCi/4W+70G2ggvo43y58I7ayymLLfhbUHKhj4WqTpuQkjjC6SiWBsZlIeyFDaSknpWRQxC0YZVB9nY7kbSyBOImI9EEsFi6yAxH73s3UOQ5HYrQhYDEUHoRPIuvAYxKi41n4mIy5E+nkuaI6RC+wwR8VUQAnIvQ8/FdretDQ+H6G/t+8Ke642ka8/W/RJiCNoi4j8eOXg0R0jsD/bOacu6fkjOAX2R7edLJH2+hqS7jgjZ/wlJFm8jG+uhNp6vIOS5VHNNkpIHkdyoPcNIQ4Ts+yJ7VZ2Sd09HxGk/Gw93/z7XxuJIpC6cQDopeSQiVO8jO6xLM5+i9boDItA7UpJSqlCvq9/nWPmNEaHqgIjYV2hvu1p/+8X0fXWb12sRg+hhJHfZmuhkZV1BkmjnIMZyNikn5QOFMhuUC2fk6yfWbpVUmmwR+9jC/4CU0+5rkgi/qy2on0zmSAFJ+eJBnE+7wjOb2sY/n+S0ULZFhgjThsgOcjZScdZHxLMYH7arbZIN/L3FlNcEIchWSPp7HMV0zEDpWt5H6pDZ9l8vSuxMy9j+XxuiOaNwb1VDDpciJP0e4uqPKB07EhPiDEMjpNbqi4jTJvb/9jZObRBS+wQh4G3suZeQ+qc/si3uvwx98FCIsxDyvZKUTmiBIaHz7dl6yIB+EUJe7yMCtTtiak5BaqBPkcThCVtvQ4jX11DdYv+Xoa2bIk5+qtVzHfIK/QZJhIMRc7IaIgjTrd4hSCIaBpy7HPP8Q4YR++1q1N2RCq1R6Zok5VXsY+vB1XZXkxiIk5G9ahJSlc5C6r+FmEBEmC5HDOrSMKB7ICaj6LBzHmLSLgMucRywDGvEky1vi2xyHtD8GcIPrmo9wOqfTYFI5WvlXiu3snTc9N9JThRtEYI83Bb5Z4izPQMh/mWJkfoBSdnvKxHReME2/u4UAkHL2C/f6I6wWhpi6Ya4tX+QEuzWQsj7ARTUuNj+ISnqDsSx32iby7M7zyFxmt/Z5l+bFeTySFz+GSV92w4huB9Jn7bh65Fy8q2NdPgtCvPyHClLwxaGpAZau/101xeRlPgX+zzWEEjL5ezDczZm+1tZzyFiNRWp6SDlMzwXEaR/IXXfrxD3PQtJOy8gG8xxyFbxV7saLuc410N2k4eRJDEBMRpDrK3HkrIh3GfvnIeYhX1tHjYpzsMy1O0ZRjzWr2ijPaxkHA9CzEp9ZMt7CO3jQ2ztXVXY221tLWxga/SA4t4v+dzaxnexKaVK2nwzWueXILfzfojhuZR0wvRS4QoU3vIyCR/diZimUxGBPR3hn+9s/W1A8p4NLCGnaL4q51r5FWqib0UI2L18VkeSQHPbgM8ibm2x7sdLKL+IpN5EROMwhPx6It14ufqyEaayQ4S2m21+J8J1EMf5jLVpk8K7uwKtlqKOVRBX96X1aSziWK9F6onL7f6qZeyXj6ET/L2QkfxHGaANkXW1se2DVCd1kZ3oDJJa71wsct/mZAYivvsjScYTqfYm5cd7Dks4vBx9aEk6RuQhWwvrWF9etP7sz8L5DE9BKks/T2gysmHtYe8/g1RB6yFEu/XytK3QxibIbvqV7QnPmrEzIhwzrd4tC+9cjCSrNVkBV2hSrN8QpNJ9F9nDHkcquZ2QhOHHj+yNJOVnEZJ/BxGZRUlmv7IxbuR7fjFtWGJKqZJnGyEpN9ra3A5pGkYDv1vCe4tytlkPMXyt0f76C/I6vAGpVV+xfnnm9+uQGrrt4vqSr8q9Kr+CxEFtTEJalyB1zz8McbREnOL9iNt5EfjVCtTpsRjX2G9XTZQ1YhxJRW/Yxn4F2SuOtr5cVFL3dZgX1XLW5XEtN5PO19rcNlsfTI1Yxr652/p9hrB+FJuDnBQGGxLzXHEeqOmpj7qQzsK6FnGs+yJCPcaQwSnIdjIRETA/lNFtfcuMHEiHPE5HaquOhtzqIiJzCYvOZxhIR258be/VJWUNcc/UuuVCWogovIqcM15BRGBLRCAHUXIyLMsYQ/gTdbuN9hf2eSEiRt0wAmlrtz0pc0x9ZGtdkmS2tHazRaaUWkJbb0JSzj+tnsOX8HzRE/VspGFxe3E7hH86ocwsFaQ0bxfZOnzVnvs/ZD/9TTn3WL6WYZ1WauEJSR+MvNI6kyLpb0Qc61j771pDaENYxjipxdS9Mz8OcC07N4Q4/6HATYV729q93Qv3bgNuX8G6Ss/XOhkZtJfLJrUU9bnb+jGl42eIqaKAzFztuaWN+0nIc+0oJAXsSEp4OwjZJp2heIWUNmk8ZgtY3vmi4P5NCoUYz0/kM7R7G5EyGDRFttRzCmU34SdiuJazzRsbwhyLpIbeiHj8BtkFzy08u5AarQx1/9L23r7W5z/bHLrDxdqGqDuTcl56GxYlmR1RjnYtob3ONPxiSeNQaON5iKHcFknYPRHOec4+H0G4qBfJNnqLrcsDyjnW+VrOOa+khbR64fueiJveHKl0FiDnid0Qx3sY4nCbGCLzox3K4X33owDXMvfT46PuMQRYTITaATMUI9XmHSzGI2k56q2LEH5PykDUf6KuxQUy+9lQPxCxwnjsjYjOTqTMC656+x3i1v1IkAOR7WcoImoNKBzOuALtdntlW+QwscR8hvb9cORx9xxS9dRCwaGfUDg7rZLGeVvk1dcYSZ39gLXtv9a2h8q+jkmS5zkkVd2aSIXbHbMfIabjBhYTS0gleM+uQJ/2IHmONkExYQ1JB5zOwmLJSBnR2yBbXCtMpYvUsmXXVuRrOea0EhbJmkid49xYC0Nq7ZAKybNEV5BUgccgW05lEJMfBbiWqdwtETHa034/grzV9kFc8NcUPJpYSo+kpajXOX9XRy0xC0EZ6lss906yZZ3pbTNi8CskEbyOvLLaIBXaaYhwHYcknm9srHZGxOO8JdW3HG3/wf27pC8L5TO0e3siyWU9ZFwfacja3adHYbkoK2mcd0ZahuMx1Z/d39E+l8tp4yfqXMvm6dRF/LcuIl7Pk86QqxFOBMiNfbTtxTWRQ80lpFMNfo8I1EREwCYgxmnVQhm7IPtVTjBbDa5alBlijBXIUHljCGHfGOMAJFGciTjbgQgJRGCHEMLOiIh9GG2FlBl+CHAtc7kTrOw2IYRfxRhPRDaXp5BH1P/EGN/3emOMc8tRaVRwLDHGeTHG8dGgHGUvpr5Y/Cz5rx9S4d0cQjgrxrggKhC3GZJoZiGC3RxJK+ciArsKsh3dhtRJnyPJauCS6luOtvdDNtBtQwh/ijHGEEIrJM1PL3l8LYSYf2XXldbmvyBP1B1ijJ+vaJtKIYRQ276OQna+K5At87MQwkEoeL1JjHFquesmHffyTElbiAqu/w+SPC6zYOxKW2flAgs4fxSpKu9Ac/0PpFr2QzLXRSrz+2xcn7Z7/2tleFD6tjHGSSu9Exl+BKFcOM4i11clZaE+ARGnG0nHMzyNFkpbpP5rijZLhxhj15KsBtUKChkbdkKG93dCCGsi43Mj4MEYY3/L5PBwjPGtKm3wSoQQwi5I1Xc6kmDaIx3/3UjNdyia+1Fo7jdCDhMDQwgnATNijI4sy74GrH09rA3NkFt5D5vP3ZGk8E4IYVVrc+eobB0dkdR6YYxxTJnasjbyFB1nhKg1MCvGeF0I4TSEWMcg29h1wGUxxm7lqHsRbWmAtB+XxRi7271aaP/Wt7Z8giSNshPpckII4UDE7CxAzMV8JLmfgRikX6I1+RFyforIHjgbeYe+Z8+sj4jW9THG51ZuLzIsFsohlrFwFugPECd2JfKWGYI8dT5CSMuPNV8did1LdGGt6otko/EMERcgdUlRd/+03WtVeK9a9qcSx8lzIo5HTEljkuptnM33zohD/wDZEXZD6uAfub1XQvt+yGdIUp8eiBinViSmrSOKmdoH2Yx+MsZnGdqwBvIya4vUT58gh5h3gKfsmX1QnGF7VoIhHzEXXUgxb+5ifqjt5/pVvbaWog/7IQnpf5FX5v0FfDQc2T93srH+EjECrQ0fRaCflbOqrUm3Uf2s9nB1vsqxSIpZoJsjldhVBQJ0EvKiuQG5c59aUxYBKbnpA9an+kjnfbYhM3fXPQoZnssWo1UTL1sL29tY9LDPTkbAOiF7zy1GMN5FzEulOoOUtM9tou6C3pMfH9a5EZKq3qQQ/FrGNhyCVFH3AGcX7r8N/Lvwe6ndtlewPaUu5sWDPg+q6jW1FO1379Ot7PcFiFl63PZvZ2SvmoTUwO2McF2IbFZNkCNU76ruS74Wf61QUtoQQl2EsIehiH6PL/kl0DuEcCLiWPoig/odwD4hhO+jJY6srlCS3HQBkgb2jjG+EEJ4Gm3oe0MITyJnkHNjjCOqqr3VAWKMQwBCCP8TY5waQjgWEaddUYqsdRBiOAHZfabHGD9fGSrfEEI94KIQwt8QIptgnxVmm6mFvBhrxRjPCSE0tD6scNtCCKuhYO+RyE26HspKskYIYfMY4+gY4x4hhP4hhFdjjPtZWyodYowTQwh3WXs6IOZhS+CKGGOP6qyON5iEJNWtQgifo8DpcXb50T6jEAOyR4zxhhDCRMQw+dEkDwEXhxB2jjF+uPK7kOEnYUUpHckN+FyEfO4nuQFXkM4uutKeP4mSs4uq28Xi8wZ6uhhXHR2OMhf85HHjP6eLH7uyb4UCh7/zdVAFbVoNefRtTMq48SiyP/kzu6K4uHXLORaIyTkH2U4+RGrQvaz+0ykc0UEZVY3L0dYfDvpc1DxW14uUuNYPMpyAvE2HI1tfbaSen08Kp/grCp4/FRG0ssfG5at8V1mcKcxY3RNJU8dE48RQapx2pOC6gxEXPX+xhVUTCCHsih3WF2PsGEK4ErlXf4wIcCdgUJSXY4ZFQJEbDyFsjZxr5qPsAJXhxbbEdoQQtkGxSJciW8b7aF0ORAb1A1ES4+croQ1d0PrvEGO83u4dgAz+H6GsCKPLXe/PBUIIOyB1bVtS1vNZyLlrhxjjlBDCO4gYn4BCI05BsZadYozPVknDMywVlOU8qqgzm1ojo/AVIYTxiINtgDxrNkOR37VrApGCH85oOgh4NYSwH/IEOgod7dAKHT9yFub+nuHHEAtcUIxxZAihk/2ctrLbEULYG0n55yLX4zORem1/lEuxEYoH61NudVcIYQ8kzT0F1A0htAGejTG+FEJYHaXdyh5mKwAxxkEhhN8jhvkrlGLpj8ge1TiE0AzNcRek4jwnxnhVCGG1GOOcGqDi/FlD2dzTAUII+yI71WiEBK5CIvmdSG32n7JVtpIghNASefTdEeVC7AfJrRdzjEWNAJOkbkZxM69YWEFrJCE/H5fisMMVqHtb5KhwcoxxTAjhYnTESQ8s6B14L8Y4trLa8HMBs5mPQupdN0c8jjw7NwIujzHeHUI4HTld7AlMiRabmKH6QlkDfmOMPZHUsRUynB+P3GxvqIlECiDG2B/lQDs7hHBBYVFPXsJrGaoJmKPEfuhokb1CCHVMXfsaMqK3CSFsWgkB4YQQNkNxhH7wHoij/wo5F3UH5mQiVR6IMc5D+GcKsokeioKZN0QZNq4JIawfY7wf2CfGOCkTqZoBZZWofig0hPrIs+l7FCw4tqaL1hYY2hMFjH5Zk/vy3w4Fm9T6QEWMcXYI4QQU3/U68IxJxfVRXsqJ5a678PsUZIfqBPSKMVaYB+LaKJff0HLVnUFQCEAfFmP8dQihfoxxRgjhMaBjjPHtKm5ihmWEstioFgEzbWH8sGlrOmKPMb4XQtgoxliaeidDNQMjUocg1fOYEMIsFPvWABGrVUIIT8QYZ6DjHMoCBQK5F8oPOBN5EX6HjmqfF0J4w+qdidJLZSgzmM18L+D1EMKfgAdCSp11a5U2LsNyQdlz/cGS88PVcKisvIEZyghB+SOvQOq1XsgV/DsUuP0lcoZpXO56jUj9Htlk6yOV8XvINfoVFEv2O0tTlKESIcb4MVL53oScJ24Bzo8xDqrShmVYLqgU1V+GDFUJ5qrcFMUwnQ/8IcY42oK4h6E4oS/KVNd6KOPFQPt9D/BRjLGL/e6Ijr44PIRwIfBqRpYrDyzMpDdwQmWEHWRYOVBZqr8MGVYaLML+WRcldK1AZ1vNMlXQ5cCJZSRSq6D8cpuEELrEGD9CKr2GhccuA+4xb9G/l6PeDEsPFmayQakpIkPNgqyCyFDjwW1SIYTOIYSzUVaRm5FL8q7m0HAPcE+M8ZsllbWM9c5FzhkTgeNCCFuhVGJXhBAOt8d2RNJdk6wyrjKYWdUNyLBikFV/GWo8hBA2RQGe3VBYxBYoRuowlHmgHvCkxVCVI3ffJuik21fs9y9QUuZVUDjGVsge1gf4NXBptGM0MmTIsOyQCVWGGgklaZF2Q2eEdQ4hbICIVDPgkhjjFyGE2lEHOpaj3lXQwZ+boMzcE4BnUSaWPZHb+e1IW7E6UC/GOCSrnTJkWH7IhCpDjYMCkdoPeXRNA+YCbWKM40MIjZE7egsUdD67XITK6m+OTg3ojwJ4r0R5A5uiQPBZwE1R2dIzZMiwgpBtVBlqHBiRaonS4BwcY9wNHdlxkWUe+AYdgHhBjHFGOYmU1f8xUiu2Rsze7ugIm0+RI8WJ6BC+DBkylAGyRJWhxoElcj0JHbHSJsb4srmJd0RHPVwbY5ywEtqxG4qPujzG2KmQB3LzmDOhZ8hQNsju6RmqPZgdqiXwdozxS0uJ9CSSXs4NIVTEGN8JIZwFPIgy3Vc6oYoxvm+JmHuEEFaNMd5hf42xdme7VIYMZYAsUWWo1mAu3e1RJuynUXLXy9C5VgGdP9QauD3G+EYIoa4lJ12Zbcx5IDNkqETIhCpDtQdzmrgGqftuQxLLTKT6m4sOwDsYnT80vdw2qaVs41o5D2SGDJUDmVBlqBEQQnge+DDGeEMI4USUjXww8AQ6nPPtGGOVJXkteCJmdV+GDGWG7PWXoVpDIZvDTSjreXPgEuAcoB2yU31alUQK/qsTMWfIUOWQJaoMNQLsbKlHgd+iLNj32f01YoyzqrRxGTJkqFTIhCpDjQHLhH0XcFSMcZy7g1d1uzJkyFC5kFV/GWoSDAA+AfbMRCpDhp8P5DiqDDUGYozzQgj3AXUzkcqQ4ecDWfWXIUOGDBmqNWTVX4YMGTJkqNaQCVWGDBkyZKjWkAlVhgwZMmSo1pAJVYYMGTJkqNaQCVWGDCsIIYTvQwgDQggfhxA+CiG0svsbhhCeXsoyHgohtKnclmbIUDMhu6dnyLDiMDvG2AIghLA/cAvQ2tI6/Yj4hBDqxBjnr+Q2ZshQYyFLVBkylBfWAqYChBB+EUIYbN9PDiG8EELoDfQKgntCCMNDCD2B9b2AEMKtIYQhIYSBIYT2VdKLDBmqEWSJKkOGFYfVQwgDgNWADYC9F/PcTsCOMcYpIYSjgG2ApkBjYAjQJYSwLnAksK1lY29Q+c3PkKF6Q5aoMmRYcZgdY2wRY9wWOAB4pJD1vQivxhin2PffAk/EGL83FWFvu/8tMAd40IhZTrib4WcPmVBlyFBGiDH2BdYDGi3i75lL8f58YDd0mvEhwEtlbWCGDDUQMqHKkKGMEELYFqgNTP6JR98Ejg0h1A4hbAD8zt6vD6wdY+wBXAA0r8z2ZshQEyDbqDJkWHFwGxVAAE6KMX6/aO3fD/AcsmUNAb4A+tr9NYGuIYTVrKwLK6fJGTLUHMhJaTNkyJAhQ7WGrPrLkCFDhgzVGjKhypAhQ4YM1RoyocqQIUOGDNUaMqHKkCFDhgzVGjKhypAhQ4YM1RoyocqQIUOGDNUaMqHKkHdgX34AAAAMSURBVCFDhgzVGv4/qN2QUWq0FBMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "\n", + "plt.title('Max Wingspan in Centimeters')\n", + "plt.ylabel('Wingspan (CM)')\n", + "plt.xlabel('Birds')\n", + "plt.xticks(rotation=45)\n", + "x = birds['Name'] \n", + "y = birds['MaxWingspan']\n", + "\n", + "plt.plot(x, y)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAKqCAYAAADL+HKFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZwcdZ3/8fdnJoGQSUgmh5ENkxnIAoYoBjMqd0BUDpXDIysMh8ASEwXjiuvqRhZkAcFd/SnLSgjKETLo4k8JV/gpIIHgAQwYkXgAC5mEJEAOchGOhHx+f1T10Ol097e6p6+Zfj0fj3r0dFV11bePqXfV9/utKnN3AQCQT0O1CwAAqH2EBQAgiLAAAAQRFgCAIMICABBEWAAAgggL9BlmdriZ/a3a5SgVM5ttZhdWuxxJ9KWyojwIC/Qws6Vm9qaZjcoY/wczczNrK/H6fmlm/5L2fGy8nmzj3unui9x9v1KWoZrcfbq7/3uxrzezY8zsITPbZGarzexBMzuht+Uys8+Z2cOlLGuedbXF3++AUi8bpUVYINPzkk5JPTGz90gaXKZ1PSTpiLTnR0j6a5Zxz7j7i2UqQ59kZp+W9DNJcyXtKWmMpH+T9IlqlqvSCJnKISyQ6WZJZ6Q9P1PRBqmHmX0sPtrYaGbLzezitGn/YGbPm9nu8fPjzOxFMxudZV0PSTrUzFK/w8MlfV9Se8a4h+JlHWlmL6Sta6mZfdXMnjSzDWb2P2Y2KG3618xslZmtNLN/jPdg/z6edryZ/TneK19hZl9NX4eZ/auZrYnX0ZHwvaf2ks80s2Xx62fl+qDN7EYzuzRjvReY2ctxuc/K8TqT9D1J/+7uP3L3De6+3d0fdPdz0+Y728z+YmavxEdxrWnT3Mymm9kzZrbezP7bIhMkzZZ0sJltNrP1ecr6tbSynhR/pk+b2Toz+9e0dTWY2dfN7H/NbK2Z3WpmI9J+A5K0Pl7fwQnL/kUze0bSM3G5/09clo1m9icze3euzx1FcncGBrm7JC2V9GFJf5M0QVKjpBcktUpySW3xfEdKeo+inY0DJL0k6aS05XRKulHSSEkrJX08x/p2lfSapAPj509J2lvSbzLGnZG23hcyyvuopL+TNELSXyRNj6cdK+lFSRMVHRnNi9/D38fTV0k6PP67WdL70taxTdHGeFdJUyS9Kmm/0HuX1Bav4zpJu0l6r6Q3JE3I8f5vlHRpxnovkTRQ0vGStkhqzvK6d8Xr2SvPd3mipGfj73GApG9K+m3adJd0l6ThksZJWi3p2Hja5yQ9nKCs/xaX9dz49bdIGhp/5q+lyidppqTfKzoC2lXStZJ+kvGZDSiw7PfG3/luko6R9Hj8Xix+3R7V/n/qbwNHFsgmdXTxEUUb4BXpE919obv/yaO92Scl/UTRRjXli5I+JGmhpDvd/a5sK3H3NyQ9IumIeE9zmLs/J2lR2rj9JT2Yp6xXuftKd18n6U5Jk+LxUyXd4O5L3H2LpIszXrdV0v5mtru7v+LuT2RMv9Dd33D3ByXdHS8vyXuXpG+5+2vu/kdJf1QUGklslXSJu2919wWSNkvK1kYzMn5clWdZ0yV9293/4u7bJF0uaVL6HrqkK9x9vbsvk/SA3v7skpb1MnffKumnkkZJ+oG7b3L3JZL+rLff93RJs9z9hfg7v1jSp/NUISUp+7fdfZ27vxaXZaiiELX4dfk+GxSBsEA2N0s6VdEe5tzMiWb2QTN7wKJG1Q2K/rl7GsXdfb2i+vR3S/puYF2pdovDFR1RSNLDaeOWu3t3ntent2VskTQk/vvvJC1Pm5b+tyR9StHee7dFDcMHp017xd1fTXveHS8v+N4DZQpZG28cQ69dGz/ukWdZrZJ+EFcxrZe0TtFe99gSlDNV1rfiv1+LH19Km/5a2vJaJd2WVpa/SHpLUTtLsWXv+T7d/deSrpb035JeNrM5FleDonQIC+wk3jg/r2hj+osss9wi6Q5JLe4+TFEdt6UmmtkkSWcr2uu+KrC6hxSFwhGKjiikKDQOjcc9lON1IasUVXuktKRPdPfH3P1ESe+QNF/SrWmTm82sKe35OEXVaVLgvVfI3xRtLD+VZ57lkj7v7sPTht3c/bcJll/qS1Evl3RcRlkGufuKHOtKUvYdXufuV7n7ZEVHovtK+ucSv4e6R1ggl3MkfShjDztlqKR17v66mX1A0VGIJCluYJ4n6V8lnSVprJl9Ic96fqeorvk0xWHh7q8oqgM/TcWHxa2SzjKzCWY2WFLPOQJmtouZdZjZsLgaZaOk7Rmv/1Y83+GSPq7oSCnve68Ud3dJX5F0oZmdZWa7x43Ih5nZnHi22ZK+YWYTJcnMhpnZZxKu4iVJe5rZLiUq8mxJl6WqkcxstJmdGE9breiz3ztj/sRlN7P3x0d8AxW1L72unb9P9BJhgazc/X/dvSvH5C9IusTMNilq5EzfK/+2oqqja+L66dMkXWpm++RYz6uKGid3UdSYnbJI0V5/UWHh7vcoOqp5QFFj6e/jSW/Ej6dLWmpmGxVVJXWkvfxFSa8oOproVNRo/td4Wr73XjHu/n8l/YOiI7iVijbwl0q6PZ5+m6QrJf00fo9PSTou4eJ/LWmJpBfNbE0JivsDRUdjv4o/t99L+mBczi2SLpP0m7ja6aAiyr67ok4FryiqMlwr6T9KUG6ksWgnBejf4i6hT0naNaNdIHO+IyXNc/c9c80D1COOLNBvmdnJZrarmTUr2lO9M19QAMiNsEB/9nlJL0v6X0W9b2ZUtzhA30U1FAAgiCMLAEBQv7wI16hRo7ytra3axQCAPuXxxx9f4+7ZruPWP8Oira1NXV25en0CALIxs5xXS6AaCgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAJdDZKbW1SQ0N0WNnZ7VLBJTWgGoXAOjrOjuladOkLVui593d0XNJ6uioXrmAUuLIAuilWbPeDoqULVui8UB/QVgAvbRsWWHjgb6IsAB6ady4wsYDfRFhAfTSZZdJgwfvOG7w4Gg80F8QFkAvdXRIc+ZIra2SWfQ4Zw6N2+hf6A0FlEBHB+GA/o0jCwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLoIYsXbpUZqZt27ZlnX7xxRfrtNNOq3CppCOPPFI/+tGPKr5e1A7CAiixtrY27bbbbhoyZIiam5v1sY99TMuXL692sYBeISyAMrjzzju1efNmrVq1SmPGjNH5559f7SIBvUJYAGU0aNAgffrTn9af//znnnF33323DjzwQO2+++5qaWnRxRdfnPP1zz//vKZMmaKhQ4fqIx/5iNasWZN3fXfddZcmTZqk4cOH65BDDtGTTz7ZM+2KK67Q+PHjNXToUO2///667bbbeqa99dZbuuCCCzRq1Cjttddeuvrqq/NWh11//fWaMGGCmpubdcwxx6i7uzvhJ4K+irAAymjLli36n//5Hx100EE945qamjR37lytX79ed999t6655hrNnz8/6+tPPfVUTZ48WWvWrNGFF16om266Kee6/vCHP+jss8/Wtddeq7Vr1+rzn/+8TjjhBL3xxhuSpPHjx2vRokXasGGDLrroIp122mlatWqVJOm6667TPffco8WLF+uJJ57IWR5Juv3223X55ZfrF7/4hVavXq3DDz9cp5xySjEfD/oSd+93w+TJkx2oltbWVm9qavJhw4b5gAEDfI899vAnn3wy5/wzZ870L3/5y+7u/vzzz7sk37p1q3d3d3tjY6Nv3ry5Z95TTjnFOzo6si5n+vTp/s1vfnOHcfvuu68vXLgw6/zvfe97ff78+e7uftRRR/ns2bN7pt1777095XB3nzJlil933XXu7n7sscf6j370o55533rrLd9tt9186dKlOd8j+gZJXZ5ju8qRBVAG8+fP1/r16/X666/r6quv1pQpU/Tiiy9Kkh555BEdddRRGj16tIYNG6bZs2dnrV5auXKlmpub1dTU1DOutbU15zq7u7v13e9+V8OHD+8Zli9frpUrV0qS5s6d21NFNXz4cD311FM96125cqVaWlp6lpX+d7b1zJw5s2c5I0aMkLtrxYoVhX1I6FMIC6CMGhsb9clPflKNjY16+OGHJUVVSyeccIKWL1+uDRs2aPr06Yp26na0xx576JVXXtGrr77aM27ZsmU519XS0qJZs2Zp/fr1PcOWLVt0yimnqLu7W+eee66uvvpqrV27VuvXr9e73/3unvXuscceeuGFF3qWla/3VktLi6699tod1vPaa6/pkEMOKfjzQd9BWABl5O66/fbb9corr2jChAmSpE2bNmnEiBEaNGiQHn30Ud1yyy1ZX9va2qr29nZddNFFevPNN/Xwww/rzjvvzLmuc889V7Nnz9Yjjzwid9err76qu+++W5s2bdKrr74qM9Po0aMlSTfccIOeeuqpntdOnTpVP/jBD7RixQqtX79eV155Zc71TJ8+Xd/+9re1ZMkSSdKGDRv0s5/9rODPBn3LgGoXAOiPPvGJT6ixsVFmptbWVt10002aOHGiJOmHP/yhLrjgAp133nmaMmWKpk6dqvXr12ddzi233KIzzzxTI0aM0MEHH6wzzjgj57zt7e267rrrdN555+mZZ57RbrvtpsMOO0xHHHGE9t9/f11wwQU6+OCD1dDQoDPOOEOHHnpoz2vPPfdcPf300zrggAO0++6760tf+pIWLlyoxsbGndZz8skna/PmzfrsZz+r7u5uDRs2TB/5yEf0mc98pgSfHGqVZTv87eva29u9q6ur2sUA+qx77rlH06dPp0tsnTGzx929Pds0qqEA6LXXXtOCBQu0bds2rVixQt/61rd08sknV7tYqCGEBQC5uy666CI1NzfrwAMP1IQJE3TJJZdUu1ioIbRZANDgwYP12GOPVbsYqGEcWQAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEFS2sDCzFjN7wMz+bGZLzGxmPH6Emd1rZs/Ej83xeDOzq8zsWTN70szel7asM+P5nzGzM8tVZgBAduU8stgm6QJ331/SQZK+aGb7S/q6pPvdfR9J98fPJek4SfvEwzRJ10hRuEi6SNIHJX1A0kWpgAEAVEbZwsLdV7n7E/HfmyT9RdJYSSdKuime7SZJJ8V/nyhprkd+L2m4me0h6RhJ97r7Ond/RdK9ko4tV7kBADurSJuFmbVJOlDSI5LGuPuqeNKLksbEf4+VtDztZS/E43KNz1zHNDPrMrOu1atXl7T8AFDvyh4WZjZE0s8lfdndN6ZPc3eX5KVYj7vPcfd2d28fPXp0KRYJAIiVNSzMbKCioOh091/Eo1+Kq5cUP74cj18hqSXt5XvG43KNBwBUSDl7Q5mkH0v6i7t/L23SHZJSPZrOlHR72vgz4l5RB0naEFdX/VLSR82sOW7Y/mg8DgBQIQPKuOxDJZ0u6U9mtjge96+SrpB0q5mdI6lb0tR42gJJx0t6VtIWSWdJkruvM7N/l/RYPN8l7r6ujOUGAGSwqNmgf2lvb/eurq5qFwMA+hQze9zd27NN4wxuAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgsoWFmZ2vZm9bGZPpY272MxWmNnieDg+bdo3zOxZM/ubmR2TNv7YeNyzZvb1cpUXAJBbOY8sbpR0bJbx/8fdJ8XDAkkys/0lfVbSxPg1PzSzRjNrlPTfko6TtL+kU+J5AQAVNKBcC3b3h8ysLeHsJ0r6qbu/Iel5M3tW0gfiac+6+3OSZGY/jef9c4mLCwDIoxptFueZ2ZNxNVVzPG6spOVp87wQj8s1fidmNs3Musysa/Xq1eUoNwDUrUqHxTWSxkuaJGmVpO+WasHuPsfd2929ffTo0aVaLABAZayGysbdX0r9bWbXSborfrpCUkvarHvG45RnPACgQip6ZGFme6Q9PVlSqqfUHZI+a2a7mtlekvaR9KikxyTtY2Z7mdkuihrB76hkmQEAZTyyMLOfSDpS0igze0HSRZKONLNJklzSUkmflyR3X2JmtypquN4m6Yvu/la8nPMk/VJSo6Tr3X1JucoMAMjO3L3aZSi59vZ27+rqqnYxAKBPMbPH3b092zTO4AYABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYnDwsyazKyxnIUBANSmnGFhZg1mdqqZ3W1mL0v6q6RVZvZnM/sPM/v7yhUTAFBN+Y4sHpA0XtI3JL3T3Vvc/R2SDpP0e0lXmtlpFSgjAKDKBuSZ9mF335o50t3XSfq5pJ+b2cCylQwAUDPyhcVQM8s50d3XZQsTAED/ky8s1kh6QdK2+Hl6crikvctVKABAbckXFldJOkrSbyT9RNLD7u4VKRUAoKbkbOB29y9LmiTpZ5JOl/QHM/uOme1VqcIBAGpD3vMsPPKApK9Jmi3pLEkfrkTBAAC1I2c1lJk1STpR0j9IGi3pF5Imu/uyCpUNAFAj8rVZvCzpGUk/jR9dUruZtUuSu/+i/MUDANSCfGHxM0UBsV88pHNFRxoAgDqQMyzc/XMVLAcAoIbluzbUV8zsnCzjzzGzL5e3WACAWpKvN1SHpLlZxt8s6ezyFAcAUIvyhcWAHNeGelM7ns0NAOjn8oVFg5mNyRyZbRwAoH/LFxb/IeluM5tiZkPj4UhJd0n6z4qUDgBQE/L1hpprZqslXSLp3Yq6yy6R9G/ufk+FygcAqAH5zrNQHAoEAwDUuXxdZ79pZiPyTP+QmX28PMUCANSSfEcWf5J0p5m9LukJSaslDZK0j6Kr0d4n6fKylxAAUHX52ixul3S7me0j6VBJe0jaKGmepGnu/lpliggAqLa8bRaS5O7PKLqQIACgTuW9nwUAABJhAQBIgLAAAAQF2yzMbLSkcyW1pc/v7lxMEADqRDAsJN0uaZGirrJvlbc4AIBalCQsBrv7v5S9JACAmpWkzeIuMzu+7CUBANSsJGExU1FgvGZmG81sk5ltLHfBAAC1I8lJeUMrURAAQO1K0mYhM2tWdE2oQalx7v5QuQoFAKgtSbrO/qOiqqg9JS2WdJCk30n6UHmLBgCoFUnbLN4vqdvdj5J0oKT1ZS0VAKCmJAmL1939dUkys13d/a+S9itvsQAAtSRJm8ULZjZc0nxJ95rZK5K6y1ssAEAtSdIb6uT4z4vN7AFJwyT9v7KWCgBQU5L2hnqfpMMkuaTfuPubZS0VAKCmBNsszOzfJN0kaaSkUZJuMLNvlrtgAIDakeTIokPSe9Maua9Q1IX20nIWDABQO5L0hlqptJPxJO0qaUV5igMAqEVJjiw2SFpiZvcqarP4iKRHzewqSXL3L5WxfACAGpAkLG6Lh5SF5SkKAKBWJek6e1Pq7/gaUS3u/mRZSwUAqClJekMtNLPdzWyEpCckXWdm3yt/0QAAtSJJA/cwd98o6ZOS5rr7ByV9uLzFAgDUkiRhMcDM9pA0VdJdZS4PgDw6O6W2NqmhIXrs7Kx2iVAvkjRwXyLpl5IedvfHzGxvSc+Ut1gAMnV2StOmSVu2RM+7u6PnktTRUb1yoT6Yu1e7DCXX3t7uXV1d1S4GUFJtbVFAZGptlZYurXRp0B+Z2ePu3p5tWpKbH12VZfQGSV3ufntvCwcgmWXLChsPlFKSNotBkiYpqnp6RtIBiu6ad46Zfb+MZQOQZty4wsYDpZSkzeIASYe6+1uSZGbXSFqk6Cq0fypj2QCkueyyHdssJGnw4Gg8UG5JjiyaJQ1Je94kaUQcHm+UpVQAdtLRIc2ZE7VRmEWPc+bQuI3KSHJk8R1Ji81soSSTdISky82sSdJ9ZSwbgAwdHYQDqiN4ZOHuP5Z0iKLbqt4m6TB3/5G7v+ru/1zuAgIov0WLFmm//fbLO8/EiRO1cOHCopZ/zTXXaMyYMRoyZIjWrl2bd96LL75Yp512WlHrQfkkqYZKzbda0iuS/t7MjihfkQAk0dbWpt12201DhgzRmDFj9LnPfU6bN28ualmHH364/va3v+WdZ8mSJTryyCMLXvbWrVv1la98Rb/61a+0efNmjRw5sqgyorqSXBvqSkm/kTRL0j/Hw1fLXC4ACdx5553avHmznnjiCXV1denSS3e+J5m7a/v27UWvY9u2bb0pol566SW9/vrrmjhxYq+Wg+pKcmRxkqT93P1j7v6JeDih3AUDkNzYsWN13HHH6amnnpIkHXnkkZo1a5YOPfRQDR48WM8995xuuOEGTZgwQUOHDtXee++ta6+9tuf1Cxcu1J577tnzvK2tTVdeeaUOOOAANTU1adu2bWpra9N990XNlNu3b9cVV1yh8ePHa+TIkZo6darWrVu3U7mefvrpnuqt4cOH60Mf+pAkaebMmWppadHuu++uyZMna9GiRTnf28MPP6xDDjlEw4cPV0tLi2688UZJ0oYNG3TGGWdo9OjRam1t1aWXXtoTijfeeKMOO+wwffWrX1Vzc7P22msv3XPPPb34hJEkLJ6TNLDcBQFQvOXLl2vBggU68MADe8bdfPPNmjNnjjZt2qTW1la94x3v0F133aWNGzfqhhtu0D/90z/piSeeyLnMn/zkJ7r77ru1fv16DRiwY1+Y//qv/9L8+fP14IMPauXKlWpubtYXv/jFnZax7777asmSJZKk9evX69e//rUk6f3vf78WL16sdevW6dRTT9VnPvMZvf766zu9vru7W8cdd5zOP/98rV69WosXL9akSZMkSeeff742bNig5557Tg8++KDmzp2rG264oee1jzzyiPbbbz+tWbNGX/va13TOOeeoP16xomLcPe8g6eeSnpV0raSrUkPoddUcJk+e7EB/19ra6k1NTT5s2DAfN26cz5gxw7ds2eLu7lOmTPELL7ww7+tPPPFE//73v+/u7g888ICPHTt2h2X/+Mc/3ml99957r7u7v+td7/L77ruvZ9rKlSt9wIABvnXr1p3W8/zzz7ukrNNShg8f7osXL3Z394suusg7Ojrc3f3yyy/3k046aaf5t23b5gMHDvQlS5b0jJs9e7ZPmTLF3d1vuOEGHz9+fM+0V1991SX5qlWrcpYB7oquzJF1u5qk6+wd8QCgxsyfP18f/nD2Owa0tLTs8Pyee+7Rt771LT399NPavn27tmzZove85z05l535+nTd3d06+eST1dDwduVEY2OjXnrpJY0dOzZY7v/8z//Uj3/8Y61cuVJmpo0bN2rNmjU7zbd8+XKNHz9+p/Fr1qzR1q1b1dra2jOutbVVK1as6Hn+zne+s+fvwYMHS1LRHQBQ4J3yAPQdZtbz9xtvvKFPfepTmjt3rk488UQNHDhQJ510Ut5qmfTXZ2ppadH111+vQw89tOByLVq0SN/5znd0//33a+LEiWpoaFBzc3PWsrS0tOjRRx/dafyoUaM0cOBAdXd3a//995ckLVu2LFFQoTg52yzM7Nb48U9m9mTmULkiAuitN998U2+88YZGjx6tAQMG6J577tGvfvWropc3ffp0zZo1S93xZXBXr16t229Pdl3RTZs2acCAARo9erS2bdumSy65RBs3bsw6b0dHh+677z7deuut2rZtm9auXavFixersbFRU6dO1axZs7Rp0yZ1d3fre9/7HudnlFG+Bu6Z8ePHJX0iywCgjxg6dKiuuuoqTZ06Vc3Nzbrlllt0wgnFd2qcOXOmTjjhBH30ox/V0KFDddBBB+mRRx5J9NpjjjlGxx57rPbdd1+1trZq0KBBOau8xo0bpwULFui73/2uRowYoUmTJumPf/yjpKiRvampSXvvvbcOO+wwnXrqqTr77LOLfvAXacoAABZpSURBVE/IL+f9LMzsy5J+K+kJd+9dR+sK434WAFC4Yu9nsaek70t6l5n9SdGJeb+V9Ft337lDNQCg38oZFu7+VUkys10ktSu6PtRZkuaY2Xp3378yRQQAVFuSrrO7Sdpd0rB4WCnuYwEAdSVnWJjZHEkTJW2S9IiiKqjvufsrFSobAKBG5OsNNU7SrpJelLRC0guS1leiUACA2pKvzeJYi87KmaioveICSe82s3WSfufuF1WojACAKsvbZhFfK+QpM1svaUM8fFzSByQRFgBQJ/Kdwf0lM/upmS2T9KCikPirpE9KGhFasJldb2Yvm9lTaeNGmNm9ZvZM/Ngcjzczu8rMno3PEH9f2mvOjOd/xszO7MV7BQAUKV+bRZukn0n6oLuPd/fT3f0ad/+juye5k8qNko7NGPd1Sfe7+z6S7o+fS9JxkvaJh2mSrpGicFF0BPNBxUczqYABAFROzrBw96+4+8/dfVUxC3b3hyRlnrx3oqTUhQlvUnRjpdT4ufFVcn8vabiZ7SHpGEn3uvu6uBfWvdo5gAAAZZb0HtylMiYtfF6UNCb+e6yk5WnzvRCPyzV+J2Y2zcy6zKxr9erVpS01ANS5SodFj7jxvGS3rXL3Oe7e7u7to0ePLtViAQCqfFi8FFcvKX58OR6/QlL6ZSf3jMflGg8AqKBKh8UdklI9ms6UdHva+DPiXlEHSdoQV1f9UtJHzaw5btj+aDwOAFBBSa4NVRQz+4mkIyWNMrMXFPVqukLSrWZ2jqRuSVPj2RdIOl7Rvb63KLpgodx9nZn9u6TH4vku4Yq3AFB5Oe9n0ZdxPwsAKFy++1lUrYEbANB3EBYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIKgqYWFmS83sT2a22My64nEjzOxeM3smfmyOx5uZXWVmz5rZk2b2vmqUGQDqWTWPLI5y90nu3h4//7qk+919H0n3x88l6ThJ+8TDNEnXVLykAFDnaqka6kRJN8V/3yTppLTxcz3ye0nDzWyPahQQAOpVtcLCJf3KzB43s2nxuDHuvir++0VJY+K/x0panvbaF+JxOzCzaWbWZWZdq1evLle5AaAuDajSeg9z9xVm9g5J95rZX9MnurubmReyQHefI2mOJLW3txf0WgBAflU5snD3FfHjy5Juk/QBSS+lqpfix5fj2VdIakl7+Z7xOABAhVQ8LMysycyGpv6W9FFJT0m6Q9KZ8WxnSro9/vsOSWfEvaIOkrQhrboKAFAB1aiGGiPpNjNLrf8Wd/9/ZvaYpFvN7BxJ3ZKmxvMvkHS8pGclbZF0VuWLDAD1reJh4e7PSXpvlvFrJR2dZbxL+mIFigYAyKGWus4CAGoUYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAEAQYQEACCIsAABBhAUAIIiwAAAEERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBepaZ6fU1iY1NESPnZ3VLhFQmwZUuwBAtXR2StOmSVu2RM+7u6PnktTRUb1yAbWIIwvUrVmz3g6KlC1bovEAdkRYoG4tW1bYeKCeERaoW+PGFTYeqGeEBerWZZdJgwfvOG7w4Gg8gB0RFqhbHR3SnDlSa6tkFj3OmUPjNpANvaFQ1zo6CAcgCY4sAABBhAUAIIiwAAAEERYAgCDCAgAQRFgkwMXmANQ7us4GcLE5AODIIoiLzfVPHC0CheHIIqC7O/t4LjbXd3G0CBSOI4s8Ojujy0Bkw8Xm+q5SHS1ydIJ6QljkMWuW5L7zeLP+ebG5etn4leLS5Kmjk+7u6DeSOjrpr58ZQFjkkWvj4d7/qivqaeOX66iwoSH5+6UtC/WGsMgj10altbWy5aiEetr4Zbs0uSS99VbygOTGSag3hEUe9XS/g3ra+KUuTd7YuPO0pAHJjZNQbwiLPOrpfgf1tvHr6JC2b88+LUlA1tOOBCARFkEdHdLSpdLNN0fPTz+9fzb+1uPGrzcBWU87EoBEWCRSD42/9bjx621ApnYktm+PHvvzZwWYZ+sb2se1t7d7V1dXyZbX1pb95LzW1mgjgb6rszNqo1i2LDqiuOwyNvqoX2b2uLu3Z5vGkUUC9dL4Wy/nWaSrl2pGoLe43EcC48ZlP7LoT42/9XwJjHp+70BSHFkkUA+Nv/V0nkWmen7vQFKERQL10PhbL1Vt2dTzeweSIizySK/DnzUrOpLorz1f6u08i3SFvPd6bNcBJMIip3roLpuuHqraUjI3+Mcfn+y9Z/tNnH669IUvVKrkQBW5e78bJk+e7L3V2uoebRJ2HFpbe73omjVvXvT+zKLHefOqXaLSmzfPffDgHb/TwYPdZ8wIv/dcvwmz/vlZof5I6vIc21XOs8ihoSH35clzXSYCta8358zk+k0kfT1Q6zjPogj1XIffF3V2SqNGRWFuFv2drcowX2N2qD0i33dPYzj6O8IiQ2qjk23vs7/W4fd1nZ3SWWdJa9e+PW7tWunss5Nv8EeMCLdRHX987jKEdiJoGEefl6t+qi8PxbZZzJvnPnBg9nrpkSOpl65VudoSsrUxzZgRtTFktlmMHJn/9dnaOtJfn++3kaudpNDfUz20KaG6lKfNouob9nIMxYZFIRsd1I7MjX9m43NKto22WfYAyXx9rt9GY2N4o12KzhKlChwgn3xhQTVUmnz1ztRJ155U1Y7n6aORXj2U7Uxtd2nBgnAbVa7vf/v27OfcpFc7ZavSzLfMbDjLHNVGWKTJV+9Mw3ZtSbVT5NoQS9Iuu+zYxpSvcTt0nkmhJ+6lt3/kUshvqlJnmdO2gpxyHXL05aHUbRa77MLhfq3J1caQXn2UqupJfXdJ2iVytQkUUg2Urzqz2HMzKnHeD1VdEG0Wyc2bt+NGpVIN2zReFia0Mc520l1vdwSSfkf52lAyAyPpd12JDXk9noiKHREWNa7e9+iKCcpCwiLVEJ1t/MiRpX8/Q4YUHmZJA6OcOxShRn70f4RFjavnPbpignLevMLDIt/efSFlTW2sR46MhswNd7Flq4Xvup5/h4gQFjWunvfoitlAJWkTSHpkkXRDmO88i/SAK6Zsoe+6UlWU9X6EC8Ki5tXzHl0xQZmvTaCpKWqHyNzgHX109pPxkm4Ik4RArkBKDSNHFv5dV3oDTttZfcsXFnSdrQH1dHnwTPkuv5FNZ2fUrTOb1lZp82bp+ut3vFHVmWdKv/tdtKlN19CQ/J7bSbqovvVW7mlm0g9+EF0yxGzHafm+60qfX5G6J3l/vW8LeiFXivTloRRHFpXew6rXPbp83ZUzLxs+Y0Zxl9xIclSQ7fXp30noqCE0zJiR/wzyXPIdRdXT7wSVIS5RXpgvfEGaPXvHPdHBg/vfrVRrxahRO14EMBeznY8OpOgIYe7c3N9N5p58Pq2tb+/lT5u28159sdyLuzx6rtek8LtEKXGJ8gJ0du4cFFK00Zg5s7jlcUZsfuvWJZsv135N6P4ijY3Jy5K62uzMmdmDoqEhCp+RI5Mvs7U1esxVldXdnft3ka2KMh2X/EClEBYZZs3KvVFau7awjX293Zq1WKW4lEq+DWa+toRstmzJfaSzfbt0883SmjVvh0A+SS4ZIuX+XXR0REcO+dbFdctQEbnqp/ry0Js2i9DZt4X0UApdXqJQ/bVdoxTnTeTrPVVsd9Zcwy67vL3MbL+XhobsbQqh7reh30U995pDZYjeUMmF9nKT7sV1dubeOy1mT7A/H6V0dBRWrZNNvu8tVJVTqDfffLsdIfMotKlJam7O3k7S0RH1zMol9Lsod685qkyRV64U6ctDb68NVcje34wZO/eUaW3Nf6G79GUkPVro73uVoc8935CvJ5PU+55MvRkGDtzxTO+kv4t8n1M5ji45IQ/unvfIouob9nIMxYZFtg1/vn+eGTOK24CkXxoi6T9oPZzlXewZ0OldTzMvBNmXhmpumPv7zgiSISwSyLXhHzIk9yWri9kgpF+4rpB/0Fr4Z87cEOeqm++tQgMjya1P04dqHmkk+V1UQz3sjCCMsEgg1waksXHneYutMkkdNYT2oDNvBZpr3nJVE2Sr6sh3f/JSl6XQzzd069Ns85e60bs3Qy1U99TCzgiqj7BI9CHlHjIVu6FJXbo61OMqtZeZb6MZOvO3WLmqxpJU7ZT6RjxJ7wuRWm/S+VP3KMl8n/nCMN+yMq9FleQ1tdarjTYLuDthkUQhRxbl3tNMhUUolMqx19eb+v5SV1kkWWf6Bi1piKdueJTtCKqQdqj06q+kVVuFboAr2V26v3bNRnKERQK5NhKpvffeXH66mI1u0jaRUveI6U25Sx1eSUK1kPMYkpY1s20m15Vsk9x2NfP6VoUGRbb3U6m7N6L+EBYJpfeGamzcMSiK7dZZzDByZGHr6011QdKL5Zm93aCdbSj0PuVJ9mJDRznZNvhJQz3JUVDSmx2F5ilWvvdBFRHKgbDopVpqDE264UyyMS5lCBbSm2fGjGT3lpg3L397QL4NfqGfV5LPJunRRKk24qW8mgCQBGHRS0kbTlMbzWr0809tOHOdZ5BtI1bqcibZm87XcJ0tcPK1B6S3GWReyjxfOZNs0JP0DkoyT74jj1AVVWgnhW6tKDXCopcKPbIoJFxKNaQ2qKH7H6SU8j7W+TbEuc7NyDVk24Dm24Mv5ugoyZ5/kvMOQvMUU7bMEwzzvb7a52bUu/7YIYCw6KVCunHW8pC+oStn1Vr6Hn+h3VFzVU/l+scs9gS+kFIcWRT7GacHRr6jJMKievprV2PCogSKvbRHLQ3pG/FyrqfQk+R6s4EvJMQL+WcuRZtFsTsYqd5woSMLqqGqp7+exEhYlEhvN3ipk/KqNeS6tWeph3JcTqPQCyxmK1O+oMh11nqSTgK55ulNWDY2FtcbrFDZLrhYjSqVWqvSCZWnv14ehbAokWI3gqm9zWpXZbW2JtuADR7sPmhQdcua6zPMlCT8QkcU5apSKGcwDxwYnf+Rel7MuRf5yheq/uvNZ5IZgknOY6mkJOe35Aryvl41SFiUSK6qqKOP3vnHlQqG3tSvl3owS9YdM7WRqLUL7uXakw5Vq5Wi51OxynEyZ+icmKQb9VC5sp3v05sz0FM9wXr7fYfW09tQy/e5hI74CIs+NpQrLNzzn7hX6vMampre/gcr5hpEhf7QM681VWuX+i7mbnhJNjiVqFIo1VFl6reQZL5sVx9Ir2oqtgxNTcnec+g8mSRD5nvNdgRV6iPD3nxXlayGKkfVHWFRQzK/4EJuhpO5l5ZeDZF0CPVOSv/RVbvaLPR5ZH42xW4wKtFYWY2jylRg5LsYZbHLztyxyHauS7l+P42NyX77uc7DCf0merOTVO4G7lznUaWGo4/u3fIJiyrL92PNV4WSay8l9IMp1UYm3wYuaftHKcuU5IS/Yva0KtENMtc6Cv0eC52/3IGfCoZKXg6n0Pc/YEDuzzJV5Vqq/6chQ4r/3YR+v4V0RS/2SIOwqLDMI4BQ412uH2q2vZRy7rFl/pPNmJH9x5l+1dZiLutdzFCOy7Hn+s7K1RsnV4+rpJ9h0ioohtoZUlXJUvZ2piTtgkOGRL//0AmtmUMxOzyERQUlbZfIPJs6yZ5tqXpUJa1HTm3Q0jdQ2a70WomjnP6skM+w1qoGGWp7KLRajLCooKRVM5lVTEn2bEtV7bPLLlHdZmivptDGulCvpCTXR+rNJb37g3nzcu9BVrrqj6HvD4X+D+cLC4um9y/t7e3e1dVVlXU3NERfU0hrq7R0aXmWbZZsvoYG6aijpF//Ovv8xZSxrU3q7i7NsupVZ6c0bZq0Zcvb4wYPlubMif7OnAbkUuj/nZk97u7t2aY1lKhMiI0bF55n8GDpssvKs2wzafr06EcSsn27dP/90oQJ0etKUcbLLoteW4pl1auOjigYWluj76W1NXre0bHztMbGape2OEOGSDNmvP077WvvY9CgqPy1rqT/d7kOOfryUMttFqHLTvRm2Zn1+4VeCqNU1T+1dumG/qyvtWGEfg9HH537t13NcqeqBjPLX+1rxjU15a62LKYbrfpDm4WkYyX9TdKzkr6eb95a6A2V9J4SxSw71/0Rkl6/JtuAvqmQNozQ72HIkPJulJPWn+c68dV9xxMM08va1FT6Kw4k/X8txcmHxQwDB77doy79vJOGhuI7hfT5sJDUKOl/Je0taRdJf5S0f675qx0WKdXewy7kyAJ9U7ajzYEDc98CNtu9RZJeADH9JLdiTgit9AlrmRvw9HMgcl2jqje3xU0PudCQrWyZnTuOPjp3eJdre9IfwuJgSb9Me/4NSd/INX+thEW1Je3G29+7pvZ35bjYX9Ku3NmOoHfddedx/eFeD/UgX1j0lQbusZKWpz1/IR7Xw8ymmVmXmXWtXr26ooWrVemNodk0NESNdD/8YWXLhdLq6Ih6vGzfHj12dPR+ebka2DPnW7Nm592P11+X5s0Lvx59S5/oOmtmn5Z0rLv/Y/z8dEkfdPfzss1fza6zANBX9YeusysktaQ93zMeBwCogL4SFo9J2sfM9jKzXSR9VtIdVS4TANSNAdUuQBLuvs3MzpP0S0U9o6539yVVLhYA1I0+ERaS5O4LJC2odjkAoB71lWooAEAVERYAgCDCAgAQRFgAAIIICwBAEGEBAAgiLAAAQYQFACCIsAAABBEWAIAgwgIAEERYAACCCAsAQBBhAQAIIiwAAEGEBQAgiLAAAAQRFgCAIMICABBEWAAAgggLAECQuXu1y1ByZrZaUne1ywEAfUyru4/ONqFfhgUAoLSohgIABBEWAIAgwgIAEERYAACCCAsAQND/ByvB5PIahq1SAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.title('Max Wingspan in Centimeters')\n", + "plt.ylabel('Wingspan (CM)')\n", + "plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)\n", + "\n", + "for i in range(len(birds)):\n", + " x = birds['Name'][i]\n", + " y = birds['MaxWingspan'][i]\n", + " plt.plot(x, y, 'bo')\n", + " if birds['MaxWingspan'][i] > 500:\n", + " plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)\n", + " \n", + "plt.show()\n", + " \n", + "\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAK4CAYAAACbL+GmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wld13n//ene2ZCehJIpmdkY5LpBuEHgosBehHkIoL7ILD8losu4DYQAzrSwceG1V1FWl1kHRVYxfDQgMOSEJgjLIgsiGFdBOQmFyeAQAL5JcD0JCGQYZJwm0CSmc/vj6pTfeZMVZ2qc+per+fjUY/urnOp77l0fb6Xz/db5u4CAECS5uouAACgOQgKAIAIQQEAECEoAAAiBAUAQISgAACIEBTQOGb2WDO7tu5yFMXMXm9mv1t3ObJoU1lRDoJCD5nZQTO708x2ju3/rJm5mS0XfLy/N7PfGvn77PA4cfv+lbt/1N0fUGQZ6uTuL3L3/z7t483sSWb2ETP7rpkdNrMPm9m/n7VcZvZLZvaxIsuacqzl8PPdUvRzo1gEhf76mqRfHP5hZv9a0kJJx/qIpMeN/P04SV+O2Xedu3+jpDK0kpn9gqR3SHqzpHMk3VvS70n6f+ssV9UIJtUhKPTXWyQ9f+TvCxSceCJm9u/C1sN3zOwGM3v5yG3PNrOvmdk9w7+fbGbfMLNdMcf6iKRHm9nw+/ZYSX8maWVs30fC53q8md04cqyDZvZfzOzzZvZtM/tfZnaPkdt/08xuNrOvm9kvhzXS+4W3PcXMrglr2TeZ2X8ZPYaZvczMvhUeYzXjax/Wei8ws0Ph49eT3mgze5OZ/cHYcX/DzG4Jy31hwuNM0p9K+u/u/j/d/dvuftzdP+zuvzJyvxeY2ZfM7LawVbY0cpub2YvM7Dozu93M/sICPy7p9ZIeZWbfM7PbU8r6myNlfXr4nv5/Znarmb1s5FhzZvZSM/uKmR0xs7eb2Y6R74Ak3R4e71EZy/5iM7tO0nVhuV8TluU7ZvYFM/uJpPcdU3J3tp5tkg5K+jlJ10r6cUnzkm6UtCTJJS2H93u8pH+toPLwEEnflPT0kecZSHqTpEVJX5f01ITjnSLpDkkPDf/+oqT7Svr42L7njxz3xrHyflrSj0raIelLkl4U3na+pG9IerCCls7+8DXcL7z9ZkmPDX8/U9LDRo5xt4KT7imSfkbS9yU9YNJrl7QcHuMNkk6V9JOSfijpxxNe/5sk/cHYcV8haaukp0g6KunMmMc9MDzOfVI+y6dJuj78HLdI+h1J/zRyu0t6r6QzJO2WdFjS+eFtvyTpYxnK+nthWX8lfPxfSTo9fM/vGJZP0sWSPqmgRXOKpL+U9Nax92xLzrK/P/zMT5X0JElXha/FwsedVff/U9c2Wgr9Nmwt/FsFJ9qbRm9093909y94UDv9vKS3Kjh5Dr1Y0hMk/aOkv3X398YdxN1/KOlTkh4X1hzv5e5flfTRkX0PkvThlLK+1t2/7u63SvpbSeeF+58l6XJ3v9rdj0p6+djj7pL0IDO7p7vf5u6fGbv9d939h+7+YUl/Fz5fltcuSb/v7ne4+79I+hcFwSGLuyS9wt3vcvcrJX1PUtwYymL48+aU53qRpD9y9y+5+92S/lDSeaM1bkl/7O63u/shSR/S5nuXtax73f0uSW+TtFPSJe7+XXe/WtI12nzdL5K07u43hp/5yyX9QkrXT5ay/5G73+rud4RlOV1BsLTwcWnvDaZAUOi3t0j6jwpqjG8ev9HMfsrMPmTB4Oa3FfwTR4PT7n67gv7un5D0JxOONRxXeKyCFoIkfWxk3w3uvpHy+NGxhqOSTgt//1FJN4zcNvq7JP28gtr4hgUDtI8aue02d//+yN8b4fNNfO0TyjTJkfAkOOmxR8KfZ6U815KkS8Kuodsl3aqgFn12AeUclvVY+Psd4c9vjtx+x8jzLUl610hZviTpmIJxkGnLHn2e7v5BSX8u6S8k3WJm+yzsvkRxCAo9Fp6Ev6bgpPk3MXf5K0nvkXSuu99LQR+0DW80s/MkvUBBLfq1Ew73EQUn/8cpaCFIQXB4dLjvIwmPm+RmBd0VQ+eO3uju/+zuT5P0I5L+t6S3j9x8ppltH/l7t4JuMGnCa6/ItQpOij+fcp8bJP2qu58xsp3q7v+U4fmLXiL5BklPHivLPdz9poRjZSn7CY9z99e6+8MVtCz/H0n/teDX0HsEBbxQ0hPGasxDp0u61d1/YGaPUNCqkCSFA737Jb1M0oWSzjazi1KO8wkFfcHPVRgU3P02BX3Uz9X0QeHtki40sx83swVJUY69mW0zs1Uzu1fY/fEdScfHHv/74f0eK+mpClo+qa+9Ku7ukn5d0u+a2YVmds9wMPcxZrYvvNvrJf22mT1YkszsXmb2HzIe4puSzjGzbQUV+fWS9g67f8xsl5k9LbztsIL3/r5j989cdjP7N2ELbquC8Z8f6OTPEzMiKPScu3/F3Q8k3HyRpFeY2XcVDDaO1rL/SEGXz+vC/uPnSvoDM7t/wnG+r2CQcJuCQeWhjyqoxU8VFNz9fQpaKR9SMGj5yfCmH4Y/nyfpoJl9R0EX0OrIw78h6TYFrYOBgsHrL4e3pb32yrj7X0t6toIW2dcVnMj/QNK7w9vfJemVkt4WvsYvSnpyxqf/oKSrJX3DzL5VQHEvUdC6+r/h+/ZJST8VlvOopL2SPh52Fz1yirLfU8Hg/m0KuvqOSHp1AeXGCAsqI0A3hKmWX5R0yli//fj9Hi9pv7ufk3QfoI9oKaD1zOwZZnaKmZ2poOb5t2kBAUAyggK64Fcl3SLpKwqyXdbqLQ7QXnQfAQAitBQAAJFWLzK1c+dOX15errsYANAqV1111bfcPW6dsnYHheXlZR04kJRNCQCIY2aJqwfQfQQAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICgCACEEBABAhKAAAIgQFAECEoAAAiJQWFMzsHmb2aTP7FzO72sx+P9x/HzP7lJldb2b/y8y2hftPCf++Prx9uayyoX8GA2l5WZqbC34OBnWXCGimMlsKP5T0BHf/SUnnSTrfzB4p6ZWSXuPu95N0m6QXhvd/oaTbwv2vCe8HzGwwkPbskTY2JPfg5549BAYgTmlBwQPfC//cGm4u6QmS/jrcf4Wkp4e/Py38W+HtTzQzK6t86I/1deno0RP3HT0a7AdwolLHFMxs3sw+J+kWSe+X9BVJt7v73eFdbpR0dvj72ZJukKTw9m9LWox5zj1mdsDMDhw+fLjM4qMjDh3Ktx/os1KDgrsfc/fzJJ0j6RGSHljAc+5z9xV3X9m1a9fMZUT37d6dbz/QZ5VkH7n77ZI+JOlRks4wsy3hTedIuin8/SZJ50pSePu9JB2ponzotr17pYWFE/ctLAT7AZyozOyjXWZ2Rvj7qZL+raQvKQgOvxDe7QJJ7w5/f0/4t8LbP+juXlb50B+rq9K+fdLSkmQW/Ny3L9gP4ERW1nnXzB6iYOB4XkHwebu7v8LM7ivpbZJ2SPqspOe6+w/N7B6S3iLpoZJulfQcd/9q2jFWVlb8wIEDpZQfALrKzK5y95W427bE7SyCu39ewQl+fP9XFYwvjO//gaT/UFZ5AACTMaMZABAhKAAAIgQFAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICgCACEEBABAhKAAAIgQFAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICgCACEEBABAhKAAAIgQFAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICgCACEEBABAhKAAAIgQFAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAAJHSgoKZnWtmHzKza8zsajO7ONz/cjO7ycw+F25PGXnMb5vZ9WZ2rZk9qayyAQDildlSuFvSb7j7gyQ9UtKLzexB4W2vcffzwu1KSQpve46kB0s6X9KlZjZfYvlOMhhIy8vS3FzwczCo8ugAUL8tZT2xu98s6ebw9++a2ZcknZ3ykKdJepu7/1DS18zsekmPkPSJsso4ajCQ9uyRjh4N/t7YCP6WpNXVKkoAAPWrZEzBzJYlPVTSp8Jdv2Zmnzezy8zszHDf2ZJuGHnYjUoPIoVaX98MCENHjwb7AaAvSg8KZnaapHdKeom7f0fS6yT9mKTzFLQk/iTn8+0xswNmduDw4cOFlfPQoXz7AaCLSg0KZrZVQUAYuPvfSJK7f9Pdj7n7cUlvUNBFJEk3STp35OHnhPtO4O773H3F3Vd27dpVWFl37863HwC6qMzsI5P0Rklfcvc/Hdl/1sjdniHpi+Hv75H0HDM7xczuI+n+kj5dVvnG7d0rLSycuG9hIdgPAH1R2kCzpEdLep6kL5jZ58J9L5P0i2Z2niSXdFDSr0qSu19tZm+XdI2CzKUXu/uxEst3guFg8vp60GW0e3cQEBhkBtAn5u51l2FqKysrfuDAgbqLAQCtYmZXuftK3G3MaAYARAgKAIAIQQEAECEoAAAiBAV0GutZAfmUmZIK1Ir1rID8aCmgs1jPCsiPoIDOYj0rID+CAjqL9ayA/AgK6CzWswLyIyigs1ZXpX37pKUlySz4uW8fg8xAGrKP0GmrqwQBIA9aCiHy2QGAloIk8tkBYIiWgshnB4AhgoLIZweAIYKCyGcHgCGCgshnB4AhgoLIZweAIbKPQuSzAwAtBQDACIICACBCUAAARAgKAIAIQQGYgHWx0CdkHwEpWBcLfUNLAUjBuljoG4ICkIJ1sdA3BAUgBetioW8ICkAK1sVC3xAUgBSsi4W+IfsImIB1sdAntBQAABGCQg8xGQtAErqPeobJWADS0FLoGSZjAUhDUOgZJmMBSENQ6Jk+T8ZiLAWYjKDQM32djDUcS9nYkNw3x1IIDMCJCAo909fJWIylANmYu9ddhqmtrKz4gQMH6i4GWmBuLmghjDOTjh+vvjxAnczsKndfibuNlgJ6oc9jKUAeBAX0Ql/HUoC8CArohb6OpQB5MaMZvcHCdsBktBQAABGCAgAgQlAAAEQICgCACEEBABAhKAAAIgQFAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICiMGA2l5WZqbC34OBnWXCACqtaXuAjTFYCDt2SMdPRr8vbER/C1Jq6v1lQsAqkRLIbS+vhkQho4eDfYDQF8QFEKHDuXbDwBdRFAI7d6dbz8AdBFBIbR3r7SwcOK+hYVgPwD0BUEhtLoq7dsnLS1JZsHPffsYZAbQL2QfjVhdJQgA6DdaCgCACEEBABAhKAAAIgQFAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKCA3uFa3EAyVklFr3AtbiBdaS0FMzvXzD5kZteY2dVmdnG4f4eZvd/Mrgt/nhnuNzN7rZldb2afN7OHlVW2vutzTZlrcQPpyuw+ulvSb7j7gyQ9UtKLzexBkl4q6QPufn9JHwj/lqQnS7p/uO2R9LoSy9Zbw5ryxobkvllT7ktg4FrcQLrSgoK73+zunwl//66kL0k6W9LTJF0R3u0KSU8Pf3+apDd74JOSzjCzs8oqX1/1vabMtbiBdJUMNJvZsqSHSvqUpHu7+83hTd+QdO/w97Ml3TDysBvDfePPtcfMDpjZgcOHD5dW5q7qe02Za3ED6UoPCmZ2mqR3SnqJu39n9DZ3d0me5/ncfZ+7r7j7yq5duwosaT/0vabMtbiBdKUGBTPbqiAgDNz9b8Ld3xx2C4U/bwn33yTp3JGHnxPuQ4GoKQcB4OBB6fjx4CcBAdhUZvaRSXqjpC+5+5+O3PQeSReEv18g6d0j+58fZiE9UtK3R7qZUBBqygDSWNCDU8ITmz1G0kclfUHS8XD3yxSMK7xd0m5JG5Ke5e63hkHkzyWdL+mopAvd/UDaMVZWVvzAgdS7AADGmNlV7r4Sd1tpk9fc/WOSLOHmJ8bc3yW9uKzyAAAmY5kLAECEoAAAiBAUAAARggIAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICgCACEFB0mAgLS9Lc3PBz8Gg7hIBQD221F2Aug0G0p490tGjwd8bG8HfkrS6Wl+5AKAOvW8prK9vBoSho0eD/QDQN70PCocO5dsPAF3W+6Cwe3e+/egHxpnQV70PCnv3SgsLJ+5bWAj2o5+G40wbG5L75jgTgQF90PugsLoq7dsnLS1JZsHPffsYZO4zxpnQZ+budZdhaisrK37gwIG6i4GOmZsLWgjjzKTjx6svD1A0M7vK3Vfibut9SwEYxzgT+oygAIxhnAl9RlBAZ02bQTQcZ1pc3Nx36qlllBBont7PaEY3FTFT/Y47Nn8/coSZ7ugHBprRScvLQSAYt7QkHTxY/uOBJmOgGb0z60x1ZrqjrwgK6KRZM4jIQEJfERTQSbNmEJGBhL4iKKCTZp2pzkx39BUDzQDQMww0AwAyISgAACIEBQBAhKAAAIgQFAAAEYICACBCUAAARAgKAIAIQQEAEMkcFMxsu5nNl1kYAEC9EoOCmc2Z2X80s78zs1skfVnSzWZ2jZm92szuV10xAQBVSGspfEjSj0n6bUn/yt3PdfcfkfQYSZ+U9Eoze24FZQQAVCTtcpw/5+53je9091slvVPSO81sa2klAwBULq2lcLqZ7UjaJCkuaABlGgyknTuD5azNgt8Hg/zPsbwszc0FP/M+HuiytJbCtyTdKOnu8G8buc0l3besQgFxBgPpwgulu0aqIkeOSC94QfB7lmsdDAbSnj3S0aPB3xsbwd9ZHw90XeL1FMzszyT9rKSPS3qrpI95wy6+wPUU+mV5OTiJx1lakg4enP45sj4e6IKprqfg7i+RdJ6kd0h6nqTPmtmrzOw+5RQTSHfo0HS3Zblf1scDXZc6T8EDH5L0m5JeL+lCST9XRcGAcbt3T3dblvtlfTzQdWnzFLaH8xTeLelKSadJeri7v6Gy0gEj9u6Vtsbku23bFtyW9TkWFk7ct7CQ/fFA16W1FG5R0EL4hKQ/kfRVSStm9kwze2YVhQNGra5Kl18uLS5u7ltclC67LPsg8eqqtG9fMIZgFvzct+/kx5OhhL5KG2h+k4Isozju7i8oq1BZMdCMMoxnKElBayIueABtlDbQnBgU2oCggDKQoYSumyr7yMx+3cxeGLP/hWb2kiILCDTJLBlKdDuh7dLGFFYlvTlm/1sk1d51NKsiZsaim6bNUBp2O21sSO6bE+P4XqFN0oLCloS1j+7UibObW2c4M/bIkc19w5mx/ANj2gyl9fUTxyGk4O/19WLLB5QpLSjMmdm9x3fG7Wub9fUTl0oYuvNO/oGRPUNpHBPj0AVpQeHVkv7OzH7GzE4Pt8dLeq+k/1FJ6UpSxMxYdNvqajCofPx48DNL1hET49AFactcvFnS70p6haSDkr4m6fcl/Z67X1FJ6UpSxMxYYBwT49AFk5a5eJ+7/4y7L7r7zvD391VVuLIUMTMWGDdttxPQJGkpqb8zvG5Cwu1PMLOnllOschUxMxaIM023E9AkaddT+IKkvzWzH0j6jKTDku4h6f4KVk/9B0l/WHoJS7K6yj8sAIxLDAru/m5J7zaz+0t6tKSzJH1H0n5Je9z9jmqKCACoSlpLQZLk7tdJuq6CsgAAapY60Ay0VZuXm2hz2dF+E1sKQNu0+TrMbS47uoFVUtE5bV7ltM1lR3ukrZI6saVgZrsk/Yqk5dH7N+F6CkCcNi830eayoxuydB+9W9JHFaSgHiu3OMDsdu+Or223YbZ6m8uObsgy0Lzg7r/l7m9393cOt9JLBkypzctNtLns6IYsQeG9ZvaU0ksCFKTNy020uezohokDzWb2XUnbJf1Q0l0KrqXg7n7P8ouXjoFmAMhvpoFmdz+9+CIBAJoo0zwFMztTwZpH9xjuc/ePlFUoAEA9Jo4pmNkvS/qIpL9XcD2Fv5f08nKLBWxihi9QnSwDzRdL+jeSNtz9ZyU9VNLtpZYKCA1n+G5sSO6bM3wJDEA5sgSFH7j7DyTJzE5x9y9LekC5xQIC6+ubSz4MHT3KtbSBsmQZU7jRzM6Q9L8lvd/MbpMUM70GKB4zfIFqTWwpuPsz3P12d3+5gms2v1HS08suGCAlz+Rtygzf0fGOnTuDjbEPtFmmpbPN7GFm9p8kPUTSje5+Z7nFAgJNnuE7Pt5x5EiwMfaBNsuSffR7kq6QtChpp6TLzex3yi4YIDV7hm/ceMcoxj7QRllmNF8r6SdHBptPlfQ5d699sJkZzajT3FzQKkhjJh0/Xk15gKzSZjRn6T76ukYmrUk6RdJNRRQMaLMs4xpNGfsAssoSFL4t6Woze5OZXS7pi5JuN7PXmtlryy0e0FyTxjWaMvYB5JElKLxL0sskfUjSP0paV3CNhavCLZaZXWZmt5jZF0f2vdzMbjKzz4XbU0Zu+20zu97MrjWzJ035eoDKrK5Ki4vxt83PN2fsA8gjS0rqFcNN0nskfXZsX5I3STo/Zv9r3P28cLtSkszsQZKeI+nB4WMuNbP5vC8G3TQYBKmeZsE2Px/8bELa5yWXxGdHXXFFcwMCy4YgTZbso380s3ua2Q5Jn5H0BjP700mPCxfMuzVjOZ4m6W3u/kN3/5qk6yU9IuNj0WGDgXThhUGq59Bw4LYJaZ9Nzo6Kw7IhmCRL99G93P07kp4p6c3u/lOSfm6GY/6amX0+7F46M9x3tqQbRu5zY7gPPbe+Lt11V/LtTUj7XF2VDh4MgtXBg80NCBLLhmCyLEFhi5mdJelZkt474/FeJ+nHJJ0n6WZJf5L3Ccxsj5kdMLMDhw8fnrE4aLosy1mw5EV2LBuCSbIEhVcoWC77enf/ZzO7r6TrpjmYu3/T3Y+5+3FJb9BmF9FNks4dues5Skh7dfd97r7i7iu7du2aphhoEdI+i9X0ZUNQvywDze9w94e4+0Xh319195+f5mBhi2PoGQrSW6VgAPs5ZnaKmd1HwQV9Pj3NMdAte/dKW7cm307aZz5NXjYEzTBxldSEuQjflnTA3d+d8ri3Snq8pJ1mdqOk/ybp8WZ2niSXdFDSr0qSu19tZm+XdI2kuyW92N2P5Xsp6KJh//zFF28ONs/NBf33S0vByWy8D38wCPrIDx0KasBx9+mr4fvA+4MkWZa52CfpgZLeEe76eUlfU7AW0lfd/SWlljAFy1xg3DC7ZnQwdWGh2RlBQNXSlrnIEhQ+KenRw5q7mW2R9FFJj5H0BXd/UMHlzYyggHHLy0Ga5bilpSAzCMDsax+dKem0kb+3S9oRBokfFlA+oDBk1wCzyRIUXiXpc2Z2uZm9SdJnJb3azLZL+ocyCwekiZuZS3YNMJss2UdvlPTTCi7H+S5Jj3H3/+nu33f3/1p2AYE4STNzn/IUsmuAWWS68lp4v8OSbpN0PzN7XHlF6jbWnSlG0szcK69s17ITQNNkGWh+paRnS7pa0vByIe7u/77ksk3UtoFmMmOKk3SBGy5qA0yWNtA8cZ6CpKdLeoC7M6g8o7R1ZwgK+ezeHZ9lxNgBMJss3UdflZQypxRZkRlTHGbmAuXIEhSOKsg++svh1da44tp0yIwpTtOXrGbsCG2VpfvoPeGGGe3dGz+mQO12OqurzQkCo8bHjoaZUVIzywuMynXltYxXXEOCptdukU9Sa4BrFqDNElsKZvZ2d3+WmX1BwQJ2J3D3h5Raso5qau0W+aS1Bhg7QpuldR9dHP58ahUFAdokrTVAZhTaLK376Nlm9ghJN7n7xvhWVQGBJkprDZAZhTZLCwrnSPozSbeY2YfN7A/N7KlmtqOisgGNlZZJxtgR2izLjOZtklYUrH/0qHC7vc4ls4faNqMZ3cHsdLTZrEtnnyrpnpLuFW5fl/Sp4oqHPulK/j6tAXRVYkshvOLagyV9V0EQ+KSkT7r7bdUVLx0thXahdg00w7Qthd2STpH0DUk3SbpR0u3FFw99MU3+fpNbFk0uGzCtxJRUdz/fzExBa+GnJf2GpJ8ws1slfcLd/1tFZURH5M3fb/LM4CaXDZhF6piCB74o6UpJ75P0cUk/ps05DEBmedd+asrM4LgWQVPKBhQtMSiY2X8ys7eZ2SFJH1Ywie3Lkp4pibRU5JY3f78JM4OTrvAWNzmt6rIBZUib0bws6R2S/rO731xNcdBlw26V9fXg5Ll7dxAQkrpbmjAzOKlFMD8vHTt28v2ZtYy2SxtT+PUqC4J+yLP2UxNWlU2q+R87FpSFFW/RNVmv0QxUrglzAZJq/sOyME8BXTNxRnOTMU8BZWNuBbpo1hnNQK+MZhutr0sXXECLAP2R5cprQG/EzT+44goCAfqDlgIwos75B8yQRhPQUgBG1DU3ghnSaApaCsCIvLOui8IMaTQFQQEYUddV05owexuQCArACeqaG1FXCwUYR1AAxqyuSgcPSsePBz+r6NPnus5oCoIC0ABNmL0NSGQfAY2RZ10ooCy0FAAAEYICOodJYMD06D5CpzAJDJgNLQV0StmTwAYDabTvRREAACAASURBVOfOYDDYLPidlgi6hJYCOqXMSWCDgXThhdJdd23uO3JEesELgt9piaALaCmgU8qcBLa+fmJAGLrzTpajQHcQFNApZU4CS2ttsBwFuoKggErlyQyaJouozElgaa2N8dvIgEJruXtrt4c//OGO9ti/331hwV3a3BYWgv2z3Lcq+/e7b916Ypkk923bTixXE8sOjJJ0wBPOq1yjGZVZXg5SRMctLQVrDE173yoNBtLFFwcDzJK0uChdcsmJLZGmlh0YSrtGM0EBlZmbC+rN48yCxeemvW/TtLns6Ie0oMCYAiqTJzOoyCyiqvv3WQYbbUZQQGXyZAYVlUU0nOG8sRHU3ocznMsMDCyDjTYjKKAyeTKDisoiKmqGc57WBstgo80YU0CnFdG/P76ekhTU/DnRo60YU0hBPnm3FdG/X/Z6SkCT9Doo1NHfjGoV0b9f5npKQNP0OihQA2yGIltr488lzd6/X0c2ES1Y1CZpVlsbtllnNJudPDtVCvajGkXO/i1rJnHVM5SZEY2yiRnN8Zh5Wr8iP4MyP8/BIGhBHjoUtBD27i1vkJnvJcrGjOYEZJXUr8jZv12ZSdyV14HmIvsoAfnk9Suyv36W52pSHz4zolGnXgcFKQgABw8GNbCDBwkIVSty9u+0z9W0LDRmRKNOvQ8KqN5orXx9XbrggvjWWt7a+7Qtv6ZlodGCRZ16PaaA6mUdx6lyvIc+fPQNYwoxmtSH3CdZa+VV1t7pwwc29TIoNK0PuU+yzg6uchYxffjApl4Ghab1IfdJ1lp5GbX3pNYhffjApl4GBdayqU/WWnnRtfdJrUOy0IBAL4MCfcj1yVorL7r2TusQyKaX2UfMZO4fMoyATWQfjaEPuX9oHQLZ9DIoSPQh9w0ZRkA2vQ0K6L6sM6fH78u8FfTZlroLAJRhfNxoY0O64or4bsK4++7ZE/xOCxJ9Q0tB1BK7KE+2EZlJwKbetxSoJXZTnrkozFsBNvW+pVBULZHWRnGKeC/zZBuVmZnE9wKtk3SdzjZss16j2b2Y6zRzTd3iFPVe5nmerlzbGchKKddorv3EPstWRFBYWooPCktL1T4HAkW+l/v3B48zC36mnYzz3DcrvhdoqrSg0MsZzaOKmN3MbNnidOm97NJrQbcwozlFEbObmS1bnC69l116LeiP3gcFafbZzcyWLU6X3ssuvRb0B0GhAKylVJwuvZddei3oj96PKQBA3zCmAADIhKAAAIgQFAAAEYICajW6DMTOncFW15IQg0FwfLNg27mTZSnQP71fEA/1GZ84eOTI5m1VL0w4GEgXXijdddfmviNHpBe8oLoyAE1A9hFqs7wcnPzTLC0Fc0fqLEtVZQCqQvYRGinL0tRVLV+ddhyW0EafEBRQmyzLPVS1JETacViWAn1CUEBt4paBGFXlkhB790pbt568f9s2lqVAvxAUClD0hVT6cmGW8WUgFheDraolIUbf5/V16Zd/OTj+0OKi9MIXBrdN81n05XNExyStqd2GrYjrKcyq6AupcGGWamR5n2f5LPgc0WTiegrlScpamTZjpejnQ7ws7/MsnwWfI5osLfuIoDCjoi+kwoVZqpHlfZ7ls+BzRJPVkpJqZpeZ2S1m9sWRfTvM7P1mdl3488xwv5nZa83sejP7vJk9rKxyFa3oC6lwYZZqxmh27Ii/7+j7nPZZTCpjUz9HxjkwUVK/0qybpMdJepikL47se5Wkl4a/v1TSK8PfnyLpfZJM0iMlfSrLMRhT6J4q3s+tW93n50/cJ7lv25ZtTGFtrdzxiLI0sUyoh1LGFEodCJa0PBYUrpV0Vvj7WZKuDX//S0m/GHe/tK0JQcG9+Iu+l3ER+bYo+mL3Sc8Xty0unvz40c9icTHYkh4/XsamfY5Fv7dor7SgUOqYgpktS3qvu/9E+Pft7n5G+LtJus3dzzCz90r6Y3f/WHjbByT9lrufNGBgZnsk7ZGk3bt3P3xj0joJaJWqxmjipB1jfJ2mvI9vAsY5MNTIZS7CaJU7Irn7PndfcfeVXbt2lVCyePTFViNvX/y0fft5jiEFcxXSAkLeY9WhqeMcaJaqg8I3zewsSQp/3hLuv0nSuSP3Oyfc1wjDWuLGRlDTGq7gSWAoXp6L3Wf5XOKeb+vWYKZylmMMTVr/qMrZ19PK896ix5L6lYrYdPKYwqt14kDzq8Lf/51OHGj+dJbnr2pMYda+2Kb1LTdd1vcr6XOZnz950Hf8+fJ+JmljE236TPkuwj19TKHMgPBWSTdLukvSjZJeKGlR0gckXSfpHyTtCO9rkv5C0lckfUHSSpZjVBUUzOJPBmaTH0vGR3mSPpcy3mM+R3RJLUGhiq0NLQUyPsozKbMoy3u8traZnjo/H/ydhFo2uiItKLAgXgaz9MUm9UWzRv/sJq2yOuk9vugi6XWvk44dC/4+diz4+6KL4u+/uhosUXH8ePCTq7GhiwgKGayuShdcIM3Pb+47ejTISJk02EzGx3SyZHsNV1kd/VxGTXqP9+3Ltz8JmWnolKQmRBu2qrqP4vqTs/Yr0xedX973bNr3OK3rqayyAk0gxhQ2TdMvPGvfNX3R+UwzDjPNexy31MVwbKHMsgJ1SwsKvVolNW5W6sLC5Iu5TJoVy4zQYlU183Y4pjBubU269NJsz8EsYbRRI2c01yFuVurRo9LFF6c/blLfNOMDxapqHObSS4MAMByTmJ+XnvhE6cors48PMGaErulVUEjKRjlyJP2fPy3LhRmhxaty5u2ll0p33x3U9q+4QvrEJ/LNXGeWMDonqV+pDVveMYVJs1LTDPush33ObZvJ2jZ1jMNMOz7AmBHaRowpBAYD6bnPjb+NPmAwPoC+YEwhtLoqLS7G30YfcLuUMTcg6/gA8xLQZb0KCpJ0ySX0AbddWavWZhkfYMVcdF3vgsJwFuzSUtAtsLSUnJLa1xrhYCDt3Bm8P2bB70167UlZZOvrsz1vlu9GWccGmqJXYwp5TDunoe0GA+nCC6W77jpx/7Zt0mWXNeO119n3z7gDuoAxhSmk1Qi73IJYXz85IEjSnXc2pzZc59wA5iWg6wgKCZLmNAz7kLvap5y2smhTVnatc24A8xLQdQSFBEk1v/n5bvcpp9V4m1IbzjMu1KVjA1VgTCFB0phC0sXbu9KnnDSmIAXpvJdcwgkQaDvGFKYQVyMcv6bCqKbUome1uipdfnn8fI4jR7rVVQbgZASFFKNX2tq7N1gbZ3iVrlFd61NeXZW+9a0gEI4rq6usy4P3QJtsqbsAbRGXjSQFLYeu9ilXdSnR8a664eC91M33FWgyWgoZJZ0Ijx/PduKaVBNuYk25qvRLJoQBzUFQyGiWE+SkpRGaunRCVemXVbVIAExGUMholhPkpJpw0u0XXFBvYKgq/ZIJYUBzEBQymuUEOakmnHT7sWP1txhGB9sPHiynj58JYUBzEBRyGM9GWl8PAsSWLcHPpLGASTXhtBpxH/rWhwF3NA321FPrKw/QZwSFKYyOAUibaapJYwGTasJpl/uU+tO3fscdm78zJwKoB0FhCknpqdKJNfthRtHznhfUfBcX47uehjXlqifGNSnjiQwkoBmYpzCFSTX3Q4dOzr0/ciRoDbzlLfH98sN9cUtrlNG33rS5AWQgAc1AS2EKk2ruu3dPV/OtcrG1ptXMyUACmoGgMIW0MYBhzX7amm8V2T5p5airZk4GEtAMBIUpjNbopc2xgNGafdNrvk0rXxGtpCaNkQBtxdLZJWn65TybXr68uvZ6gDKxdPYM8tY+s2Yc1a1rF4tp2hgJ0Fa0FFLkrX1SW63P3FywbtS4rlz8CChSWkuBoJBieXlzgtqopaVgEHjW+6M4vPdAdnQfTSlvhk7TMnr6hOwloBgEhRR5M3SaltHTRtNmEHVtjASoC0EhRd7aJ7XV2cx6XYmq5ngAXUZQSDFN7XN0dc/FRWqreZBBBNSPtY8mWF3NfrnN8cyj0VU/MRljMkD9aCmkyNO/3cZabtNmADMmA9SPoJAgb/9222q5F10UTLBr0nWhGZMB6kdQSJC35t+mWu5gIL3+9SdP9qq7ZTNtBlHTWjzT6MJrQEe4e2u3hz/84V4WM/fgtHniZhZ///373RcWTrzvwkKwv2mWluJfW9rra6o2ve9JuvAa0C6SDnjCeZWWQoK8Nf82rfKZ1qU1+vraUHtt41jOuC68BnRIUrRow1ZmS6Hq2luVx0tqKZhtHq8ttde8Lbom6sJrQLuIlkJ2Ra5y2tTspbgBXTPpRS/afH1tqb22aSwnSVJZ5+aa2TpDxyVFizZsRbcUiqwdZ32u/fvr6eMfHtcs+DlerrbUXtvSokkT9xra+lrQDkppKdR+Yp9lKzooJJ2cl5bKea60k8Fwm59PPnGXqcj3omyTAlwb7N8ffNZtec/RbmlBgaWzRxS5Jn+W50pa7jlJlddm4NoQ1eOaEKgKS2dnlNS3u2NHviyciy6K/+ceP0ZaFtDwus+jZunTz5tJxKqj1evC+Ag6IKkJ0YatijGFrVvdt207cV9aP+/aWnJX0Pjj0rpoiuzT70K/ex/wOaEqYkwhu/H+6cXF5BN3nKR+YSl+kDnpJFD1+Mak92HaE1NV/f1dGFdw787rQLMRFGaQt8aeNmgcJ+kkUGStsa7Z2VXVfKlhA/kQFHIaPVHnzQhJaynkrfkVVWvM21IoqpVSVQZTmzKlgCZICwoMNI8ZXx312LGT75O2cueePcnPXdeVxPKuPlrUiq9VrRzbthVqgSYjKIyJm8krBdlAWbJwLr1UWluLzx6S6pkVnDeTqKgsmKqyacjaAYpDUBiTVLs8fjx7jf3SS6W77w5OwHmOUaY8rY6irmtQ1fURZj1O1nTdNiwQCMwsqV+pDVsZYwp1Z/00RV+yj/IsR8JgNrpCDDRnV8f6R3Xqewpk1sDd5gAPjEsLCnQfjSlyJm/TZwXnveRoF2UdpGYwG31BUIhRVNbP8Ln27g0GPQ8dCgaZizrpztrHnbQ89gUX9KffPOsgNYPZ6AuCQsnKqo0X8bxJtdxjx/rTcsg6SF3VoDlQu6R+pTZsVcxonlVSX/Ti4uZtwwlvefr0i+jjTruOQ5/6zbOOq/R9/AXdIZbOrk/ScshJsi5PXcQyy3HLY8dh6WagW1g6u0Z5+5yzTm4roo97fCA8acLdLP3m5PYD7UJQKFlcX/QkWTJaiurjHh1Uv+KKYvvNyW4C2oegMKWsNeCstfFRWWrmRaa7Dl/L854nnXqqtLhYTAptUnZTVRcKAjCFpMGGNmx1DTTPMiktaRnruia3lTnBjgsFAc0kJq8Va5YacForYH5+83mKrAWn1bCLrs2PKjK3v8xylonWDVonKVq0YaurpTBLDbiIS37mMamGXWRtPu+x8yiznGWhdYOmEmsfFWvWOQKzXvIz7jmSTjRJZZ2fL/6yn7OUc5JJ8z3qnjsw+joXF5M/07T3lnkQqApBoWBF1wDLvFxm2hjGwoL72lo7arNVt7BmLVvaFve50qpAlQgKJSiiVpdWU0+rUeap3U+atTws+6TXMsvrLWsZ7mlaWGXIOjN8ms+p67PJUQ+CQgNNql2m1RLztCwmHWfacZCstdi2ZDeVUY48n2tTXgv6gaBQoLL7yEdr73kfm9ZXPVxfaZqa6Cy12DJrwE2pXedZQyrv2A8tBZSBoFCQpmTTTFOOMuZWZClrW7Kbii5H3jI15bWgHwgKOSW1Buq+VGdchkueFsu0rZwyWgpFZQ01JWNn0mdT9rgNytPFz4WgkENaja3IWu/a2snPl1YzrLMmWfSYQlOyhqpCK6C9uvrZERRySKsVF9VSiPuimQWBYppylWk0Qyrtug9ptammZg1VhfGC9urqZ0dQyCGtNVBUrWGaL1od2SlZX2/e96VvmTZ9e71d0tXPLi0osPbRmKR1eXbsKG5l0qSlsTc2ktfHKfMawUnr82RdbyjpfhdfnK/MXb3e8Y4d8fu7+nq7pG/fVUm0FMbt3x/0eY/XDLZtK64fcVIKYxG18ayKGENJy9NPGlDtYj9tnCq+TyhPV7+rovsonyL6vCf1sWdZFmFpKRhnmCXjaJIixlCmmZXdxYyOOGnZV2iHLn5XCQo5zdqPmKV2MWmJizytiLJea54xhaTytr3vdVZd7ZNGu6UFBcYUYszaj5ilL354GcylpXxlK/oaAmmvNesYyupqcLW2PM/fF1m+S1xzAY2SFC3asJU5eW2WfsQi1yYqu5ZZVJ9pV/teZzXpfeF9Qx1E91F+s/QjTrM2UZ6upKJzpCe91qzvRRf7XouQ9r50NQ8ezUZQqNi0tb8srYYuXcMZjDmgHmlBgTGFEkw7nyHucWtrs8+LmEVbr43cNEnjBr3Mg0ejWRA02mllZcUPHDhQdzE6bW4uqLuOM5OOH6++PG00GEh79pwYXBcWggAvJd9WZfBHv5jZVe6+EncbLQWkoiY7u7TWVlGz5IGiEBSQau/eoOY6amEh2I9skpY1Ge4fpicfPx78JCCgTrUEBTM7aGZfMLPPmdmBcN8OM3u/mV0X/jyzjrK1Tdk57rPUZMssW5ty+2ltoVWSRqDL3CQdlLRzbN+rJL00/P2lkl456Xmamn1UlSZnBpVZtia/7jhtKy+6T01LSU0ICtdKOiv8/SxJ1056nr4HhSbmuE+ac9GlazPnwRwONElaUKgl+8jMvibpNkku6S/dfZ+Z3e7uZ4S3m6Tbhn+PPXaPpD2StHv37odvbGxUWPJmaVpmUFyWzbgiyta01w20TROzjx7j7g+T9GRJLzazx43eGEay2Gjl7vvcfcXdV3bt2lVBUZur6L7qWfvp47Jsiipbluegjx6YXS1Bwd1vCn/eIuldkh4h6ZtmdpYkhT9vqaNsbTIpMyjPSX5Yy9/YCGrhGxvB33kCQ1KWTVzZZkFGFFCipH6lsjZJ2yWdPvL7P0k6X9KrdeJA86smPVffxxTck/uq8w5uFtFPnzaWsLhYbD86ffTA9NSkMQUzu6+C1oEkbZH0V+6+18wWJb1d0m5JG5Ke5e63pj1X22Y0DwZBF8uhQ0FXx9695eWkLy8Htf1xS0tBLvy4IvrpBwPpec+Lf56k4wKoXtqYAstcVCRtqYMyAkPek3zeIJLELHk/g8BAMzRxoLl3ilpYLus4Qd7B2Lz99KPlOO00aX4+OSCkHbfqSWhNmPRWVxma8NrbppfvWVK/Uhu2No0pFLFEcp5xgmkmTOW5bkKeCwMVWcZZNGESWV1laMJrb5suv2dq2uS1orY2BYUiBnIXF/M9R1mDsXkuCDQ/7762lu95ypqEVsXxJr3ndU28y/vdQTsnSWZFUGiAWWsd+/cnn3irviBLUqsnb0uh6gvMlH28LJ9xHRfVadJ3p026fAGktKDAmEJFZl0iOW3sYceOYsqYVd5JYkljJ1VPQiv7eFnGjeqYeJf23alywl8T++fTytTbSZJJ0aINW5taCrNKq51v21Zc11CWLqe8YwpJtauujSlkqVnW0U+d9t2pqn+8if3zk8rUxDIXRXQftd+kfvwi+jnT/glGF7qbn9882WUNCouLJ/ZrLy4GYw3j+6oYcC1r0luWPuj9+923b9+8bW7O/YlPLHciXlK5FheLPc40Zaizfz7r59XFSZIEhQ7IUjufVdrJI2vLYH4+aLmM7tu6dTOQpG1tr4VNqlmurWV7D4t+H5KOm5QAUIYm9s83sUxVSQsKjCm0xHBMIsn8/OzHSFq76MiRyQvdDR07Jp1++oljJ/e8Z7B/kmnmbTRJ2rjRYCC9/vXZnqfo9+HKK/PtL8JgIO3cGbwPwy1Onf3zvR0zmIAZzS2TNkFs1o8yaVZzXuOzl5NmV2d5bFfkfW+LfB+qXmp8MJAuvFC66670+5U5oz+LqlcZaBJmNHfI0lK+/VkNBtL3vnfy/oUFaXEx33ON17Ty1Ly6WkubtILsuOH7cNFF0pYtwQl8y5bg77wm1YiLzgpaX08OCMOZ73mz78ow2rIblm3YSmtCZlRtkvqV2rD1aUxhqIyMiKTxiuHA7/79wbhAlv7wuEyorI9v+5hCmjwT/obvQ1FjAZMSCIr+Pk1KQGiaLmcZJREDzd2SJyMiy32zZGEkzYiNCyJxx43LNFpb62ZmR5ysabzz85vvQ9Lg/Pz8dMePe6/LyApK+65MU/aypZW3q99LgkJPZa0BZcnCSKv9jWdr9LHmlcWk61ePt7KqqG0XnYGTpVXYJGmzvbv83SUo9FTWWmCW+6WdzKZ5vj7LOm8gqaVQZMpk0Z9VFfNpipSnW69LrYa0oMBAc4clDW6O78+ybPbevdLWrSc/17ZtJy+vnfW4fZX0Ptw6dkmpPXvi7zc/X9xAaNGXNk37jJt4ydQ838lpLlHbSknRog1b21oKVc+OzFMLzLq8xXj/a9ws5KTjzs+fOMbQl/GEcXlmGJ92Wvx95+aqXdokq7TPvojPvOj/oTwthaa2dqYhuo/qV0c/exkzWbO8jmnWRupiv22SpH73uMytqta8KkrS92Ntbfbvf5WZd2lbF2Y8ExQaoI5+9jKOmfaco7W44VpHZtmWuOhKDSyrrNc3aEsffdJnP/q9mLX8Zf0PxWXK5RlDayOCQgPUsc5KGcdMq7km1eKyLpzXhRpYVlk/m0nZMU14z6q6jkTV/0NdzqJLCwoMNFekjnVWyjhm0mOHs0FHDWeHZj1eV2czx8n62ayups8ob8J7dvHFs11Hoqzrjs9iMDj5dS0u1j8LuwoEhYoUneUxLu4fq4xjJj1n0oJ3hw7FP2ZcEzNTypTns7nkkuyZX1UbDIIFE+OMZvbEvV4z6X73CzJ6NjaCunhahk/Z/0NDw7Wbxl/Xd79b7HEaK6kJ0YatTd1H7uVlH2W5DkKRx4x7zkn9vUn9tn3MPhrKOzM9y7Unip7tPkmevve1tZO7gJK6hKq+7vi0r6mtxJhCtzVhsliX+1+bJO2kmOcziLvv8ASd52Sb5apuk2ZyN22sJM/s/bYiKHRcUy4W0tWrVNUlrnWVdtLPUzmYtJZV1oCedMzhPIppUj7rrpHTUmjAyX3ajaAQaEJLAcVKq8knfc5FZTTl+f6knfQXFrItpDhe7rpbmHnmkbRVWlBgoLkDqhqAQ3XW10/O6HGPv++hQ8Hg6FzCf/N4dk7Wq7plWQJieE2CuCv/HT2aPAg9tLAgvehF0vbtm/t+8APp4x/PVsYyrK5Kl19+YtbX4qJ02WX1ZB4Vfb2LiZKiRRs2Wgqb6LrplqxzO6T0a2jH1brzPG8Z5R1tiRR53YguKmusTnQftVtRJ3wCR3skdbvEdbUk3TdpfaSsM8yzBIW1tfTnm5uL3799++Ty1HHthaxZXlUpq2uYoNBiRdUUyA5qj7Q+7bhU3iwZQKOy1uQnJSok1fBHv19ptw/LlnafKjVxLKGs94ag0GJF1RQYjG6mPHM+kmruebNlsqaHTvpupLUQJr2W0edvSkth0hXY6pDU0pr1vUkLCgw0N1xR1ybgGgfNMxjEz+bd2Ii///j1FobSEgriPt+iZpgnzWKXpIMHg0HZLGVLum5E0v4ypM3Mlur5PxkMpOPH429Le+9nRVBouCxrxphJW7YEP5OyE+pYewnp4jKMjh6Nz+SRkj+rtPWR4h4zzBhaWgr+Hh5v+HNpKdsaP0nllDa/k5dfnpwV5R58Xx/9aGlt7cRyrK1Jl16afvxZjWb1XHBB+n2r/j8ZDKTnPz/59uFnV4qkJkQbtj50H+VZnz5trIAxheaZZsXZJNN8vrN+JyaNKWTd6vge5plUV/WYQpbrXJN91OOg4J6v3zmtD5Tso2bJem2KrJ9V3sfkHWeKe/5J2UdZt/FjjmcBDfvW064KWMRrH9+KvMJdVpPKVkSZCAodNCkvvCtrtHRZ3a23PMujTCpr1lnSWb6vk2rKWa70N+l9zDKvoq6WdBVlIyh00LRX5CqytUDLY3ZFvIfTPkeelsKkVs006xslHTNLLd4smOswzf+Ae3Km0eh1xOv6PheVHZaGoNBBk9acyboy5rQ1jrpruQjM8jnkeWxaqyLPCqhbtwZ99GnHnGZ2dFLZkl530+YjjJdvlteXBUGho0bHFob9umk1nCLnKjDvoRlm/RyytjLSjpN2En/iE09+/knHzLvMdt6adN55IHXIspAgLYWeB4UiuhmKXGK7Kct1911Zn0OeZbuLrCCMDzBPu23dGjxP3P9LWhBrSjfopC45xhR6HhSK6qqhpdA9ZXwOaWnQcRWTMpdimWZbXEzvoprUEmlKN+hoYF5cTA5y0yAoVKTogdesywTkeT7GFNptvCa9ffvkPvq8kmrqad+3ab/7o49LW+4iSzAYjglMCpST1ouKe61NSqoooiwEhQoUfZLMUmuapouA7KP2ShognZ8vrhaZNshZdNdg3DWbZ2kdDF/3pO6hLMccT5GNu+BRHUt7F3WeIShUoOhmfJbBNrpq+mVSqzEpSOcJ3kW2TJMUNW4wPjCcZVJn1m1+fnJ3k9l0XWSzVKSKOs8QFCpQ9IDfpNoMXTX9k+U7Mf73pOs65zlGEd+3osYNpBNTSIt83vH3aVLLY5bXnvf/uKjzDEGhAkW3FCYt40tA6J+iasFp38ssrZGmvIbR11H0844+/6TnLuK1Z31vaSlM2JoUFIoexG3y5BrUY9LyD3m2tIldZaZCFjWGMP46Zg0qaTXwtNZCni6kIlr/jClM2JoUFNyLG3htw+Qa1KOo/vgsmUSTarVFLq0x6+uYZlG+0RP6pBp42oqwi4snz+mI+7uIz2X8s5/2cqEEhZZhYhjSZF0GYZYaqXuxS3uPln2avv9Jy2NM8z6MZg9lqYEXGczSAlXS+1Zk7wFBoWWYGIY0s9a2J6WvTmopJNXK8yytMWlOQlxAMnM/7bT4sk/znow/R1rrJ63MRW7jrY4sE+6mOS8QFEpSVp5+Ul503BcZ/VNkv3yWZajH75+3lhsnA61t8AAAB4tJREFUbdb0pJZE3PyAacdbpu3HL2tLag2lPWaaHgSCQgnKntE7WlsbPwmQjtpvZfXL79+ffKH40QpJES3Z8f7xYd94ltc2vGj9eKVsbW268ZZJ5S4rsynrtriY3kqhpTCy1RkUqurioSsJ44quuQ4HXNNq2pNm+OapqKQ9PmsrKO058r4/k2raRWdMFb0xpjCy1RkU0r4oVRyHQed+m3R95MXF9Fr/eAVjUm14dIav+2xdp2kVnawthbT7ra2lt7TjjjtNeavckloK02YkEhRKUOTU92mOQ0uhvybVhLdtC06MWfrY89TQi5onMynnf1It/4lPnFzWYWCY9FxNG1OYVNa8ZU9CUChB2j9SkSfssscu0D5pNdfFxeCEmFSz3L49f3ZLETXTLOUfHdsYlnH79s0Wz/x8EBCynKAntSZGg0cWVWUfJW2zzA2JQ1AoSdIHWHTXDquRYtQsNe28efBx26xmqejk6crJ0vrJU8Gqa2yhjEogQaEkTevaIXj0wyx98nlnzCY9h5TtErBpx5rmu5r1xJy1pZDn/7WOsYXxsZyiEBRK0qSunSaVBeWaNnsnz/chb2pnVd+1rCfmtbXJg/HDLWvLPk92VBHbli3lvacEhRI1pXbetFYLypX0vUv6HuStcU4zGayK71qWE/327cF9i24pDI8/a2AYjutMut+06xplQVDoAVJX4Z580pzmKmHjgaeoGvcsJpVjtMVS9JjCUNZJdpPep7LKl0VaUJgTOmH37nz70U1XXplvf5rVVengQektb8l2/yq+a4cOJd+2tCTt2xeUO6088/OS2cn3z2r4vuzfLy0s5HvsaLmyvF9Hj0rr6/mPMQuCQkfs3XvyF3RhIdiP/kg6aaadTNMMBtKePdLGRvr9tm2r5ruWdCJdWgpO1KMn+KT/iSuukI4fP/n+ea2uBkFlaSn422zyY0b/J+PKF2faz25qSU2INmx0H52oKeMbKF7Wz7bosaUq5y9kkTehosr/iaTsrbTFLEfLN+vqs3mIMQWgvfKcCIvOQsvbT16Fpld+pi1flRmEaUHBgtvbaWVlxQ8cOFB3MYBSLS/Hd98Mu0zGDQZBP/ShQ0F3y96903eTbNkiHTs2+X5JZUE+RX52aczsKndfib2NoAA029xcUG8cZxb0jZcpaz/5NAO2qE9aUGCgGWi4OjPLhoOoSebnCQhdQ1AAGq7OzLJJx7jiCgJC1xAUOmIwCPqezYJ+YLPg78Gg7pJhVqOpj7Pk10977MXF+NsWFwkIXURQ6IDxXPLhwODGRrCfwNB+wwlTReTX53XJJfEtlUsuqa4MqA5BoQPW14OZj3GOHpWe+1zpoouqLRO6I6mlIgWt0bk5WqVdQlDogCwzHl/3OgIDTjbsdpx0Yh9vqUibrVN3WqVdQkpqByTlsY+bn5fuvrv04qAlht2Oo63MrOmleedOoFlISe24rGuoZJmEhP6I63bMugBb0WssoTkICh0w7POdn0+/36Tb0S+znNhZlbe7CAodsboa5Ixv3Zp8nz17qisPmm+WEzur8nYXQaFDVlelyy8/Oa98bk5aW5MuvbSecqGZZjmx1zl3AuVioBnosaoWYEOzpA00b6m6MACaY3WVIIAT0X0EAIgQFAAAEYICACBCUAAARAgKAIAIQQEAECEoAAAiBAUAQISgAACIEBQAABGCAgAgQlAAAEQICgCACEEBABBpXFAws/PN7Fozu97MXlp3eQCgTxoVFMxsXtJfSHqypAdJ+kUze1C9pQKA/mhUUJD0CEnXu/tX3f1OSW+T9LSaywQAvdG0oHC2pBtG/r4x3Bcxsz1mdsDMDhw+fLjSwgFA1zUtKEzk7vvcfcXdV3bt2lV3cQCgU5oWFG6SdO7I3+eE+wAAFWhaUPhnSfc3s/uY2TZJz5H0nprLBAC9saXuAoxy97vN7Nck/b2keUmXufvVNRcLAHqjUUFBktz9SklX1l0OAOijpnUfAQBqRFAAAETM3esuw9TM7LCkjbrLAQAts+TusTn9rQ4KAIBi0X0EAIgQFAAAEYICACBCUAAyMrNjZvY5M/sXM/uMmf10uP9HzeyvMz7Hm8zsF8otKTC9xk1eAxrsDnc/T5LM7EmS/kjSz7j71yWddKI3sy3ufnfFZQRmQksBmM49Jd0mSWa2bGZfDH//JTN7j5l9UNIHLPDn4dUE/0HSjwyfwMz+2MyuMbPPm9n/qOVVAGNoKQDZnWpmn5N0D0lnSXpCwv0eJukh7n6rmT1T0gMUXEnw3pKukXSZmS1KeoakB7q7m9kZ5RcfmIyWApDdHe5+nrs/UNL5kt5sZhZzv/e7+63h74+T9FZ3PxZ2M30w3P9tST+Q9MYwcBwtu/BAFgQFYAru/glJOyXFzQr9fobH363g8rN/Lempkv5PoQUEpkRQAKZgZg9UsLz7kQl3/YikZ5vZvJmdJelnw8efJule4arA/1nST5ZZXiArxhSA7IZjCpJkki5w92PxPUiRdykYe7hG0iFJnwj3ny7p3WZ2j/C5fr2cIgP5sPYRACBC9xEAIEJQAABECAoAgAhBAQAQISgAACIEBQBAhKAAAIj8/7TwrpxIgsvJAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.title('Max Wingspan in Centimeters')\n", + "plt.ylabel('Wingspan (CM)')\n", + "plt.xlabel('Birds')\n", + "plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)\n", + "for i in range(len(birds)):\n", + " x = birds['Name'][i]\n", + " y = birds['MaxWingspan'][i]\n", + " if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:\n", + " plt.plot(x, y, 'bo')\n", + "plt.show()\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 23 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAANdCAYAAACOL+uTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde7wd46H/8c8TCQnRJCUEUbcTJHIX5IJKtE4axLWhdQmqipAc9BJOvahqj/56oVpKHZpe1K2tVvWiTitHIxwickM1QRCUCEJEyOX5/TGzdiY7z9r3nb3X3p/367Vfe9asmVnPzJr1fGeemfWsEGNEkqTqOrR0ASRJrZMBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCrVII4YYQwqX1nCeGEP6tictxTAjhpRDCihDCkEYs508hhIlNWTapuQW/B6GWEEJYDGwPrAVWAzOBs2OMLzVimRHoE2Nc1CSFzJb5LHBhjPF3NbzmUmDHGOOafFwn4GWgZ4wxNFVZmksIYVfgeaBTaR0k8AxCLevIGGNXYAfgNeAHdZkphNCxWUu1oV2AJ2uZ5i3gU4XHn8rHSRXNgFCLizGuAn4F9CuNCyFMCyFcmQ8fEkJYEkL4SgjhX8BP8vFfCiG8GkJ4JYRwRnGZIYRxIYSnQgjvhhBeDiF8MfXaIYQOIYSvhhBeCCG8HkL4WQihWwhhixDCCmAzYG5+JlHOz4FTC49PBX5W7XWmhxDOzIdPCyHMCCF8J4TwVgjh+RDCp6pN+/UQwkN5+f8SQti28PzwEMLMEMLbIYS5IYRDCs+dFkJ4Lp/v+RDCSTWtZz7bg/n/t/OmtBEhhD1CCH8LISwLIbwRQrg1hNC9hm2gNsiAUIsLIWwJnAA8UsNkvYCPkh3RnxVCGAt8Efgk0Af4RLXpbwa+EGPcGugP/K3Mck/L/0YDuwNdgR/GGD/Iz24ABsUY96ihbL8FDg4hdA8h9AAOApJNUgUHAM8A2wL/D7g5hFBsjvoscDqwHbB5vq6EEHYC/gBcSbY9vgj8OoTQM4SwFXAt8Kl8vUcCc2paz/y5g/P/3WOMXWOMDwMB+C9gR6AvsDNweS3rpDbGgFBL+m0I4W1gOVlF/+0apl0HXJZX3O8DE4CfxBgXxBjfY+PKazXQL4TwkRjjWzHG2WWWexLwvRjjczHGFcDFwIn1bMZaBfyeLOROAO7Jx9XkhRjjTTHGtcBPyZrZti88/5MY4z/zdb0TGJyPPxn4Y4zxjzHGdTHG+4FZwLj8+XVA/xBClxjjqzHGUvNYvdYzxrgoxnh/vr2XAt8DPl7XDaK2wYBQSzo6xtgd6AycB/xvCKFXmWmX5k1RJTsCxQvaL1Sb/jiySvOFEML/hhBGlFnujtXmfQHoyIaVdV38jKxpaaPmpTL+VRqIMa7MB7umngdWFp7bBfh03rz0dh6wBwI75EF5AnA28GoI4Q8hhL3z+eq1niGE7UMIt+fNc+8AvyA721E7YkCoxcUY18YYf0N2R9OB5Sar9vhVsmaPko9VW+ZjMcajyJpofkt2FJ7yClmlW1zOGrKL5vXxd9afBcyo57z18RLw8xhj98LfVjHGqwBijPfFGD+Zl+UfwE35fDWtZ+pWxm/m4wfEGD9CdubS6u/IUtMyINTiQuYooAfwdB1nuxM4LYTQL7+GcVlheZuHEE4KIXSLMa4G3iFrekm5DbgghLBbCKErWcV4R31v94zZ/eJHAuNj8947/gvgyBDCv4cQNgshdM4v4vfOj/qPyq9FfACsYP1617SeS/Ppdi+8ztb5/Mvz6x5fasZ1UitlQKgl/T6/U+gd4BvAxEKbeY1ijH8CriG7+LyIjS9CnwIszptHziZrg0+5hewupAfJvguwCji/nutRKtOTdS1/Q+XfEzkKuISsYn+JrPLukP9dSHa28CbZNYNz8lnLrmfexPUN4KG82Wo48DVgKNn1oT8Av2nO9VLr5BflJElJnkFIkpIMCElSkgEhSUoyICRJSQaEJClpU/aK2aS23XbbuOuuu7Z0MSSpojz++ONvxBh71mXaig2IXXfdlVmzZrV0MSSpooQQqndLU5ZNTJKkJANCkpRkQEiSkir2GoSklrF69WqWLFnCqlW1/eSFWlLnzp3p3bs3nTp1avAyDAhJ9bJkyRK23nprdt11Vzb8ETy1FjFGli1bxpIlS9htt90avBybmCTVy6pVq9hmm20Mh1YshMA222zT6LO8WgMihLBzCOGB/AfgnwwhTMnHX57/2tSc/G9cYZ6LQwiLQgjPhBD+vTB+bD5uUQhhamH8biGE/8vH3xFC2LxRayWpWRkOrV9TvEd1OYNYA1wUY+wHDAcmhRD65c9dHWMcnP/9MS9UP+BEYB9gLHB9/sMmmwHXAZ8C+gGfKSznW/my/g14C/hco9dMUpsVQuDkk0+uerxmzRp69uzJEUccAcA999zDVVddVeMyFi9eTP/+/Zu1nNdccw0rV66sety1a9capm59ar0GEWN8leznHYkxvhtCeBrYqYZZjgJujzF+ADwfQlgE7J8/tyjG+BxACOF24Kh8eWOAz+bT/JTsB+h/VP/VkbSp7Tr1D026vMVXHV7rNFtttRULFizg/fffp0uXLtx///3stNP6amn8+PGMHz++ScvVENdccw0nn3wyW265ZUsXpUHqdQ0ihLArMAT4v3zUeSGEeSGEW0IIPfJxO7Hhj8kvyceVG78N8HbhJx5L41Ovf1YIYVYIYdbSpUvrU3RJbcy4ceP4wx+ycLrtttv4zGc+U/XctGnTOO+88wA47bTTmDx5MiNHjmT33XfnV7/6VY3LffbZZxk7diz77rsvBx10EP/4xz9qXM66des499xz2XvvvfnkJz/JuHHj+NWvfsW1117LK6+8wujRoxk9enTV8v/zP/+TQYMGMXz4cF57rb4/fb5p1Tkg8t+x/TXwHzHGd8iO8PcABpOdYXy3WUpYEGP8cYxxWIxxWM+edepKRFIbdeKJJ3L77bezatUq5s2bxwEHHFB22ldffZUZM2Zw7733MnXq1LLTAZx11ln84Ac/4PHHH+c73/kO5557bo3L+c1vfsPixYt56qmn+PnPf87DDz8MwOTJk9lxxx154IEHeOCBBwB47733GD58OHPnzuXggw/mpptuauxmaFZ1us01hNCJLBxujTH+BiDG+Frh+ZuAe/OHLwM7F2bvnY+jzPhlQPcQQsf8LKI4vSQlDRw4kMWLF3Pbbbcxbty4Gqc9+uij6dChA/369avxqH3FihXMnDmTT3/601XjPvjggxqXM2PGDD796U/ToUMHevXqtcHZQnWbb7551XWSfffdl/vvv79O69pSag2IkF0Kvxl4Osb4vcL4HfLrEwDHAAvy4XuAX4YQvgfsCPQBHgUC0CeEsBtZAJwIfDbGGEMIDwDHA7cDE4HfNcXKSWrbxo8fzxe/+EWmT5/OsmXLyk63xRZbVA3HGMtOt27dOrp3786cOXMatZxyOnXqVHV30WabbcaaNWtqmaNl1aWJaRRwCjCm2i2t/y+EMD+EMA8YDVwAEGN8ErgTeAr4MzApxrg2Pzs4D7gPeBq4M58W4CvAhfkF7W3IAkmSanTGGWdw2WWXMWDAgCZZ3kc+8hF222037rrrLiALgblz59Y4z6hRo/j1r3/NunXreO2115g+fXrVc1tvvTXvvvtuk5StJdTlLqYZZEf/1f2xhnm+AXwjMf6PqfnyO5v2rz5ekmrSu3dvJk+e3OD5n3nmGXr37l31+Oqrr+bWW2/lnHPO4corr2T16tWceOKJDBo0qOwyjjvuOP7617/Sr18/dt55Z4YOHUq3bt2A7HrG2LFjq65FVJrQkNOk1mDYsGHR34OQNr2nn36avn37tnQxWpUVK1bQtWtXli1bxv77789DDz1Er169WrpYyfcqhPB4jHFYXea3LyZJaqQjjjiCt99+mw8//JBLL720VYRDUzAgJKmRitcd2hI765MkJRkQkqQkA0KSlGRASJKSDAhJFae27r7rq9i5X3N4++23uf7666seT58+vcFl3ZS8i0lS41zerYmXt7zWSWrr7ru1KQVEseO/SuAZhKSKVFN3348++igjRoxgyJAhjBw5kmeeeQbIvil9xhlnADB//nz69++/wQ/6VPeXv/yFESNGMHToUD796U+zYsUKAHbddVcuu+wyhg4dyoABA6q6BF+6dCmf/OQn2WeffTjzzDPZZZddeOONN5g6dSrPPvssgwcP5ktf+hKQfbnu+OOPZ++99+akk05qUN9Ozc2AkFSRaurue++99+bvf/87TzzxBFdccQWXXHIJAFOmTGHRokXcfffdnH766dx4441lf8znjTfe4Morr+R//ud/mD17NsOGDeN736vqr5Rtt92W2bNnc8455/Cd73wHgK997WuMGTOGJ598kuOPP54XX3wRgKuuuoo99tiDOXPm8O1vfxuAJ554gmuuuYannnqK5557joceeqhZtlNj2MQkqSLV1N338uXLmThxIgsXLiSEwOrVqwHo0KED06ZNY+DAgXzhC19g1KhRZZf/yCOP8NRTT1VN8+GHHzJixIiq54899lgg67b7N7/5DZB1/X333XcDMHbsWHr06EE5+++/f1U/UIMHD2bx4sUceOCB9d0MzcqAkFSxynX3femllzJ69GjuvvtuFi9ezCGHHFL13MKFC+natSuvvPJKjcuOMfLJT36S2267Lfl8qevvhnbbXew6vLV2/W0Tk6SKVa677+XLl1ddtJ42bdoG4ydPnsyDDz7IsmXLavz50eHDh/PQQw+xaNEiIPs1uH/+8581lmfUqFHceeedQHb94q233gIqt9tvA0JSxSrX3feXv/xlLr74YoYMGbLBkfkFF1zApEmT2HPPPbn55puZOnUqr7/+OpAFSe/evav+PvjgA6ZNm8ZnPvMZBg4cyIgRI6ouRpdz2WWX8Ze//IX+/ftz11130atXL7beemu22WYbRo0aRf/+/asuUlcCu/uWVC92913eBx98wGabbUbHjh15+OGHOeecc8r+Ot2mYHffktRKvPjii0yYMIF169ax+eabc9NNN7V0kRrFgJCkJtKnTx+eeOKJli5Gk/EahCQpyYCQJCUZEJKkJANCkpRkQEiqOLV1933PPfdw1VVX1biMxYsX06VLFwYPHsygQYM26NSvrg455BBqu92+qbsm35S8i0lSowz46YDaJ6qH+RPn1zpNbd19jx8/nvHjx9e6nFIHegA33ngj3/zmN/npT3/a8MI3oKytmWcQkipSTd19F38A6LTTTmPy5MmMHDmS3XffvWz3Gu+8805V53qrVq3i9NNPZ8CAAQwZMoQHHngAgPfff58TTzyRvn37cswxx/D+++8DcMstt/Af//EfVcu66aabuOCCC+pU1nJdkz/55JPsv//+DB48mIEDB7Jw4ULee+89Dj/8cAYNGkT//v254447GrcRa2FASKpINXX3Xd2rr77KjBkzuPfee5k6dWrV+NJvNOyxxx5873vf48ILLwTguuuuI4TA/Pnzue2225g4cSKrVq3iRz/6EVtuuSVPP/00X/va13j88ccBmDBhAr///e+reo39yU9+UvW7E7WVtVzX5DfccANTpkxhzpw5zJo1i969e/PnP/+ZHXfckblz57JgwQLGjh3bdBs0wSYmSRWppu6+qzv66KPp0KED/fr147XXXqsaX2xiuuOOOzjrrLP485//zIwZMzj//POBrALfZZdd+Oc//8mDDz5Y1ffTwIEDGThwIABdu3ZlzJgx3HvvvfTt25fVq1dv0IFgQ7omHzFiBN/4xjdYsmQJxx57LH369GHAgAFcdNFFfOUrX+GII47goIMOauRWrJlnEJIqVqm772KTTUqxa+1y/c+NHz+eBx98sMFlOfPMM5k2bRo/+clPOP300+tc1lLX5AsWLOD3v/89q1atAuCzn/0s99xzD126dGHcuHH87W9/Y88992T27NkMGDCAr371q1xxxRUNLm9deAYhqWKdccYZdO/enQEDBjB9+vRGLWvGjBnsscceABx00EHceuutjBkzhn/+85+8+OKL7LXXXhx88MH88pe/ZMyYMSxYsIB58+ZVzX/AAQfw0ksvMXv27A3G11bWcl2TP/fcc+y+++5MnjyZF198kXnz5rH33nvz0Y9+lJNPPpnu3bvz3//9341a59oYEJIqVrnuvuuqdA0ixsjmm29eVeGee+65nHPOOQwYMICOHTsybdo0tthiC8455xxOP/10+vbtS9++fdl33303WN6ECROYM2dO8pfkauqafOLEiVx55ZUcfvjhVePvvPNOfv7zn9OpUyd69erFJZdcwmOPPcaXvvQlOnToQKdOnfjRj37U4HWvC7v7llQvdvdd3hFHHMEFF1zAoYce2tJFARrf3bfXICSpkd5++2323HNPunTp0mrCoSnYxCRJjdS9e/daf460EnkGIUlKMiAkSUkGhCQpyYCQJCUZEJIqTlN3oT1t2jR69uzJ4MGD2WeffTj++ONZuXJlvZbRtWvXGp+fPn06IYQNvtw2Z84cQgh85zvfaVC5m5t3MUlqlKf3btrvRPT9x9O1TtMcXWifcMIJ/PCHPwSybi7uuOOOZJcZjdG/f3/uvPNOzjzzTCDr2XXQoEFN+hpNyTMISRWpIV1oX3311VW9rM6fP5/+/ftvdKawZs0a3nvvvapvQy9evJgxY8YwcOBADj30UF588UUAnn/+eUaMGFHVL1LJqaeeym9/+9uqxyeddBK/+93vANhll11YtWoVr732GjFG/vznP/OpT32qatqbbrqJ/fbbj0GDBnHcccdVle2uu+6if//+DBo0iIMPPhhIdwfe1AwISRWpIV1oT5kyhUWLFnH33Xdz+umnc+ONN7LlllsCWW+ugwcPZqedduLNN9/kyCOPBOD8889n4sSJzJs3j5NOOqmqu4wpU6ZwzjnnMH/+fHbYYYeq1/7c5z5X1afS8uXLmTlz5gZdaBx//PHcddddzJw5k6FDh27QkeCxxx7LY489xty5c+nbty8333wzAFdccQX33Xcfc+fO5Z577gHS3YE3NQNCUkWqrQvtT3/60/Tv358LLriAJ598EoAOHTowbdo0TjnlFD7+8Y8zatSoqnlOOOEE5syZw7/+9S8GDBjAt7/9bQAefvhhPvvZzwJwyimnMGPGDAAeeuihqrOWU045pWo5H//4x1m4cCFLly7ltttu47jjjqNjx/Wt+RMmTOCuu+7a6KwHYMGCBRx00EEMGDCAW2+9tarco0aN4rTTTuOmm25i7dq1QNYd+De/+U2+9a1v8cILL9ClS5fGb9RqDAhJFau+XWgDLFy4kK5du/LKK68klxlC4Mgjj6xT198hhOT4U089lV/84hcb/XAQQK9evejUqRP333//Rt1ynHbaafzwhz9k/vz5XHbZZVXlvuGGG7jyyit56aWX2HfffVm2bFmyO/CmZkBIqlhnnHEGl1122QY/zgPlu9Bevnw5kydP5sEHH2TZsmVlf3602PX3yJEjuf322wG49dZbq36kZ9SoURuMLzrttNO45pprAOjXr99Gy7/iiiv41re+xWabbbbB+HfffZcddtiB1atXb7DMZ599lgMOOIArrriCnj178tJLL23QHfhRRx2V7GK8sQwISRWrpi60L774YoYMGcKaNWuqxl9wwQVMmjSJPffck5tvvpmpU6fy+uuvA+uvQQwcOJAnnniCSy+9FIAf/OAH/OQnP2HgwIH8/Oc/5/vf/z4A3//+97nuuusYMGAAL7/88gavv/3229O3b9+yd0GNHDmSo48+eqPxX//61znggAMYNWoUe++9d9X4L33pSwwYMID+/fszcuRIBg0axJ133kn//v0ZPHgwCxYs4NRTT63n1qud3X1Lqhe7+67dypUrGTBgALNnz6Zbt24tVg67+5akVuR//ud/6Nu3L+eff36LhkNT8ItyktSEPvGJT/DCCy+0dDGahGcQkqQkA0KSlGRASJKSDAhJUpIBIani1Nbd9z333MNVV11V4zKOOeaYDTrV22uvvbjyyiurHh933HH85je/YdasWcnvWrQH3sUkqVGuO7tpu3iYdMOYWqeprbvv8ePHM378+BqXMWrUKGbOnMnRRx/NsmXL2GqrrXj44Yernn/44Ye57rrr6NWrF8OG1elrA22OZxCSKlJN3X1PmzaN8847D8i6vZg8eTIjR45k9913r+peY+TIkcycOROAmTNncuSRR7J06VJijDz//PN06dKFXr16MX369Kozk8svv5wzzjiDQw45hN13351rr7226jW//vWvs9dee3HggQfymc98pupHgK699lr69evHwIEDOfHEE6uWc8oppzBixAj69OnDTTfdBMCKFSs49NBDGTp0KAMGDKjqJnzx4sX07duXz3/+8+yzzz4cdthhvP/++822bUsMCEkVqabuvqt79dVXmTFjBvfeey9Tp04FYN9992XBggV8+OGHzJw5kxEjRrDXXnvx9NNPM3PmTEaOHJlc1j/+8Q/uu+8+Hn30Ub72ta+xevVqHnvsMX79618zd+5c/vSnP1Hs5eGqq67iiSeeYN68edxwww1V4+fNm8ff/vY3Hn74Ya644gpeeeUVOnfuzN13383s2bN54IEHuOiiiyj1drFw4UImTZrEk08+Sffu3fn1r3/dFJuxRgaEpIpUU3ff1R199NF06NCBfv368dprrwGwxRZbsM8++zB79mweeeQRDjjgAEaMGMHMmTOZOXPmBl2BFx1++OFsscUWbLvttmy33Xa89tprPPTQQxx11FF07tyZrbfeuuq3JErlPOmkk/jFL36xQbffRx11FF26dGHbbbdl9OjRPProo8QYueSSSxg4cCCf+MQnePnll6vKu9tuuzF48GAgC7fFixc3ZvPViQEhqWKV6+67uuKP8hT7nxs1ahQPPvgg7777Lj169GD48OFVAVHuDKK4rM0222yDzgBT/vCHPzBp0iRmz57NfvvtVzV99a7CQwjceuutLF26lMcff5w5c+aw/fbbV3X5Xd/XbQoGhKSKVa6777oaOXIkN954Y9XvQg8cOJBHHnmEF198kf79+9d5OaNGjar63YkVK1Zw7733ArBu3TpeeuklRo8ezbe+9S2WL1/OihUrAPjd737HqlWrWLZsGdOnT2e//fZj+fLlbLfddnTq1IkHHnigxbvs8C4mSRWrXHffdTVy5Eiee+45Lr74YgA6duzIdtttx84770yHDnU/ft5vv/0YP348AwcOZPvtt2fAgAF069aNtWvXcvLJJ7N8+XJijEyePJnu3bsDWRiNHj2aN954g0svvZQdd9yRk046iSOPPJIBAwYwbNiwDbr8bgl29y2pXuzuO23FihV07dqVlStXcvDBB/PjH/+YoUOHJqe9/PLL6dq1K1/84hebtUyN7e7bMwhJagJnnXUWTz31FKtWrWLixIllw6GSGBCS1AR++ctf1nnayy+/vPkK0oS8SC1JSjIgJElJBoQkKcmAkCQlGRCSKk5t3X3XR4yRbbfdlrfeegvI+m0KITBjxoyqaXr27MmyZcu44YYb+NnPftb4FagQ3sUkqVG+e0L9K+WaXHTHvbVOU1t33/URQmD48OE8/PDDjBs3jpkzZzJkyBBmzpzJgQceyDPPPMM222zDNttsw9lnn92g16hUnkFIqkg1dff96KOPMmLECIYMGcLIkSN55plnALj66qs544wzAJg/fz79+/dn5cqVG3X9fcEFF1T9NkSx477LL7+8qhvvQw45hK985Svsv//+7Lnnnvz9738HYOXKlUyYMIF+/fpxzDHHcMABBzBr1izWrl3LaaedRv/+/RkwYABXX3111XKmTJnC4MGD6d+/P48++miN6zBt2jSOPfZYxo4dS58+ffjyl7/cbNvYgJBUkWrq7nvvvffm73//O0888QRXXHEFl1xyCQBTpkxh0aJF3H333Zx++unceOONbLnlllU/HgRZxXzMMcfw0ksvAdTYcd+aNWt49NFHueaaa/ja174GwPXXX0+PHj146qmn+PrXv87jjz8OwJw5c3j55ZdZsGAB8+fP5/TTT69azsqVK5kzZw7XX399VYCVW4fSsu644w7mz5/PHXfcUVXWpmYTk6SKVFN338uXL2fixIksXLiQEAKrV68GoEOHDkybNo2BAwfyhS98oerMYL/99uOJJ57gvffeY/Xq1XTt2pXdd9+dRYsWMXPmTC666KJkGY499lhgw+63Z8yYwZQpUwDo378/AwcOBGD33Xfnueee4/zzz+fwww/nsMMOq1pO6ezn4IMP5p133uHtt9/m3XffTa4DwKGHHkq3bt0A6NevHy+88AI777xzo7ZnimcQkipWue6+L730UkaPHs2CBQuqelktWbhwIV27duWVV16pGrflllvSp08fbrnllqouMoYPH84f//hHXn/9dfbaa6/k65e64K5L99s9evRg7ty5HHLIIdxwww2ceeaZVc+luv6uaR02VdffBoSkilWuu+/ly5dXXbSeNm3aBuMnT57Mgw8+yLJly6p+fhSynl2vueYaRowYAcCIESP4/ve/z/DhwzeqwGsyatQo7rzzTgCeeuop5s+fD8Abb7zBunXrOO6447jyyiuZPXt21Tx33HEHkJ19dOvWjW7dupVdh03JgJBUscp19/3lL3+Ziy++mCFDhmxwdH3BBRcwadIk9txzT26++WamTp3K66+/DmQV+3PPPVcVEEOHDmXJkiVlrz+Uc+6557J06VL69evHV7/6VfbZZx+6devGyy+/zCGHHMLgwYM5+eST+a//+q+qeTp37syQIUM4++yzufnmm2tch03J7r4l1Yvdfdds7dq1rF69ms6dO/Pss8/yiU98gmeeeYbNN988Of0hhxzCd77zHYYNq1MP3PVid9+S1IqsXLmS0aNHs3r1amKMXH/99WXDobUzICSpCW299dbUp3Vj+vTpzVeYRvIahCQpyYCQVG+Veu2yPWmK98iAkFQvnTt3ZtmyZYZEKxZjZNmyZXTu3LlRy/EahKR66d27N0uWLGHp0qUtXRTVoHPnzvTu3btRyzAgJNVLp06d2G233Vq6GNoEbGKSJCUZEJKkJEKFu2YAACAASURBVANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpJqDYgQws4hhAdCCE+FEJ4MIUzJx380hHB/CGFh/r9HPj6EEK4NISwKIcwLIQwtLGtiPv3CEMLEwvh9Qwjz83muDSGE5lhZSVLd1eUMYg1wUYyxHzAcmBRC6AdMBf4aY+wD/DV/DPApoE/+dxbwI8gCBbgMOADYH7isFCr5NJ8vzDe28asmSWqMWgMixvhqjHF2Pvwu8DSwE3AU8NN8sp8CR+fDRwE/i5lHgO4hhB2AfwfujzG+GWN8C7gfGJs/95EY4yMxxgj8rLAsSVILqdc1iBDCrsAQ4P+A7WOMr+ZP/QvYPh/eCXipMNuSfFxN45ckxqde/6wQwqwQwqylS5fWp+iSpHqqc0CEELoCvwb+I8b4TvG5/Mg/NnHZNhJj/HGMcViMcVjPnj2b++UkqV2rU0CEEDqRhcOtMcbf5KNfy5uHyP+/no9/Gdi5MHvvfFxN43snxkuSWlBd7mIKwM3A0zHG7xWeugco3Yk0EfhdYfyp+d1Mw4HleVPUfcBhIYQe+cXpw4D78ufeCSEMz1/r1MKyJEktpGMdphkFnALMDyHMycddAlwF3BlC+BzwAjAhf+6PwDhgEbASOB0gxvhmCOHrwGP5dFfEGN/Mh88FpgFdgD/lf5KkFhSyyweVZ9iwYXHWrFktXQxJqighhMdjjMPqMq3fpJYkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaE2qzvnnBESxdBqmgGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIg1GZ17nFhSxdBqmgGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwItVljpk9q6SJIFc2AkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJdUaECGEW0IIr4cQFhTGXR5CeDmEMCf/G1d47uIQwqIQwjMhhH8vjB+bj1sUQphaGL9bCOH/8vF3hBA2b8oVlCQ1TF3OIKYBYxPjr44xDs7//ggQQugHnAjsk89zfQhhsxDCZsB1wKeAfsBn8mkBvpUv69+At4DPNWaFJElNo9aAiDE+CLxZx+UdBdweY/wgxvg8sAjYP/9bFGN8Lsb4IXA7cFQIIQBjgF/l8/8UOLqe6yBJagaNuQZxXghhXt4E1SMftxPwUmGaJfm4cuO3Ad6OMa6pNl6S1MIaGhA/AvYABgOvAt9tshLVIIRwVghhVghh1tKlSzfFS0pSu9WggIgxvhZjXBtjXAfcRNaEBPAysHNh0t75uHLjlwHdQwgdq40v97o/jjEOizEO69mzZ0OKLkmqowYFRAhhh8LDY4DSHU73ACeGELYIIewG9AEeBR4D+uR3LG1OdiH7nhhjBB4Ajs/nnwj8riFlkiQ1rY61TRBCuA04BNg2hLAEuAw4JIQwGIjAYuALADHGJ0MIdwJPAWuASTHGtflyzgPuAzYDbokxPpm/xFeA20MIVwJPADc32dpJkhosZAfxlWfYsGFx1qxZLV0MtWJP792Xvv94uqWLIbUqIYTHY4zD6jKt36SWJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVJSmwyI755wREsXQZIqXpsMCElS4xkQUh15Zqr2xoCQJCUZEJKkJANCkpTUJgOic48LW7oIklTx2mRASJIaz4CQJCUZEJKkpDYZEGOmT2rpIkhSxWuTASFJajwDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIddS5x4UtXQRpkzIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpKRaAyKEcEsI4fUQwoLCuI+GEO4PISzM//fIx4cQwrUhhEUhhHkhhKGFeSbm0y8MIUwsjN83hDA/n+faEEJo6pWUJNVfXc4gpgFjq42bCvw1xtgH+Gv+GOBTQJ/87yzgR5AFCnAZcACwP3BZKVTyaT5fmK/6a0mSWkCtARFjfBB4s9roo4Cf5sM/BY4ujP9ZzDwCdA8h7AD8O3B/jPHNGONbwP3A2Py5j8QYH4kxRuBnhWVJklpQQ69BbB9jfDUf/hewfT68E/BSYbol+biaxi9JjJcktbBGX6TOj/xjE5SlViGEs0IIs0IIs5YuXbopXlKS2q2GBsRrefMQ+f/X8/EvAzsXpuudj6tpfO/E+KQY449jjMNijMN69uzZwKJLkuqioQFxD1C6E2ki8LvC+FPzu5mGA8vzpqj7gMNCCD3yi9OHAfflz70TQhie3710amFZkqQW1LG2CUIItwGHANuGEJaQ3Y10FXBnCOFzwAvAhHzyPwLjgEXASuB0gBjjmyGErwOP5dNdEWMsXfg+l+xOqS7An/I/SVILqzUgYoyfKfPUoYlpIzCpzHJuAW5JjJ8F9K+tHJKkTctvUkuSkgwISVKSASFJSjIgJElJBoQkKalNBcR3TziipYsgSW1GmwoISVLTMSAkSUkGhFRHY6YnvwMqtVkGhCQpqU0FROceF7Z0ESSpzWhTASFJajoGhCQpqU0FhBcRJanptKmAkCQ1HQNCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUpIBIUlKquiA+O4JR7R0ESSpzarogJAkNR8DQpKUZEBIkpIMCElSUkUHROceF7Z0ESSpzarogJAkNR8DQpKUVNEBMWb6pJYugiS1WRUdEJKk5mNASJKSDAhJUpIBIUlKMiAkSUkGhNoFe/6V6s+AkCQlGRCSpCQDQpKUZEBIkpIMCLUL9vwr1Z8BIUlKMiAkSUkGhCQpyYBQu2DX8FL9GRCSpCQDQpKUZEBIkpIMCElSkgEhSUoyICRJSQaEJCnJgJAkJRkQkqQkA0KSlGRASJKSDAhJUlKjAiKEsDiEMD+EMCeEMCsf99EQwv0hhIX5/x75+BBCuDaEsCiEMC+EMLSwnIn59AtDCBMbt0qSpKbQFGcQo2OMg2OMw/LHU4G/xhj7AH/NHwN8CuiT/50F/AiyQAEuAw4A9gcuK4WKJKnlNEcT01HAT/PhnwJHF8b/LGYeAbqHEHYA/h24P8b4ZozxLeB+YGwzlEuSVA+NDYgI/CWE8HgI4ax83PYxxlfz4X8B2+fDOwEvFeZdko8rN16S1II6NnL+A2OML4cQtgPuDyH8o/hkjDGGEGIjX6NKHkJnAXzsYx+DLls21aIlSdU06gwixvhy/v914G6yawiv5U1H5P9fzyd/Gdi5MHvvfFy58anX+3GMcViMcVjPnj0bU3RJUi0aHBAhhK1CCFuXhoHDgAXAPUDpTqSJwO/y4XuAU/O7mYYDy/OmqPuAw0IIPfKL04fl4yRJLagxTUzbA3eHEErL+WWM8c8hhMeAO0MInwNeACbk0/8RGAcsAlYCpwPEGN8MIXwdeCyf7ooY45uNKJckqQk0OCBijM8BgxLjlwGHJsZHIPnL8THGW4BbGloWSVLT85vUkqQkA0KSlGRASJKSDAhJUpIBIUlKMiAkSUkGhCQpyYCQJCUZEJKkJANCkpRkQEiSkgwISVKSASFJSjIgJElJBoQkKcmAkCQlGRCSpKQ2ExDfPeGIVrksSapUbSYgJElNy4BI6NzjwpYugiS1uDYTEFbq7ZPNgVLzaTMB0ZTGTJ/U0kWQpBZnQEiSktpMQHjU3z7ZtCg1nzYTEJKkpmVAqKJ55ig1HwNCbdaEizu2dBGkimZASK2Yt/GqJRkQkqSkNhkQNi1IUuO1yYCQJDWeASFJSjIgJElJBoQkKcmAkCQlGRBSNX73QMoYEFLOYJA2ZEBIkpIMCElSkgEh5fxtCWlDBoRUjUEhZQwISVKSASHlavvxITuBVHtjQEjV+Ct1UsaA2ES8x15SpTEgJElJBsQm4p0xkipNxQeETTeS1DwqPiAqhRc+JVUaA0KSlFTxAWHbviQ1j4oPCLVdjbm+5LUpqfHaVED4TVdJajoVHxBe/FWKTY9S41V8QEiSmocBoValeO2gtZ8FbIrrHK19G6htMyDUJtn0KDVeuwsI726RpLppdwGhyuFZgNSy2l1A2KbbulXS+1NJZZUaot0FhNSa2QSq1qTdBURTNVv4QZbU1rW7gFDrVknXHSqprFJDGBANZPuzpLbOgJBaEQ881JoYEA1k84Kkts6AkCQlVXRA2L232hrPTNWaVHRAbApNeTurt8ZKqiTtNiBaorIeN/fZTf6aKq+1B3ZrL5/avnYVEA35wHlXiaT2ql0FRLGyt+JvX7xeJdVfuwqIhvCiYdvV2g8SWnv51Pa1q4CwspekumtXAVFkWKi1cx9VS2u3ASFZAUs1MyDUrnkrqVSeAZGrS0VhZSKpPTEgct4xUvkMcKlpGRC5urRHGyJtj++pVJ4B0cQ8ipXUVhgQ9eBdL62bZwNS0zIgaNqjfiupymLoS+W12YBoqaYeKxw1JfcntaQ2ExCN6YzNo/62wcpUalptJiCqq0+lb8UiSRtrswFR5J1FklR/bTYgNuVZgQEkqS1qswFR5DUG1YU/KiRtqF0ERHMzgNouzw7VnrWLgGju5iYvcktqi9pFQEi18UxB2pgBIdXA5kO1ZxUfEF5YVFMwCKSNVXxAqH0rd4DQVAcOXl9Se2ZAaJNpLe38raUcUmtnQNTCJqz2wTMFaWMGhFSNBwVSps0HREs2J7T3pozq698aLgR/94QjWkU5pErQ5gOiIZVBUx1BFl+7uY5Ky4VQew+n1sL3QZWszQdEc6lLhb8p2rUr6Wi4NbTzd+5xYZ3KYcUutYOAaA2VUsmmbNtuDcFRUxnqUgE39/ZqyPINDrUnbT4gqitWCm3hw96YAGwL69/a1TeovUCu1qTdBUR70RrOnOpahk0ZVNXLVK5CrkvFbmWutq5dB0RraIZpSU25/vWt5Ct129e33K0hqKWGahcBUe5Ir/jh3dRHg9ed/bdN+nqVorUclVuxS+0kIJpKXSqvulZwraECasoyNObIui7ztpbrJa3hfZM2lXYVEK3l6LS9ay2VvaSatauAKCqGhcHReI05sq7LvJV6zaKx3DfVktpsQGzKD1Zb+BA391F9cfnNVdk35n1oyvfQMyS1FW02IFqzttA/1KZeh9be9l+poVCp5dam0eYDojUe3RePoDf1B7Tc0Xt9j+obM31LVvYTLu5Y732iLd/CO27usy1dBLVibT4gWqPqFWRrOIqrb6Vd3y/BNWUotIbtVV1zBGBrPLhR+2JAtLDOPS7cpEecm/q7H8Uj1Eqs8CZc3LFO709TdgDYGgNQ7ZMB0UJKleWY6ZMadcTZ3L/JXJNSRdZamsmay6ZuEqukJqr2pr2FtwHRjNp6b6G1VWQtfcYw//kXgYZt0+YouxV/5evc48KK+ow2VpsMiFLF0Na19I5aOrLu3OPCeleojfkeSktf5G7o9HUtd2u/Y6sptPS+21Bjpk9qV0HfJgOiUhV/DrMuH6Cm/LW8puwGvbb5G3J03pgj+s49Lmx1Bw2tpYIst12bq3yl5VZyJZsK8O+ecESreU+bUpsKiPpWAi3VBFLu6Ln4a2dNdWEUGn+bZmr+ckfG5X7zuSWbmzb1EXld1rW+FWSxAqprZdSYCqupKvByv0tefZ+p1Mq1GHitLfSaYru2qYCoVMUL1iWtpSO94vx12eGq/6RncwRDc4VNbQcYNT3f3M1kxQpo3Nxn6/SeNqbCaqr9r3qbfXG5pR6NO/e4sOput3L7V0N6P26q0Cn32sWDocbebNJUip/RpgitVhMQIYSxIYRnQgiLQghT6zLP/OdfrPrQFj+8u676ZY3zVJ++3DS1vXZ9FMtaTvVKpr47eLkdubG/Olc8qynucKXyNqSdvZziNmrM+zD/+Rer9oNi+arvM6n5q48rV/k31Rlr8X2b//yLyemKFdCEiztyw4gpQM37SPWj9NRwcR2a8ii++P2X0j5TXM8JF3esKl/1nn1L0333hCOqhsdMn1Sn8hVfo1zlWFxOcfpy22jM9ElV0xW/aFk8GCqOb8mzoeJntClCq1UERAhhM+A64FNAP+AzIYR+9V1OMRhSlUD1D3RtFUX1eeo7TUNCqFjp1nZUNeHijhssp7gzNKZyLVZQ4+Y+W6dbckvLKn5Q6rq961vWurwP1dV00FCat9z+U1xGQw4MUuoSqsXtVH27lsYXK9Trzv7bBsPFCqtYSdfl2/TF8tWlEq2+j5b23epBkGpeLa5bcR8bN/fZDbZN8Ts1xTIVh8udhRenKS6nXDgVh4vrUFR9fYrLL4Zcue1Ul+1abj2rT18M0lRoFfeN+mgt31zaH1gUY3wOIIRwO3AU8FRNM5U+0IvZuALYddUvNxhf1+HivE09XHqNd5++il0LwyUbVYInZsPTxr1A57P/xqQbxlS9yZNuGFNVqZVeY8LFHZmfeO2+J75Stdzi6xWnKVeOvie+wvznN15O9bKWllW9Ql38/Gc3mmZTbu/UOpdeu9z+U318aR1qer1yAVaXaYrbtfh6xXKkzpAXA5N6HZOPXc6kXscwYLePMYn5TOp1DJPy923auBeY//wxwPKqM49J+Z5SLN8NI6ZUjS++XvYay6uWdRHUOPz03n2r1qm4Hxf3pbpsi3LD1ctaHC43T3Edyk1T3DbF7Vpch3KfjerjJ+yWlWnauBcAktupWO5y27JY7pqmL72/5T6jxX2jPkKMsV4zNIcQwvHA2BjjmfnjU4ADYoznVZvuLOCs/GF/4F/A1sC7+bhNObypX891sNyW23I3xfBWMcae1EGraGKqqxjjj2OMw2KMw4AFwBtA5/z/ph5uyddu7+vQWsphuVv3cGspR6sqd13DAVpPQLwM7Fx43DsfJ0lqIa0lIB4D+oQQdgshbE7W4ndPC5dJktq1VnGROsa4JoRwHnAfsBlwS4zxyVpm+3H+/yDg7y0w3JKv3d7XobWUw3K37uHWUo7WWO46aRUXqSVJrU9raWKSJLUyBoQkKalVXINQ44UQegJvxhjXhhAOAw4GvhFjfH8Tvf5WQMgf7gSMJjsAeRW4N8a4elOUo9KFEHYle++eJbtvvSewBNgOyL+WxVaFx+WGAVbEGGv8smlzCCH0AHaOMc5r4Lz9gHcbMn9TCSF8M8Z4SW3j2jqvQdRRCOFdILWxQj5+AtmHs/TB3g54DlhH9o3wrmRfUokxxncSy9+VrGKYy/ovGZMvewXwkcIyAtmXXV7O5+2Zz/Mx4ATgh8ArwOoY424NXef6CCE8nperE9AD+CiwObAUmAdcQTN86EMIU4CfkG2X/waGAFNjjH+p4/yjyO4Pf5Ts2/ufJbvF+soY4wtNXNZkxRlCeJtsH+kEDKtlMZH1QVzTNOuAZcBfyfaHp8j2j2X5858AhgNPA9uQvVc/BHbNpz2XbH+8B3iR7GByLln4HwDMB95j/b7+H8AN+bKmAGuBLfPyvAp8QLZfdMyX9wGwCPgucFM+3aXAr8n29WXAdOAHhfUqvdaz+et9BNglf81tCtul9DktPm7o8Lr88Zr88VKy9+k1sn28NLxj/vyyfBt1BFYWtkFNw5vnf+8Bq/P1qm2e4jDAFsDbwD+BL8YYZ9MEKiIgQgg/INtZ9yTb8B1o2eax4g64huzOq9o+tKX51pF9eErrsS5/rrg+6/LlhXx4HevP9ko7byT7kEFWwUXgHaBbPv0asp03FpZdei3y59dR952wtuFO+f/NqpW5VN7qZVpdmKem4c3yvw/zZWxRmH+z/DUWAb3y8cvIvkfzYb6M5fk22ara9ittj9K2WV0o55v58Ev58nvl/18jq4hKw9vny3s5H/4IWWU4j6wy7Ab0Ad7KyzWw2uuV3tMO1cpV2q7VK7pi+YtlX1dYxrp8u3xAVunUtF+WqxRT08H6/bacYjmqL6t6udfmj1Of47X5OjRGTduppuG6BHB9Xr+uw9Xnq8/8pc9bB9YHTumzXnocyALkA+AF6hgilRIQE4FRZLdpdQO6kH2AOrC+IoXGHSnUNAwbvhFryDZ6qeIqVfaRjT8g1XfUYuVfVL3igo0/PLXtyKmdaxVZgKTmbY7tVV2xQii9X4398HxAFhQp1eer/v7Vp1KoT/g3VF3fx5rmK05f2gfXsD6gYeNtEsgOKD7Chtuitv2lFEDFZRUPQmpap1JZiuWrad1Sn5m6vocNDYiahktlKAZYUwyn3sv6zl+se2Dj/ad0QPUB2YHP2zHGA6hFRQRESQhhj3zwY2SnqZty+Cbg88AM4H2yo9TSDl56M4rD1T8g9Q2I0jTljniLw8X5U4HWsczrN/WOXhxXfUcvBkR9PpypSqBUsaUq8MZWLqUKsrpy6179dYuPU5Vpar9IvdfFeUqqh0D19UiVsfp+UlQ6WytW1tXnqx4w1dc9FUB1UVO5SmqqQLWh4n5f/fNdal3oSnY96y2AGOOQ2hZaaQHxv2Q9v6Y+wJvaSrIPVUeyN2ItNZerLqfwqYqurvMHsmsV75Nd2GwJpcqrGFSlZqWGfqhrWu+amiLqU5GUKqvqgVOXSqwm9SnDh8AzwB5kzVGPsv5LTQE4MH9cbrj0eq8CNwLdC/NWL89a1odXsdkoFVLVH1c/u41k+9yWhedKzRmB7ExvJVmT3Dtk1wy2Zf12Llb8peZAyMJrNdlnqhRUkY0DcA0wk+yMfnfgGGAHsmaUdaz/LCyt5/CewFSyax5r8vVYRdbGv11e7tcKwy+RNWNGspsEdsy3y2Jg13yZ5YafzefdI593ZR3mKQ5/jOyAqRvl97lScDyVD8cY46DEdBuoqIAAyLviGAGcStYlRxeav4mptqanGGMsW5GEEDqRXTztRrYTv0v2IdmDbEd+jOwN7kx20fASsh31Z8D/kfVguwy4nuxC6k7A3mSB0INsBxkJnE32Yd+B7OLei0DffPpP5MvcnvUXvXvlRVxM/XbI1PBAsg/QB3m555O15T8NHJqX4V9kbfgDyHbSt/LHNQ2/QPYh3J7sWkOnfDttDQwi2/7vklUuw8gqphX5/7Vklcf7+bin8zK/AQwFjs/L1TPfjq/m69AVeIisktic7L36MH+tf+VlKQ3vRPa+vpu/XneyfeNNsgqse/66y8kuQkayimhtXsZtyCqEQcA++XqVrsGUzkJW59OX7kjqV2aYGOP+JIQQSiGwWV7e0t1t28UYny1MF8j2y+OB08n2k82B/yILrZfIzp7J12kt8G2y/fESYL98XZ5m/cHTG/l2eCbfph+SXfD+N2AW8AvW34DxItlZ+ldjjMvzmwiIMT5UbX2OJbtY/nGy927nfLuVzn5K13hKQbNlPYe3Av4ADAa+CuxLdh30B2T7ww5k+/i2ZPvAeWT7wyqyz+PzZO/fbqy/q6zccE3PsPd8bwAAIABJREFU1WV4KDA+3wZ7s75+2TV//tl827wNPJiPe7MuN3JUVECEEA4ETgaOJtsALXWhOpXQxYuCpY1aOupZQ/amlS60diJ703Yhq2yKbbHrCv/Xsv7ou3o784p8mT3Z8I6RFYVhyHbaLQrzryL7ADxH9mHakqxn3N5kH+KGDg/Kl1U6KoX1d2eU1qfUlFGqqP+NrNKvaXij52KMnUMIDxSe34Gsci+JZJXZPcAZZOG1bV7eUjtsqX2+dHdNJ7IwOoOsOfFDsrujdgb+QfY+bUdWKQzO51lEVunPJ6vkPwBWFi/+hRBWku2nC/NRfRLD3clCb1s2VNqP1rL+Lpr3yQ6KyMu4eWF4s7w8pbuFSvte6Wi9tD+Vll3aj1NNTP8E7gJuA35LVsn3JAuwLfMydGDDA6Zy+2xxfUqP38uX8Sbrmx+LdyJVb06LhbKVa47bFGpq7io16Uay9XuMbF/5B9nnrtwwdZyu3PCZZKE0juyz2IusKan4Gd2C7MDk5/nrvRljLAZUUqUFRGlnb2kfkO20H5J9GEp3DdTWllxuhy4dzXUpTFtS04eg9Pql6Uofovp+v6WpzqpSSoH3FtkRZ3eyI953yHby52oZJvHcRWRnZBfSfN/laej61qRUgSwgu/NpEFkoDSMLzdIpf6nJprGqf7ir75tvkIXSqvyvW2G66vOXW//SwU/3wrjiNZLq5Sntn++QhWL1z0659ajpvVhJtj1LZ+S7VltW9euDdRmu6T2uhGsi1ctYejwrH7c6xjiqtoVUWkB0Bw4DJpK1vW7Fpj+LKF0ISt1hBBtfWC0pngFU36HeJwu+zWkapYu4pdPy4WRh0qXsHE0TEqtYf3dR6Rbc58iaQZpT6Zbd18mO8ktHsluRnVFtThakz5BVTh8Dzs/nLf3++Y6sb55IHQGnhkvrCNkRYwfgkfzx0vy1P0/9Q6x0ofz1/DV2iDF2qnmWTAjhsXywI2QXIkMIc/Jx/wY8yfrvWswjC9xXyc4OSk1CxRsNSv9L+3PpbGNN/vc0WVjXRV0r0+KZA2x440Dq5oIP8v/lPj8NuWMJ1jeP9WL9epfbL0q3SQeyz1qHfN66KJ4VFofr6qN5mbdifdNa9VaH0p1/C0ozxRgH1rbgivomdYzx7RDCfLJTtz3yP6jfkUFjh0uPU+q681efrvh9CNjwiGoN60/BV5Ad5X1ItiN1I7tG8TFgDnB4YXmQBcM/2bApoDkV77vfnGxnfZWsUnqYrAnhY2TtzXX1/7k783i7qvLuf9fNPJIEEsgcCEMIYRZQlDrg3DrgW60Vp9aqrbW2WovTa63a+mpr1dqqqG3VWmfFoU5VsYIIokKAMARIIAkkkISMNzd3vs/7x289Wevsu/eZ7hBun8/nfM46Z09rr+GZh0PZ+d4+hOxPDyF1ylXIJnUcklTmAD9B9hpDCKYD6c970Ua60cxuDSGcjMZpOcPjTRohtKnZeW5QvQPZixyeijbwwvhd9v4XIn3yQqRPdmS4KH53hxAOkYjvYZKKpytr+/gMxv5MDSG4e6O/R26jcIllcfafE4cB4BPIvfwEREAH4vOmx3Y/kga/jerJr4t9zNdbmSRtKJDzMNrD24H/QvaE5SRjKyX3KJuPRoxV7nreSnsyUi1C7RiW9ceP96E1eA8amw3Uqier2lPR+pjHcJVmo/az0ZyfSH334by/TUkGE02CuA8t1hkM10+OR9vQQuhBumM3no4V+IItqq/y/7tje1Z2nROVaTQW38cbehHyno8W+bIm2tPQvE9F474MxcTMYbhEl/v/j+Sdm/FgauYZPl+DyAB7F3JU6CLZb85Cnkh3xfZcZBSdjqSZHoZzlWVcrNscitKG2wcOoXVShkCqYm9aBSOWtUR7pZ+0byDZU3qRdLmORGhH+vwuhJg3AM9B62e0wW0MxbHP91iVurlemybPq3e9Qz1V3V40Px8ys3+uOC/daIIRCF884ykxFKWHFdRy+zMQZ/wwWqAz0QZchrgud4MbRKqWtSTvIedst8X/p5G4x/+Jx1YjDs91t3Oo3UR52znIu5EB9dkk+4a/g/tFOxEZrTgITw8QkK1hT+zP8SSHAkfmxViJRm0qjpXFXeTgiMi9WQ5kx9yzyb2IvkIKxvTN3Uxf+5C74yBC/K0QpeI9nRAcIs3r9Ph/0SZRRSB6s2umkVJaYGZn5jcIIUwC/sPMLg8hrEGq2z9Fa6hMhdKNvMJ+A7zYzE4JITwO+CFal24TO4iMpKuBO8zsguyZn0BjfDJJpZVLAIYYiBsRgt+BpLLbYj98j+XtHuDNKE3KIkZO5PK+9MZnfw24yszuKzsxhNCNmJd18S+fB79PvXVetnZbVe12UKsi7KJ2f/QgyeY24FNm9uNGLw8Tj0AsQx4mT2H09PWjAc6h5RxEUcz2WIltaJLOQpvg2SROJ18wft1Qdj8vopR7wqxDXNNp1AbG9AGbzeyM0XvNagghXIs2xDqEiKfG/sxneBAdNL/4yzaP66Q3IGR2ItoQ30ZI/g9RXp9zkOqNrD0Judk+ASG8b8X7fxPlLepDSe42NPHOexBhrBeLUQxmzN+9+J7+Xj5/oHHsY3iMTdlY5VLA/niN254G4vvOjudNzc6t6vsgyStuC2JsNsRnnY+YgLmIEDVlIykBJ2S743NmIuIyj6RG9Xvntod6fff7fgbtjc7Y32bbv09i2DpozzGmKhBzrAiEw71AU/aFZmCiEYgfI658JUJCgZQPZyTiWbPtftLGOoQ2XtGgV9RT5iqhMsRAvK+7LHquIgen/M6Z9SLObEs8fmp2fq5DfzRDK2Nej0AU9a1DaIz6kWTQgZCcu4D+GsWFzCEZpMdivFwNQdaHPCK4ah2MN7gkOUQi6jchZmMgHp+LxrLRffJ38DiErvj7p4gAgFzUBxCnPxXtozkV96x6Rhnh3Y72yWYUHzGn4rpGbbcl+Hx1IeKxB6lnnFg7UvbvixFBcftJK1LM0VgDnWY2t9FJE41AODd4GlKjgDjxPDfPWLbzb38+wFkeKBdC8KCl1Wix5rAaLbIFJJEQtGHcUD2EuL8+UkBSM+BSzCS0oGegTelptp9pZndVXDtiCCG8MDaXoTG6Gm2eZwN/Ev/PVYSjATnn3I5awRGktx+h1gNlO4l7dQ6+B6mkupD6oxtJME9FzEtuJ8oNn830ZRARuHejzKjnorTpkxBXDQrKCshAf0JJ+0E05hcio/celPn0JjPbBhBCWIo49S4U3LYWEU5PREgcFzeGd5EQX66y8JxNHvuQv+tBhPz/wsy+5i8ZQrgcuSefGe9VnLde5H23GDkVnIxcMtfkJ4UQ3EPvTCTVXIs4fyc8oeTe7YATuwHg/qKaLuvPJCSx/A7Ju7IVwuSxQ62qX73di4zbVwL/aqOE2CcagbgabYSVCImCFtJ4ShDTSo4XIUdcPYg7ux8tdueeOqifaCwPmHP1w6743Y02p6dOfgwSyT+LxGSPzJ2GIlanIkQwOz7bA51ypDeSdjdyF51CbRCXoY27G6meVsZzWnU7dHfSadkx13kPIu+Xn1LrHeSBiz2kjLCD2XHnkI0U0OdeOvviOWZmJ1EBIYTPAs9EiLUqqZ8Vvl2XX7TluE59T3yPeaQgN9CcTiERfI8a7ontvB6Hj5Ov2Z547ytQSvQq9awblD35ZBH2x2uno/GdQXXuqlZgCL2fp7ToojZorlnwMe6MfV1Oe8zgSN/HUDK8BSO8T10IIbjX03K0H4r7G7TWdqMxPYSYngOxf3sbPmOCEYiVaIH/Fo8eG4Rzoe3qYIuEaBBNpksSW4BrzOzdACGE56IUCLkY3Yrb6NGETqTCeAdJEqPJNtTaMX6IFv/87L8cqd2KuOL9pDnyPD1bkI3iiSRV1GiJ+YPoPXviPe9AiHcjmtMT0bxNRht2K/BCUm2B0QLf2H3xOXuAVUgy6kZI5SpUPyQ3xrujQ07YimqxMnCG5iGkB98Wr31TERFFbnsxkri+S8p/5O7cjd4p71NZv4bQHMyl+bTyxfYQWidLkbdVB0K+a6hlYh6gcVr1RxsMAA/UY34cJgSBCCF8IDYvQ77FS0gRuePR3oHE8HcAjzWzvyzp40q0mNaR/JkdzkGTshghyJ1ooV0JrM83UAjBOd924DBCqh4sk7t7Ord8KD7/OjP7wzafMwxCCD9HaohTkXphCkKEbhgdD3BJy42LOdQzGm5BhGYGabN3k95jNrUqlCrbSCPoye6fz0sHtVysH3MPtGlEFUf8fWJFG1JuptOa6M8GpKJxpGgkxOpqT2d+BpGn3mxSqn1PrpfbcfL38nxTH0cEqgs5B7w4vlO98RtA+86N9UadNRtC+H3go9QatUcDhkhxR73A31IrPS8lJRQ8jvRec0kuylWSN9TaM4rtsmuqVJ37kfr6dmD7aBW7migEwj1KzmD87A15279vQci+WSOUkdwgf4MIxCmkzJfOqQ1l3+4T7gVVXFX1XVJgYNGL6XZEcHwjO0f8CeSWeDHi0uaR4kimUZvHZyRtN5w7ctiDVD5PJyFX3+gdaEEPIi62UZuSY2d7Kc0Qwi/jeF5F4jBfQIredrWFQ9HTbJCUnsHzRfkmPBCvnVa4thk4EO83l2TYzAlMP7UeMrl05Ij3cLxmBlIvboj3Or+kfXK89l5ku3Ablz/vETROc0jBgv78qvXsazIgwrEvXnsiibDuRdJsu/r+B4C/ivd7I1rHM2mfSfJ8Z48ge8xe9K7TWmhfSnW9kWbA45M8y24nSdqvau9GY7CohWsmxfNdHdmF5nwKtTjsEZLazStWbvzfVDDoH1BqhJFM2liD20Q6qEW+zk15uwzySRhAi2VG/Dg35NIBaBE8jCb9VGo9QY6mV0wZeEElz646CRHaIYTIbm3QpuTYakQkv0ttoOIgyT7jRLLoqdTs2LjE5fEnja4rjrsnF1yN1C2LScTfc/N7f70K4Gh6VXkqjEFSlt3jqR9Vn7+v/yY7/wBSmV2ECJxXK+tCTJA7ZnQgQn438DLgPjMbAIhJFt1NdkbsV1neqQHE+JxOihiHFPzpTh1OVPP9dhgRs4XUT5JYrz0fzdNX4u/fA/7ezD5b0le3R72MRGwfTXswhwGEL9ab2VManTwhCIRDCOHbsXkhytY53m2AZ5lZDXcTQvgNUn/9FbIPdKHNWKbWcBHS86L4BnCE5iomJwi5mqjeossRlKsH9sdv96XvRpv2XpQz6POkvDqMsP0GZAgfU8NcBZQRxVxiKUO6uSokVzdRcq9moBfN2WhE7w4if/xjSKVHJ1NraM8lD9A8HETcpBO0XNWWe8t0IwR/M/Iu8xTg8+J5HnC1Ga3jYnBmO+DOAmXENh93Q8j95vjMMxBXf1U8Zy6SDg8gAnMGks7XkgJKu0m1GraifXB2i22AL5AYkI3Io+xVpIDWA1m7GL2f2zVyd+yydpkNpNE1eduD95aT6mB4wF7VfsXM3OGhEiaCzzxwxLDlfrvTj1IbYFII4SQzuy+EsBDZJc5BE+OLw3XuZZsqkPTQaxkePOYbKNfbOxLYhhbBnqxfP0YulgcRcroabbDfRaLkiwDMbHPM9f8UlA31ShR0GKhNCT2Sdu4l5LrbTUht4KqKPM6jKF2VtXN3UW/7xvAaDV9Aem0PDDNEsN4dx7HMBuLPGEAI5ljEQW6Lx1cgYjqg4UuBRyGEbwFPis/KC9zMiecHkt//bGpTke8G3m5m12T3e38cp27kkfYzFBV8MxrbE5G6wpCqbRFiQjy9ird3AR9E4/0A8hq7L/Ztdezv7DhOs5EqpQomIbWVqzj74rMNERVHaEUmqBgk6lAW6Odq1OIemB/75mqTUxDzUeZhCJqrIiyN37mreKvt36Y+FONDcuJwD5oHZwpn1Gn3klR93m50Td72tbYQzdMSNG5le7SfFC/UME3QRJMgrkYvejYSdQfGuQ0SjQdIevyRQpVKyCcmF6P3ICT0MOIs5wIfQJLLVIQUVlTcb7Ry7TQLBxChWoKQyRY0bq56gNp4lqr2sGNmNiOEsBdx7J5C3Bf7QRLidE+wDsQB/gap5Ii//4TaHFY5uBtsFRPVrJTh9qV+NH93I1dDr/2wG7g8/hdI1dBWU2ukdnBDZZnx0tN2L6DW1doT+hn1Dbge7e8Sck6Uq+Bg7O86qhF4Dp0k4//rgGfEzyJShTh3Pc5dwRuBExvv8y7ELLUDq5Fkf0yTzy9zU3+0qph6ka3ny2a2r9HJE41AfBt4GtoMj8YJ6ENIYBHJm8Y3eScymu0mIZ0nUuvb78bSZjfF7njNZCTF3Ia4moWoCt1nePSNUz/i0vchZNjToO1EpQeN7VJklL0G+fWXqXTyDTqIvHyco3Sk6oZ257CGkJ1jGbXZTZsBJ77dJPVEL9L1rov9eZCUUjxHus4F5t4r3YX/cgJRdJwo/neAZOiE8vl3R4ZNSEooBhrmY9IZ++RBc5vieyzMzm0GXLrI38kZn1bXaJl60Ps7BREHL2/ayPOrrN2MB5iD245yKWi8CEQrY78PrcchMzux2QdMGBVThKuQbvESRN1nMDqFVZoF94ipMkJNJSGXGQgJ3Qx8GNkoLkYJ3Yj3yHPcg7j/3LhaTCfgXjee8uNbKFX1uvj/WSQX1/EkDp4Lf1L2+674ew2162wKyRurVfDrlqIAtSKUcbyuKilCjnS9f+cVzmmUT8eJvyPc283ssfkNYhI30HvvQdJO0avKOXtX0XmQk6sbi3msXLKx7Lyc0zuM1EH+rH3x+MrY5554bBdJjVSEDlLpzSnxGd2IQKytuKYeYvT1MYskVTniclWNv2ejDMT+fy/JGP19NG7nIPVO/o4uVTXbfhgRwVk0NuznUo579N2NAkQDwlX12jR5Xln7DGrtTGUZBdxb7gBtwISSIABCCDOQTnIaKehpPNvE32cghP8SqtUUrmf11NtV4BNbtsF+hTx3nEvcGs9bhbjnWxDnM4R03WX6WO8LJfcfC/D3PoA40GlkNRKq0hW0CiGEC4BPAV8E3kX1POT9gqS/dQO2u7c6os8Dn+oRCI88do+a7cXgo5jQbwpiZB4hBcTlyR1ztcpognO33tcBEoIuS0CXezHdglJ23EEyXhfBgzofRqWA/xlJe45Uodae5L+LfayXMLDsmkcDlK2H/Nh2JDW6Gzp12vWONWrPi895IvW97YyU1WG5e5U1gglFIEIIz0G+/SfQfs6SkbYhLfprkbFvFUrP/RwaEwLXi9+HCrwPIW77NBK36IbsZiDXRXv/POd+H7VV9/L+j/Wmy1UKOcL13D3OoU5qog3lHjyO3DuQ+JyrmxzhX4+irp8Y/zspnj+bpPKBWpVFnkm12XVxCLjCzK7MByGE8AwUKOaG3Xob+DDKFPCJ+C6HSBLpynhON+K4H0DImKy9BxnmPSeU6/HzZ/oYurvtXtK6WEVrQWa7kKQyn6QyyiPT3fayAc0DSOI9n7QGfdyLxu39ZjY/hLAOORz8Xjw+Jetjvq7dc+96RIyn0b5HWQfJeLwV7U/3kHLvqCWIiE5HUthJSKvh/Xf7T2ii7UyG7/+OFq/vRcyhxX7n+LEI7nDwTTN7SaOBmGgE4iY0eGeTOOqiLnIs20VOIfcOeBD4T0ShTyLlvHcR1HWkk1E66rejTV0sBLMLIYpjSUE/82ht4/aREv4tJi0434i+0H+BEOUdCAG1296BRPtfomyd55DyMuUbGkaPMDkhdWLYhQy/FtseLOT1EJyzd2K6E6km8nrgB5HK4gFgPfCwmXkU/zCIXmyvRoj1iBqtLNo3hDALIa7D8a+8fRYiCqeQYjiK75rbLOoZqf1d3F26j+TRtA1JmDtI+ak8eaTXKClywr0Iyd+PIrQvIsV0VDEaRdWcS5M/RgTwmiwu4mE0D2VSxMH4ORbNk++L6xHBPYAk+TvM7KKS69uCEMKPkLdfjoSLCNzfsxNVw3sychqZQXNxM6MJToyHEJOwnpSDbR7al9NJexSgx8z+o9GNJxqB8Je7gLQpiqqZsW5XgRXaA1RLAS9CBGImSa9e1DE74rsPIbepSLe6isRJBbQgjkEi/o9QKo8VVHMQObFjlNr9CAnNIRUHKoKLxq0GLBV/r2PsYQBxZHNJBGQBCdF5JPJ0pHZciLhMgH8xs2+EED5iZn8RQriOVB0OWltjVYxJPSjq8Xtj31YjZLa0+tIjz4TkZHFH/F6ImBdDxMRTphehyBHn3K4jMldNOcLPpe4yib0Mcom0HxG9Y0lVBscK6u2DAbRO/w15Ce0Yw3548aXfRZJS0cnAx7oPzf/ngK+Y2cMtPWOCEYh/Q8jyCSSPhfGm1PnC2IIQ4nTKUxdXgfvKF8XMSSQ/aOe6faKr7u0BSHMQwflrRICWIK+mc5H66uXInfIExsY5oWoe3M3yJoRgzkbIt9k2Jcc+ZWYfCiG8AxFa92pz4/3PkH3IixZ5hk63GUwhReY6QsmlQSgnpDAcad2CDPEbAczsPIAQwnlmdnNM/35SvL5MkmqHCIwW5Cq1kdg/fOwGSHNwABlrTyPZMDwIrNE+ye0mebbbfH6aHat2mcHcLbwfSTJb0H7PVZNFB4Liuz2aEKznxvpvJMn93MwG610w0QjETGSMfDmjW1qwVfBBG0BFaBYgffFk5OFxkOTiWsVRl93TRdhvoepoH6f1RHeHkJpkecXxfsQVHkCcbe6hMpJ2WT8bEbfRAkMI+liSaiuQOKfNwE4zOxIRn9UWOYsUaLSA4VGq9QiE53FawnACcbWZXRpC2IEkkUCSIgL1CYQj0i5E3I5BqWY8J9mZJW332/8CyoH1SqTvd++oAVIOMJ8PD7DzglRu5C9DnLlE0hPP9Uy51yEVi5cq7UBrwqP5PxrPm4fcr3uRROKSThHZOiHfC/w/pC65A/g/8bxZSLX0q6x9abx2KUm7MBL1s6vXpsXx9aSNn419vwcxW3Nj+29IqdCPFvSgtXwrGotLKN+vnUTVo5k9pt4NJxqB8KI0jyXp0l6OJsgDoMayfQ+K2N2LjNIvRB4bZRzgENLZbgSehTbKCfHaTjM74uoZQvhzklHtzSRjJMjz5f8hvasn6upEE72e5C6bG1u9H86BzyepDPaRXIPvRVzRErS4R9I+i4Qccg8dR0a7SbUwPL5hYRNty67pj+3XoBKhPQj5b0RR4dcjjj7PpNsK5Jx0MxJEcb4BusxsbpQc/ggZyD2wMjfWFxFSLynSOf8/52ar+pPPedFF9BCpYtwshGjPQ2ugD60Jz9c0C+XoOeLuG0L4FcmtNSCpYA7JKN6PpNb58fsY0jpthjEocuD+Tt1o/R5LqnVRhdDzsSkbo6MB+Xu1atts5pq87banIeRRNhfZ3XyPuhPBPWjO7wM+aWYes1MJE41AePbBIyI9MryMtOBNs+281GUH1cExzjk7lG2UfcAPgPcj4zZoYlchZOFGWBAxcDWJoU3fhTan65R3oo3kUbSGiNJ2pLfPrz8aG8fLqk4h5bY6C6nB6rXLjs3zilkhhGtQegpHdFNJeZFmm9nUEMKtAGZ2tt8wqy3yFEZHwqnJsR9C+F2Ut+eS2JfjaM6O9TCqVf4UNJ9VtqRm4WFSIsdTSRk//wmpf9Yy3DDu9Su+Ga9ZjCQVJ7zuNfb1+N9TqS2/W+a27fvBiXDuZFIGXpHuBDR+TiRyCahYP8KPeyoJy+41t8X2MmpjHFyqK/ah2J92vCtHSiCaIYjOOAwgh5qNZvbsOufrhhOBQIQQnoXSIjyT1nT94wn1/LkhIe18EqsmdDPyOinmqPH7lInOZecMIgnEo15z7r5ss5XpVVtpu2+121KI33kuq1bF/ap370Uc7GD8Pg6pMt6KuHDn1q9HNoABlJKkF3G/u2L7Sww3knq09zNJuZmOJDrzJGchhA2NYjpCCO80s/c2OOcQkjZBCPtektuze2KV5TIqGzOPwi6DIYRst6I1dg3wMWTTeylSS5WBG2DXZ58bEGF4XXzmGqqr6hXvMxkhqQ5EAPaRIpjd8y1fp/lay9dsJ5rrnUhCPQOpV05FhPFTaJ69bn0r7dfHZy0mzX1uFyzba963kbjg08Y1xTF3YubjZqQMwg8hnICZnUsDmCgE4mwUY3AFqTxk7npWFDPHop1PgksQubogX9B+HJL4/llkW7gBqZFehoiAL6j8/q4OgoRoAwmJrCNle51O4n5yLujRApZ9N5s6u3h9GYEYIqlPZsb/tyMJ6pjht2m5z7kNYrDQ3orm81zgA2b266obxdidv0UceDPv7UZDRzpF5JT3sR6SyNVSrUqMVmgHhMSvRt5qHYjAvAHNwd8D/44IzOepZWzyd+gj2UEOonn6OpJ0L4vX3Y/GKo9BadT/m5EqamWL79kseD88hqCsLkoXInqTkF3yoJm9boz6UwMhhBvR+59EdbJEdyS4lxhbZGYNPQInBIFwCCH4JhmtFNWttD1C2bnj5ciIXI+DHEA68b9EHM5yJLp+DG2cTYgbW4rUALeiwusbka3ibIT09pHSRfQjt09HYIHEMWyN/ewj5vIxs2khhLXI2+d0xBG5yN6q2F3W9loUzqnknmWeB2kB2kDdxeLzowUhhK8j1dXLqNWZQ31JxBExSBKZz/DUzZWPjd+HEefZhXLd5Jlfncv1wL1iIGWjSOJ6qod6YLFf/4gM3HNJBuFBZFh+J4pNyNM1+LVbgL9DKj1HdB7P4+pLL+yzPbbXov3wYzSGXYhbXYfWYzfwPrSWBxHH71XXJiPHjKnIA+3keM+tiADdFPvvSQ4/RqpxXvbu+9Fc5oFnrbRdIvBa5YMoUr40TUwIIU+d7QGcRjLE12u7R2Yr1+TtB9GenBTfubi/PRjSYzYA9tWL8TnyXhOMQJyCwvkvYXxzMDWCASQed5G42S7gsJl1Zh4znv7XuY6qiMo70GSf3sSz3TuhA+WquggRIefYtpOI2xRSdal5aCMHZPS/YYRtM7PLAUII5yJfcEcAY2VYexYiAAAgAElEQVTzcI5uL0LuJ5CCCvO8+XkiPFdPeRsSN+vG0cmIo30FUqPMpTlp9RBwU16IJYTgNQPuiX+dShqT3MCYH78nt5c0CzHmAoSkXfKcC3wN+B1SBuK8331oTcyl1hPNpSWfuw7gJ/EdHVaR0s7PB76Mxi2PYG4k6VSBRwg783MgXjuZlOp9KtonXWj+PDjwjniP82jP3ug1ONpZt6OhtRjJ9YeBH5vZZW30fRhMNAJxHVoIZ1Audo815BxnB8kQ5knIIMU4dKAF68EynSTVkKtADpBqCPSQ3AS3I73wech+sICE5A+SssIeICX8mmFme0II7wJei5Bl1QL3zf/r2D4TBbKNtP1kM+sDCCFciDjKBcjzy4mjz5nHIVQWNCFxoV44aR/JWaALeWNsR5LYe6k2enrdCK9F4b76vvj3o7HfEcdtGpqvZ8XjqxDnupVUYCdv70fz/2uAXOUUQthNbUbflQgBOQFzRNhNksSceHiRJ/dac25xGZJYFsbzvO3c4wKSisnzKuUZSvOoc99HPyW5RZbBEPBcEkEDBWZ2xz5UVYXLY26MhNh3ktyS2yUi+X1zqTUnaiOFocJvl6A8x5ozYl6jZT5aS+3GGrXy/u0SsF7g3lzSrXzABCMQN8VmnryuaCMYy3aVrreY0C3PuHo3QgoPkXSERYNbXlEqB5/Mh5C4fxJK7bCAckPYV1GCtSnUeoo4jBUn7+AcfQ9C3pMQdzkTveNDwDcQF+pVwbY3aN+JVHDHZO2fowy57qY3j+SSPBrvWC95YhW4QfBOMzvD/4wG6EZJBBuBc8ZQP9WGt732A6j/6xFTNZnhSNPTkjTKE+UpWjpJxtyrzewNACGEe9D6dBVWGZL29TwNrYVJiLD1xudXxUW0YqAdC8jtaJuB64rpVEIII0GkI32PR5DDwXZEoDytC4hh2IkYy/0IH+1E6rKtjW480QiEJ/y6gFQI/mh7NOXEw1VEhxFnMR0htelIh+o2gH5kj/DruknJznpIacWblZB8092BNqmrT8oChoobbDTBDZJOKNyTwtUaTgir3ATL2jm379c7x76b5OM9EH8fg1Qqj0FSyyUIQQJMNjPn5gEIIXwVVQ5z98hd8X5LSfYVVwEW+2bZORtin35mZq/K7j8D6fCfEP/6BbJd9QAzzexQTAl+LymNiMcneK6mvP6Jc+BVxtKqTK1FcCbmIYQw5iOpIq+D7u+Zc8N7kcS4Fjlb/HsTz8uNvFDf5uLn9sS255Wql6qkH9lMTiZ5AN5vZq3UdQAghHAZ8ALEaF2LcM0ixl5bUbSTtQqeBuZ7wOfM7OrR6NREIxAXoAXzWDSB69DmdNF12hi33XXSI1Dz9ATFhevple9BhsvzS97njcDzEFK7H8VD3I/UHAvRhO8EdpjZtuitAEJ+eS4qb9+GENs8hCy9HkDeLzfgfQ/4Y5LxkDbb16CNmReNzyFHpk5AIKniJjXR7siuca+vh0nZQ1eTir7UA0fo/4Mijl/LcLWKI86ie2mVROlupZ5ryszs7BDCC5DBfDEJ+U4l6dD9fTwFd/6sffGaMqRRT/88Wtx0Huh4EO2xe1GqlodR/p8rkPH4lWZ2bgjhLcj+MB05VzQDhtSPH4u/f4SQs5eOddtCM55Mvr560XwUJZd2tQfNQh+p7sKkrN/tPJtx6G+nmTX0eJwQBCKEcE5snkZr5SpHq+2/v4rSRn8OcSweUfpBlNbhUrTh70ec6AykajkR+VWfTXs5bw7F+5yKFoIHhRVF8TtJ+udLELGYRUq9kJdQHAtVHCX/5VlXHRG7G68nWmvUdhtC8dg+xNG+FBnFQfEyX0LlRX+b4cV0HPL+34QKLL2TlALCpTo/pyz+wxDCPAYhhsPALjO7OITwGYTsRiPYzSOhYXikd952L6MetB6/g+JAehCjAXC8ma334EFS8NxMUjW2JSSJKpcePmxmbwohbEZc9aZ4zmWRgXkWIhLPA15uZv9dfJEQwg/QeDyJpD7KxxZSvA4kW9PbUHzCK5E9bgX19fzOmLQirdZr59Cs+nk8IU9T4t6NueTme+gn8fwNZva2RjedKATiNyhieqQbbTTA0Ma4jlQO8/FIVPcAJTcgP4LE1L8iBQV1osmcj1QhPwL+b7xuabz/jnjfdoMCfWEMmNmUEEIvtUbasbTRQOL8x6NiYZVdaAgZDt+P3IbfgiRPlwjzcc1rJNyNJJIzkKS1ghRjsgQRa29vQch3BcprNQf4ZzM7UhwphNAV+7IRbdJ1pPQoIEI0QErPvCb2eyNSGXrq9ouRqqy7Tvt3ScnxckYgR3hOrAdJkopz6FMQIfGgMUrG1u95EBHWf0ABaQ+jPfAkaivR+bObQZ75OhqI7/0bUgGiGST726zCuW53KdYNGQlRqArQK4M8fmU/2ucvQmrljbFvVW2aPK+q/fF4D7fNlqmVXQ3tjMH/nkA5wBP1XYIquD2T5pPgHW3w1MYbibnr4/9nmNlsOEIAQXpdkDjv8RVevCaYWWUxohDCRuCLZvae+PudwO+b2dpIIKC1AjgjJRCHkTdHL9pc1yAudRKJkNYztEJtjYPpCKF1kZD0ZsTx7kYSwAnIYweEiO9A3P1fxf4sIqVReH48fxmSQm5GakvnwgPyGFpB8oV3Auvt+xERPCGe210MPor2hQ7EBUOqS1HM1ttDKvDk/vcdhXNcVQflKibnFG+NfXsC5dl763G8uWHYn+3S3x6kmruDGFFtZgMhhOOAf0ESk6sG3RZSlOBcosy9gSZn79uOLt7Hx68ZLU7e+7IHIVePZ4HhNiDn2rvQ+LzVzH4xSv2oCyGEa+OzL0LEucw268xBF9oDjzTjSj1hCIRDLLzyJKRWeA4p7gDGFvkV23kMgyHD2OcQkr8ZTZK3VyOu4iS00Tz9RDdCaKegifU6257BE7T4ci6wI/s4eL+60QLYbmbnhBB6zGx6COFwPH8aYzsuVeqmfmSLOQ5tsluRhHVC7HNZ+zAiBItInhjTSIF+BxD3+zNUj/gjiKM9Po7dmcg+sR0RgXaRRpV9xDdOzjkeBF5iZj/0i6PnnUdRe0BUVV+8pvFXECPktZGLtct93RXjaPK2R5p/AY33ZdRm9/RIfCce+ft4mnhDKombgTehKm+LY+DlhWb2Wc9aG9/1FsTZumpnP5qLjSQ37e8gwvVT5Dbra/JBhIhXZO/p/RrmNVQGIYQF8dnz0Jo7lpRmZneL7ZeQygo8G0mH/5onMny0QMwrNg3ZAp8PPI5UidBTbIDG13HO+8xsU8N7TwQCEUJ4CQpaejy1BGE8IUeCQyS97jeQ7roPcQ6rEWdL1l4Zj+clCYv3dhfCtwO/hSb4EuoX/oFkDPcUBpAQRd7v8YT8mW5vGIs+eGlSj5UYjM/uJhX08Uhm71eZ+sDhMMk90JFsWbSt38vHeRvwtHj8S7noHkL4H0QYV5KMpy7y53PWgdQp7zOzb0bJYxsppXS789gX+74LrVfP6DkNzc2tpBKV7wMGzcxjVPJI8DLoRJLKk2Lf3o4yHC8hRZcvQ4jX77E3Hr8WITJnHn6M0m7cbmYWQrgYjenZiOgcG6+fTMpm4NLJTkRM7zWz17Y8QgUIIfxjbL4qPqMVnDMU+3Kjmb1gpH052jBRCEQnmqSjpVLyzdkPfBe4EkkvLyYFxRQDgkCLZS/wIzN7aSsPDCFsAlYhLtAQkrgGIZFNaNPtNLPr4/lvRonqXKfs6gbviwdd3Y1UWL8ws8+10qcG/Z2G6gZ/BCFmVyMVdbftSCeQkLS7z7pR/pR4jiPC58fzr0KcZB4Z6/eBWndR5+pHgoTvQkjvkqJuN4RwPLIPXIoQs6cqeSYibq5ffyuSQl+F4l7yvhQJlEOVJJfnj6q6Jh+Tw2g9nRRCeDpyyJgT32s6Wm8rkcvuy1AQoad0GUm0vBOIY9GYuN3N37XRnve57yRKzm324wjEIE9QzNFixOj5vvK97qom96rrI0mW3Vm7yh3ZVcdT67TLrsnbHmDZg6SHY2jOTluTebgeTBQCMQmJvC9CRUOWM/51X4vgek+fKBer+xFSfwC5U/4IuUD+Heq/F3Vv53n3IpVLPUmE2IdPxfa/I3XMp5HIPJLKYaMBeXRtqwSin6SfH0QEwsXr7yMD71Y0HweRasBLhQ4yPCNqEem6RJJLikW9thtC+0g5bzaj4L1fAH9uZueFEF5qZv8ZQvgcIpyV9qMCHCYFtLn0tQM5PGyMz74AIe5DpIJHD8Xrr0FJ9EAeSodJCS6L43sAIeVOZHA/1cxmhBD2Iy54VXzOAWTgt3j8buRQcS/w72b2zyGEd8f21uILhRBOR3my8pTgRSgjZC7lHSAFmrot5zRqXYM9huW/kKPABkYAIYT/i7z/1qD065cgaenfqM3++n6Gu9UebXBVqMdjDSGmdj3aH/tRLqY9lXeIMCEIRBEiR/aHKFBnwVHujsObSR4gIAJxD1I7fRmJyStIvvyzSRzxLoRo+s1sKUAI4ePI79zjPFw1cQAhjiFSgfRJ8ZMjAQdXYbghbX/8byGja4PwBGe5wbDIwbZjgCyC38+LBZ2IJIS9pBxATqQnI336W0lG//fE72NQDqlz0Vw4JzY93u82VL2wD6k57sraf0ftHHhAWwCmR8+x15rZJ0MIDyOm4EA839drmZdREYaQm+pnY7+KRnuy3z1xDA6jKPNZiJHK1WRFyJM8dgKnRJtVFyK+ZyBC8XNUmIt43iykz96MXInXkGpLrEDErBdJc/MRcl9FbenQzST7iq8dN177utmEuPcu5DV4PmK2emP7OWj+Lkfq55xpHECEtRlOvMjV9yICeBdKd1Nvjorg638HYuaaebYHW0JSiTbb31zqmIUYIw9OdYcYzOyiJvtfAxOCQIQQzkK6zd9DCGE83CdHAzy6tyt+8tgKL4JzGinwbC7SYb8sqpjc1zvf3Bbv240IkqebuAAhiANo4/0McX2zGK7+cvWDq1egNi1HO+3ppKplHaQkgruzY7NJLniesn2gThtSJK8Tnz4UtXwQ6c9fhYzT51Eb8HZMvG4T2oCeRdZVX77wc+8kaI14GULI1yEk/t9mtg8ghLDczB4IIWxAarB74zWnZO8EMfUymrvjGN217VLQFjRXnuHT7VYeDPgNNDcnR+eG3YhTPyu+XwcaT7eTbSM5BtyN5tSRVrMpSvJcRluRrWImSSV4NLUDVeDvVRaD5Psyn1dfj80g+Gb+q2rvQXM7g2Q7y72tBhDR3oAcDraggkFegK0SJgqBuBktoGNJC2vqOLYH0aLtRRvk18iN8ngkKfQiHaBvfPcOWIY22io0KSchjoz43x6SbcWvvRW4kNqKakR31QVIr74cbdhzUQDe5Pj/w7F9jJlNjWM3F3myXJI9Kw9ac3G0kVdMo3aV6mAIIZm9aJHuQUSxUXsQcaT5sS8CHyzEGSw2s4eiJweIULwKGTjzuI9GCKcXcVzTkNrqAyhNeyvlSwfNbHLs10ZkY/hTpMueSbmaqwiG1srfIgnUXaMnISJX1h5EahDQeH8eva9n2vX7foOMUJnZVWUdCCE8EdUumZdduxP4qZldHkI4OV7/gxg0dwryjBlAkrKr6IzhxYt8Pg4iwjCACPgk5NnUgfbeG0meY4/Ec/J7LaUW3BA/Ge05Q2uhFUSbt524eip0xwOTKXfP9noLedyHNdnOJZSid2Qr92oGfLzX51mHq2CiEIhPIYR6BkIWXh9hvNoDyLNoL9p8PwI+hMTfnDMELajbs//uJeVGOon2OMRmF4F7x3wXIeUT0JgtaeLa8YRWNk5xs4A25Y1IlbILpYA/l2pVSiOO1hPR5cbRZvs4iKSkq4AvmNkNACGEZyMO+7eResvVXFOpzYjqNo1JVOf78ehYf/eyUrgbAaL947rYvzzTLoipmU2KUehHOvs3mtkD+QNDCH+NiOxKpBbrjdc+GO+9EKXaeKuZzYqu1Dcj1Y/3r5jNtQws9n8/YgJcXXIXIqou3bgXkxv4J8f/T4r9y2087hxyLO0TCLcxOZFsZu/l51nhuxE0ylPVCPqR2u6zyAbTU//05mCiEIiLUAH4y0hRouON8PKBcoSSJ6ZzXaqrQRx5bEceQ38Yufk5JJe/Q7H9erI8+2b2tpgKYS0pr/9MRLA8vfV2YLOZfRTIC5YUN6SLum6A7UVSz/529ZL1IITweuDJiDjOJ4m6g0gn6xGwo/ZIJDkdj5Ckq5Y+iHTgt6NI0wVIL/xN5JkyBxGX7yGPnS6kNvGU682kJHkIEamvm9mWYR0L4VLgk0iieRdS2dyEkFex+FIv4niXMjI1U25Yh1qi5sjYI7nzNb0L+IiZvT+EcAYydnv6cCdqnqbc3ZY9aPGHKEjOSCrRnSQHjiWkjKKezHInCuxaTG3Ete8fT+rYDIHx96z6v512s5JnVZ8GkSruF2b28gbntwUhBPeM/BM0nyeRMgfnjiCOr/pinzYD15jZhxo+YyIQiBxCCMeixfhqtOGOtldOjjDywewjUfSvIG+Hp5C4nzwR4HuRhLQKBSadiNwi5yCkdhhYYWazM//wJyNV0xxq/cGXkwLtPE20u+W5rjTnIHPOpd2262GLlckcjqTADiEEpEJ7a+zrzYgbbaVN9nslsgE8n5TgbS7i6D2yN+8jlEsUQ2jsvx7vexkpCWEz3OM+4Adm9rL8QOTE/4aEeKru5WunJ57jGWpbkWpAKlBXzczInufzNUBKdLi8pD8DaF3sJBlqe5GE5uqVfmRjOjPe86lIJfdRhKgePPJSTbhSR7fatyOVmK/lvbEvi0meOFNJDE9xPH0tPoCYhZHihXxc70JMxHPN7DGFvvfQ3BoZLygidMdL+dxvQQTi3Y1uNuEIRBFCCOcjj6ZWkUyr7bMR4g4kV9UhpB8dQgbGb0KqrJb18QdI3XMWySiaG7t2Z/f0RW/Zp5tUaMhtFWUcU66KONpud96fTYir+TRSt1wIR1xWXaVSr+3qlz6STtjHxInfO1Ayt0GkqvCKenldhCJH6EZ2dyt1KcvHz71/mhlHQ4j5W2b2CsBjd4xktC+qELxfTqQ3x/dchZDcu4lqowhrst9VbczMa6Z4ehpIGXifj4I6Ty2Mx4OIy3849m8xirc5g+RV4/e6Ha3DP/CU0iGEpSjG40qG2xwagatF89ou+Zx1UIv0c3XQHRQcAMyskY2nKYh2z98g7y33yKu3FrzfA4hJ6US2kFbTyZR5qVW1D8dn7UDr3lOxN1XroRmYUAQiurd+iHJOfBIpfcBYtD1FhpEQfD+aFM8vNKyyWuy3VxjLSyC6p4+n1gAt/E2IM/sblN6gHifkXMF0VFD+3Dguu5A6pxv4V6Qq8DoK18Zr95rZj+rcuyXI8kl5oFKgFiE7si96uTTTpvCfF5gZItUyuBCl73bi8lI0Lp75Ne8TpHnwdNb5ff08r0Vc5bxwC0rR/i0zO8I1F8alzIsJhrtW5sfvNbN6tc7rQgjhccigv5xyqckDT+8GnmBm+0IIV6I4DtCa2YMIhRNjd754B3C9me2Kz/oA8i68k9qkh8+LnyuQes9dLp9JknCqCik5cR6kVs10tLj0onrZ17Bl7fw/kPrxXrQfPD9YVbvesXptT4fu9qsqhiaXIvYj9fS1Fos91YOJ4i7q8FnEiS8iceJ5ArrZY9iGJEr6samknCeg1AEA3dFodwgFCM0neS9BrdgPQkzOKW+J7/XCeJ57ZKxAxucpDPcHPwtl9ZwT/zuAJJIZaEN2ILfXFyEk2gEgbc+YQBnX4T7wfrzZdlkWTVed7SXFFbwDIbsVACGEhcixoAoJOdGYlT3LpZMHgL8epUjzHyJEfRqJwOQD7890L7h+oD+E8GdoDqcC77VCoaMG8BFSJloPtoM0btv8RHfLNbM/9v9CCIPI843YV5ce1iIp2ddOJ0KEp5mZMzk5fCuWwF1BcuV2LyXHPQdJbtB9aH9/D+2r5aR4IdBa8Lmant1vMPbD02JMi++/nuY48SJX79L6CoRr/hvZS/4R+P14zjqSM8o6kpTmYzWXNM9eI71eu9nz8ra7IAe0D6qSHTrD42q6RTSpgptoEkQVJz6SlL6ttHPuAWq54tw46P7dPYji34P0q+uoHwpftGOAFoHXu90a372KsHv/+khE4mpERDqRmN4XzxlpGcwy8NTWM9C7dyNuZQ3DUxA3C/XOd+7ckBrwHGCBmfXFDKP/jqKpG6Uf6EYIZmlsH0NtNb5m+rgfuMVdB0MIf4E46IcRsriEpEbxNeQSyixSoaLp1EZ4dyM15p/FZ3kwZh6Umf+3A/gBmuezqFXfeHW+Khgwsymx/9NQOo3l8ftdltXadojq0xeaKuPlRZIWILWrJ510FVvOKOTQEz/zkD3nPlJyy360tv7ZzP4+Ptc5aY8t2ocKabndxaOIW+XKc67+9ci+EpB9qhu54k5GSHZH1g48OsoRHEZ7fSFJQ3EY2VFOR5IeSBX+2EY3m2gSRBe1fQ6F7/FoQ0JadyCO4QQzq+svH0KYjDiwUxBnEhDXeA5JXZYThxXx3rNJXk+OEJyTchfLbqR3/ykyXs8gZaV8Wvx2TtuT2rlKpR0XwKr2FmSn8Yyhc7J+DMV+bkHRwYModcHJDdr3IQR6GtK1dyP34q3AL5E65B2IEFwE3BfVOh43810UCXwJUq+F2HZVz5rYV89L49x2M7psH8eDSI+fI9BlCGFVJbqD2rXsxmlDkucxJKS6jMi5U78mtbu7evBlB7W6/SJxcKbmFiIHGkL4Znbcr3sCcGMI4SFEhAJCMOcR62KEVJM6T8OfS4N5XYWueJ8bY3+fFvvmRO49yAstL3A1H/hAVGkVIU9b7XujFU68rH0Bcn6oSmsDKUNtETzlTrOMUO4O3IxrcBEcd3hMjKuapmXfC+O344Gh4bcZDhNNgjgPcYWNOPHxgqIBtAg9iLv5JkJyT0QLfTZCnu4NshOJ/bcCXzWzO2Ow0gsQV3scKTDoEDJo1ri5OsTrLkPI0r2ZVpFE+874/3E0uUhaAPddX4A4Ok8mtpSU1Gw/Kbr6YOxTozYMT2Q2CRGPy0m5sLwGNqRNtiN+1pK4p7XIqP0eEoe7n1STIC/mk0deF9Vf3dnvOwHM7IJ8QEIIUxGCfR2a/2NpHnFUuXDWA0+pkjtDVIFzle4Zdi5aHz72kIiPITXlq490zmxzCMGD7RYjo3Y3KQZhGyKc16I1sBARhGIdgmeRUk1Aem9/B68dMQVJev2IMG2IzxxLT8ZBtJa3I8bmLyvOc1vgM5DUtZvhEl699g40V4tbuMbbFyAGyVPvVIETrk7gzU15mE0kAgGVnPhDSHc5Hu13IqTiYq9LDp4KYgqpvF8vQhwnxvPaKXzuLn57Yx+ahcsREViO1BPNJoubSOAqub2ICP4azc2/IgT1IoQ8vP6GG57dXfMWxGz0o43vRrsLSMny6tWkdq7T10ifma3OOxhCOAblDHoNQsCjHQdSBPcK2o1iLj5kZj+PfTmI9Obnk9KguDNDNzDHzKaGEB5BatE5ZnZmCOFsJJ3+xsyeEe/1PGCZmX0su7c7c2xGKs5T0TjeiSQ11883UrMOUuuivR3Nwzxk0wM407KayiGEV6B8TJeQ6qrMpH1wryX3MnPVWBflayEnqkcLPNbhHrR295Ak2AeQqnI9SgnzcOkdCjChCEQI4YVoEi5EYvcFpAjLPJf/WLWnknT37hLpIrAnwZuPOA7QZtmACNotSCd8Vzx2ESkh2hC1eVu83RCRmFnNOSGEVyOf8uVZ346cTkrJ0O2FXkYTYjqQFUh1Nhu5ay4gIVP3hjGE1Lc2aFNybKGZHYjPuyXmD3oLqhw3l9oUG63YPH4T++4JEt2+VOYJlLcH0AZ8k5l9J/brUyRPKir6YAjhrEdZQr8TPYqegDzZ8oyk+e+q9l8gxulU0trMn+sE9TDJvnIIIfYuFBX9b7EC4X1xHD4Uz/sAQjiu4vkz4Lc8AjvGA3wOxe/MJUkRPu9uAJ5McgNdiLIOn43Wyqmk+J0yz7MycFfx3P7n+bq+RmuceN4+GY3tOlIlxEZ9gbRmPQgWqlVI3i5T1za6Jm97kKwzQ7423TOOdr3iJpoN4p3x+zQSVXdkkHN6Y9l2yMVaQ9Q5oE3lBGIFWmyz4vdskg6wyjXNXSjdt/30+L0XcVB7kDh6HBBCCG8gJQN8CGWV9WjZfOH5Rjon9jNEnTKM3P7g0bL9CDmUudp1kKLFt5EymzZqU3IsH/spIYQpiDh0Iu+vjwB/jspgHjSzi4udKcSmeNruc0ibbnaFZ06zsIJyiTEnLO52eADlXvpUfJcqYlK8vh7kro2ummu2JsjdiNBMRVLVCWhctpBUQVML6TnWI6nVU197JlMnrrkEOys7fj5a48dRm+21WaJejHifhBD6RfEzWuBMwCqaS2CZz71nXahq51y6NXlN3nbbrKvjhtCaOkBM5hlCuKDMyaAhmNmE+RDr4CJEtB8hQjdI2Ti0h7L/jJQVcwhtqu2xX79GYp63t8RPd7xmkNoNnLe7ESK9hyQqFp/b7GewzetG69MXx6DsXUf6GSTV1+0jZXddiYzSb8rG+2A27v7xrJf5/A5m/zXTV/c8OowkxI8W1mtAHOjHEXLpLzy36jl+nkc15+svbw8W2gMIKWxBaUM+jtyaPf12vfXgSdxuQhL6B+I1O9EavqzwbptK9ud5iDA/ApxbsYe/jFRQO0g2Ku97F2k/5X27o+Q+t8SPl9C8CanPuhHxu5dEHIfaaPcX+pAf683O782+i+uq2XYR17R6fSv7ynHMbc3g3ImmYvouEvuW+19HsTtVkA9oNwpaewbiVF+J1GK5Z4vbMtxjKZfqfPF4Dn7nnL3+AGY2ByCWqJyHxPwXxcNl4+OLfAopGtn/H0nbXTWLWSldcumOv1u1w+QpMrztiHlXbN+A3v005OL5bZQD6TRaUzNZoV30ZLNCeyj24QCxYFAZRyrJU8QAACAASURBVB5CWIbcPy+PfWokuTsyujv7L08VX9UmqtsegxDxKsr1/Y6Qt8TnLEBSwoF4fKqZzQkhrLdCdbzsnb6AjNbfyP6einJTPZ0UCOdScu4Q4ePnkoIf70JG7Q5SWvRmYQh5v3khIxBxHkka+x1IMvY+twKtOoD4+SNJ1vcIYpLuJKnMQIT/IGLW7kZEv6lo64lGIGaiQufLkdGrE4mmq+IpW8a4vRnpSNfF38tIgXouxhtC4LeiHEz/YU1mVowGTTe8fRB5d0ynNgLZOeB+JLH0oo11EfAJ5LftQWTnkVRxjvC8sMxiRse11duNjOD9JD30t2NfHoc8Q6ralB3LDcEhhN+Y2WNCCPNRvqvLSITWUNr0XkSgIemTGxGNgwi51UXKdRDoG5C6zz24GoGntXbnhiloI+9EY7c6+31WRRvk5ffB+J7L4z0XkaKXPaJ+H3DIzM6K/d2I3DpBKVHmMVyt2umG4RDCIpQS/NzY34DGvepdc0Tj0t9UpDY25CSwCK0RN+TvQcTL173PaTO2AH9mGWFvpu3Mja9b9267BRHSmWgsF1KrxluPDOknIULVifZhWZs6x5pp/8BiRDscmZOlaH26Q8tsskSgiIjuBHaY2TYawISyQZjZ4RDCg2hTTEHG3wdJaXn7xrg9iDbPJLQo9iGE3oMQyn8CnzOzjQAx7fLLQwiPb+E1c+8Cz7y4lhR0NDl+pqGFkMPrSO6XV8VxeinSIy+Onw5SbIJH8Y5W26jVCfciYnQMQtSGJMDVsb2wiTbFYyGEGZYii38SVI/7K8h19W3x/+uR99jceF0epObg6py8aNJ0aoMki1JFWbsMVsV7b0AIeVX8ztv/AXwJzfNkhnupLS78Pr2J9u8VrjkeMRLLSPt9XvxYXKP/ZGZeUIlYUW4bsqNsREjvEpTIEICImC4OITwFOVrMB/4g9tnroYCMvfnv/STkfiZwpZl1hRCuQdLITFKVRM+s6zEdxSSXG5Bh+5543umIcK8mMS/NzF/ZXLqE44TBVXBnZ+9zcjwnx6OnAy8pud+YQAhhACH8uaTxagbcQab+/SeYBPEuNPirqeUiyjxLxqpd73n+3YvUHp8EvmdmXRXv89rY/G200KcikbYsO2Tx/l1kRdpDCM9BWWGnkoLsnBtydYhzpmPFGOTPKwZLQVI7tSKuV81FL+KOF6LNu59kwM5VW94uevSUPcelrS2I+DdMkBeDxUYVgmqwuxeSf4pJBMvgTIS0/ohEHF3F5Nx3Dyl6O1c/GUI0X0EuuXchBHKvmZ0VU8fcXUdi2oDW/FMRAnV11fmF39NQWpgZpKjnAYT4dyLEdRdyDT6WFIPhcTx51gJXwQYS0TiIPLA+j9ZEq1z5C2J/D6PkhtMRkd2P1tzMeP+DyKnB219DQapPjec/GuK08gwQPWjv/yQee8jMXtXoBhONQHgY/FnUpkIYD8JQpsvegDixZdS6xObg6ifX++YxEj8DXpV7y0R/7lcibnI1tV4OHWgxevI09+f3qOXNSALZjIyUnyK5fXr/B+M1XzGzPyrpb1sQQvgaQigeAe2IOvfYcTXBSAmEI/NDCPFsJXmL/Q1C3kMIkf9O7JdzgY5oy1JdjxSOqGBagRDCDCR9Xkqq+ucE/QGkrlxA7XxPRgi2M2ufRorKrwdHqooh99rXk7IXz0NG6tuRNDAXIceVwF1mVgxyI4RwO01wowXIEU8VM3Q0bYzu1NBObMNIVFu5Cq0VdVijfrht5YjrdNlcFmGiEQgPkjmf2lxM400g/Pv2+L3WzDpi/p+Xo83yK+CPEcJ0OwLZ9V2kmsC7kIheBK8n7TrmM5C6YAXVWRtDPOdEEhJ4DEePo9mD3G8fw/Bo6Fbaw46ZWWe0S70JIblNSGp7IspmegLiVt2e8VKkOrkF+Gs0tsciBDiPWmnjj8zsMyN79eYg6v/dJuQEHUaOIA1l7XxSfM43ELHpQbp/zyTsmXHfY2bvizVHDiKm5zPIYPwL4G1mtqn4kBDCPmrLk3rfjRQH8WXqGEtDCEuQffFlaH+7TWsASTFr47O8FO8p8X73k7LW+j4bSYBcPXB18xySDcGN/Pn+htHRSDTTHoif3Wi9D1Jel8WlLq/et6XM/bsIE41AvBn4PwjZNJurfyzB3cty3XZx0p1zvhsRi2mknDmL0KTeTQr4C6QFl9/jViTS3oEIRTGHfiAl4suNeUUYIPn9e0KzuaPQzlMlOJRxgqOp1vsy8CQSh3QX0pXPRsjn2DgWbq/w+hA9WTsfP7eXTAKGzGxciGr0QLsn/jwVEbp1VM8hVCeT7Ebr4mGqs3b6+fegNTmECOdiM5sZQrgcFbXPa0u8G/i1mX23pP83I9375uzv1fG3E3RPM+9OJo7IHHJE5MjMwd19J2fvEwrn9pPSSCzKjrfDyVfBITQ3ucPCWlIsVjEmo1G7nWvy9mGED+5A6tbNqBTCWWg/TkGq0iFEPPcgAn0P8K/5/FbBhCIQACGEp6F8MI+lNs1FWeWwsWhPRRMzn4RsPDeQb7wBhLBmkdIt30LKanqkhjCwJm7KOSjY6/Uk3axzdnfFe56N/L2LEpSrTnajhTENLebtCOmdhRDGYlJe/jNGuX0i2jzLEdErSky+GVrlmsqQpBPHO0j2qMPxXEfwnqohUE4gXLdtWV/3InXVvcDrzWw34wBRv/8gQqarkUS5gubUB3nbCeV0UkS+I5IZJO8t4vmPICK6i5S2e2bsz0PA88zs9hDCP6F4ilutpExtdBxZwvCo5hyK/vqd1NpI/D0OonU8Da3lYxiZ9DsSzUHZ77L7u8rzaDOtPsa7SIWqBhFzOQvtUU9R3mlmz2l0w4lIIFainCueZ2gz0j8vQvq1sW7PRznhzyDlagmkzdeBENIA5Vz1WIEv5EHEDf41Uq+sQITJvRwcYXgsxmi5ujoi3oPUZ19GefSvRFxWoDbtxEgIhCP420h1FAJC7v2Im701vrfn6YdyCWI/Ke3DsxCCOmBm9zFOECXjD1A7Lu1CcdwOoXE5Of4ukyhcbXOymc2KCR9/iBiM21Fcwwbg6RZTnBT677nK6kExMGwvmgOPlXApYCtyn/08cLuZWQhhHsmDajIyKnvskHuplY1bO8QhH7+i+roM/Bq3Mfr7zW1w3VhDXn+jphiVn2BNpN+YUASiTp6h8bA/eDt/XtEdMj/PIyvvRnn2yzivf0DSkIva3SjQ6MNmdqh4fuHaVQgB/qDeeY8C8IjUXKXQCoHwMc6POad6K3IQcGK3K/4e6cY8UhdhvCBKkM9GBN0LIW1DiPB3ETK8F737KkQg70V7odheGa+fiyQBQ9JjF0LI95Oifr+FIqXnAtPN7BuxP09HqdI7kDPFc6yiaFFUMZ2DCI0HfK1B83AXcMTbK4Tw26jwl7tsF/eWS+QuGT+A7Eke/LmMlGHXn7Wd5CbciRiz0ebkDUk2Xt/ENQDfR/PjtSuOFhhJvbgNjZODxzusoLZY1MmNbjrRCMQtaEGdSbkOnjFu59+QApvmIfXPSfHYQ4i7dr3fYTPzQKb8fYq61iroRBPegTbHWqQ2egK1ROthFCjWiZDElnhsFVoYLnEBDDbjxdAshBD+EhmHV8c+LqE23fRYcVMPIrvUN0ibwl0fvf0IQjozSCkdPKVJZer08YIQwldIaSIuRsh2JUJILnlNI83d6or2GlpDjAPAc83sB7EfjpyPdC1++xq73QPrCv1fj9b/bdm5HsXu7sDnxnM3khDpclRP/t3xHeeQiH0766ULJRdchKLW69XiaBduodYGsYikypmP5rAX4YRG7V5ScGCz1+Ttw4gBO56kmluNCOcMUrGlO5GEPJe0Vu43s2LMzDCYaATCM5E+hkeHF1N+zLkrj7aEUfKXDyF8EKXoOAlN+GIScczBPXA8snVLPP8URDyWkaJp/fyQXTcabfe53o2iOneSXDc9L9MUJCmByoJeW9IedszMXkQBQghXm9mlUfW4FHgLUhVtQ5tmCZIs9iE1y5eBD5rZQ7EC2ivj2Dox/5qZva34nLGEaKTOo7R/gtxzD6HxmoWkirvQ3J5T0QZ4pZltr3jOG5GX0FqGG3sPII+3ekTy5rL0DDGD75tQ3MD34t/PQa67VwKY2d54bp4w7hxEvIvqqT60Xr04kUuhc0mIdW48Pgetb/dCG23oR7EOri7dGZ+1H9J7HQ0IIRyPpLw1NJdGvh+N3d3A71gTKb8nGoH4e2Scflz8a7wjwav04gMkJBkQBz+EJu0hJEGsoU2IHBoIedyDPF3yqmLulVSmL60XWDVWkOeVyReY59pZSYMAtLJjZnbEfTGEMB0Rnv9Bnhs3xENXIP01pNTsxTHJdeFuOzpECiLc1Ix+drQgcu65nviXSBobCfSgd9qJjPmem8f15KegecjXc5+ZTQshvAoh6GujK/FSVD71JjO7kQoIIZyP7IMAPzez9dmxF6B0ME9H69ftIe595br8B5Gq7RSSBHwKSa20HBH7O9F8/QNSVy0lpcaYSbK1TaN1rv77KIXIFKTGvCaORcPUFEcDQghPRpqD30K2WajVdPSgcb0N+JaZ/bTpe08wAtGBokRfgwyRrtMeLwmC+N0MwnVj6O3A+83sqgbnV0II4dbY9LQCs5E08C5Sha/lpIpppyOO50LEYc0gRQnn0cxjMT71wO0yR1QPtE8g/hzVP1iCVETHk6Smj5vZv4QQjkUc8+uQB0fuDVNl1DyExmuRme0rOWfUIcb3rEHrxeMg3D16EikjLdQWMSpCDyLCHv3r0fT1YCvwX8AnzOzO2J/DiMs8LxqJJyGmZ2NREg4hfATFmfyiSnKJ530GqUQXUa76yd/1TiRdeO4udyiAtG496NIJfa7O7AFebWb/2eDdG0II4UxUEvUNAGa2aqT3nEgwoQjE0YRoUH4Bik7+GMrQ+ljE7ZG33dA3is++CxGlVaS6CKuQLcYNiasRF9oBLI+c4F4zWzCOqrmWih2NMvwc6e9BHOZgbP/KzJ4LRzjctyBiuhghngUoeeAx8XqvYjZoZuMioUYE/HmkGstTYLg79JcQ972eZKcoa4OS9V2Hxn8tyVbnG73I3HjW2C8AnzIVLOpGaTXOyfrYTUy7Uej762MffOyvj59fILfYprOaZpIyyKZRj0B4G1KyvOlI9TMduGckNrYQwjNRTM0TEVG7EUlFn6o4/81o//XFvt/VQps2rsnbP6tyIBgpTAgCEVTe8FkIKc5CnHReHP1og5E4N9fFe0qL9cA1Zvaedm8eQngTkpwWos2yG3Gac2J7HmMXPTpSyNVyvdl/DVNXF4/lEkQOIYR1yFCde2XMROvk1yjo7PzsWKN10ws82cxuaHDemEAI4f1IOnLE7lJfMY6k2HZEOYBUmyeT4iIguSVvQhLGsLQgEhiCSwIfQgzR51AakP8xs+fX6fcSErF4LpLC5hbO+ShShSwlxTFBkgi81svxtEYgBhFzcj8i/iMlEFcipuPnzaiWQgibkJR6NHCSq9OuQx5i/z1a0u9EyeZ6BVrYa0ilECHpLYsRpaPdhmT8HSKFsucLNRebDW3GPlK1t7bBzD4Uxf73IcS3Kju8pHg6ySf7OuAfEaLchZDkS0h5fVz3O2mEbRfxfcycWE4mlYCcjPTagyV9bhtiAscnIW75p4iR2I7mw/MzLaHcVbaoLtyAyo7eMh7EIfMaqidtBZJEMZT9B8OlOPdyg5TZM5foXCV7SuEZfUit47abpyEV5QfjZwi5U7+m4j3cs/BiZINYi4jQ50tOd/WXv7e7s/r6mUQyWs/IrgsVbagNUHNiOC2E8Fba58q/jdbDuhDCWlSP+5Gy94fkMhpCOBclzXwW40csAlrnz4ifvOrcyG48QSQI93xYixbyCoTkPFWzR28OjFEbUk4kSAgWUqR0PzENsJl5vYhRgRCCG+XXIQI5A7m5fpXk2/5PyGB7GSIIU+L/Q7Gvni9nLNJHVBnHQR5dPchm8jApyvxmpBZ5fEWbkmOvKeYCillEz0bjMoukd3ci3kkiVjkzcRAxGrmH03rkKQbKtf+yNsaiaYg5j45HkuFJJad0I0RzHq0nOXToRWtzM5K696E1Mxetmc/aCEqrhhB+HO91C1Kx/tLM7qpz/i+znxfSOPq6SERzacm95vai+Z5H++NUBV6Yahrwxiq7Rgjh48iQfzy1mYzrSXzFdjvX5DaZ3SjN/xdGi8GZKATCkUIe6OHtlTRf3LvdNvG3R9euQJt3BlpA05Fx1NMav8fM8oLzI4IQwidQMM58hnMlh1Eg02QkYRWDCB08DH8yyetqtCQsN4DnGXZhuCqAwv/1oMrwPYA4u4+hRHI3mtmFUcLainTG1yLC8uJCX1pBHP9hZq9o4fwRQwjB6yC8BmWlzRMIOrddNpZltqBDpHomvpY3xnPmkKRcQ8Fon0Yuv9egGIIyKe9LZvaGQp8/iZiVbkQgbgBuqOK2Qwh3k9bOSmSMvoFU48QzFs9F++0HSPLdhhDg+cgV9y3xHqeRpSGPaq4/RMWajinrw0jAzErXUBbT1I79Lmdc2rn+IeQ2/nUz29LGa1XCRCEQX0BG2JPR4tkV20bKKw8JaY9225OE7SXlkJlJc6mAeygx7rUDIYQ1wCvQBj6BxC0VkV8XqXh8cYKLEhK0tyhbQbauG3dO0K9vhUOqIjZ9wDeRq+s8JGHegmw2G9Ec/XF830vRu29F62kr8nBahHTXn0ZugA+28G4jhuhW+i/UX0/usnmQVFTnICn4z5PoXYMkzReT8hjVmytDTI6nZHgLimEoqqFA0sbnKt5hLnLUuDh+L0SBda8onPcqVPnPk8nlzIzr0qeSVGP1EFQfkpC2ICbpTGTMz5kUaI8rhySlbEfxHc+yrJphEUIIz0U5qy6m/VQbre6t4rX7GEXpd6IQiEVoA5xOcwEhYw2WfQZQcfjpJDvEDmRo24vcXJuq/9oKxBoCz0ARxB4HUYXMYXzGrBttpsWkSlueFvm7iCs+HiHv5yHk5jl5mm3vRMgjPzYVIZw9iCBfg9QXxyBp4wHEEXuAYSfJB/++2OdtwCfN7Ei97/GCoApuDyLVICQJzdVghxHyrleL+tzsfnej+V6FiCDUStqumr0fjcumeP5qM8v1/q28wzQUcPh4EpHYVRZPEkJYjNbuuShZ4NNjf/4LGcWfhyrjOWe9iOGqo1bWczsMEGgtfQul7n8qcvN9c9kDYqzInwAvRMbqo5F2w9Da/tZoSb8TgkA4BJU3fD7VASFj3XavCkNI5TsoWnQd0rEvoLYGbCcKUmqq/msjCCF4KcXl8XlPRtLEL9GGbGXTDAA/Qmqr/tjndtpeiOdMEtKtAtcZH6A2HXe99myE6B9C3OIJ8R5bkcSwFNlevhKPvzL+dwLNVfbK40IeQNzz24E9Zva6BteOCkQCcRe1nlatguuh3UDpdR52xM8ZJNWSJyu8Hrk+5wRieszD9Ak0jvn4/dzMnlLo+4cRQTgF2XBuQC6uN5jZ/or3XRrfdW3s1zK0ppfEvu9HuvS3m9neKJ08F6mOJqF9tiD2O28fj9bOPkQQRwNJu4rvMPDtKs48ugE7rphGmoupTbS9MNFQC9fk7VsQHhp16XdCEIgQwk1oER1LipacPo7tAYSotiGXv48gXfdn0OJsBHeaWasVt4ZBSBX1PBGal6XM4QASvV+MFkzLFc5a7NPNJCTydjQ+riLwkqBTkJF0JeXZRJsF5/JcRUbW/hVCEOuRDeIv4vMOIwS5itrcVMfGKOEbs/72m9m5QRXSRt3ZoApCCPuRpNlK7fIiFA2drVznGYm/Z2aXRWTXgxigTSSHgx9aoYZACOENiCDcYmaDNIAQwgeQys/VZA5DJBfXPyOp216HbH6TSW65no3YjdW+Fnai/XAcjb3DWoFBpLZtyJnH4Mw8e3Ar7XauOdIeC+l3ohCIyQghvxp5dRSLc4+XFFEmhuYuZS4Sd6JFuwdt/KbqvzaCiIxBEovrpD3VxnSkktiC1A/PB44zsy+O9LkN+nRr9vM64Jlofg4jLt5zRvWRisDnm7pRDY6yjLkHEDe8D22Q6Qi5Phkhn26kPnkaQnTXI0+gW+N9zwPOMLOdWRDhVJCqxt9pNJMZ1oOQKrh9A3Hizhl2EFN/IImtMurczM4LKlf7eBTgdQwam5wge1CWj2MvGssHUAGZL8f+dCF1ykgkmqp3dfUXyI64m+F2Bi+e1UdyBMnL5jaD+PP92QpXnt/bSwQfGTczK2UIY6bpj8V+5uu4FZXWSGyCvUircROjKP1OiDgIMxsAro4f91R4MfAHJJfOI6ePYTtfPB2F7xy8PwuRmL605Jx2oJ+kfpmdPdu9P/bFZ3eY2Y9G6ZmNIFdBXIre2bOP5gkFp1Zc06hdltbd0znvJdU5+D0U2HSBme0KKq85Cdlmnhavy9UjD0fPE+dCh4A7QwhXxHYesDcmEEJ4LJJuvODOYUTQisGCXaR3r9TDRwNyjRE5hOCpMdaiKGsPgltiZvML556ECMt6YF4I4e+QFOEIcusoJKe7jzS3i5BHUmfhnCvi90xSLiXfUzlzcQBJFXuQ9LAGMSlrUICkZytthRPvYDhX30yU8odRGhyvfZJ79BWdMoptGD6vja7J2z4/y0hq8FGBCSFBlEHMy+SI4kloEs9AC3A82h8l1REuVr3KvW520mT91ybeeS1S45wen+3G6dlINP9C7MtKM3v2SJ/XZJ/egdwyFyIi4HWCX4jsAtOQx5D747vaLqC4iOMbtB8gBbvtRGO/MLa/CPxfhCQ2obiQa5Ee/F9iHwwhWK8/4ODc4e547Fi0lvoQUvwTM9szOqNUDtE116WAc5AhfwqK63D11pHMoXXalVlFM6lzTbx3D8kO8Vwz+2V2rpf1rIL7zawsXqNpiIT7GWhd+LN8TXgW181ory1heK3nHBxB3hXvV+zbSLzzcgnkO7G918w891nxvQ4he+Nj4l89pOwGjZ5XJhW10t+cKNwDoyf9TigCEUL4IlpUj0ObuqhqGi9wAuBupLeTAnq2Ix3oFGSz+CXw6bFGNkcTIif8RPTOm5A3ylLETU1CKRuOBGOZ2aklt2n32Z7y+DS0mWeieTgY+/L22I8ORFQ8q+lONE8PAN8fq1w29SBLigciEG5jqkwr0sYz8kzAZcXsIdP/m1mjynDF+9e1wRUJV6YGOyX2yV3GA8lhoAdFxf8UrZ/zYt8PI/sRaO6Wkbj0KueIVglDGXgslJlZqQ0tqOzqTjSP/h7NqpnKimK10u6N13chFfPdZvbiOu/TNEw0AuEbaC3iJKeSrP9jnW4jn0BPHwHidk5BUanHIo5wDkJEdyD1wXfNrL+9t8ajhU+mubgLA3rbdVccKYQQ/gu5Ox7f6NxRhh1oXrwo+8+BdyJPq3rgG+BeNFcOPzOz9452J3MoSBDnItUOFDLXjvAZz0ceZk8lFZeZgdQ6i0kSm+v4d6B4h89n97gSSYGfKdq0Qgj3k/bFCqTmDEjC2WZmJ9bp24djv25GNcA7o8fSPyFPxb3Aj9HaPwER/GXx3j3InXQ+IhzzSFULvR75SJCu6/WnIVdpHazgzEMIp8a+Lqc+sRlL8BQhoyb9TjQCcUdsemrkaQw3ZI4Hgch/95Fy3OTgA/sAcJ2ZXd78m9ZCSMVw1iGvqXnURroeQojxPqQy2Wlm17f7vJFAUD3jsxFCWRz/PgXpi/cig/2fjuLz/hLpnW+Ktir//ybESDyINrrXrna1xkGSMb0DEd+fIHfhuaiGx1hUJMv73vTmq4rgrbhvQO7Pz0dI+zySHn0ayq90A1JVXoEk4FnI9XQ98ETLSt6GEBYizrTScB1C+DTwTTP7fvz9LOD5Zvba+Pur8dSnk7yRytQqvag+99tIac9dQqhC6pvQ/vDkhp7Ztai+aaU9lLVvi33ZbmbPKHv//60w0QjEG4D3kGwPo2H9b0cv6b/zLJK52qkHLdKZSIrAstTJ/9shJiy7AlVF89TiQ8jt9UaSWiWvbVBsQyqK5O19CKF7AsSdyPB6qZl5GhTvw23UFmn3yGAn5rdnxzuQuqMztj8PvNfMdrXz/kcbYmqWSxAjBcNjQVxSGUTShY/ROmC9lVQ/DBXpvrPjG4pBcfl/MTgOkuqxEwXFgRJK7iUyNyjwdA3JscHjNqA11dBoQS/wQ2BFcWxCCFcjtdd8kuOIG5HHA4yUnNOzR4+a9DshvJgy+GT8TCWpeE6I7fkIaYxlex/JZ/4qhFRgOOGYFM/LPS7ahhDCdbHZtJ98KxznaEAUsV8PvBRtlGKQ0v9v79yj5aqrO/7ZuSEPkpBEHgIBAuGtGIMBobaiaHG1vhBBFlXx1UJt1SKohS7axWPZGh+1KLZFRFlgrQoqiopaH8tEqYiYEAhqgCAoIIHQJOSde3N3//j+fvecOzlznzN37szdn7Vm3d+cOTNzZu6Zs3+//fjuSeh/dXoT3n51xfvdheogFiDXStnlALoYdqfHcweya4EP+xg1CmoiJ6FzNk9Wai+u+ZzMacdld+RMM5vh7n0KxOniPomBa1geN7N/RAVboBXM4/lBd/9Deq1FyBCAJgxb0e/o58j9dRaaAOaiynK6eT26UexvPlqx748C6qPp4rg8pQ6vKOk8razYdQvFhLBcdEnp2EczCR3sOfmW1QVORf//hhiIdltBfBt9GSegfN8pyFeZMwZ6mzzekv7uRCf/gRSpnOsoiuY2oxM1F3A9Uyty1mmUxMoydyIXU5/bZ7QZMHXedxny399Jf1n1NwAXok5g+7J7ELOcKrga9X8YtEdvO2C7N4jK8YzsGt1AkVoLiqPtiy7Qvcjnfo67P2Jmf4LkJnahXt4frfOez0IdDk9Jm5YBV1QEqf+XwsWUs9tm0V9WP2e7dVHERgaa8DTjImbpOCajrLxHgSPdva5UfTKkX0AJG2XXWPmzDTTOtS9dw3hOebwN9YNo2Oq33QzEeUjvBveQhAAAFj1JREFUZG80o8/dv3JPAmvy2Clkox9L2/cBLnP3Jc387GWSNtU8NPPKWSczkRzFOhSDuKPO05t1TK8D3oc0kMo1DLmBjaPc9Hn0n7EORpWI4jZkhNek7Y8jwb7MJJR6ezLytVvFeD4DX3Q2NbsKvVmY2ZuAi1AsqEoBtkz2tW9H2YGXoBqjskHdCrzf3f+zAce2D3LXzERGaS4yWLkp0I3Azen9z0NKsc+icD9mwzGNYgUE1Uai/LlH41rO7HD33RJFUv3IF9C5PxLDkNWjh/Oc8ngLkkZp+Oq3rQwEgJm9C1XLHk2hVFle2jV73FMaQxGkrkqzc3Ty312rYTPCz/5a4BpkFAb60VeeyGOBmc0AzgYuQP7tgbSZGsX62grX5JZbiGINno6lPD6g7EbpNJLy7xvRbDbPeqeiYDToPH6GpCnmakp1HvqO7kDn2Aw02agtZCu/zzcZYAbvqd1rzXP2Q/pZB6LzeCaapR/lQ7wgWdHjej679xqvNQx55TSUCy4V+3cjl/KFtTNzUz/xxRSS7F0U7W4HG2fDMJznlMebUIHev5WTChpJWxgIU8vNlyALPYNqRdeyr7LZ43wfqmca+WR5BrmavuPuFzNKkg+0CwX5yvLZW9EM7LtotjXX3Y+u9zpjhZnNRfLkf5M29aKq153oMyxHM8HhjKm5vx8yBPn76CLp5iBDlWMTVYZqJwqOPg2scfdmxEfGHJOkNugCmuNXZ6JsnJcgtVsA3P2S0vNWoYlXL3KpXI8kOOq63lLWWl3cfWnabxP9uy4OxJmo0LHcfGeoZG2ukczE8zhPBLegCVndmflwMtHGkIatftslSD0r3XL1ZVUXKh+jcTlbqer9jSKAPgX5WEe9ekh0p1ueFWXysWRJj0Ma9H6jIv2orko3gJyCeR9yLRyaNg93XL5/GPo+HkA+97cg+ZXtyPU0BxmUWp2dbNinIh/9LDqHM9HsfAE69/Kk6hR0/uRGOv26jmVxwpSi+j7kbro81Wv8DPVxWFYW5SsZgGkUPcEfdPftNa895O/X1CCsmyJO8lS6Xx4fhAoyT0aThPy/zde07BbO14pdQxzvQC7M+9C5sw54u05bcPeP13yuMU0GGWvaYgUxHjG1TnwuOqnKukh59pHHfwB2+gCNRobxnj9AJ/If0b83dl4S70IXxt7x4j83s6uRT3sm+vE2clKSZ4sPA5tzCmZN5smeDKC/04kV7qZeId9CM/CjkTHsSn+fQCvb77v7BUN4rbko2P9mVAS20t1PKD0+GfVKfweSYLe03/XApbUFomZ2BkXQ/ATgOlR9TNq+gCLQDXIH3lsxPjmNx0RQMdEy122raCsDYep/OxmdFLlo7mSKvsw0ebyZot/DI2iG0Ytm7FUupx7kYrrI3bOey4hJ/n1Ds93XIQ2qLFb3KLogrE3v92CdlxlTkrTC25BPexbKYMn+16lDGDtyE2WjOxV9/48jw7AQpaxehy5+f0jv906kjprz7+spbN6EZtQH+RjJezeLlEk0B12g90Mz/n3RhTf3Au9FM+/LkbTGbhpOZnYqcrutRu7BM5DsxSe8psdDqoaehfzzm9K2vVAx3rZaI1RSQwBJikwvyYHMTse+Ehm2PKGocjOVt/VS9L/4Pfqf3z8SPSIz+zMkDXMrah085g2kxhPtZiD6tGooiq0WMnDBVSPH5b/9FDcbJY0wHJJg4RupyNJpZLXyCI/tdHRxmYGM+TmMvA3jQOwCrkYplheii8x/oKyS49CFJFfYlgOYWUYhTzSOaPfZYZK9OIihrdJ6gN9XpR6norj7kZvpNoqahKVeIwJpZg9QEVw2sy5UeX1kzfZ7SnePTAYirwrmIQOX4xXDLThztKo4HLjP3U8axnPz8f0EeKe73zfozhOAdolBZMpVy+Uf83Dko0czLkt8z0A/xukAZpbF+soBrl+jgq217v7Beh9qMNKM7CJUmZybp4Auhrn4y1E/3CxK11IDgSqpFyL5j8UUPv58YYaBpU2g/2fLrrQs+jcdfbegQPg17n5FfvPkM86xmqpZUN62q+Z+2zKQ7tFwXwp9L+9F5/B1SP7igKp9qzKP3H1XnQDuXSjZZArQY2b/h34rPeh/9ZC7H1HxvN1IK6ZJyKjkmoWpFM29ho27v3gkz+tU2s1AXIrypCdTVDFD/wrPZo6nlv7WNnUvV/Jm0bDjKS6MIzYQSPrheOSmycH52spLR771v3L3L4/ivRpFrlzOAfusGLoJuT0GSyuGIq6Sx9spegdkN9ScdPsucFiq1L0SuRoOo3AT1lLuL7Af0JayGmVMLXkBzkUTqOdTyNLkle9m4FdohfBzd/9axUv1ooDwcSSxSeCjVLfw/JWZvcXdb6w5ljdTamhU4j3o//MmirTbLLS3HHi1md1Qeq8ca1iIao42pP0noxTdeegcywkHK5D793tm9q12lUsZL7SViwnIhTavQIHaQ9Pm9RSqnc0eP4FOxtejmUruRJWZRBEENZIrajRaTKUleNYOOpYi6Ph0+rsPSm/dONL3aSQpE+UQiplceZwD9jkPvGpMul8el/WW8usdhL7zVaXA9L1IcuBzwCsZXO7kd0jPaVzEbUaKmeUV1PnonJxDMZHIadqOjMRaJCL5jorXeQ3wEXThXYKMxJWo5eiHa/adh2oEtiF1A1DweTpwhrs/RgVmNovCeM9ASQZr02MrSrtmd/LR9Hfz5s9TzwXlKBj/Hi8p0wbDo61WEGZ2CppJnIIuiLPRbHSs2IZmZdsofmx5Rl8+WXMl5XY0G1s7yvfNmSB5Fp7VKrejmTLAzPFiHBI/RxeoSWh2nsdQrBB2lLbVjqsKiGYjI7Ev+vE/jWaQfZo/CXf3dajR/YTB3S9LcalfoXPwJFT0lh72m+o+uT9vQy67T+QNyRW0W7eyZABOSquX3Hf9Nnf/YdULm9nzUGLAEdRcf5Kb9i8o5CZIn2NPinOjbOyzztQ2NHGbj6r1T0Dn0DTgYrQCD0ZAW60grOg1UKWtMx7pQU1g3uDuD4/0Rcwsa7QMmVbnZ6dq2e8ig15OAW4UObbgqCnQuSj//yuoDgIKI1P1vvm5O5AP/LHRrPLGE2aWYzPHohgCAOX01EGevxUFmF9Qs211XqWN4tjKWkwL0Crvpen+DCSj8260cpmFLvKDTWRzzGQTMhTHoP+rN+KYJzJtZSBqMbODkbrrcKtxGzUGzW6OAV5EIeZnabx1IJmCiUCaWb4b5bBPZ/hV62W57/zYVpJEBKp0vRS5HQ2tJmajuMLh9L+41L7HBnRBeQJJWZ8/qg87TjCzJSgQfBQypHlluRyluK5J2/qluaaalXPR9+cU8aNciLnM3V8+ymMrK6IelbKYqrY9F60mTkD/y1zcl11M+6Dzqdy2tIdi9fFkevxudz91NMc8kWl3A5GrckEXgzVjOH4IzXCykNgWCt9ors7M+uxL3f3KkX/SYCQkX3Y5JbrfuBWpyWPBENNdd0tzNbMXoX7RH0Bu0Vy7sxH4NjVNmUZ4bLeg/8MeKBC+HhmjHrSC6HH3A1Oa7AFpnwNRwkE2VLOQi3EhCmLvjwLUPSgwvgT46lB1nYL6tJWBSDOcU9DMaCD3QavJzTu2IBnqpe7+r609pM7E1Ifi/Shhoe+C6O4vM7PlaHWXs2n6jTvVQIxnUmX2EpTkMYfiN9yD3GGvBV4DfAitAIbqWnVa2Gq3U2mrIDXKoZ6KMjT2Sn+nUgRvmz0GzXzWo1nLFOSeWI+Cbg9CoWkTjAk3IzfTdRQB7QlPWg2chrK5DqZIt96JUlwfAG4vp6ea2UaUUlqvMdWoReCSPtdfp1u9Y7+AIu34YIp+4+XxIUhocW+KlcW0Uu1F28q1jyfaykC4+w1mdhtFPwgY2xTXrOg4FxURnYiMwkYUe3gc2Ghmz3P3vkbnQVPp8VKfgqwamsXVEsdXjWsLuVod2G8UZvZ55CrKhWRQrLRzjc7eKJBbrl/YA5jRjO/BzG5FcZE5VPdwz5OwDWglkY9hLpICrx3Pp3+W4MvdvS8gHzSGtnAxpVjDZag6t92WkNsZoJdvMDJSFS2oY9yTqGFQrrKmSmNoomBm+UK5gP61I88ZyC9flb3UwGN6iiLVORdA/o5C4G8dSjxYg1LJX4ViEjnpA+q7k7vRqqhjJNvHC+1iIC5CS9KcubCOQvgtyzDAwNINjRg7Ohl3UOTq74lmMDm1cAtaSWxAS+BVKIXykZF89qCaFIitVyjlVRpDEwUzuxklTCxG5182nOd76g1d53k96PxeU2eXz9XKXQ/jmLrQquZCVJ+RO8I5Eue7IgtamtllqG/FociVmwX7yv/rWp2mLMNyDxJs/HydKvFgGLSLgViBTqYj0RKzJ41/h3yRecm6o0njXMZ/PzoRD6cokgOdvM8g/+6vgS8BnxltxkcQDIdh1AntQBOYO73U8S3V2/SgmXwVN5T1rkZxnFNROu3HkVurCxmBr7j72UN8jXod5XahwrmvVlWJB8OjXWIQWZcl6/Tk2UQ3u88qmjnuRoGyLBhYfjyvZk5EKYbHoLabQRMwsxNRmuYT6f5bUKHcI8DlE9TF9DHknikrDZS7uG1G8bKVaJWwsub5O2iSiwn6DMPpaBVxHFpFZHfT7Ui87yqUyXQw9LXwHIy++IW77z/YzsHQaRcDURZ8qx2XO6s1e5zbWkKxbJ9Wuv9rZBg2AqEK2Vw+Dfwp9EmwLEFCcIuAa4GzWndorcHV3W0p8EkAM9sbaVEdi9w1G5H7cyvKYPplxcs0JVBvZjeiuMJ0iszAe1HPha+nfRan3e9Dv589kKdgb2QockfJben+XhSpsFOBZ6dV0I+Bt7r7o834LBOJdnExDVtqogVsQzn2fbn2zZqJBarIzQ1hzOzfgafc/fJ0/+5Okc0YDmb2LRSbOw5pdD0HXUhrfzvZxbTE3cvtYBdQp4lQA44tq/UOhfmoOC5rbPUbu/sdqXnYgWnfjcD3UdV1Vvf9mbuf1qDDn7C0hYEYT4zQWEVOdoMxs1XAInfvMbPfoADssvzYRKxFMbOyqsBGNMOejDSKcvbfHhTFgr3jKbsuFTZmFlJIu8+mkAuZjTLWXo4SRHYhvaVFtQ3FJuIkodG0i4tp3ODuQ/GJBs3ni8BSM1uHVm8/ATCzIyguJhONXMzpFH2fJ6HYQzYQvRQS6uON8goju43y9vJ4AUVgeyewj5ldg4zfbGQ0Oq7XeCsIAxG0Je7+z2b2Q6TX8z+l/P5JKBYxEfk9ijU4Ra8FQ73K82+9myKONt7cB0M9HkfJCMcgozCPojLbgWVIsjwYJeFiCoIOIUmsfwS5X7IERe5dspOiaC5nL61x94+N9XHWo0GxxgtRDcXScnwlGBlhIIKgQzCzf0ArqsWoRuip9ND17r6i7hM7BDPLHQsPBB5390NaeTydQLiYgqBzeAhVK78AteTNvCt1a1uBGvTckkTzOo169UvBCIkVRBB0IGZ2PPB24GyKOgIouq89jfo9fNbd72zJQTaYWEE0njAQQdDhmNleqDr5PKTw+izUOGkX8Nt26qSX1XqHsOsudw8PySiJLzAIOgwzewOq8H8hkn05EaV/5jaruY3rxe6+vPJFxinuPmvwvYJGESuIIOgwzOyeNDwa1T10oXTQ7jTegVJiN7j7SS05yKAtGO/yFUEQDJ/cE30SMga9KPawNf19Mo2n1HuBIIAwEEHQiTyG4gxZ0G4qci/NoqisrtJoCoJ+RAwiCDqPsykks49BmkZzkZtpA6o0BjW0CoK6hIEIgg7D3bemtqPPR1LfuUfCM8i9tBH4krvX9oMIgn5EkDoIOgwzuwC4BK0acpwhF47ljmubgA+5+9Vjf4RBuxAGIgg6jJTFZMARFPpLh6MucguAB9M2H09y38H4I1xMQdB5WOk2lO1BUElkMQRB53E9ci+BYhDHokymY9Gk8JD0+GdbcnRB2xAupiDoQMzsBcA5SPr62WnzJmAt8EsUpO54hddgdISLKQg6kz1R57jVKGvpUbSKeAq4CZhkZoe5+29bd4jBeCdWEEHQYZjZZcAbUWC6HHPwNL4r3e929z8e+yMM2oWIQQRB53EGSmXNUhuZnenvtHQL4btgQMLFFASdRzYEXrpVNdMJ90EwILGCCILO4yZUENeLVgqTkFGYlh4/APVU+ExLji5oGyIGEQQdiJmdhhoEnQzMSZu3A+uBe4Br3f37LTq8oE0IF1MQdBBm1gX8IN1dBNydH3P3U1tyUEHbEi6mIOgg3D27lnKcYY80NjOb3bIDC9qScDEFQYdhZt8ATkMxh1pZjV3IzfQYsMzd/26MDy9oI8LFFASdx9dQxfSLUS/q6UjVdSdKf10NPIAqqoOgLrGCCIIgCCqJFUQQdAhmdlMavg7FF7vq7OqogO6BkPsOBiIMRBB0DpuB/YB1wNPIEExB0hqbkCbTBuRiWoviEEFQlzAQQdA5rATei9RbD0jbHDgSxR6+Anw5VFyDoRIxiCDoMMxsPvBO4C+BvSnS2bPsxkbgv4BPufv9LTnIoC0IAxEEHYyZHQ98ETi64uFed68XpwiCKJQLgk7DzCab2elmthS4Eziq9LAD3cBPgde34viC9iFiEEHQIST9pfcBL0O/7bJqaw+wCvgkcJO7b2nJQQZtRbiYgqBDMLMfoeD0fJS1tAnJbnwK+Ly7r2/h4QVtSBiIIAiCoJKIQQRBEASVhIEIgiAIKgkDEUxozGx/M/uSma0xs1+a2W1mdlSdfeeY2d+O9TEGQasIAxFMWMzMgFuAH7v74e6+GPgHVIlcxRyg6QbCzCK7MBgXhIEIJjKnAt3ufk3e4O4rgRVm9kMzW25m95rZ6enhJcDhZna3mX0UwMw+YGa/MLN7zOyK/Dpm9k9mttrMfmpmXzSz96fti8zsjrT/LWY2N23/sZldZWZ3AZea2W/NbI/02F7l+0EwVsRMJZjIHEd1T4TtwBnu/oyZ7QPcYWa3ApcAx7n7IgAzewXSOXohqjm41cxOQbpHZwLPRx3dlpfe50bgPe6+1MyuBC5D+kkAU9z9hPTahwKvAr4OnAN8zd27G/jZg2BQwkAEwe4Y8C/pYt8LzKPa7fSKdMvidzORwZgFfMPdtwPbzeybAKnl5xx3X5r2vwG4ufR6Xy6NrwP+HhmItwPnNeBzBcGwCAMRTGTuA86q2P4mYF9gsbt3m9nDqH1nLQZ8yN0/3W+j2Xsr9h0KfdXN7n67mR1qZi8Futx91QhfMwhGTMQggonMj4CpZnZ+3mBmC1El8pPJOJya7oMqk2eVnv894B1mNjM9d56Z7QfcDrzGzKalx14N4O4bgfVm9uL0/HOBpdTnRuC/getH+TmDYETECiKYsLi7m9kZwFVmdjGKPTwMXA580szuRc12fpP2f9rMbjezVcB33P0DZnYs8DMlRLEZeLO7/yLFLO5BjXnuRRLbAG8FrjGzPYGHkPuoHl8APojUWINgzAmpjSBoAmY20903J0OwDDjf3ZcP8zXOAk5393ObcpBBMAixggiC5nCtmT0HxS5uGIFxuBr4c+CVzTi4IBgKsYIIgiAIKokgdRAEQVBJGIggCIKgkjAQQRAEQSVhIIIgCIJKwkAEQRAElYSBCIIgCCr5f1U8YXWxZyLwAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "birds.plot(x='Category',\n", + " kind='bar',\n", + " stacked=True,\n", + " title='Birds of Minnesota')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 42 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAKrCAYAAABoYV7pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdebzVVb3/8ddbHBHBASokDTUccEI8mqAomJam5Tzfm2Tp1XLs2s2flppNDtcJSwu9SuZEKQ5pOUsgIHqYB8cUc6gEJRVBRHj//lhrw5fN3meAfcDj+Twfj/M4e3+H9V3ffc7j8V17fdf3vWSbEEIIIbQ9q63qCoQQQghh1YhGQAghhNBGRSMghBBCaKOiERBCCCG0UdEICCGEENqo1Vd1BUJojs6dO7t79+6ruhohhNCqjBs3bpbtLuXLoxEQWpXu3btTX1+/qqsRQgitiqRXKy2P2wEhhBBCG9XmegIkCRgJ/Nz2X/KyI4Bv296vyj6vA9sBc4BZttevYX1+lsu8qlZlNnK8Q4Hptp9rxj6r04zzlnQLcKfte5q4/YbAkbZ/09i2U954l+7nPFBx3YyLD2jK4UIIIWRtrifAKSLxZOAKSWtL6gD8Avjeqq1ZdfkiXCuHAlvXsLxa2JD0NwkhhLAStblGAIDtqcCfgB8C5wM32/6bpOMlPS1poqRrJVX9fCStJukKSVMlTZF0eF7+W0lfy6//JGlwfn2SpJ9UKW4nSU9JelHSCXn7fSQNl3Q/MCUvq1g/SYMl1UuaJun8Qh0vkzRd0mRJl0jqB3wNuDKX0V1SD0kPSRonaYSkLfO+W0gaK2kKUK3eSPpWLn+SpJsKqwZIGi3pZUmH5G07Snpc0vi8z4F524uBrXKdLq52rBBCCLXV5m4HFPwEGA98BNRJ2g44BOhr++N88T4auK3K/kcA2wA7Al2AZySNIN1q6CfpL8Bngc55+37AkCplbQ/0BToC4yWV+rvrgJ62/95I/c6x/U7uMXhC0p3A26QL/ra2LWl92/+W9GcKXfWSngC+kxtBuwO/Ar4CXANcbfs2SWdUqrSkHUkNqb75+BsWVn8G2D2f2x+Au4F5wMG235P0GWAUcD9wDvBF272qHOck4CSAdh2XGdwaQghhObXZRoDtDyQNBebYni9pH2AXoD4NG2Ad4LUGitgDuN32QuCfkp4kXbRHAqeQLn6Tgc9J6gLsRvUu73tsfwh8mBsSuwAfAmNs/z1v01D9jpH0bdLfc2OgJ3AvsAi4Pjcq7i8/qKT1c73uymXCkv+JPsDX8+vfU7k3YG9gqO13AEq/C+dkYLKkbqVDAhdL2iPXbRNJnWmE7cHAYIC1uvaIGa9CCKFG2mwjIFuUfyBdoG60/eMVKdD2q/lb7leAEaSL8jHA27nhcTpwQt78K6XdyovJvz8oLKtYP0k9gDOAXfM3/VuAtW0vkFQH7EvqtTilcLximbOqfQOvUK/mmF92HIBvAp2A3rk343Vg7RU4RgghhBXQ1hsBRY8Cd0q62vYsSRsB6xa+iZcbCQzMF90upK7vUrf5WOB0YE+gG3BH/sH2IGBQqZD8DfxgSZeSbgf0A84i9SQ0Wr+8z/vAe5K6Al8FHpS0HqkxcL+k0cDzuZz3gfVyXWZL+oekQ2zfnccYbG97EjAGODLX+7gqn8HjwNBcp3ckbVjWG1CuE/BWbgDsmz+bperUmO27daI+ngIIIYSaaJMDAyuxXRoA96ikycDDpHv61dwJPEfq8n8U+L7tt/K6kbnMGcAzpHEBIxsoayrwV2A0cIHtfzWjfuOB6bkuN5Pus0O64D4gaVIu+/t5+e3AuaWBgaRxBSfn7aYBpcF6pwNn5WNV/BxyY+FSYISkicBlDZwjpNsKffNgw6OBF3M5/wLG5QGWMTAwhBBWEqXbtiG0DnV1dY7EwBBCaB5J42zXlS+PnoAQQgihjYpGQAghhNBGxcDAVkrSHNsd8uuvAVeRngTYH5hr++blLPcI4CLgn8APgG/aPr3Ktv2Bs20fWGl9S4jY4BBCqJ1oBLRykr5Metrgq7ZfBRrN32/Et4ETbT+Z37fYDXhJq9v+uKXKDyGE0LC4HdCKSdoTuB440Pbf8rILJZ2dXw/PccFPS3ohxwYjqb2kP+RI4btzPHBdjhzeA/i/HDncXym2GEl75ScKJkqakB9BBOgg6U5Jz0m6VfmZR0k7S/prjiN+KD++WKrTVZLqgTMkHaEUvTwpByWFEEJYSaInoPVaC7gH6N/IjICr29413zK4gJQ8+F1gtu2eOY54IoDtiyTtTerir8/d/SVnA9+zPUpp0qUP8/KdgG2BN0mPJ+4uaSwpdvgg2zMlHQX8nCUhSWuWRqnmxwW/avuNnGC4jIgNDiGElhE9Aa3XAlKuwLcb2W5Y/j0O6J5f78GS8KKppKyDxowizbx4OrB+oRv/aduv215Eakx0B7YiTb38SM4P+BHw+UJZQ8vKHSLpRKBdpQPbHmy7znZdu/admlDVEEIITRGNgNZrESnRb1dJ5zawXSm+dyEr0PNj+2LgO6Q5C0ZJKk1HXIwHLh1DwDTbvfLP9raLkcWL45Btn0xqJGxCCgzaaHnrGEIIoXnidkArZnuupAOAkZL+Zfv/mrjrKFID4glJPVk2ongZkrbIqYVTJO0CbA38u8rmzwNdJPWxPUbSGsCWtqdVKXcsMFbS/qTGwNvV6hGxwSGEUDvRCGjlcmb/fqTo3plN3O1a4HeSSnHD04B3G9nnTEkDSD0Q04C/kGYarFSnjyQdDgyS1In0f3ZV3q/cZXkSJAGPAZOaeA4hhBBWUMQGt0GS2gFr2P5Q0hakuQ+2sv3RKq5aoyI2OIQQmq9abHD0BLRN7Um3AtYgfQP/bmtoAIQQQqitaAS0QbbfB5ZpEZaTdB5wLGnA3yLgv0i3AAbbntucY0qaAdTZntXsCocQQmgR0QgIFUnqQ5pWuLft+ZI6A2uSHu+7BWhyIyDffqiJiA0OIYTaiUcEQzVdgVm25wPkb/CHAxuTbiU8ASDpGElTcurfJaWdJc2RdLmkSRQGEEpaR9JfJJ0oaV1JD+S0wKk5VCiEEMJKEo2AUM3DwCY5bvhaSXvZHkRKBhxge4CkjYFLgL2BXsAukg7O+68LjLW9Y2Eegg7An4DbbV8P7Ae8mbfZDnhwJZ5fCCG0edEICBXZngPsTIrrnQkMlTSwbLNdgOG2Z+YEwVuBPfO6hcBdZdvfC9xUmOFwCrBvnt+gn+2KjylKOklSvaT6hXMbe5IxhBBCU0UjIFRle6Ht4bYvAE4FDmvG7h/aXli2bBSwX2mSIdsvAL1JjYGf5QmMKtUjYoNDCKEFxMDAUJGkrYBFtl/Mi3oBr5LmBlgPmAU8TQoE6gzMBo4hTRxUzfn559fAd/PthHds3yLp36RY4gZFYmAIIdRONAJCNR2Aa/LMfh8DL5FuDRwDPCjpzTwu4BzgCVLewAO2722k3DOAGyVdSkoIvEzSItKESKe00LmEEEKoIBIDQ6sSiYEhhNB81RIDY0xACCGE0EZFIyCEEEJoo6IR8Aki6bOSbpP0sqRxksZIOmQ5yzpTUvvl3LeXpK81Ybs5y1N+CCGET4YYGPgJkR+buwf4ne1j87IvAN9YziLPpJnxvgW9SHML/Hk5j90oSavnbIFmidjgEEKonegJ+OTYG/jI9m9KC2y/avsaSQMlDZP0oKQX88h6ACRdl4N0pkn6SV52OsvG++4naXyO6H0sL9s19zZMkDRa0laS1gQuAo6SNFHSUZI6SLopxwNPlnRY4fg/z2U+JemzeVkXSXdJeib/7J6XXyjp95JGAb+XtK2kp/NxJkvq0dIfcgghhCWiJ+CTY1tgfAPrewE7AfOB5yVdY/s14Dzb7+RJeh6TtIPtQZK+T4r3nSWpC3A9sKftVyRtmMt8Duhn+2NJ+wC/sH1YDu2ps30qQJ4T4F3b2+f3G+T91wWesn1ebpicCPwMuBq40vaTkjYFHgK2yfv0BPawPU/SNcDVtm/NjY+aTTQUQgihcdEI+ISS9GtgD+AjUrjOY6VYXUnTgS8ArwFHSjqJ9LfsSrrITi4rbjdghO1XAGy/k5d3An6Xv4EbWKNKdfYBji69sT07v/wIuD+/HgfsW9i+Zw4GBOgoqUN+fZ/tefn1GOA8SZ8HhhWCico/i5NIGQW069ilShVDCCE0V9wO+OSYRorQBcD294AvA6Wr3vzCtguB1SVtBpwNfNn2DsADwNrNOOZPgSfy5D1fb+a+AAu8JGhiIUsalasBu9nulX+65bkIAD4o7Wz7NtKYh3nAnyXtXekgERscQggtI3oCPjkeB34h6RTb1+VljY3u70i6qL6b78fvDwzP695nSbzvU8C1kjYr3Q7IvQGdgDfy9gML5Zb2LXkE+B5psCGSNij0BlTyMHAacFnevpftieUbSdoceDnfvtgU2CF/DlVFbHAIIdRO9AR8QuRv1AcDe0l6RdLTwO+AHzawzyRgAune/m2kCXpKBpPifZ+wPZPUnT5M0iRgaN7mUuCXkiawdIPwCVJ3/kRJR5Hu828gaWref0Ajp3M6UJcH+00HTq6y3ZHAVEkTge2Am6tsF0IIoQVEbHBoVSI2OIQQmi9ig0MIIYSwlGgEhBBCCG1UNAJaCUkL8z360k/3CttsLOnOFThGk6KGJc2Q1LnC8pMlfbOJx4rI4RBCWMViTEArIWmO7Q4NrF+uGN6yMmaQQoJm1WK7hurW2PlUs1bXHu56/FUV10VscAghVBZjAj6FcpzwfZIeJ6UFdpc0Na9rL+kPkqZLulvSWEl1eV1To4a/kmOFx0v6YyHwB+B/cozw05K+mLe/UNLZ+fVwSVdJqgfOkLRZLmuKpJ8VzqGrpBG5d2OqpH4r4aMLIYRANAJak3UKtwLuLizvDRxue6+y7b8LzLbdE/gxsHNh3Xm5RbgD6ZHEHWwPAt4kRQ0PyN39PwL2sd0bqAe+XyijFCP8K6DyV3NYM4f8XE6KEr4u7/OPwjbHAg/Z7gXsCFTKEzgpN1rqF859t/onFEIIoVkiLKj1mJcvlOUeKcQAF+1BuvBie6qkYpRwU6OGewKjcvzvmqSY35LbC7+vrFLnoYXXuwOliYd+D1ySXz8D3ChpDeCeSqFCtgeTcg9Yq2uPuH8VQgg1Eo2A1u+DxjdZohA1vIvt2ZKGUDkuWKQGxjFVinKV1w3VbZntbI+QtCdwADBE0hW2IzQohBBWgmgEfHqNIiXyPSGpJ7B9Xt6cqOFfS/qi7ZckrQt0s/1C3vYo4OL8u9hD0FB9jgZuAY4rLZT0BeB129dLWot0e6NqIyBig0MIoXaiEfDpdS1phsDppFjhaaT7+C/mmODnSLMQVooafjOPCxgI3J4vzpDGCJQaARvkWwzzgWq9BUVnALdJ+iFwb2F5f+AHkhYAc4AmPWIYQghhxcUjgp9SktoBa9j+UNIWwKPAVrY/WsVVWyERGxxCCM1X7RHB6An49GpPuhWwBun+/ndbewMghBBCbUUj4FPK9vvAMq2+EEIIoSRyAkKTrUjUbw42+lUt6xNCCGHFRE9AaHGSavZ/NuWNd+l+zgMV10VscAghNE/0BIQVIunrOZJ4gqRH82OHpQjh30saRQoHKu5zQI4Q7izpiBwXPEnSiFVyEiGE0EZFIyCsqCeB3WzvBNwB/E9hXU9S7PDiRwglHQKcA3wtT0B0PvBV2zsC36h0gIgNDiGElhG3A8KK+jwwVFJXUrTwK4V199meV3i/N2mw4ldsv5eXjSIlBf4BGFbpABEbHEIILSN6AsKKugb4VZ4Y6L9YOoK4PDb4b6REwi1LC2yfTAoh2gQYJ2mjlq1uCCGEkugJCCuqE/BGfn18I9u+CvwAGCbpCNvTJG1heywwVtL+pMbA29UKiNjgEEKonWgEhOZoL+n1wvsrgAuBP0qaDTwObNZQAbafk3Rc3ufrwGWSepACjR4DJrVIzUMIISwjYoNDqxKxwSGE0HzVYoNjTEAIIYTQRkUjIIQQQmijYkxAGyHpPOBYYCGwiDSSvw8w2PbcZpY1BLjf9p2SbgCusD29xlWuKBIDQwihdqIR0AZI6gMcCPS2PV9SZ9Iz/UOBW4AmNwLyFMWL2f5OLesaQghh5YnbAW1DV2CW7fkAOanvcGBj0nTDTwBIui4n802T9JPSzpJmSLpE0njgiGLBkoZLqsuv50j6eY4AfqoQIbxFfj9F0s9KExFJ6ipphKSJOTq430r4LEIIIWTRCGgbHgY2kfSCpGsl7WV7EPAmMMD2gLzdeXn06A7AXpJ2KJTxtu3etu9o4DjrAk/lCOARwIl5+dXA1TlQqPiI4bHAQ7Z7ATsCEysVGrHBIYTQMqIR0AbYngPsDJwEzCTF/A6ssOmR+dv+BGBbUvZ/ydAmHOoj4P78ehzQPb/uA/wxv76tsP0zwLckXQhsb/v9KvUfbLvOdl279p2aUI0QQghNEY2ANsL2QtvDbV8AnAocVlwvaTPgbODLtncAHqDhCOBKFnhJ8MRCGhlzYnsEsCcpcXCIpG826WRCCCHURAwMbAMkbQUssv1iXtSLFOHbnZTlPwvoSLrQv5vv5e8PDK9RFZ4iNTqGAkcX6vUF4HXb10taC+gN3NxQQREbHEIItRONgLahA3CNpPWBj4GXSLcGjgEelPSm7QGSJgDPAa+RZverlTOBW/Jjig8CpRv7/YEfSFoAzAGiJyCEEFaiiA0OLU5Se2CebUs6GjjG9kHLU1bEBocQQvNViw2OnoCwMuwM/EqSgH8DJ6zi+oQQQiAaAWElsD2S9AhgCCGET5BoBHyCSNqINJ0uwOdII+xn5ve72v5olVTsEyRig0MIoXaiEfAJYvtt0sh98rPzc2z/b3Gb3KUu24tqeWxJq9v+uJZlfhKPGUIIYYnICWgFJH1R0nRJtwLTgK6S9pc0RtJ4SUMlrZu33UXSXyWNk/SXQnTvlpIez5G+4yV1l7RPjv29H5iStzte0tM5yvdaSavl5dWO93qOFJ4iaaykzfPyz0oalpP+npa0W17+M0k3SxpFygbYXtIz+XiTS/uHEEJoedEIaD22Bq603RNYAJxDCvbpDUwGzsjP2l8NHGZ7Z9LkQD/N+9+e998R6Au8lZfXAd+1vY2k7YBDgL45ynd14GhJn6l0vELd3smRwL8FrsjLBgGX5tGoRwI3lJ3Ll23/B/Bd4H/z8XYhRRkvJWKDQwihZcTtgNbjb7ZLz8b1JUX6jk53B1gTeBLYhhT3+2he3g54XdIGQGfbfwKw/SFA3maM7b/ncvchXYjr87p1SJkBc6scr+T2/PtW4OJCWVvl7QE2kLROfn1vqQ7AaOBHOThomO2Xyk/c9mBgMMBaXXvEM60hhFAj0QhoPYqxvQIetP2fxQ0k7QRMtt2vbPkGzSj3Rts/Ltv/kErHK6h0YRYVBjPmRsHiY9r+vaQxwAGk4KITcpxwCCGEFhaNgNZpNHC1pM1tv5zvz28MTAe6SdrV9tOS1gR62J4maaakr9v+k6S1qXwr6FHgTklX256Vn1ZYt9rxCjHERwH/S0ogHFUo63vAlQCSetleZpbAXOZLufzNSDMYVm0ERGxwCCHUTowJaIVs/wv4Nmk2wEmki/SWtucDhwNXSJpMmg3wS3m344D/zsufBLpUKHcK8BPS7YTJpCmIP1vteIVdO+ftTwH+Oy/7HrB7Huw3nSXTCpc7VtI0SRNzmbcsx0cSQghhOURscFghkl4HtrP975VxvIgNDiGE5qsWGxw9ASGEEEIbFWMCwgqx/flVXYcQQgjLJxoBYTFJnwd+TXoccDXgfuAHn6S44ogNDiGE2onbAQFYHEc8DLjHdg/SIL0OwM9XsNx2NaheCCGEFhCNgFCyN/Ch7ZsAbC8EzgJOkLRtIUp4sqQeOXb4OUm3SnpW0p2S2gNImpGjhMcDR0jaQtKDOcp4pKStJa0n6RVJa+R9OhbfhxBCaHnRCAgl2wLjigtsvwf8HfgVcHWO9q0DXs+bbAVca3sb4D1SBHDJ27Z7276DlPZ3Wo4yPjvv8z4wnBQSBHA0KTFwQXnFIjY4hBBaRjQCQlM8AZwr6YfAF2zPy8tfs10KB7oF2KOwz1AASR1IMcd/zFkAvwW65m1uAL6VX38LuKnSwW0Ptl1nu65d+061OqcQQmjzohEQSqYDOxcXSOoIbEpKA/wGMA/4s6S98yblIRPF96Vo4NWAf9vuVfjZBiA3ILpL6g+0sz21licUQgihYfF0QCh5DLhY0jdt35wH9F0ODAE+B7xse5CkTUnRvi8Dm0rqY3sMcCxLTyoEpFsK+V7/Ebb/mAcg7mB7Ut7kZuA2lsx22KCIDQ4hhNqJnoAAgFN05CGkgXwvAi8AHwLnkqYCnpq787cjXbgBnge+J+lZYAPguirFHwd8O0cOTwMOKqy7Ne97e6UdQwghtJzoCQiL2X4N+HqFVRezZIpgYPGtgo9t/0eFcrqXvX8F2K/KYfcA7lxZscMhhBCWiEZAWGUkXQPsD3xtVdclhBDaorgdUGOSLOnywvuzJV1Yw/LvlnRw4f3zkn5UeH+XpEObUV53SRUH5EkaLmmZCScAbM+wvV1z6l6hjNNItx3eysebsyLlhRBCaJ7oCai9+cChkn5pe1YLlD+K9MjdPZI2Io3C71NY34c0jW+jJK3yv7/tZvUCRGxwCCHUTvQE1N7HpHCcs8pXSOqSv6k/k392z8unSFpfyduSvpmX3yxp37JiRpMaAeTffwK65H03A+bZ/qektSXdlMueIGlALnOgpPskPU56IqBYv3Uk3ZETAO8G1ql0gpL2y2mB4yUNknR/Xn6hpLML202V1D2/vicnBk6TdFJhmxmSOjftow0hhFBLq/yb4KfUr4HJki4tW341cKXtJ/Ojdg8B25C+3e8OvEp69K4faQR+H+CUsjLGAdtJWpPUCPgrsHkuZydSIwFSb4Btby9pa+BhSVvmdb1Jj+m9U7pIZ6cAc21vI2kHYHz5iUlaG7ieFDP8EjkUqAlOyMdbB3hG0l22327iviGEEFpA9AS0gBy3ezNwetmqfYBf5Uft7gM65kS9kcCe+ec6YHtJ3YDZtj8oFmB7Pukxu97AbsBYYAypQdCX1KCANOr+lrzPc6QGRqkR8IjtdypUfc/CPpOByRW22Rp4xfaL+bHCWxr9QJLT8yOCTwGbAD2auF/EBocQQguJRkDLuQr4NrBuYdlqwG6F5LxutucAI0jf/vuR8vRnAoeTGgeVjCJdsNezPZt0YS01AkZX2afog8Y3WS4fs/T/1NoAORFwH6CP7R2BCaV1TRGxwSGE0DLidkALyV3ffyA1BG7Mix8GTgMuA5DUy/ZE26/l++Jr2n5Z0pOkiXZOrVL8aFKa3/D8fjKpV+CzQGmk/0hSSM/j+TbApqRwn94NVHsEKfnvcUnbkZIByz1HivrdwvbfgGMK62YAB+Zz6w1slpd3IvVqzM23JnZroA4NisTAEEKonegJaFmXA8VBb6cDdUrT8U4HTi6sG0t6XA7SBbwbFWJ4s9GkcQBjAGx/THrMrt72orzNtcBqkqaQ7tsPzLcSGnId0CEnAF5E2ayC+VgfAicBDyhNFfxWYfVdwIaSppEaMKXzeRBYPZd7MannIoQQwiqmdFs3hOWTu/rPtn3gyjheXV2d6+vrV8ahQgjhU0PSONvL5L5ET0AIIYTQRsWYgLBCbA9nydiEEEIIrUib6QmQ9HlJ90p6UdLfJF2dn7VHUv9S4E2F/ZYJs5F0hqSrCu9/K+nRwvvTJA1qZv0qhuaUB/AUlneRNDYHAfWrdeiOpIMl9Wxkm6qfWwghhE++NtETIEnAMOA62wdJakdK9fs58IPlKHIUaeR9yY5AO0ntbC8kPap3bzPqpuWow5eBKba/k8tZjiIadDBwPzC91gWXSFo9D2pssogNDiGE2mkrPQF7Ax/avgkgX6jPAk6Q1L64oaSNJD2c421voPIFeiKwZY7Z7QTMy8u2z+sXh/ZI+n6Oz50q6cy8rLvSxD83kx7p26SsDudJeiE/KrhV+cEl9QIuBQ6SNDGn8JXWXVQ6Tn7/c0ln5Nc/zDHCkyRdnJedqBRhPEkp0ri9pL7AN4DLcvlbSPqipEfzduMlbZEP0UHSnUoxwrfmRg2Sdpb01xwV/JCkrnn5cElXSaoHzpB0RP5sJkkaUf1PGEIIodbaRE8AsC1lj7vZfk/S34Evlm17AfCk7YskHUB6zp+yfT+WNAHYhZSvPxZ4EegraSbpqYvXJO0MfAv4EqkxMVbSX4HZpMS8420/BUu+yed9jgZ6kf4+4yvUfaKk84E626cW9ydlEgwDrpK0Wi5rV0n7AwcBX8rP62+Ytx9m+/pcxs+Ab9u+RtJ9wP2278zrxgIX275bKTp4NVLjZaf8+b5Jjj/O214DHGR7pqSjSL0uJ+RjrlkapZofYfyq7TckrV/+WYcQQmg5baUR0Bx7AocC2H5A0uwq25Um8lmH9Lz+i8C5pLS/UmrfHsDdpehfScNIqYD3Aa+WGgBl+uV95uZ97mtO5W3PUJqEaCdSeNAE229L2ge4qVRuITZ4u3zxXx/oQJrPYCmS1gO62b477/thXg7wtO3X8/uJQHfg38B2wCN5m3bAPwpFFucbGAUMUQpWGlbpnJQmHDoJoF3HLs35OEIIITSgrTQCppNieBeT1JGUovcSsOtylDmKFPazNmnCoJlAT5ZuBDSkpaJ7AW4ABgKfY0laYTVDgINtT5I0EOjfzGMVA4gWkv6nBEyz3afyLkvO3fbJkr4EHACMk7Rz+cRCtgeTxnCwVtceEWwRQgg10lbGBDwGtNeSKXrbkdL8hpS+GReUonPJXegbVClzDCn+tovtt/JkOjNJXe6lSXxGAgfn++zrAodQfT6A4vEPzuMN1gO+3ozzLLkb2I90u6L0zf4R4FulMRCF2wHrAf+QtAZLD3Z8P6/D9vvA65IOzvuuVT6WoszzpOmN++Tt15C0baUNleKHx9o+n/T5bVJpu5Ltu3VixsUHVPwJIYTQPG2iEZAv0IcAR0h6kRRn+yGp+77cT4A9laJvDwX+XqXM2aSL1rTC4jHAZ4BJeZvxpG/aT5PGDdxge0IjdR1P6i6fBPwFeKZJJ7l0GR8BTwH7FpQAACAASURBVAB/yIMgsf0g6TZEfe62Lz12+ONct1GkeQFK7gB+oPQI4hbAf5JmApxM6un4XCPHPxy4RGnmwImkWyeVXJYHK07N5U5q7vmGEEJYPhEb/CmUBwSOB46w/eKqrk8tRWxwCCE0nyI2uG1QCvh5CXjs09YACCGEUFttZWBgm2F7OmmGwRBCCKFB0RPwKSNpYQ74KYX6VLsXv8rkwKBluqVCCCGsXNET8Okzz3YvAElfBX4J7NWUHXPan2wvasH6rZCIDQ4hhNqJnoBPt46kdEIkdZD0WO4dmCLpoLx8mQhjSXNy3PAkSU9J+mylwiUdUxrZL+mSvOwISVfk12dIejm/3lzSqLL920kakvefIumsFvskQgghLCN6Aj591smPAK4NdCXNmwDpkchDclxyZ+CpQhpheYTxusBTts+TdClwIvCz4kEkbQxcAuxMamg8nHMERgL/kzfrB7wtqVt+XT43QC9SEuF2ucyIDQ4hhJUoegI+febZ7mV7a1Jg0M2lbn7gF/k5/0eBbqRYYVg2wvgj0gyCkOYt6F7hOLsAw23PzDMB3grsafufpEmF1iMF/9xGimLux7JBSS8Dm0u6RtJ+wHuVTkjSSZLqJdUvnPtu0z+JEEIIDYpGwKeY7TFAZ6ALKQ2wC7BzHjPwL1JvASwbYbzASwIkFgKr5677ifnnokYOPZo0cdLzpAt/P6APS5IUS/WbTZqGeTgpgvmGKucx2Had7bp27Ts1cugQQghNFbcDPsUkbU2avOdtoBPwlu0FkgYAX2hOWTl5sFeh7K7AoHxrYTZwDGnmQEgX/ovyzwRgAKmHYqmv8Xnfj2zfJel54JbG6rF9t07UxwDAEEKoiWgEfPqUxgRAugVwvO2Fkm4F/pSn7q1n6YjgZrP9D0nnkOKJBTxg+968eiTpVsCIfOzXqhyvG3BTTjgE+H8rUqcQQgjNE7HBoVWJ2OAQQmi+iA0OIYQQwlKiERBCCCG0UdEIaMMKEcPTcjDQf5fuz0uqkzRoVdcxhBBCy4mBgW1bMWL4M6Rn+jsCF9iuJw0gbDGS2uWnDposYoNDCKF2oicgAGD7LeAk4FQl/SXdDyDpQkm/lzRG0ouSTszL+0saIemBHD38m0JPwlfy9uMl/VFSh7x8hqRLJI0HjpB0uqTpkiZLumMVnX4IIbRJ0RMQFrP9sqR2wGcqrN4B2A1YF5ggqfR1fFegJ/Aq8CBwqKThwI+AfWx/IOmHwPdJuQEAb9vuDSDpTWAz2/OrxQZLOonUQKFdxy4rfqIhhBCAaASEprvX9jxgnqQnSBf/fwNP2y5NEnQ7sAdpnoKewKiUWMyawJhCWUMLrycDt0q6B7in0oFtDwYGA6zVtUc80xpCCDUSjYCwmKTNSTHBbwHblK0uv/i6geUCHrF9TJVDFWOKDyDNLfB14DxJ2+e5CEIIIbSwaAQEACR1AX4D/Mq28zf4ooMk/ZJ0O6A/cA6wJbCrpM1ItwOOIn1jfwr4taQv2n4pz0rYzfYLZcdcDdjE9hOSngSOBjqQehgqitjgEEKonWgEtG2liOE1gI+B3wNXVNl2MikiuDPwU9tvStoSeAb4FfDFvP5u24skDQRul7RW3v9HwAtlZbYDbpHUidR7MMh21QZACCGE2opGQBtmu10D64aTZvcrmWz7mxU2fc/2gRX2f5w03XD58u6F1wtIYwhCCCGsAvGIYAghhNBGRU9AaJTtC6ssH87SvQUhhBBakVbVEyDpvBxxOznH3X4pL5+R56b/xJB0pqT2q7oe5YohQDUo69zl3G+4pGVmswohhLBytZqeAEl9gAOB3jlYpjPp+fOWOt7qK/io2pnALcDcZhyz2TG6q9i5wC/KFyo9WiDbi2p9wIgNDiGE2mlNPQFdgVm25wPYnmX7zcL603JE7RRJWwNIWlfSjZKeljRB0kF5eXdJI/P24yX1zcv75+X3AdMl/UDS6XndlZIez6/3lnRrfn2dpPrcQ/GTvOx0YGPgiRysU7MY3UbqPlzSnZKek3Rrvhgjab+8bDxwaKUPV9JASffmMl6UdEFh3X/kz3CipN9KaifpYvLTBflY3ZWig28GpgKbVDvnQrntJA2RNDX/3c5q6j9DCCGEFdeaGgEPky4sL0i6VtJeZetn5Sja64Cz87LzgMdt7woMAC7Lz6y/Beybtz8KKM6W1xs4w/aWwEigX15eB3SQtEZeNqJ0DNt1pFjdvSTtYHsQ8CYwwPaA3GtRitHtTZqY5/uFY75tu7ftO0jP3+9kewfg5AqfQ0N134nUA9ET2BzYXdLawPWkMJ6dgc9V+nCzXYHD8rkcoTST4Db5OLvnyYYWAsfZPoc8AZHt4/L+PYBrbW9LCgRq6JwBepHyA7azvT1wU6VKSTopN7TqF859t4HqhxBCaI5WczvA9hxJO5MuwAOAoZLOsT0kbzIs/x7Hkm+7XwG+IanUKFgb2JR0gf6VpNJFbcvCoZ62/UqhrJ0ldQTmA+NJjYF+wOl5myOVsu1XJ/VW9CQ9U1+0G7WL0V2jkbq/DqD0/H93YA7wiu0X8/JbyDn8FTxi++283TDS43sfkxoPz+S6r0NqiFTyqu2nmnjOAC8Dm0u6BniA1NBbRsQGhxBCy2g1jQCAfL98ODBc0hTgeGBIXj0//17IkvMScJjt54vlSLoQ+BewI6k35MPC6sWRtrYXSHoFGAiMJl2gB5CCcZ5VSso7G9jF9mxJQ0gNjXK1jNE9q4G6zy+8Ln4OTVUtAvh3tv9fE/Yvnkdj50z+zHYEvkrq9TgSOKF5VQ4hhLC8Wk0jQNJWwKLSN1pSV/Krjez2EGmswGk5Cncn2xOATsDrOdnueFJyXTUjSRf6E4AppES9cbm8jqQL37uSPgvsz5JH5t4H1gNmUdsY3ebUHeA5oLukLWz/Dah6UQb2lbQhMA84OJ/zXOBeSVfafiuvX8/2q8ACSWvk0J9yjZ5zvk3yke27JD1PGkjZoIgNDiGE2mlNYwI6AL8rDZojdTVf2Mg+PyV1n0+WNC2/B7gWOF7SJGBrlv4GW24kqZt/jO1/kb55jwSwPQmYQLrQ3gaMKuw3GHhQ0hO2Z5J6E27PdR+Tj1uuFKM7JZdbKUa3OXXH9oek7v8H8sDAal35AE8Dd5F6PO6yXW97Oune/sO57o/kz6N0jpNLgyTLjtuUc+5G6tWZSGoANKW3IYQQQo3IjlusIT0dANTZPnVV16UhdXV1rq+vX9XVCCGEVkXSuDyIfSmtqScghBBCCDXUasYEhJaVn7IYsoqrEUIIYSWKRkAbJGkhaZDj6sCzwPG2qyYbSppBulUwS9Jo231XTk2X1VBiYEMiTTCEEJYVtwPaplLIz3bAR1QOJapoVTYAQggh1FY0AsJIUu5BxXjg8o0lzSm8/mGO+52UY4SRdKKkZ/Kyu5QnUcrxwIMkjZb0sqTD8/KukkbkY06V1K/8mCGEEFpGNALaMEmrk7INplSLB25g3/2Bg4Av2d4RuDSvGmZ7l7zsWeDbhd26klIIDwQuzsuOBR7Kx9wRmFjhWBEbHEIILSDGBLRN6+Rn8yH1BPwfKUugqfHAAPsAN5XGEth+Jy/fTtLPgPVJ2Q4PFfa5J88sOD2HKwE8A9yY52S4x/YyjYCIDQ4hhJYRjYC2aV7+5r2Y0pW/qfHADRkCHGx7Us4e6F9YV4w1FoDtEZL2JMUlD5F0he2bV7AOIYQQmiAaAaHkMarHA1fyCHC+pFttz5W0Ye4NWA/4R/5mfxzwRkMHlfQFUgzy9ZLWIs3iWLURELHBIYRQO9EICADYni6pFA+8GrAA+B5V5mew/WCeybBe0kfAn4FzgR8DY4GZ+fd6jRy6P/ADSQtIMx5+swanE0IIoQkiNji0KhEbHEIIzRexwSGEEEJYSjQCQgghhDYqxgS0UZLm2O6QX38NuArYl5QbMHd5R+gXI4Yb2OZc279YnvIjNjiEEGonegLaOElfBgYB+9t+1fZvVsIjeue2cPkhhBCaIBoBbVh+Pv964EDbf8vLLpR0dn49XNIlOUr4hVKkr6T2kv4gabqkuyWNlbTMgJNKMcQ5XnidvOxWSetKeiDHDE+VdNRK/AhCCKFNi9sBbddawD1Af9vPNbDd6rZ3zbcMLiAlBX4XmG27p6TtqBz1W4whXiDpWuA42+dIOrUUViTpMOBN2wfk950qlHUSKdGQdh27rMAphxBCKIqegLZrATCapbP9KxmWf48DuufXewB3ANieCkyusN+XWRJDPDG/37zCdlOAfXOPQz/by0wOYHuw7Trbde3aL9NGCCGEsJyiEdB2LQKOBHaV1NA9+lLU70Ka13NUiiHulX+2sn1h+Ua2XyClBE4Bfibp/GYcI4QQwgqI2wFtWI77PQAYKelftv+vibuOIjUgnpDUE9i+wjYNxRAvkLRGvk2wMfCO7Vsk/Rv4TkMHjtjgEEKonWgEtHG235G0HzBC0swm7nYt8DtJ04HngGnAUt34jcQQDwYmSxpPmifgMkmL8jan1OK8QgghNC5ig0OzSWoHrGH7Q0lbAI8CW9n+qKWPHbHBIYTQfNVig6MnICyP9qRbAWuQ7v1/d2U0AEIIIdRWNAJCs9l+H1imRRlCCKF1iUZAGUmfB34N9CQ9PXE/8APbH0nqD5xt+8AK+82gLC5X0hnAZrbPzO9/C2xhe5/8/jSgh+3Tm1G/ZY6Tl18IzLH9v00/29YnYoNDCKF24hHBAkkiPRd/j+0ewJZAB+Dny1nkKKBv4f2OQKd8T528bnRT65YH2K1yhfpXfB9CCKF1+ERcVD5B9gY+tH0TgO2FwFnACZLaFzeUtJGkhyVNk3QD6d54uYnAlpLWyUl48/Ky0iN1fUkNBSR9P8fmTpVU6jnoLul5STcDU4FNyupwXo7zfRLYqtIJSToilzlJ0oi8bKCke3Ms8IuSLihsf4+kcfm8TiosnyPpckmTgD6SZuSAn/HAEZJ6SXpK0uQcJbyBpM9IGpf331GSJW2a3/8txw8vU78QQggrR9wOWNq2pGS8xWy/J+nvwBfLtr0AeNL2RflZ+2WS92x/LGkCsAuwDjAWeBHomx/Hk+3XJO0MfAv4EqkxMVbSX4HZQA/geNtPAaTOCsj7HA30Iv0dx5fXPTsf+KrtNyStX1i+K7AdMJeU6veA7XrghPzY4Dp5+V223wbWBcba/u9CPd623Tu/nwycZvuvki4CLrB9pqS1JXUE+gH1QL/caHkr5xRUq99iERscQggtI3oClt+ewC0Ath8gXbArGU36xt8XGJN/Su9LtwL2AO62/YHtOaRbEv3yuldLDYAy/fI+c22/B9xX5fijgCGSTgSK3faP2H7b9rx8vD3y8tPzt/2nSD0PPfLyhcBdZWUPhcV5/+vb/mte/jvS51M6/93z+1/k3/2AkY3Ub7GIDQ4hhJYRjYClTSfl3S+Wv8VuCry0nGWWxgX0ITUAniUNOmzqeIAPlvO4ANg+GfgR6YI+TtJGpVXlm+aBj/sAfWzvCEwA1s7rP8y3R5pbtxGki/4XgHtJ4yL2IDcCGqhfCCGEFha3A5b2GHCxpG/avjkPeLscGJK7rovbjgCOJeXd7w9sUKXMMcAQ4A3bbwHkWwEHAUfkbUaSvg1fTLodcAjwn43UdUTe55ekv+PXgd+WbyRpC9tjSbcY9mfJuIJ9c5TvPOBg4ASgG2l2wLmStgZ2a6QOANh+V9JspQmARua6l3oFRpIGVo6wvUjSO8DXgP/XQP3ernasiA0OIYTaiUZAgW1LOgS4VtKPST0lfwYqTbDzE+B2SdNI3+j/XqXM2fmiP62weAypi3xS3ma8pCHA03n9DbYnSOreQF3HSxqay3gLeKbKppdJ6kFqXDyWt++Vj3UX8HngFtv1kqYAJ0t6FniedEugqY4HfpMHUL5MGuOA7Rn5qYvSoL8ngc/bLt0+qVS/EEIIK0HEBrdBkgaSsgZOXdV1aa6IDQ4hhOZTldjgGBMQQgghtFHRCFgO+fn8afmZ+ImSvpSXn1nME5D059Jjb5Lm5N/dJR27kus7Q1Ln0nvbQ1ZVL0DOE/jaqjh2CCGEpcWYgGaS1Ac4EOhte36+uK6ZV59JemxwLoDtShe77qQBhbe1fG0/kXqR5h348/LsHLHBIYRQO9ET0HxdgVm25wPYnmX7TUmnAxuTZtd7Apb9Bp5dTArMmSjpLEnbSno6v5+cB8ktRdJ1kupz78NPCstnSPqJpPGSpuQR/U1NM6xYrqT9JP2xsE1/Sffn18fk40yVdElhm/1yHSZJeiwvW1fSjfncJkg6SNKawEXAUfl8j5K0V349MW+3XnP/ICGEEJZPNAKa72FgE6W43msl7QVgexDwJjDA9oAG9j8HGGm7l+0rgZOBq22XviG/XmGf8/KAjh2AvSTtUFg3K6f2XQecnZeV0gy3Be4m5RxUUqncR4EvSVo3b3MUcIekjYFLSNHKvYBdJB0sqQtwPXBYzhYoPfZ4HvC47V2BAcBlwBqkBMOh+fyH5jp/L59/P9IjiyGEEFaCaAQ0U07025kUYzsTGJpH2y+vMcC5kn4IfCEn+JU7UimjfwIp2rhnYd2w/Hsc6VYDND3NcJlybX8MPAh8XdLqwAGkkJ9dgOG2Z+Ztbs3H2Y2UAfBKPt47ueyvAOdImggMJ4UOVWqMjAKuyD0p6+eylyLppNxjUb9w7rtVTiWEEEJzRSNgOdheaHu47QuAU4HDVqCs24BvkL4B/1nS3sX1kjYjfVv+su0dgAdYkuIHMD//Xkgzxng0Uu4dwJGkb/31tt9v7nmRbkEclr/x97K9qe1nyzeyfTHwHdLcCqNKtzTKtonY4BBCaAExMLCZJG0FLLL9Yl7UC3g1v34fWA+Y1UARpW1K5W0OvGx7kNIMezsAjxe270iK531X0meB/UnfrBvSlDTDhsr9K3AjcCKpQQApXGhQHuMwGzgGuIYUKHStpM1svyJpw9wb8BBwmqTTcgjTTrYnVDj/LWxPAaZI2gXYGniu2olFYmAIIdRONAKarwNwTX7072PSnAKlKXcHAw9KerOBcQGTgYVKk/QMAdYC/lPSAuCfpEl2FrM9SWkmwueA18hTDzei0TTDhsq1vTAPBhxISgLE9j8knQM8QfqW/4Dte2HxLH/DJK1GSi/cF/gpcBUwOS9/hfRUxRMsuU3wS2APSQOARaRUxb804fxCCCHUQCQGhlYlEgNDCKH5IjEwhBBCCEuJRkAIIYTQRkUjoIwkS7q88P5sSRfWsPy7JR1ceP+8pB8V3t8l6dBmlNdd0tQq64ZLWqb7p7kkXSjp7Px6YM4MCCGE0MrFwMBlzQcOlfRL2w2N8l9eo4C+wD2SNiKN0O9TWN8H+F5TCsrP8a9sA4GppGCkJpG0eqXn/5dHxAaHEELtRE/Asj4mjfI/q3yFpC75m/oz+Wf3vHyKpPWVvC3pm3n5zZL2LStmNKkRQP79J6BL3nczYJ7tf0paW9JNuewJeQR96Zv4fZIeBx4rq986ku6Q9Kyku0nP3pefQ0OxwHMKyw+XNKRs38NJqYa35pjfdVSIRpZUJ2l4fn2hpN9LGgX8XlI7SZflz22ypP/K23WVNCKXN1VSv6p/mRBCCDUVPQGV/Zr0aNulZcuvBq60/WR+pv8hYBvSt/vdSXkBL5Pib28mfas/payMccB2Sjn6fUnP5G+ey9mJ1EiA1Btg29vnAJ2HJW2Z1/UGdrD9jqTuhbJPAeba3kYpAnh8hXN7FBgsaV3bH5BjgZvyodi+U9KpwNm26wGkitMSlPQE9rA9Lz9G+K7tXSStRQoGehg4FHjI9s8ltQPaN1RgCCGE2olGQAW235N0M3A6S2fZ7wP0LFz4OkrqAIwkRei+SsrwP0lSN2B2vtAWy56fn9/vTYrcvZTUCOhLagSUntffgxTGg+3nJL0KlBoBjxTieYv2BAblfSZLmlzh3D6WVIoFvpMUC/w/Tftkmu2+QgzyV4Adcm8CQCegB/AMcKOkNYB7bE8sLyQ3IE4CaNexSwtVNYQQ2p64HVDdVcC3gXULy1YDditE4XbLcwmMIH3770dK3ZsJHE5qHFQyinTBXs/2bFLqXt/8M7rKPkUfNL5Jg6rFAhdDI9ZeZq/KPmbJ/1H5PsV6Cjit8NltZvth2yNIn8UbwJDSrZSiiA0OIYSWET0BVeSu9j+QGgI35sUPA6eRZsRDUi/bE22/lu+Lr2n7ZUlPknL5T61S/GjgcpbE9E4m9Qp8ljToDlID4jjg8XwbYFPgeVIPQjWluODHJW1HiiCupFIsMMC/JG2Tj3MIKeK33FKxv8AM0oRKf6HhORQeAk6R9LjtBfmc3gA6A6/bvj7fJuhNupVSUcQGhxBC7URPQMMuJ12kSk4H6vLAtumkaYBLxgIv5NcjgW7Ak1XKHU26BTAGUhc9KW633vaivM21wGqSpgBDgYG251cqrOA6oIOkZ4GLSOMPlmF7IXA/ab6A+wurzsnvRwP/qHKMIcBvSgMDSRHFV0uqJ01iVM0NwHRgfH6k8bekRmh/oBRhfBRp3EUIIYSVIGKDQ6sSscEhhNB8ERscQgghhKVEIyCEEEJoo6IREBok6TxJ0/I4iImSvtSEfS6StE9+3S/vP1HSNpKObflahxBCaIp4OiBUJakPcCDQO+cbdAbWbGw/2+cX3h4H/NL2LZL6k55euG156xSxwSGEUDvRExAa0hWYVXoqIc+l0E3SMABJB0maJ2nNHHP8cl4+JMcOf4eUR/BTSbcCFwP9cq/AWZK2lfR0fj9ZUo9Vc5ohhNA2RU9AaMjDwPmSXiDFDQ8lBR31yuv7kXINdiH9L40t7mz7Bkl7APfnyOH+pMjhAwEkXQNcbfvWHKPcrlIlIjEwhBBaRjQCQlW250jamXSxH0BqBJwD/C2HCu0KXEFK/GtH9YTEasYA50n6PDDM9otV6jGYNKkTa3XtEc+0hhBCjcTtgNAg2wttD7d9ASkB8TBSMuH+wAJSD8Ee+adZjQDbtwHfIM3P8GdJe9ey7iGEEBoWPQGhKklbAYsK39B7kSZJGkmK9r3Z9kxJG7F05HE1S0UOS9oceNn2oDwr4w7A4w0VELHBIYRQO9EICA3pAFwjaX3SREEvke7Nf0C66I/I200GPufG4ycnAwslTSLFD68F/KekBcA/gV/U/AxCCCFUFbHBoVWJ2OAQQmi+iA0OIYQQwlKiERBCCCG0UdEIaEGSrpR0ZuH9Q5JuKLy/XNL3l6PcgZI2bsJ2xfje4ZKW6Qoq2343SddL6i/p3Rzi86ykC/L6OkmD8uv+kvo2oQ7N3ieEEMLKEQMDW9YoUmLeVZJWAzoDHQvr+wJnLUe5A0kj8d9saKOy+N6m2B94ML8eaftASesCEyX9yXY9ULoh3x+YA4xupA7N3qchERscQgi1Ez0BLWs00Ce/3pZ04X5f0gaS1gK2AaZLekzSeElTJB1U2lnSjyU9L+lJSbdLOlvS4UAdcGv+pv7/2bvvMLuqsv3j39vQDUWBFzEikSItJJEEBCkSioDYUBAEX8UCRkGKP3hFRQRFQVFAelEIHZQiEakCISEQCCFlQgkooAIqohIINST374/1HLIzOWfmzOTMpD2f65or56yz99rrzHCx11577XstL+kYSeMlTZV0niTF/iNieyp19onyqXG8aidkR8pz/2+x/TIwAVgvruRvkNQfGA4cHm3YNuo8R9IDkh6TVEsF7GifvaIdkyWNJqWUUq/KkYAeZPtZSW/GM/AfoiTk9aN0DKYDbcArwB62X4wFesZJGkk50X8GGAQsDTwITIj43YMp8bsPAEg6w/YP4/UllEV/ft+gWYOBfrYHxParxL+rATNtT48+BFG+KrAl8CNg9fheT0k6B5hh++ex3VeA/pQUwXWBOyWtV/ld1NunDdjF9jO1dtSTscEppdQzciSg591D6QDUOgH3Vt6PBQT8RNIUylV4P8oz+FsD19t+zfZLND6pAwyTdF+cVHegjDo08gSwjqTTJe0KvBjlH6GsFVCzraSJUXai7Yea+K6/sV0LF3oC2LCT7ccCIyQdQIN1A6DEBtseantonxVWbqIZKaWUmpGdgJ43lnLC35RyO2AcZSTgQ5QOwn6UK+whtgcD/wSWa7ZyScsBZwF72t4UOL+j/W3/lzK6MIoyPF+bqFidDwBlTsAHbA+xfU6TzWkfOtFhCIXt4cDRwFrAhBh1SCml1EvydkDPuwc4ghKPOwv4Twx9bwIcQOkEPGd7pqRhwNqx31jgXEknUP5OHyMW0WHu+N3aCf95SX2BPYGrGzUmhv3fsH2NpGnApTGHYCAwqQvf6yXmnuQIsJeki4D3AesA0yi3EuruI2ld2/cB90najdIZ+HdHB83Y4JRSap3sBPS8NspTAZe3K+tr+3lJlwG/j6H8B4BHAWyPj7kBUyijA22UeQRQInfPkfQqZVThfMoowz+A8Z20px9wYTytAPAdYAgwsYnY36rfA1fHRMZvRtlfgfspJ/rhtl+rzi+os8/hktan3BK5HZjcheOnlFKaTxkbvBCT1DeW812BktN/oO0He+A4RwN/sn3lfNQxArjBdsNRiFbI2OCUUuo6NYgNzpGAhdt5kjamDPlf1BMdAADbx/dEvSmllBZu2QlYiNned0G3oVm291/QbUgppdQ1+XRAeoukd0m6UtKfJU2QdKOk9y/odqWUUuoZORKQAIgnBK6j3HbYJ8oGUTILHov3S9l+c8G1MmODU0qplXIkINUMoyQGvpUJYHsy0EfSmHhS4WEASb+LkYKHIs2PKJ8h6ccRAzxO0hpRvrqkayLaeLykraP8wxEhPEnSREkrklJKqddkJyDVDKCsEVDPZsChtmu3Br5sewgl2viQSsjP24FxtgdRnmY4IMp/CZxie3NKFHItoOgI4KAISdoWeLXewSUdGGsSPDDrlen1NkkppdQNeTsgNeN+209W3h8iaY94vRawPiXk5w3ghiifAOwcobWwTwAAIABJREFUr3cCNq5kBqwUwUZjgZMjK+Fa20/XO7jt84igpGXXXD+faU0ppRbJTkCqeYiSNljPy7UXkrannNS3sv2KpFHMSS2cWQkcmsWc/77eBmxp+7V29Z4o6Q/AR4Gxknax/eh8f5OUUkpNyU5AqrmDspDRgXHljaSBlGH6qpWB/0YHYEPmjgVu5FZKQuBJUe9g25MiNrgNaJO0OWXBoQ47ARkbnFJKrZNzAhIAcQW/B7BTPCL4EHACJYq46mZgKUmPACdSFkTqzCHAUElTJD1MWbgI4DBJU2MFxZnATa34LimllJqTscFpkZKxwSml1HWNYoNzJCCllFJaQmUnIKWUUlpC5cTAJkl6F3AqsDnwAmV538NsP7ZAG9YkSYcB59l+pZPttgS+AhxKWaJ4IGWp3xeAXSnLIt9ge0DPtri+TAxMKaXWyU5AE5qJ1O1g35ZG7c5HfYcBlwIddgKA3SiT/w4F/ml70zjuBpTJeymllBYTeTugOY0ide+WdFLMcG+TtDeUZ+mrUbuS+kt6VNIISY9JukzSTpLGSnpc0hax3zsjkndKxO4OjPJjJV0iaSxwSdQ3RtKD8fOhynFHSbo6jneZikOAdwN3SrpTUp9oS63dh1e+647AH4E1gWcq33ea7dfjbR9J50ds8K2Slo/jHxCxwJMjJniFKF83vk+bpOMlzYjyNSWNjtjgqZLaP46YUkqpB2UnoDmNInU/DQwGBlECdE6StGZ81j5qdz3gF5Rn4TcE9gW2oUTnfje2OQ6YaHtglF1cOdbGwE62Pwc8B+xsezNgb+C0ynYfoFz1bwysA2xt+zTgWWCY7WHR5n62B8SV/oUAklajdHamAxcA35Z0b5y4168cY33gTNubUG4TfCbKr7W9ecQGP0K5rQAlNviXcaxqKuC+wC0RGzwImFTnd5yxwSml1EOyEzB/tgGusD3L9j+BuyhzBmDeqN0nbbfZnk1J57s9ns1vA/pX6rsEwPYdwKqSVorPRtquZesvDZwvqQ34LeWEX3O/7afjOJMqdVc9Aawj6XRJuwIvRvlHKME+2J5E6UScBLwTGC9po8p3qZ2wJ1SOMSBGKNqA/YBNonyraCfA5ZV2jAe+JOlYYFPbL9VpK7bPsz3U9tA+K6xcb5OUUkrdkJ2A5jwEDOniPi+3e/965fXsyvvZNDc3o1rf4ZSJiYMoi/gs0+A41ejet9j+b+w7ihLcU1vQpzYfoLbdDNvX2v4GZT7BRzs5xgjg4LjiP445ccJ12R4NbEe57TBC0hc62j6llFJr5cTA5jSK1H0B2FvSRZSr5e2AIynD/d0xhnIF/aPI6H/e9ouVhXdqVgaetj1b0heBPk3U/RKwIvB8DPu/YfsaSdOAS2Py40BiSF5lud+Hbf9X0jKU0YZRnRxjReDvkpaO71GbUzCOcsvgKmCf2saS1o7vcb6kZSm3UC6mAxkbnFJKrZOdgCbYdqyad6qkbwOvAU9R7r33BSYDBv7P9j8iU787jgUuiBjdV4AvNtjuLOCauHK+mXlHHeo5D7hZ0rPR7gsl1UaCvkMZ6ZhYWQBoXeDs6By8DfgDcA2wdgfH+D5wH/Cv+HfFKD+M0tH4XrS3dmN/e+BISTOBGUCOBKSUUi/K2OAEgKSjgT/ZvrIH6l4BeDU6U/sAn7P9ye7UlbHBKaXUdY1ig3MkIAFg+/gerH4IcEaMKrwAfLkHj5VSSqlJ2QlIPc72GMpExJRSSguR7AQsJiSdAvzF9qnx/hbgb7a/Gu9/ATxj++QWH/ce2x9qZZ0dydjglFJqnXxEcPExFqglB76NkvG/SeXzDwH3tPqgvdkBSCml1FrZCVh83EMJ5YFy8p8KvCTpHfH43UaUCOPbI2q4TdInASRtHlHFy0l6e8QBD5B0pqRPxDbXSbogXn9Z0o/jdS0CuG5kcXz20SibIOk0STdE+YcjMniSpImSViSllFKvydsBiwnbz0p6U9J7KVf99wL9KB2D6ZRkwleAPSJ7YDVgnKSRtserrHNwPLA8cKntqZLGANsCI6OuWiTytkC9pwg+QOmAPEsZmdha0gPAucB2tp+UdEVl+yOAg2yPldSX8ujlPCQdCBwI0Gel1bv1+0kppTSvHAlYvNxD6QDUOgH3Vt6PpSwJ/JPIIfgj5cS+Ruz7Q2BnSgLhz6JsDLCtpI2Bh4F/xtoIW1H/1kK9yOINgScqEcrVTsBY4GSVBY5WabQ6YsYGp5RSz8hOwOKlNi9gU8rtgHGUE3ZtPsB+wOrAkFi055/MifZdlRJ8tGKtzPYzwCrArsBoSqfgs8CMBjn/nUYWV9k+EfgqZfRh7HyELKWUUuqGvB2weLmHMsT+hO1ZwH8krUIZoj+A0gl4zvZMScOYO/3vXEri3/uAnwIHR/k4SuLfDpSOwtXx06xplMWK+tt+irLqIVCWGLbdBrRJ2pwyavBoR5VlbHBKKbVOjgQsXtooTwWMa1c23fbzwGXA0Fjl7wvECTfih2favhw4Edhc0g6x/xhgKdt/Ah6krJEwptkGxcqH36BEFk+grGFQiw0+TNLUuD0xE7ipG985pZRSN2VscOpxkvranhFPC5wJPG77lO7UlbHBKaXUdY1ig3MkIPWGAyRNoizJvDLl1kNKKaUFLOcEpB4XV/3duvJPKaXUc7ITkACIZX73pczqnw18DbgKGBrzCTradyjwBduHSDqW8vTAz3uinRkbnFJKrZOdgISkrYCPAZvZfj2ChJZpct+lbD8A5I36lFJaxOScgAQlCfB5268D2H7e9rPx2TcrMcMbAkg6VtIlksYCl0Rk8A3tK5V0gKSbJC0vaV1JN0d08JhKXXvFEwKTJY3upe+bUkqJ7ASk4lZgLUmPSTpL0ocrnz1vezPgbEoGQc3GwE62P1evQkkHU0YXPhWPCZ4HfNP2kKjnrNj0GGAX24OATzSo60BJD0h6YNYr0+ttklJKqRvydkAiHt8bQlkTYBhwlaSj4uNr498JwKcru42Mk3s9XwD+RukAzIx1AT4E/DbWFAJYNv4dC4yQ9JvKsdq37zxKJ4Jl11w/n2lNKaUWyU5AAiASBkcBoyJM6IvxUS0KuH0M8MsdVNcGDAbeAzxJGXF6IaKK2x93uKQPArsDEyQNsf3v+fkuKaWUmpOdgISkDYDZth+PosHAXyhrEHTHRMrtg5GSdokVDp+UtJft30Zo0EDbkyM6+D7gPkm7AWsBDTsBGRucUkqtk3MCEpSFgy6S9HBE+G4MHDs/Fdq+m3Lv/w/xtMF+wFckTaaEBn0yNj0pJh1Opax9MHl+jptSSql5GRucFikZG5xSSl2XscEppZRSmkt2Apok6XuSHpI0RdKkmMyGpKdiuHuhJql/DLm3L3+3pK4sDZxSSmkxkRMDmzA/iXoLuwgF2nNBHDvSBt/syj7djQ3uSEYKp5SWVDkS0JyOEvUAiFS8myIlb66rbklHRKZ+LUVvfCTkXSNphSjvMDlPUl9Jt1fS+z4Z5f0lPSLp/BipuFXS8vHZkKhvMnBQvS9WbWu8HhPHeFDShyrbHRntniLpuEr59yVNk3S3pCskHRHljRICR0g6R9J9wM8kfThGViZJmihpxa7/eVJKKXVHdgKa01GiHpTZ9b8HrrB9fid1XWt780jIewT4SpR3lpz3GrBHpPcNA36hOck76wNn2t4EeAH4TJRfSEnpG9Tk93wO2DmOsTdwGoCkj8QxtqA8PjhE0naSNo9jDQJ2A6qTTholBELJD/iQ7W/FZwdFhsC2QKMAopRSSi2WtwOa0ChRz/aI2OR64Ge2L2uiugGSjgdWoXQebonyzpLzBPxE0naUVf76AWvEZ0/anhSvJwD9Ja0CrGK7NqpwCeVE3ZGlgTMkDaaEA70/yj8SPxPjfV9Kp2BF4HrbrwGvSfo9lFELGicEAvw2wolq3/tkSZdROkhPz/PFpQOBAwH6rLR6J18hpZRSs3IkoEm2Z9keZfsHwMHMudqGciLbtXJl/iZz/26Xq7weARxse1PguNpntocDR1PCciZIWrVdE/YDVgeGxFXzPyv1vl7Zrn2yX1ccHvUOolzV1+Y9CDjB9uD4Wc/2rzuo562EwMrPRpXP30obtH0i8FVgeWBs7bZBle3zbA+1PbTPCit386ullFJqL0cCmtBBol7NMfFzJvANyon0f+JEPoMyqfDm2HZF4O+Slqac2J+JY3SWnLcy8Fxk8Q8D1u6ozbZfkPSCpG0iuGe/Jr7qysDTtmdL+iLQJ8pvAX4k6bIYFekHzKR0fs6VdALlv6WPAefZfrFRQmD7A8b3bgPa4vbChsCjjRqYiYEppdQ6ORLQnGYS9Q4Flpf0M9szgR8C9wO3MfdJ7fvAfZQTaLW8s+S8y4ChKrn+X6CDE2XFl4AzJU2iXM03UkuMOgv4Ykwk3JC4Yrd9K3A5cG8c/2pgRdvjgZHAFOAmypoBtWX+GiUEtndYTIicQulY3NTE90oppdQCmRi4hIu5Difbbj/Zsdn9+8bowArAaOBA2w+2tJEVmRiYUkpdpwaJgXk7YAkmaSjlCv+ozrbtwHmSNqbMT7ioJzsAKaWUWis7AUsw2w8w5wmA7taxb4uak1JKqZctsnMCJK1aCZn5h6RnKu/viW36S2rqJBUBNlvH6yMkPRp1jZf0hSivGxEs6ROSGl5Nq0Fkb7MiYKflqX4R5DMxvudfJf2r8jvsL+lGSavEzze6Uf/w2u8upZTSwmeRHQmw/W/KLH1U0vhm2P55u836A/tShrw7syVwkKThwM7AFjHLfSVgj07aMpIyQW6RIel9wDO2PxHv9weG2j64stlH47P+lKcezqILbJ/TirZWZWxwSim1ziI7EtARSTPi5YnAtnFle7ikTSTdH++nSFo/tt8IeCwCbL4LfN32iwC2X7R9UaX6b2pOdG8tCnd/SWfE6zUkXaeI61Ulejc+XyeuvjdXg5heFWeoxPH+Efifyv5DJN0VV/G3SFozyhvF9DaKI96VOY8tNvo91kY+TgTWjd/bSZK2jzZcL+kJSSdK2i9+t22S1o39j9WcGOH1JP0x2vFgZZu6ccQppZR63mLZCag4ChgTYTWnAMOBX0bYzlCglk63G3BzXPWvaPuJDup8PmJ1z6ZE3rZ3GnBXRPVuRnk8Dngrb+AaYP94vK5uTC9l5GEDyqOIX6Ck76GSLXA6sGfE8V4A/Dj2aRTT2yiOuNNOQMVRwJ/j93hklA2i/D43Av4XeL/tLYBfAd+sU8dllGjjQfF9/q4GccRNtimllNJ8WmRvB3TTvcD3JL2HElFbC//ZhfJMfTNqkb4TgE/X+XwHyombGFmYLukdlLS/64FP2344tm0U07sdZR2CWcCzku6I8g2AAcBtKuGEfSgn045ieueJI5a0DPCeTjo7nRlv++9R358p6ytAyQoYVt1QZVGgfravi9/La1HeKI54dLv9MzY4pZR6wBLVCbB9ucrqdbsDN0r6GjCOkrH/LJRbCZLW6eAEWYvo7Wo873Tgr8A2QK0TUI3pfRtlkaCOCHjI9lZzFZYRjBdihGMutodL+iDlO09QyQUYDNzdhbbXU40qnl15P5vmfy+1OOJzO9rI9nmUkQ6WXXP9DLZIKaUWWdw7AS9RYnqBcj8eeML2aZLeCwykZNbfWdnnBErK3t4xMbAv5er94iaPeTvwdeBUSX0oV7cAb1CG+W+RNMP25TSO6R0NfE3SRZT5AMMokxunAatL2sr2vXF74P22H1KDmF7VjyPela4l8831e+wq2y9JelrSp2z/TtKy8V3rxhHbfq5RXRkbnFJKrbO4zwmYAsyKyWiHA58FpqrE6A4ALibmA1T2OZvSKRiv8ljfGMrVbbMOBYapxOtOoNzXB8D2y5R8/cMlfYIGMb3AdcDjlBGDiym3MbD9BrAn8NPYZxIxX4DGMb314oi3B+5q9gvFkxhjY4LhSV34XVT9L3CISjzwPcC7GsURd7P+lFJKXbTExwZLehD4YOT9L/ZiPsT5tjtbVnihlLHBKaXUdcrY4PpiZv4Sw/bTlNGPlFJKS7jF/XZASimllBrITsASSNK7JF0p6c8RLnSjpC6tIaBKQFJKKaVF0xJ/O2BJE08OXEdZ8W+fKBsErAE8tiDb1oyMDU4ppdbJkYAlzzDKY3hv5frbngz0kXRDrSxii/eP15tLuieesrg/wn+obLu7pHslraYShXxHxADfHo9i0kF5o1jjlFJKPSw7AUueAZRHF5sS6YJXAYdG5O9OwKuVz/egxAp/1PbzlFjji2wPpEQF16KQG5U3ijWutuFASQ9IemDWK9Ob/6YppZQ6lJ2A1JkNgL/HWge1BZXejM92AL4N7G77v1G2FXNWbbyEkpDYUXkt1vgA5oQlzcX2ebaH2h7aZ4WVW/S1UkopZSdgyfMQMKRO+ZvM/d/Dck3U9WdKuE+XJhVW2R4OHE1JMpwgadXu1pVSSqlrcmLgkucO4CeSDoxMfiQNpOT4bxyRvssDO1LWF5gGrClpc9vjYz5A7XbAX4AjgWsjsvghShrgPpSr/f0oiYs0Km8Qa/zvRo3P2OCUUmqd7AQsYWw77uOfKunblEWLngIOA34DTAWeJFb2s/2GpL2B0yUtT+kA7FSp71FJ+1FWMPw4ZRnhCyUdCfyLOaszNio/SdL6lE7I7ZRY45RSSr1giY8NTouWjA1OKaWuaxQbnHMCUkoppSVUdgJSSimlJVR2AhYxkizpF5X3R0g6tpN9+kvat/K+y5G/kg6TtEIn2xwr6Yiu1JtSSmnByYmBi57XgU9LOiHCeZrRH9iXOc/pd8dhwKXAK/NRx3zL2OCUUmqdHAlY9LwJnAcc3v4DSSMk7Vl5PyNenghsK2mSpNp+75Z0s6THJf2sss/Zkc73kKTjouwQ4N3AnZLujLJdJT0Ycb+3V5qxsaRRkp6I/Wr1fj4ihydJOldSn/gZEbHBbZW2pZRS6gU5ErBoOhOYUj15d+Io4AjbH4NyOwAYDHyAMrIwTdLptv8GfM/2fyT1AW6XNND2aZK+BQyz/byk1YHzge1sPynpnZVjbUhZn2DFqPdsYD1gb2Br2zMlnUXJCngI6Gd7QLRrlXqNl3QgcCBAn5VWb/Irp5RS6kyOBCyCbL8IXAwc0tm2Hbjd9nTbrwEPA2tH+WclPUjJCdgE2LjOvlsCo20/Ge35T+WzP9h+PW5VPEdZnXBHSkrheEmT4v06wBPAOpJOl7Qr8GKD75uxwSml1ANyJGDRdSrwIHBhpeyt6F9JbwOW6WD/1yuvZwFLSXofcASwue3/ShpBc/HBHdZLCQK6yPZ32m8cyxjvAgwHPgt8uYvHSyml1E3ZCVhExZD9b4CvABdE8VOUK+7fUFbkWzrKX6IMz3dmJeBlYLqkNYDdgFHt6ngeGAecJel9tdsB7UYD2rsduF7SKbafi9sHK8ax3rB9jaRplImHHcrY4JRSap3sBCzafgEcXHl/PuVkOxm4mXKSBZgCzIryEcB/qcP2ZEkTgUeBv1FW+Ks5D7hZ0rO2h8V9+mtjxOE5YOdGjbT9sKSjgVtj+5nAQZQI4gujDGCekYKUUko9J2OD0yIlY4NTSqnrMjY4pZRSSnPJTkBKKaW0hMo5ARWSPgVcB2xk+9FOtn0KGNpsap+kfYB1gWcoM/p3tv3Hdsfdy/bV3f8GXdeuXSfFv8sAp9g+v5N9DwG+TnlK4cvAH4DVgBMocwROtv1wK9vbE4mBHck0wZTS4ixHAub2OeDu+LfVdqNM1gNoA/Zpd9zJXalM0lIdve9mu66yPRjYHvhJPCHQkW9QOjP7UYKHsD3Y9lW2v9rqDkBKKaXWyk5AkNQX2IbyyN0+Uba9pBsq25wRaXvV/ZaXdJOkAyS9XdIfIkp3qqS9YxtREvoejN3GAFtIWjqOux4wqVLnU5JWi9dDJY2K18dKukTSWOCSWAhopKQ7KI/hIelISeMlTanE/jbbLgBsPwf8GVi7/aJAsX9/SedQAn9ukvRtyuN9m0cs8LoRHTw09pkh6cdx/HG1zoWkvaK+yZJGd/mPllJKab7k7YA5PgncbPsxSf+WNKSJffoCVwIX275Y0meAZ23vDiCpFm/3AWCybZfzLgb+SAnJWRkYCbyvyXZuDGxj+9XokGwGDIzcgI8A6wNbUAJ6RkraDli9yXYRn69DOcH/qVEjbA+PlL9alPB9zB1NXN387cA429+LqOMDgOOBY4BdbD/TKDI46srY4JRS6gE5EjDH5ygndOLfZm4JXA9caPvieN8G7Czpp5K2tT09yncFbmq375WUEYd9gCu60M6Rtl+tvL+tEtTzkfiZSLm635DSKWi2XXtHrO8VwNc6CQDqijeA2ojKBMqqhlByCEZIOgDo02jnjA1OKaWekSMBQCTY7QBsKsmUE5IpJ/lqR6l9hO5YYFdJl7t4TNJmwEeB4yXdbvuHlBPzZ6o72r5f0qbAK7Ff9eO34n/rHPPlDt4LOMH2uXW+YzPtusr2we12rbalXnuaMdNzAilqUcK10YQPArsDEyQNsf3vbtSfUkqpG7ITUOwJXGL7a7UCSXdRTn4bS1oWWJ6y8M3dlf2OiZ8zgW9IejfwH9uXSnoB+GoMvS/V4OR2FPBanfKnKPG/N9Gu89CJW4AfSbrM9gxJ/SjpfEt1sV3t21Ib4t+M5m9bdErSurbvA+6TtBuwFtBhezI2OKWUWic7AcXngJ+2K7uGMlT/G2Aq8CRlmL29Q4EL4l737cBJkmZTTr5fpzwq98d6B7Xd/hZBzXHAryX9iDnZ/Z2yfaukjYB7Y2RhBvB5ysTDptvVzjXAFyQ9BNwHPNZse5pwkqT1KSMYt9PFJyRSSinNn4wN7mGSfgX8yva4Bd2WqoW1XZ3J2OCUUuq6RrHBORLQw2x/dUG3oZ6FtV0ppZR6Tz4dkFJKKS2hciSgl8RTByfb/n/x/gigr+1jJQ2nPCVwcQf770+JKW4/ex9J37X9k8r7e2x/qEXt3hL4iu0D4v2pwF7AWrZnt2+bpGOBGbZ/LumHwOhaPHIrZGxwSim1To4E9J7XgU/XkgCrbJ/TUQegCd9tV1/THQAVHf138FascGy3B/A34MOd1W37mFZ2AFJKKbVWdgJ6z5vAecDh7T+oRvNK2jwifydJOknS1Mqm75Z0s6TH42kEJJ0ILB/bXxZlM+LfvpJul/SgpDZJn4zy/pKmSbqY8uTDWpJGRIRvm6RqG3dkzlME2wMPAWfTRJhS1LlnvB4i6S5JEyTdImnNKD9E0sPxna/suMaUUkqtlLcDeteZwJTaCbyBC4EDbN8bJ/iqwZSo39eBaZJOt32UpINj4Z/2XgP2sP1ijECMkzQyPlsf+KLtcRGR3M/2AIBahG/sM7OSMPg5Sprg9ZQFhpa2PbOzLy1paeB04JO2/6WydsGPKSsPHgW8z/brjaKDMzY4pZR6Ro4E9CLbLwIXA4fU+zxOgivavjeKLm+3ye22p9t+DXgYWLuTQ4pysp5CuZrvB9RWBvxL5fHAJ4B1JJ0e6wG8GOUfAW6Nti1DSRz8XXyP+yhrHzRjA2AAcFvEEh8NvCc+mwJcJunzlNGSeWRscEop9YwcCeh9p1Jy/S/sxr6vV16/Fb/bgf0oiwcNsT1T0lPMif19K27Y9n8lDaKc1IcDn6Vcpe8GnByb7QKsArRFENEKwKvMWROgIwIesr1Vnc92B7YDPg58T9Kmtut2BlJKKbVWdgJ6Waz29xvKksUXtPvsBUkvSfpgxOnu02S1MxsMza8MPBcdgGE0GDmIYf83bF8jaRpwqcqZfiBzljj+HPBV21fEPm8HnpS0QhPtmwasLmmruM2xNPB+4BHKUwZ3Sro7vm9f4IVGFWVscEoptU52AhaMXwDzPOoXvgKcHxG/dwHTG2xXdR5lrsGDtvejLH4EcBnwe0ltwAPAow327wdcWHlK4DuUtQsmxjLDK1BWHBxe28H2y3Hi/nhnjbP9RkwQPK22ZgFlROQxSodjZcpowWm2G3YAUkoptVbGBi9kJPW1XZvdfxSwpu1Du7D/qsCDtjubL9BZPUcDf7K9UM3Yz9jglFLquowNXnTsLuk7lL/NX4D9m91RZRXDUcDP57cRto+f3zpSSikt3LITsJCxfRVwVTf3fZZyrz2llFLqVHYCUqckzbDdd0G3AzI2OKWUWilzAlJKKaUlVHYCUrdE9PAdEfd7u6T3dlI+QtJpku6R9EQlTnhNSaMj9niqpG0X5PdKKaUlSXYCUnedDlxkeyDlUcTTOikHWBPYBvgYUItE3he4JWKPBzEnl+Atkg6U9ICkB2a90swTkymllJqRnYDUXVsxJ9b4EsrJvaNyKJHDs20/zJz44vHAl2IJ4k1tv9T+QBkbnFJKPSM7Aak3VWOPBWB7NCU2+BlghKQvLIiGpZTSkiifDkjddQ8l5vcSyhoFYzopr0vS2sDTts+XtCywGWWRpboyNjillFonOwGpGStIerry/mTgm5So4SOBfwFfis8alTeyPXCkpJnADCBHAlJKqZdkbHBapGRscEopdV2j2OCcE5BSSiktobITkFJKKS2hck5AC9XidSVtDxxh+2N1trkR2LdVS+ZKWhq4z/Zmkr5Hee5+FjAb+Jrt+1pxnE7asD1NfN/K76c/cIPtAV09VsYGp5RS62QnoJfZ/miLq9wGGCtpK0oIz2a2X5e0GrBMi4/VZT3wfVNKKbVI3g7oOStJ+oOkaZLOkfQ2AElPSVpN0tvj88kRl7t3fD5E0l2SJki6RdKaUX6IpIcjjvfKynF2BW6ipPE9b/t1ANvPx6qCtWP+TFKbpPslrRflLYn+beb7NvolSdok2jQpjrd+S377KaWUOpWdgJ6zBeVxuY2BdYFPt/t8V+BZ24NiWPzmGNo/HdjT9hDgAuDHsf1RwAcijnd4pZ5hwCjgVmAtSY9JOkvSh9sdb7rtTYEzgFOjrFXRv81830aGA7+M2OChwNPtN8jY4JRS6hnZCeiMUa+lAAAgAElEQVQ599t+wvYs4Armjs8FaAN2lvRTSdvang5sAAwAbpM0CTgaeE9sPwW4TNLngTcBJPUD/mP7FdszgCHAgZTn86+StH/leFdU/t0qXrcq+reZ79vIvcB3JX0bWNv2q+03yNjglFLqGdkJ6DntAxjmem/7MUo6XhtwvKRjKFG6D9keHD+b2v5I7LI7cGbsM17SUpTRhFsqdc6yPcr2D4CDgc80OP78hEPME/3boM6mjmH7cuATwKvAjZJ2mI+2pZRS6oKcGNhztpD0PuAvwN7AedUPJb2bchV/qaQXgK9ShtdXl7SV7Xvj9sD7gUeAtWzfKeluSixvX0on4PtR3wbAbNuPxyEGx7Fr9o7696ZcfUOLon+b+b6NSFoHeML2aTH3YCBwR6PtMzY4pZRaJzsBPWc85f77esCdwHXtPt8UOEnSbGAm8HXbb8Rku9MkrUz5+5wKPAZcGmWi3KN/CVjP9qNRX1/gdEmrUG4X/Ilya6DmHZKmUK7kPxdlrYr+beb7NvJZ4H8jNvgfwE+a3C+llNJ8ytjgRZSkbYDP2x7exLZPAUNtP9/jDethGRucUkpd1yg2OEcCFlG27wbuXtDtSCmltOhaKCcGSpqxoNvQSpLWlHSrpLfFc/ZT45n98XEfvacdGz/zTdJgSR+tvP+EpKNaUXdKKaXelSMBLSKpTzweV09tFv/ewLuBgbZnS3oP8HJvtbFFas/z3whgeyQwsrcO3tuxwR3JSOGU0qJuoRwJqKerKXZx1X2WpEcl3SbpxspnJ1bS935eqeecCKV5TNLHonx/SWdU2nGDSlY+kmZI+oWkycBW9eoN1VS/v9ueDWD7adv/rdT1Y5UEwXGS1mj0vSX1kfSkilUkzZK0XWw/ukHq3lqSRkl6XNIPKnVPrXy3IyQdG69HRYbB/fH72FbSMsAPgb0j4W/v6u+nVX+LlFJKvWOR6QTQ9RS7TwP9KQl2/0sE5EhaFdgD2CTqOr5ST39K8t3uwDmSluukTW+nLN4ziPIY3zz1SuoDbBDhOr8BPh4n0F9I+kC7usZFXaOBAxp97xhxmBbfbRvgQWBbSctSHiV8nHltQckNGAjsJWmeCSJ1LGV7C+Aw4Ae23wCOAa6KHIOr6uzTqr9FSimlHrYodQK6mmK3DfDbKP8H5bE1gOnAa8CvJX0aeKVSz29i+8eBJ4ANO2nTLOCaTur9IHAflCt/Sirgdyir/N0uacfY7g3ghng9gXLS7Oh7jwG2i58TonxzyqN69dxm+9+RyHctzSX6XVunPZ1p1d/iLcrY4JRS6hGLUiegI41S7OZh+03KVfHVlKvVm6sft9+c8sx99fdUHR14rTYPoIN6d6sew/brtm+yfSTlmfhPxUczPed5zVl0Pl9jNLBtHPNGYBVgexoH+3T1u8Gc32sz7Wm/D8zf36K6XcYGp5RSD1iUJgZ2NcVuLPBFSRcBq1NOkJdL6gusYPtGSWMpV/w1e8X27wPWoQy5rwh8Q2VVvH6Uk9Y8Oqh3R+Bnsc1mwD9sPxv1DaSsCdCd731/lD1h+zWVtQa+RjmZ1rOzpHdS4nk/BXwZ+CfwPzEsP4MOTsQVL1F+J13Rnb9FXZkYmFJKrbOwdgJWkFRdTe5kup5idw3lBPww8DfKffPplBPY9XG/X8C3Kvv8lXJyXQkYHifXscCTUc8jUU8989QraXXKaMFLsc3/AOfHvXviWGfMW9Vc6n5v269L+hswLrYbQ0kCbGtQz/3xO3kPcKntBwAk/TA+ewZ4tMG+VXcCR0Wn44Qmtofu/S1SSin1sMU6MVBSX9sz4kr3fmDruCddb9sRwA22r27h8T8PvMf2iZ1uvJjryt+iI5kYmFJKXaclNDHwBpUs/WWAH3XnpDM/bF/am8dbyC3Qv0VKKaV5LdadANvbd2Hb/XuuJakrf4uUUkq9Y5F9OkCSJV1aeb+UpH9JuqGj/Tqob56oYknvltTt2wMRnrNnnfKhkk6rt0+dbUd19ky/pC0jPGhS/MyQNC1eX6x2gUetIulYSUe0ut6UUkq9Y1EeCXgZGCBp+Xj2fWfK5LaWsf0sMM9JvAX1PgDMc2Nb0lLx2FxX7QYcYfuaqGdUvK9N/tu/mUrUcfRxy3XneBkbnFJKrbPIjgSEGynpflBmxl9R+0DSOyX9LuJox0kaGOV9JV2osoDPFEmfqVYoaTVJ90ravRqrG1fT10q6WSV692eVfb4S0br3Szq/3VX3Tpo3inj72ohFXE1fEk8hXCJpeUlXSnpE0nXA8rFdnxhZqC0+dHjlGDsCf+zkd/XuBm1vH318jMrCRlMlnSdJsd0hmhPve2Wl3o1jtOIJSYdU6v18/D4mSTpXJTmxK1HLKaWUetiiPBIAcCVwTJxQBwIXUAJ0AI4DJtr+lKQdgIspi998H5hue1MASe+oVaaS1z8SONr2bZL6tzveYOADlECcaZJOpwTpfB/YjPIM/R3A5Mo+/SnZAusCd0par8732BjYxvarkr4FvGJ7o+i41B5JHAz0sz0g2rpK/LsaJWiosyi9edpu+2/MiT7+f1Hfw7Z/GK8voWQH/B44CnhfPJq4SqXeDYFhlMf9pkk6G1iPsljS1rZnSjqLknFwcfV48aTAr4ENbbtdvSmllHrYIj0SYHsK5ST7OWJVu4ptKGE62L4DWFXSSsBOwJmVOv4bL5cGbgf+z/ZtDQ55u+3ptl+jPPO+NuUEf5ft/9ieCfy23T7NRBGPjFsaUGKAL618v1qY0BPAOpJOl7Qr8GKUfwS4tUF7O2s7zB19DDBM0n2S2oAdgE2ifApwmcpjj9VbFn+IFMTngecoUcE7AkOA8Sp5AjtSwpfaHy9jg1NKaQFapDsBYSTwcyq3ArrpTUpG/i4dbFONxG02SrdeXG97nS4nHJ2VQcAoYDjwq/horljiDjRq+1vRxyqhPWcBe8ZIyfnMiRLendJ52oxycq/tX69eURY9Ghw/G9g+tv3xMjY4pZQWrEX9dgCUWwAv2G5TLPEbxlCGoH8U5c/bflHSbcBBlJXxkPSOOMGaEqX7W0nftv3TJo8/Hjg1biu8RFmpr5raVy+KeMsO6hsN7AvcIWkA5TZHbdj/DdvXSJoGXBr36wcCk5psa2dqJ/znVSJ99wSuVok4Xsv2nZLupsQY9+2gntspSYCn2H5OJa54Rdt/qW6kjA1OKaUFapHvBMTKfPUetzsWuEDSFMow8xej/HjgzJjwN4syd+DaqGuWpM8BIyW9xLy3GOod/xlJP6Gk4P2HEr1bHbOuF0XcUZVnU2KCH6HEFE+I8n5RXhu9+Q5lyH1iZeGh+WL7BUnnA1OBfzBnRcI+lE7HypSr/NNi20b1PCzpaODWaO9MSsfrL+02zdjglFJagBbr2ODeojmRuEsB1wEX2L6uF457NPAn21d2uvFiImODU0qp67SExgb3lmMl7UQZTr8V+F1vHNT28b1xnJRSSoun7AS0gO1MzUsppbTIWRyeDkgtImkNSZdH8M8EldCkPbqw/1vhSimllBZ+ORKQAIgnDX5HebRv3yhbG/hEu+26G23cEgtTbHBHMlI4pbQoyJGAVLMD5RHEc2oFtv9i+3SVyOSRku6gPP6HpCMjXniKpOMq9Swl6TKV2OOrJa0Q2w+RdFeMMNwiac0obxRHnFJKqYdlJyDVbMKciOJ6NqOECH1Y0keA9SlBP4OBIZK2i+02AM6yvREl1fAbkpYGTo/9h1CyHX4c2x8FfMD2QEoI0jwyMTCllHpGdgJSXZLOlDRZUi0r4Dbb/4nXH4mfiZSOw4aUTgHA32yPjdeXUuKbNwAGALdFjPDRwHtim0ZxxG/JxMCUUuoZOScg1TxESTsEwPZBkVJYeyi/Gm0s4ATb51YriAWX6sUkC3jI9lZ1jrs7Zb2EjwPfk7TpgpxzkFJKS5LsBKSaO4CfSPq67bOjbIUG295CiWO+LEKS+lFSAQHeK2kr2/dS4o/vpkQlr14rj9sD76ckItaLI36hUSMzNjillFonOwEJgFjK91PAKZL+D/gX5er/28Dy7ba9VdJGwL0RHTwD+DwlhnkacJCkCyirFZ5t+w1JewKnRfTwUsCpwGPUiSPuha+bUkqJjA1Oi5iMDU4ppa5rFBucEwNTSimlJVR2AlJKKaUlVHYCKiS9S9KVkv4coTY3Snp/Lxx3S0nnS9pe0g09UP9Nkt4jaZSkv6qyBrCk30ma0QPH/ISko1pdb0oppdbJiYEhTozXUWJz94myQcAalAlsPRmZuxtwcw/Ui6TlgVVtPx3n/heArYG7Ja0CrNkTx7U9EhjZ6nozNjillFonRwLmGAbMbBebOxnoI2mMpJGU2e5I+pakqfFzWJQdKemQeH1KROwiaYeI0e0jaUTs0ybp8MqxdwT+WG2MpC1iAZ+Jku6RtEGUj5Y0uLLd3ZIGSfqwpEnxM1HSirHJ9sCoStVXUh7FA/g0cG2lrr6Sbpf0YLTxk5XPvi9pWhzvCklHRPkoSb+M406VtEWU7y/pjHi9uqRrImZ4vKSto7xRm1NKKfWCHAmYYwAwocFnmwEDbD8paQjwJeCDlMfa7pN0FzAG+H/AacBQYNl4Hn5bYDQlXref7QEAcRVOBPLMtD29MkoP8Ciwre03Je0E/IQS5vNrYH/gsLhVsZztyZJ+Dxxke6ykvsBrUc9ulIWBam4HzpfUh9IZOBD4fnz2GrCH7RejXeOi8zM0jj0IWJqSElj9Xa1ge3BEB18Qv8uqXwKn2L5b0nspOQMbAUc0aPNcJB0Y7aTPSqvX2ySllFI35EhAc+63/WS83ga4zvbLtmdQrqS3pZwUh0haCXgduJdy8tyW0kF4AlhH0umSdqXk6kOJ3721zjFXBn6rsjTvKZRsf4DfAh+LDsaXgRFRPhY4OUYjVqncttiaEthTMyve7wMsb/upymeiBAZNoYxM9KPcDtkauN72a7ZfAn7frq1XANgeDaxU6+BU7AScoRIZPDK26dtBm+eSscEppdQzshMwx0PAkAafvdyg/C22ZwJPUq7S76Gc+IcB6wGP2P4v5Up6FGWhnF/Fro3mA/wIuDNGDj4OLBfHeQW4Dfgk8Fngsig/EfgqJdhnrKQNJa1DyfJ/o13dV1JGLH7Trnw/YHVgiO3BwD9rx+3s63fy/m3AlrYHx08/2zPqtbmJY6WUUmqRvB0wRy0290Db5wFIGki5kq8aA4yQdCLlynkP4H8rnx1BuUJvA04GJkQa32qUpXqvkTSNkpQnYCAwqU57Vgaeidf7t/vsV5Sr8THRuUDSurbbgDZJm1MW9elH/Q7GGOAE4gq+3TGfsz1T0jBg7SgfC5wr6QTKfzMfA86r7Lc3cKekbYDpdW5t3Ap8Ezgp2jrY9qQGbX60TnvfkrHBKaXUOjkSEFyiE/cAdlJ5RPAhyonyH+22e5AyBH8/cB/wK9sT4+MxlNn299r+J+Ue95j4rB8wKobELwW+Qxl5mOg5sY1LUW4lAPwMOEHSRNp11mxPoNxOuLBSfFhMzJtCyfG/CdiVOp0AFz+3/Xy7jy4DhkpqA75AnJBtj6cM40+JetuA6pq+r0U7zwG+0v54wCFR7xRJDzNnyeB6bU4ppdRLMjZ4AZJ0NPAn21fG+0Mpkwf/r5P93k25rbCh7dkNtlkWGFsvJrKbbe0biwWtQJnoeKDtByWNAo6w3StZvhkbnFJKXacGscF5O2ABsn187bWkX1Nm1X+2o30kfQH4MfCtRh2AqPt1ysTEVjlP0saUOQIXxYhISimlRViOBKRFSo4EpJRS1+VIQDdImkW5/13zqXaP1FW37Q/cUMsB6E2SzgEuieftj6DMuH+Ncp/9dNsX93abekomBqaUUutkJ6Bjr8ajcgu7LYGDJA0Hdga2iMCflSiTHZuiHopFltTH9qxW15tSSmn+5NMBXSSpv0qM8IPx86E62/SR9PPazHdJ34zyHSMet03SBTF5D0lPSTquEte7YZR3GqsraSPgsTjJfhf4uu0XAWy/aPui2O6YiOydKum8eDyxFvt7qqQHgEMlfVzSfXG8P0paI7brK+nCaN8USZ+J8rMlPSDpIUnHVdr1lKSfSnoQ2EvSAXH8ySoRwivEdntFmyZLGt2yP1RKKaVOZSegY8tXTsLXRdlzwM62N6M8H39anf0OBPoDg20PBC6TtBzl0cK9bW9KGYX5emWf56POsylZAzAnVncwJa/g1TrH2g24Oa76V7T9RIPvcobtzeN2xfKUZ/1rlolEvl9Q0gS3tP0BSqhQ7UmF71MyADaN73RHlH8v7jMNBD4c2Qo1/7a9WTz9cG0cfxDwCHMeJTwG2CXKP1Gv4ZIOjI7GA7NemV5vk5RSSt2QnYCOvVpJuasNqy9Nyd5vo0T4blxnv52Ac2tD67b/A2wAPGn7sdjmImC7yj61hXwmUDoQ0Fys7i40twLhsLjCbwN2YE4MMcBVldfvAW6J7Y6sbLcTcGZto1pIEfDZuNqfGNtWfx/VegfECEobJZmwVu9YSvjSAUCfeg3P2OCUUuoZ2QnousMpcbqDKI/gLdOiemshQbOIuRqdxerGkPoqtp+NWwAzVKKCabfdcsBZwJ4xCnE+c8cBV2ORT6eMGmwKfI0OYoMlvY8yWrFjjA78oYN6RwAHR73HMScGeThwNLAWMEHSqo2Ol1JKqbVyYmDXrQw8bXu2pC9S/+r1NuBrku6MVQDfCUwD+ktaz/afKFHDd3V0oCZidYcBd1benwCcKWnvmBjYl7Jc8Mj4/Pko2xO4uoPvV4sr/mK773QQUFs6+R3ASpQT/fSYO7Abcy9bXLUi8HeVhY/2qx0jvuN9lNUYd6N0Bv7doI6MDU4ppRbKkYCuOwv4oqTJlJNyvcWFfgX8FZgS2+1r+zXKEsS/jSHx2ZSY3Y50FqvbfvGhsymdgvEqqw+OAWbbfoFy9T+Vsozv+A6OeWy0cQJQjRU+HnhHbRIfMMz2ZMptgEeByylD+418nxKzPJa5OzInxWTDqZSFlyZ3UEdKKaUWyrCgRVjci/9grGC4RMiwoJRS6roMC1oMxdMEKaWUUrfk7YCUUkppCZUjAb1M0gzbfSvv9weG2j64F9twI2Wewgvd2Hd/GrRX0j225wlPqrPdscAM2z/v6vEXldjgjmSkcEppYZGdgCWQ7Y/2UL310hN7JIo4pZTS/MvbAQsRSSMk7Vl5PyP+3V7SXZKul/SEpBMl7Sfp/phZv25l/7MljYvtto944kckjajU+5Sk1VQikB+RdH7E/t4qafnYZvOIB54k6aSYvV+zVsQNPy7pBw3aO0bSSODhKPuepMck3U0JTqrtc4ikh+NYV/bE7zWllFJ92QnofdUo4knAD5vcbxAwHNiIkjHwfttbUB5H/GZlu3cAW1FCjUYCp1DS+TaVVG8xpPWBM21vArwAfCbKLwS+FpHF7Rf/2SK2G0hZF2CeGafAZsChtt8vaQiwDzAY+CiweWW7o4APRNjQ8HpfPGODU0qpZ2QnoPdVo4gHU7LzmzHe9t9tvw78Gbg1ytuYEzMM8HuX5z7bgH/abrM9G3io3XY1T9qeFK8nUAKNVqGsQ3BvlF/ebp/bbP/b9quUuONt6tR7v+0n4/W2wHW2X4lkw5GV7aZQ1lb4PFD3tkHGBqeUUs/ITsDC5U3ibyLpbcwdSfx65fXsyvvZzD234/U629Tbrl69sxps0177cIl6YRP1QpTq2Z2yJsFmlJCjnKeSUkq9JP+Hu3B5ChgC/Iayot7SC6IRtl+Q9JKkD0ak7z7tNtk5opBfBT4FfLmTKkdTFgk6gfLf3MeBc6Ojs5btO2OuwD5AX8ptiboyNjillFonOwELl/OB6yOW92aav5ruCV+hrJY4m7LGQfVm/P3ANZQVBy+13WGEn+0HJV1FiQR+jjmxxX2ASyWtDAg4rTuPLaaUUuqejA1OdUnqa7s22/8oYE3bhy7gZmVscEopdUPGBqeu2l3Sdyj/jfwF2H/BNiellFKrZScg1WX7KuCqBd2OlFJKPSc7AUsASd8D9qXM/p9Nef7/vm7WdSwR+RsBRDfYvrpVbe1MxganlFLrZCdgMSdpK+BjwGa2X5e0GnM/ephSSmkJlTkBi781gecjZAjbzwP9JF0LIOmTkl6VtIyk5SQ9EeUHSBovabKkaySt0NFBJO0oaWLEGF8gadmIHu7sOBkbnFJKC0h2AhZ/t1Ky/h+TdJakDwMTKRG+UNL8plKifD8I1G4TXGt7c9uDgEcojwzWJWk5YASwt+1NKSNMX2/yOBkbnFJKC0h2AhZz8ZjfEOBA4F+UyX6fB/4saSPKOgAnA9tRTtRjYtcBsQhQG7AfZf2BRjagxA8/Fu8vAraL1QM7O07GBqeU0gKSnYAlgO1ZtkfZ/gFwMGXxn9HAbsBM4I+U/P9tmHNyHgEcHFf2xwHLdfPwnR0nY4NTSmkByf/hLuYkbQDMtv14FA2mPPc/BrgYuNj2vyStCqxBGbIHWBH4u6SlKSMBz3RwmGmUhYfWs/0nyiqHd8VnDY+TscEppbRgZSdg8dcXOD1WBnwT+BPl1sDLlJPx6NhuCvAuz4mQ/D7lvv2/4t8VGx3A9muSvgT8Nq7kxwPnxMf3NTpObJuxwSmltIBkbHBapGRscEopdV2j2OCcE5BSSiktobITkFJKKS2hck5AmoekU4C/2D413t8C/M32V+P9L4BnbJ/c223L2OCUUmqdHAlI9YwFPgQQM/hXY+6cgA8B99Te5GN9KaW0aMpOQKrnHmCreL0J5bHBlyS9Q9KywEbAShEmNBJ4GEDS5yXdL2mSpHMl9YnyGZJ+HBHE4yStEeV7SZoa5aPnaUVKKaUelZ2ANA/bzwJvSnov5ar/XsqjflsBQ4E24A1KwM+htt8fqYB7A1vbHkxZsXC/qPLtwLiIIB4NHBDlxwC7RPknGrUnY4NTSqlnZCcgNXIPpQNQ6wTcW3k/Nra53/aT8XpHSjzxeEmT4v068dkbwA3xegLQP16Phf/P3nmH21XU+/v9EEDAUBSQHwY0NKUTeg0GpCoWFISoF2KhXcpFxe5VRKQqCCIg0iX00Iv0kBBIQkIqoV0pUqRICYYmhM/vj/nunJWdvU8/yQn5vs+zn7P2rFkzs9bOk5k15R3Ol7Qf0KdZQVIbnCRJ0jPkWG7SjNq8gPUowwFPAz8AXgfOizhvVOILuMD2Txuk9W5FQjST+Hdn+0BJm1PUweMlbWz75W6/kyRJkqQh2QhImnEvcATwuO2ZwCthHVyH0p2/bl38O4BrJZ1s+0VJHwWWtP1UswwkrWZ7DDBG0q7AykCrjYDUBidJknQf2QhImjGFsirg4rqwvrb/JWm2yLanSfoFcGusKHgXOJiyT0EzTpS0BqUX4Q5gUjeWP0mSJGmD1AYn8xWpDU6SJOk4qQ1OkiRJkmQ2Wm0ESLpL0s51YYdLOk/SlT1bNJC0t6SfS1pB0g2xnnyapJvi/CBJN7SVTsQ9StIOcfykpOU6WaYhkk7r4DUzmoQPlzRHy6wzebSR/5mStpZ0vqQnYh3/REn3tn119yLpQEn7zO18kyRJkjlpa07AJZQ93m+phO0N/Mj2HHIXSQvbfq8by7crcCpwFHCb7VMin/U7koikPrZ/2Y3l6lW047lvQRmf3w/4oe2mDbiu/oYqkwVk+/1G522f2Si8vaQ2OEmSpPtoazjgSuDzkhYFkNQf+DjwtKSpETZE0nWS7qRM7kLSDyXdL2mypF/XEpP0/TDETZV0eIR9WNKN8ZY/VdJeES5gAPAAsCLwTC0d25MrZewr6UpJD0saGtfV3vaPl/QAsGe8Be9RvTlJi0u6OdapNzXeNWDleIt/TNKvKuldI2m8pAcl7V+X18kRfoek5Sun/ivymypps/qMJC0vaVg8z/slbR3hR0r6q6RRwF8lrVMp++SYcEdIfB6NGf4NaZDWEEnXNrnHRr9hf0mPSLqQspxwZTW3BB4p6Yg4Pix6diZLurRZ+ZIkSZKeodWeANuvSBpLeSO/ltILcDlQP5twI2D9iL8TsAawGWXW93WStqWsKf8WsHmEj5F0N0Uo85ztzwNIqtlgNgQm2bakPwGXSToEuB04L6x2tXjrAM9R1rZvDdwT5162vVGku0tdmfsClwIX2r5Qsxvv3pV0OsV4d2GDR7MZZYncmxQ5zo22xwHfjmeweIQPi3XvHwbG2f6epF8CvwIOibSWsD0gntG5zLn07hTgZNv3qBj8bqFoewHWBrax/ZakPwKn2B4ajbZaA2ZX4G+V9E5UmcUP8KDtbzRIa0ije6T87o1+w1cpv/m+tkfH865ZAn8u6QRKL8TRdff2E2AV2++oLD9MkiRJ5iLtWSJYGxKoNQK+0yDObbZfieOd4jMhvvelVBB9gattvwEg6SpgIKWC+r2k44EbbI+M63YBbgawfYukVSNsV2CCpFplOdb2M5HmRIqNrtYIuKyV+7oWOMH20PheNd4BLA682OTa22pSm7iPbYBxwGGSdo84K8d9vwy8XynLRcBVlbQuiXscIWmpBpXhDsDaalmSt5SkvnF8ne234vg+4OeSVgKusv1YhO9MqbhrNBsOqKbV7B5N49/wOsqug6Mr19dbAndskOdkYKika4BrGpwn8tkf2B+gz1LLN4uWJEmSdJD2rA64FvispI0ob63jG8SpN8cda3tAfFa3fU6zxG0/SulJmAIcHW/KUBoSt1bivWL7Ytv/BdwPbBun3qkkN8tG16Bc9YwCdlFL7Voz3tXK/WnbR0raXS0T6WqT+Op7QixpEKXC3jJc+BOAxZrddpPjRt8XAraolKuf7dpEw1n3Z/tiin//LeAmSdtLWgJYptJr0hr1z6qtcrV1fUNLYB2fB/5E+f3vV5PdCFMbnCRJ0jO02RNge4akuyhd1Ze0I81bgN9IGhrX9qOIY0ZSPPHHUSrc3Snj4R8HXrF9kaTXgO/GkMDClTfR7Sldy29KWhJYDfgHpZu9s/wyPn8C/gTRgzgAACAASURBVJvmxrurgatrF0UPxI5x/i3gy8C3gX7Aq1HGNSmT8WosBOxBGX74Oi09FVCGIO6StA0w3fZ0zS7iuRU4FDgx8h9ge2L9zURPyeO2T41hg/UpvRl3de7xNLzH92nwG3YmcRWh0Mq275J0D6WXqS/wWmvXpTEwSZKk+2ivMfASSkW4d1sRbd8a4+v3RWU2A/im7QcknQ+Mjahn256gsgTxREnvUxoLB1G6jm+vJLsxcJqk9ygV6tm274+3767wP8C5kk6w/SO133g3FhgGrARcZHucpCnAgZIeAh4Bql3jbwCbRfovUir+Gm9LmgAsQqlo6zkM+JOkyZTfawRwYIN4X6M0qt4FngeOoayqqO/6r84JgDL234g57hGgyW/Yv0kardEHuCgafAJOtd1qAyBJkiTpXnqlMVDS2ZQKZnSbkZOmqKyM2Nz2ux28bgiwie1D2oo7t0ljYJIkScdRE2Ngr9w7wPZ353UZPgjUVkYkSZIkSSN6ZSMgmbfYPh84fx4XI0mSJOlhshHQBSTNpKxqWBh4iLJO/k1JM2z3bf3qHivT3pSJk88yF7r0JX0RWNv2cT2ZT5IkSdL9ZCOga7xlewCApKGUCXsn9WSGalvrW1Mtr9eT5ahh+zqKJ2CukNrgJEmS7iN3Eew+RgKrVwNUODEUu1PUokS+VNLnK/HOl7SHpD4Rv6ZcPiDOD5I0UtJ1wDS1T7XcEElnSBqnojCuKp2flHRClHOspNWjPE/EfSwjaaaK2RBJIyStocpmR3Efp0q6V9LjCk2zpIUkna6idr5N0k2Vc8epRR38u+74IZIkSZL2kT0B3UBIbur1vABfoVTKGwDLUYQ4Iyj2wK8BN6oofj9LWRr5HYorYFNJHwJGSaoJkzYC1rX9hKSv0rZquVlxfx5q4z7AHZLWr+zFMN32eiq7/P3B9m6SHqEohVehNC4GShpDWeP/mGIvgworUuyCa1J6CK6M59A/0vkYZejkXEnLUlwDa0aZUx2cJEkyF8megK6xuIqqeBxFXlRvRtwGuMT2TNsvAHcDm1J0yNtFRb8rMCKUvTsB+0SaY4BlKephKHrkJ+J4CkXmc7ykgbanR/gs1XIrfC2WDk6g7LmwduXcJZW/W8bxSIqdcVvg2LinTSnWxkZcY/t929OAFSrP4YoIf54WgdF04G3gHElfoexTMAeS9o/ei3Ez35zeKEqSJEnSCbIR0DXequh8D7X9n/ZcZPttYDjF678XLfsKCDi0kuYqtms9AVVFcLtUy/VIWgU4Avis7fWBG5ldbdxIZzyCsj/AZsBNwDLAIErjoBFVjXPT7oi4j/ci3SuB3ZizJ6UWL7XBSZIkPUAOB/QsI4EDJF0AfJTyNv3DOHcZ8F1gE2BIhN0CHCTpztjJ8FOUWf6zoXaolpuwFKUxMV1la99dKY2RGnsBx8Xf+yJsLPBXipL47eilOIBSabeXUcC+8RyWpzQiLlbZCGkJ2zepbGP8eFsJpTY4SZKk+8hGQM9yNaVbfRLlzfpH0R0O5Y39r8C1lR6Esylj5w/EJL+XKN7+etajbdUywBBJ1eu3oAwDPAw8Tamcq3wk9MTvAIMBYpvfp2nRII+Mc1Pa8wCCYZR5D9Mi3wcoQwFLUvZrWIzSa/D9DqSZJEmSdJFeqQ1OOk5XVcuSnqR4Bf7VrQVrSb9vbCi1LKV3YetKg6jdpDY4SZKk48xX2uCk48wHquUbYvb/osBvOtMASJIkSbqXbAQkANju38PpD+rJ9JMkSZKOs8CsDgjRzcSQ61zfnjXpku6Nv/0lTW1H/DNr6+YlfT/kOFNC6nOSpEXauH64pE3i+ElJy1XL0RmqMp9OXn+zpJUkLRJin8ckPSDpPkm7djLNn3W2PEmSJEn3sSD1BFQVvxcABwO/be0C21t1MI8tgIMlHUhZrreF7ddCCPR9YHHKRL4O0YlydAuSFgeWtf2MpOMoIqB1Y7LgCsBnOpn0z4BjOnPhB0Eb3BapFU6SZG6xwPQE1HEf0A/KhDVJd8Tb7RRJX6pFkjSj/kJJ64RWd2KobteI8LWAR23PBH4OHGT7NQDb/7F9nO3XI25DdW8zauVQ0QcPl3Rl9DIMjVUE9T0Hm0ga3iCd5SUNU9ES31/ptfhM3M9ESRMkLRmXDAKGS1oC2I/iMHgn7ukF25fH9YPj2U2VdHwlvznCozGxeOQ1VE0UyEmSJEnPsyD1BACgosv9LC12v7eB3W2/HpXoaEnXufmyiQOBU2wPjTf8PhG+K/A3SUsBfSt2v0a0pu5tiw0ppr/nKEv8tgbuaee1pwAn275H0icoXoK1KAKhg22PirX7b1fu6RrKngj/qDViqoSz4HhgY+BV4NZYlji2Ubjtn0g6pNIr00yBXM1jf2B/gD5LLd/OW02SJEnaYkHqCagpfp+n6Gxvi3ABx8T6+NspPQQrNE4CKL0IP5P0Y+CTofuFYv+bw3gnaed4631SUq1bvzV1b1uMtf2M7feBiRSvQHvZATgtnsN1wFJR6Y8CTpJ0GLBMZZfC9jQwNgWG234prhtKkSI1C6+nmQJ5FmkMTJIk6RkWpEZAbU7AJykV/8ER/g2KxW7jOP8Cs6t0Z8P2xcAXgbeAmyRtH93ly9h+Lt6WZ6goerF9S6Q7FVhUbat726Kq5Z1JS2/Oe7T8ns3SW4gyT6GmJe5ne4bt4yj2wsUpmxatKWlV4OkQGf0f8Ino5ehWWlEgJ0mSJD3MAjccYPvNeOO9RtLpwNLAi6Hp3Y7SSGhKVI6P2z41utTXp1Sed1WiHQucIWnvmBgoWirmttS9neVJStf7zcBXm8S5FTgUODHuZYDtiZJWsz0FmCJpU8oOgP2Ino14ZucAp0g6wPZ/JNX0v/cAp8ZQyqsUm+AfKcMBjcIB3pW0SDzzORTIrd1kaoOTJEm6jwWpJ2AWticAkykV01BgE0lTgH0oSt3W+BowNbrU1wUuZM5thM8A7gDGxDDDKErX/wTbk2hR917MnOrezvJrSiU9jtJD0IjDKPc6WdI0yvwGgMNjUt5kyuqFmyk7Elbv6RcUjfE0leWSNwCv2/4n8BNKI2gSMN72tc3CI62zgMmShlIUyGPjef4KOLrLTyJJkiRpF6kN7gZifH9z2x1e/tcbUdnieFQjxeS8JrXBSZIkHUepDe45bG80r8vQncQywF7XAEiSJEm6lwVyOCBJkiRJkmwEzHU0u774ilhZ0CU1cHeiUB9LOl/SEyHxeVTShZJWmtflS5IkSbqPnBMwl5E0w3bfOB5KmTB30jwu1ixigt7GFJnSDbavjNUNhwMHUbTB/5lX5fvQimt4xX3/MK+ynyukNjhJku6m2ZyA7AmYt4yk2PiqauCFJJ2uogW+TdJNkvaIcxtLulvSeEm3SFoxwgdIGh2z/q+W9JEIHx4SnrHxNj8wwtujPp6FCydTREu7RtxGSuADJZ1Yu06VzYskfbOS558l9YnP+ZHGFEnf67lHnSRJktSTjYB5hKSFKRXqlLpTX6FYANcG/gvYMuIvQllnv4ftjYFzadkA6ULgxyEfmkJZaldjYdubUd7ka+E19fEAygTAZyK8fqljPQ8Aa6pFFbw9MADYVEUVPAzYvRJ/L+DSaFzsBWwdec6kSJoGAP1sr2t7PeC8Js9qf5W9FsbNfHMOoWCSJEnSSXJ1wNynpi+G0hNwTt35bYArQgv8vKSahOjTFC/BbaV3nj7AP1Vc+8vYvjviXQBcUUnvqvg7nhbF8H3Az2OM/yrbj0X4zsC3Wim74u8sJTDMGtbY1vY1kh6XtAXwGEU6NIpiZ9wYuD/KvjjwInA9sKqkP1LMibc2ytT2WRS3AB9acY0cv0qSJOkmshEw95m1pXEHEfCg7S1nC2yw4U4dNc3wLMWw7YsljQE+T1EfHwCMJtTHraS1IUWCpFbiXEoRKj0MXG3bMafgAts/neOmpA0ojY8D47pvt3E/SZIkSTeRjYDexyhgX0kXUPY0GEQxCz4CLC9pS9v3xfDAp2w/KOlVlc13RlKGEO5ulji0W31cjS+KbnhFynDBsjRXAl9N2Up5Q+DHEXYHcK2kk22/KOmjwJIUffJ/bA+T9AhwUVsPJ7XBSZIk3Uc2AnofwyhbHU8DnqaMw08PX/8elMp3acpv9wfgQWBf4MxYbvg4rXfpQ3nj/i9J71Im+x0DHAVcWRfvREn/CyxB6SnYLlYG/FNSTQks4MaaEtj2q5IeAta2PTbCpkn6BWU74YUoauKDKZswnRdhAHP0FCRJkiQ9Ry4R7IVI6mt7hqRlKRvxbG37+R7Oc75QH6c2OEmSpOOkNnj+4gZJywCLAr/p6QYAfPDUx0mSJEnbZCOgF2J70LwuQ5IkSfLBZ75sBEiaSVkPvzDwEGVM/GMUw92687JsVSQNAW5tY8Y9If25wPZOIe45GVgLeA14HfiV7RE9Xd62yhbfDweOA1awPT3CBgFH2N4t7nkT24dIOhB40/aF3VWeKc9Op/9Pbuyu5OY70iaYJEl3Mr/Kgt6yPSAq/P9Qlpf1RoYAH29HvF2AWyQtRlkvf5bt1UIKdCiwav0FIRuaG+wC3FL5Phi4nyI1ahXbZ3ZnAyBJkiTpXubXRkCVWepdoI+kv0h6UNKtkhYHkLSapL+FbnekpDUj/AuSxkiaIOl2SStE+GdCbzsxzi0pqa+kOyQ9EIrbL0Xc/pIeqs83ZvJvAgyNdBaXdJykaaHq/V3lHnYBbqZY9O6zfV3thO2pts+PvI6U9FdJo4C/SlpM0nlRngmStot4s3S98f0GSYOaaXqbPZ+6siFpNaAv8AtKY6BVorxHtPEb7BnlmSRpnvR2JEmSLKjM140AzaneXQP4k+11KF3pX43ws4BD4836COD0CL8H2ML2hhTJzY8i/Ajg4JD6DKQsZXsb2D0m0G0H/D7WzzfM1/aVwDjgG5HOEhSl7jqh9z067qEP8Gnb04B1KEsCW2NtYAfbgynL7BzK3cHABdGb0Ixmmt6Gz6eubAB7x3MaCXy61mhqJ81+g18CO9veAPhiowuV2uAkSZIeYb6cE0Bj9e7HgSds18LHA/0l9QW2Aq5oqbP5UPxdCbgsxr0XBZ6I8FHASSo63KtsPxNynmMkbQu8D/QDapXgHPk2KPN0SkPiHEk3ADdE+ObAmEY3KelqSgPjUdu17vfrbL8Vx9sQkh7bD0t6CvhUo7SCx6nT9LbxfOrLNpjSEHpf0jBgT+A02qCNPEYB50u6nBbF8WykNjhJkqRnmF8bAXOod6NyeacSNJNiwVsIeK2JqvePwEm2r4vJbUcC2D5O0o3A54BRknYGtqAY/Da2/a6kJ4HaW3ejfGfD9nuSNqOIgPYADqFswFPdtOdBYNvKNbtL2gSoDh280eA+6nmP2Xt5Fov0XtWcmt7Daf58ZpVN0nqUBklt74Jao6nNRgCt/Aa2D5S0OUVhPF7SxrZfbkeaSZIkSReZXxsB7cb265KekLSn7SuiC39925OApYFnI+q+tWskrWZ7CjBF0qaUjXCWBl6MBsB2wCfbkf2/KXrc2tvwErZvijH9xyPOZ4ET4vhi4KeSvliZF7BEK+mPpMwjuFPSp4BPUPTCSwH/rWLi6wdsFmVYjjpNbxvPp1q2wcCRto+tPKcnJLX5HFrLI571GGCMpF2BlYGmjYDUBidJknQfH/hGQPAN4AwVde0ilHHtSZQ3/yskvQrcCawS8Q+Piv59ytv5zZTK/HpJUyhj/Q+3I9/zKTrftyhv1dfGmL2A70taHnjb9r8BbL8laTfKUMQfgBcoDYmjm6R/etzXFMrb/xDb70Qj4wmKevghWuYZ9KOxpneO5yPpuWrZKPMBPleX/9UR3nA4o45mv8GJKssiRdljYFI70kqSJEm6gdQGz0MkfRNYyfZx87os9fTWsqU2OEmSpOMotcG9D9tt7po3r+jNZUuSJEm6h/l6iWCSJEmSJJ3nA9cTIGmG7b6V70MIje08Ks8WwHeAocC1tCxDhKLavb0b8hhEmfB3bzvijqcs13uEMt9gJtAH+EVtO2BJ99reSlJ/YCvbF0f4AODjtm/qapk7y4KuDe4sqRtOkqQR2RNQh7pfx1tdAjgydMe1T7sbAG2UaxClYm8rjVWAZ23XljRuF8v29gBOrcWzXUurP/D1ShIDmHNyYFt5fuAamkmSJB8UFqhGgKTlJQ2TdH98to7wjuh4rwr97WOSTojwhjre4LNAq5W9pP+V9IikeyRdohbV7nBJf5A0DvifRuWPt/UDge+p6IkHqrmKdxdaGiRVlgJerZRnRhweBwyMdH8MHAXsFd/3kvRhSedKGhvPqaZSHiLpOkl3AneoKIuHS7pS0sOShsYyQdRcpZwkSZL0MB/Et7SqTRDgo0Btzf0pwMm275H0CcrGOGvFubWBbWKZ3g8IHa+K4/7WWIcP5W14Q4og6BEV+97HCB0vgKRl4u9ywLu2p0edN7CubF+N8n0V2ICydO4BinWwxqK1GZ2SLq4vv+21JJ0JzLD9u4g3haLifbZWlmAXoNpAuSsq41Up4qB6fkLsDhjpvkBlaEXSMcCdtr8d+YyVVGvwbERxAbwSwxUbUrTIz1EsgVtLeoiiUl7TtuvKOgtJ+wP7A/RZavlGUZIkSZJO8EFsBMxmE6zNCYivOwBrq0Vdu5SKxAfar+O9o7KF7jSKNOhB6nS8EXenyjGU4YDdqoWV9AXgWttvA29Lur7ufi6rHLdW/ipzqHglLUpZ8vd4Jd52tv+lsjHQHZKG257RIL1m7AR8sdZzQTETfiKOb7P9SiXuWNvPRFkmUoYaRtNYpTwbqQ1OkiTpGT6IjYDWWIiyYdDb1cCoVNuj44U5FcELN9HxfpsyH+CkLpa5Wq7Wyj+LRipeSg/GPY0ysP33eMtfGxjbgbKJslnSI3Xl2Zw5n2ej59ZMpZwkSZLMBRa0RsCtwKHAiVBmu1c2/qnSTMe7UaNE1UDHG93s6wON0q8yCvizpGMpv8duxFtvB8r/b8q4fq08jVS8s7YEblD+j1FsiU/VnZqlPW7y/RbgUEmHRnf+hrYntHG/1XybqZSbktrgJEmS7mOBmhgIHAZsEpPQplHe2htxOrBQjK1fRuh4W0m3HzA8urkvouh4NwYmeHYlY22SXe2zh+37KXMWJlMq6SmUHQc7Uv7rgd1rEwMpKt4pkqYC91JUvIOAu+vSuyvKfBfwE9sv1J2fDMyMCYbfi3hr1yYGAr+hzGOYLOnB+N4RlgRukDSZ0kvx/Q5enyRJknSB1Ab3ECqO/P+zfWk74va1PUPSEsAIYH/bD7R1XQfKshLwF9u7dlea84rUBidJknQcpTZ47mK72aY/jThL0tqUiXUXdGcDIMryDGV+QpIkSZLMIhsBvQDbX287VpIkSZJ0L9kISDpFDDH8ibKiYCHK8r4f2v5PG9f1B26oORU6SmqDO0dqg5MkacSCNjEw6QZi5cNVwDW216A4FPoCv52nBUuSJEk6RDYCks6wPfC27fMAbM+kmAi/LekuSesDhEr4l3F8lKT9qolIWieUwxNjxcMac/k+kiRJFmiyEZB0hnWYXW2M7deBf1CWEQ6UtDTwHrB1RBlIWflQ5UDglDA8bgI80ygzSftLGidp3Mw3m62eTJIkSTpKNgKS7uZuYFtK5X8j0DeWPq5SbxYE7gN+prI50Scr2ubZsH2W7U1sb9JniaV7suxJkiQLFNkISDrDNIoMaRaSlqKYFSdQ3uprb/4TgP2o6zkAsH0x8EXgLeAmSakMTpIkmYvk6oCkM9wBHCdpH9sXSuoD/B443/brkp4G9qRsPbw88Lv4zIakVYHHbZ8auyKuD9zZWsapDU6SJOk+sicg6TChQt4d2FPSY8CjlN0AfxZRRgIvRvf+SGCl+FvP14CpoS5eF7iwp8ueJEmStJDa4GS+IrXBSZIkHaeZNjh7ApIkSZJkASUbAXMBSf9P0qWS/i5pvKSbYovizqQ1RNJpcXygpH06mU7/2GWwrXhnSto6jheW9JKk4+riDJe0SRw/GVsrI+nezpQtSZIkmTvkxMAeJux6V1M2Bto7wjYAVqCMpbd1rWy/3+i87TO7ubiN2AI4OI53pJR5T0k/dRtjSba36u7CpDa4c6Q2OEmSRmRPQM+zHfButcK2PQmYIOkOSQ9ImiLpSzDrDf0RSRcCU4GVJX1L0qOSxtIi30HSkZKOiOPhko4PA9+jkgZW0hsZ+TwgaY6KuZm5T9JawKNhBAQYDJxCkQJt2daNS5pROf6hpPsj/V9H2Icl3ShpkqSpkvbqyINNkiRJukb2BPQ869JgjTxlNv3usaRuOWC0pOvi3BrAvrZHS1oR+DVlXf50ipFvQpO8Fra9maTPAb8CdgBeBHa0/XZU7pdQ1vFXqZn7hkpaFOgT4bsCfwOQtFikdwCwDKVB0K7ufkk7xT1tBgi4TtK2lOWDz9n+fMRLE1CSJMlcJHsC5h0CjpE0Gbgd6EcZIgB4yvboON4cGG77pdih77JW0rwq/o4H+sfxIsBfJE0BrqDs+ldPM3PfzkQjANgNuCvODQO+HH6A9rBTfCYADwBrUhoFU4AdowdjoO2GTuDUBidJkvQM2QjoeR6kzq4XfIPyJrxxuPNfABaLc290Mq934u9MWnp5vhdpb0DpAVi0/qJG5r5Q/S5j+7mINhjYQdKTlEbGspSNhNqDgGNtD4jP6rbPsf0osBGlMXB0bbOhBuVLbXCSJEkPkMMBPc+dlDf+/W2fBRC77H2SItR5V9J28b0RY4BTJC0LvE4x8U3qQP5LA8/Yfl/SvrR09c+iiblvccrQQ00JPBBY2fY7EfYtSsPgtnaU4RbgN5KG2p4hqR/wLuXf3yu2L5L0GvDdthJKY2CSJEn3kT0BPUzFrrdDLBF8EDgWuAnYJLrp9wEebnL9P4EjKV32o4CHOliE04F9JU2idMM36mVoZO6bNR8gyn9nrQEQXAt8QdKH2iqA7VuBi4H74n6vBJYE1gPGRr6/Ao7u4L0lSZIkXSCNgUlDJD0AbG773XldlippDEySJOk4zYyBORyQNMT2RvO6DEmSJEnPksMBSZIkSbKAko2AuYCkZUPEM1HS85KejePXJE3roTxntB2r3WndLGmlOF5O0ruSDqyLU9UFz4i/H5d0ZXeVI0mSJOlecjhgLmD7ZWAAFMsfMMP27yT1B25o63pJC9t+ryfL2EreiwPL2n4mgvYERlNWBrSqLY7lhXt0Z3lSG9w5UhucJEkjsidg3tNH0l8kPSjp1qh0axrgP0gaB/yPpPMlzapQK2/bK0oaET0LU2u64Dj321Dyjpa0QoQtL2lYKHzvV8vmQJ+p9FZMkLRkJDMIGF4p72DgB0C/Wu9AM1TZpEhSH0knVtTBB7RV/iRJkqRnyUbAvGcN4E+21wFeA75aObdoSHJ+38r1XwduCeHQBsDECP8wMNr2BsAIYL8IPwU42famkdfZEX4EcHCkM5AiDoLZ1cErAyvaHgtcDnTE9f8dYHrkuymwn6RVWil/kiRJ0sPkcMC85wnbtYqvqvuF1hXBNe4HzpW0CHBNJa3/0DLUMJ6yAyAU///akmrXLyWpL8VBcJKkocBVle7/rSkNBCiV/uVxfClwLtBaA6XKTsD6ld6MpSkNoGbln4Wk/YH9AfostXw7s0uSJEnaInsC5j1VAU9V9wuzi33eI34vSQsR+l/bI4BtgWeB8yXtE/HfrWz1W013IWCLisK3n+0Zto+jGPsWB0ZJWjNMgk/HngVQhgKGhDr4OkqlvkY771PAoZV8V7F9ayvln0Vqg5MkSXqG7AmYf3iSsgfB5RTP/yIAkj5J0QL/Jex9G1GMf824FTgUODGuH2B7oqTVbE8BpkjalGIX7EfLUMCngL62+9USUtkSeDBwVDvKfwtwkKQ7Q5X8KUrFv1xHyp/a4CRJku4jewLmH/4CfCb0v1vS0kswCJgkaQKlu/6UNtI5jKIrnhzLE2tL/Q6PiXmTKV7/m4FdaFEHDwaurktrWIS3h7OBacADMVnwz5RGaEfLnyRJknQTqQ1OGhJv5aMaaSbnJakNTpIk6TipDU46RGwW1KsaAEmSJEn3ksMBSZIkSbKAko2AXoKkkyUdXvl+i6SzK99/L+n7XcxjNuFQd9CdeuIkSZJk7pLDAb2HUcDXgD/EEsDlgKUq57cCvjcvCtYTqIgKZPv9jlyX2uDuJ5XCSbLgkj0BvYd7KbP+AdYBpgL/lvSRmKS3FjAh1LtTJU2RtBeUCrWV8NMkPSLpduBjtcxiw58TIv5YSatHeDOtcF9J50X8yZKqZsPaxkL3Sfp8fP9hRRH86wjrH2W5MO5v5eidqJX7A9PISZIkmR/InoBegu3nJL0n6ROUt/77KOv0twSmA1OA3SgbEW1A6Sm4X9KIiN8ofEvg08DawAqUJXrnVrKdbnu9EPT8IdKvaYXvibLcQmmA/G8tPoCkj9QSUdmX4DrgF7Zvk7QTxQa4GUUSdJ2kbYF/RPi+tkdL2hjoZ3vdSGeZbnqcSZIkSTvIRkDv4l5Khb4VcBKlEbAVpREwCtgGuMT2TOAFSXdTPPzNwrethD8n6c66/C6p/D05jptphXcA9q4F2n41DhcB7qDsO3B3hO0UnwnxvS+l8v8H8JTt0RH+OLCqpD8CN1JERnOQ2uAkSZKeIYcDehejKJX+epTu8tGUt/mtKA2E7sYNjhtqhVtJ4z3K3gQ7V8IEHFtJY3Xb58S5WSrkaEhsQNml8EBaNjOavZCpDU6SJOkRsiegd3EvZbOex+Pt/ZXoIl+HsgvgwsABki4APkp50/9hO8M/BmwHXFzJby/guPh7X4Q11AoDtwEHA4dH+EeiEjfwbeAKST+2fTxlCOE3kobaniGpH8VCOBuSlgP+Y3uYpEeAi9p6QKkNTpIk6T6yEdC7mEIZ07+4Lqyv7X9JuprSMzCJUvn+yPbzbYRvT5kL8A9aKvoaHwlN8Du06H8PA/4U4QtTuxZp7wAAIABJREFUtiE+EDg6wqdSNiT6NXAVgO2ZkgZTxv7/bft0SWsB98Wwwgzgm3FdlX7AebEaAuCnHX9kSZIkSWdJbfACSuwEuIntf83rsnSE1AYnSZJ0nGba4JwTkCRJkiQLKDkcsIBiu/+8LkOSJEkyb5lvegIkzZQ0sfLpL2kTSad2Mr1uU+hK2lvSzyUNkfRSXTnX7gXlO7sL5VhR0q2V74dLelvS0pWwQZJuiOMhkk6L4wPDQZAkSZL0QuannoC3bA+oC3sS6A0DxLsCp1KW9l1m+5B5XJ7ZsP3dLly+C2W2f43BwP3AV4Dz2sj3zC7k25DUBs9dUimcJB9s5puegEbUvYEeKelcScMlPS7psEq8fUJfO0nSXytJbCvp3oi/RyV+I+XthyXdGGlMVUXNS7H1PdCecsb30yQNieOG+t5m5VOhkSJ4UNz7lZIeljQ0ykaEbxLHZ0gaJ+nB2r1F+HGSpsU9/65Shl2AmyPOahTxzy9oWU3Q2u9zpKQjatdK+puk8ZJGSlozwveMe5mkYjlMkiRJ5hLzU0/A4pImxvETtndvEGdNylr4JYFHJJ0BfIpSaW0Vy+w+Wom/IsW2tyZFe3ulmitvlwees11z49e6wzcEJtl21Ll7SdqmkseWtE0jfW/D8lHewBspgmtlWQd4jiIe2hq4py6vn9t+RVIf4A5J6wPPArsDa8Z9LBP32Af4tO1pce3ewKXASODTklaw/UI77g/gLOBA249J2hw4nbJ88ZfAzrafVRNtsNIYmCRJ0iPMTz0Bb1UMdI0aAAA32n4nlr29SPHlbw9cUVsKZ/uVSvxrbL8fldwKEVZV3j5AqYDXoKzX31HS8ZIG2p4e8We9KQeXVco5wPZb7bi3qr632mhoVL5ZiuCogGuKYICxtp+JnfkmAv0b5PU1SQ/E/a1D2VdgOvA2cI6krwBvRtzNgTGVawcDl0b6w4A923FvqGiHt6IIhSYCf6Y0cKA0Vs6XtB/Qp9H1aQxMkiTpGeannoD28E7leCZt3181vip/j7X95/rIkjYCPgccLekO20dRGgxfrY9bx3vM3uBarO58I31vs/K1Rqv3L2kVipFwU9uvSjofWMz2e5I2Az4L7AEcQmk87Qr8La5dj9IYui16PBYFngBOa0e5FgJeazCnA9sHRs/A54Hxkja2/XI70kySJEm6yAetEdCIO4GrJZ1k+2VJH63rDainmfJ2YeAV2xdJeg34bgwJLNyOSuspyqY8HwIWp1S21W76RvreZoyksSJ4zTauA1iK4u6frrLz367A8HhTX8L2TZJGUTb2Icp5QhwPBo60fWwtMUlPSPpkW5nafj3i7mn7ipirsL7tSZJWsz0GGCNpV2BloOnzTG1wkiRJ9/GBbwTYflDSb4G7Jc2kdIMPaSX+rWqsvF0dOFHS+5RGwUHAjsDtdUnUzwn4b9v3SrqcsinQE7Tsrlejkb63Gc0UwW02AqLSnQA8DDxN6YqHMofiWkmLUXocvi9peeBt2/+OOHtTekHqy7I3sw8ZNOMbwBmSfkHZefDSuIcTJa0R+d4RYUmSJMlcILXBXUDS2cDZla1xO5PGk/RCfa+kbwIr2T5uXpelSmqDkyRJOo6aaIM/8D0BPUkX19/3amy3uaNfkiRJMn+TjYB5TOp7kyRJknnF/LREcL5F0rJq0Qg/L+nZyvdFeyjPzSWd3EacHSRd0460bpP0/+J4BUnvSfpuXZxnJC0jaeGYOImklSVd1pX7SJIkSXqO7AmYC8TqgQFQLHrADNtVK1/NPKhYg98deY6hfRP2WkXSh4ElbT8fQV+jrGAYDJzdRhmepqx46DZSG9x7SKVwksz/ZE/APETS6qHqHQo8CKwo6ZsqOuCpko6JeLPeruP73jEpEUkXqaiAx0t6NJbZzfaWL2kLSfdJmiBpVMzGry/L9qHunSjpgaj8ofgC7qxEHQwcDqwqacX6dBrc38TKPZykokaeXOtJkNRP0j2R71RJW3XqYSZJkiQdJhsB8541gZNtr01ZJnc0RX28IbC1pN1auzhYmWIN/AJwVvgIqjwEDLS9IfCbyKOeHwL7h9BnW4pBEGYXBvUHPmp7PHAFpVegvewPvGh7syjrwZI+QVl+eX3kuwEwuf5CSfur7Hcwbuab0+tPJ0mSJJ0kGwHznr/brq152xy40/a/bL8LXEypkNvi8tALP0JZ/1//pr8MMEzSVOB3FF1wPaOAUyQdCixle2aEbwncG8d7A7Ux/ktpxyZCFXYCvhU9A2OiTGtQdiT8rqRfAevanlF/YWqDkyRJeoacEzDveaMdcd5ndm1wa9rhRt9/C9xi+3SVXQr/Vp+B7aMlXUfR946W9FlKI/Fx2+9FtMHAcpL2je8fl7Sq7cfr02uAKOKkO+Y4IQ2KfC+UdILtoe1IL0mSJOki2QjoXYwBfidpWcqmPnsDv7P9vqRXYyz/75Qd/16qXLenpIsob9YrA4/RskEPwNKUnQKhiS0x9L2TgckqLv9PA6vRso3w2hRFcr/KNb+NMh7Tjnu7BfhvSXfHXgWfBv4BfAx4xvZZkpagDIM0bQSkNjhJkqT7yOGAXoTtZ4D/BYZTdgEcbbs2Ff7HlIr0XuCZukufBcYB11PG9f9Td/54ip73AZpvRHRETMybTFEl30rZIbHWazCYogmuMoz2Dwn8mdI4mRjDEmdQGqGfBWo6468Af2xnekmSJEkXSW3wfE70AFxpu831/h1Md3FghO1N24w8F0ltcJIkScdJbXDSIWy/RZnFnyRJknxAyUbAfI7tb87rMiRJkiTzJ9kI6AVImmG7b+X7EMrOgod0Ic0OpyFpPLAV8Ajwb6C2THCE7cM6UYb+wA221+3otc1IY+D8QdoEk2T+IBsBCQCSVgGetf1OMRizXW/b3jhJkiTpXnJ1QC9H0hckjQnl7+2SVojwKbFhjyS9LGmfCL9Q0o51aXw+tMHLSdozVgFMkjSiEq26EqBZWfaTdH9cOyyW9CFpNUmjo0xHS5pD+COpj6QT4/rJkg6I8BUljahogwd27YklSZIk7SUbAb2DxdWyq+BE4KjKuXuALUL5eynwowgfBWxNsf89DtQqz6rhD0m7Az8BPhdv9r8Edra9AfDFSj71jYC7KmX6XoRdZXvTuPYh4DsRfgpwiu31mHP5Yo3vANNjtcGmwH7R+/B1isiopg2eWH9haoOTJEl6hhwO6B28FZUg0DKeH19XAi6LzXoWBZ6I8JEUpfBTlDX3+0vqB7xq+43o0t8+0tnJ9utx3SjgfEmXA1dFfosCK9WZ/xoNB6wr6WiK8rcvxVsApeHx5Ti+mKImrmcnYH1Je8T3pWnRBp8raRHgGttzNAJsnwWcBfChFdfINa1JkiTdRPYE9H7+CJwWb9kH0KIMHkF5+x9IkQu9BOxBaRzU+DuwJPCpWoDtA4FfUMyC48NOOJDS49AW5wOHRFl+zZz64tYQcKjtAfFZxfattkdQGjPPUhon+3QgzSRJkqQLZE9A76eq/K05+7H9tKTlgEVtPy7pHuAIoLoa4CnK7oBXSdrT9oOhBx4DjFHZdnhlylDAze0oy5LAP+Ot/RuVco0GvkrZXGjvJtfeAhwk6U7b70r6VFy/HEUb/JfY/XAj4MJmBUhtcJIkSfeRPQG9nyOBK2L5Xn33/Bjg0TgeCfSj7o3e9sOUCvsKSatR9MFTQt17LzAJGATcXZd2dU5ArVL+38hzFPBwJe7hwPdDObw6Zd+Des4GpgEPRN5/pjRCB9GiDd6LMr8gSZIkmQukNngBR9JKwF9s79qFNJagzGuwpL2Bwba/1G2FrJDa4CRJko6T2uCkIbFpUacbAMHGwGkqsxFfA77d5YIlSZIkPU42ApIuY3skZXlfkiRJMh+RjYB2ErPo74iv/4+i1H0pvm/WYPve7sjzK8C0GNevP7cCcAPlNzwYuBxY1/ZrPZ13Jc4OlNUCX24Wp7tJbXDSiNQUJ0nnyEZAO7H9MjAAQNKRwAzbjdbDz4GkhW2/14lsvwK8z+yT8GrsCIyPJX+EF6A7aS3vbqELzyVJkiTpBnJ1QBeRdIykQyrfj5d0sKQdJA2XdAMwJc5dL2m8pAclfTfCFpb0mqTjQsd7n6SPhT73c8DJMUO/fyWPTYBjgK/GuUXbKk8c/yxWBkyS9NsIO7CiAr5C0uKN8pb0KUl3RrwHKuVZUtJVkh6prCJA0qaS7o77vVktuuN7JJ0saRxwiKS91aIxvqvbfpgkSZKkTbInoOucC1xCmRjXB9iTMlFuY4qtb23b/4i4+9p+JWbTj5M0jLJb39LA3bZ/Iukk4Nu2j5N0E3Cl7WuqGdoeJ+koSvf/4TBbT0DD8kj6AmUC4Ga235L00Yh/he0zI43jgCG2z6jPO5YoHmn7ekmLURqQq1PW9a8DvACMlrQFMIGy1O+Ltv8l6RvAb4D9I88+tVmqkh4CBtl+QdIyjR6wpP1r1/ZZavl2/CRJkiRJe8hGQBex/X+S/i1pPeCTwFjbr0alfF+lAQDwPUk1X/9KwGoUV/5btmuynvG07APQneXZATjX9lsR75W4ZP1oUCxDkQHdUJ+mpI8Ay9m+Pq59O8IBRtt+Lr5PBPoDb1MaBrdHnD7MvqfAZZXjUcCFkq4gNMYN7im1wUmSJD1ANgK6h3OAIZQK8M+V8DdqB1EJb0vZDOitMPzVtLvVSYUz6frv0qw8jbgQ2NX21Bii2KKDeb1TOa6VXcBk280aM29UjvcDNgd2o4iENrT9agfLkCRJknSCbAR0D8OAX1HeeG9vEmdp4JVoAKxD2UmvLf5NeTvvjvLcBvxY0qW14YDoDfgw8HyogL9O2ZFwtryjJ+ElSV+oGw5oxjSgn6TNbI+NOQtr2H6wQdxVbY+WNAb4PMV62LQRkNrgJEmS7iMnBnYD0T0+ArjE9vtNot0ILCFpGnA0Rb/bFpcAP6ufGNiZ8ti+gbJV8Ljotq9tD/xLyk5+oyiVd7O8vwH8QEUNfA/QdHDe9juUzYxOivgTKG/7jThZ0hTK5Mm7bE9t730mSZIkXSO1wd2ApIUoY/tfrtuON8vTzaQ2OEmSpOOoiTY4ewK6SEzA+zvwt95Q4fa28iRJkiS9l5wT0EVsTwFWmdflqNHbypMkSZL0XhboRoAkAyfZ/kF8PwLoa/vIbkr/auCCylr7R4C/2j46vg8DhtpuuDSuQXr9gRtsr9vg3HDgCNsf6L7y1AYnCyqpRk56ggV9OOAd4CuSluuh9EcBW8GsvQfeALasnN8SuLc9CUnqFQ22+nKosKD/O0qSJJkvWdD/836PIqH5Xv0JSctLGhZK3fslbR3hUyQtE5Xfy5L2ifALJe1Yl8y9RCMg/l4PLB/XrkKRBD0vaTFJ50XaEyRtF2kOkXSdpDtp2byoVr7FJV0q6aHocVi80Q2q6IinSZos6XcRdr6kMyWNk/SopN0ivL+kkSpa4Ack1RowgyL8OmBaxKtpgqcCK0saHOWfKun4uG5PFQMikv5H0uNxvKqkUc3KlyRJkswdesXb5TzmT8BkSSfUhZ8CnGz7HkmfAG4B1qK83W8NPEVZUz+QItzZEjioLo3xwLqxTn4r4G5g1UhnQ1p6AQ4GbHs9SWsCt0r6VJzbCFg/dMP9K2kfBLxpey1J6wMP1N9Y9D7sDqxp25pdy9sf2IxiLbxL0urAi8COtt+WtAZlmWBtNulGFE3xE1GONSga5NGSPg4cT1Elvxrl/zIwEvhRXD8QeFlSvzge0Ub5qveR2uAkSZIeYEHvCcD265RK/LC6UztQ/PsTgeuApST1pVRs28bnDGC9qNhetV014dXWyz9IqUC3oLgB7qM0CLaiNCgAtgEuimsepjQwao2A2yqK3yrbVq6ZDExuEGc6ReF7jsrWwG9Wzl1u+33bj1EaM2sCiwB/iXX7VwBrV+KPtf1E5ftTtkfH8abAcNsvxa6AQ4FtbT8P9JW0JLAycHGUe2A8x9bKNwvbZ9nexPYmfZZYulGUJEmSpBMs8I2A4A/Adyj2vBoLURS/A+LTz/YMioRnYHyGAy9RxDgjm6Q9ilLxLRk63NG0NALaMx/gjbajNCYq5M2AKyla3r9VT9dHpwyLvABsQOkBWLRyvr4c7S3XvcC3gEcoz2ggpddkVBvlS5IkSXqYHA6gbKYj6XJKQ+DcCL4VOBQ4EUDSANsTbT8dEwkXtf24yh4ARwCHNEqbUgn+ntJggPLGvgWwAmU8HUrl+A3gzhgG+ASl0tyolWKPoGh+75S0LrB+fYTouVjC9k0xBl/1Buwp6QLKcsJVI7+lgWdsvy9pX4p2uD2MBU6N5/IqMBj4Y+XejorPBGA7ylyI6W2UryGpDU6SJOk+sieghd8D1VUChwGbxIS1acCBlXNjgEfjeCTFd39Pk3TvpVSy98Gst/MXgXEVxfDpwELRDX8ZZTvfdxolVuEMSlf7Q5QKdnyDOEsCN6hF9fv9yrl/UCrvm4EDQzV8OrCvpEmU4YF2ve3b/ifwE+AuYBIw3va1cXokZShghO2ZwNO0PKvWypckSZL0MKkNXgCRdD7FN3DlvC5LR0ltcJIkScdRaoOTJEmSJKmyQDQCJK0g6WJJj0saL+k+Sbu3cc2TMcaNpBntyOMnkn6usuveREkzK8f1Kw+6FUnbSDpDUt9wB9TW64+UtISk1WOVAwC2h9i+UtLmkk7uybIlSZIkvZcP/MRASQKuoeh7vx5hnwS+2M1Z7Qx8zfZvI48Ztgd0sKwLx5yBjrIrZWb994B/2N470lsTeLfZRbbH0L4tjbud+F3UytbLDUltcJLMSSqFk86yIPQEbA/8x/aZtQDbT9n+Yxj5TquFS7pB0qBmCUlaUdKIeLufKmlghC9FWS3wUivXriDpqrD0jZW0RYQfrWIbHAWcL+m7kq6UdIukxyQdG/EWlvTXylt+tXdhe4pRcEXg2cp9Pmx7tkZA9ApMkLSRpB0k1fY1OFrFJHiPpKckfVnS7yOvGxW6YEnPSDpG0iQVk+JGkm6V9HdJ+1Xy+Unc52RJv6zkPU3SUIo/YeVW7ilJkiTpYT7wPQHAOjSw6XWSrwO32P6tpD7AEhG+A3Va3wacCpwQhr3+wA1AbSOgNSlynbclfZeyTn9jylv8o5L+SJlhv5zt9QAUdj1JKwBv2J4h6Rzgb5L2ivJcYPv/agWQtBZF2LOP7SmSdqgr4yrAoMh/JPAl2z+QdD2wS5QZ4AnbG0S5zqHIjvpSVgb8RdLnKMscNwcE3KSiIH4x7nUf2+Mkbd7onpIkSZK5w4LQCJgNSX+iVFr/oSiDO8L9wLmSFgGusV0bZ98FOK+Na3cAPl16wQH4iKSa7//aWKJX4/YwGSLpYUqF+lhcfypwI8VjAGUY4hYA2+MlrQrsFPmNk7QZ8D7FS3A18OWwEjbiJtvvqSxVxPZtET6FohmucV0lfOEwJb4h6X2Vtf87UYYoJkS8vhQD4ovA3ys7Hf5fk3uaDaU2OEmSpEdYEIYDatpeAGwfDHwWWJ6ygVD1GSzWWkK2R1Dsf89Suu73iVObUdbct4aAzeoMhG/Fufr1+FVHwExKRfsyRQg0krLXwJ/jfG0+QK2M/7Y9zPZBwKVxHuC1KHdtQ6NG1PJ9n9JIovJ94Sbx3mkQT8DRlXtd3fb59ffayj3NRmqDkyRJeoYFoSfgTuAYSQfZPiPCat34TwL/rbIVbj9KZd6UmFD4jO2/SPoQsJGk8cDDIcJpjdspFd3JkdaASk9Cm0haHnjb9hWSHgPOjnKvZXtKxNkGmGr7tSjfWrQ0EN4BvkTZ3GeG7cvbm3cnuAX4haRLbb8haSXKHgFt3lNbCacxMEmSpPv4wDcCYne6LwMnS/oRxfX/BvBjitf/CWAa8BBtzx0YBPxQ0rvADGAf4Ku0z3l/MHCGpG9RnvtdEdZeVqZstCOK5//HlEZL1ZyzRuQBpYfjeuBayk6BxLyB3YDbJL3B7G/x3UZogNcERkdZ/k2ZT9Gee0qSJEnmEmkM7CKSbqNMdPvnPMj7SMqb/3xn/ussaQxMkiTpOGpiDPzA9wT0NLZ3nId5Hzmv8k6SJEnmfxaEiYFJkiRJkjQgGwFdREUV/GBIcSbG2veupjlc0hzdNnVxjmqwzr/bkXSmpK3jeGFJL0k6ri7OrPJqdt3yvT1dviRJkqTz5HBAF5C0JbAbsJHtd6LyW3Ru5G37l92RjtpWFW9BywTGHSlbKO8p6aduY0KJ7daWI3aK1AYnyfxNKo57F9kT0DVWBP5l+x0A2/+y/ZykX4ZSd6qks2L2e+2N+fjQ6T6qFu3w4iob/zwk6WqgJhFC0gxJJ0dvwx2xrA4Vxe8ecfykpBNCvztW0uoRvrykYVGW+ytv9EeGrncU8FdJ68R1E6NHY42ItxbwaGX542DgFOAfwJZtPRxVNl6S9MMow2RJv46wD6soiSfFs9qr8z9FkiRJ0lGyEdA1bqX47x+VdLqkz0T4abY3tb0upULfrXLNwrY3Aw4HfhVhBwFv2l4rwjauxP8wMM72OsDdlWvqmR763dOAP0TYKcDJtjelLGWsrsNfG9jB9mDgQOCU2PBoE+CZiDNLRCRpMYqF8HrgEkqDoF1I2omyfHEzYACwsaRtKabF52xvEM+qPUstkyRJkm4iGwFdwPYMSoW9P8U/cJmkIcB2ksaEfnd7yv4FNa6Kv+NpUfFuC1wUaU4GJlfivw9cFscXUZTHjbik8rf2lr4DcJrKNsLXAUuF1hfguoqx8D7gZ5J+DHyyEr4zLRXzbsBdcW4Y8GWV/RPaw07xmUBxMaxJaRRMAXaM3pGBtqc3uljS/iobL42b+WbDKEmSJEknyDkBXSS6yocDw6PSP4Ciwt3E9tOxlr+qI64JembSueffbBzeDY4XArao25eAGJ2o6nsvljQG+Dxls58DgNHAMrafi2iDgW0kPRnfl6U0cGr7C7SGgGNtz6EFlrQR8DngaEl32D5qjhuzzwLOAvjQimuk2CJJkqSbyEZAF5D0aeD/t3f20VrVVR7/fOVlYaKSSY6BBqaOw1JEU0RSF1mZoyaYTebElGNJWaDOUhubcWqlJiXLl5FMTVPxpTFnMiVnGjBgAoHA8CYISibKclzgy6glxgjI7o+9H55zH57nXi5dfO69Z3/WetZ9zu/8zu/ssy+Xs39v373ZzJ6OohHASjwIeCV63Z8C2hPzmYsr6s2WdHBcX2GnaOPeqPNIgzbOAL4TPxdG2UxgEjAl7K0rVSxPOrTKzK6XtG/cf2dc1bCSKvlYYJ/K+odQPjyTbQsCZgCXS7onVAsH4RkSewOvmtndkl4HvtheQykbnCRJ0nlkEPDn0R+YKk+BuwnPijcBT9bzBLAWzzzYHjcCt0t6EpcvXlI49yYwUtKleBa+Rovn3i1pKT7SUJmvPw+4Icp748HGl+tc+2ng7+RyyGuBK4HLqAYvpwGzKwFA8CBwlTxHQZuY2cxYZLgwRiHWAeOB/YEpkjbjQcG57bWVJEmSdB4pG9zFkSf76d9Onefw6YdXOvG+jwFHmdnGzmqzM0jZ4CRJko6TssFJhzCzw9uvlSRJknRnMgjo4rQ3ChB1hrwDpiRJkiQ9jNwiGEgySVcXji+Klf2d1f5P5SmNK8crY56/cvwTSZ/sQHtDJD3R4Fy7ssN/DiE2dFFHbEqSJEm6HjkSUOUt4JOSJnfm3HqB+cBo4AFJ78EX/BVV946mKs/bJpKa9nvrzHtvg2TxVqRscJIkzaYnSR/nSECVTfhe9H+oPdGG/O4ySQPk/J+kz0X5nZJqUwwvwIMA4ufPgIFx7VBgvZmtldRP0u3RdoukD0ebZ0maLmk2MKvGvoayw4U6R0q6P76PlbReUt+436ooPyee7/F43ndF+R3yREKLgKuiyUMlLZT0tKRz6tyvl6QpqkoFfynKx0iaJ2k6sEIpHZwkSdI0ciSgNTcASyVdVVNekd99JPbRzwD+Cu/dfwhYDazC99Lfiffqa7e7LQEOltQXDwJ+CewX7RyGBwngowFmZodIOgiYKenAOHc4MNzMXpU0pND2FtlhScNxVb5aWnAdA8LOJ4Aj8X8Di6L8fjO7BUDSFcAXgKlxbjAw2szejmmS4XhyoV2AFkm13fMv4FLGR8Y2wvmSZhae42Aze1bS6bh08Mlx391rDZc0Ad96Sa/dBtZ5tCRJkmR7yCCggJn9QdKd+P769YVTHwWGxR53qMrvzsMlf1fje/0nhBDOa2b2ZuF6IsvgcvwFOArvUe+HBwSH4QEFuCzw1LjmKUmrgUoQ8LCZvVrH9OOA6+OapaELUPtsmyQ9E/v1RwLXxHW94jnAg5QrgAG4BsKMQhP/XkgkBPBgSAivlzQn2iwKEZ0ADFckOQJ2x6WCNwCLzezZKF8GXC3pu8BDZjaPGlIxMEmSZMeQ0wFbcx3ei92lUFaR3x0Rn0GRN2Au3qs+FpcOfhlX99vqRRbMx1+8u5rZa7g07+j4LGhwTZE326/SJnPxpEAbgV/gAccxBXvvACZGIqJv0VruuPbetS/j2mMBkwo+G2pmlZGAomTxb/HAaBkuHdwpKZKTJEmS9smRgBpiqP0+PBC4LYrryu9GboA9gb5mtkrSI8BFwMQGzS8ArsYDBvBEQaOAvfDhefAX8mdxCeEDgX1xKeK29u23JTtcZB4+XXGnmb0cCxSL994VWCOpT9jwQhv3HCtpMh4sjQEuAfoWzs8AzpU028w2xrNs1Z6k99EB6eCUDU6SJOk8ciSgPlcDexaOzwOOiAVuK2gtvbsI+G18nwcMorG+/wJ8CmAh+BA9LgX8azPbHHW+D+wkT0b0Y+CsGrneetwI9JfLDl9Ga9nhIovwl/7cOF4KLLOqbOS/RJ35wFPt3HMpnlvgV8DlhURDFW4FVgCPxbbBm6kfdB4CLJZnOvwmcEU7902SJEk6iZQNTroVKRucJEnScdRANjhHApIkSZKkpGQQkCRJkiQlpdsGAZLelvQbSctQDn2UAAAIUUlEQVRDaOZCSdv1PI1kcNuo30eeZQ9Je0n6kaRVkpaEgM5p22PH9iBplKRbQlhoRJT1lrRO0vhCvSWSGi4ulDRC0knbacOU+D1M2Z7ro42zJH1ve69PkiRJOk533h2w3swqL733Aj8CdsMXl+1ojsHFbwQ8AEwzs78NW94PnPoO2FDhr4H/xmWPR+N79Q/FFyuOBu6WtAvwAeDxNtoZARwB/Ne23lhV2d8JwB41OgI7hJQNTpKkjOwoqeJuOxJQxMxewl9EE+W06lVKekjSmPh+oqTHYvRgVm1bIZ37c7kU73mSVsSugHsL1U4Efg4cD2wws5sKtqw2s6nRVl3p3Dh3caH8W1FWV0JX0gcl/TJ68zMk7V2w5SP4nv9aWeKbqCoEjgSWhNrfyBitaJG0QNJfylUMLwPOiNGVM8KW2yQtjrpjw5ZW8sVy+d/+wJK4boik2fFcsyTtG354Nn43A2IU57hob66kA7b5l50kSZJ0Gt15JKAVsU+/F/DeRnUkDQRuAY4Lydo9as5PBD4GjAuFv0uAofF9QKHqh3ExnS9SX6K3QiPp3APiMxIX1ZkeL8WB1EjoyvfsTwXGxt7+M4BvA2fLNQo2mtnvJc2nur1udNh3pqRdaS1G9BRwbCgIfhS40sxOl4v0HGFmE+PeVwKzzezsePbFkn4RbWyRL4666wqjMj/DR0amSTobuN7MxklaCQwDhobPjpXnItjHzJ5W5GOoh1I2OEmSZIfQY4KAbWQUMLciWVsjwfs54Hk8ANgYZUuBeyQ9gA/7I5cFftXM/qiqjDBx7gZ8qmCDmR1JY+ncE+LTEuX9o3weNRK6cvGfg4GH4369gDVx3Qm4kBFmtlqeEOgvgINwgaFHgaPwIKCSA2B3YFr0vg3o08BXJwCnqrpWoh8uXASN5YvB8yZUUiLfRTXhUEVieSgwGTgHz5/waIN2tpCywUmSJDuGHhMESNoPeBsX39lE66mOfnUvas0yfPh8MFDRtT8Zf3F9AvhnSYfgUwEVTf3lwOmVBszsq9E7r2xkr0jnFjX4kfRxYLKZ3VznOQ4HTsIldGcBPwWWm9nRtXXx9QDXFI4XAH8DrDEzk/QrPMHRSEKgCLgcmGNmp8mTEP1PA38ION3MVtbYdxTbJ188F0909D7gG8DFuNJgI4nlJEmSZAfTI4KAGOa/CfhevPyeA74i3y0wCH8JgqvbfV/S0Mp0QKFH24Ir702Pl/RafKh6jlwO+DN4j/1EXFkPYDZwpaRzzezGKHtXwbRG0rkzgMsl3WNm62J0YSP++6iV0P0OnnL4aDNbGNMDB+JqfMNpnbRnAXABngMA/MU/BVhrZr+Pst2pyveeVbj2DVw2uGj7JEmTwqeHmVkL7bMgfHUXLj1ceckvjrJVZvb/coXALwGnbEObW0jZ4CRJks6jOwcBO8eLpA/e87+Laq94Pt6bXwE8Sczbx5z6BOD+CBBewtcAEOcfieHv/8SHw++Wp7YVnqXvDWB/M3sq6pukccC1kr6GJxB6E/jHaPJWYAgunas4P87MZsqz+S2MIf51wHhgf2CKpM14UHCumW2I6YTrw5beeJKjnYGWguRv5bmvpSpLvCbWSRSTE12FTwdcGs9ZYQ5wSfh0Mj5icB2eWnmn8Oe2vLAnAbdLujie9+/DlrckPY8HYuDBwZn4CEySJEnSBFI2uANIOgYYb2ZfbrfyjrflUuB3ZnZvu5V7ECkbnCRJ0nHUQDY4g4CkWyHpDXzRY7I1ewKvNNuILkr6pj7pl8b0NN+838y22l7VnacDknKysl40m4CkX6dv6pO+qU/6pTFl8U2PEAtKkiRJkqTjZBCQJEmSJCUlg4Cku/GDZhvQhUnfNCZ9U5/0S2NK4ZtcGJgkSZIkJSVHApIkSZKkpGQQkCRJkiQlJYOApFsgTwG9UtLvIrtjaYkUzy9JeqJQtoekhyU9HT/f3Uwbm4WkfSTNkacAXy7p/CgvvX8k9ZOnBn88fFNJYT5U0qL42/qxPLV46ZCnPG+R9FAcl8IvGQQkXZ6QPr4BT5g0DE+RPKy5VjWVO/AcFkUuAWaZ2QHArDguI5uAC81sGJ419KvxbyX9A28Bx5vZoXiytBMljQK+C1xrZvsDr+Ep0MvI+bjMfIVS+CWDgKQ7MBKXSF5lZhuAe4GxTbapaZjZXKA2lfNYYFp8nwaMe0eN6iKY2Rozq+QKeQP/T30Q6R/MWReHfeJjwPHAf0R5KX0jaTCeNfbWOBYl8UsGAUl3YBDwfOH4f6MsqbKXma2J72uBvZppTFcgUmUfBiwi/QNsGfL+DZ487WHgGeB1M9sUVcr6t3Ud8DVgcxy/h5L4JYOAJOlhRGbJUu/9ldQf+AlwgZn9oXiuzP4xs7fNbAQwGB9hO6jJJjUdSacAL5nZkmbb0gwyd0DSHXgB2KdwPDjKkiovSto70kfvjff0SomkPngAcI+Z3R/F6Z8CZva6pDnA0cAASb2j11vGv60PAadKOgnoB+wG/Csl8UuOBCTdgUeBA2K1bl/gM8D0JtvU1ZgOfD6+fx54sIm2NI2Yy/0h8KSZXVM4VXr/SBooaUB83xn4GL5mYg7wqahWOt+Y2dfNbLCZDcH/b5ltZp+lJH5JxcCkWxBR+nVAL+A2M/t2k01qGpL+DRiDpzp9Efgm8ABwH7AvsBr4tJnVLh7s8Ug6BpgHLKM6v/tP+LqAUvtH0nB8gVsvvAN4n5ldJmk/fLHtHkALMN7M3mqepc1D0hjgIjM7pSx+ySAgSZIkSUpKTgckSZIkSUnJICBJkiRJSkoGAUmSJElSUjIISJIkSZKSkkFAkiRJkpSUDAKSJEmSpKRkEJAkSZIkJeVPONwzafxwy1QAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "category_count = birds.value_counts(birds['Category'].values, sort=True)\n", + "plt.rcParams['figure.figsize'] = [6, 12]\n", + "category_count.plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAKrCAYAAABoYV7pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd7hcVdn+8e9NEAglQaqAaARCLwFCCwTpiqCAgoAgYONFRUTFn/qqCIhKka70VxBBihRBQHpJSEhCCikEAaWIIFINhJqE+/fHeibZmcyclnNykpznc13nysyevdde+xwu9pq117qXbJNSSimlnmeR7q5ASimllLpHNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQy3a3RVIqT1WWGEF9+vXr7urkVJKC5QxY8a8bHvF+u3ZCEgLlH79+jF69OjurkZKKS1QJD3TaHs+DkgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQ2UjIKWUUuqhshGQUkop9VDZCEgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQ2UjIKWUUuqhshGQUkop9VDZCEgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQ2UjIKWUUuqhshGQUkop9VDZCEgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPtWh3VyCl9pj43BT6/fCW7q5Gi54+aY/urkJKKbVJ9gTMA5I+JOkqSf+QNEbSrZLW7mBZh0n6Tbw+QtIhHSynn6RJbdjvfEnbxutFJb0k6aS6fe6TNDBePy1phXg9vCN1SymlNG9kI6CLSRJwA3Cf7TVtbw78CFi5LcdKavo3sn2+7cs6r7YNbQ2MiNe7Ao8D+8V1tcj2oK6sWEoppbmTjYCutyMwzfb5tQ22xwPjJN0taaykiZL2gpnf0B+TdBkwCVhd0pckPS5pFLBtrRxJx0k6Jl7fJ+lkSaNi38GV8obGecZKmuPGLGmDOO5hSRMk9Y/t6wGP254Rux4InAX8E9imtQuXNLXy+vuSHoryj49tS0m6RdJ4SZMk7d+eX2xKKaW5k2MCut6GwJgG298B9rH9enSfj5B0U3zWHzjU9ghJqwDHA5sDU4B7gXFNzrWo7S0lfQr4GbAL8CKwq+134uZ+JTCw7rgjgLNsXyFpMaBXbN8duA1A0hJR3v8Ay1IaBG3q7pe0W1zTloCAmyRtD6wIPG97j9ivb5PjDwcOB+jVZ8W2nDKllFIbZE9A9xHwS0kTgLuA1Zj1iOAZ27Uu+K0ojxJesv0ecHULZV4f/44B+sXrDwAXSZoI/AlYv8FxDwL/K+kHwEdtvx3bP0E0AoA9gXvjs+uAvSX1mrOohnaLn3HAWGBdSqNgIrBr9GAMtj2l0cG2L7Q90PbAXks2bCeklFLqgGwEdL1HKN/i6x1E+Sa8ue0BwH+AJeKzNzt4rnfj3xnM6uX5TpS9CaUHYLH6g2z/EfgM8DZwq6SdJC0JLGv7+djtQGAXSU9TGhnLAzu1sV4CfmV7QPysZfv/bD8ObEZpDJwo6dj2XW5KKaW5kY2ArncPsHh0aQMgaWPgo8CLtqdJ2jHeNzIS+Lik5SV9ANivnefvC/zb9vvAF5nV1T+TpDWAJ22fDdwIbEwZy3BvfN4HGAx8xHY/2/2Ab1IaBm1xO/BlSUtHeatJWknSqsBbti8HTqU0CFJKKc0jOSagi9m2pH2AM6O7/R3gaeA44Ozoph8N/K3J8f+WdByly/6/wMPtrMK5wHUxlfA2GvcyfB74oqRpwAvAL4ETgGvj832Ae2y/WznmRuAUSYu3VgHbd8QgwwdjUsFU4GBgLeBUSe8D04Cvt1bWRqv1ZXTOw08ppU4h291dhzQfkjQW2Mr2tO6uS9XAgQM9evTo7q5GSiktUCSNsV0/KDx7AlJjtufLrvnuTgzMNMCU0sIkxwQESZZ0WuX9MdEN31nl3yBp78r7xyT9pPL+OkmfbUd5TRP/qgl+XaGaT9DWOqWUUpr/ZCNglneBz9Yib7vAMGAQgKTlKc/mq4E729D2effd1oPTmefuzutIKaWUjYCq6cCFlCl1s5G0YnxTfyh+aln6EyUtG/G+r8TgOyRdJmnXumKGE42A+PcvwIpx7MeAt22/IGkJSZdE2eNi5kBtzYCbJN0D3F1Xv94qaxM8KukGoHeDa9hC0vXxei9Jb0taLM73ZGz/Wlzf+LjeJWP7pSprCIwETokiN5H0oKQnJH2twfl6STq1khL4P7F9B5UEw5uAycrUwJRS6jb5TWx2vwUmSDqlbvtZwBm2H5D0EcqUt/Uo3+63BZ4BnqRMo7uM8q2+fqT7GGDDSOQbBNwPrBHlbMqsXoBvUiYVbCRpXeAOzVpsaDNgY9uvSupXKfvrlKl268X0w7ENrm0cMCBeD6ZEEm9B+W9gZGy/3vZFAJJOBL4CnBOffRgYZHtGPCbZmLKuwFKUCOT6B/VfAabY3iJmEAyTdEflOja0/ZSkz9FKaqAyMTCllLpENgIqIsL3MuAoSnBOzS7A+pq1Zk6fmPM+FNie0gg4Dzhc0mrAa7Znm4pn+11Jj1BugFtTvlGvQWkQbEppUABsR9x4bf9N0jNArRFwp+1XG1R9e+DsOGaCSgph/bVNV1nFcD1KfO/pcVyvuA4ojZQTKbHAS1MaOzV/qqwhAHBjpAe+LeneKLM6fXE3YGNJ+8b7vpSUwPeAUbafiu0TgdMknQzcbHsodWxfSOmlYfFV+ud0lpRS6iT5OGBOZ1K+xS5V2bYIsHUl8W4121OBIZRv1YOB+4CXgH2ZdVOtN4xy413G9muU1fkGxU9bxgN0NEmwZghlPYBplKji7eKnVt9LgSNtb0RZr2CJyrH1566/Gde/F/Ctyu/sY7ZrPQEzy8rUwJRS6j7ZCKgT37SvoTQEau4AvlV7I2lA7PsssALQ3/aTwAPAMZSbbSPDKQvwjI/3Eyi9Ah+hdM9DuSEfFOdZOz57rJVqDwG+EMdsSOmqb2QocDTwoO2XKNG/61TOvQzwb5VkwoNaOedeMZ5geWAH4KG6z28Hvh5lIWltSUvV7YMyNTCllLpNPg5o7DTgyMr7o4DfRjf7opSb7hHx2UhmRfEOBX5FaQw0MpzyCOBXMLOL/kXg2Yj1hZLwd55KkuB04LB4lNBSfc8DLpH0KPAojVctrNV1ZWY1UiYAH/KsxKifxj4vxb/LtHDOCZRY4RWAn9t+vm6cwsWURYzGqlT+JWBv5rQR7UgNzMTAlFLqPJkYmBYomRiYUkrtp0wMTAuD7k4MXBhk6mFKqSbHBMwDKisAPhw/L0h6rvJ+jqV9O+mcW0k6o5V9dpH05zaUdaekD8XrlSVNl/TVun3+FZkJi0r6b2xbXdLVc3MdKaWUuk72BMwDtl8h5ujHHPuptn9d3Seem6syNmBuzzmSWfP/OywG8y1j+4XY9HnKioYHUp77t1SHZ4EM/0kppflU9gR0I0lrSZos6QrgEWAVSQdHWuAkSb+M/WZ+u473B0i6OF5fLuk8SWMkPS5p99g+81u+pK0j3W+cpGGS+jeoy06R2vewpLGVkfw7AfdUdj2QMsNgDUmrtOH6Hq5cw+mSRkWC4Fdj+2qSHojzTpI0qKUyU0opdZ5sBHS/dSlphOtT5tafCOxICRDaVtKebShjdUr636eBCyOhr+pRYLDtTYGfxznqfR843PYASpbBO7F9d+A2KAsEAcvZHgP8idIr0FaHAy/a3jLq+s1IXzwY+EucdxPKrIPZSDpc0mhJo2e8NaUdp0wppdSSbAR0v3/Yrg133wq4x/bLtqcBf6TckFtzje33bT8GPEtJ5qtaFrhOZYW/XwMbNChjGHCWpG8BfSrpgNWFjQ4Aas/4r6L0CrTVbsCXomdgZNSpPyVf4KuSfkaJEp5af6DtC20PtD2w15JzpAqnlFLqoBwT0P3akgL4PqWXoGaJus9bS+/7BXC77XMlrUV8s5/tAPtElUV99gBGSNqZ0kh80vb02O1AYAVJh8b7VSWtEUFJrRHwDdt3z/GBtEOc9zJJp9i+og3lpZRSmkvZEzB/GQnsGLMJFqV8874/Bgu+Jqm/pEWAfeqO20/F2pRHA0/Ufd4XeC5eH9boxJLWtD3B9q8oCxCtA3wS+Gt8vj6waEQm97Pdj5Lwd0Abr+124BtxXUhaR2X1w48CL8T6AJdQHoOklFKaB7InYD5i+1+SfkpZh0CUZ+W1SfE/oNxIX6QkAlaf+z8HjKYs+nO47ffqEgZPBn4XXe5/bXL6YyQNpvQ6TKBEJd8I1JYJPhC4oe6Y64DfA79sw+VdQIlAfjjq9iKwF7Az8F1J04A3gC+2VEgmBqaUUufJxMAFnKTLgWtttzrfv53l9gaG2N6iM8udW5kYmFJK7ZeJgaldYpng+aoBAPNPYmCm7qWUFgY9bkxAPDt/oDafPrbtJ2mOwXKVz+dIw+vE+pwo6eiOHm/74Pb0Akj6rKR123OO9l53ZBc0Wiyo2f7LSTqi9T1TSil1ph7XCIgV844ATldZCndpyjPtb3ZvzZqrDabrJJ+lZBPMT5Zj1qqMKaWU5pEe1wgAsD0J+AtlsN2xwGW2/yHp0Ei0e1jSuTESvyFJi0QC3qRI+Ns3tl8g6VPx+i+SLozXh0s6vklxm0oaIekJSV+O/XeRdJ+km4GJsa1h/SRdGGE6j0g6tlLHU1USCSdIOjkG/n0KOCPK6BczDm5XSRwcEjMMkLSmpJEqSxo3qzeSvhTlj5d0SeWjHSUNl/SkpH1i3z6S7lFJJJxQCUI6CVgn6nRSs3OllFLqXD15TMDxlKlw7wEDJW1ImXo3yPb0uHkfQAnsaWQ/YD1Kyt2KwEOShgBDgcGS/gqsDKwQ+w8GLm1S1kbAIKAPMFZS7aH3QGB92/9spX4/tP1q9BjcK+la4BXKDX8D25a0rO3/SrqVykBCSfcCX41G0LbAbyjBPucAZ9n+o6RvN6q0pE0oDalBcf7lKh+vBGwb13YNZWbB28Detl+XtBIloOhm4IfAWpEa2Og8h1MSB+nVZ8Umv8KUUkrt1WMbAbbfVFnhbqrtdyXtQhkINzqmsPWmpO81sx1wZSTrvSDpAcpNeyjwdcrNbwLwIUkrAlvTvMv7z7bfAd6JhsQWlNjeB23/M/ZpqX4HSvoK5e+5KrA+ZXrf+8BF0ai4uf6kkpaNel1XmVJY+29iG0oMMcAfaNwbsBNwte1XAWr/Vq7JwARJq9VOCZwkabuo2+qSVqAVkSFwIcDiq/TP6SwppdRJemwjILwfP1BuUL+z/dO5KdD2M/EtdzdgCOWmfCDwSjQ8jgK+HLvvVjusvpj4t5om2LB+KosBfRvYMr7pXw4sYXuapIHArpRei69Xzlct8+Vm38Ab1Ks93q07D8AhlOCizaI341/MmX6YUkppHumRYwKauAv4fO2bqUpq30da2H8ocECMDViZ0vVdm8A+EjiK0ggYSlmcZyiA7bNtD4ifF2P/vSUtHj0GgyvltKV+fSghO6+rrOr3ifh8GcoaADcD32FWEt8bwDJRl9eAf1ee2S8SXfxQlguuLRB0UJPfwT3A/rXHAHWPAxrpS1lEaLqkXYFaD8HMOqWUUpp3enpPwEy2J8bAvbtiwN00Svf9P5scci2lK30C5Rvzdys39aHA9raflvQ8ZVzA0BZOPwm4H1ge+Jnt/0jaqI31Gw1MBv4GPEN5zg7lhnu9yoqCiwDfje1XAhdI+h6wN2VcwXmSjgMWAy4HxlMaMVdI+l/gpia/s/GSTgGGSJpOSTL8SgvX+QfgLzHYcBQRbxzXOya232L7h80KyMTAlFLqPJkYmBYomRiYUkrtp0wMnJMkA6fb/l68PwZY2vZxnVT+DcDvKyPxHwP+YPvEeH8dcIXt69tYXj/gZtsbNvjsPuCYyrLEC6X5JTGwJZkmmFJaUPT0MQHvAp9tywj1DhpGmfqHpOUpA/22qXy+DTC8LQWpcwODOqy+Hip6+n9HKaW0QOrp//OeTpl69p36DyStKOk6SQ/Fz7axfaJKhLAkvSLpkNh+WQx2qxpONALi378AK8axHwPetv2CSnLhJVH2OEk7RpmHSbpJ0j3A3XX16y3pKkmPRo9D70YXKOkkzQoM+nVsu1TS+SoBQ48rQntUwoOGqoT5jJVUa8DsENtvAibHfo9JuowynmF1SQdG/SdJOjmO20/S6fH625KejNdrSBrWrH4ppZTmjfni22U3+y1lLvspddvPAs6w/UCMwr+dEg40jDIT4BngScpo/sso3+q/XlfGGGBDSYtRGgH3A2tEOZsyqxfgm5RE441Ucv3vUCT3AZsBG0cYT79K2V8H3rK9nqSNKcFHs4neh32AdWuBQZWP+wFbAmtSAobWoizvu6vtd1SmHl5JyT6o1WND209FPfoDh9oeIWlVynLFmwOvRf33pgyG/H9x/GDgFZXMgMGUwYQt1S+llFIX6+k9Adh+nXITP6ruo12A30h6mDI6vo/KOgNDge3j5zxgo7ixvWa7Oq8f2+8Cj1BuoFtTpg4+SGkQDGLWSP7tKKPysV0b5V9rBNxZF8JTs33lmAmUWQr1plBCh/5P0meBtyqfXWP7fdtPUBoz6wIfoIQLTQT+RAkdqhll+6nK+2dsj4jXWwD32X7J9nTgCsrsiBeApWO64uqUdMPtKY2Aoa3UbyaVyOXRkkbPeGtKo11SSil1QI9vBIQzKVPblqpsWwTYujKnfzXbUylz/wfHz33AS8C+NJ8COIxy41sm5uWPYFYjoC3jAd5sfZfG4oa8JWU6455AdaXERgFF3wH+Q4lCHkiZMtisHm2t13DgS8BjRKQypddkWCv1q17HhbYH2h7Ya8m+bTxtSiml1mQjgJlxt9cw+xz3O4Bv1d5IGhD7PkuZ99/f9pPAA8AxlMZBI8OB/6HMvYfyjX1r4COU5+lQbo4HxXnWjs8ea6XaQ4AvxDEbAhvX7xA9F31t30q5wW9S+Xg/lXCgNSmPKB6jZAv82/b7wBeBXq3UoWYU8HFJK0jqRUlIvL9ybbXfzzhgR+Bd21NaqV9KKaUulo2AWU5j1mI/UB4PDIwBa5OZPfd/JPB4vB5KSb57oEm5wyk32Qdh5rfzF4HRcbMFOBdYJLrhrwYOi0cJLTmP0tX+KHACZfxBvWWAmyVNiPp9t/LZPyk3778CR8TaBecCh0oaT3k80KZv+7b/TVkE6F5KY2eM7Rvj46GURwFDYp2FZ5n1u2qpfimllLpYhgX1QJIupeQNXNvddWmvDAtKKaX2axYWlD0BKaWUUg81X04RlDTV9tLdXY/OorKwz++BT1IGIe5EGYj3DvD5ulH3XXH+w4CBto8EsH3YXJQ1AFg1nuMj6TPA+rZP6oSqtqq7EgMzBTCltDCaLxsBCyJJveKZdyOfpOQM7E9ZWnhj2+9L+jBzMfq/mwygzBy4FcD2TTRZYCillNL8bYF5HBApdffEQL27I8Cnln53tqThkp6UtG9sX0TSuZL+JulOSbdWPmtPit5hkn5TqcfNknaI11MlnRYD6bZpIf3uk5QBeKswa/Q9tv8V0wZrZf1C0nhJI1SWJ2543ZJ6SXpKxbKSZkjaPvYfEkE/9VaXdJ+kJyT9rFJ2bYYCko5RWU2Q2PdkSaPi9zE4Qo9OoCwf/LCk/au/n876W6SUUpo3FphGAHAOZTGejSlhNGdXPluFErizJ1Drlv4sJRVvfcp0t21gthS9DaKsEyvl9KPMW98DOF/SEq3UaSlgpO1NgEcblRtT5taxPZkyDfHTcQM9TdKmdWWNiLKGAF9rdt3R4/BYXNt2lLTAwSrLBq8eAUD1tgQ+R5lKuJ+kOQaINLCo7S2BoylLHL8HHAtcHdkJVzc4prP+FimllLrYgtQI2IaSOAdlXfrtKp/9OdLvJgMrx7btgD/F9hco09eg/Sl6LZkBXNdKuVtRphRi+1/AOsCPgPeBuyXtHPu9B9wcr8dQbpotXXc1ufBXsX0L4KEmdb3T9iu23wauZ/bfXzO11Q2r9WlNZ/0tZlImBqaUUpdYkBoBLanOqVdLO3YgRW86s/+eqr0D79TGAbRQ7u7Vc9h+1/ZfbX8f+CWwd3w0zbPma86g9fEateTCLSnP55cFdqB5cmF7rw1m/V7bUp/6Y2Du/hbV/TIxMKWUusCC1AgYDhwQrw+i+c2uZhjwuXgevTLlBtmRFL2ngQGxfXXKTWsOLZS7M3BX7LOZymI7qCy/uzFlnYCOXPcoSvTw+xH08zAlmbBZcuGukpaT1JvS8BhGiQheSdLy8Shhz1bqAvAGJeSnPTryt0gppdTF5tfZAUtK+lfl/emUCN9LJH2fktf/pVbKuI5yA55MSakbS+l+Xga4MZ73i8Ypen2IFD2VJW+finIepcFqfWGOciWtSOkteCP2WYmyQM/i8X4U8Js5i5pNw+u2/a6kZylrEUBpHBwITGxSzqj4nXwYuNz2aABJJ8RnzwF/a6UuULryf6iysNKv2rA/dOxvkVJKqYst1ImBkpa2PTUGoI0Cto1n0o32vZROTtGTdDDw4Xk1h35+1p6/RUsyMTCllNpPTRID59eegM5ys8oa9YsBP+/ITWdu2L58Xp5vPtetf4uUUkpzWmB6AiTNYPau7r0pC/4cYvuoDpR3KZ30zV/SAcCalC71U+Pfmi/ESPnurN/FwOkdrMcqlCmKu8X7oylT/1a2PSW27QAcY3tPVdIJJR0BvGX7srm9hprFV+nvVQ49s7OKmycybTCl1N0Whp6At20PqNv2NDA/9A3vTskt2Igyh/7Ibq7PbGx/dS4Or6Ud1hxImYb4WeCSVs57/lycN6WUUhdbkGYHzEHSDpJujtfHSfpdJN09Kemoyn6HRCLdeEl/qBSxfX26Xez/fUkPxTHHx7alJN0SZUyStH9sFyVKt9mAwdnqGe9/E9+YkfS0pFMkTYx0vrVaqp+KU6MOEyv12CGu/dpI5rsi6lZL/xsYr8+LOfeP1K4ttreWdkjMmlga+AmlMdDa3+c4ScfUjpV0m6QxkoZKWje27xfXMl5Ss5kNKaWUusCC1BPQO0akAzxle58G+6wL7EgZdf6YpPOAtSk3rUG2X5a0XGX/WrrdupT8+2sl7Qb0p0wFFHCTSiTvisDztvcAkFSbsL4pMN624567v6RqEM82bbi2KbY3knQIZYGh2lS9OepH+QY+gDKdbgXgocrNc1NgA+B5yrS8bYEH6s71Y9uvqiQZ3i1pY8rji32AdeM6lo1rrKYdQpmqeBVlJsI6kla2/Z82XB/AhZQZF09I2go4l7KQ0rHAJ2w/VztvSimleWNB6gl4O6JqBzRpAADcEmE8LwMvUhLrdqKk1b0MYPvVyv6N0u12i59xlG/361IaBRMpc+1PljS49jycyjflcHWlngMioa81V1b+rTYamqXvXWl7RtyA76ckBQKMivUI3qfkBvRrcK7PSxob17cBJcq31bTDcCBwVZR/HbBfG66tlgcwCPhTNOQuoDRwoDRWLpX0NaBXk+MzMTCllLrAgtQT0BbVtLq2pNw1SrcT8CvbF9TvLGkz4FPAiZLutn0CpcHwuVbO01oyn5u8bnP6XoP957h+SR8DjgG2sP1aDD5cwvZ0SVtS5vLvCxxJaTzNTDuUtBGlMXRn9HgsRslPaC3nAMq1/7fBmA5sHxE9A3sAYyRtbvuVun0upPQksPgq/ReMkawppbQAWJB6AjrqHkoS4PIAdY8DGrkd+HJ8e0XSapJWUkn6eyum/Z0KbBaPBBatv2k18AywvqTFo8t757rP96/8+2ArZQ2lPHLopRJGtD1l3n1b9KEsXTxFJblv97jGVtMOKb0Ax9nuFz+rAqtK+mhrJ7X9OvCUpP3ifJK0Sbxe0/ZI28dSwpBWb+O1pJRSmksLW0/AHGw/IukXwP0q0wzHAYe1sP8dktYDHoxvvFOBg4G1gFMlvQ9MA74O7Mqsm2RN/ZiAb9geLukaYBLl2/O4umM+KGkC5Zt8awPubqA8MhhP6TX4f7ZfqA20a4nt8ZLGUZIBn6V0xUPb0g4PoPSC1NflAGZ/ZNDMQcB5kn4CfIAytmA85XfaP857d2xLKaU0DywwOQHzI5X59xfbHtHqzs3LeJoyr/7lTqtYJ9B8mnaYiYEppdR+WghyAuY7czn/fr6WaYcppbTwy0ZAF5J0BvCM7TPj/e3As7XGg6TTgLPb2wsQGQN32H6+lf1OAIbYvkvSfZRUv6ZfoyVtDXwFuAK4kfLoYnHKjIDjI2vgENtHqaQEvmd7eCt1aPcxLZn43BT6/fCWjh7eYZn6l1JaGPWEgYHdaRhlalxt6eAVKNPyagZRlgpur8OAVVvbyfaxtuvHLLRk5mwAYGiM5h8IHCxpM9ujKxHNOxDX1kod2n1MSimleSMbAV1rOLPm/W9AGRj4hqQPqiwnvB4wWdLdksZGAuBetYMl/VTSY5IekHSlpGNUkgMHAldIelhSb0nHqiQcTpJ0oTQzKfBSVZIQY1uv2F5LHPxO5ePqbAAAbL8JjAHWUiQfSuoHHAF8J+owOMo8P+bzPy5pzzhfS8dkWmBKKXWjfBzQhWw/L2m6pI9QvgE/CKxGaRhMoQQQvQXsY/t1SSsAIyTdRLnRf44yXe8DlOCiMbavlXQkla59Sb+JzAJUYpH3BP7SpFoDgNVsbxj719IBVwCm2Z4SbQhi+/LA1sDPKamJ2H5a0vnAVNu/jv2+Qgkn2pKymNK9qkQgNzlmIpkWmFJK3SZ7ArrecEoDoNYIeLDyfhhlatwvY4rgXZRGwsqUyN8bbdem6TW7qQPsKGlk3FR3YvZHDvWeBNaQdI6kTwKvx/bdgDsq+w2O6YR3ACfZfqQN13pNJBw+Eedpbdpiq2mBkImBKaXUVbIR0PVq4wI2ojwOGEHpCaiNBziI8g1783gG/x/mTBRsKub2nwvsa3sj4KKWjrf9GqV34T5K9/zF8VF1PACUMQGb2t68HasB1s83bXH+qe0jKOs6rE5JC1y+yX4X2h5oe2CvJfs22iWllFIHZCOg6w2ndM+/Gnn/rwLLUhoCw4G+wIu2p0naEagl8A0DPrL+TUUAACAASURBVC1piUj027NS5huUgB+YdcN/OfabbQxAvej2X8T2dZQb8GYxhmBjynoDbVWtQ81+khZRWW1wDeCxlo7JtMCUUupeOSag602kzAr4Y922pWNVwyuAv0RX/mhKmh+2H4qxARMovQMTKeMIAC4Fzpf0NqUxcRGll+EF4KFW6rMacEnMVgD4EbA5MM7tS476C2XVxb2Ab8W2f1IijPtQVgx8pzq+oMEx32lvWuBGq/VldE7XSymlTpGJgfMxSUvbnippSWAIcLjtsV1wnp8Af7d91VyUcSlws+1rO61iDWRiYEoptV8mBi6YLpS0PqXL//dd0QAAsH1iV5TbFborLKgmQ4NSSguTHBNQR9KHJd0o6QlJ/5B0lqTF4rMdJN3c5Lin43l7ddu3JZ1ZeX+BpLsq778l6exmdbH9BdsDbK9r+1fNzhPbj5N0TPuvuHPYPqyrewFSSil1rmwEVMQAueuBP9vuD6wNLA38ooNFzkwMDJsAfSXVpsO1OTFQxXzx96rUv+H7lFJKC4b54qYyH9mJsnzuJQC2ZwDfAb4cz+VnkrS8pDskPaKymqDmLI6HgbUj1a8v8HZs2yg+r2UFIOm7kZ43SdLRsa2fSmLgZZSBf7ONnpf040jnewBYp9EFNUrlk3RY9HbcFz0eP6vs/2dJY+K6Dq9snyrpNEnjgW2iR+JkSWMpswIGSBohaYKkG1RSEVeSNCaO30SSVYKTiF6WJRvVL6WU0ryRYwJmtwElInemSPL7J7BW3b4/Ax6wfYKkPSgL71B37PQI3NkC6A2MBJ4ABkl6iTIw81lJmwNfAraiNCZGSrofeA3oDxxaW664Nto+jjmAkgC4KJEo2OCajqVxKt+WwIaUxMKHJN0SCYRftv2qpN6x/TrbrwBLASNtf69Sj1dsbxbvJwDfsn2/ysJFP7N9dExx7AMMpsx+GByNlhdtvyWpWf1misbI4QC9+qzYaJeUUkodkD0BHbc9cDmA7VsoN+xGWkoMrD0K2A64wfabtqdSHkkMjs+eqTUA6gyOY96y/TpwU5PzN0vlu9P2K7bfjvNtF9uPim/7Iyg9D/1j+wzgurqyrwaIXo5lbd8f239P+f3Urn/beP/L+HcwMLSV+s2UYUEppdQ1shEwu8mUOfMzxbfYjwB/72CZtXEB21AaAI8C69P28QBvdvC8QIupfHOk+6ks9bsLsI3tTYBxzAojeicej7S3bkMoN/2PUpYn3oTS4BjaSv1SSil1sWwEzO5uYElJh8DMAW+nAZfafqtu3yHAF2K/3YEPNinzQcoCPCvafjECeV4C9iLGA1BuiHvHM/KlgH2Y9U25mSFxTG9JywCfbrSTmqfy7Sppuej23zvq0hd4Lbrp1416t8r2FOA1SbXeiy8CtV6BocDBwBO23wdeBT4FPNBK/VJKKXWxHBNQYduS9gHOlfRTSiPpVuB/G+x+PHClpEco3+j/2aTM1+L5f3UBngcpXeTjY5+xKmE7o+Lzi22PU1l+t1ldx0q6Osp4keZJgadqzlS+AXGu64APA5fbHq2SWniEpEcpkb+NHkM0cyglxXBJyuJBX4p6Ph2zLmqD/h4APhxrGDSrX1OZGJhSSp0nEwN7IEmHAQNtH9nddWmvTAxMKaX2UyYGpoVBdycGtkWmCqaUFhQ5JmAhIemMWr5AvL898gtq70+T9F0A25d2Vi+ApDaFHaWUUpr/ZCNg4TEznTCSBVeg5B7UtDmdsD1sD2p9r5RSSvOjbAQsPIZTpiFCuflPAt6I5L7FgfWAyZLuljRW0kSVJX2RtEUk/S0haalIC9xQ0m8lfSb2uUHS7+L1lyX9Il5PjX93iATCayX9TdIVMSAQSZ+KbWMkna1Yf0HSxyU9HD/jYpZDSimleSTHBCwkbD8vaXrE8taCiVajNAymABMp6YD7RAriCsAISTfZfkjSTcCJlGTDy21PkjSUMsf/pihrlTjdYKDRssObUhogz1N6JraVNBq4ANje9lOSrqzsfwzwTdvDJC0NvNPo2jIxMKWUukb2BCxcWkonHEaZhvfLiPi9i3JjXzmOPQHYFRgInBLbhlJiftenBCn9R9IqlIZFo0cLo2z/K/IAHgb6AesCT9p+KvapNgKGAadLOoqSODi90UVlYmBKKXWNbAQsXGrjAjaiPA4YQblh18YDHASsCGxuewDwH2YlAi5PWTFxmdo2288BywKfpMzzHwp8Hphq+40G53+38noGrfQ02T4J+Cql92FYBBSllFKaR7IRsHAZDuwJvGp7hu1XKTfx2jf3vpSFe6ZJ2pES5VtzAfBT4Arg5Mr2EcDRzGoEHEPraYZVjwFrVIKP9q99EGmBE22fTAk7ykZASinNQzkmYOEykTIr4I9125a2/bKkK4C/RDLgaOBvABGTPM32HyMqebiknWzfQ7nh72b775KeAZajHY0A229L+gZwm6Q3mT3Z8OhojLxPSVT8a2vlZWJgSil1nkwMTF1O0tK2p8Zsgd9S1hE4oyNlZWJgSim1XyYGpu70NUmHAotRVia8oKMFZWJgSil1nhwT0ENI+nHM/58Q8/K3knR0LPjT3rIulbRvvL44Zg80ZfsM2wNsr2/7oAYrMqaUUuoG2RPQA0jahjJgcDPb70ZGwGLA1cDllPyAtpbVq/re9lc7s64ppZTmnewJ6BlWAV62/S6A7ZeBfYFVgXsl3Qsg6TxJo6PH4PjawZKelnSypLHAftWCIyVwYLyeKukXksZLGiFp5di+ZryfKOnESsrgKpKGRM/EJEmD58HvIqWUUshGQM9wB7C6pMclnSvp47bPpiT77Wh7x9jvxzFwZGPg45I2rpTxiu3NbDdKCqxZChhhexPKlMKvxfazgLNsbwT8q7L/F4DbI7NgE0rA0BwkHR6Nk9Ez3prSvitPKaXUVDYCegDbU4HNKdG7LwFXSzqswa6fj2/74yjxv9Vn/Ve34VTvATfH6zGUxEAoOQV/itfV6YsPAV+SdBywUZMAokwMTCmlLpKNgB4iwoPus/0z4Ejgc9XPJX2MEgS0s+2NgVuYlSYI8GYbTjPNs+actiUxcAiwPfAccGnkFaSUUppHshHQA0haR1L/yqYBwDPAG5SYYIA+lBv9lHiWv3snVmEEsxodB1Tq9VHgP7YvAi4GNuvEc6aUUmpFzg7oGZYGzpG0LDAd+Dvl0cCBlCS/523vKGkcJUXwWco6BJ3laOByST8GbqOsagiwA/B9SdOAqUCrPQGZGJhSSp0nEwNTl4ssgrdtW9IBwIG29+pIWZkYmFJK7ZeJgak7bQ78JmKD/wt8uaMFLQiJgR2RKYMppe6wwI4JkGRJl1feLyrpJUk3t3RcC+VNbbBtVUnXzkUdZybr1W0fKOnsNpYxcx5+C/tsLempmG//cMzXfyxeXybpMEm/6eh1tHDe4yQd09p+tofa3sT2xra3t/33zq5LSiml9luQewLeBDaU1Nv228CulFHmncb285RQnU5lezRlFb/ZSFrU9vQOFLk7cIzt66Kc++L96Hh/WFsKkdTL9owOnL9D5vX5UkopzW6B7QkItwK1ftQDgStrH0haTtKfIyt/RC34RtLSki6J9LoJkuqnyq0g6UFJe0jqJ2lSbD9M0vWSbpP0hKRTKsd8JYJ4Rkm6qO5b9y4RdPO4pD1j/x1qPRbxbfoPkoYBf5DUW9JVkh6VdAPQO/brFT0Lk6Lu36mcY2fgrlZ+V6s2qftUSadJGg9sI+lYSQ/FeS6MLnwkHSVpcvzOqoFB60dvxZOSjqqUe3D8Ph6WdIEibrjB+U6qlPvrVq4hpZRSJ1qQewIArgKOjRvqxsDvgFr07PHAONt7S9oJuIwyNe6nwJRIr0PSB2uFxdS4m4Cf2L5TUr+68w0ANgXeBR6TdA5lPvxPKdPb3gDuAcZXjukHbAmsSYnoXavBdawPbGf7bUnfBd6yvV40XMZWzr2a7Q2jrsvGvytQ5ue3FqU3R91tP0tJ+Rtp+3tR3mTbJ8TrP1DWHPgL8EPgY7H2wLKVctcFdqRMNXxM0nnAWsD+wLa2p0k6FziI8jeYeT5JywP/B6wbgwar5c4k6XDKbAZ69VmxlctMKaXUVgt0T4DtCZSb7IGUXoGq7YA/xH73AMtL6gPsQlnTvlbGa/HyA8DdwP+zfWeTU95te4rtd4DJwEcpN/j7bb9qexqzkvFqrrH9vu0ngCcpN816N8UjDSjhOZdXrm9CbH8SWEPSOZI+Cbwe23ejxAK3plHdoTRirqvst6OkkZImAjtRkgOJelwh6WDKNMOaW2y/G+sRvAisTOmZ2Bx4SNLD8X6NBuebArwD/J+kz9JkIaNMDEwppa6xQDcCwk3Ar6k8Cuig6ZSo20+0sM+7ldetJuKF+jmYjeZktprGF42VTYD7gCMo4TpQxgPc1oZ6NKv7O7Xn8pKWAM4F9o2ekouYlRq4B6XxtBnl5l47vlG5An4fywcPsL2O7ePqzxfjH7YErqX0OLTlOlJKKXWShaER8DvgeNsT67YPpXRBI2kHyip6rwN3At+s7VR5HGDK1LV1Jf2gHed/iLLYzgfjxvi5us/3k7SIpDUp34Yfa6W8IZSFdZC0IeUxR63bf5EY/PcTYLN4Xr8xTRbe6YDaDf9lSUsTgyIlLQKsbvte4AdAX0oAUTN3A/tKWimOX04lHXA2cY6+tm8FvkNp5KSUUppHFvQxAdj+F9Bout1xwO8kTaB0Mx8a208EfhsD/mZQxg5cH2XNkHQgcJOkN5jzEUOj8z8n6ZfAKOBVSuJe9fn8P+OzPsARtt+JsXbNnAdcIulR4FFK7wTAarG91nD7EaXLfVwlr3+u2P6vpIuAScALlAYOQC9K4l9fyrf8s2PfZuVMlvQT4I6o7zRKw+uZul2XAW6MHggB322tjpkYmFJKnScTAzuBpKVtT42egBuA39m+YR6c9yfA31tZ3nehkomBKaXUfmqSGJiNgE4QU9t2oXSn3wF8u7O+nafZLb5Kf69y6JndXY25kumAKaV5rVkjYGEYE9DtbB8TA+DWtX1UfQNA0vKaleb3gqTn4vV/JU3uijqpQQLiXJT1V0kfjtcrSJom6Yi6fZ6OcQszz625TFxMKaXUtbIRMA/YfqU2Uh44HzgjXg8A3m/t+MpI/HlOUm9g+Rh7AbAfZWngA1s71vbztjs9cTGllFLnyEZA9+ulkjL4iKQ74qZbWzPgTEmjgW+rbh2CyrftVSQNiZ6FSZIGV/b5haTxKomJK8e2FSVdp5IK+JCkbWP7xyu9FeMkLRPF7ECZllhzIPA9YLVa70Azmj1xsZekU+OcEyT9T2v1Tyml1LWyEdD9+gO/tb0BZYW96hTDxSIk57QWjv8CcHv0LGzCrOmCSwEjbG9CmXb4tdh+FqUnYos4Vy1v4Bjgm1HOYKAWXjQzh0DS6sAqtkcB11BSAdvqK5Skxi2ALYCvSfpYC/WfSdLhKtHLo2e81VowYkoppbZa4KcILgSesl278Y2hJCDWXN2G4x+iTIX8APDnSlnvAbUVFcdQFliCMoBx/cr0vj4xX38YcLqkK4DrK93/21IaCFBu+tfE66soGQ0tNVCqdgM2rvRm9KU0gJrVfybbFwIXQhkY2MbzpZRSakU2ArpffeJe78r7apLgdKLnJubeLwZge4ik7SmJfpdKOt32ZZT1BGo3zGpC4CLA1hEfXHWSpFuATwHDJH2C0pB41vZ7sc+BwIckHRTvV5XUPyKRWyPgW7Zvn+ODxvVPKaXUxfJxwILjaUo4EMBnKGsdEEl8/7F9EaVrf7NWyrkD+FbtjaQB8e+atifaPpny7XxdZn8UsDawtO3VbPez3Q/4FW0YIBhuB74e3/iRtLakpTpQ/5RSSp0kewIWHBdR0vXGU27MtV6CHYDvS5oGTAUOaaWcoyiJiRMof/8hlLUIjpa0I2W2wiPAXymZ/rUGw4GUIKSq6yiPLE5oQ/0vpjzqGBtxxy8Be7e3/pkYmFJKnSfDglJDkhYHhjUKl+hOmRiYUkrt1ywsKHsCUkO23wXmqwYAwMTnptDvh7fMs/Nlul9KaWHWY8YESPqwpBslPSHpH5LOkrRYfLaDpJubHDczCa+y7duSzqy8v0DSXZX335LUaFGjluo3x3li+3GSjmmwfUVJI2NO/+Bmx3eUpL0lrd/KPk1/bymllOZ/PaIREM+gr6dMQesPrE1ZCvcXHSxyGDCo8n4ToK+kXvF+EDC8rXXTrJUB22NnYKLtTW0P7cDxrdkbaLERMLe6MwkxpZRSD2kEADsB79i+BMqSwZT1678sacnqjio5/3dEgt/FlKlt9R4G1pbUW2V53bdj20bx+SBKQwFJ340kvEmSjo5t/SQ9JukyyrK9q9fV4ceSHpf0ALBO/cljRP8pwF6RtNe78tkJtfPE+19I+na8/oGkiZEieFJs+1qk+I1XSRJcUtIgygyEU6P8NSWtJemu2G+spDXjFEtLulbS3yRdEQ0uJG0u6X5JYyTdLmmV2F6fhLhf/G7GSxrS/E+YUkqps/WUb2IbUAJzZrL9uqR/AmvV7fsz4AHbJ0jag5J0R92x0yWNoyTf9QZGAk8AgyS9RBlw+aykzYEvAVtRGhMjJd0PvEYJyjnU9giAuHcSxxxAWVdgUWBsg7o/LOlYYKDtI6vHUwJ8rgfOjB6GA4AtJe0O7AVsZfstScvF/tfH9DwknQh8xfY5km4CbrZ9bXw2EjjJ9g2SlqA0IFcHNo3f7/OUhs+2se85wF62X5K0P6XX5ctxzsVqA1QkTQQ+Yfs5ScvW/65jn8OBwwF69Vmx0S4ppZQ6oKc0Atpje+CzALZvkfRak/2GU77x9wYepDQC/pcy9a32KGA74AbbbwJIup4SyXsT8EytAVBncBzzVhxzU3sqb/tpSa9I2hRYGRhn+xVJuwCX1Mq1/WocsmHc/JelPCJpFOazDLCa7Rvi2HdiO8CoWrqgpIcp0wD/C2wI3Bn79AL+XSmymoQ4jBISdA2l8dLomjIxMKWUukBPaQRMBmZbzU5SH+AjwN+BLTtQ5jDK/PolgN9Sbv7rM3sjoCVvtr5Lh10MHAZ8iNIz0JJLgb1tj5d0GGXefnvUJx4uSun1eMT2Nk2OmXntto+QtBUlMXCMpM1tv9LOOqSUUuqAnjIm4G5gSUmHQFnRjpJ5f2ntm3HFEMqiNkQX+geblPkgsDWwou0XI6L3JUqX+7DYZyiwdzxnXwrYJ7a1ZEgc0zu+gX+6HddZcwPwScrjito3+zuBL9XGQFQeBywD/Fslye+gShlvxGfYfgP4l6S949jF68dS1HkMWFHSNrH/ByRt0GhHlaTCkbaPpfz+Vm+0X0oppc7XI3oCbFvSPsC5kn5KafzcSum+r3c8cKWkRyjf6P/ZpMzX4vn/I5XND1IW3Bkf+4yVdCkwKj6/2PY4Sf1aqOtYSVdHGS9SInzbxfZ7ku4F/huDILF9WwwoHC3pPWZd/08pYxpein9rSwhfBVwk6ShKL8oXgQsknQBMA/Zr5fz7AmfHwMlFgTOZ/XdVc6qk/pTeg7vjupvKxMCUUuo8mRi4EIoBgWOB/dq4uM8CIxMDU0qp/ZSJgT2DSsDPzZTBhQtVAwA6NzEw0wBTSj1dTxkT0GPYnmx7Ddvfa2k/SVMrrz8VuQQflXREbexER6gNyYWSGj2GSSmlNI9lI6CHk7QzcDawu+1nbJ9v+7IuPm02AlJKaT6QjYAeTNL2lCWK97T9j9g2c62CSPc7WdKo6CkYHNuXlHSNpMmSblBZw2COZ02SDo5jH1ZZX6GXSlJh79h2haSlJN0SiYGTIlgopZTSPJBjAnquxYE/AzvY/lsL+y1qe0tJn6KkKe4CfAN4zfb6kjakRCbPRtJ6wP7AtranSToXOMj2DyUdaXtA7Pc54Hnbe8T7vg3KysTAlFLqAtkT0HNNo0yBnCMWuU4txW8MJQ0QShLiVQC2JwETGhy3M7A58FAkCe4MrNFgv4nArtHjMNj2lPodbF9oe6Dtgb2WnKONkFJKqYOyEdBzvQ98nrKuQEvP6GuJgLU0wLYS8HvbA+JnHdvH1e9k+3FgM0pj4MRYEyGllNI8kI2AHizSEvcADpLUWo9A1TBKA6I2JXGjBvvcDewraaXYbzlJH43PpkVCIZJWBd6yfTlwKqVBkFJKaR7IMQE9nO1XJX0SGBIJiG1xLvB7SZOBv1GSAGfrxrc9WdJPgDsivGga8E3gGcpiQBMkjQUuo6QGvh/7fL2lE2diYEopdZ5MDEztFmsvfMD2O5LWBO4C1rH9XlefOxMDU0qp/TIxMHWmJYF7o0tfwDfmRQMAOjcxsK0yWTCltLDKRkAPJmkGZUDeB4DplK75M2y/H/P+D7F9VP1xsargHC3KlFJKC5ZsBPRsb1fm668E/BHoA/zM9migS/vdJfWqrXKYUkpp3svZAQkA2y9SAnmOVLGDpJthZorgHyQ9KOkJSV+L7TtIGhKJf49JOj8GASJpt9h/rKQ/SVo6tj8dmQBjgf0kHRXJgxMkXdVNl59SSj1S9gSkmWw/GYP+Vmrw8cbA1sBSwDhJtQfzWwLrU0b93wZ8VtJ9wE+AXWy/KekHwHeBE+KYV2xvBiDpeeBjtt+VtGyjemViYEopdY1sBKS2utH228Dbku6l3Pz/C4yy/SSApCspaYLvUBoGwyQBLAY8WCnr6srrCcAVkv5MiTGeg+0LKdMKWXyV/jmdJaWUOkk2AtJMktagJAO+CKxX93H9zdctbBdwp+0Dm5zqzcrrPYDtgU8DP5a0ke3p7a17Siml9ssxAQkASSsC5wO/cePwiL0kLSFpeWAH4KHYvqWkj8VYgP2BB4ARwLaS1oqyl5K0doNzLgKsbvte4AdAX2DpTr60lFJKTWRPQM/WOxb3qU0R/ANwepN9JwD3AisAP7f9fNzYHwJ+A6wVn98QUwwPA66UtHgc/xPg8boyewGXx8qBAs62/d+WKpyJgSml1HmyEdCD2e7Vwmf3AfdVNk2wfUiDXV+3vWeD4+8BtmiwvV/l9TTKGIKUUkrdIBsB8xFJKwNnUEbhvwa8B5xi+4YOlHU0cGEsEtTeYwcAq9q+tZVd/0pZKGie6crEwEwGTCn1NDkmYD6hMoz+z8AQ22vY3hw4APhwB4s8mhLv2xEDgE/V3tg+zvavG+w3o1EvQFtIygZoSil1s2wEzD92At6zfX5tg+1nbJ8j6TBJ10u6LcJ6TqntI+k8SaMlPSLp+Nh2FLAqJd//3tj2yQjuGS/p7ti2ZQT6jJM0XNI6khajzOffX9LDkvaXtLSkSyRNjFCfz1XO/4soc0T0ZCBpRUnXSXoofraN7bXQoWHAHyRtIGlUnGeCpP5d/UtOKaU0S34bm39sAIxt4fMBwKbAu8Bjks6x/Szw41gOuBdwt6SNbZ8t6bvAjrZfjpH/FwHb235K0nJR5t+AwbanS9oF+KXtz0k6Fhho+0gASScDU2xvFO8/GMcvBYyw/eNomHwNOBE4i7IGwQOSPgLczqwph+sD29l+W9I5wFm2r4jGR9MxCimllDpfNgLmU5J+Sxk09x7wW+Bu21Pis8nAR4Fngc9Hot6iwCqUm+yEuuK2pjxmeArA9quxvS/w+/gGbsosgUZ2oTyaII5/LV6+B9wcr8cAu1b2Xz+CggD61GKDgZsidAhKgNCPJX0YuN72E01+F5kYmFJKXSAfB8w/HgE2q72x/U1gZ6B213u3su8MYFFJHwOOAXa2vTFwC7BEO875c+Be2xtSwnracyzAtEqmwAxmNSoXAba2PSB+VrM9NT6bGRRk+4/AZ4C3gVsl7dToJLYvtD3Q9sBeS/ZtZxVTSik1k42A+cc9wBKSvl7Z1trAvj6Um+qUeB6/e+WzN4Bl4vUIYPtoNFB5HNAXeC5eH9bkWIA7gW/W3lQeBzRzB/Ctyv4DGu0UCYVP2j4buJGyPkFKKaV5JBsB84n4Rr038HFJT0kaBfyekqTX7JjxwDjKs/0/AsMqH18I3CbpXtsvUbrTr5c0nlnZ/acAv5I0jtkfDd1L6c5/WNL+lOf8H5Q0KY7fsZXLOQoYGIP9JgNHNNnv88CkCCzaELislXJTSil1IjVOiE1p/jRw4ECPHj26u6uRUkoLFEljbA+s3549ASmllFIPlbMD0hwknQE8Y/vMeH878Kztr8b704DnbDdbZ6DLdGViYFWmB6aUeoLsCUiNDAMGwcyV/lag5BjUDAKG195k+l9KKS2YshGQGhkObBOvNwAmAW9I+mCsCrgeZe7/UEk3AZMBJB1cSQC8IAKMkDS1SbLgfrXBhpKGzPOrTCmlHi4bAWkOtp8Hpkfa3yBKqM9ISsNgIDCREhS0GfBt22tLWg/YH9jW9gBKbsBBUWQtWXATYAglWRDgWOATsf0z8+TiUkopzZTduKmZ4ZQGwCDgdGC1eD2FWVMRR9VSCCnBRpsDD0VSYG/gxfisWbLgMOBSSdcA1zerSCYGppRS18hGQGqmNi5gI8rjgGeB7wGvA5fEPm9W9hfwe9s/alBWw2RB20dI2grYAxgjaXPbr9QfbPtCSu4Bi6/SP+e0ppRSJ8nHAamZ4cCewKu2Z8R6A8tSHgkMb7D/3cC+klaCkkoo6f+zd97RelXV+n5eQg2B4BXkxoCEDgFCIKETpElRQFGKikAEQVBA+F1QVOQiV6UpvSggRKQqRYpIbyEESCOFqlKkCIIgEGoI7++PNb9k58v3nZZzkpxkPmOccfZee7W9T0bWXHOt9c4VWmpA0sq2H7J9LPAqsHynvkGSJEnSIukJSJoxkXIq4PK6tF4RmXCGzLYfk3QMcFucKJhCkRp+roU2TongRaIYEeM7sf9JkiRJK6RiYNKtSMXAJEmS9pOKgUmSJEmSzEAuB8xFSPokxS0O8N+UTXSvxv2Gtj+cIx2bi5gdioGpFpgkyfxCGgFzEbEzfiCApOOAybZ/Wc2jshgv2x93ZtuSFrT9UWfWOTe2mSRJn4fyuAAAIABJREFUkkwnlwO6AZJWkfSYpMuAR4E+knaUNFLSWElXSVo88m4g6V5JYyT9paLOt5qku0Kdb6ykfpK2lXSPpJsom/6QtG9F9e/c2ORHC+29IOkkSRMlPSRppUhfVtK1kkZHfRtH+s8kXSKpphGwjqRR0d6EWvkkSZKk60kjoPuwBnCa7f6UnfdHA9vYXh+YAHwvJH3PAL5iexBwKfB/Uf6KKL8u5fx/TchnMPAd22tKWhvYFdg0VP8WBL4ax/5maq/St9dtrwP8hiIsBHAmcHJsRNkDuLDuXbax/Q3gO8Avo70NgJdm+UslSZIkbSKXA7oPf7dd2xa/KdAfeCCO6i0M3E/R9F8LuCPSewAvSPoEsLTtGwFsvw8QeUba/kfUuy1lIB5dUf17Hni3SXs1rojflwEnVupavXKU8BOSFovr62t9oGgOHBOaAtfa/lv9i6diYJIkSdeQRkD3oV6d7xbbe1czSFoPmGB7SF36J9pR70W2f1JXftdG7VVodM5UNNjMGEbBtDZt/17SSIpq4C2S9rM9QzChVAxMkiTpGnI5oHvyAPDZyvr74iG68xjQV9KGkb6wpLVsvwG8KmnnSF9UUs8G9d4B7CFp6cj3yQgi1Ky9GnvG768xPa7AHRSxIKLMwEYvImkl23+zfQYlvsCAdn+NJEmSpEOkEdANsf0KsD9wlaTxlEF6NdsfALsBp0qaAIwDNopiewH/E+n3AzP51W1PBH5KWU6YANwGLNusvUrRpSP/wZT4AlAMgM1is99jTI8cWM/XJT0q6ZGo89IOfJIkSZKkA6RiYDJLSHoBWNv2f2ZHe6kYmCRJ0n5SMTBJkiRJkhnIjYHdDEkGTrX9P3F/JCWoz3EtlOlHOfZ3edwPBQbbPqQd7R4OnG/73Wq67eUqeY6jgcBRZ5KKgUmSJJ1HegK6Hx8AX65t3msj/YCvz2K7hwONNhMmSZIk3ZQ0ArofH1GOyx1R/0DSMEm7Ve4nx+WJwJBQ5auV+7SkWyT9VdLJlTLnhcrfo5J+GmmHAZ8G7pZ0d6TtEOqB4yXV4h0A9A8VwqejXK3eb1SUCH8jqUf8DJM0KRQHZ3qnJEmSpOvI5YDuyTnAhOrg3QpHA0fa3gmmLQcMBNajeBaelHSW7eeBH9t+XVIP4E5JA2yfKen/AVvZfk3SMsAFwBa2n5H0X5W21gC2ApaIes8DVqEcI9zM9hRJ51JOKzwK9LW9dvRrqVn4JkmSJEk7SU9AN8T2W8AlwGGt5W2BO22/Gcp9jwErRPoeksZSjheuRVEKrGdj4D7bz0R/Xq88+7PtD2y/RpEmXhbYBhgEjIqjgNsAKwFPAytJOkvSDsBbjToq6cDwToye+u6bs/DKSZIkSZX0BHRfTgfGAhdX0j4iDLsI/LNwC+U/qFxPBRaUtCJwJLCB7TckDQMWbWe/ZqqXoh74O9s/rM8saV1ge+AgSoyB/erzpGJgkiRJ15CegG5KzL7/QBHxqfEsZcYNsAuwUFy/TXHPt8aSFEnfN1WiD+5YeVat40FgizAaqFsOaMSdwG4RiAhJ/yVphdjcuIDta4BjgPXb0MckSZKkk0hPQPfmV0D1mN8FwPWh6ncL0zX6JwBTI30Y8EajymyPlzQOeIISOGhE5fH5FG3/l2xvFUF9rg2Pw7+AzzXrpO3HJB0D3Bb5p1AUBd8DLo40gJk8BfWs07c3o/MIX5IkSaeQioFJtyIVA5MkSdpPM8XA9AQk3YrZIRZUJYWDkiSZl+m2ewIiwt0j8fOypBcr9w9Enn6S2iSSI+nXkjaL6yMlPRF1jZK0T6Q/20ikR9Iuko5uoe5+kiZ17E1nPv/fWUgaI2lcvOc/JL1a+Yb9JN0saan4+U4H6j+o9u2SJEmSuY9u6wmw/W/KWfeW5Gr7UZTyLm9DlRsD35V0EGV9e0Pbb0laEti1lb7cANzQrheYw8Smvhdt7xL3Q5lZSvjz8awf8B3g3Pa0YfvXndHXJEmSpGvotp6AlmimlCdprYpq3QRJq0b+NYGnbE8FfgQcHGfxsf2W7d9Vqj80lPImSlojyg+VdHZcLyvpulDSGy9p07q+rRSz7w1itj086htby6vC2ZKelHQH8KlK+UGS7o1Z/K2S+kT6yioKgGOizlrfdldR5Bsv6b5KV3agbB5s6TvWPB8nAivHdztF0pbRh+tVlAFPlLRXfNuJklaO8sepxDZA0iqS7oh+jK3kOSq8LRMUCoVJkiTJ7GGeNAIqHA0Mtz3Q9mmUs+hn2B4IDAZeiHw7Una+LwksYfvpFup8zfb6wHmUM/X1nAnca3tdypG3R2sPJK0OXAMMtT2K2FUf9e0ZZaF4HlanCPXsA9SMg4WAs4DdbA8CLgJ+HmXOBw6N9COZPms/Ftg++rNLpZ+tGgEVjgb+Ht/xqEhbl/I91wT2BlazvSFwIXBogzouA86JfmwK/FPSdsCqwIYUr84gSVvUF1SKBSVJknQJ3XY5oIOMBH4saTngWtt/jfTtgW+2sY5r4/cY4MsNnm9NGbgJz8Kbkj4BLANcD3zZ9mORdyHgbEkDKcI6q0X6FsAVUf4lSXdF+urA2sDtkgB6UAbTXpSB9Y+RDrBI/B4BDJP0h1rfJS0MLNeKsdMao2z/M+r7O3BbpE+kyAZPQ9ISFHng6+K7vB/p2wHbUdQJAXpRjIKqxyLFgpIkSbqI+coIsH25pIeALwA3S/o2RfhmKdsvQVlKkLRSCwNkTRGvpobXVt4E/gFsTpHphRIE6BXKrHoB4P1W6hDwqO1NZkgsHoz/hIdjBmwfJGkjyjuPkTSIMuu+vx19b0RVGfDjyv3HtP27CDjB9m9msS9JkiRJB5jXlwNmUMqTtBLwtO0zKbPyAZRZ692VMicA58TAiqRe7dzhfidwcJTtIal3pH9IcfPvo+knFnoD/7T9McWl3iPS7wP2jPJ9mD6zfhJYRtImUf9CktaK/QvPSNo90qUix4uklW0/ZPtY4FVgecpSwF/a8U5tVRxsiO23gRckfSn6tIiknsCtwH7hyUBSX4WqYJIkSdL1zOuegHqlvEWAvSVNAV4GfgEcD1xdKXMexS09KvJNoSjztZXvAedL2p/iLTgY+CeA7Xck7URx50+mrNtfE0ZGVeHvOsqywmMU78HIKP+hylHBM8O4WJASQ+BRSlS+81SU+RYCrgTGA6eobIAUxUAZT1EWPLatL2T735JGqBxz/AvQkYP6ewO/kXQ85Zvubvs2lU2ZI2MZYzLwDcpeiYakYmCSJEnnMd8rBqpEzNvI9pQ53ZfZQeyHuMD2jq1mngtJxcAkSZL2oyaKgfO9EZB0Lxbps6r77Hv6nO4GkGqCSZJ0H5oZAfP6noAEkPRjSY/GWfxHYqNgR+uqnv3vEiXDJEmSZPYwr+8JmO+JTYQ7Aevb/iDEfxaew91KkiRJ5gLSEzDv04cicPQBgO3XgL6SapoBX5T0nqSFJS0q6elIPyCU/MZLuiZ28zdF0jYqSogTJV0UJwA2aEM7h0l6LLwUV3blh0iSJElmJI2AeZ/bgOUlPSXpXEmfpYjz1DQFhgCTgA2AjYCHIv1a2xuEwt/jwP7NGpC0KOX0xZ6216F4mA5uYztHA+vZHkBRIGxUfyoGJkmSdAFpBMzj2J4MDAIOpOgEXEU5hvf3OJ63IXAqRaVwCDA8iq6tEoNgIuX44VotNLM68Iztp+L+d8AWtj9qQzsTgMskfQP4qMk7nG97sO3BPXr2bpQlSZIk6QBpBMwH2J5q+x7b/wscAnyFIki0I+XM/h0UJcPNmT44DwMOiZn9T4FFO9h8a+18ATiHEmdhlKTcp5IkSTKbSCNgHkfS6iEWVGMg8BxlED4cGGn7VeCTlBn9pMi3BCUuwUIUT0BLPAn0k7RK3O8N3BvXTduRtACwvO27gR9QFBR7dfhlkyRJknaRs655n17AWZKWorjb/0ZZGngHWJbpwXomAP/t6cIRP6Gs278av5vKBtt+X9I3KQGMFgRGAb+Oxw81ayfyXhrqhwLOtP2fll4mFQOTJEk6jxQLSroVqRiYJEnSfpqJBaUnIOlWTHzxTfod3ZHQBZ1PKgYmSdLdyT0BSZuJoEcdLTtU0tmd2Z8kSZJk1kgjIOlycsd/kiTJ3EkaAcksIWlnSQ+FWuAdkpaN9OMk/V7SCOD3dWW+IGmkpKUl7S5pUigT3tewkSRJkqRLSCMgmVXuBza2vR5wJfD9yrP+wLa2v1ZLkLQrRSXw8yFhfCywfSgT7tKogVQMTJIk6RrSTZvMKssBV0nqQwlM9Ezl2Q2236vcbw0MBraz/VakjQCGSfoDcG2jBmyfD5wPJZRwJ/c/SZJkviU9AcmschZwdigLfpsZlQXfqcv7d4rewGq1BNsHAccAywNjJH2ya7ubJEmS1EgjIJlVegMvxvW+reR9jiJZfImktQAkrWz7IdvHUoSJlu+yniZJkiQzkMsBSXvoKemFyv2pwHEUpcA3gLuAFVuqwPYTkvaKMjsDp4SssYA7gfEtlU/FwCRJks4jFQOTbkUqBiZJkrSfVAxM5gnmJsXApHNJBcYkmf3knoAKkv5b0pWS/i5pjKSbJa3WeslZbndjSRdI2lLSTV1Q/18kLSfpHkn/kKTKsz/NihJgC23uIunozq43SZIk6TzSCAhiYLwOuMf2yrYHAT+kRMCr5ekqz8mOwC1dUbGkxYBP2q6t5f8H2CyeLQX06Yp2bd9g+8SuqDtJkiTpHNIImM5WwBTbtRC42B4P9JA0XNINwGMAkv5fqNxNknR4pB0l6bC4Pk3SXXG9taTLJPWQNCzKTJR0RKXtbYA7qp2RtGGo6o2T9ICk1SP9PkkDK/nul7SupM9KeiR+xkmqhf7dErinUvWVwFfj+stUzuZL6iXpTkljo49frDz7iaQno70rJB0Z6fdIOiPanSRpw0ifFitA0jKSrpE0Kn5qRkizPidJkiSzgdwTMJ21gTFNnq0PrG37GUmDgG8CG1F2tD8k6V5gOPA/wJkUQZxFJC0EDAHuAwYCfW2vDdNm4UhammJ8vFnx0gM8AQyx/ZGkbYFfUI7X/RYYChweSxWL2h4v6Ubgu7ZHSOoFvB/17Aj8qVLvncAFknpQjIEDgZ/Es/eBXW2/Ff16MIyfwdH2usBCwNi6b9XT9kBJWwAXxbescgZwmu37JX0GuBVYEziySZ9nQNKB0U96LLlMoyxJkiRJB0hPQNt42HZNCW9z4Drb79ieTJlJD6EMioMkLQl8AIykDJ5DKAbC08BKks6StANQU8zbDritQZu9KcfoJgGnAWtF+h+BncLA2A8YFukjgFPDG7GU7Y8ifTOKtG+NqXH/VWAx289Wngn4haQJFM9EX8pyyGbA9bbft/02cGNdX68AsH0fsGTNwKmwLXC2pEeAGyJPrxb6PAO2z7c92PbgHj17N8qSJEmSdIA0AqbzKDCoybN65buZsD2FIpk7FHiAMvBvBawCPG77DcpM+h7gIODCKNpsP8D/AXeH52BnQonP9rvA7cAXgT2AyyL9ROBbwGLACElrSFoJeN72h3V1X0nxWPyhLn0vYBlgkO2BwCvMqADY9PVbuV+AEl9gYPz0tT25UZ/b0FaSJEnSSaQRMJ27KC78A2sJkgZQZvJVhgNfktRT0uLArpFWe3Ykxf0/nDLYj7PtcK8vYPsaikzu+rEZcQDwSIP+VJX4htY9u5AyiI8K46KmvDfR9knAKGANmhsYw4ETiBl8XZv/sj1F0lbACpE+AthZ0qIxg9+prtye0YfNgTdt10f5uQ04tHZT29PQpM9JkiTJbCL3BAQxUO8KnC7pB5T16WeZcT0d22MlDQMejqQLbY+L6+HAj4GRtt+R9D7TDYS+wMWSaobXDymeh3Gerti0IGUpAeBk4HeSjgFmOBhve4ykt4CLK8mHx8D9McWr8RfgaiqDb/VdgV82+AyXATdKmgiMpuxLwPao2BswgeIdmAhUB/r3JY2j7BfYr0G9hwHnxDLDghQj6aAmfW6RVAxMkiTpPFIxcA4SA/zfbF8Z99+jbB78fivlPk1ZVljD9sdN8iwCjGikENXBvvayPVlST8ogfmAYRPcAR9qeLTJ+qRiYJEnSfpSKgXMftn9Wu5b0W8qu+j1aKiNpH+DnwP9rZgBE3R9QNiZ2FudL6k/ZI/A722M7se42M7sUA1O9LkmS+YEW9wRIulvS9nVph0u6WNLVXds1kPRVST+WtKykmySNl/SYpJvjeZsV9iQdH0ftkPRsrNF3pE/Tzr+3o0xDRb44Yz8YwPb+tjey/VxLbdi+xPbytv/YjvZ/LWkzFZ2CZypn8x9oax22vx6b+tawfUIlfcv2eAEkHRSGTJIkSTKHac0TcAXlKNmtlbSvAt+P42AzIGnBZse8OsiOlA1wxwO32z4j2hnQnkok9YhQtfMkbfjuGwPfBQ4AjrLd1ICb1b9hbHZUMy9FVYwpSZIkmbO0djrgauALkhYGkNQP+DTwfJxfr82Mb1BRyLsz0o4KZbgJkn5aq0yNlfYWl/TnmOVPklTbaS6KwM5YirTttBC2tidU+thL0tWSnlBR5lOUf1bSSZLGArvHLHi36stJWkxFV/+AuP+GpIdjlvwbFUGdRiwfs/i/SvrfSn1/Uok58Gj1lEE8Oy3S75RUVbzZW3Vqe3XlmqntHSfp95JGAL+XtFal7xNUwvMiaU3gKdtTm7xLo7qGSrq+yTs2+hv2U1ETvASYFN9nsqSfx9/1QUnLVtqqqQ0eFp6dCZKubNa/JEmSpGto0RNg+3VJD1Nm5NdTvAB/YOZz4OsDAyL/dsCqwIYU8ZkbVJTk3qGx0t5KwEu2vwAgqaYGsx4wPnbtnwNcJekQiojNxbZfquRbC3iJcpStKo7zb9vrR7071PW5F+W8/CW2L4nBck9gszgidy7l3PwlDT7NhpT1+3eBUZL+HC7x/eIbLBbp19j+N7A4MNr2EZKOBf4XOCTq6qjaHkB/YHPb70k6CzjD9mVhtNUMmPpjgqeobEgEeNT2Xg3qGtroHSl/90Z/wzcof/N9bT8Y33tx4EHbP5Z0MsULMW0PRHA0sKLtDzSzwNA0lIqBSZIkXUJbNgbWlgRqRsD+DfLcbvv1uN4ufmrH5npRBohehNIegKSa0t4twK8knQTcZLt2pG4H4siY7VtVhG92oAxq4yTVBsuHa8FxVBTp+jHdCLiqhfe6HjjZ9mVxvw3lyN6ocCYsBvyrSdnbY3CvvcfmlCN1h6kcMwRYPt7735QjcLW+XEpFr5+K2p6kZmp7/TVdUrimtgdwg+334nok8GNJywHX2v5rpG9PGbhrNFsOqNbV7B1N47/hDcBzNQMg+BCo7dcYA3yuQZsTgMsk/Ym6o5hVbJ8PnA+wSJ9V8zhLkiRJJ9EWsaDrgW0krU+ZtTbS168q6gk4oaIOt4rt3zar3PZTFE/CROBnMVOGOjld26/bvtz23hRhmS3i0QeV6qYyo2HTktLfCGAHTR9dRdn1Xuv36raPk7Srpm+kq+22n0khT9KWlAF7E9vrUoygZmp7bnLd6L6h2l79+9m+HNgFeA+4WSVwUU+KHO9LtE79t2qtX62Vn1LRP6j/u9T4AnAO5e8/Sl0XpTFJkiRpQKtGQAw4d1Nc1fUKc424FdivNluV1FfSp2iitKdy5v1d25cCp1CU9HoDC1ZmorUBDZVIcysD/2jnu9ZzLMWNfU7c3wnsFn1F0n9JWsH2dZUBuLYL/nPxfDHgSxSDojfwhu13VeRvN660tQBQ24/wdWbU8u+Q2l494Sl52vaZFMNtAEW2+O42fo96Gr1jS2qJ7UJFNGl523cDP6B8v14tl0qSJEk6k7bOvK4ArmN6CNqm2L4t1tdHxiR7MvCNZkp7KkcQT5H0MTAFOJjiOq6G1h1ECUDzEWVAvTBU7LZsY/+b8T3gIkkn2/5+rJXfFgPUFMqO+ucalHsYuAZYDrjU9mgVlb2DJD0OPAlUXePvABtG/f8iBv6go2p79exB2WQ4BXiZEnXweMrmzirVPQFQ1v4bMdM7AjT5G/ZrUkdL9AAuDYNPwJm2/9NaoVQMTJIk6TzmSsVASRdSBpgHW82cNEXlZMRGLsGN2lNuKDDY9iGt5Z3dpGJgkiRJ+1F3Ugy0/a053Yd5gdrJiHmJ2aUYOKuk4mCSJN2BjCKYAKCizPhoLDscTtELaJOyoqTBks6M62k6AEmSJMnczVzpCUhmL5I2oYQHXj/O7C8NLNzGsgvGfoH00SdJknQz0hOQQFFkfC2CDmH7tcqxwkMljZU0MU49NFIYbBjDQdIBKoqMi0laWdItKoqKwyt17a6iPjhe0kxS1EmSJEnXkUZAAuUY4vKSnpJ0rqTPVp69FnsLzgOqbv7+wLa2v9aoQhV1x52AL4UI0fnAobYHRT3nRtZjge1DW2GXJnUdKGm0pNFT360/QZkkSZJ0lFwOSLA9WdIgivrfVhSJ5qPjcU3dcAzw5UqxeoXBKvsAz1MMgCmhGbEp8MeK8uEi8XsEMEzSH5hRSbHav1QMTJIk6QLSCEgAiABD9wD3hObBvvGopsjYHjXGiZTgT8sBz1A8Tv+xPZPQke2DJG1EUQ8cI2lQTSQqSZIk6VpyOSBB0uqKqIPBQBqLJLWVccC3KcGjPm37LeAZSbtHe5K0blyvbPuhCPX8KiXmQpIkSTIbSE9AAkWu96wIXvQR8DdK1L6dOlphRD08EvizpM9RIjKeF2qFC1EiOI6nKBiuSlENvDPSmpKKgUmSJJ3HXKkYmCTNSMXAJEmS9tOtFAOTpBndRTFwTpFKhUmStIfcE9BGJH2yElL4ZUkvVu7bJKzTgTa/XDtP3+DZspJGSRonaVNJL4Q7v8vbruTZVtKfOqvNJEmSZPaSnoA2EjvWB0IRywEm2/5lW8qGqt5HHWj2y8DHwBMNnn0OGGP7oGijA9V3uO1OYRa+S5IkSdIJpCdgFpH0ixDGqd2fJOm7MUu+J5T0JsazG0Mx71FJ34q0BSX9R9KJoZo3UtKnJA0BPg+cFt6GfpU2BlNCBX+l3hPRrD9x/aNQ/hsv6eeRdlB4FMZL+mOo+83UtqTVJN0V+cZW+rOEpGslPSnpkkq7G0i6N973L5KWjfT7JZ0maTRwiKSvVhQD7+60P0ySJEnSKukJmHUuAq4AzpbUA9gdGBQ/g4H+tv8Refe1/bqknsBoSdcAbwO9gXttHy3pVGA/2ydKuhm42vYMLnfboyUdD6xt+3CYwRPQsD+SdgZ2BDa0/Z6k/4r8f7T966jjRGCo7fPq25Y0BjjO9o2SFqUYkKsA6wNrAa8AD0ramHJE8AxgF9uvSdoL+D/KiQOAHrUNKpIeB7a0/Uqz5QxJB9bK9lhymTb8SZIkSZK2kEbALGL7b5LelrQOsALwsO03YlAeWTEAAI6QVJPGXQ5YGXgEeM/2XyJ9DEW5r7P7sy1wUU3lz/brUWRAGBRLAUsAjWIAfAJY2vaNUfb9SAd4sBZnQNIjQD/gfYphcEfk6QG8UKnyqsr1COASSX8kFQOTJElmK2kEdA6/BYZSBsDfVNKnqerFILwFsHHMxO8HFo3HH1bK1CvzdWZ/GnEJsKPtSbFEsXE72/qgcl3ru4AJtpsZM1W1wQOAjSiaBGMlrWf7jXb2IUmSJOkAuSegc7gG2JmycfCOJnl6A6+HAbAWsEEb6n2bMjvvjP7cDuwnaTGAynLA4sDLkhYCvt6o7RiUX40lBSQtGksazXgM6Ctpw8i/cLxzI1ay/SDwE+ANoG+73jRJkiTpMOkJ6ARsv68SBvdl2x83yfZn4EBJjwFPAg+1oeorgN9I+h9KMJ5nO9of2zepSPWOljQFuJEy8B4LjKJI9j7MdO/EDG1TFP9+ExsKPwS+0kL7H0jaDThT0pKU5YBfAY82yH6apBUp3oPbbE9q6d1SMTBJkqTzSMXATkDSApS1/S/Zfjr703WkYmCSJEn7USoGdg2xAe8Gyi77OT7gzm396WxSMXDeIdUNk2TOk3sCWkDSVE1XBZzhrH4N2xNtrwicK6lFV3ZXIenXkjaL2+0pm/W2i/P/+8yJPiVJkiRzP+kJaJn3bA+c051oAxsD35V0EEVJcEPbb8V6/K5trURdpOAnqYftqZ1db5IkSTJrpCegnYR63vBQzRsradMGeXpI+mUo4U2QdGikb6Oi9T9R0kWSFon0ZyX9NOqbqNDsl/TZihdinKSZTgpIWhN4KgbZHwEH234LwPZbtn8X+Y4Nz8AkSecrDvCrqBqeHgp+35O0s6SHor07Kkp/vSRdHP2bIOkrkX6epNEqKog/rfTrWRW1wrHA7pIO0HRlwmtqpwsk7a7pioH3ddofKkmSJGmVNAJaZrHKIHxdpP0L+Jzt9YE9gTMblDuQckZ/oO0BwGWhsjcM2NP2OhQvzMGVMq9FnecBR0bakcB3wxsxBHivQVs7ArfErH+JFvYBnG17A9trA4tRzuXXWNj2YNu/Au6naBmsB1wJfD/y/AR40/Y68U53RfqPY7PJAOCzkgZU6v237fVtXwlcG+2vCzwO7B95jgW2j/RdaICkA8PQGD313TebvF6SJEnSXtIIaJn3bA+Mn5pbfSHgAkkTgT8C/RuU2xb4Tc21Hup8qwPP2H4q8vyOIh5Uo6aWN4ZiQEBR0ztV0mHAUk1c9dsDt7ThXbaKGf5EYGuKol+NqoLfcsCtke+oSr5tgXNqmSqCPnvEbH9c5K1+j2q9a4cHZSLluGGt3hHAMEkHUI4SzoTt88NIGdyjZ+82vGqSJEnSFtIIaD9HUHTy16XEBuisMMI15b1pioG2TwS+RZm5j1BdaN9wqS9l+6VYApgsaaX6isMLcS6wW3ghLmC6HgDMqOB3FsVrsA7w7bp89fWuSPFWbBPegT+3UO8w4JCo96e1fBEF8RhgeWCMpE82ay9JkiTpXNIIaD+9gX+GCM/eNJ693g58W9KCME2d70mgn6RVIs/ewL0tNSRp5Thz8W8cAAAgAElEQVR9cBJF0GeNuixbAdXIeycA58TSQG0dfx+mD8yvSeoF7NbK+70Y1/vWvdN3K337BLAkZaB/M/YO7NhCvUsA/1RRJtyr7h0fsn0sRbBo+RbqSJIkSTqRPB3Qfs4FronB9RZmnO3WuBBYDZgQ6nwX2D5b0jeBP4ZxMAr4dSttHS5pK+BjitreX+qe7whcXbk/D+gFjIp2pwC/sv0fSRcAk4CXo+1mHBd9fIOy7r9ipP+MYmBMongrfmr7WknjgCeA5ymu/Wb8hKKS+Gr8rm1yPEXSqhTFwDuB8S3UkYqBSZIknUgqBnZjYi1+I9tT5nRfZhepGJgkSdJ+UjFwLkfSacBztk+P+1uB521/K+5/Bbxo+9RamThN0J42hgE32b66tbztqHOy7V6dVV9rpGJg15EKfkky/5F7AuYeRgCbwjTt/6WZcQf/psADc6BfXYIK+e8vSZJkDpL/Cc89PABsEtdrUdbv35b0iRAVWhMYJ+mUENeZKGlPmDagNks/W9KTku4APlVrLMR8To78D9c2LEpaJsR8RsXPZpHeUCyoUt/SkkZK+kLcHxXlJ9REhFSElp6UdEm83/KShlX6fUSXfd0kSZJkJnI5YC7B9kuSPpL0GcqsfyTQl2IYvAlMpAj8DKQcT1yasgHwvsjfKH0Tij5Bf2BZ4DHgokqzb9peJzY5nh71nwGcZvv+6MutFANkmlgQTDsdQFwvSwladIzt2yVtB6wKbEjZ8HeDpC2Af0T6vrYflDQI6BsCRkhaqpM+Z5IkSdIG0giYu3iAMqBvCpxKMQI2pRgBI4DNgStCIvgVSfcCG7SQvkUl/SVJd9W1d0Xl92lxvS3QX0VVGGDJOFa4LfDVWmJFLGghyq7+79quHXncLn7GxX0vyuD/D8q+hwcj/WlgJUlnUTQGbmv0USQdSFFhpMeSyzT+ckmSJEm7yeWAuYvavoB1KO7yBymz+a7aD+AG1wtQZINrSol9bU9uoY6PKCqH21fSBJxQqWMV27+NZ9OOVIYhsS5wD3AQ5WjlzJ1MxcAkSZIuIY2AuYsHKC75121PDbnhpSiGwAPAcGBPlQBFy1Bm+g+3kH5fJb0PRVyoyp6V3yPj+jbg0FoGSbUoio3EgqAYD/sBa0j6QaTdCuwXHgQk9ZU0bT9CpY6lgQVsX0NRDWzXaYckSZJk1sjlgLmLiZQ1/cvr0nrZfk0liNEmFEEdA9+3/XIr6VtT9gL8g+kDfY1PSJpAkSz+WqQdRhEFmkD593EfZZY+k1gQEe/A9lRJX6Os/b9t+1yV6IYjY1lhMvCNKFelL3Bx5ZTAD9v/yZIkSZKOkmJB8ymSngUG235tTvelPaRYUJIkSftpJhaUywFJkiRJMp+SywHdlKpSn6TPU474fY4ST+Bd25e0VN52vyb17g4cT4kxcBSwj+3DmuTdEjjS9k4dfI12M78qBqaaX5IkXUEaAd0cSdsAZwLb236O1oMStcb+wAG274/7LvO9S1rQ9kddVX+SJEnSMrkc0I0JAZ4LgJ1s/z3SjpN0ZFzfI+mkUAR8StKQSO8p6Q+SHpN0naSHJA2WdCxFc+C3oUC4paSbosxnJT0SP+Mk1aIA9pJ0taQnJF2m2AkoaZCkeyWNkXRrnE6o9el0SaOB70naPRQDx4fAUZIkSTKbSE9A92UR4E/AlrafaCHfgrY3jCWD/6WI/nwHeMN2f0lrA48A2D5e0tYUF//ocPfXOJIiCDQijv69H+nrUWSOX6LoHGwm6SHgLOCLtl9VkTH+OeUoIcDCtQ0qkiZSvBgvpmJgkiTJ7CU9Ad2XKRTtgP1byXdt/B4D9IvrzYErAWxPAia0ob0RwKmSDgOWqrjxH7b9gu2PKcZEP4pU8drA7ZIeoWgALFep66q6eodJOgDo0ahhSQdKGi1p9NR332xDV5MkSZK2kEZA9+VjYA9gQ0k/aiHfB/F7KrPg+bF9IvAtYDFghKQ16uqvtiHg0Ypi4Dq2t6vkq6oGHkQxEpYHxkj6ZIO2UzEwSZKkC0gjoBtj+13gC8BeklrzCFQZQTEgkNSfIlPcIpJWtj3R9knAKGCNFrI/CSwjaZMou5CktRpljHofsn0s8CrFGEiSJElmA7knoJtj+3VJOwD3SXq1jcXOBX4n6THgCeBRSpCiljhc0lYUD8SjwF+YHvq4vk8fStoNOFNSb8q/s9OjXD2nSFqV4j24k6J6mCRJkswGUjFwPkRSD2Ah2+9LWhm4A1jd9odzuGutkoqBSZIk7aeZYmB6AuZPegJ3S1qIMgP/TncwAJIkSZLOJY2A+RDbbwMzWYTtQdJywDlAf8rekpuAo1ozJiT1A26yvXZH2p1fFQOTriPVGJP5mdwYmLSbEAS6FviT7VWB1YBeFC2AJEmSpJuQRkDSEbYG3rd9MZRQwsARwH6S7pY0ACCUBY+N6+NDC2AaktYKNcNHJE2IDYJJkiTJbCKNgKQjrEURH5qG7beAfwB3A0PiVMBHwGaRZQhQLwt8EHCG7YGU5YkXurLTSZIkyYykEZB0NvcCW1AG/z9TYgv0BFa0/WRd3pHAjyT9AFjB9nuNKkzFwCRJkq4hjYCkIzwGDKomSFoS+AwwjjKrr838xwEHUOc5ALB9ObAL8B5wc8QtmIlUDEySJOka0ghIOsKdQE9J+8A03YFfAcNiWeB5YHfKTH84JfjQTBECJa0EPG37TOB6YMDs6X6SJEkCaQQkHcBFYWpXYHdJfwWeokQVrMUwGA78K9z7wynBg4Y3qGoPYFIEGVobuKSr+54kSZJMJxUDk25FKgYmSZK0n2aKgekJSJIkSZL5lFQMnMeQNBWYSJEDngocYvuBOdurGZF0D3Ck7XZP6VMxcGZS8S5Jko6SRsC8x3tx7h5J2wMnAJ9tS8FQApTtj7uwf0mSJMlcQi4HzNssCbwBIKmXpDsljZU0UdIXI72fpCclXQJMApaXNFnSzyWNl/SgpGUbVS7pa1HXJEknRdrukk6N6+9JejquV5I0oq58D0nDovxESUd02ZdIkiRJZiI9AfMei8Vu+0WBPhSJXyi793e1/ZakpYEHJd0Qz1YF9rX9IICkxYEHbf9Y0smUc/4/qzYi6dPASRS9gDeA2yR9iXIK4PuRbQjwb0l9aawYOBDoWwsmJGmpTvkCSZIkSZtIT8C8x3u2B9peA9gBuKTm5gd+IWkCcAfQF6jN8J+rGQDBh5SogFBEfvo1aGcD4B7br9r+CLgM2ML2yxSVwCWA5YHLKQqCQ5j5mODTwEqSzpK0A/BWoxdKxcAkSZKuIY2AeRjbI4GlgWWAveL3oNgz8ArFWwDwTl3RKZ5+dnQqsGC47h+Jn+NbafoB4JvAk5SBfwiwCTDDcoDtN4B1gXsocQQubPIeqRiYJEnSBeRywDyMpDWAHsC/gd4UAZ8pkrYCVmhPXREpcGCl7j7AmbG08AbwNeCseDwcOD5+xgFbUTwUM0zjo+yHtq+R9CRwafvfMkmSJOkoaQTMe9T2BEBZAtjX9lRJlwE3SpoIjAaemJVGbP9T0tGUqIEC/mz7+ng8nLIUcF+0/XyT9voCF0uqeaR+2Fq76/Ttzeg8EpckSdIppGJg0q1IxcAkSZL200wxMD0BSbcixYKSeY0Ue0rmJLkxcC5A0uS6+6GSzp7FOttdh6QxkhaR9Gyc269tBDyzg33oJ2lSR8omSZIkXU96AhIAJK0IvGj7g3KikK1svzaHu5UkSZJ0IekJmMuRtLOkhySNk3RHTb0vZupLqfBvSftE+iWSPldXxxckjZS0dCj6TQo1wKp4zw7ALa305QBJo6LsNZJ6RvrKoSw4UdLP6j0bkaeHpFOi/ARJ3470PpLuC4/DJElDZu2LJUmSJG0ljYC5g8UqrvdHKEfratwPbGx7PeBKpqvxjQA2A9aiiO7UBs9NKOf0AZC0K3A08PmY2R8LbG97XWCXSjv1RsDdlT7V5Hyvtb1BlH0c2D/SzwDOsL0O8EKTd9wfeNP2BhShoQPC+/B14NbQLlgXeKS+YIoFJUmSdA25HDB3MC3oD5T1fKC2i3M54Ko4l78w8EykD6co8T0HnAccGPK8b9h+J1z6W0c929muqfGNAIZJ+gNwbbS3MLCc7acrfWq0HLC2pJ8BSwG9gFsjfRPgS3F9OfDLBu+4HTBA0m5x35siVzwKuEjSQsCfbM9kBNg+HzgfYJE+q+ZxliRJkk4iPQFzP2cBZ8cs+9tMV/m7jzL7H0JR3HsV2I0ZpXn/DiwBrFZLsH0QcAzlHP8YSZ+MOu5vQ1+GUUITrwP8tNKXtiDg0JA0Hmh7Rdu32b6PYsy8SDFO9mlHnUmSJMkskEbA3E9vygAJsG8t0fbzFEngVWMGfz9wJDMG6XkO+AolfsBaUNbvbT9k+1iK4bA8ZSngL23oyxLAP2PWvlcl/cFoB+CrTcreChwcZZG0mqTFJa0AvGL7Aops8Ppt6EeSJEnSCeRywNzPccAfJb0B3AWsWHn2EEUWGIoH4ATqZvS2n5C0V9SxM3CKpFUpM/M7gfHABZS9AlXuljQ1rifY3gf4SbT5avxeIp4fDlwq6ceUfQWNFu4vpAQiGhsBjV6lLCFsCRwlaQowGWjRE5CKgUmSJJ1HKgbO50haDrjA9o6zUEdPyr4GS/oq8DXbX+y0TlZIxcAkSZL2k4qBSUNsvwB02AAIBgFnxwz/P8B+s9yxJqRi4LxHKuYlyZwjjYBkGuEVOAfoT9kvchNwlO0PWypnezjleF+SJEnSjciNgQkAMYu/lnJMb1XKiYJewM9nsd4eredKkiRJ5gRpBCQ1tgbet30xgO2pwBHAfpLWkvRwCAdNkLRqxAV4QtJlkh6XdHVFQfBZSSdJGgvsHoqCt0RsguGS1pC0hKRnKqcFlqzeJ0mSJF1PGgFJjbWAMdWEEBj6B3A2RRFwIEV8qKYKuDpwru01gbeA71SK/9v2+ravpAj9HGp7EOUY47m236boG9QWhL9KUSScUt+xVAxMkiTpGtIISNrC3cCPJP0AWMH2e5H+vO0RcX0psHmlzFUAknoBm1KOKD4C/AboE3kuBL4Z198ELm7UuO3zbQ+2PbhHz96d9U5JkiTzPWkEJDUeo+zyn4akJYHPUGSAdwHeA26WtHVkqT9fWr1/J34vAPynohQ4MDwHhAHRT9KWQA/bGXY4SZJkNpJGQFLjTqBnJRphD+BXFKng/waetn0mcD0wIMp8RtImcf11GkgPx5LCM5J2j3olqXqS4BJKvIGGXoAkSZKk60ixoGQakpYHzgXWoBiIN1PW8I8A9gamAC9TBvwlKeqAoykehMeAvW2/K+lZYHAtAFFECzyPsgywEHCl7ePj2X9TgiL1sf2f1vqYYkFJkiTtJ8WCklaJeAQ7N3h0YvxMI5YKPrL9jQb19Ku7f4YSn6ARmwNXt8UASJIkSTqXNAKSOYaksyhqhZ9va5lUDEw6SioTJsnM5J6AOiRZ0q8q90dKOq4T679O0pcq909KOqZyf42kL7ejvn6SGm6ok3SPpJncP+1F0nGSjozroZI+bftZ22vPSr22D7W9iu2nZrWPSZIkSftJI2BmPgC+LGnpLqp/BOXIHJI+SdlFv0nl+SbAA22pSNKc8OQMBT7dngJzqJ9JkiRJK6QRMDMfUcRtjqh/IGmZmKmPip/NIn2ipKVi5/u/KzvsL5H0ubpqHiCMgPh9I7BMlF2REo3vZUmLSro46h4naauoc6ikGyTdRdnRX+3fYpKuDAW/64DFGrzDDpL+WLnfUtJNcT25kr6bpGF1ZXejiAVdFuqBi4U64NLxfLCke+L6OEm/lzQC+L2kHpJOie82QdK3I18fSfdFfZMkDWn6l0mSJEk6lZyhNeYcYIKkk+vSzwBOs32/pM8AtwJrUmb3mwHPAU8DQyhH3zYBDq6rYwywtqSFKUbAvcBKUc96TPcCfBew7XUkrQHcJmm1eLY+MMD265L6Veo+GHjX9pqSBgBjG7zbHcD5kha3/Q6wJ3BlWz6K7aslHQIcaXs0gKSWivQHNrf9nqQDgTdtbyBpEWCEpNuALwO32v55HEvsWV9JlD0QoMeSy7Slq0mSJEkbSCOgAbbfknQJcBhFIKfGtkD/ysC3ZCjiDQe2oBgB5wEHSuoLvBEDbbXuDyQ9ShnINwZOphgBm1KMgJoC3+bAWVHmCUnPUYL6ANxu+/UGXd8CODPKTJA0ocG7fSTpFmBnSVdTZHu/37Yv025uqKgLbgcMCG8CQG9gVWAUcJFKzIA/2X6kQZ/Pp3hnWKTPqnmmNUmSpJPI5YDmnA7sDyxeSVsA2LiifNfX9mTgPsrsfwhFD/9VYDeKcdCIEZQBewnbbwAPUoyATWnbfoB3Ws/SIlcCe1CCBo0OHX+YUfFv0TbW9RHT/x3Vl6n2U5T4AbVvt6Lt22zfR/kWLwLDakspSZIkSdeTRkATYqb9B4ohUOM24NDajaSBkfd5YGlgVdtPU5TzjqQYB414APg2MD7uJ1C8Ap8Bajv9hwN7RTurxbMnW+n2fRQhHyStzXRlv3rupXgiDmDGpYBXJK0paQFg1yZl3waWqNw/y3S54a+00LdbgYM1PWrgapIWl7QC8IrtCyixBNZvoY4kSZKkE8nlgJb5FXBI5f4w4Jxwsy9IGXQPimcPAT3iejhwAg1kdIMHKEsAJ8A0F/2/KAF5Po485wLnSZpImW0PjaWElvp7HnCxpMeBx6mLCljD9tTYDDgU2Lfy6GjgJoonYzTQq0HxYcCvJb1H2fPwU+C3kv6P4gVpxoVAP2Csyku8CnwJ2BI4StIUYDLQoidgnb69GZ3nvZMkSTqFlA1OuhUpG5wkSdJ+lLLBybxAKgYmXUmqCibzG7knoBOpnbOvnr1vkOdmSUt1YpsLSRob1z+W9Gicw39E0kad1U4rfWjT+1a+T1OVwyRJkmT2kZ6A2YztNuvkt5HNKWfuNwF2AtaPvQNLAwt3clvtpgveN0mSJOkk0hPQdSwp6c8qsQF+HTvuqSnsxc74P0saH0p5e8bzQZLulTRG0q2S+kT6YZIei1l+dUf/DsBfKGF6X7P9AYDt12y/VGnzZBX1wYclrRLp/STdFXXeGQJILaUPk3SmpAckPV0589/q+zb7SJLWij49Eu2t2ilfP0mSJGmVNAK6jg0pxwn7AytTlPGq7AC8ZHvdCMRzSxyfOwvYzfYg4CLg55H/aGA92wOYfiIBYCvKrvzbgOUlPSXpXEmfrWvvTdvrAGdTNBCItn4XdV5GCA21kA7F2Nic4nWohhdu7X2bcRBwhu2BFEniF+ozSDpQ0mhJo6e++2Ybq02SJElaI42AruNh20/bngpcQRk4q0wEPifpJElDbL8JrA6sDdwu6RHgGGC5yD+Botn/DcqRQUKV8HXb74Zo0SCKvO6rwFWShlbau6LyuxawaBPg8rj+faWPzdKhqPp9bPsxYNl2vG8zRgI/kvQDYIWKwuA0bJ9ve7DtwT169m5jtUmSJElrpBHQddSfvZzhPsLnrk8xBn4m6ViKqt6jFVW9dWxvF0W+QIlpsD4wSiUy3w4UEZ5anVNt32P7fyn6BlXxHje5bi8fVK6rogUtvm8zbF8O7EKRZ75Z0taz0LckSZKkHaQR0HVsKGnFWBvfkzrhIEmfpgT7uRQ4hTK4P0mJKLhJ5Fko1swXAJa3fTfwA4rufi+m7wdA0up16+kDKbEMauxZ+T0yrh8AvhrXezFd5rhZeofftxmSVgKetn0mcD3NVQ6TJEmSTiZPB3Qdoyjr76sAdwPX1T1fBzhF0sfAFOBg2x/GZrszJfWm/H1OB54CLo00Udbo3wZWsf1E1NcLOCuO430E/I2IvBd8IpQOPwC+FmmHUhQGj6IsIXyzlfRZed9m7AHsHYqBLwO/aClzKgYmSZJ0HqkY2E2RtDnwDdsHtSHvs8Bg2691ece6mFQMTJIkaT+pGDiPYft+2uhyn5dIxcAkmTdIdca5g3luT0BNla5yP1TS2XOwPxtLuiBU9d6M8/C1n207qY0tJW3a7LntfjUvQOgPLBLn9ydGPyZK+mKlvgfidz9JX6+kD5SU4j9JkiTzCPOcETCrxK77zmRH4Ja4Hl7Z+T/Q9h2d1K8tgaZGQKWOFYEXa4JCwFZxPn83KloAtmt19SNCEwcDgXYZAV3wPZMkSZJOYr4yAiQtI+kaSaPiZ7NIP07S7yWNAH4vaVFJF8cMeZykrSLfUEnXSrpF0l8lnRzpPUJNb1KUOaLS7DZAi4O9pJ+E0t79kq6QdGSk3yPpdEmjge816r+kfhTBnSNiVj9E0u7Rl/GS7qs0tQPTDZIqSwJvVPpT86acCAyJen8AHA/sGfd7qqgeXhSKf+Nq3oT4TjdIugu4MzwV90i6WtITki6TSkxkSSdquhLiL1v9IyZJkiSdxrw4S1tMRWinxn8BN8T1GcBptu9XkcK9FVgznvUHNrf9nqT/AWx7HUlrALdJWi3yDQTWo+yyf1LSWcCngL6h/IemB8xZGphi+80Y84bU9e0r0b+vAOsCCwFjgTGVPAvXNnNIury+/7bXlPRrYLLtX0a+icD2tl/UjMGKdgCqBsrdMRivRNmlX8/RwJG2d4p6X6FsMDwk7n8B3GV7v2jnYUk1g2d9YIDt1yVtGd9sLeAlYASwmaTHgV2BNWxbTQIrSTqQOOnQY8llGmVJkiRJOsC8aAS8Fy5uoMxKKXK0ANsC/WNAhqJ33yuub6io1W1Okc7F9hOSngNqRsCdoe6HpMeAFYBHgZXCIPgzRcIXYLvKNZTlgJ2qnZW0M3C97feB9yXdWPc+V1WuW+p/lRHAMEl/AK6NdhYGlrP9dCXfVrZfk7QyZcZ+TygPtpXtgF1qngtgUeAzcX277dcreR+2/UL05RHKUsODwPvAb1WiEDaMRGj7fOB8gEX6rJrHWZIkSTqJedEIaIkFgI1jwJ1GDKrvtLGOqmLeVGBB229IWhfYnuKa3wPYj7If4NRZ7HO1Xy31fxq2D1IJI/wFYIykQRQPRsPTBLb/HrP8/sDD7eibgK/YfrKuPxsx8/ds9N0+krQhZclkN4rKYSoGJkmSzCbmqz0BlFn5obUbSQOb5BtOUcojlgE+Q1Hza0i4/RewfQ1F73/9cLMPAB5pVi4YAewc+xB6UQLztLf/bwNLVNJXtv2Q7WMpYj/LU1EXbND/TwErMqPC4Ez1Nri/FTi0sr6/Xgt9b9RuL6C37ZspyxTrtqd8kiRJMmvMb56Aw4BzVJTzFgTuY8aIfDXOBc6LtfWPgKG2P6ifcVfoS1HYqxlVP6QE8xnnGdWY6vcE/Mz21ZJuoAQIeoUSS6BZqLxm/b8RuDo25h1K2SS4KmWmficwHrgAOLauvrslTaXsRTja9it1zycAUyWNB4YBvwOOjnc4Afg/iqLhhHj3Z2jZiKlnCeB6SYtGX/9fawVSMTBJkqTzSMXALkLSMcDfbF/Zhry9bE+W1JMysB9oe2wn9mU54ALbO3ZWnXOKVAxMkiRpP2qiGJhGwFxA7PrvT9lY9zvbJ8zhLs21LNJnVffZ9/Q53Y0kSZLZyqwqLDYzAua35YC5Ettfbz1X5xFLABMpf//HgX1tv9tC/meJ2AOSHqiICSVJkiTdmPltY2BSeC8UC9cGPqTxvoiGpAGQJEky75BGQDKcEv4XSd8I9b9HJP1GUo/6zBU1QST9QEUhcbykEyPtABU1w/Eq6oY9I32YpDMlPSDpaZWQyUjqI+m+aHOSpCGz5a2TJEmSNALmZ1R0/XcEJkpaE9gT2CzElqYSxySblN0R+CKwke11gZPj0bW2N4i0x4H9K8X6UISYdqJIEkOJTXBrtLkuDY5USjpQ0mhJo6e+2+zgRJIkSdJeck/A/ElVWnk48FuKLO8gYFQchVyM/8/encdbXdX7H3+9xQnFodLrRTNJxVlERDNzwHLMSs2RrLTJ7JrT/VlSds3KTPOW5pBetCSV1Os8YM4iSioiMkkO5XArzaGUwhHh/ftjfTZ82ex9zj6Hcw4gn+fjwYN91nda34MPv2uv71rvBS+1cY5dgItrYwkq6YCbSToFWBXoQ8kSqLne9mxgmqQ1ouxh4NeSlont8zUCMjEwpZS6RzYClkzzRCsDRODPb2x/ZwHPPQLYx/akiGweUtlWTQ0UgO0xknakpBuOkPRz25csYB1SSim1IF8HpJq7gP0jPRBJ75e0Thv73wF8qfLO//1RvhLwQnyzb/o6oSau8aLtC4GLKAsPpZRS6gHZE5AAsD0tAo5uj/S/mcCRzB8lXNv/1ogtHi/pHeAW4LvAfwEPUeKKH2LemOFGhgDfkjQTmAF8sa2dMzEwpZS6ToYFpcVKJgamlFLHZVhQek+Y8tfp9Bs2amFXIy2BFjSxLaVFUY4JaJGkf5d0haQ/SXpE0i2xwuBiQdKxtff37ey3raQLJa0gaWTkAEyVdL+kPpL6SZraE3VOKaXUvbInoAUxcv46yuj5g6NsC2AN4Ml2jl3a9rtdWJfOnu9Y4DKgaTxw2BO4FTiGMmBv87juhpRxAimllN4jsiegNTsDM21fUCuwPQm4X9IZ8U15iqSDACQNkXRfLBE8Lb49Px6peU/GN+xdJI2V9JSkbeK490u6XtJkSQ9KGhDlJ0u6VNJY4NI4332SJsSf7SrXHS3p6rjeSBVHA2tSlg6+R1KvqEut3sdV7vUTwJ2UYJ+/Vu73Cdu1KX69orfgMUm3S+od12+WFrhe3M8USacoUgczLTCllBaubAS0ZjPgkQblnwVqSXe7AGdI6hvbBgHH2K69Mlgf+BmwUfz5HCU973jKqHqAHwCP2h4QZdX58psAu9geSgnx2dX2IErK39mV/bakfOvfBFiXkgB4NvA8sLPtnaPOa9neLL7pXwwgaTVKY2c68GvgBEkPxIO7f+Ua/YHzbG8KvAbsF+XN0gJ/AfwirvWXynnaTQuMemViYEopdYNsBCyY7YHLbc+y/SJwL7B1bHV9MnQAACAASURBVBtn+5nKvs/YnhKJeY8Bd7lMzZgC9Kuc71IA23cDH5C0cmy70fab8XkZ4EJJU4CrKA/8mnG2/xLXmVg5d9XTwLqSzpG0B/DPKN8NuD2uP5HSiDgDeD8lSXDjyr3UHtiPVK6xWfRQTKFkBGwa5R+NegL8tlKPhylZAycDm9v+V4O6Ynu47cG2B/daYZVGu6SUUuqEbAS05jFKpG5HvF73czUtb3bl59m0Njajer7jgBcp354HA8s2uc6sRue2/WocO5qyguBFsak2HqC23wzb19r+D8p4gk+2c40RwDfjG/8PgOXbuiHbY4AdKa8dRkhqMyMgpZRS18pGQGvuBpaTdHitIN7XvwYcFO/YV6c80MYtwHXuI1L2JA0BXrH9zwb7rQK8EN/2vwDMt9pfA/8ignui238p29cA3wMGxeDHAUSXvKSPSXpffF6W0tvQMDioolla4IPMfWVwcK0w0wJTSmnhytkBLbBtSfsCZ0k6AXgLeJby7r0PMAkw8G3bf5O0UScvdTJlMZ3JlFH8hzbZ75fANfHN+Vbm73VoZDhwq6Tno94XqyQDAnyH0tPxqOemR60HnB+Ng6WAUcA1QFtRws3SAo8FLpN0YtS39mJ/CB1IC4RMDEwppa6UiYEJAJXI4D/avqIbzr0CZdEiSzoYGGp7786cKxMDU0qp45SJgakttk/pxtNvBZwbvQqvAV/u7IkyMTCl9mW6YWpVjglYTEiaFfPpa3/6NdhnTUlXL8A1Wk0VfDbGFdSXH9FocJ/t+2xvYXuA7R1t/7GWFZBSSmnhyZ6AxcebMZ++oUgSfB7YfwGu0WqqYEPVMKUGdeuy1MSUUkpdI3sCFmOSDpN0o6S7gbtUyfVXyf7/X0nTJF0n6SFJg2Pb+RG+85ikH0TZPKmCUbZbhAVNkHSVpD6Vy387EgDHSVo/9j9Z0vHxebSksySNB46R9OE41xRJp1TuIVMDU0ppIclGwOKjd+VVwHWV8kHA/rZ3qtv/P4BXbW9CGbVfzTk4MQaIDAB2kjSgPlUwuvu/R0kpHASMB/6zco7pkQdwLnBWkzovGyE/P6OkBp4fx7xQ2afd1MBMDEwppe6RrwMWH81eB9xh+x8NyrenPHixPTWmHdYcGJkHS1PWCNgEmFx3/LZRPraM52NZ4IHK9ssrf5/ZpM5XVj5/jLlZAZcCp8fnhynTIpcBrq8kEc5hezhliiPL9e2f01lSSqmLZCNg8ddKRsAckj5MWa9ga9uvShpB42Q/URoYQ5ucyk0+t1W3+fazPUbSjsBelNTAn9u+pH6/lFJKXS9fB7x3jQUOBJC0CbB5lK9MeThPl7QGJSq4Zk6qICXl72OV9/0rStqgsu9Blb+rPQRt1aeWFjgnTTBTA1NKaeHJnoD3rl8Cv5E0DXicsv7BdNtPSXo0yv5MeTjXzEkVjHEBhwGXS1outn8PeDI+vy9eMbwNNOstqDoG+G0kLt5QKR9CB1IDMzEwpZS6TiYGvkdJ6gUsY/stSesBdwIb2n5nIVdtgWRiYEopdVwmBi55VqBM91uG8n7/PzraAIis/89RVgqcDXydsizwcNsdyhKQ9Cww2PYrHTmuXiYGptS6TA5M7clGwHuU7X9RlhnuFEkfBT4FDLL9dkwZXJYy4r9DgULRK5FSSmkRkwMDUzN9KUsZvw0Q3+D3Z/5AoaERADRVUm3aH5JmSPqZpEmU3oNaeW9Jv5P0tRhsOErSpDj+IFJKKfWYbASkZm4H1pb0pKRfStqpQaDQmpT5/h8HBgJbS9onjl8ReCjWDLg/yvoANwGXx2yAPYDnY5/NKMsMp5RS6iHZCEgN2Z5BSRk8HHgZuDJmC1RtDYy2/XKsDTAS2DG2zQKuqdv/BuDiSg7AFGBXSadL2sF2wzjATAxMKaXukY2A1JTtWbZH2/4+8E3mJv614i3bs+rKxgJ7xJLC2H6SkgswBThF0klN6jE84ocH91phlY7fSEoppYayEZAakrShpP6VooHAc8wbKDSOsvbAajH4byhwbxunPQl4FTgvrrEm8Ibty4AzyKCglFLqUTk7IDXTBzhH0qrAu8AfKa8GhjJvoNAw4B7KNMRRtm9oesbiGMpaAT8F7gLOkDQbmAl8o5vuJaWUUgMZFpQWKxkWlFJKHdcsLChfB6SUUkpLqMXqdUCjBDvbD3VVGl1XknQsnUjW626ShgDH2/5UF5zru7ZP7cRxo6MOHf5Kn4mBCy5T5FJKNYtNT0Bdgt0AYBfKAjjddb0FbSAdS4nu7cg1F7dkve82KlSx2Py3lVJKS6rF6X/U8yXY2X6+sv0oSRMivW4jmLP87a8ljZP0qKS9o7yfpPti/wmStovyIVF+IzBN0rckHR3bzpR0d3z+uKSR8fn8mMP+mKQfRNnRzJ+st5ukB+J6V0nqE+XPxjz5CcABko6WNE3SZElX1P8S2qn7aElXS3pc0sjaVDxJe0TZBOCzjX65kg6TdEOc4ylJ369s+3z8DidK+h9JvSSdBvSOspFRryckXQJMpQQNNbznynl7SRoRaYFTJB3X6n8MKaWUFtzi1AiYL8GubvsrtgcB5wPHR9mJwN22twF2poxEXxF4Cdg19j8IOLtynkHAMbY3AO4DdojywUAflQV5dgDG1K4Rgy0GUKbLDWiQrLcaZRneXeKa44H/rFzz77YH2b4CGAZsGb0dRzT4PbRV9y0pPRCbAOsCH5O0PHAh8GlK+M+/N/rlhm0oWQADKA2SwZI2jut8zPZAyquYQ2wPA960PdD2IXF8f+CXtjcFXm/nnqFMO1zL9ma2NwcubqNuKaWUuthiMybA9gxJW1EewDtTEuyG2R4Ru1wbfz/C3G+7uwGfkVRrFCwPfIjygD5XUu2htkHlUuNsP1M511aSVgbeBiZQGgM7AEfHPgdKOpzyu+xLeQBPrqv+tlE+Nr6cLws8UNl+ZeXzZGCkpOuB6xv8KpZpp+5/AZA0EegHzACesf1UlF9GmerXyB22/x77XQtsT5keuBXwcNS9N6Uh0shzth9s8Z4BngbWlXQOMIrS0JtP/H4PB+i18upNLp1SSqmjFptGAJQEO2A0MFrSFOBQYERsfjv+nsXc+xKwn+0nqueRdDLwIrAFpTfkrcrm1yvXmynpGeAw4PeUB/TOwPrAHyR9mNLrsLXtVyWNoDQ06onygB3a5NZer3zeixK9+2ngREmbRyRvzXFt1P3tyufq76FV9fNFHXX/je3vtHB89T7au2fid7YFsDul1+NA4MsN9hsODAdYrm//nNOaUkpdZLF5HaDmCXZtuY0yVqD2bnzLKF8FeMH2bOALQFsD8u6jPOjHxOcjgEddAhZWpjz4pktaA9izclw1We9BStf8+lGPFSVVv8HX7nEpYG3b9wAnRD371O3WkboDPA70k7Re/Nz0oUzJ8X+/pN7APpSY37uA/SX9W9Tx/ZLWif1nxuuRRtq953hNspTtayivDjIxMKWUetBi0wigPAx/Uxs0R+lqPrmdY35E6T6fLOmx+Bngl8ChKsvcbsS832Dr3Ufp5n/A9ouUb973AdieBDxKedD+lvLQrBlOSda7x/bLlN6Ey6PuD8R16/UCLotejkeBs22/VrdPR+qO7bcoXemjYmBgs658KDHA11B6PK6xPd72NMoD+vao+x3x+6jd4+TaIMm667Zyz2tRenUmApcBrfQ2pJRS6iKZGJiAMjuAkrXwzYVdl7ZkYmBKKXWcMjEwpZRSSlXZE5DaJWmG7fqxCQvFcn37u++hZy3saqTUkkxnTIuK7AlIKaWU0jyyEZA6JRIC745kw7skfaid8hGSzpb0e0lPS9o/yvtKGhPJg1Ml7dDWdVNKKXWdbASkzjqHkh8wABjJ3OTCZuVQZhVsT1kD4rQo+xxwW6QRbgFM7IG6p5RSIhsBqfM+SpkWCXAp5eHeVjnA9bZnx7TDNaLsYeBLEeC0ue1/1V9I0uEq6zOMn/XG9C6+jZRSWnJlIyD1pGqioQBsj6EkJP4VGCHpi/UH2R5ue7Dtwb1WWKVnappSSkuAbASkzvo9cHB8PoQIUGqjvKFIH3zR9oXARWRqYEop9ZjFau2AtNCsIOkvlZ9/DhwFXCzpW8DLwJdiW7PyZoYA35I0k7LY0Xw9ASmllLpH5gSkxUomBqaUUsdlTkBKKaWU5rFEvA6IFf7OpKxx/yrwDvBT29e1ccyzlCz9V1pJzJM0jLIA0AFRtDkwJT7/2vbZDQ/sApK2p7x//xblvfqmlIF3r1KW6V0TuDqm4VWP+whwsO3juqtuXW3KX6fTb9iohV2NtJjIxL6U2vaebwTEMsLXU+aufy7K1gE+08WX2h040PaP4xoz6h+6LdR1advvduLaewK3AscB/2f74DjfRsDMZgfZfgh4qBPXW2Dx76JYEjmllNJCsCS8Dvg48I7tC2oFtp+zfY6kwySdWyuXdLOkIc1O1CzdTtLKwLKxfG6zY9eQdG3Mdx8nadsoP0XSJZLGUqbIfVXS1ZJuk/SUpJ/EfktLulTSlLj20XX3eBcljOevlft83PY8jQBJ60t6VNIgSbtIur5SjxGS7pf0nKR9JP0srjVK0tKx318knSppkqSH4zy3S/qTpK9VrjMs7nOypJMq154WSw8/Bqzdxj2llFLqZu/5ngBK1/iELjpXLd3ux5J6AStE+S6Uh3Bbzqa8gnhQUj/gZmCz2LYRsKPttyR9lZKctxXlW/yTks4B1gZWs705gKRV4+81gNdtz5D0K+BWSQdFfX5j+4+1CkjamBLk80XbUyTtUlfHD1NG629Bmdq3t+3/J+kmYI+oM8AztreIev2KEgjUB5gEXCjpk8CHgI9QXkvcImk74KW41y/aHh+vI+a7p5RSSj1jSWgEzEPSeZSH1jvAeR08/GHg15KWoaTf1SJu9wAubufYXYANSy84AO+T1Ds+32D7rcq+d9r+Z9T3ccoD9ak4/mxgFHB77Ls7cBuA7UckrQvsFtcbL2kbYDYloe86YB/bjzep4y2235U0Jc53R5RPAfpV9ruxUr607deB1yXNltQnrr8n8Gjs1wfYgNII+JPt2vD+Pza5p3lIOhw4HKDXyqs3qXpKKaWOWhJeBzxGJYDG9pHAJ4DVgXeZ93ewfFsnaiPdbhtgXDv1ELCN7YHxZy3bb8a21+v2rSbrzaI8aP8ODKB8Qz8S+J/YXhsPUKvjv2xfY/sbwBWxHeC1qPd2bdSxdt3ZlEYSlZ+XbrLf2w32E3BK5V7Xtz2i/l7buKd5ZGJgSil1jyWhEXA3sLykb1TKat34zwIDJS0laW3Kw7ypRul2kjYFHrc9q5163El50NXO1dFBg6tTBtJdBZwU114K2Nj2lNhn+8prguWAjYHn4hRvA3sDX5V0YEeu3Qm3AV+RtGLU5YOSVmvlnrq5XimllCre868DbFvSPsCZkr5NSbF7HTgBGAs8A0wD/kD7YweGMH+63X5Uvom34UjgfElfovze76HSKGjB2sCvYlS9o/7bANXknP5xDSgNvJuAG4D1AGLcwKeAOyS9zrzf4ruM7VtiZsKDUZd/UcZTtHJPbdp8rVUYn9O+UkqpS2Ri4AKSdAdloNsLC+HaJwNTbV/d09deWDIxMKWUOk5NEgOzEZAWK8v17e++h561sKvRrTLgJqXU1Zo1ApaEMQEti7nxjq7s9vZ9ttF77jb2P1jSiSrZBK5Oz6tcd//O1r2z6ur1skoGwrTqnP82jj1a0h8kjZS0nKQ74/iDJF0kaZOeuIeUUkqdk42AeQ0F7o+/u1p1FP8U5i63W7vupI6crBbe0+znTtbrykg5HAKcGhkEbfkPYFfbhwBbAsRsgCttf9X2tE7WKaWUUg/IRkCI+e3bA18hHtCShki6ubLPuZIOqzuut6TfSfqapBUjXW9SJOAdFPsIGMjcgYf3AdtIWiauuz4wsXLOOb0MkgZLGh2fT46EvbHApfHt/UZJdxNhRZK+pZLkN1nSD6Ks1XoBYPsl4E/AOnHN4yt1myqpn6QLgHWB30k6AbgM2Dp6AtaTNFrS4DhmhqQfx/UfrDUuJB0Q55skaUyH/9FSSiktkPf87IAO2Bu41faTkv4uaasWjulDmYt/ie1LJO0HPG97LwBJtUntWwKTYqYClJHwd1KCflahhO98uMV6bgJsb/vNaJAMAgbY/oek3SgzBLahzNW/UdKOlEyEVupFbF+X8oCfkzZYz/YRkvYAdo5Flh4Cjrf9qThHdfcVgQdtnyjpp8DXgFMo0wJ3t/1XtZEWqAwLSimlbpE9AXMNpTzQib9beSVwA3Cx7Uvi5ynArpJOl7SD7elRvgfwu7pjr6D0OBwMXN6Bet5YCRkCuMP2P+LzbvHnUcq3+40ojYJW63WQpIlRn69Xzrug3mFu5PAjzE0frK2X8DXKCowNZVhQSil1j+wJACS9n7IIz+aSTHkgmfKQbytRcCywh6TfunhS0iDgk8Apku6y/UPKg3m/6oG2x0naHHgjjqturiYZ1l+zPl2w+rOAn9ieL3mvxXpdafubdYd2KFWxiZmeOw1lFvHfXfQmfATYC3hE0laRIphSSqkHZE9AsT9wqe11bPezvTYlRGgpYJMY+b4qJW646iTgVWINAklrUh7qlwFnUFL9VmFu7G+9YcB3G5Q/S1lACOoaD+24DfhyjDNA0lqS/q0T9aqvy6A43yBaf23RLknr2X7I9kmUEKe1u+rcKaWU2pc9AcVQ4PS6smsoXfX/C0ylNAoeZX7HUBYV+illcN4ZkmZTVgD8BrAr5f3/fGzXvyKo+QElSe9HwOhWb8L27SorBT4QPQszgM9TBh62XK861wBflPQY8BDwZKv1acEZkvpTejDuooUZEpkYmFJKXSfDgrqZpIuAi2w/uLDrUrWo1qs9mRiYUkodp0wMTO8FS0Ji4JIqkxJT6j7NGgE5JqBFKql6j8X8+4kxoK3DyYELS8ztn9qgfE1JS8zaAymllObKMQEtkPRR4FPAINtvx0N/2YVcrS5h+3nKwMgeJ2lp2+8ujGunlFLKnoBW9QVesf02gO1X4uE5R11y4DzfuiUdr7LiH7H94UjJu0bSClHeZnqepD6S7pI0QdIUSXtHeT+V/P4Lo6fidkm9Y9tWcb5JNFm2uFrX+HxfXGOCpO0q+82XRBjl/yXpCUn3S7pckS6okhp4q6RH4pwbRfkISRdEuNBPJe0UPSsTJT0qaaWO//OklFLqjGwEtOZ2YG1JT0r6paSd6rb3AW4CLrd9YTvnutb21ra3AP5AiSmGuel5WwCfaXDcW8C+tgcBOwM/09xwgf7AebY3BV5j7rTCi4Gj4pyteImyFsAg4CDgbADNm0Q4ENhK0o6Sto5rbUFZg6D6vml4XHsr4Hjgl5VtHwS2s/2fse3IWLNgB6AahERc/3BJ4yWNn/XG9PrNKaWUOilfB7TA9gyVGOEdKA/gKyUNsz0idrkB+KntkS2cbjNJpwCrUhoPt0V5LT3vf4FrGxwnyqI+OwKzgbWA2gI/z9iurT3wCNAvcg1WtV3rVbiU8qBuyzLAuZIGUkJ9NojyahIhUe/+wErADbbfAt6SdBPMWYdhO+CqSgjScpXrXGV7VuW+fy5pJKWB9Jf6StkeTmlUsFzf/jmSNaWUukg2AloUD63RwGhJU4BDgRGxeZ7kQNpO2RsB7GN7kkr2/5A4f3vpeYdQ1gDYyvZMSc9Wzvt2Zb9ZQO9O3uZxwIuUb/ZLUXofoEkSoaRjm5xnKeC1+HbfyJyUQ9unSRpFSTMcK2l32493sv4ppZQ6IF8HtEDShhFqUzMQeK7y8zzJgZQH6b9J+oCk5SiDCmtWAl6QtAzlwV67RnvpeasAL0UDYGdgnbbqbPs14DVJ20fRIW3tX7nGC7ZnA19gbp5/wyRCSuPn05KWj22fimv/E3hG0gGxvyQ1fCUR9z3F9unAw5T1DlJKKfWA7AloTR/gnOhif5eyut7hdfvMSQ60/W1JPwTGAX8Fqt9s/4uSvPdy/F0bCNdeet5I4KbohRhfd85mvhR1MmVcQzO1LvZfAtdI+iJwK/GNvVkSoe2HJd0ITKY0fKYAtZf2hwDnS/oe5TXDFQ3uCeDYaNTMBh5j/oWW5pGJgSml1HUyLGgJF2Mdfm67frBjq8f3iTETKwBjgMNtT+jSSlZkYmBKKXWcmoQFZU/AEkzSYOC3lIWMOmu4pE0o4xN+050NAIApf51Ov2GjuvMSqYdkQmBKC1+OCVhAapIkuIDnHB0P6Lb2+aGkXRbkOrbH297AdqPZCLXrXCDpY/F5aUkvSzqtco7PUaYlft72T1RJUJT0+wWpX0oppe6VjYAFoHmTBAcAuwB/7olr2z7JdiurALZJUnu9QdsCtUWGdqWsInhAJaOgKdvbtbdPSimlhScbAQumYZKgpJMiXW+qpOG1B2Z8wz9d0rgIHtohyntLukIl+e86KlP8JM2QdGb0NtwlafUoHyFp//j8rKSfqiQJjpO0fpSvrpJK+HD8qX2jP1nSpZLGApdK2jSOmxg9Gv1jv42BJytz+ocCvwD+D/hoe78cSTMqn+dLHJS0oqRRKqmGUyUd1Pl/ipRSSh2VjYAF0yxJ8NxIBdyM8kCvThFc2vY2wLHA96PsG8AbtjeOsq0q+68IjI80wHsrx9Sbbntz4FygtszeL4AzbdeS/S6q7L8JsIvtocARwC9iXv9goBbYsydllgCSlqf0dNwEXE5pELRETRIHgT2A521vEb+rW5scn4mBKaXUDbIRsABsz6A8sA+nTPm7MgKAdpb0UEzn+ziwaeWw2vv3R4B+8XlH4LI452TKlLua2cCV8fkyYHsau7zyd+1b+i6UBMCJwI3AyrW5/sCNtmsRvQ8A35V0ArBOpXx35j6YPwXcE9uuAfaRVMsRaE81cXACJQugP2VK4a7RO7KD7YZPeNvDbQ+2PbjXCqu0eMmUUkrtydkBC6hBkuDXgQHAYNt/Vlk4qJoYWEv3m0Xnfv/N5nS6weelgG0j1neOeDtRTe37rcqCPnsBt0j6OmUcwKqVhZKGAturJBUCfIDSwLmjhTo3TByMugyipAWeIuku2z9s4XwppZS6QPYELAA1ThJ8Ij6/Et+6W1mmdwzwuTjnZpRGRM1SlXN8Dri/yTkOqvz9QHy+HTiqUt+GMb6S1gWetn02ZR2EAZQ1Eu6J7StT1k34kO1+tvtRViVs9ZVAw8RBSWtSXoNcBpwBDGrxfCmllLpA9gQsmGZJgq8BU4G/UaJw23M+cLGkP1BWFnyksu11YJtI3nuJuQ/7eu+TNJnS01B7OB8NnBflS1MaG0c0OPZA4AuSZkadTwV+CFwd2/cF7q4NgAw3UJYCXo52NEscBNanJCXOBmZSxka0KRMDU0qp62Ri4CJO0gzbfdrZ51nK64dXuvC6E4CP2J7ZVefsCpkYmFJKHZeJgalDbC+SXfPvxcTATM5LKS0s2QhYAJJmUUa4L03pxj/U9hutfHtvVSvniXf0tTodDKxHWbhosO1vdkU9mpH0GWAT26e1u3NKKaVFSg4MXDBv2h4Yc9zfofH79i7VQsLfnLn9PcH2jdkASCmlxVM2ArrOfZSBbnOoOCPS8KbUEvEiHXCvyn4jJO0vqVfsX0vW+3psHyLpPpVle6c1S9pTGXU3kDIXvyFJ50fwzmO15L4ony91MOrzTNzHqpJmRcgPksZI6i/pMEnnVu7jbEm/l/S05iYaLhVhSo9LukPSLZVtp0maFvf7313xD5FSSqk1+TqgC8S380bfwD9LeShvAawGPCxpDCX850BglKRlgU9QRsZ/hZL8t3WMuh8r6fY41yBgM9vPSNqPkrS3V1y/lqCzJTDJttU82v9E2/+IoJ+7JA2IgCLi2ptL+iJwlu1PSXqCki74YUrjYofIFFjb9lOKKOKKvpRAo40oAUVXx++hX5zn3yivTn4t6QOUmQcbRZ1XbfL7PZwy64JeK6/e7L5SSil1UPYELJjekcY3npKn/6u67dsDl9ueZftFSuzv1sDvKKmCy1EaD2MiiW834ItxzocogTy1HIJxtp+Jz82S9vaIc7flwBj5/yglyXCTyrZGqYP3URINdwR+Eve0Nc2nPl5ve7btacAald/DVVH+NyJ/AJgOvAX8StJngTcanTATA1NKqXtkI2DB1MYEDLR9lO13WjkoEvxGU2J5D2JuLLCAoyrn/LDtWk9ANeHvSUrPwBRK0t5JsWk3SkBQQ5I+DBwPfCJWPRzFvGmGjVIHx1CCgrYBbgFWBYZQGgeNVLME2lxp0Pa7cd6rKbHEPTaWIaWUUjYCutt9wEHxbn11yrfpcbHtSuBLlAds7eF3G/ANScsASNpA0or1J22UtBevBJa2/fc26rMypTExXdIalF6Iqkapg+OA7YDZ0XiZSIlGHtPKLyCMBfaLsQFrUBoRRILgKrZvAY6jvDZJKaXUQ3JMQPe6jtKtPonyzfrb0R0O5Rv7pcANlR6EiyjvzifEIL+XgX0anHdz5k/a2xW4s26/wyRVj9+W8hrgceDPlIdz1Xypg7bflvRnyloCUBo2Qym9EK26hjLuYVpcdwLlVcBKwA0qKxQK+M/2TpSJgSml1HUyMfA9QtJFwEW2H2x358bHP0sXpw7Wnb+P7RkxGHAc8LFKg6hlmRiYUkodl4mB73G2v7qw69COm2P0/7LAjzrTAID3ZmLgoihTDFNaMuSYgE6QdGLMs58saaKkj0T5sZJWqOx3S23am6QZ8Xc/SZ/r4fo+K2m1tvaJ1QG7pRcgzj/E9kDKSogvddd1UkoptS4bAR0k6aOUkeyDYoT9LpT33ADHAnMaAbY/afu1ulP0I5YNXkINBD65sCuRUkopGwGd0Rd4pbasru1XbD8v6WhgTeAeSfdA02/gp1ECdyZKOk7SppHQNzF6FvrX7d9eyt8PJE2IpL+NovwDkm6P/S+iyVS9RueVtIekqyr7DJF0c3weGteZKun0yj57RB0mSbor09qQ/AAAIABJREFUylaU9Ou4t0cl7R3BSD+kzJiYKOkgSTvF54mx30od/QdJKaXUOdkI6LjbgbUlPakShbsTgO2zgeeBnW3v3Mbxw4D7IgfgTMp6A7+IrvLBwF8aHHNiDOgYAOwkaUBl2yux4t/5lAwAgO8D99velDJD4UNN6tLovHcCH6lMTTwIuCKmJZ4OfJzybX5rSfvE1McLgf1sbwEcUDs3cLftbYCdKVMZlwFOAq6M+78y6nxk3P8OwJv1lZR0eDRWxs96Y3r95pRSSp2UjYAOsj0D2IoSY/sycKWkwxbglA8A35V0ArBOJAfWayvl79r4+xHKqwYoeQSXRX1HAa82ufZ8540An1uBT6vEIe8F3EBJCRxt++XYZ2RcZ1tK4uEzcb1/xLl3A4ZF+uFoSihRo8bIWODn0ZOyapx7HpkYmFJK3SMbAZ0QMcCjbX8f+Caw3wKc67fAZyjfgG+R9PHq9hZS/moJfbPowGyPds57BWVtg48D423/q6P3RXkFsV8l/fBDtv9Qv1OsQPhVoDdlrYSNOnGtlFJKnZCNgA6StGHde/uBwHPx+V+UAJy2zLOPpHWBp+N1wg2Urvmq9lL+GhlDDD6UtCfwvgb7tHXeeymxxF+jNAigzO3fSdJqKosPDY39HgR2jEYFkt4f+98GHBWhR0jassn9r2d7iu3TKesRZCMgpZR6SOYEdFwf4JyY+vcu8EdihTtgOHCrpOfbGBcwGZglaRIwAlgO+IKkmcDfgFOrO9ueJKmtlL9GfgBcLukx4PeUxY3m0dZ5bc+KwYCHAYdG2QuShlEW/xEwyvYNMGeVv2slLUWZ/rcr8CPgLGBylD9DmVVxD3NfE/wE2F7SzsBs4DHaWQApEwNTSqnrZGJgWqxkYmBKKXVcJgam94RMDEwp9YQlJTUzxwSkOST9u6QrJP1J0iOReLjBwq5XSiml7pGNgARADOC7jjINcD3bWwHfAdao7JM9Ryml9B6SjYBUszMw0/YFtQLbk4Beku6TdCNlKWAkXR89BY/FoECifIakH0dy4IMx6wBJq0u6RtLD8edjUZ5pgSmltBBlIyDVbEYJHGpkEHCM7dqrgS9HT8Fg4GiV5YEBVgQejOTAMZQphgC/AM60vTUlU+GiKG83LRAyMTCllLpLdu+mVoyrJQKGoyXtG5/XBvoDfwfeAW6O8kcoUwWhLLK0SUQGAKwsqQ9z0wJHAtfabhSZjO3hlOmXLNe3f05nSSmlLpKNgFTzGLB/k22v1z5IGkJ5qH/U9huSRjM3aXCm5845rSYYLgVsa/utuvOeJmkUZVXBsZJ2t/34At9JSimlluTrgFRzN7Bc3Tv+AZRu+qpVgFejAbARZe2A9twOHFU578D4O9MCU0ppIcqegASAbUcX/1mxmNFbwLPA9XW73gocIekPwBOU2OD2HA2cJ2ky5b+5MZTVE4/tSFogZGJgSil1pUwMTIuVTAxMKaWOy8TA9J6QiYEds6SknqWUOmeJGRMgaVbMR58q6aZYAKi9Y34ff/eTNLWF/S+ozIH/T0mPS5oS8+Z/LmmZdo4fLWlwfH5W0mrVenSGpMMknbsAx/9O0gclLSPpNElPSZog6YFYobAz5/xuZ+uTUkqp6ywxjQDgzVjXfjPgH8CR7R1ge7sOXmNb4EFJRwC7UUbEbw5sTVldr3cHz9fZenQJSb2BD8TUvR8BfYHNbA8C9qH9ZZObyUZASiktApakRkDVA8BaAJL6SLorvt1OkbR3bSdJM+oPlLSppHHRqzBZUv8o3xh40vYs4ETgG7ZfA7D9ju3TbP8z9j0/wm8ek/SD9ipbq4ekIdFbcHX0MoyMuN/6noPBMXWv/jwdTe4bAoyWtAIl+Oco22/HPb1o+3/j+KHxu5sq6fTK9eYrl3Qa0DuuNVLSipJGRW/JVEkHtff7SCml1DWWuDEBknoBnwB+FUVvAfva/mc8RB+UdKObj5g8AviF7ZGSlgV6RfmewK2SVgb61IXr1DvR9j+iLndJGmB7cou3sCWwKfA8JWznY8D9LR5bS+67X9KHgNuAjZmb3Dc2Qnxq8/n3pMwOWB/4v1ojpkrSmsDpwFbAq8DtkvYBxjUqtz1M0jcjJRBJ+wHP294rfl6lwTUOBw4H6LXy6i3eakoppfYsST0BvSVNBP5GWRTnjigXcGpMX7uT0kOwRuNTAKUX4bsxjW4d27Wo290p0+fmIWn3+Nb7rKRat/6BkiYAj1Ie6Jt04D7G2f6L7dnARKBfB47dBTg3fg83Mn9y39HAqrbfjf1baWBsTVl06OU4biSwYxvl9aYAu0o6XdIOtufLBbY93PZg24N7rTBfGyGllFInLUmNgDfj2+c6lAd/bUzAIcDqwFax/UXmJuDNx/Zvgc9Qcu5vkfTx6C5f1fbz8W15hqQPx/63xXmnAstG+fHAJ2wPAEa1db0G3q58rqbyvcvcf89m56sl9w2MP2vZnmH7NOCrlDELYyVtJGld4M+23wH+CHwoejm6lO0nKWsTTAFOkXRSV18jpZRSY0tSIwAA229Qwmv+n8rSuKsAL9meqRJcs05bx8fD8WnbZwM3AAMoK/DdU9ntJ8D5tRkI8d6+9mBemRLDO11llb1OjbBv4FlK1zuURXoa6Uhy355Ez0b8zn4F/CJegdTGFxxA6fbfSdJq8XpjKHBvG+UAM2szJeJ1whu2LwPOoDQIUkop9YAlbkwAgO1Ho/t/KKWb+iZJU4DxQHvZ9QcCX5A0k/Jq4VTgh8DVlX3Op6yo95Ckt4EZlC73R21Pl/RoXOfPUd4VfgD8StKPgNFN9ulIct/VVBoMwPeAU4Bpkt6iNGROsv2CpGGURpCAUbZvAGhWTlkMaHK8ErkEOEPSbGAm8I22bjITA1NKqetkYmAXiIfZR2zPXNh16QqSlgPGNkqXWtgyMTCllDpOTRIDsxGQFivL9e3vvoee1a3XyJS9lNJ7TbNGwBI3JmBhq88e0AIm+nWyDreohcTEJsc2ra9aTDaUdLKk4ztz/ZRSSl1niRwTsKSz/cluOu98yYaSlq5MOUwppbQIyZ6ARYikEZL2r/xcTQq8V9INkp5WyfA/RCW5cIqk9SrHny/pwdhviKRfS/qDpBGV8z4bo/b7xbYLVdILb1eJCkbS1iqJiBMlnaF5105YWyW58ClJ329S3/sk3QhMi7ITJT0p6X5gw8oxR0uaFte6ojt+rymllBrLRkDPq0XmTozQnh+2eNwWlJH8GwNfADawvQ1wEfOO4n8f8FHgOEog0JmUQKLNa1MC6/QHzrO9KfAac6cXXgx8PTIOZtUds03sNwA4QLHoUZ1BwDG2N5C0FXAwMBD4JCVIqGYYsGVkJhzR6MYlHa4Sszx+1hvzZQmllFLqpGwE9LzaQkYD4wHbajjOw7ZfiOz+P1Hm/EMJ2elX2e+miDyeArwY8/9rU/+q+9U8Y3tifH4E6BfjBVay/UCU/7bumDts/z3SEq8Ftm9w3nGV6OQdgOtsvxFhSjdW9psMjJT0eUrg0XwyMTCllLpHNgIWLXNS/yQtBSxb2VZNCpxd+Xk2847teLvBPo32a3TeWU32qVc/paTRFJPXWzgPwF7AeZSeg4cjwCmllFIPyEbAouVZ5qb+fQZYZmFUIlY//Jekj0TRwXW77Crp/TF+YB/aDzwaA+wjqbfKCoWfhjkNnbVt3wOcQElv7NNV95FSSqlt+a1r0XIhcIOkSZTI3la/TXeHrwAXRpLfvUD1Zfw44Brgg8BltttM77E9QdKVwCTgJUo0MZQVGC9TWTlQwNm15ZebycTAlFLqOhkWlBqS1Md2bbT/MKCv7WMWcrUyMTCllDqhWVhQ9gSkZvaS9B2gL7AC8H8xm+Hrth9q60BJPwTG2L5T0g7ABZR1AYZSZgLUDzRs2ZS/TqffsFGdPXyBZZpgSum9JMcEpIZsX0lZzOdpYLWYQrgLZdGj9o49yfad8eMhwE9iJsQawOe6qcoppZQ6KBsBqS19gVdiWiK2XwHWknQtgKS9Jb0paVlJy0t6OspHSNpf0lcpqy7+SNJI4DRgh8hIOE7SphF4NDHCgvovnNtMKaUlU74OSG25HThJ0pPAncCVlJkAtdChHYCplPCfpYF5XhPYvkjS9sDNtq+WNAQ43vanACSdA/zC9khJy1IGCqaUUuoh2QhITdmeEWl/OwA7UxoBw4A/SdqYkhz4c2BHygP8vg5e4gHgREkfBK61/VSjnSQdDhwO0Gvl1TtzKymllBrI1wGpTbZn2R5t+/vANylxwWOAPSmD/e6kJAZuTwcbATFA8DPAm8Atkj7eZL9MDEwppW6QjYDUlKQN697TDwSeozzsjwUesP0y8AHKokBT5z/LPP4FrFQ5/7rA07bPBm6grEWQUkqph+TrgNSWPsA5sZbAu8AfKd3yr1NG+o+J/SYD/+72QycmA7MiDGkEsBzwBUkzgb8Bp3b5HaSUUmoqw4LSYiXDglJKqeOahQXl64CUUkppCZWvA3qIJAM/t/3/4ufjgT62T5Z0BPCG7UvaOP4wYLDtbzbY9l3bp1Z+/r3t7bqo3tsCX7H9tfj5LOAAysI/s+vrJulkYIbt/64mB3ZFXWDhJwb2lEwmTCn1hOwJ6DlvA5+VtFr9BtsXtNUAaMF3687XcgNARVv/HexJWcyoturfvpTUwJ3aO3ddcmBKKaVFTDYCes67wHDguPoNkk6OngEkbR3peRMlnSGpOuJ+TUm3SnpK0k9j/9OA3rH/yCirLfzTR9JdkiZImiJp7yjvJ+kJSZdQRvSvHSl/U2O/ah0/QZkGCDAEeAw4n7IOQJtqyYHxeStJ90p6RNJtkvpG+dGSpsU9X9Hi7zKllFIXyNcBPes8YHLtAd7ExcDXbD8QD/iqgcCWlF6FJySdY3uYpG9GNn+9t4B9bf8zeiAelHRjbOsPHGr7wQgEWsv2ZgAxG4A4Zqbt2jLCQ4HLKdP5TpW0jO2Z7d20pGWAc4C9bb8s6SDgx8CXKeFDH7b9du26KaWUekb2BPQg2/8ELgGObrQ9HoIr2X4giupX27vL9nTbbwHTgHXauaQoD+vJlG/za1Gm9gE8Z/vB+Pw0sK6kcyTtAfwzynejRAcTsb6fBK6P+3gI2L29ew4bApsBd8RKhN8DPhjbJgMjJX2e0lsy/01Ih0saL2n8rDemN9olpZRSJ2QjoOedBXwFWLETx75d+TyL9ntyDgFWB7aKnoIXgeVj2+u1nWy/CmwBjAaOAC6KTXPGA1Ae+KsCUyQ9S0kIbPeVQBDwmO2B8Wdz27vFtr0oPSSDgIclzXdPmRiYUkrdIxsBPcz2P4D/pTQE6re9BvxL0kei6OAWTzszutzrrQK8ZHumpJ1p0nMQ3f5L2b6G8i19kCRREvwmxm5Dga/a7me7H/BhYFdJK7RQvyeA1SV9NK63TKwguBRllsE9wAlR3z4t3nNKKaUFlGMCFo6fUXL4G/kKcKGk2cC9QCv938MpYw0m2D4EqCVAjQRukjQFGA883uT4tYCLK7MEvgNsBTxq2/Gg34PSSwCA7dcl3Q98ur3K2X4nBgieLWkVyn93ZwFPApdFmYCzoyGUUkqpB2Ri4CJGUh/btdH9w4C+to/pwPEfACbYbm+8QHvn+R7wR9uL1Ij9TAxMKaWOa5YYmD0Bi569JH2H8m/zHHBYqwdKWpPyXv+/F7QStk9Z0HOklFJatGVPwBJI0r9TuuO3Bl6jDBg81vaTHTjHYTRJMOxOy/Xt776HntWTl1yoMjkwpdQVsicgASUhELgO+I3tg6NsC8rUwZYbASmllBZ/OTtgybMzJQDoglqB7UlAL0k318oknRvf9msphr+XNEnSOEkrVU8oaS9JD0haLdII744EwLskfSj2aVZ+QCQVTpI0hpRSSj0mGwFLns2AR1rdOUKCrgSOsb0FsAvwZmX7vpTUv0/afoWSDPgb2wMosxPOjl2blZ8E7B7n/syC3FhKKaWOyUZAas+GwAu2H4aSemi7luz3ccr8/r0icAjgo8xNOryUEirUVvlYYISkrwG9GlUgEwNTSql7ZCNgyfMYJQOg3rvM+9/D8g32qfcnYCVgg85WxvYRlICitYFHYopj/T6ZGJhSSt0gGwFLnruB5SQdXiuQNIAS1rOJpOViDYNPxOYngL6Sto59V6pE+z4H7AdcImnTKPs9c5MODwHua6tc0nq2H7J9EvAypTGQUkqpB+TsgCVMJADuC5wl6QTKSoPPAsdS4oynAs8Aj8b+78Sqf+dI6k0ZD7BL5XyPSzoEuErSp4GjKOmD36I81L8UuzYrP0NSf0oj5C5gUrfdfEoppXlkTkBarGRiYEopdVyznIB8HZBSSiktofJ1QA+TNAuYQvnd/wE41PYbkn5ve7uFWzuQdAFl9P7XgJ2AfwK9gQeB79r+y0KsHlP+Op1+w0YtzCos0jJhMKXUEdkT0PPetD3Q9mbAO8TKfItCAyBsS3ngA3wr5u9vSBkjcHfkBqSUUnoPyEbAwnUfsD6ApNrKgUtJ+qWkxyXdIemWWIYXSVtJulfSI5Juk9Q3ygdKejDS+K6T9L4oHy3p9Ej5e1LSDlG+aZRNjGP6R/nGwJO2Z1Ur6eJM4G/AnrHvUElTIu3v9Cg7QtIZteMkHSbp3Pj8+co1/0dSr/gzIs4xRdJx3ferTimlVC8bAQtJTLPbk/JqoOqzQD9gE+ALlJAdJC1DSd3b3/ZWwK+BH8cxlwAnRBrfFOD7lfMtbXsbyuj/WvkRwC9sDwQGA7Uu/j2BW9uo9gRgo1it8HRKWNBAYGtJ+wDXAPtW9j8IuCIaFwcBH4trzqJMExwIrGV7M9ubAxe3ce2UUkpdLMcE9LzekibG5/uAX9Vt3x64yvZs4G+S7onyDSmRv3eUNYDoBbwgaRVgVdv3xn6/Aa6qnO/a+PsRSuMC4AHgREkfBK61/VSU787cqXuNKP7eGhht+2UASSOBHW1fL+lpSdsCTwEbURIBj6QEFD0cde8NvATcBKwr6RxgFHB7w4uWTIPDAXqtvHob1UsppdQR2QjoeW/Gt+GOEvCY7Y/OU1gaAW15O/6eRfx72/6tpIeAvYBbJH2dMg5gVdvPt3GuLSlz+dXGPlcABwKPA9dFLoEo6wZ8Z76bKisY7k7pnTgQ+HL9PraHA8OhLCXcxrVTSil1QL4OWPSMBfaLsQFrAEOi/AlgdUlzXg9I2tT2dODV2vt+yiuEe+tPWiVpXeBp22cDNwADKKsL3tNkf0k6GuhLeV0wDtgpVg3sBQytXPM6YO8ouyLK7gL2l/Rvcb73S1pH0mrAUravoUQHD2rtV5RSSqkrZE/AoucaSmTvNODPlPfw0yO5b3/g7Pj2vzRwFmUtgEOBCyStADxN2136UL5xf0HSTMpgv1OBHwJX1+13hqT/Alag9BTsbPsdymuIYZRGg4BRtm8AsP2qpD8Am9geF2XTJH0PuF3SUsBMyiuCNykpgrXG6Hw9BfU2X2sVxuc0uJRS6hKZGLgIktTH9oxYTGccZUDd37r5mhOAj9ie2Z3XWVCZGJhSSh3XLDEwewIWTTfHIj7LAj/q7gYAgO3Fois+w4JSvQxISqnzshGwCLI9ZGFcN8YgnEkJDHqVEmb0U9vXtXh8P+DmCEJKKaW0iMuBgQkog/+A64ExtteNLIKDgQ/W7ZcNx5RSeo/IRkCq+Tjwju0LagW2n7N9TiT/3SjpbspIfyR9S9LDkTj4g8p5lpY0UtIfJF0dgxXbSjs8WtK0OM8VpJRS6jHZCEg1m1JmIjQziJJWuJOk3YD+wDaU1L+tJO0Y+20I/NL2xpTFh/6jnbTDYcCWkXZ4RKMLSzpc0nhJ42e9MX3B7jKllNIc2QhIDUk6T9IkSQ9H0R22/xGfd4s/jxJRwpRGAcCfbY+Nz5dREhCraYcTKZkAtdcMk4GRkj4PvNuoLraH2x5se3CvFdrLRkoppdSqfL+bah4D9qv9YPvICPOpzcd7vbKvgJ/Y/p/qCWJgYP2cU9Mk7TDsBewIfJoSZby57YaNgZRSSl0rewJSzd3A8pK+USlbocm+twFfltQHQNJatTRA4EO1VEPgc8D9NEk7jJCgtW3fA5wArAL06dK7Siml1FT2BCSgLBccKwGeKenbwMuUb/8nUBb8qe57e6wM+EAsCDQD+DxlfYIngCMl/ZqSenh+G2mHTwKXRZmAs22/1lY9MzEwpZS6TiYGpsVKJgamlFLHZWJgek/IxMCUWpdpiqk9i+WYAEmzJE2UNFXSVZJWkNRP0tSFXbeqmF+/Zgv79ZV0e3zuL+lmSX+KOfX3VKbf9bhq3eLnYyW9VV3CWNIQSTfH58MknRufj5D0xZ6vdUoppVYslo0A4E3bAyOe9h2azC9fBBwGtNsIAPYAbpO0PDAKGG57vZhTfxSwbv0BPZjctwdlIGDNUOBh4LPtHWj7AtuXdFfFUkopLZjFtRFQdR+wfnzuJelCSY9Jul1SbwBJ60m6Nb5Z3ydpoyj/tKSHJD0q6c7IzkfSTtHTMDG2rSSpj6S7JE2QNEXS3rFvv0jHm+e6MRBuMGUO/MQoO62SjvfflXvYA/gdcAjwgO0baxtsT7U9Iq51sqRLJY0FLpW0vKSLoz6PSto59pvzbTx+vjm+rfeSNCJ6UKZIOq6t309d3ZC0HmX0/vcojYE2RX2Pb+ff4ICozyRJY9r9104ppdRlFutGQHwb3hOYEkX9gfNsbwq8xtx578OBo+Kb9fHAL6P8fmBb21sCVwDfjvLjgSNtDwR2oKx7/xawb6y2tzPwM8XQ+EbXtX01ZY79IXGeFYB9gU0jHe+UuIdewIa2p9F+ah/AJsAutocCR1IG9m9OeSj/JnoTmhkIrGV7szjm4rZ+P3V1g7KWwBWUhteGtUZTi5r9G5wE7G57C+AzjQ5UJgamlFK3WFwHBvZWSZ6D8kD6FaXb/RnbtfJHgH4qc9m3A66a+8xmufj7g8CVKjn2ywLPRPlY4OeSRgLX2v6LSvTtqfF+fjawFlB7CM533QZ1nk5pSPwq3p/fHOUfAR5qdJOSrqM0MJ60Xet+v9H2m/F5e0ocL7Yfl/QcsEGjc4WngXUlnUN57XB7O7+f+roNpTSEZku6BjgAOJd2tHONscAISf8LXNvoeNvDKY0IluvbP6ezpJRSF1lcGwFvxrfrOeLh8nalaBZlfvtSwGv1+4dzgJ/bvlHSEOBkANunSRoFfBIYK2l3yvK6qwNb2Z4p6Vmg9q270XXnYftdSdsAnwD2B75JWbRnT+DW2O0xSnpe7Zh9JQ0Gqq8Oqsl9zbzLvL08y8f5XpW0BbA7ZRzFgcCxNP/9zKnb/2/v3qPtHu88jr8/klAVkhphJEJSjVYHK9LUpSRLBylqXKodjA7K1GW5jHZomVqqxtRtlFLDMDVD3bs0Gre6E8QlTZAICSqxSENaLGQQxHf+eL47Z5/Tvc85iZyz98n+vNY6K3s/57d/+7ufs1d+39/ze37fR9LmlITkruzrStLUZRJAJ3+DiDhC0taUyoHTJH0pIl7vxj7NzOwT6tOXA7ojIt4G5kr6FpQlc/NACKVC3fx8fFDlNZI2joiZEXEWZRLcF3LbhZkAfBXYqBtv/w6wZu5zIDAoIm4DvgdUYtgRuDsfXwNsJ6l6WLxe1T4ooyAH5P43ATakFOuZB4yWtIqk4ZSFflApA7xKRNxIua4/pov+qY5tf+DUiBiRP0OBoZK67IfO3iP7+rGIOIVSoGh4V/szM7MVo6+OBCyrA4CLJZ0MDKBc136Kcub/a0lvUsrmjsztj8sD/ceUs/PbKQfzmyXNpFzrn92N9/1f4BJJ71HOqn+b1+wFfF/SEOD9iHgHICLek7Q75VLE+cBrlETi9Dr7/8/8XDMpZ/8HR8TinDg4l1Kx71na5hkMA/5HpVwvwEn1+kfSH6tjo8wH2K3D+0/M9pqXMzqo9zc4R9Ko7JN7sq0uVww0M1txXDGwgVRWztsgIs5sdCwdNWtsrhhoZrbsVKdioJMA61NWW39UrH/Q+Y0O4xNxFTcz6231koCVfk5Ab5MUks6ten68pFNX4P4nqiz0U3k+J4fYK89vlNRlIZ+q7etWWpR0f05M7DGSbpM0OB8v6sn3MjOz9pwErHiLgW/kJLye8DDldjsk/RXlboFtq36/LTClOztS71UdrCsidutq5UAzM+sZTgJWvI8o97R/r+MvJA3JM/Wp+bNdts+UNDhnzb+urLcv6UpJO3fYzRQyCch/bwaG5GtHUm6ffFWdVxOcJOleykS86vhWl3SdSgXEidS41TG320XSbJXqiReobd2ApRUC8/nTkkbk45tUqgXOknRY1TbzejBhMjOzTjT8THAldREwQ9LZHdp/DpwXEQ9J2pBSk39Tytn9dsBLlII+44ArKWf1R3bYxzRgM0mrUpKAByhrC2wKbEnbKMDSaoIqJXrvzNsIAcYAW0TEG5WDdDoSeDciNpW0BTWqF+bdDZdRahy8AFzfzT45JN9vdWCqpBu7Ww8gk4bDAPqtNaSbb2dmZl3xSEAPyPvirwSO7fCrnYBfqFQ7nASslfUDHqQUCRoPXAxsLmkY8GZEtCsOFBGLKbctjqEUMHoMeISSEHyFklBAqSZ4Vb5mNiXBqCQBd0XEGzVCH1/1mhnAjBrbfIFSIfH5KLNKr+qyQ4pjJT0FPEqpBTCqm68jIi6NiLERMbbfpwd1/QIzM+sWJwE953zgUGCNqrZVKGsVjM6fYRGxCJhMOfsfB9xPKZrzTUpyUMvDlAP2mhHxJuXAWkkCujMfoDtVB5dHzUqFKtUYdwK2zTUCnqCt2qKZmTWIk4AekmfaN1ASgYo7KUsDAyBpdG77MrAOMCoiXqQsbHQ8JTmoZQpwOG2FdWZQRgU2BCoz/etVE+zMZOAf8jWbAVvU2GY2ZU2GjfN59WqC8ygjFEgaQ1vxpUGUUY1389LENl3EYWZmvcBzAnrWuZQ1AiqOBS6SNIPS95MpNfzO4QhgAAALtUlEQVShDOv3y8cPAmdQkoFaplDmAZwBS9clWAi8HBEf5zb1qgl2Fu/FlIqCz1IqDU7ruEFEvJ/X6G+V9G7Gumb++kbgQEmz8vM8l+2/A47I/c6hjFwsF1cMNDNbcVwsyD6RHOo/PiJ27433c8VAM7NlV69YkEcCrE+ZOf8tRpx4a6PDMDPrVT1VabTPzgmQtETSk3nf+VOS/qVqYZxl3Ve7+9u7sf0ASdPz8XqSrpH0Yt4H/4ikvZcnjuUhaRtJl2UtgNHZ1l/Soqz/X9luWl6nr7ef0ZI6LhDUpYi4H3g2/w7nLM9nyPc/WFJ3liU2M7MVpC+PBLxXWZ9e0rqUZXjXAn7cC++9PfCwygX2m4ArIqIyoW4jYI/OXryC7Uq55r6YcnfAk5Rlip/L51dJWgPYmM5X6BsNjAVu6+4bS+ofER9R7uFfOyKWLNcnMDOzhuizIwHVImIh5UB0dFbOa3dWKemWvHZdqXY3PUcP7um4L0nflXR7Vs87VtIzkmZIuq5qs10oywv/LfBBRFxSFctLEXFh7qufpHNUqgPOkHR41fucUNX+k2xbQ9KtGdvTkvbN9i9JeiDP5u+QtH5VLDsCd/OXlQQvoRzYAbYCpkXEEklb5WjFE5KmSPp8Fh46Ddg3R1f2zVgul/R4brtnxtKu4qCkScBAYFq+boSke/Nz3SNpw+yHufm3GZyjOONzf5NVlhI2M7Ne1pdHAtqJiBcl9QPWrbeNpCGUanfjI2KupLU7/P5oYGdgr5xJfyIwMh8Prtr0q8BPgH+iRlW9KocCb0XElyWtRhk9uJNSKGcU5eAsYFIeFIcAf4yIr2c8gyQNAC4E9oyIP2Vi8O/AISrldj+MiLckPQycnu/7lYxvf0lr0r5+wGxgXN5RsBPw04jYR9IpwNiIODrf+6fAvRFxSH72xyXdnftYWnEwt11UNSpzM2Vk5ApJhwAXRMRekuYAX6TcNjgdGCfpMWB4RDyvLKFci1wx0MysR6w0SUA3bQNMjoi5sPRe/ooDgZcpCcCH2TYDuFrSTZRhf1Qq+b2R97y327mkiyiXCj6IiC8DE4AtJH0zNxlEOfhPyJ8nsn1gtj8InCvpLOCWiHhQ5X79zYC78v36AQvydRMotQeIiJckrSrprylV/eYAU4GtKUnAhVUxXJFn3wEMqNNXE4A91DZX4lOUWgNQv+IglFLHlVUMfwVUSidXqiKOpNza+F1KyeOpdfazVERcSlmPgdXWH+XbWczMVpCVJgmQ9FlgCbCQOpXrujCTMny+ATA3275OOXD9HfAjSZtTLgXckb+fBexT2UFEHJVn55V72AQcExGV7Suxfg04IyL+q8bnGAPsBpyelysmArMiYtuO21LmA/ys6vkU4FvAgogISY9S1iTYilJaGODfgPsiYm+VdQPur9MfAvaJiHYFhiRtzfJVHJxMWZtgKHAKcAKwA/WrIpqZWQ9bKeYE5DD/JcAvsp79PGC0pFUkDaccBKEUqRmvstoeHS4HPEGpwjdJ0lCVOw2GR8R9wA8pZ9ADaZsPAHAv8ClJ1Yv8fLrq8R3AkTmkj6RNVCbp3UEZzh+Y7cMkrStpKGUBn6uAcyjD7nMoqwRum9sOkPQ3KsMCW1AmAlZMAY6j7YD/CGWE49WIeCvbBgHz8/HBVa99h7aiP5XYj8n3QdKWdM8UYL98fABtB/nHKSMSH0fE+xn34dSvimhmZj2sL48ErK6yEM8Aypn/r2g7K36Ycjb/DKXy3XSAvKZ+GPCbPMgvpMwBIH//UA5/30oZDr9K0iDKWfEFlAPl53JBHvJsey/gPEk/oNT8/z9K0gDw38AIYHoeTP9Eudxwp6RNgUfyGLsI+DbwOeAcSR8DHwJHRsQHeTnhgoylP2VdgtWBJ6J9taeHgfPIJCAiFuQ8ier1BM6mXA44OT9nxX3AidmnZ1BGDM6nrIa4SvZndwoCHUOpOnhCft7vZCyLJb1MW7XAByklh2d2Y59LuWKgmdmK44qBy0DS9sC3I+KILjfu+VhOBl6IiOu63Hgl4oqBZmbLTq4Y+MlFxEPUr+ffqyLi9K63MjMzq2+lmBNgZmZmy85JgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtaiFBGNjsGs2yS9A8xpdBzLYB3gz40OYhn0tXih78XseHteX4u5N+LdKCKGdGzs38NvaraizYmIsY0Oorsk/d7x9qy+FrPj7Xl9LeZGxuvLAWZmZi3KSYCZmVmLchJgfc2ljQ5gGTnentfXYna8Pa+vxdyweD0x0MzMrEV5JMDMzKxFOQkwMzNrUU4CrE+QtIukOZJekHRio+PpSNJwSfdJekbSLEn/nO2nSpov6cn82a3RsVaTNE/SzIzt99m2tqS7JD2f/36m0XECSPp8VT8+KeltScc1Wx9LulzSQklPV7XV7FMVF+T3eoakMU0S7zmSZmdMEyUNzvYRkt6r6utLmiTeut8BSSdl/86R9LUmiff6qljnSXoy23u9fz0nwJqepH7Ac8DOwCvAVGD/iHimoYFVkbQ+sH5ETJe0JjAN2Av4e2BRRPxHQwOsQ9I8YGxE/Lmq7WzgjYg4MxOuz0TEDxsVYy35nZgPbA18hybqY0njgUXAlRGxWbbV7NM8WB0D7Eb5LD+PiK2bIN4JwL0R8ZGkswAy3hHALZXtGqFOvKdS4zsg6YvAtcBWwFDgbmCTiFjSyHg7/P5c4K2IOK0R/euRAOsLtgJeiIgXI+ID4DpgzwbH1E5ELIiI6fn4HeBZYFhjo1puewJX5OMrKMlMs9kR+ENEvNToQDqKiMnAGx2a6/XpnpSDQ0TEo8DgTCh7Ta14I+LOiPgonz4KbNCbMXWmTv/WsydwXUQsjoi5wAuU/096TWfxShLlROHa3oypmpMA6wuGAS9XPX+FJj7AZja/JfBYNh2dw6qXN8vQepUA7pQ0TdJh2bZeRCzIx68C6zUmtE7tR/v/OJu5j6F+n/aF7/YhwO1Vz0dKekLSA5LGNSqoGmp9B5q9f8cBr0XE81Vtvdq/TgLMViBJA4EbgeMi4m3gYmBjYDSwADi3geHVsn1EjAF2BY7KoculolwvbKprhpJWBfYAfp1Nzd7H7TRjn9Yj6UfAR8DV2bQA2DAitgS+D1wjaa1GxVelT30HquxP+2S21/vXSYD1BfOB4VXPN8i2piJpACUBuDoifgMQEa9FxJKI+Bi4jF4eiuxKRMzPfxcCEynxvVYZks5/FzYuwpp2BaZHxGvQ/H2c6vVp0363JR0M7A4ckIkLOaz+ej6eBvwB2KRhQaZOvgPN3L/9gW8A11faGtG/TgKsL5gKjJI0Ms8C9wMmNTimdvLa3i+BZyPiZ1Xt1dd39wae7vjaRpG0Rk5iRNIawARKfJOAg3Kzg4DfNibCutqdPTVzH1ep16eTgAPzLoFtKBPEFtTaQW+StAvwA2CPiHi3qn1ITspE0meBUcCLjYmyTSffgUnAfpJWkzSSEu/jvR1fHTsBsyPilUpDI/rXqwha08sZykcDdwD9gMsjYlaDw+poO+AfgZmV232AfwX2lzSaMvw7Dzi8MeHVtB4wseQv9AeuiYjfSZoK3CDpUOAlysSlppDJys6078ezm6mPJV0L7ACsI+kV4MfAmdTu09sodwa8ALxLudOhGeI9CVgNuCu/H49GxBHAeOA0SR8CHwNHRER3J+n1ZLw71PoORMQsSTcAz1AuaxzVm3cG1Is3In7JX85rgQb0r28RNDMza1G+HGBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLer/AbVc5imsN8bcAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "maxlength = birds['MaxLength']\n", + "plt.barh(y=birds['Category'], width=maxlength)\n", + "plt.rcParams['figure.figsize'] = [6, 12]\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAKrCAYAAABoYV7pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd7hcVdn+8e9NEAglQaqAaARCLwFCCwTpiqCAgoAgYONFRUTFn/qqCIhKka70VxBBihRBQHpJSEhCCikEAaWIIFINhJqE+/fHeibZmcyclnNykpznc13nysyevdde+xwu9pq117qXbJNSSimlnmeR7q5ASimllLpHNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQy3a3RVIqT1WWGEF9+vXr7urkVJKC5QxY8a8bHvF+u3ZCEgLlH79+jF69OjurkZKKS1QJD3TaHs+DkgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQ2UjIKWUUuqhshGQUkop9VDZCEgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQ2UjIKWUUuqhshGQUkop9VDZCEgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPlY2AlFJKqYfKRkBKKaXUQ2UjIKWUUuqhshGQUkop9VDZCEgppZR6qGwEpJRSSj1UNgJSSimlHiobASmllFIPtWh3VyCl9pj43BT6/fCW7q5Gi54+aY/urkJKKbVJ9gTMA5I+JOkqSf+QNEbSrZLW7mBZh0n6Tbw+QtIhHSynn6RJbdjvfEnbxutFJb0k6aS6fe6TNDBePy1phXg9vCN1SymlNG9kI6CLSRJwA3Cf7TVtbw78CFi5LcdKavo3sn2+7cs6r7YNbQ2MiNe7Ao8D+8V1tcj2oK6sWEoppbmTjYCutyMwzfb5tQ22xwPjJN0taaykiZL2gpnf0B+TdBkwCVhd0pckPS5pFLBtrRxJx0k6Jl7fJ+lkSaNi38GV8obGecZKmuPGLGmDOO5hSRMk9Y/t6wGP254Rux4InAX8E9imtQuXNLXy+vuSHoryj49tS0m6RdJ4SZMk7d+eX2xKKaW5k2MCut6GwJgG298B9rH9enSfj5B0U3zWHzjU9ghJqwDHA5sDU4B7gXFNzrWo7S0lfQr4GbAL8CKwq+134uZ+JTCw7rgjgLNsXyFpMaBXbN8duA1A0hJR3v8Ay1IaBG3q7pe0W1zTloCAmyRtD6wIPG97j9ivb5PjDwcOB+jVZ8W2nDKllFIbZE9A9xHwS0kTgLuA1Zj1iOAZ27Uu+K0ojxJesv0ecHULZV4f/44B+sXrDwAXSZoI/AlYv8FxDwL/K+kHwEdtvx3bP0E0AoA9gXvjs+uAvSX1mrOohnaLn3HAWGBdSqNgIrBr9GAMtj2l0cG2L7Q90PbAXks2bCeklFLqgGwEdL1HKN/i6x1E+Sa8ue0BwH+AJeKzNzt4rnfj3xnM6uX5TpS9CaUHYLH6g2z/EfgM8DZwq6SdJC0JLGv7+djtQGAXSU9TGhnLAzu1sV4CfmV7QPysZfv/bD8ObEZpDJwo6dj2XW5KKaW5kY2ArncPsHh0aQMgaWPgo8CLtqdJ2jHeNzIS+Lik5SV9ANivnefvC/zb9vvAF5nV1T+TpDWAJ22fDdwIbEwZy3BvfN4HGAx8xHY/2/2Ab1IaBm1xO/BlSUtHeatJWknSqsBbti8HTqU0CFJKKc0jOSagi9m2pH2AM6O7/R3gaeA44Ozoph8N/K3J8f+WdByly/6/wMPtrMK5wHUxlfA2GvcyfB74oqRpwAvAL4ETgGvj832Ae2y/WznmRuAUSYu3VgHbd8QgwwdjUsFU4GBgLeBUSe8D04Cvt1bWRqv1ZXTOw08ppU4h291dhzQfkjQW2Mr2tO6uS9XAgQM9evTo7q5GSiktUCSNsV0/KDx7AlJjtufLrvnuTgzMNMCU0sIkxwQESZZ0WuX9MdEN31nl3yBp78r7xyT9pPL+OkmfbUd5TRP/qgl+XaGaT9DWOqWUUpr/ZCNglneBz9Yib7vAMGAQgKTlKc/mq4E729D2effd1oPTmefuzutIKaWUjYCq6cCFlCl1s5G0YnxTfyh+aln6EyUtG/G+r8TgOyRdJmnXumKGE42A+PcvwIpx7MeAt22/IGkJSZdE2eNi5kBtzYCbJN0D3F1Xv94qaxM8KukGoHeDa9hC0vXxei9Jb0taLM73ZGz/Wlzf+LjeJWP7pSprCIwETokiN5H0oKQnJH2twfl6STq1khL4P7F9B5UEw5uAycrUwJRS6jb5TWx2vwUmSDqlbvtZwBm2H5D0EcqUt/Uo3+63BZ4BnqRMo7uM8q2+fqT7GGDDSOQbBNwPrBHlbMqsXoBvUiYVbCRpXeAOzVpsaDNgY9uvSupXKfvrlKl268X0w7ENrm0cMCBeD6ZEEm9B+W9gZGy/3vZFAJJOBL4CnBOffRgYZHtGPCbZmLKuwFKUCOT6B/VfAabY3iJmEAyTdEflOja0/ZSkz9FKaqAyMTCllLpENgIqIsL3MuAoSnBOzS7A+pq1Zk6fmPM+FNie0gg4Dzhc0mrAa7Znm4pn+11Jj1BugFtTvlGvQWkQbEppUABsR9x4bf9N0jNArRFwp+1XG1R9e+DsOGaCSgph/bVNV1nFcD1KfO/pcVyvuA4ojZQTKbHAS1MaOzV/qqwhAHBjpAe+LeneKLM6fXE3YGNJ+8b7vpSUwPeAUbafiu0TgdMknQzcbHsodWxfSOmlYfFV+ud0lpRS6iT5OGBOZ1K+xS5V2bYIsHUl8W4121OBIZRv1YOB+4CXgH2ZdVOtN4xy413G9muU1fkGxU9bxgN0NEmwZghlPYBplKji7eKnVt9LgSNtb0RZr2CJyrH1566/Gde/F/Ctyu/sY7ZrPQEzy8rUwJRS6j7ZCKgT37SvoTQEau4AvlV7I2lA7PsssALQ3/aTwAPAMZSbbSPDKQvwjI/3Eyi9Ah+hdM9DuSEfFOdZOz57rJVqDwG+EMdsSOmqb2QocDTwoO2XKNG/61TOvQzwb5VkwoNaOedeMZ5geWAH4KG6z28Hvh5lIWltSUvV7YMyNTCllLpNPg5o7DTgyMr7o4DfRjf7opSb7hHx2UhmRfEOBX5FaQw0MpzyCOBXMLOL/kXg2Yj1hZLwd55KkuB04LB4lNBSfc8DLpH0KPAojVctrNV1ZWY1UiYAH/KsxKifxj4vxb/LtHDOCZRY4RWAn9t+vm6cwsWURYzGqlT+JWBv5rQR7UgNzMTAlFLqPJkYmBYomRiYUkrtp0wMTAuD7k4MXBhk6mFKqSbHBMwDKisAPhw/L0h6rvJ+jqV9O+mcW0k6o5V9dpH05zaUdaekD8XrlSVNl/TVun3+FZkJi0r6b2xbXdLVc3MdKaWUuk72BMwDtl8h5ujHHPuptn9d3Seem6syNmBuzzmSWfP/OywG8y1j+4XY9HnKioYHUp77t1SHZ4EM/0kppflU9gR0I0lrSZos6QrgEWAVSQdHWuAkSb+M/WZ+u473B0i6OF5fLuk8SWMkPS5p99g+81u+pK0j3W+cpGGS+jeoy06R2vewpLGVkfw7AfdUdj2QMsNgDUmrtOH6Hq5cw+mSRkWC4Fdj+2qSHojzTpI0qKUyU0opdZ5sBHS/dSlphOtT5tafCOxICRDaVtKebShjdUr636eBCyOhr+pRYLDtTYGfxznqfR843PYASpbBO7F9d+A2KAsEAcvZHgP8idIr0FaHAy/a3jLq+s1IXzwY+EucdxPKrIPZSDpc0mhJo2e8NaUdp0wppdSSbAR0v3/Yrg133wq4x/bLtqcBf6TckFtzje33bT8GPEtJ5qtaFrhOZYW/XwMbNChjGHCWpG8BfSrpgNWFjQ4Aas/4r6L0CrTVbsCXomdgZNSpPyVf4KuSfkaJEp5af6DtC20PtD2w15JzpAqnlFLqoBwT0P3akgL4PqWXoGaJus9bS+/7BXC77XMlrUV8s5/tAPtElUV99gBGSNqZ0kh80vb02O1AYAVJh8b7VSWtEUFJrRHwDdt3z/GBtEOc9zJJp9i+og3lpZRSmkvZEzB/GQnsGLMJFqV8874/Bgu+Jqm/pEWAfeqO20/F2pRHA0/Ufd4XeC5eH9boxJLWtD3B9q8oCxCtA3wS+Gt8vj6waEQm97Pdj5Lwd0Abr+124BtxXUhaR2X1w48CL8T6AJdQHoOklFKaB7InYD5i+1+SfkpZh0CUZ+W1SfE/oNxIX6QkAlaf+z8HjKYs+nO47ffqEgZPBn4XXe5/bXL6YyQNpvQ6TKBEJd8I1JYJPhC4oe6Y64DfA79sw+VdQIlAfjjq9iKwF7Az8F1J04A3gC+2VEgmBqaUUufJxMAFnKTLgWtttzrfv53l9gaG2N6iM8udW5kYmFJK7ZeJgaldYpng+aoBAPNPYmCm7qWUFgY9bkxAPDt/oDafPrbtJ2mOwXKVz+dIw+vE+pwo6eiOHm/74Pb0Akj6rKR123OO9l53ZBc0Wiyo2f7LSTqi9T1TSil1ph7XCIgV844ATldZCndpyjPtb3ZvzZqrDabrJJ+lZBPMT5Zj1qqMKaWU5pEe1wgAsD0J+AtlsN2xwGW2/yHp0Ei0e1jSuTESvyFJi0QC3qRI+Ns3tl8g6VPx+i+SLozXh0s6vklxm0oaIekJSV+O/XeRdJ+km4GJsa1h/SRdGGE6j0g6tlLHU1USCSdIOjkG/n0KOCPK6BczDm5XSRwcEjMMkLSmpJEqSxo3qzeSvhTlj5d0SeWjHSUNl/SkpH1i3z6S7lFJJJxQCUI6CVgn6nRSs3OllFLqXD15TMDxlKlw7wEDJW1ImXo3yPb0uHkfQAnsaWQ/YD1Kyt2KwEOShgBDgcGS/gqsDKwQ+w8GLm1S1kbAIKAPMFZS7aH3QGB92/9spX4/tP1q9BjcK+la4BXKDX8D25a0rO3/SrqVykBCSfcCX41G0LbAbyjBPucAZ9n+o6RvN6q0pE0oDalBcf7lKh+vBGwb13YNZWbB28Detl+XtBIloOhm4IfAWpEa2Og8h1MSB+nVZ8Umv8KUUkrt1WMbAbbfVFnhbqrtdyXtQhkINzqmsPWmpO81sx1wZSTrvSDpAcpNeyjwdcrNbwLwIUkrAlvTvMv7z7bfAd6JhsQWlNjeB23/M/ZpqX4HSvoK5e+5KrA+ZXrf+8BF0ai4uf6kkpaNel1XmVJY+29iG0oMMcAfaNwbsBNwte1XAWr/Vq7JwARJq9VOCZwkabuo2+qSVqAVkSFwIcDiq/TP6SwppdRJemwjILwfP1BuUL+z/dO5KdD2M/EtdzdgCOWmfCDwSjQ8jgK+HLvvVjusvpj4t5om2LB+KosBfRvYMr7pXw4sYXuapIHArpRei69Xzlct8+Vm38Ab1Ks93q07D8AhlOCizaI341/MmX6YUkppHumRYwKauAv4fO2bqUpq30da2H8ocECMDViZ0vVdm8A+EjiK0ggYSlmcZyiA7bNtD4ifF2P/vSUtHj0GgyvltKV+fSghO6+rrOr3ifh8GcoaADcD32FWEt8bwDJRl9eAf1ee2S8SXfxQlguuLRB0UJPfwT3A/rXHAHWPAxrpS1lEaLqkXYFaD8HMOqWUUpp3enpPwEy2J8bAvbtiwN00Svf9P5scci2lK30C5Rvzdys39aHA9raflvQ8ZVzA0BZOPwm4H1ge+Jnt/0jaqI31Gw1MBv4GPEN5zg7lhnu9yoqCiwDfje1XAhdI+h6wN2VcwXmSjgMWAy4HxlMaMVdI+l/gpia/s/GSTgGGSJpOSTL8SgvX+QfgLzHYcBQRbxzXOya232L7h80KyMTAlFLqPJkYmBYomRiYUkrtp0wMnJMkA6fb/l68PwZY2vZxnVT+DcDvKyPxHwP+YPvEeH8dcIXt69tYXj/gZtsbNvjsPuCYyrLEC6X5JTGwJZkmmFJaUPT0MQHvAp9tywj1DhpGmfqHpOUpA/22qXy+DTC8LQWpcwODOqy+Hip6+n9HKaW0QOrp//OeTpl69p36DyStKOk6SQ/Fz7axfaJKhLAkvSLpkNh+WQx2qxpONALi378AK8axHwPetv2CSnLhJVH2OEk7RpmHSbpJ0j3A3XX16y3pKkmPRo9D70YXKOkkzQoM+nVsu1TS+SoBQ48rQntUwoOGqoT5jJVUa8DsENtvAibHfo9JuowynmF1SQdG/SdJOjmO20/S6fH625KejNdrSBrWrH4ppZTmjfni22U3+y1lLvspddvPAs6w/UCMwr+dEg40jDIT4BngScpo/sso3+q/XlfGGGBDSYtRGgH3A2tEOZsyqxfgm5RE441Ucv3vUCT3AZsBG0cYT79K2V8H3rK9nqSNKcFHs4neh32AdWuBQZWP+wFbAmtSAobWoizvu6vtd1SmHl5JyT6o1WND209FPfoDh9oeIWlVynLFmwOvRf33pgyG/H9x/GDgFZXMgMGUwYQt1S+llFIX6+k9Adh+nXITP6ruo12A30h6mDI6vo/KOgNDge3j5zxgo7ixvWa7Oq8f2+8Cj1BuoFtTpg4+SGkQDGLWSP7tKKPysV0b5V9rBNxZF8JTs33lmAmUWQr1plBCh/5P0meBtyqfXWP7fdtPUBoz6wIfoIQLTQT+RAkdqhll+6nK+2dsj4jXWwD32X7J9nTgCsrsiBeApWO64uqUdMPtKY2Aoa3UbyaVyOXRkkbPeGtKo11SSil1QI9vBIQzKVPblqpsWwTYujKnfzXbUylz/wfHz33AS8C+NJ8COIxy41sm5uWPYFYjoC3jAd5sfZfG4oa8JWU6455AdaXERgFF3wH+Q4lCHkiZMtisHm2t13DgS8BjRKQypddkWCv1q17HhbYH2h7Ya8m+bTxtSiml1mQjgJlxt9cw+xz3O4Bv1d5IGhD7PkuZ99/f9pPAA8AxlMZBI8OB/6HMvYfyjX1r4COU5+lQbo4HxXnWjs8ea6XaQ4AvxDEbAhvX7xA9F31t30q5wW9S+Xg/lXCgNSmPKB6jZAv82/b7wBeBXq3UoWYU8HFJK0jqRUlIvL9ybbXfzzhgR+Bd21NaqV9KKaUulo2AWU5j1mI/UB4PDIwBa5OZPfd/JPB4vB5KSb57oEm5wyk32Qdh5rfzF4HRcbMFOBdYJLrhrwYOi0cJLTmP0tX+KHACZfxBvWWAmyVNiPp9t/LZPyk3778CR8TaBecCh0oaT3k80KZv+7b/TVkE6F5KY2eM7Rvj46GURwFDYp2FZ5n1u2qpfimllLpYhgX1QJIupeQNXNvddWmvDAtKKaX2axYWlD0BKaWUUg81X04RlDTV9tLdXY/OorKwz++BT1IGIe5EGYj3DvD5ulH3XXH+w4CBto8EsH3YXJQ1AFg1nuMj6TPA+rZP6oSqtqq7EgMzBTCltDCaLxsBCyJJveKZdyOfpOQM7E9ZWnhj2+9L+jBzMfq/mwygzBy4FcD2TTRZYCillNL8bYF5HBApdffEQL27I8Cnln53tqThkp6UtG9sX0TSuZL+JulOSbdWPmtPit5hkn5TqcfNknaI11MlnRYD6bZpIf3uk5QBeKswa/Q9tv8V0wZrZf1C0nhJI1SWJ2543ZJ6SXpKxbKSZkjaPvYfEkE/9VaXdJ+kJyT9rFJ2bYYCko5RWU2Q2PdkSaPi9zE4Qo9OoCwf/LCk/au/n876W6SUUpo3FphGAHAOZTGejSlhNGdXPluFErizJ1Drlv4sJRVvfcp0t21gthS9DaKsEyvl9KPMW98DOF/SEq3UaSlgpO1NgEcblRtT5taxPZkyDfHTcQM9TdKmdWWNiLKGAF9rdt3R4/BYXNt2lLTAwSrLBq8eAUD1tgQ+R5lKuJ+kOQaINLCo7S2BoylLHL8HHAtcHdkJVzc4prP+FimllLrYgtQI2IaSOAdlXfrtKp/9OdLvJgMrx7btgD/F9hco09eg/Sl6LZkBXNdKuVtRphRi+1/AOsCPgPeBuyXtHPu9B9wcr8dQbpotXXc1ufBXsX0L4KEmdb3T9iu23wauZ/bfXzO11Q2r9WlNZ/0tZlImBqaUUpdYkBoBLanOqVdLO3YgRW86s/+eqr0D79TGAbRQ7u7Vc9h+1/ZfbX8f+CWwd3w0zbPma86g9fEateTCLSnP55cFdqB5cmF7rw1m/V7bUp/6Y2Du/hbV/TIxMKWUusCC1AgYDhwQrw+i+c2uZhjwuXgevTLlBtmRFL2ngQGxfXXKTWsOLZS7M3BX7LOZymI7qCy/uzFlnYCOXPcoSvTw+xH08zAlmbBZcuGukpaT1JvS8BhGiQheSdLy8Shhz1bqAvAGJeSnPTryt0gppdTF5tfZAUtK+lfl/emUCN9LJH2fktf/pVbKuI5yA55MSakbS+l+Xga4MZ73i8Ypen2IFD2VJW+finIepcFqfWGOciWtSOkteCP2WYmyQM/i8X4U8Js5i5pNw+u2/a6kZylrEUBpHBwITGxSzqj4nXwYuNz2aABJJ8RnzwF/a6UuULryf6iysNKv2rA/dOxvkVJKqYst1ImBkpa2PTUGoI0Cto1n0o32vZROTtGTdDDw4Xk1h35+1p6/RUsyMTCllNpPTRID59eegM5ys8oa9YsBP+/ITWdu2L58Xp5vPtetf4uUUkpzWmB6AiTNYPau7r0pC/4cYvuoDpR3KZ30zV/SAcCalC71U+Pfmi/ESPnurN/FwOkdrMcqlCmKu8X7oylT/1a2PSW27QAcY3tPVdIJJR0BvGX7srm9hprFV+nvVQ49s7OKmycybTCl1N0Whp6At20PqNv2NDA/9A3vTskt2Igyh/7Ibq7PbGx/dS4Or6Ud1hxImYb4WeCSVs57/lycN6WUUhdbkGYHzEHSDpJujtfHSfpdJN09Kemoyn6HRCLdeEl/qBSxfX26Xez/fUkPxTHHx7alJN0SZUyStH9sFyVKt9mAwdnqGe9/E9+YkfS0pFMkTYx0vrVaqp+KU6MOEyv12CGu/dpI5rsi6lZL/xsYr8+LOfeP1K4ttreWdkjMmlga+AmlMdDa3+c4ScfUjpV0m6QxkoZKWje27xfXMl5Ss5kNKaWUusCC1BPQO0akAzxle58G+6wL7EgZdf6YpPOAtSk3rUG2X5a0XGX/WrrdupT8+2sl7Qb0p0wFFHCTSiTvisDztvcAkFSbsL4pMN624567v6RqEM82bbi2KbY3knQIZYGh2lS9OepH+QY+gDKdbgXgocrNc1NgA+B5yrS8bYEH6s71Y9uvqiQZ3i1pY8rji32AdeM6lo1rrKYdQpmqeBVlJsI6kla2/Z82XB/AhZQZF09I2go4l7KQ0rHAJ2w/VztvSimleWNB6gl4O6JqBzRpAADcEmE8LwMvUhLrdqKk1b0MYPvVyv6N0u12i59xlG/361IaBRMpc+1PljS49jycyjflcHWlngMioa81V1b+rTYamqXvXWl7RtyA76ckBQKMivUI3qfkBvRrcK7PSxob17cBJcq31bTDcCBwVZR/HbBfG66tlgcwCPhTNOQuoDRwoDRWLpX0NaBXk+MzMTCllLrAgtQT0BbVtLq2pNw1SrcT8CvbF9TvLGkz4FPAiZLutn0CpcHwuVbO01oyn5u8bnP6XoP957h+SR8DjgG2sP1aDD5cwvZ0SVtS5vLvCxxJaTzNTDuUtBGlMXRn9HgsRslPaC3nAMq1/7fBmA5sHxE9A3sAYyRtbvuVun0upPQksPgq/ReMkawppbQAWJB6AjrqHkoS4PIAdY8DGrkd+HJ8e0XSapJWUkn6eyum/Z0KbBaPBBatv2k18AywvqTFo8t757rP96/8+2ArZQ2lPHLopRJGtD1l3n1b9KEsXTxFJblv97jGVtMOKb0Ax9nuFz+rAqtK+mhrJ7X9OvCUpP3ifJK0Sbxe0/ZI28dSwpBWb+O1pJRSmksLW0/AHGw/IukXwP0q0wzHAYe1sP8dktYDHoxvvFOBg4G1gFMlvQ9MA74O7Mqsm2RN/ZiAb9geLukaYBLl2/O4umM+KGkC5Zt8awPubqA8MhhP6TX4f7ZfqA20a4nt8ZLGUZIBn6V0xUPb0g4PoPSC1NflAGZ/ZNDMQcB5kn4CfIAytmA85XfaP857d2xLKaU0DywwOQHzI5X59xfbHtHqzs3LeJoyr/7lTqtYJ9B8mnaYiYEppdR+WghyAuY7czn/fr6WaYcppbTwy0ZAF5J0BvCM7TPj/e3As7XGg6TTgLPb2wsQGQN32H6+lf1OAIbYvkvSfZRUv6ZfoyVtDXwFuAK4kfLoYnHKjIDjI2vgENtHqaQEvmd7eCt1aPcxLZn43BT6/fCWjh7eYZn6l1JaGPWEgYHdaRhlalxt6eAVKNPyagZRlgpur8OAVVvbyfaxtuvHLLRk5mwAYGiM5h8IHCxpM9ujKxHNOxDX1kod2n1MSimleSMbAV1rOLPm/W9AGRj4hqQPqiwnvB4wWdLdksZGAuBetYMl/VTSY5IekHSlpGNUkgMHAldIelhSb0nHqiQcTpJ0oTQzKfBSVZIQY1uv2F5LHPxO5ePqbAAAbL8JjAHWUiQfSuoHHAF8J+owOMo8P+bzPy5pzzhfS8dkWmBKKXWjfBzQhWw/L2m6pI9QvgE/CKxGaRhMoQQQvQXsY/t1SSsAIyTdRLnRf44yXe8DlOCiMbavlXQkla59Sb+JzAJUYpH3BP7SpFoDgNVsbxj719IBVwCm2Z4SbQhi+/LA1sDPKamJ2H5a0vnAVNu/jv2+Qgkn2pKymNK9qkQgNzlmIpkWmFJK3SZ7ArrecEoDoNYIeLDyfhhlatwvY4rgXZRGwsqUyN8bbdem6TW7qQPsKGlk3FR3YvZHDvWeBNaQdI6kTwKvx/bdgDsq+w2O6YR3ACfZfqQN13pNJBw+Eedpbdpiq2mBkImBKaXUVbIR0PVq4wI2ojwOGEHpCaiNBziI8g1783gG/x/mTBRsKub2nwvsa3sj4KKWjrf9GqV34T5K9/zF8VF1PACUMQGb2t68HasB1s83bXH+qe0jKOs6rE5JC1y+yX4X2h5oe2CvJfs22iWllFIHZCOg6w2ndM+/Gnn/rwLLUhoCw4G+wIu2p0naEagl8A0DPrL+TUUAACAASURBVC1piUj027NS5huUgB+YdcN/OfabbQxAvej2X8T2dZQb8GYxhmBjynoDbVWtQ81+khZRWW1wDeCxlo7JtMCUUupeOSag602kzAr4Y922pWNVwyuAv0RX/mhKmh+2H4qxARMovQMTKeMIAC4Fzpf0NqUxcRGll+EF4KFW6rMacEnMVgD4EbA5MM7tS476C2XVxb2Ab8W2f1IijPtQVgx8pzq+oMEx32lvWuBGq/VldE7XSymlTpGJgfMxSUvbnippSWAIcLjtsV1wnp8Af7d91VyUcSlws+1rO61iDWRiYEoptV8mBi6YLpS0PqXL//dd0QAAsH1iV5TbFborLKgmQ4NSSguTHBNQR9KHJd0o6QlJ/5B0lqTF4rMdJN3c5Lin43l7ddu3JZ1ZeX+BpLsq778l6exmdbH9BdsDbK9r+1fNzhPbj5N0TPuvuHPYPqyrewFSSil1rmwEVMQAueuBP9vuD6wNLA38ooNFzkwMDJsAfSXVpsO1OTFQxXzx96rUv+H7lFJKC4b54qYyH9mJsnzuJQC2ZwDfAb4cz+VnkrS8pDskPaKymqDmLI6HgbUj1a8v8HZs2yg+r2UFIOm7kZ43SdLRsa2fSmLgZZSBf7ONnpf040jnewBYp9EFNUrlk3RY9HbcFz0eP6vs/2dJY+K6Dq9snyrpNEnjgW2iR+JkSWMpswIGSBohaYKkG1RSEVeSNCaO30SSVYKTiF6WJRvVL6WU0ryRYwJmtwElInemSPL7J7BW3b4/Ax6wfYKkPSgL71B37PQI3NkC6A2MBJ4ABkl6iTIw81lJmwNfAraiNCZGSrofeA3oDxxaW664Nto+jjmAkgC4KJEo2OCajqVxKt+WwIaUxMKHJN0SCYRftv2qpN6x/TrbrwBLASNtf69Sj1dsbxbvJwDfsn2/ysJFP7N9dExx7AMMpsx+GByNlhdtvyWpWf1misbI4QC9+qzYaJeUUkodkD0BHbc9cDmA7VsoN+xGWkoMrD0K2A64wfabtqdSHkkMjs+eqTUA6gyOY96y/TpwU5PzN0vlu9P2K7bfjvNtF9uPim/7Iyg9D/1j+wzgurqyrwaIXo5lbd8f239P+f3Urn/beP/L+HcwMLSV+s2UYUEppdQ1shEwu8mUOfMzxbfYjwB/72CZtXEB21AaAI8C69P28QBvdvC8QIupfHOk+6ks9bsLsI3tTYBxzAojeicej7S3bkMoN/2PUpYn3oTS4BjaSv1SSil1sWwEzO5uYElJh8DMAW+nAZfafqtu3yHAF2K/3YEPNinzQcoCPCvafjECeV4C9iLGA1BuiHvHM/KlgH2Y9U25mSFxTG9JywCfbrSTmqfy7Sppuej23zvq0hd4Lbrp1416t8r2FOA1SbXeiy8CtV6BocDBwBO23wdeBT4FPNBK/VJKKXWxHBNQYduS9gHOlfRTSiPpVuB/G+x+PHClpEco3+j/2aTM1+L5f3UBngcpXeTjY5+xKmE7o+Lzi22PU1l+t1ldx0q6Osp4keZJgadqzlS+AXGu64APA5fbHq2SWniEpEcpkb+NHkM0cyglxXBJyuJBX4p6Ph2zLmqD/h4APhxrGDSrX1OZGJhSSp0nEwN7IEmHAQNtH9nddWmvTAxMKaX2UyYGpoVBdycGtkWmCqaUFhQ5JmAhIemMWr5AvL898gtq70+T9F0A25d2Vi+ApDaFHaWUUpr/ZCNg4TEznTCSBVeg5B7UtDmdsD1sD2p9r5RSSvOjbAQsPIZTpiFCuflPAt6I5L7FgfWAyZLuljRW0kSVJX2RtEUk/S0haalIC9xQ0m8lfSb2uUHS7+L1lyX9Il5PjX93iATCayX9TdIVMSAQSZ+KbWMkna1Yf0HSxyU9HD/jYpZDSimleSTHBCwkbD8vaXrE8taCiVajNAymABMp6YD7RAriCsAISTfZfkjSTcCJlGTDy21PkjSUMsf/pihrlTjdYKDRssObUhogz1N6JraVNBq4ANje9lOSrqzsfwzwTdvDJC0NvNPo2jIxMKWUukb2BCxcWkonHEaZhvfLiPi9i3JjXzmOPQHYFRgInBLbhlJiftenBCn9R9IqlIZFo0cLo2z/K/IAHgb6AesCT9p+KvapNgKGAadLOoqSODi90UVlYmBKKXWNbAQsXGrjAjaiPA4YQblh18YDHASsCGxuewDwH2YlAi5PWTFxmdo2288BywKfpMzzHwp8Hphq+40G53+38noGrfQ02T4J+Cql92FYBBSllFKaR7IRsHAZDuwJvGp7hu1XKTfx2jf3vpSFe6ZJ2pES5VtzAfBT4Arg5Mr2EcDRzGoEHEPraYZVjwFrVIKP9q99EGmBE22fTAk7ykZASinNQzkmYOEykTIr4I9125a2/bKkK4C/RDLgaOBvABGTPM32HyMqebiknWzfQ7nh72b775KeAZajHY0A229L+gZwm6Q3mT3Z8OhojLxPSVT8a2vlZWJgSil1nkwMTF1O0tK2p8Zsgd9S1hE4oyNlZWJgSim1XyYGpu70NUmHAotRVia8oKMFZWJgSil1nhwT0ENI+nHM/58Q8/K3knR0LPjT3rIulbRvvL44Zg80ZfsM2wNsr2/7oAYrMqaUUuoG2RPQA0jahjJgcDPb70ZGwGLA1cDllPyAtpbVq/re9lc7s64ppZTmnewJ6BlWAV62/S6A7ZeBfYFVgXsl3Qsg6TxJo6PH4PjawZKelnSypLHAftWCIyVwYLyeKukXksZLGiFp5di+ZryfKOnESsrgKpKGRM/EJEmD58HvIqWUUshGQM9wB7C6pMclnSvp47bPpiT77Wh7x9jvxzFwZGPg45I2rpTxiu3NbDdKCqxZChhhexPKlMKvxfazgLNsbwT8q7L/F4DbI7NgE0rA0BwkHR6Nk9Ez3prSvitPKaXUVDYCegDbU4HNKdG7LwFXSzqswa6fj2/74yjxv9Vn/Ve34VTvATfH6zGUxEAoOQV/itfV6YsPAV+SdBywUZMAokwMTCmlLpKNgB4iwoPus/0z4Ejgc9XPJX2MEgS0s+2NgVuYlSYI8GYbTjPNs+actiUxcAiwPfAccGnkFaSUUppHshHQA0haR1L/yqYBwDPAG5SYYIA+lBv9lHiWv3snVmEEsxodB1Tq9VHgP7YvAi4GNuvEc6aUUmpFzg7oGZYGzpG0LDAd+Dvl0cCBlCS/523vKGkcJUXwWco6BJ3laOByST8GbqOsagiwA/B9SdOAqUCrPQGZGJhSSp0nEwNTl4ssgrdtW9IBwIG29+pIWZkYmFJK7ZeJgak7bQ78JmKD/wt8uaMFLQiJgR2RKYMppe6wwI4JkGRJl1feLyrpJUk3t3RcC+VNbbBtVUnXzkUdZybr1W0fKOnsNpYxcx5+C/tsLempmG//cMzXfyxeXybpMEm/6eh1tHDe4yQd09p+tofa3sT2xra3t/33zq5LSiml9luQewLeBDaU1Nv228CulFHmncb285RQnU5lezRlFb/ZSFrU9vQOFLk7cIzt66Kc++L96Hh/WFsKkdTL9owOnL9D5vX5UkopzW6B7QkItwK1ftQDgStrH0haTtKfIyt/RC34RtLSki6J9LoJkuqnyq0g6UFJe0jqJ2lSbD9M0vWSbpP0hKRTKsd8JYJ4Rkm6qO5b9y4RdPO4pD1j/x1qPRbxbfoPkoYBf5DUW9JVkh6VdAPQO/brFT0Lk6Lu36mcY2fgrlZ+V6s2qftUSadJGg9sI+lYSQ/FeS6MLnwkHSVpcvzOqoFB60dvxZOSjqqUe3D8Ph6WdIEibrjB+U6qlPvrVq4hpZRSJ1qQewIArgKOjRvqxsDvgFr07PHAONt7S9oJuIwyNe6nwJRIr0PSB2uFxdS4m4Cf2L5TUr+68w0ANgXeBR6TdA5lPvxPKdPb3gDuAcZXjukHbAmsSYnoXavBdawPbGf7bUnfBd6yvV40XMZWzr2a7Q2jrsvGvytQ5ue3FqU3R91tP0tJ+Rtp+3tR3mTbJ8TrP1DWHPgL8EPgY7H2wLKVctcFdqRMNXxM0nnAWsD+wLa2p0k6FziI8jeYeT5JywP/B6wbgwar5c4k6XDKbAZ69VmxlctMKaXUVgt0T4DtCZSb7IGUXoGq7YA/xH73AMtL6gPsQlnTvlbGa/HyA8DdwP+zfWeTU95te4rtd4DJwEcpN/j7bb9qexqzkvFqrrH9vu0ngCcpN816N8UjDSjhOZdXrm9CbH8SWEPSOZI+Cbwe23ejxAK3plHdoTRirqvst6OkkZImAjtRkgOJelwh6WDKNMOaW2y/G+sRvAisTOmZ2Bx4SNLD8X6NBuebArwD/J+kz9JkIaNMDEwppa6xQDcCwk3Ar6k8Cuig6ZSo20+0sM+7ldetJuKF+jmYjeZktprGF42VTYD7gCMo4TpQxgPc1oZ6NKv7O7Xn8pKWAM4F9o2ekouYlRq4B6XxtBnl5l47vlG5An4fywcPsL2O7ePqzxfjH7YErqX0OLTlOlJKKXWShaER8DvgeNsT67YPpXRBI2kHyip6rwN3At+s7VR5HGDK1LV1Jf2gHed/iLLYzgfjxvi5us/3k7SIpDUp34Yfa6W8IZSFdZC0IeUxR63bf5EY/PcTYLN4Xr8xTRbe6YDaDf9lSUsTgyIlLQKsbvte4AdAX0oAUTN3A/tKWimOX04lHXA2cY6+tm8FvkNp5KSUUppHFvQxAdj+F9Bout1xwO8kTaB0Mx8a208EfhsD/mZQxg5cH2XNkHQgcJOkN5jzEUOj8z8n6ZfAKOBVSuJe9fn8P+OzPsARtt+JsXbNnAdcIulR4FFK7wTAarG91nD7EaXLfVwlr3+u2P6vpIuAScALlAYOQC9K4l9fyrf8s2PfZuVMlvQT4I6o7zRKw+uZul2XAW6MHggB322tjpkYmFJKnScTAzuBpKVtT42egBuA39m+YR6c9yfA31tZ3nehkomBKaXUfmqSGJiNgE4QU9t2oXSn3wF8u7O+nafZLb5Kf69y6JndXY25kumAKaV5rVkjYGEYE9DtbB8TA+DWtX1UfQNA0vKaleb3gqTn4vV/JU3uijqpQQLiXJT1V0kfjtcrSJom6Yi6fZ6OcQszz625TFxMKaXUtbIRMA/YfqU2Uh44HzgjXg8A3m/t+MpI/HlOUm9g+Rh7AbAfZWngA1s71vbztjs9cTGllFLnyEZA9+ulkjL4iKQ74qZbWzPgTEmjgW+rbh2CyrftVSQNiZ6FSZIGV/b5haTxKomJK8e2FSVdp5IK+JCkbWP7xyu9FeMkLRPF7ECZllhzIPA9YLVa70Azmj1xsZekU+OcEyT9T2v1Tyml1LWyEdD9+gO/tb0BZYW96hTDxSIk57QWjv8CcHv0LGzCrOmCSwEjbG9CmXb4tdh+FqUnYos4Vy1v4Bjgm1HOYKAWXjQzh0DS6sAqtkcB11BSAdvqK5Skxi2ALYCvSfpYC/WfSdLhKtHLo2e81VowYkoppbZa4KcILgSesl278Y2hJCDWXN2G4x+iTIX8APDnSlnvAbUVFcdQFliCMoBx/cr0vj4xX38YcLqkK4DrK93/21IaCFBu+tfE66soGQ0tNVCqdgM2rvRm9KU0gJrVfybbFwIXQhkY2MbzpZRSakU2ArpffeJe78r7apLgdKLnJubeLwZge4ik7SmJfpdKOt32ZZT1BGo3zGpC4CLA1hEfXHWSpFuATwHDJH2C0pB41vZ7sc+BwIckHRTvV5XUPyKRWyPgW7Zvn+ODxvVPKaXUxfJxwILjaUo4EMBnKGsdEEl8/7F9EaVrf7NWyrkD+FbtjaQB8e+atifaPpny7XxdZn8UsDawtO3VbPez3Q/4FW0YIBhuB74e3/iRtLakpTpQ/5RSSp0kewIWHBdR0vXGU27MtV6CHYDvS5oGTAUOaaWcoyiJiRMof/8hlLUIjpa0I2W2wiPAXymZ/rUGw4GUIKSq6yiPLE5oQ/0vpjzqGBtxxy8Be7e3/pkYmFJKnSfDglJDkhYHhjUKl+hOmRiYUkrt1ywsKHsCUkO23wXmqwYAwMTnptDvh7fMs/Nlul9KaWHWY8YESPqwpBslPSHpH5LOkrRYfLaDpJubHDczCa+y7duSzqy8v0DSXZX335LUaFGjluo3x3li+3GSjmmwfUVJI2NO/+Bmx3eUpL0lrd/KPk1/bymllOZ/PaIREM+gr6dMQesPrE1ZCvcXHSxyGDCo8n4ToK+kXvF+EDC8rXXTrJUB22NnYKLtTW0P7cDxrdkbaLERMLe6MwkxpZRSD2kEADsB79i+BMqSwZT1678sacnqjio5/3dEgt/FlKlt9R4G1pbUW2V53bdj20bx+SBKQwFJ340kvEmSjo5t/SQ9JukyyrK9q9fV4ceSHpf0ALBO/cljRP8pwF6RtNe78tkJtfPE+19I+na8/oGkiZEieFJs+1qk+I1XSRJcUtIgygyEU6P8NSWtJemu2G+spDXjFEtLulbS3yRdEQ0uJG0u6X5JYyTdLmmV2F6fhLhf/G7GSxrS/E+YUkqps/WUb2IbUAJzZrL9uqR/AmvV7fsz4AHbJ0jag5J0R92x0yWNoyTf9QZGAk8AgyS9RBlw+aykzYEvAVtRGhMjJd0PvEYJyjnU9giAuHcSxxxAWVdgUWBsg7o/LOlYYKDtI6vHUwJ8rgfOjB6GA4AtJe0O7AVsZfstScvF/tfH9DwknQh8xfY5km4CbrZ9bXw2EjjJ9g2SlqA0IFcHNo3f7/OUhs+2se85wF62X5K0P6XX5ctxzsVqA1QkTQQ+Yfs5ScvW/65jn8OBwwF69Vmx0S4ppZQ6oKc0Atpje+CzALZvkfRak/2GU77x9wYepDQC/pcy9a32KGA74AbbbwJIup4SyXsT8EytAVBncBzzVhxzU3sqb/tpSa9I2hRYGRhn+xVJuwCX1Mq1/WocsmHc/JelPCJpFOazDLCa7Rvi2HdiO8CoWrqgpIcp0wD/C2wI3Bn79AL+XSmymoQ4jBISdA2l8dLomjIxMKWUukBPaQRMBmZbzU5SH+AjwN+BLTtQ5jDK/PolgN9Sbv7rM3sjoCVvtr5Lh10MHAZ8iNIz0JJLgb1tj5d0GGXefnvUJx4uSun1eMT2Nk2OmXntto+QtBUlMXCMpM1tv9LOOqSUUuqAnjIm4G5gSUmHQFnRjpJ5f2ntm3HFEMqiNkQX+geblPkgsDWwou0XI6L3JUqX+7DYZyiwdzxnXwrYJ7a1ZEgc0zu+gX+6HddZcwPwScrjito3+zuBL9XGQFQeBywD/Fslye+gShlvxGfYfgP4l6S949jF68dS1HkMWFHSNrH/ByRt0GhHlaTCkbaPpfz+Vm+0X0oppc7XI3oCbFvSPsC5kn5KafzcSum+r3c8cKWkRyjf6P/ZpMzX4vn/I5XND1IW3Bkf+4yVdCkwKj6/2PY4Sf1aqOtYSVdHGS9SInzbxfZ7ku4F/huDILF9WwwoHC3pPWZd/08pYxpein9rSwhfBVwk6ShKL8oXgQsknQBMA/Zr5fz7AmfHwMlFgTOZ/XdVc6qk/pTeg7vjupvKxMCUUuo8mRi4EIoBgWOB/dq4uM8CIxMDU0qp/ZSJgT2DSsDPzZTBhQtVAwA6NzEw0wBTSj1dTxkT0GPYnmx7Ddvfa2k/SVMrrz8VuQQflXREbexER6gNyYWSGj2GSSmlNI9lI6CHk7QzcDawu+1nbJ9v+7IuPm02AlJKaT6QjYAeTNL2lCWK97T9j9g2c62CSPc7WdKo6CkYHNuXlHSNpMmSblBZw2COZ02SDo5jH1ZZX6GXSlJh79h2haSlJN0SiYGTIlgopZTSPJBjAnquxYE/AzvY/lsL+y1qe0tJn6KkKe4CfAN4zfb6kjakRCbPRtJ6wP7AtranSToXOMj2DyUdaXtA7Pc54Hnbe8T7vg3KysTAlFLqAtkT0HNNo0yBnCMWuU4txW8MJQ0QShLiVQC2JwETGhy3M7A58FAkCe4MrNFgv4nArtHjMNj2lPodbF9oe6Dtgb2WnKONkFJKqYOyEdBzvQ98nrKuQEvP6GuJgLU0wLYS8HvbA+JnHdvH1e9k+3FgM0pj4MRYEyGllNI8kI2AHizSEvcADpLUWo9A1TBKA6I2JXGjBvvcDewraaXYbzlJH43PpkVCIZJWBd6yfTlwKqVBkFJKaR7IMQE9nO1XJX0SGBIJiG1xLvB7SZOBv1GSAGfrxrc9WdJPgDsivGga8E3gGcpiQBMkjQUuo6QGvh/7fL2lE2diYEopdZ5MDEztFmsvfMD2O5LWBO4C1rH9XlefOxMDU0qp/TIxMHWmJYF7o0tfwDfmRQMAOjcxsK0yWTCltLDKRkAPJmkGZUDeB4DplK75M2y/H/P+D7F9VP1xsargHC3KlFJKC5ZsBPRsb1fm668E/BHoA/zM9migS/vdJfWqrXKYUkpp3svZAQkA2y9SAnmOVLGDpJthZorgHyQ9KOkJSV+L7TtIGhKJf49JOj8GASJpt9h/rKQ/SVo6tj8dmQBjgf0kHRXJgxMkXdVNl59SSj1S9gSkmWw/GYP+Vmrw8cbA1sBSwDhJtQfzWwLrU0b93wZ8VtJ9wE+AXWy/KekHwHeBE+KYV2xvBiDpeeBjtt+VtGyjemViYEopdY1sBKS2utH228Dbku6l3Pz/C4yy/SSApCspaYLvUBoGwyQBLAY8WCnr6srrCcAVkv5MiTGeg+0LKdMKWXyV/jmdJaWUOkk2AtJMktagJAO+CKxX93H9zdctbBdwp+0Dm5zqzcrrPYDtgU8DP5a0ke3p7a17Siml9ssxAQkASSsC5wO/cePwiL0kLSFpeWAH4KHYvqWkj8VYgP2BB4ARwLaS1oqyl5K0doNzLgKsbvte4AdAX2DpTr60lFJKTWRPQM/WOxb3qU0R/ANwepN9JwD3AisAP7f9fNzYHwJ+A6wVn98QUwwPA66UtHgc/xPg8boyewGXx8qBAs62/d+WKpyJgSml1HmyEdCD2e7Vwmf3AfdVNk2wfUiDXV+3vWeD4+8BtmiwvV/l9TTKGIKUUkrdIBsB8xFJKwNnUEbhvwa8B5xi+4YOlHU0cGEsEtTeYwcAq9q+tZVd/0pZKGie6crEwEwGTCn1NDkmYD6hMoz+z8AQ22vY3hw4APhwB4s8mhLv2xEDgE/V3tg+zvavG+w3o1EvQFtIygZoSil1s2wEzD92At6zfX5tg+1nbJ8j6TBJ10u6LcJ6TqntI+k8SaMlPSLp+Nh2FLAqJd//3tj2yQjuGS/p7ti2ZQT6jJM0XNI6khajzOffX9LDkvaXtLSkSyRNjFCfz1XO/4soc0T0ZCBpRUnXSXoofraN7bXQoWHAHyRtIGlUnGeCpP5d/UtOKaU0S34bm39sAIxt4fMBwKbAu8Bjks6x/Szw41gOuBdwt6SNbZ8t6bvAjrZfjpH/FwHb235K0nJR5t+AwbanS9oF+KXtz0k6Fhho+0gASScDU2xvFO8/GMcvBYyw/eNomHwNOBE4i7IGwQOSPgLczqwph+sD29l+W9I5wFm2r4jGR9MxCimllDpfNgLmU5J+Sxk09x7wW+Bu21Pis8nAR4Fngc9Hot6iwCqUm+yEuuK2pjxmeArA9quxvS/w+/gGbsosgUZ2oTyaII5/LV6+B9wcr8cAu1b2Xz+CggD61GKDgZsidAhKgNCPJX0YuN72E01+F5kYmFJKXSAfB8w/HgE2q72x/U1gZ6B213u3su8MYFFJHwOOAXa2vTFwC7BEO875c+Be2xtSwnracyzAtEqmwAxmNSoXAba2PSB+VrM9NT6bGRRk+4/AZ4C3gVsl7dToJLYvtD3Q9sBeS/ZtZxVTSik1k42A+cc9wBKSvl7Z1trAvj6Um+qUeB6/e+WzN4Bl4vUIYPtoNFB5HNAXeC5eH9bkWIA7gW/W3lQeBzRzB/Ctyv4DGu0UCYVP2j4buJGyPkFKKaV5JBsB84n4Rr038HFJT0kaBfyekqTX7JjxwDjKs/0/AsMqH18I3CbpXtsvUbrTr5c0nlnZ/acAv5I0jtkfDd1L6c5/WNL+lOf8H5Q0KY7fsZXLOQoYGIP9JgNHNNnv88CkCCzaELislXJTSil1IjVOiE1p/jRw4ECPHj26u6uRUkoLFEljbA+s3549ASmllFIPlbMD0hwknQE8Y/vMeH878Kztr8b704DnbDdbZ6DLdGViYFWmB6aUeoLsCUiNDAMGwcyV/lag5BjUDAKG195k+l9KKS2YshGQGhkObBOvNwAmAW9I+mCsCrgeZe7/UEk3AZMBJB1cSQC8IAKMkDS1SbLgfrXBhpKGzPOrTCmlHi4bAWkOtp8Hpkfa3yBKqM9ISsNgIDCREhS0GfBt22tLWg/YH9jW9gBKbsBBUWQtWXATYAglWRDgWOATsf0z8+TiUkopzZTduKmZ4ZQGwCDgdGC1eD2FWVMRR9VSCCnBRpsDD0VSYG/gxfisWbLgMOBSSdcA1zerSCYGppRS18hGQGqmNi5gI8rjgGeB7wGvA5fEPm9W9hfwe9s/alBWw2RB20dI2grYAxgjaXPbr9QfbPtCSu4Bi6/SP+e0ppRSJ8nHAamZ4cCewKu2Z8R6A8tSHgkMb7D/3cC+klaCkkoo6f+zd97RelXV+n5eQg2B4BXkxoCEDgFCIKETpElRQFGKikAEQVBA+F1QVOQiV6UpvSggRKQqRYpIbyEESCOFqlKkCIIgEGoI7++PNb9k58v3nZZzkpxkPmOccfZee7W9T0bWXHOt9c4VWmpA0sq2H7J9LPAqsHynvkGSJEnSIukJSJoxkXIq4PK6tF4RmXCGzLYfk3QMcFucKJhCkRp+roU2TongRaIYEeM7sf9JkiRJK6RiYNKtSMXAJEmS9pOKgUmSJEmSzEAuB8xFSPokxS0O8N+UTXSvxv2Gtj+cIx2bi5gdioGpFpgkyfxCGgFzEbEzfiCApOOAybZ/Wc2jshgv2x93ZtuSFrT9UWfWOTe2mSRJn4fyuAAAIABJREFUkkwnlwO6AZJWkfSYpMuAR4E+knaUNFLSWElXSVo88m4g6V5JYyT9paLOt5qku0Kdb6ykfpK2lXSPpJsom/6QtG9F9e/c2ORHC+29IOkkSRMlPSRppUhfVtK1kkZHfRtH+s8kXSKpphGwjqRR0d6EWvkkSZKk60kjoPuwBnCa7f6UnfdHA9vYXh+YAHwvJH3PAL5iexBwKfB/Uf6KKL8u5fx/TchnMPAd22tKWhvYFdg0VP8WBL4ax/5maq/St9dtrwP8hiIsBHAmcHJsRNkDuLDuXbax/Q3gO8Avo70NgJdm+UslSZIkbSKXA7oPf7dd2xa/KdAfeCCO6i0M3E/R9F8LuCPSewAvSPoEsLTtGwFsvw8QeUba/kfUuy1lIB5dUf17Hni3SXs1rojflwEnVupavXKU8BOSFovr62t9oGgOHBOaAtfa/lv9i6diYJIkSdeQRkD3oV6d7xbbe1czSFoPmGB7SF36J9pR70W2f1JXftdG7VVodM5UNNjMGEbBtDZt/17SSIpq4C2S9rM9QzChVAxMkiTpGnI5oHvyAPDZyvr74iG68xjQV9KGkb6wpLVsvwG8KmnnSF9UUs8G9d4B7CFp6cj3yQgi1Ky9GnvG768xPa7AHRSxIKLMwEYvImkl23+zfQYlvsCAdn+NJEmSpEOkEdANsf0KsD9wlaTxlEF6NdsfALsBp0qaAIwDNopiewH/E+n3AzP51W1PBH5KWU6YANwGLNusvUrRpSP/wZT4AlAMgM1is99jTI8cWM/XJT0q6ZGo89IOfJIkSZKkA6RiYDJLSHoBWNv2f2ZHe6kYmCRJ0n5SMTBJkiRJkhnIjYHdDEkGTrX9P3F/JCWoz3EtlOlHOfZ3edwPBQbbPqQd7R4OnG/73Wq67eUqeY6jgcBRZ5KKgUmSJJ1HegK6Hx8AX65t3msj/YCvz2K7hwONNhMmSZIk3ZQ0ArofH1GOyx1R/0DSMEm7Ve4nx+WJwJBQ5auV+7SkWyT9VdLJlTLnhcrfo5J+GmmHAZ8G7pZ0d6TtEOqB4yXV4h0A9A8VwqejXK3eb1SUCH8jqUf8DJM0KRQHZ3qnJEmSpOvI5YDuyTnAhOrg3QpHA0fa3gmmLQcMBNajeBaelHSW7eeBH9t+XVIP4E5JA2yfKen/AVvZfk3SMsAFwBa2n5H0X5W21gC2ApaIes8DVqEcI9zM9hRJ51JOKzwK9LW9dvRrqVn4JkmSJEk7SU9AN8T2W8AlwGGt5W2BO22/Gcp9jwErRPoeksZSjheuRVEKrGdj4D7bz0R/Xq88+7PtD2y/RpEmXhbYBhgEjIqjgNsAKwFPAytJOkvSDsBbjToq6cDwToye+u6bs/DKSZIkSZX0BHRfTgfGAhdX0j4iDLsI/LNwC+U/qFxPBRaUtCJwJLCB7TckDQMWbWe/ZqqXoh74O9s/rM8saV1ge+AgSoyB/erzpGJgkiRJ15CegG5KzL7/QBHxqfEsZcYNsAuwUFy/TXHPt8aSFEnfN1WiD+5YeVat40FgizAaqFsOaMSdwG4RiAhJ/yVphdjcuIDta4BjgPXb0MckSZKkk0hPQPfmV0D1mN8FwPWh6ncL0zX6JwBTI30Y8EajymyPlzQOeIISOGhE5fH5FG3/l2xvFUF9rg2Pw7+AzzXrpO3HJB0D3Bb5p1AUBd8DLo40gJk8BfWs07c3o/MIX5IkSaeQioFJtyIVA5MkSdpPM8XA9AQk3YrZIRZUJYWDkiSZl+m2ewIiwt0j8fOypBcr9w9Enn6S2iSSI+nXkjaL6yMlPRF1jZK0T6Q/20ikR9Iuko5uoe5+kiZ17E1nPv/fWUgaI2lcvOc/JL1a+Yb9JN0saan4+U4H6j+o9u2SJEmSuY9u6wmw/W/KWfeW5Gr7UZTyLm9DlRsD35V0EGV9e0Pbb0laEti1lb7cANzQrheYw8Smvhdt7xL3Q5lZSvjz8awf8B3g3Pa0YfvXndHXJEmSpGvotp6AlmimlCdprYpq3QRJq0b+NYGnbE8FfgQcHGfxsf2W7d9Vqj80lPImSlojyg+VdHZcLyvpulDSGy9p07q+rRSz7w1itj086htby6vC2ZKelHQH8KlK+UGS7o1Z/K2S+kT6yioKgGOizlrfdldR5Bsv6b5KV3agbB5s6TvWPB8nAivHdztF0pbRh+tVlAFPlLRXfNuJklaO8sepxDZA0iqS7oh+jK3kOSq8LRMUCoVJkiTJ7GGeNAIqHA0Mtz3Q9mmUs+hn2B4IDAZeiHw7Una+LwksYfvpFup8zfb6wHmUM/X1nAnca3tdypG3R2sPJK0OXAMMtT2K2FUf9e0ZZaF4HlanCPXsA9SMg4WAs4DdbA8CLgJ+HmXOBw6N9COZPms/Ftg++rNLpZ+tGgEVjgb+Ht/xqEhbl/I91wT2BlazvSFwIXBogzouA86JfmwK/FPSdsCqwIYUr84gSVvUF1SKBSVJknQJ3XY5oIOMBH4saTngWtt/jfTtgW+2sY5r4/cY4MsNnm9NGbgJz8Kbkj4BLANcD3zZ9mORdyHgbEkDKcI6q0X6FsAVUf4lSXdF+urA2sDtkgB6UAbTXpSB9Y+RDrBI/B4BDJP0h1rfJS0MLNeKsdMao2z/M+r7O3BbpE+kyAZPQ9ISFHng6+K7vB/p2wHbUdQJAXpRjIKqxyLFgpIkSbqI+coIsH25pIeALwA3S/o2RfhmKdsvQVlKkLRSCwNkTRGvpobXVt4E/gFsTpHphRIE6BXKrHoB4P1W6hDwqO1NZkgsHoz/hIdjBmwfJGkjyjuPkTSIMuu+vx19b0RVGfDjyv3HtP27CDjB9m9msS9JkiRJB5jXlwNmUMqTtBLwtO0zKbPyAZRZ692VMicA58TAiqRe7dzhfidwcJTtIal3pH9IcfPvo+knFnoD/7T9McWl3iPS7wP2jPJ9mD6zfhJYRtImUf9CktaK/QvPSNo90qUix4uklW0/ZPtY4FVgecpSwF/a8U5tVRxsiO23gRckfSn6tIiknsCtwH7hyUBSX4WqYJIkSdL1zOuegHqlvEWAvSVNAV4GfgEcD1xdKXMexS09KvJNoSjztZXvAedL2p/iLTgY+CeA7Xck7URx50+mrNtfE0ZGVeHvOsqywmMU78HIKP+hylHBM8O4WJASQ+BRSlS+81SU+RYCrgTGA6eobIAUxUAZT1EWPLatL2T735JGqBxz/AvQkYP6ewO/kXQ85Zvubvs2lU2ZI2MZYzLwDcpeiYakYmCSJEnnMd8rBqpEzNvI9pQ53ZfZQeyHuMD2jq1mngtJxcAkSZL2oyaKgfO9EZB0Lxbps6r77Hv6nO4GkGqCSZJ0H5oZAfP6noAEkPRjSY/GWfxHYqNgR+uqnv3vEiXDJEmSZPYwr+8JmO+JTYQ7Aevb/iDEfxaew91KkiRJ5gLSEzDv04cicPQBgO3XgL6SapoBX5T0nqSFJS0q6elIPyCU/MZLuiZ28zdF0jYqSogTJV0UJwA2aEM7h0l6LLwUV3blh0iSJElmJI2AeZ/bgOUlPSXpXEmfpYjz1DQFhgCTgA2AjYCHIv1a2xuEwt/jwP7NGpC0KOX0xZ6216F4mA5uYztHA+vZHkBRIGxUfyoGJkmSdAFpBMzj2J4MDAIOpOgEXEU5hvf3OJ63IXAqRaVwCDA8iq6tEoNgIuX44VotNLM68Iztp+L+d8AWtj9qQzsTgMskfQP4qMk7nG97sO3BPXr2bpQlSZIk6QBpBMwH2J5q+x7b/wscAnyFIki0I+XM/h0UJcPNmT44DwMOiZn9T4FFO9h8a+18ATiHEmdhlKTcp5IkSTKbSCNgHkfS6iEWVGMg8BxlED4cGGn7VeCTlBn9pMi3BCUuwUIUT0BLPAn0k7RK3O8N3BvXTduRtACwvO27gR9QFBR7dfhlkyRJknaRs655n17AWZKWorjb/0ZZGngHWJbpwXomAP/t6cIRP6Gs278av5vKBtt+X9I3KQGMFgRGAb+Oxw81ayfyXhrqhwLOtP2fll4mFQOTJEk6jxQLSroVqRiYJEnSfpqJBaUnIOlWTHzxTfod3ZHQBZ1PKgYmSdLdyT0BSZuJoEcdLTtU0tmd2Z8kSZJk1kgjIOlycsd/kiTJ3EkaAcksIWlnSQ+FWuAdkpaN9OMk/V7SCOD3dWW+IGmkpKUl7S5pUigT3tewkSRJkqRLSCMgmVXuBza2vR5wJfD9yrP+wLa2v1ZLkLQrRSXw8yFhfCywfSgT7tKogVQMTJIk6RrSTZvMKssBV0nqQwlM9Ezl2Q2236vcbw0MBraz/VakjQCGSfoDcG2jBmyfD5wPJZRwJ/c/SZJkviU9AcmschZwdigLfpsZlQXfqcv7d4rewGq1BNsHAccAywNjJH2ya7ubJEmS1EgjIJlVegMvxvW+reR9jiJZfImktQAkrWz7IdvHUoSJlu+yniZJkiQzkMsBSXvoKemFyv2pwHEUpcA3gLuAFVuqwPYTkvaKMjsDp4SssYA7gfEtlU/FwCRJks4jFQOTbkUqBiZJkrSfVAxM5gnmJsXApHNJBcYkmf3knoAKkv5b0pWS/i5pjKSbJa3WeslZbndjSRdI2lLSTV1Q/18kLSfpHkn/kKTKsz/NihJgC23uIunozq43SZIk6TzSCAhiYLwOuMf2yrYHAT+kRMCr5ekqz8mOwC1dUbGkxYBP2q6t5f8H2CyeLQX06Yp2bd9g+8SuqDtJkiTpHNIImM5WwBTbtRC42B4P9JA0XNINwGMAkv5fqNxNknR4pB0l6bC4Pk3SXXG9taTLJPWQNCzKTJR0RKXtbYA7qp2RtGGo6o2T9ICk1SP9PkkDK/nul7SupM9KeiR+xkmqhf7dErinUvWVwFfj+stUzuZL6iXpTkljo49frDz7iaQno70rJB0Z6fdIOiPanSRpw0ifFitA0jKSrpE0Kn5qRkizPidJkiSzgdwTMJ21gTFNnq0PrG37GUmDgG8CG1F2tD8k6V5gOPA/wJkUQZxFJC0EDAHuAwYCfW2vDdNm4UhammJ8vFnx0gM8AQyx/ZGkbYFfUI7X/RYYChweSxWL2h4v6Ubgu7ZHSOoFvB/17Aj8qVLvncAFknpQjIEDgZ/Es/eBXW2/Ff16MIyfwdH2usBCwNi6b9XT9kBJWwAXxbescgZwmu37JX0GuBVYEziySZ9nQNKB0U96LLlMoyxJkiRJB0hPQNt42HZNCW9z4Drb79ieTJlJD6EMioMkLQl8AIykDJ5DKAbC08BKks6StANQU8zbDritQZu9KcfoJgGnAWtF+h+BncLA2A8YFukjgFPDG7GU7Y8ifTOKtG+NqXH/VWAx289Wngn4haQJFM9EX8pyyGbA9bbft/02cGNdX68AsH0fsGTNwKmwLXC2pEeAGyJPrxb6PAO2z7c92PbgHj17N8qSJEmSdIA0AqbzKDCoybN65buZsD2FIpk7FHiAMvBvBawCPG77DcpM+h7gIODCKNpsP8D/AXeH52BnQonP9rvA7cAXgT2AyyL9ROBbwGLACElrSFoJeN72h3V1X0nxWPyhLn0vYBlgkO2BwCvMqADY9PVbuV+AEl9gYPz0tT25UZ/b0FaSJEnSSaQRMJ27KC78A2sJkgZQZvJVhgNfktRT0uLArpFWe3Ykxf0/nDLYj7PtcK8vYPsaikzu+rEZcQDwSIP+VJX4htY9u5AyiI8K46KmvDfR9knAKGANmhsYw4ETiBl8XZv/sj1F0lbACpE+AthZ0qIxg9+prtye0YfNgTdt10f5uQ04tHZT29PQpM9JkiTJbCL3BAQxUO8KnC7pB5T16WeZcT0d22MlDQMejqQLbY+L6+HAj4GRtt+R9D7TDYS+wMWSaobXDymeh3Gerti0IGUpAeBk4HeSjgFmOBhve4ykt4CLK8mHx8D9McWr8RfgaiqDb/VdgV82+AyXATdKmgiMpuxLwPao2BswgeIdmAhUB/r3JY2j7BfYr0G9hwHnxDLDghQj6aAmfW6RVAxMkiTpPFIxcA4SA/zfbF8Z99+jbB78fivlPk1ZVljD9sdN8iwCjGikENXBvvayPVlST8ogfmAYRPcAR9qeLTJ+qRiYJEnSfpSKgXMftn9Wu5b0W8qu+j1aKiNpH+DnwP9rZgBE3R9QNiZ2FudL6k/ZI/A722M7se42M7sUA1O9LkmS+YEW9wRIulvS9nVph0u6WNLVXds1kPRVST+WtKykmySNl/SYpJvjeZsV9iQdH0ftkPRsrNF3pE/Tzr+3o0xDRb44Yz8YwPb+tjey/VxLbdi+xPbytv/YjvZ/LWkzFZ2CZypn8x9oax22vx6b+tawfUIlfcv2eAEkHRSGTJIkSTKHac0TcAXlKNmtlbSvAt+P42AzIGnBZse8OsiOlA1wxwO32z4j2hnQnkok9YhQtfMkbfjuGwPfBQ4AjrLd1ICb1b9hbHZUMy9FVYwpSZIkmbO0djrgauALkhYGkNQP+DTwfJxfr82Mb1BRyLsz0o4KZbgJkn5aq0yNlfYWl/TnmOVPklTbaS6KwM5YirTttBC2tidU+thL0tWSnlBR5lOUf1bSSZLGArvHLHi36stJWkxFV/+AuP+GpIdjlvwbFUGdRiwfs/i/SvrfSn1/Uok58Gj1lEE8Oy3S75RUVbzZW3Vqe3XlmqntHSfp95JGAL+XtFal7xNUwvMiaU3gKdtTm7xLo7qGSrq+yTs2+hv2U1ETvASYFN9nsqSfx9/1QUnLVtqqqQ0eFp6dCZKubNa/JEmSpGto0RNg+3VJD1Nm5NdTvAB/YOZz4OsDAyL/dsCqwIYU8ZkbVJTk3qGx0t5KwEu2vwAgqaYGsx4wPnbtnwNcJekQiojNxbZfquRbC3iJcpStKo7zb9vrR7071PW5F+W8/CW2L4nBck9gszgidy7l3PwlDT7NhpT1+3eBUZL+HC7x/eIbLBbp19j+N7A4MNr2EZKOBf4XOCTq6qjaHkB/YHPb70k6CzjD9mVhtNUMmPpjgqeobEgEeNT2Xg3qGtroHSl/90Z/wzcof/N9bT8Y33tx4EHbP5Z0MsULMW0PRHA0sKLtDzSzwNA0lIqBSZIkXUJbNgbWlgRqRsD+DfLcbvv1uN4ufmrH5npRBohehNIegKSa0t4twK8knQTcZLt2pG4H4siY7VtVhG92oAxq4yTVBsuHa8FxVBTp+jHdCLiqhfe6HjjZ9mVxvw3lyN6ocCYsBvyrSdnbY3CvvcfmlCN1h6kcMwRYPt7735QjcLW+XEpFr5+K2p6kZmp7/TVdUrimtgdwg+334nok8GNJywHX2v5rpG9PGbhrNFsOqNbV7B1N47/hDcBzNQMg+BCo7dcYA3yuQZsTgMsk/Ym6o5hVbJ8PnA+wSJ9V8zhLkiRJJ9EWsaDrgW0krU+ZtTbS168q6gk4oaIOt4rt3zar3PZTFE/CROBnMVOGOjld26/bvtz23hRhmS3i0QeV6qYyo2HTktLfCGAHTR9dRdn1Xuv36raPk7Srpm+kq+22n0khT9KWlAF7E9vrUoygZmp7bnLd6L6h2l79+9m+HNgFeA+4WSVwUU+KHO9LtE79t2qtX62Vn1LRP6j/u9T4AnAO5e8/Sl0XpTFJkiRpQKtGQAw4d1Nc1fUKc424FdivNluV1FfSp2iitKdy5v1d25cCp1CU9HoDC1ZmorUBDZVIcysD/2jnu9ZzLMWNfU7c3wnsFn1F0n9JWsH2dZUBuLYL/nPxfDHgSxSDojfwhu13VeRvN660tQBQ24/wdWbU8u+Q2l494Sl52vaZFMNtAEW2+O42fo96Gr1jS2qJ7UJFNGl523cDP6B8v14tl0qSJEk6k7bOvK4ArmN6CNqm2L4t1tdHxiR7MvCNZkp7KkcQT5H0MTAFOJjiOq6G1h1ECUDzEWVAvTBU7LZsY/+b8T3gIkkn2/5+rJXfFgPUFMqO+ucalHsYuAZYDrjU9mgVlb2DJD0OPAlUXePvABtG/f8iBv6go2p79exB2WQ4BXiZEnXweMrmzirVPQFQ1v4bMdM7AjT5G/ZrUkdL9AAuDYNPwJm2/9NaoVQMTJIk6TzmSsVASRdSBpgHW82cNEXlZMRGLsGN2lNuKDDY9iGt5Z3dpGJgkiRJ+1F3Ugy0/a053Yd5gdrJiHmJ2aUYOKuk4mCSJN2BjCKYAKCizPhoLDscTtELaJOyoqTBks6M62k6AEmSJMnczVzpCUhmL5I2oYQHXj/O7C8NLNzGsgvGfoH00SdJknQz0hOQQFFkfC2CDmH7tcqxwkMljZU0MU49NFIYbBjDQdIBKoqMi0laWdItKoqKwyt17a6iPjhe0kxS1EmSJEnXkUZAAuUY4vKSnpJ0rqTPVp69FnsLzgOqbv7+wLa2v9aoQhV1x52AL4UI0fnAobYHRT3nRtZjge1DW2GXJnUdKGm0pNFT360/QZkkSZJ0lFwOSLA9WdIgivrfVhSJ5qPjcU3dcAzw5UqxeoXBKvsAz1MMgCmhGbEp8MeK8uEi8XsEMEzSH5hRSbHav1QMTJIk6QLSCEgAiABD9wD3hObBvvGopsjYHjXGiZTgT8sBz1A8Tv+xPZPQke2DJG1EUQ8cI2lQTSQqSZIk6VpyOSBB0uqKqIPBQBqLJLWVccC3KcGjPm37LeAZSbtHe5K0blyvbPuhCPX8KiXmQpIkSTIbSE9AAkWu96wIXvQR8DdK1L6dOlphRD08EvizpM9RIjKeF2qFC1EiOI6nKBiuSlENvDPSmpKKgUmSJJ3HXKkYmCTNSMXAJEmS9tOtFAOTpBndRTFwTpFKhUmStIfcE9BGJH2yElL4ZUkvVu7bJKzTgTa/XDtP3+DZspJGSRonaVNJL4Q7v8vbruTZVtKfOqvNJEmSZPaSnoA2EjvWB0IRywEm2/5lW8qGqt5HHWj2y8DHwBMNnn0OGGP7oGijA9V3uO1OYRa+S5IkSdIJpCdgFpH0ixDGqd2fJOm7MUu+J5T0JsazG0Mx71FJ34q0BSX9R9KJoZo3UtKnJA0BPg+cFt6GfpU2BlNCBX+l3hPRrD9x/aNQ/hsv6eeRdlB4FMZL+mOo+83UtqTVJN0V+cZW+rOEpGslPSnpkkq7G0i6N973L5KWjfT7JZ0maTRwiKSvVhQD7+60P0ySJEnSKukJmHUuAq4AzpbUA9gdGBQ/g4H+tv8Refe1/bqknsBoSdcAbwO9gXttHy3pVGA/2ydKuhm42vYMLnfboyUdD6xt+3CYwRPQsD+SdgZ2BDa0/Z6k/4r8f7T966jjRGCo7fPq25Y0BjjO9o2SFqUYkKsA6wNrAa8AD0ramHJE8AxgF9uvSdoL+D/KiQOAHrUNKpIeB7a0/Uqz5QxJB9bK9lhymTb8SZIkSZK2kEbALGL7b5LelrQOsALwsO03YlAeWTEAAI6QVJPGXQ5YGXgEeM/2XyJ9DEW5r7P7sy1wUU3lz/brUWRAGBRLAUsAjWIAfAJY2vaNUfb9SAd4sBZnQNIjQD/gfYphcEfk6QG8UKnyqsr1COASSX8kFQOTJElmK2kEdA6/BYZSBsDfVNKnqerFILwFsHHMxO8HFo3HH1bK1CvzdWZ/GnEJsKPtSbFEsXE72/qgcl3ru4AJtpsZM1W1wQOAjSiaBGMlrWf7jXb2IUmSJOkAuSegc7gG2JmycfCOJnl6A6+HAbAWsEEb6n2bMjvvjP7cDuwnaTGAynLA4sDLkhYCvt6o7RiUX40lBSQtGksazXgM6Ctpw8i/cLxzI1ay/SDwE+ANoG+73jRJkiTpMOkJ6ARsv68SBvdl2x83yfZn4EBJjwFPAg+1oeorgN9I+h9KMJ5nO9of2zepSPWOljQFuJEy8B4LjKJI9j7MdO/EDG1TFP9+ExsKPwS+0kL7H0jaDThT0pKU5YBfAY82yH6apBUp3oPbbE9q6d1SMTBJkqTzSMXATkDSApS1/S/Zfjr703WkYmCSJEn7USoGdg2xAe8Gyi77OT7gzm396WxSMXDeIdUNk2TOk3sCWkDSVE1XBZzhrH4N2xNtrwicK6lFV3ZXIenXkjaL2+0pm/W2i/P/+8yJPiVJkiRzP+kJaJn3bA+c051oAxsD35V0EEVJcEPbb8V6/K5trURdpOAnqYftqZ1db5IkSTJrpCegnYR63vBQzRsradMGeXpI+mUo4U2QdGikb6Oi9T9R0kWSFon0ZyX9NOqbqNDsl/TZihdinKSZTgpIWhN4KgbZHwEH234LwPZbtn8X+Y4Nz8AkSecrDvCrqBqeHgp+35O0s6SHor07Kkp/vSRdHP2bIOkrkX6epNEqKog/rfTrWRW1wrHA7pIO0HRlwmtqpwsk7a7pioH3ddofKkmSJGmVNAJaZrHKIHxdpP0L+Jzt9YE9gTMblDuQckZ/oO0BwGWhsjcM2NP2OhQvzMGVMq9FnecBR0bakcB3wxsxBHivQVs7ArfErH+JFvYBnG17A9trA4tRzuXXWNj2YNu/Au6naBmsB1wJfD/y/AR40/Y68U53RfqPY7PJAOCzkgZU6v237fVtXwlcG+2vCzwO7B95jgW2j/RdaICkA8PQGD313TebvF6SJEnSXtIIaJn3bA+Mn5pbfSHgAkkTgT8C/RuU2xb4Tc21Hup8qwPP2H4q8vyOIh5Uo6aWN4ZiQEBR0ztV0mHAUk1c9dsDt7ThXbaKGf5EYGuKol+NqoLfcsCtke+oSr5tgXNqmSqCPnvEbH9c5K1+j2q9a4cHZSLluGGt3hHAMEkHUI4SzoTt88NIGdyjZ+82vGqSJEnSFtIIaD9HUHTy16XEBuisMMI15b1pioG2TwS+RZm5j1BdaN9wqS9l+6VYApgsaaX6isMLcS6wW3ghLmC6HgDMqOB3FsVrsA7w7bp89fWuSPFWbBPegT+3UO8w4JCo96e1fBEF8RhgeWCMpE82ay9JkiTpXNIIaD+9gX+GCM/eNJ693g58W9KCME2d70mgn6RVIs/ewL0tNSRp5Thz8W8cAAAgAElEQVR9cBJF0GeNuixbAdXIeycA58TSQG0dfx+mD8yvSeoF7NbK+70Y1/vWvdN3K337BLAkZaB/M/YO7NhCvUsA/1RRJtyr7h0fsn0sRbBo+RbqSJIkSTqRPB3Qfs4FronB9RZmnO3WuBBYDZgQ6nwX2D5b0jeBP4ZxMAr4dSttHS5pK+BjitreX+qe7whcXbk/D+gFjIp2pwC/sv0fSRcAk4CXo+1mHBd9fIOy7r9ipP+MYmBMongrfmr7WknjgCeA5ymu/Wb8hKKS+Gr8rm1yPEXSqhTFwDuB8S3UkYqBSZIknUgqBnZjYi1+I9tT5nRfZhepGJgkSdJ+UjFwLkfSacBztk+P+1uB521/K+5/Bbxo+9RamThN0J42hgE32b66tbztqHOy7V6dVV9rpGJg15EKfkky/5F7AuYeRgCbwjTt/6WZcQf/psADc6BfXYIK+e8vSZJkDpL/Cc89PABsEtdrUdbv35b0iRAVWhMYJ+mUENeZKGlPmDagNks/W9KTku4APlVrLMR8To78D9c2LEpaJsR8RsXPZpHeUCyoUt/SkkZK+kLcHxXlJ9REhFSElp6UdEm83/KShlX6fUSXfd0kSZJkJnI5YC7B9kuSPpL0GcqsfyTQl2IYvAlMpAj8DKQcT1yasgHwvsjfKH0Tij5Bf2BZ4DHgokqzb9peJzY5nh71nwGcZvv+6MutFANkmlgQTDsdQFwvSwladIzt2yVtB6wKbEjZ8HeDpC2Af0T6vrYflDQI6BsCRkhaqpM+Z5IkSdIG0giYu3iAMqBvCpxKMQI2pRgBI4DNgStCIvgVSfcCG7SQvkUl/SVJd9W1d0Xl92lxvS3QX0VVGGDJOFa4LfDVWmJFLGghyq7+79quHXncLn7GxX0vyuD/D8q+hwcj/WlgJUlnUTQGbmv0USQdSFFhpMeSyzT+ckmSJEm7yeWAuYvavoB1KO7yBymz+a7aD+AG1wtQZINrSol9bU9uoY6PKCqH21fSBJxQqWMV27+NZ9OOVIYhsS5wD3AQ5WjlzJ1MxcAkSZIuIY2AuYsHKC75121PDbnhpSiGwAPAcGBPlQBFy1Bm+g+3kH5fJb0PRVyoyp6V3yPj+jbg0FoGSbUoio3EgqAYD/sBa0j6QaTdCuwXHgQk9ZU0bT9CpY6lgQVsX0NRDWzXaYckSZJk1sjlgLmLiZQ1/cvr0nrZfk0liNEmFEEdA9+3/XIr6VtT9gL8g+kDfY1PSJpAkSz+WqQdRhEFmkD593EfZZY+k1gQEe/A9lRJX6Os/b9t+1yV6IYjY1lhMvCNKFelL3Bx5ZTAD9v/yZIkSZKOkmJB8ymSngUG235tTvelPaRYUJIkSftpJhaUywFJkiRJMp+SywHdlKpSn6TPU474fY4ST+Bd25e0VN52vyb17g4cT4kxcBSwj+3DmuTdEjjS9k4dfI12M78qBqaaX5IkXUEaAd0cSdsAZwLb236O1oMStcb+wAG274/7LvO9S1rQ9kddVX+SJEnSMrkc0I0JAZ4LgJ1s/z3SjpN0ZFzfI+mkUAR8StKQSO8p6Q+SHpN0naSHJA2WdCxFc+C3oUC4paSbosxnJT0SP+Mk1aIA9pJ0taQnJF2m2AkoaZCkeyWNkXRrnE6o9el0SaOB70naPRQDx4fAUZIkSTKbSE9A92UR4E/AlrafaCHfgrY3jCWD/6WI/nwHeMN2f0lrA48A2D5e0tYUF//ocPfXOJIiCDQijv69H+nrUWSOX6LoHGwm6SHgLOCLtl9VkTH+OeUoIcDCtQ0qkiZSvBgvpmJgkiTJ7CU9Ad2XKRTtgP1byXdt/B4D9IvrzYErAWxPAia0ob0RwKmSDgOWqrjxH7b9gu2PKcZEP4pU8drA7ZIeoWgALFep66q6eodJOgDo0ahhSQdKGi1p9NR332xDV5MkSZK2kEZA9+VjYA9gQ0k/aiHfB/F7KrPg+bF9IvAtYDFghKQ16uqvtiHg0Ypi4Dq2t6vkq6oGHkQxEpYHxkj6ZIO2UzEwSZKkC0gjoBtj+13gC8BeklrzCFQZQTEgkNSfIlPcIpJWtj3R9knAKGCNFrI/CSwjaZMou5CktRpljHofsn0s8CrFGEiSJElmA7knoJtj+3VJOwD3SXq1jcXOBX4n6THgCeBRSpCiljhc0lYUD8SjwF+YHvq4vk8fStoNOFNSb8q/s9OjXD2nSFqV4j24k6J6mCRJkswGUjFwPkRSD2Ah2+9LWhm4A1jd9odzuGutkoqBSZIk7aeZYmB6AuZPegJ3S1qIMgP/TncwAJIkSZLOJY2A+RDbbwMzWYTtQdJywDlAf8rekpuAo1ozJiT1A26yvXZH2p1fFQOTriPVGJP5mdwYmLSbEAS6FviT7VWB1YBeFC2AJEmSpJuQRkDSEbYG3rd9MZRQwsARwH6S7pY0ACCUBY+N6+NDC2AaktYKNcNHJE2IDYJJkiTJbCKNgKQjrEURH5qG7beAfwB3A0PiVMBHwGaRZQhQLwt8EHCG7YGU5YkXurLTSZIkyYykEZB0NvcCW1AG/z9TYgv0BFa0/WRd3pHAjyT9AFjB9nuNKkzFwCRJkq4hjYCkIzwGDKomSFoS+AwwjjKrr838xwEHUOc5ALB9ObAL8B5wc8QtmIlUDEySJOka0ghIOsKdQE9J+8A03YFfAcNiWeB5YHfKTH84JfjQTBECJa0EPG37TOB6YMDs6X6SJEkCaQQkHcBFYWpXYHdJfwWeokQVrMUwGA78K9z7wynBg4Y3qGoPYFIEGVobuKSr+54kSZJMJxUDk25FKgYmSZK0n2aKgekJSJIkSZL5lFQMnMeQNBWYSJEDngocYvuBOdurGZF0D3Ck7XZP6VMxcGZS8S5Jko6SRsC8x3tx7h5J2wMnAJ9tS8FQApTtj7uwf0mSJMlcQi4HzNssCbwBIKmXpDsljZU0UdIXI72fpCclXQJMApaXNFnSzyWNl/SgpGUbVS7pa1HXJEknRdrukk6N6+9JejquV5I0oq58D0nDovxESUd02ZdIkiRJZiI9AfMei8Vu+0WBPhSJXyi793e1/ZakpYEHJd0Qz1YF9rX9IICkxYEHbf9Y0smUc/4/qzYi6dPASRS9gDeA2yR9iXIK4PuRbQjwb0l9aawYOBDoWwsmJGmpTvkCSZIkSZtIT8C8x3u2B9peA9gBuKTm5gd+IWkCcAfQF6jN8J+rGQDBh5SogFBEfvo1aGcD4B7br9r+CLgM2ML2yxSVwCWA5YHLKQqCQ5j5mODTwEqSzpK0A/BWoxdKxcAkSZKuIY2AeRjbI4GlgWWAveL3oNgz8ArFWwDwTl3RKZ5+dnQqsGC47h+Jn+NbafoB4JvAk5SBfwiwCTDDcoDtN4B1gXsocQQubPIeqRiYJEnSBeRywDyMpDWAHsC/gd4UAZ8pkrYCVmhPXREpcGCl7j7AmbG08AbwNeCseDwcOD5+xgFbUTwUM0zjo+yHtq+R9CRwafvfMkmSJOkoaQTMe9T2BEBZAtjX9lRJlwE3SpoIjAaemJVGbP9T0tGUqIEC/mz7+ng8nLIUcF+0/XyT9voCF0uqeaR+2Fq76/Ttzeg8EpckSdIppGJg0q1IxcAkSZL200wxMD0BSbcixYKSeY0Ue0rmJLkxcC5A0uS6+6GSzp7FOttdh6QxkhaR9Gyc269tBDyzg33oJ2lSR8omSZIkXU96AhIAJK0IvGj7g3KikK1svzaHu5UkSZJ0IekJmMuRtLOkhySNk3RHTb0vZupLqfBvSftE+iWSPldXxxckjZS0dCj6TQo1wKp4zw7ALa305QBJo6LsNZJ6RvrKoSw4UdLP6j0bkaeHpFOi/ARJ3470PpLuC4/DJElDZu2LJUmSJG0ljYC5g8UqrvdHKEfratwPbGx7PeBKpqvxjQA2A9aiiO7UBs9NKOf0AZC0K3A08PmY2R8LbG97XWCXSjv1RsDdlT7V5Hyvtb1BlH0c2D/SzwDOsL0O8EKTd9wfeNP2BhShoQPC+/B14NbQLlgXeKS+YIoFJUmSdA25HDB3MC3oD5T1fKC2i3M54Ko4l78w8EykD6co8T0HnAccGPK8b9h+J1z6W0c929muqfGNAIZJ+gNwbbS3MLCc7acrfWq0HLC2pJ8BSwG9gFsjfRPgS3F9OfDLBu+4HTBA0m5x35siVzwKuEjSQsCfbM9kBNg+HzgfYJE+q+ZxliRJkk4iPQFzP2cBZ8cs+9tMV/m7jzL7H0JR3HsV2I0ZpXn/DiwBrFZLsH0QcAzlHP8YSZ+MOu5vQ1+GUUITrwP8tNKXtiDg0JA0Hmh7Rdu32b6PYsy8SDFO9mlHnUmSJMkskEbA3E9vygAJsG8t0fbzFEngVWMGfz9wJDMG6XkO+AolfsBaUNbvbT9k+1iK4bA8ZSngL23oyxLAP2PWvlcl/cFoB+CrTcreChwcZZG0mqTFJa0AvGL7Aops8Ppt6EeSJEnSCeRywNzPccAfJb0B3AWsWHn2EEUWGIoH4ATqZvS2n5C0V9SxM3CKpFUpM/M7gfHABZS9AlXuljQ1rifY3gf4SbT5avxeIp4fDlwq6ceUfQWNFu4vpAQiGhsBjV6lLCFsCRwlaQowGWjRE5CKgUmSJJ1HKgbO50haDrjA9o6zUEdPyr4GS/oq8DXbX+y0TlZIxcAkSZL2k4qBSUNsvwB02AAIBgFnxwz/P8B+s9yxJqRi4LxHKuYlyZwjjYBkGuEVOAfoT9kvchNwlO0PWypnezjleF+SJEnSjciNgQkAMYu/lnJMb1XKiYJewM9nsd4eredKkiRJ5gRpBCQ1tgbet30xgO2pwBHAfpLWkvRwCAdNkLRqxAV4QtJlkh6XdHVFQfBZSSdJGgvsHoqCt0RsguGS1pC0hKRnKqcFlqzeJ0mSJF1PGgFJjbWAMdWEEBj6B3A2RRFwIEV8qKYKuDpwru01gbeA71SK/9v2+ravpAj9HGp7EOUY47m236boG9QWhL9KUSScUt+xVAxMkiTpGtIISNrC3cCPJP0AWMH2e5H+vO0RcX0psHmlzFUAknoBm1KOKD4C/AboE3kuBL4Z198ELm7UuO3zbQ+2PbhHz96d9U5JkiTzPWkEJDUeo+zyn4akJYHPUGSAdwHeA26WtHVkqT9fWr1/J34vAPynohQ4MDwHhAHRT9KWQA/bGXY4SZJkNpJGQFLjTqBnJRphD+BXFKng/waetn0mcD0wIMp8RtImcf11GkgPx5LCM5J2j3olqXqS4BJKvIGGXoAkSZKk60ixoGQakpYHzgXWoBiIN1PW8I8A9gamAC9TBvwlKeqAoykehMeAvW2/K+lZYHAtAFFECzyPsgywEHCl7ePj2X9TgiL1sf2f1vqYYkFJkiTtJ8WCklaJeAQ7N3h0YvxMI5YKPrL9jQb19Ku7f4YSn6ARmwNXt8UASJIkSTqXNAKSOYaksyhqhZ9va5lUDEw6SioTJsnM5J6AOiRZ0q8q90dKOq4T679O0pcq909KOqZyf42kL7ejvn6SGm6ok3SPpJncP+1F0nGSjozroZI+bftZ22vPSr22D7W9iu2nZrWPSZIkSftJI2BmPgC+LGnpLqp/BOXIHJI+SdlFv0nl+SbAA22pSNKc8OQMBT7dngJzqJ9JkiRJK6QRMDMfUcRtjqh/IGmZmKmPip/NIn2ipKVi5/u/KzvsL5H0ubpqHiCMgPh9I7BMlF2REo3vZUmLSro46h4naauoc6ikGyTdRdnRX+3fYpKuDAW/64DFGrzDDpL+WLnfUtJNcT25kr6bpGF1ZXejiAVdFuqBi4U64NLxfLCke+L6OEm/lzQC+L2kHpJOie82QdK3I18fSfdFfZMkDWn6l0mSJEk6lZyhNeYcYIKkk+vSzwBOs32/pM8AtwJrUmb3mwHPAU8DQyhH3zYBDq6rYwywtqSFKUbAvcBKUc96TPcCfBew7XUkrQHcJmm1eLY+MMD265L6Veo+GHjX9pqSBgBjG7zbHcD5kha3/Q6wJ3BlWz6K7aslHQIcaXs0gKSWivQHNrf9nqQDgTdtbyBpEWCEpNuALwO32v55HEvsWV9JlD0QoMeSy7Slq0mSJEkbSCOgAbbfknQJcBhFIKfGtkD/ysC3ZCjiDQe2oBgB5wEHSuoLvBEDbbXuDyQ9ShnINwZOphgBm1KMgJoC3+bAWVHmCUnPUYL6ANxu+/UGXd8CODPKTJA0ocG7fSTpFmBnSVdTZHu/37Yv025uqKgLbgcMCG8CQG9gVWAUcJFKzIA/2X6kQZ/Pp3hnWKTPqnmmNUmSpJPI5YDmnA7sDyxeSVsA2LiifNfX9mTgPsrsfwhFD/9VYDeKcdCIEZQBewnbbwAPUoyATWnbfoB3Ws/SIlcCe1CCBo0OHX+YUfFv0TbW9RHT/x3Vl6n2U5T4AbVvt6Lt22zfR/kWLwLDakspSZIkSdeTRkATYqb9B4ohUOM24NDajaSBkfd5YGlgVdtPU5TzjqQYB414APg2MD7uJ1C8Ap8Bajv9hwN7RTurxbMnW+n2fRQhHyStzXRlv3rupXgiDmDGpYBXJK0paQFg1yZl3waWqNw/y3S54a+00LdbgYM1PWrgapIWl7QC8IrtCyixBNZvoY4kSZKkE8nlgJb5FXBI5f4w4Jxwsy9IGXQPimcPAT3iejhwAg1kdIMHKEsAJ8A0F/2/KAF5Po485wLnSZpImW0PjaWElvp7HnCxpMeBx6mLCljD9tTYDDgU2Lfy6GjgJoonYzTQq0HxYcCvJb1H2fPwU+C3kv6P4gVpxoVAP2Csyku8CnwJ2BI4StIUYDLQoidgnb69GZ3nvZMkSTqFlA1OuhUpG5wkSdJ+lLLBybxAKgYmXUmqCibzG7knoBOpnbOvnr1vkOdmSUt1YpsLSRob1z+W9Gicw39E0kad1U4rfWjT+1a+T1OVwyRJkmT2kZ6A2YztNuvkt5HNKWfuNwF2AtaPvQNLAwt3clvtpgveN0mSJOkk0hPQdSwp6c8qsQF+HTvuqSnsxc74P0saH0p5e8bzQZLulTRG0q2S+kT6YZIei1l+dUf/DsBfKGF6X7P9AYDt12y/VGnzZBX1wYclrRLp/STdFXXeGQJILaUPk3SmpAckPV0589/q+zb7SJLWij49Eu2t2ilfP0mSJGmVNAK6jg0pxwn7AytTlPGq7AC8ZHvdCMRzSxyfOwvYzfYg4CLg55H/aGA92wOYfiIBYCvKrvzbgOUlPSXpXEmfrWvvTdvrAGdTNBCItn4XdV5GCA21kA7F2Nic4nWohhdu7X2bcRBwhu2BFEniF+ozSDpQ0mhJo6e++2Ybq02SJElaI42AruNh20/bngpcQRk4q0wEPifpJElDbL8JrA6sDdwu6RHgGGC5yD+Botn/DcqRQUKV8HXb74Zo0SCKvO6rwFWShlbau6LyuxawaBPg8rj+faWPzdKhqPp9bPsxYNl2vG8zRgI/kvQDYIWKwuA0bJ9ve7DtwT169m5jtUmSJElrpBHQddSfvZzhPsLnrk8xBn4m6ViKqt6jFVW9dWxvF0W+QIlpsD4wSiUy3w4UEZ5anVNt32P7fyn6BlXxHje5bi8fVK6rogUtvm8zbF8O7EKRZ75Z0taz0LckSZKkHaQR0HVsKGnFWBvfkzrhIEmfpgT7uRQ4hTK4P0mJKLhJ5Fko1swXAJa3fTfwA4rufi+m7wdA0up16+kDKbEMauxZ+T0yrh8AvhrXezFd5rhZeofftxmSVgKetn0mcD3NVQ6TJEmSTiZPB3Qdoyjr76sAdwPX1T1fBzhF0sfAFOBg2x/GZrszJfWm/H1OB54CLo00Udbo3wZWsf1E1NcLOCuO430E/I2IvBd8IpQOPwC+FmmHUhQGj6IsIXyzlfRZed9m7AHsHYqBLwO/aClzKgYmSZJ0HqkY2E2RtDnwDdsHtSHvs8Bg2691ece6mFQMTJIkaT+pGDiPYft+2uhyn5dIxcAkmTdIdca5g3luT0BNla5yP1TS2XOwPxtLuiBU9d6M8/C1n207qY0tJW3a7LntfjUvQOgPLBLn9ydGPyZK+mKlvgfidz9JX6+kD5SU4j9JkiTzCPOcETCrxK77zmRH4Ja4Hl7Z+T/Q9h2d1K8tgaZGQKWOFYEXa4JCwFZxPn83KloAtmt19SNCEwcDgXYZAV3wPZMkSZJOYr4yAiQtI+kaSaPiZ7NIP07S7yWNAH4vaVFJF8cMeZykrSLfUEnXSrpF0l8lnRzpPUJNb1KUOaLS7DZAi4O9pJ+E0t79kq6QdGSk3yPpdEmjge816r+kfhTBnSNiVj9E0u7Rl/GS7qs0tQPTDZIqSwJvVPpT86acCAyJen8AHA/sGfd7qqgeXhSKf+Nq3oT4TjdIugu4MzwV90i6WtITki6TSkxkSSdquhLiL1v9IyZJkiSdxrw4S1tMRWinxn8BN8T1GcBptu9XkcK9FVgznvUHNrf9nqT/AWx7HUlrALdJWi3yDQTWo+yyf1LSWcCngL6h/IemB8xZGphi+80Y84bU9e0r0b+vAOsCCwFjgTGVPAvXNnNIury+/7bXlPRrYLLtX0a+icD2tl/UjMGKdgCqBsrdMRivRNmlX8/RwJG2d4p6X6FsMDwk7n8B3GV7v2jnYUk1g2d9YIDt1yVtGd9sLeAlYASwmaTHgV2BNWxbTQIrSTqQOOnQY8llGmVJkiRJOsC8aAS8Fy5uoMxKKXK0ANsC/WNAhqJ33yuub6io1W1Okc7F9hOSngNqRsCdoe6HpMeAFYBHgZXCIPgzRcIXYLvKNZTlgJ2qnZW0M3C97feB9yXdWPc+V1WuW+p/lRHAMEl/AK6NdhYGlrP9dCXfVrZfk7QyZcZ+TygPtpXtgF1qngtgUeAzcX277dcreR+2/UL05RHKUsODwPvAb1WiEDaMRGj7fOB8gEX6rJrHWZIkSTqJedEIaIkFgI1jwJ1GDKrvtLGOqmLeVGBB229IWhfYnuKa3wPYj7If4NRZ7HO1Xy31fxq2D1IJI/wFYIykQRQPRsPTBLb/HrP8/sDD7eibgK/YfrKuPxsx8/ds9N0+krQhZclkN4rKYSoGJkmSzCbmqz0BlFn5obUbSQOb5BtOUcojlgE+Q1Hza0i4/RewfQ1F73/9cLMPAB5pVi4YAewc+xB6UQLztLf/bwNLVNJXtv2Q7WMpYj/LU1EXbND/TwErMqPC4Ez1Nri/FTi0sr6/Xgt9b9RuL6C37ZspyxTrtqd8kiRJMmvMb56Aw4BzVJTzFgTuY8aIfDXOBc6LtfWPgKG2P6ifcVfoS1HYqxlVP6QE8xnnGdWY6vcE/Mz21ZJuoAQIeoUSS6BZqLxm/b8RuDo25h1K2SS4KmWmficwHrgAOLauvrslTaXsRTja9it1zycAUyWNB4YBvwOOjnc4Afg/iqLhhHj3Z2jZiKlnCeB6SYtGX/9fawVSMTBJkqTzSMXALkLSMcDfbF/Zhry9bE+W1JMysB9oe2wn9mU54ALbO3ZWnXOKVAxMkiRpP2qiGJhGwFxA7PrvT9lY9zvbJ8zhLs21LNJnVffZ9/Q53Y0kSZLZyqwqLDYzAua35YC5Ettfbz1X5xFLABMpf//HgX1tv9tC/meJ2AOSHqiICSVJkiTdmPltY2BSeC8UC9cGPqTxvoiGpAGQJEky75BGQDKcEv4XSd8I9b9HJP1GUo/6zBU1QST9QEUhcbykEyPtABU1w/Eq6oY9I32YpDMlPSDpaZWQyUjqI+m+aHOSpCGz5a2TJEmSNALmZ1R0/XcEJkpaE9gT2CzElqYSxySblN0R+CKwke11gZPj0bW2N4i0x4H9K8X6UISYdqJIEkOJTXBrtLkuDY5USjpQ0mhJo6e+2+zgRJIkSdJeck/A/ElVWnk48FuKLO8gYFQchVyM/8/encdbXdX7H3+9xQnFodLrRTNJxVlERDNzwHLMSs2RrLTJ7JrT/VlSds3KTPOW5pBetCSV1Os8YM4iSioiMkkO5XArzaGUwhHh/ftjfTZ82ex9zj6Hcw4gn+fjwYN91nda34MPv2uv71rvBS+1cY5dgItrYwkq6YCbSToFWBXoQ8kSqLne9mxgmqQ1ouxh4NeSlont8zUCMjEwpZS6RzYClkzzRCsDRODPb2x/ZwHPPQLYx/akiGweUtlWTQ0UgO0xknakpBuOkPRz25csYB1SSim1IF8HpJq7gP0jPRBJ75e0Thv73wF8qfLO//1RvhLwQnyzb/o6oSau8aLtC4GLKAsPpZRS6gHZE5AAsD0tAo5uj/S/mcCRzB8lXNv/1ogtHi/pHeAW4LvAfwEPUeKKH2LemOFGhgDfkjQTmAF8sa2dMzEwpZS6ToYFpcVKJgamlFLHZVhQek+Y8tfp9Bs2amFXIy2BFjSxLaVFUY4JaJGkf5d0haQ/SXpE0i2xwuBiQdKxtff37ey3raQLJa0gaWTkAEyVdL+kPpL6SZraE3VOKaXUvbInoAUxcv46yuj5g6NsC2AN4Ml2jl3a9rtdWJfOnu9Y4DKgaTxw2BO4FTiGMmBv87juhpRxAimllN4jsiegNTsDM21fUCuwPQm4X9IZ8U15iqSDACQNkXRfLBE8Lb49Px6peU/GN+xdJI2V9JSkbeK490u6XtJkSQ9KGhDlJ0u6VNJY4NI4332SJsSf7SrXHS3p6rjeSBVHA2tSlg6+R1KvqEut3sdV7vUTwJ2UYJ+/Vu73Cdu1KX69orfgMUm3S+od12+WFrhe3M8USacoUgczLTCllBaubAS0ZjPgkQblnwVqSXe7AGdI6hvbBgHH2K69Mlgf+BmwUfz5HCU973jKqHqAHwCP2h4QZdX58psAu9geSgnx2dX2IErK39mV/bakfOvfBFiXkgB4NvA8sLPtnaPOa9neLL7pXwwgaTVKY2c68GvgBEkPxIO7f+Ua/YHzbG8KvAbsF+XN0gJ/AfwirvWXynnaTQuMemViYEopdYNsBCyY7YHLbc+y/SJwL7B1bHV9MnQAACAASURBVBtn+5nKvs/YnhKJeY8Bd7lMzZgC9Kuc71IA23cDH5C0cmy70fab8XkZ4EJJU4CrKA/8mnG2/xLXmVg5d9XTwLqSzpG0B/DPKN8NuD2uP5HSiDgDeD8lSXDjyr3UHtiPVK6xWfRQTKFkBGwa5R+NegL8tlKPhylZAycDm9v+V4O6Ynu47cG2B/daYZVGu6SUUuqEbAS05jFKpG5HvF73czUtb3bl59m0Njajer7jgBcp354HA8s2uc6sRue2/WocO5qyguBFsak2HqC23wzb19r+D8p4gk+2c40RwDfjG/8PgOXbuiHbY4AdKa8dRkhqMyMgpZRS18pGQGvuBpaTdHitIN7XvwYcFO/YV6c80MYtwHXuI1L2JA0BXrH9zwb7rQK8EN/2vwDMt9pfA/8ignui238p29cA3wMGxeDHAUSXvKSPSXpffF6W0tvQMDioolla4IPMfWVwcK0w0wJTSmnhytkBLbBtSfsCZ0k6AXgLeJby7r0PMAkw8G3bf5O0UScvdTJlMZ3JlFH8hzbZ75fANfHN+Vbm73VoZDhwq6Tno94XqyQDAnyH0tPxqOemR60HnB+Ng6WAUcA1QFtRws3SAo8FLpN0YtS39mJ/CB1IC4RMDEwppa6UiYEJAJXI4D/avqIbzr0CZdEiSzoYGGp7786cKxMDU0qp45SJgakttk/pxtNvBZwbvQqvAV/u7IkyMTCl9mW6YWpVjglYTEiaFfPpa3/6NdhnTUlXL8A1Wk0VfDbGFdSXH9FocJ/t+2xvYXuA7R1t/7GWFZBSSmnhyZ6AxcebMZ++oUgSfB7YfwGu0WqqYEPVMKUGdeuy1MSUUkpdI3sCFmOSDpN0o6S7gbtUyfVXyf7/X0nTJF0n6SFJg2Pb+RG+85ikH0TZPKmCUbZbhAVNkHSVpD6Vy387EgDHSVo/9j9Z0vHxebSksySNB46R9OE41xRJp1TuIVMDU0ppIclGwOKjd+VVwHWV8kHA/rZ3qtv/P4BXbW9CGbVfzTk4MQaIDAB2kjSgPlUwuvu/R0kpHASMB/6zco7pkQdwLnBWkzovGyE/P6OkBp4fx7xQ2afd1MBMDEwppe6RrwMWH81eB9xh+x8NyrenPHixPTWmHdYcGJkHS1PWCNgEmFx3/LZRPraM52NZ4IHK9ssrf5/ZpM5XVj5/jLlZAZcCp8fnhynTIpcBrq8kEc5hezhliiPL9e2f01lSSqmLZCNg8ddKRsAckj5MWa9ga9uvShpB42Q/URoYQ5ucyk0+t1W3+fazPUbSjsBelNTAn9u+pH6/lFJKXS9fB7x3jQUOBJC0CbB5lK9MeThPl7QGJSq4Zk6qICXl72OV9/0rStqgsu9Blb+rPQRt1aeWFjgnTTBTA1NKaeHJnoD3rl8Cv5E0DXicsv7BdNtPSXo0yv5MeTjXzEkVjHEBhwGXS1outn8PeDI+vy9eMbwNNOstqDoG+G0kLt5QKR9CB1IDMzEwpZS6TiYGvkdJ6gUsY/stSesBdwIb2n5nIVdtgWRiYEopdVwmBi55VqBM91uG8n7/PzraAIis/89RVgqcDXydsizwcNsdyhKQ9Cww2PYrHTmuXiYGptS6TA5M7clGwHuU7X9RlhnuFEkfBT4FDLL9dkwZXJYy4r9DgULRK5FSSmkRkwMDUzN9KUsZvw0Q3+D3Z/5AoaERADRVUm3aH5JmSPqZpEmU3oNaeW9Jv5P0tRhsOErSpDj+IFJKKfWYbASkZm4H1pb0pKRfStqpQaDQmpT5/h8HBgJbS9onjl8ReCjWDLg/yvoANwGXx2yAPYDnY5/NKMsMp5RS6iHZCEgN2Z5BSRk8HHgZuDJmC1RtDYy2/XKsDTAS2DG2zQKuqdv/BuDiSg7AFGBXSadL2sF2wzjATAxMKaXukY2A1JTtWbZH2/4+8E3mJv614i3bs+rKxgJ7xJLC2H6SkgswBThF0klN6jE84ocH91phlY7fSEoppYayEZAakrShpP6VooHAc8wbKDSOsvbAajH4byhwbxunPQl4FTgvrrEm8Ibty4AzyKCglFLqUTk7IDXTBzhH0qrAu8AfKa8GhjJvoNAw4B7KNMRRtm9oesbiGMpaAT8F7gLOkDQbmAl8o5vuJaWUUgMZFpQWKxkWlFJKHdcsLChfB6SUUkpLqMXqdUCjBDvbD3VVGl1XknQsnUjW626ShgDH2/5UF5zru7ZP7cRxo6MOHf5Kn4mBCy5T5FJKNYtNT0Bdgt0AYBfKAjjddb0FbSAdS4nu7cg1F7dkve82KlSx2Py3lVJKS6rF6X/U8yXY2X6+sv0oSRMivW4jmLP87a8ljZP0qKS9o7yfpPti/wmStovyIVF+IzBN0rckHR3bzpR0d3z+uKSR8fn8mMP+mKQfRNnRzJ+st5ukB+J6V0nqE+XPxjz5CcABko6WNE3SZElX1P8S2qn7aElXS3pc0sjaVDxJe0TZBOCzjX65kg6TdEOc4ylJ369s+3z8DidK+h9JvSSdBvSOspFRryckXQJMpQQNNbznynl7SRoRaYFTJB3X6n8MKaWUFtzi1AiYL8GubvsrtgcB5wPHR9mJwN22twF2poxEXxF4Cdg19j8IOLtynkHAMbY3AO4DdojywUAflQV5dgDG1K4Rgy0GUKbLDWiQrLcaZRneXeKa44H/rFzz77YH2b4CGAZsGb0dRzT4PbRV9y0pPRCbAOsCH5O0PHAh8GlK+M+/N/rlhm0oWQADKA2SwZI2jut8zPZAyquYQ2wPA960PdD2IXF8f+CXtjcFXm/nnqFMO1zL9ma2NwcubqNuKaWUuthiMybA9gxJW1EewDtTEuyG2R4Ru1wbfz/C3G+7uwGfkVRrFCwPfIjygD5XUu2htkHlUuNsP1M511aSVgbeBiZQGgM7AEfHPgdKOpzyu+xLeQBPrqv+tlE+Nr6cLws8UNl+ZeXzZGCkpOuB6xv8KpZpp+5/AZA0EegHzACesf1UlF9GmerXyB22/x77XQtsT5keuBXwcNS9N6Uh0shzth9s8Z4BngbWlXQOMIrS0JtP/H4PB+i18upNLp1SSqmjFptGAJQEO2A0MFrSFOBQYERsfjv+nsXc+xKwn+0nqueRdDLwIrAFpTfkrcrm1yvXmynpGeAw4PeUB/TOwPrAHyR9mNLrsLXtVyWNoDQ06onygB3a5NZer3zeixK9+2ngREmbRyRvzXFt1P3tyufq76FV9fNFHXX/je3vtHB89T7au2fid7YFsDul1+NA4MsN9hsODAdYrm//nNOaUkpdZLF5HaDmCXZtuY0yVqD2bnzLKF8FeMH2bOALQFsD8u6jPOjHxOcjgEddAhZWpjz4pktaA9izclw1We9BStf8+lGPFSVVv8HX7nEpYG3b9wAnRD371O3WkboDPA70k7Re/Nz0oUzJ8X+/pN7APpSY37uA/SX9W9Tx/ZLWif1nxuuRRtq953hNspTtayivDjIxMKWUetBi0wigPAx/Uxs0R+lqPrmdY35E6T6fLOmx+Bngl8ChKsvcbsS832Dr3Ufp5n/A9ouUb973AdieBDxKedD+lvLQrBlOSda7x/bLlN6Ey6PuD8R16/UCLotejkeBs22/VrdPR+qO7bcoXemjYmBgs658KDHA11B6PK6xPd72NMoD+vao+x3x+6jd4+TaIMm667Zyz2tRenUmApcBrfQ2pJRS6iKZGJiAMjuAkrXwzYVdl7ZkYmBKKXWcMjEwpZRSSlXZE5DaJWmG7fqxCQvFcn37u++hZy3saqTUkkxnTIuK7AlIKaWU0jyyEZA6JRIC745kw7skfaid8hGSzpb0e0lPS9o/yvtKGhPJg1Ml7dDWdVNKKXWdbASkzjqHkh8wABjJ3OTCZuVQZhVsT1kD4rQo+xxwW6QRbgFM7IG6p5RSIhsBqfM+SpkWCXAp5eHeVjnA9bZnx7TDNaLsYeBLEeC0ue1/1V9I0uEq6zOMn/XG9C6+jZRSWnJlIyD1pGqioQBsj6EkJP4VGCHpi/UH2R5ue7Dtwb1WWKVnappSSkuAbASkzvo9cHB8PoQIUGqjvKFIH3zR9oXARWRqYEop9ZjFau2AtNCsIOkvlZ9/DhwFXCzpW8DLwJdiW7PyZoYA35I0k7LY0Xw9ASmllLpH5gSkxUomBqaUUsdlTkBKKaWU5rFEvA6IFf7OpKxx/yrwDvBT29e1ccyzlCz9V1pJzJM0jLIA0AFRtDkwJT7/2vbZDQ/sApK2p7x//xblvfqmlIF3r1KW6V0TuDqm4VWP+whwsO3juqtuXW3KX6fTb9iohV2NtJjIxL6U2vaebwTEMsLXU+aufy7K1gE+08WX2h040PaP4xoz6h+6LdR1advvduLaewK3AscB/2f74DjfRsDMZgfZfgh4qBPXW2Dx76JYEjmllNJCsCS8Dvg48I7tC2oFtp+zfY6kwySdWyuXdLOkIc1O1CzdTtLKwLKxfG6zY9eQdG3Mdx8nadsoP0XSJZLGUqbIfVXS1ZJuk/SUpJ/EfktLulTSlLj20XX3eBcljOevlft83PY8jQBJ60t6VNIgSbtIur5SjxGS7pf0nKR9JP0srjVK0tKx318knSppkqSH4zy3S/qTpK9VrjMs7nOypJMq154WSw8/Bqzdxj2llFLqZu/5ngBK1/iELjpXLd3ux5J6AStE+S6Uh3Bbzqa8gnhQUj/gZmCz2LYRsKPttyR9lZKctxXlW/yTks4B1gZWs705gKRV4+81gNdtz5D0K+BWSQdFfX5j+4+1CkjamBLk80XbUyTtUlfHD1NG629Bmdq3t+3/J+kmYI+oM8AztreIev2KEgjUB5gEXCjpk8CHgI9QXkvcImk74KW41y/aHh+vI+a7p5RSSj1jSWgEzEPSeZSH1jvAeR08/GHg15KWoaTf1SJu9wAubufYXYANSy84AO+T1Ds+32D7rcq+d9r+Z9T3ccoD9ak4/mxgFHB77Ls7cBuA7UckrQvsFtcbL2kbYDYloe86YB/bjzep4y2235U0Jc53R5RPAfpV9ruxUr607deB1yXNltQnrr8n8Gjs1wfYgNII+JPt2vD+Pza5p3lIOhw4HKDXyqs3qXpKKaWOWhJeBzxGJYDG9pHAJ4DVgXeZ93ewfFsnaiPdbhtgXDv1ELCN7YHxZy3bb8a21+v2rSbrzaI8aP8ODKB8Qz8S+J/YXhsPUKvjv2xfY/sbwBWxHeC1qPd2bdSxdt3ZlEYSlZ+XbrLf2w32E3BK5V7Xtz2i/l7buKd5ZGJgSil1jyWhEXA3sLykb1TKat34zwIDJS0laW3Kw7ypRul2kjYFHrc9q5163El50NXO1dFBg6tTBtJdBZwU114K2Nj2lNhn+8prguWAjYHn4hRvA3sDX5V0YEeu3Qm3AV+RtGLU5YOSVmvlnrq5XimllCre868DbFvSPsCZkr5NSbF7HTgBGAs8A0wD/kD7YweGMH+63X5Uvom34UjgfElfovze76HSKGjB2sCvYlS9o/7bANXknP5xDSgNvJuAG4D1AGLcwKeAOyS9zrzf4ruM7VtiZsKDUZd/UcZTtHJPbdp8rVUYn9O+UkqpS2Ri4AKSdAdloNsLC+HaJwNTbV/d09deWDIxMKWUOk5NEgOzEZAWK8v17e++h561sKvRrTLgJqXU1Zo1ApaEMQEti7nxjq7s9vZ9ttF77jb2P1jSiSrZBK5Oz6tcd//O1r2z6ur1skoGwrTqnP82jj1a0h8kjZS0nKQ74/iDJF0kaZOeuIeUUkqdk42AeQ0F7o+/u1p1FP8U5i63W7vupI6crBbe0+znTtbrykg5HAKcGhkEbfkPYFfbhwBbAsRsgCttf9X2tE7WKaWUUg/IRkCI+e3bA18hHtCShki6ubLPuZIOqzuut6TfSfqapBUjXW9SJOAdFPsIGMjcgYf3AdtIWiauuz4wsXLOOb0MkgZLGh2fT46EvbHApfHt/UZJdxNhRZK+pZLkN1nSD6Ks1XoBYPsl4E/AOnHN4yt1myqpn6QLgHWB30k6AbgM2Dp6AtaTNFrS4DhmhqQfx/UfrDUuJB0Q55skaUyH/9FSSiktkPf87IAO2Bu41faTkv4uaasWjulDmYt/ie1LJO0HPG97LwBJtUntWwKTYqYClJHwd1KCflahhO98uMV6bgJsb/vNaJAMAgbY/oek3SgzBLahzNW/UdKOlEyEVupFbF+X8oCfkzZYz/YRkvYAdo5Flh4Cjrf9qThHdfcVgQdtnyjpp8DXgFMo0wJ3t/1XtZEWqAwLSimlbpE9AXMNpTzQib9beSVwA3Cx7Uvi5ynArpJOl7SD7elRvgfwu7pjr6D0OBwMXN6Bet5YCRkCuMP2P+LzbvHnUcq3+40ojYJW63WQpIlRn69Xzrug3mFu5PAjzE0frK2X8DXKCowNZVhQSil1j+wJACS9n7IIz+aSTHkgmfKQbytRcCywh6TfunhS0iDgk8Apku6y/UPKg3m/6oG2x0naHHgjjqturiYZ1l+zPl2w+rOAn9ieL3mvxXpdafubdYd2KFWxiZmeOw1lFvHfXfQmfATYC3hE0laRIphSSqkHZE9AsT9wqe11bPezvTYlRGgpYJMY+b4qJW646iTgVWINAklrUh7qlwFnUFL9VmFu7G+9YcB3G5Q/S1lACOoaD+24DfhyjDNA0lqS/q0T9aqvy6A43yBaf23RLknr2X7I9kmUEKe1u+rcKaWU2pc9AcVQ4PS6smsoXfX/C0ylNAoeZX7HUBYV+illcN4ZkmZTVgD8BrAr5f3/fGzXvyKo+QElSe9HwOhWb8L27SorBT4QPQszgM9TBh62XK861wBflPQY8BDwZKv1acEZkvpTejDuooUZEpkYmFJKXSfDgrqZpIuAi2w/uLDrUrWo1qs9mRiYUkodp0wMTO8FS0Ji4JIqkxJT6j7NGgE5JqBFKql6j8X8+4kxoK3DyYELS8ztn9qgfE1JS8zaAymllObKMQEtkPRR4FPAINtvx0N/2YVcrS5h+3nKwMgeJ2lp2+8ujGunlFLKnoBW9QVesf02gO1X4uE5R11y4DzfuiUdr7LiH7H94UjJu0bSClHeZnqepD6S7pI0QdIUSXtHeT+V/P4Lo6fidkm9Y9tWcb5JNFm2uFrX+HxfXGOCpO0q+82XRBjl/yXpCUn3S7pckS6okhp4q6RH4pwbRfkISRdEuNBPJe0UPSsTJT0qaaWO//OklFLqjGwEtOZ2YG1JT0r6paSd6rb3AW4CLrd9YTvnutb21ra3AP5AiSmGuel5WwCfaXDcW8C+tgcBOwM/09xwgf7AebY3BV5j7rTCi4Gj4pyteImyFsAg4CDgbADNm0Q4ENhK0o6Sto5rbUFZg6D6vml4XHsr4Hjgl5VtHwS2s/2fse3IWLNgB6AahERc/3BJ4yWNn/XG9PrNKaWUOilfB7TA9gyVGOEdKA/gKyUNsz0idrkB+KntkS2cbjNJpwCrUhoPt0V5LT3vf4FrGxwnyqI+OwKzgbWA2gI/z9iurT3wCNAvcg1WtV3rVbiU8qBuyzLAuZIGUkJ9NojyahIhUe/+wErADbbfAt6SdBPMWYdhO+CqSgjScpXrXGV7VuW+fy5pJKWB9Jf6StkeTmlUsFzf/jmSNaWUukg2AloUD63RwGhJU4BDgRGxeZ7kQNpO2RsB7GN7kkr2/5A4f3vpeYdQ1gDYyvZMSc9Wzvt2Zb9ZQO9O3uZxwIuUb/ZLUXofoEkSoaRjm5xnKeC1+HbfyJyUQ9unSRpFSTMcK2l32493sv4ppZQ6IF8HtEDShhFqUzMQeK7y8zzJgZQH6b9J+oCk5SiDCmtWAl6QtAzlwV67RnvpeasAL0UDYGdgnbbqbPs14DVJ20fRIW3tX7nGC7ZnA19gbp5/wyRCSuPn05KWj22fimv/E3hG0gGxvyQ1fCUR9z3F9unAw5T1DlJKKfWA7AloTR/gnOhif5eyut7hdfvMSQ60/W1JPwTGAX8Fqt9s/4uSvPdy/F0bCNdeet5I4KbohRhfd85mvhR1MmVcQzO1LvZfAtdI+iJwK/GNvVkSoe2HJd0ITKY0fKYAtZf2hwDnS/oe5TXDFQ3uCeDYaNTMBh5j/oWW5pGJgSml1HUyLGgJF2Mdfm67frBjq8f3iTETKwBjgMNtT+jSSlZkYmBKKXWcmoQFZU/AEkzSYOC3lIWMOmu4pE0o4xN+050NAIApf51Ov2GjuvMSqYdkQmBKC1+OCVhAapIkuIDnHB0P6Lb2+aGkXRbkOrbH297AdqPZCLXrXCDpY/F5aUkvSzqtco7PUaYlft72T1RJUJT0+wWpX0oppe6VjYAFoHmTBAcAuwB/7olr2z7JdiurALZJUnu9QdsCtUWGdqWsInhAJaOgKdvbtbdPSimlhScbAQumYZKgpJMiXW+qpOG1B2Z8wz9d0rgIHtohyntLukIl+e86KlP8JM2QdGb0NtwlafUoHyFp//j8rKSfqiQJjpO0fpSvrpJK+HD8qX2jP1nSpZLGApdK2jSOmxg9Gv1jv42BJytz+ocCvwD+D/hoe78cSTMqn+dLHJS0oqRRKqmGUyUd1Pl/ipRSSh2VjYAF0yxJ8NxIBdyM8kCvThFc2vY2wLHA96PsG8AbtjeOsq0q+68IjI80wHsrx9Sbbntz4FygtszeL4AzbdeS/S6q7L8JsIvtocARwC9iXv9goBbYsydllgCSlqf0dNwEXE5pELRETRIHgT2A521vEb+rW5scn4mBKaXUDbIRsABsz6A8sA+nTPm7MgKAdpb0UEzn+ziwaeWw2vv3R4B+8XlH4LI452TKlLua2cCV8fkyYHsau7zyd+1b+i6UBMCJwI3AyrW5/sCNtmsRvQ8A35V0ArBOpXx35j6YPwXcE9uuAfaRVMsRaE81cXACJQugP2VK4a7RO7KD7YZPeNvDbQ+2PbjXCqu0eMmUUkrtydkBC6hBkuDXgQHAYNt/Vlk4qJoYWEv3m0Xnfv/N5nS6weelgG0j1neOeDtRTe37rcqCPnsBt0j6OmUcwKqVhZKGAturJBUCfIDSwLmjhTo3TByMugyipAWeIuku2z9s4XwppZS6QPYELAA1ThJ8Ij6/Et+6W1mmdwzwuTjnZpRGRM1SlXN8Dri/yTkOqvz9QHy+HTiqUt+GMb6S1gWetn02ZR2EAZQ1Eu6J7StT1k34kO1+tvtRViVs9ZVAw8RBSWtSXoNcBpwBDGrxfCmllLpA9gQsmGZJgq8BU4G/UaJw23M+cLGkP1BWFnyksu11YJtI3nuJuQ/7eu+TNJnS01B7OB8NnBflS1MaG0c0OPZA4AuSZkadTwV+CFwd2/cF7q4NgAw3UJYCXo52NEscBNanJCXOBmZSxka0KRMDU0qp62Ri4CJO0gzbfdrZ51nK64dXuvC6E4CP2J7ZVefsCpkYmFJKHZeJgalDbC+SXfPvxcTATM5LKS0s2QhYAJJmUUa4L03pxj/U9hutfHtvVSvniXf0tTodDKxHWbhosO1vdkU9mpH0GWAT26e1u3NKKaVFSg4MXDBv2h4Yc9zfofH79i7VQsLfnLn9PcH2jdkASCmlxVM2ArrOfZSBbnOoOCPS8KbUEvEiHXCvyn4jJO0vqVfsX0vW+3psHyLpPpVle6c1S9pTGXU3kDIXvyFJ50fwzmO15L4ony91MOrzTNzHqpJmRcgPksZI6i/pMEnnVu7jbEm/l/S05iYaLhVhSo9LukPSLZVtp0maFvf7313xD5FSSqk1+TqgC8S380bfwD9LeShvAawGPCxpDCX850BglKRlgU9QRsZ/hZL8t3WMuh8r6fY41yBgM9vPSNqPkrS3V1y/lqCzJTDJttU82v9E2/+IoJ+7JA2IgCLi2ptL+iJwlu1PSXqCki74YUrjYofIFFjb9lOKKOKKvpRAo40oAUVXx++hX5zn3yivTn4t6QOUmQcbRZ1XbfL7PZwy64JeK6/e7L5SSil1UPYELJjekcY3npKn/6u67dsDl9ueZftFSuzv1sDvKKmCy1EaD2MiiW834ItxzocogTy1HIJxtp+Jz82S9vaIc7flwBj5/yglyXCTyrZGqYP3URINdwR+Eve0Nc2nPl5ve7btacAald/DVVH+NyJ/AJgOvAX8StJngTcanTATA1NKqXtkI2DB1MYEDLR9lO13WjkoEvxGU2J5D2JuLLCAoyrn/LDtWk9ANeHvSUrPwBRK0t5JsWk3SkBQQ5I+DBwPfCJWPRzFvGmGjVIHx1CCgrYBbgFWBYZQGgeNVLME2lxp0Pa7cd6rKbHEPTaWIaWUUjYCutt9wEHxbn11yrfpcbHtSuBLlAds7eF3G/ANScsASNpA0or1J22UtBevBJa2/fc26rMypTExXdIalF6Iqkapg+OA7YDZ0XiZSIlGHtPKLyCMBfaLsQFrUBoRRILgKrZvAY6jvDZJKaXUQ3JMQPe6jtKtPonyzfrb0R0O5Rv7pcANlR6EiyjvzifEIL+XgX0anHdz5k/a2xW4s26/wyRVj9+W8hrgceDPlIdz1Xypg7bflvRnyloCUBo2Qym9EK26hjLuYVpcdwLlVcBKwA0qKxQK+M/2TpSJgSml1HUyMfA9QtJFwEW2H2x358bHP0sXpw7Wnb+P7RkxGHAc8LFKg6hlmRiYUkodl4mB73G2v7qw69COm2P0/7LAjzrTAID3ZmLgoihTDFNaMuSYgE6QdGLMs58saaKkj0T5sZJWqOx3S23am6QZ8Xc/SZ/r4fo+K2m1tvaJ1QG7pRcgzj/E9kDKSogvddd1UkoptS4bAR0k6aOUkeyDYoT9LpT33ADHAnMaAbY/afu1ulP0I5YNXkINBD65sCuRUkopGwGd0Rd4pbasru1XbD8v6WhgTeAeSfdA02/gp1ECdyZKOk7SppHQNzF6FvrX7d9eyt8PJE2IpL+NovwDkm6P/S+iyVS9RueVtIekqyr7DJF0c3weGteZKun0yj57RB0mSbor09qQ/AAAIABJREFUylaU9Ou4t0cl7R3BSD+kzJiYKOkgSTvF54mx30od/QdJKaXUOdkI6LjbgbUlPakShbsTgO2zgeeBnW3v3Mbxw4D7IgfgTMp6A7+IrvLBwF8aHHNiDOgYAOwkaUBl2yux4t/5lAwAgO8D99velDJD4UNN6tLovHcCH6lMTTwIuCKmJZ4OfJzybX5rSfvE1McLgf1sbwEcUDs3cLftbYCdKVMZlwFOAq6M+78y6nxk3P8OwJv1lZR0eDRWxs96Y3r95pRSSp2UjYAOsj0D2IoSY/sycKWkwxbglA8A35V0ArBOJAfWayvl79r4+xHKqwYoeQSXRX1HAa82ufZ8540An1uBT6vEIe8F3EBJCRxt++XYZ2RcZ1tK4uEzcb1/xLl3A4ZF+uFoSihRo8bIWODn0ZOyapx7HpkYmFJK3SMbAZ0QMcCjbX8f+Caw3wKc67fAZyjfgG+R9PHq9hZS/moJfbPowGyPds57BWVtg48D423/q6P3RXkFsV8l/fBDtv9Qv1OsQPhVoDdlrYSNOnGtlFJKnZCNgA6StGHde/uBwHPx+V+UAJy2zLOPpHWBp+N1wg2Urvmq9lL+GhlDDD6UtCfwvgb7tHXeeymxxF+jNAigzO3fSdJqKosPDY39HgR2jEYFkt4f+98GHBWhR0jassn9r2d7iu3TKesRZCMgpZR6SOYEdFwf4JyY+vcu8EdihTtgOHCrpOfbGBcwGZglaRIwAlgO+IKkmcDfgFOrO9ueJKmtlL9GfgBcLukx4PeUxY3m0dZ5bc+KwYCHAYdG2QuShlEW/xEwyvYNMGeVv2slLUWZ/rcr8CPgLGBylD9DmVVxD3NfE/wE2F7SzsBs4DHaWQApEwNTSqnrZGJgWqxkYmBKKXVcJgam94RMDEwp9YQlJTUzxwSkOST9u6QrJP1J0iOReLjBwq5XSiml7pGNgARADOC7jjINcD3bWwHfAdao7JM9Ryml9B6SjYBUszMw0/YFtQLbk4Beku6TdCNlKWAkXR89BY/FoECifIakH0dy4IMx6wBJq0u6RtLD8edjUZ5pgSmltBBlIyDVbEYJHGpkEHCM7dqrgS9HT8Fg4GiV5YEBVgQejOTAMZQphgC/AM60vTUlU+GiKG83LRAyMTCllLpLdu+mVoyrJQKGoyXtG5/XBvoDfwfeAW6O8kcoUwWhLLK0SUQGAKwsqQ9z0wJHAtfabhSZjO3hlOmXLNe3f05nSSmlLpKNgFTzGLB/k22v1z5IGkJ5qH/U9huSRjM3aXCm5845rSYYLgVsa/utuvOeJmkUZVXBsZJ2t/34At9JSimlluTrgFRzN7Bc3Tv+AZRu+qpVgFejAbARZe2A9twOHFU578D4O9MCU0ppIcqegASAbUcX/1mxmNFbwLPA9XW73gocIekPwBOU2OD2HA2cJ2ky5b+5MZTVE4/tSFogZGJgSil1pUwMTIuVTAxMKaWOy8TA9J6QiYEds6SknqWUOmeJGRMgaVbMR58q6aZYAKi9Y34ff/eTNLWF/S+ozIH/T0mPS5oS8+Z/LmmZdo4fLWlwfH5W0mrVenSGpMMknbsAx/9O0gclLSPpNElPSZog6YFYobAz5/xuZ+uTUkqp6ywxjQDgzVjXfjPgH8CR7R1ge7sOXmNb4EFJRwC7UUbEbw5sTVldr3cHz9fZenQJSb2BD8TUvR8BfYHNbA8C9qH9ZZObyUZASiktApakRkDVA8BaAJL6SLorvt1OkbR3bSdJM+oPlLSppHHRqzBZUv8o3xh40vYs4ETgG7ZfA7D9ju3TbP8z9j0/wm8ek/SD9ipbq4ekIdFbcHX0MoyMuN/6noPBMXWv/jwdTe4bAoyWtAIl+Oco22/HPb1o+3/j+KHxu5sq6fTK9eYrl3Qa0DuuNVLSipJGRW/JVEkHtff7SCml1DWWuDEBknoBnwB+FUVvAfva/mc8RB+UdKObj5g8AviF7ZGSlgV6RfmewK2SVgb61IXr1DvR9j+iLndJGmB7cou3sCWwKfA8JWznY8D9LR5bS+67X9KHgNuAjZmb3Dc2Qnxq8/n3pMwOWB/4v1ojpkrSmsDpwFbAq8DtkvYBxjUqtz1M0jcjJRBJ+wHP294rfl6lwTUOBw4H6LXy6i3eakoppfYsST0BvSVNBP5GWRTnjigXcGpMX7uT0kOwRuNTAKUX4bsxjW4d27Wo290p0+fmIWn3+Nb7rKRat/6BkiYAj1Ie6Jt04D7G2f6L7dnARKBfB47dBTg3fg83Mn9y39HAqrbfjf1baWBsTVl06OU4biSwYxvl9aYAu0o6XdIOtufLBbY93PZg24N7rTBfGyGllFInLUmNgDfj2+c6lAd/bUzAIcDqwFax/UXmJuDNx/Zvgc9Qcu5vkfTx6C5f1fbz8W15hqQPx/63xXmnAstG+fHAJ2wPAEa1db0G3q58rqbyvcvcf89m56sl9w2MP2vZnmH7NOCrlDELYyVtJGld4M+23wH+CHwoejm6lO0nKWsTTAFOkXRSV18jpZRSY0tSIwAA229Qwmv+n8rSuKsAL9meqRJcs05bx8fD8WnbZwM3AAMoK/DdU9ntJ8D5tRkI8d6+9mBemRLDO11llb1OjbBv4FlK1zuURXoa6Uhy355Ez0b8zn4F/CJegdTGFxxA6fbfSdJq8XpjKHBvG+UAM2szJeJ1whu2LwPOoDQIUkop9YAlbkwAgO1Ho/t/KKWb+iZJU4DxQHvZ9QcCX5A0k/Jq4VTgh8DVlX3Op6yo95Ckt4EZlC73R21Pl/RoXOfPUd4VfgD8StKPgNFN9ulIct/VVBoMwPeAU4Bpkt6iNGROsv2CpGGURpCAUbZvAGhWTlkMaHK8ErkEOEPSbGAm8I22bjITA1NKqetkYmAXiIfZR2zPXNh16QqSlgPGNkqXWtgyMTCllDpOTRIDsxGQFivL9e3vvoee1a3XyJS9lNJ7TbNGwBI3JmBhq88e0AIm+nWyDreohcTEJsc2ra9aTDaUdLKk4ztz/ZRSSl1niRwTsKSz/cluOu98yYaSlq5MOUwppbQIyZ6ARYikEZL2r/xcTQq8V9INkp5WyfA/RCW5cIqk9SrHny/pwdhviKRfS/qDpBGV8z4bo/b7xbYLVdILb1eJCkbS1iqJiBMlnaF5105YWyW58ClJ329S3/sk3QhMi7ITJT0p6X5gw8oxR0uaFte6ojt+rymllBrLRkDPq0XmTozQnh+2eNwWlJH8GwNfADawvQ1wEfOO4n8f8FHgOEog0JmUQKLNa1MC6/QHzrO9KfAac6cXXgx8PTIOZtUds03sNwA4QLHoUZ1BwDG2N5C0FXAwMBD4JCVIqGYYsGVkJhzR6MYlHa4Sszx+1hvzZQmllFLqpGwE9LzaQkYD4wHbajjOw7ZfiOz+P1Hm/EMJ2elX2e+miDyeArwY8/9rU/+q+9U8Y3tifH4E6BfjBVay/UCU/7bumDts/z3SEq8Ftm9w3nGV6OQdgOtsvxFhSjdW9psMjJT0eUrg0XwyMTCllLpHNgIWLXNS/yQtBSxb2VZNCpxd+Xk2847teLvBPo32a3TeWU32qVc/paTRFJPXWzgPwF7AeZSeg4cjwCmllFIPyEbAouVZ5qb+fQZYZmFUIlY//Jekj0TRwXW77Crp/TF+YB/aDzwaA+wjqbfKCoWfhjkNnbVt3wOcQElv7NNV95FSSqlt+a1r0XIhcIOkSZTI3la/TXeHrwAXRpLfvUD1Zfw44Brgg8BltttM77E9QdKVwCTgJUo0MZQVGC9TWTlQwNm15ZebycTAlFLqOhkWlBqS1Md2bbT/MKCv7WMWcrUyMTCllDqhWVhQ9gSkZvaS9B2gL7AC8H8xm+Hrth9q60BJPwTG2L5T0g7ABZR1AYZSZgLUDzRs2ZS/TqffsFGdPXyBZZpgSum9JMcEpIZsX0lZzOdpYLWYQrgLZdGj9o49yfad8eMhwE9iJsQawOe6qcoppZQ6KBsBqS19gVdiWiK2XwHWknQtgKS9Jb0paVlJy0t6OspHSNpf0lcpqy7+SNJI4DRgh8hIOE7SphF4NDHCgvovnNtMKaUlU74OSG25HThJ0pPAncCVlJkAtdChHYCplPCfpYF5XhPYvkjS9sDNtq+WNAQ43vanACSdA/zC9khJy1IGCqaUUuoh2QhITdmeEWl/OwA7UxoBw4A/SdqYkhz4c2BHygP8vg5e4gHgREkfBK61/VSjnSQdDhwO0Gvl1TtzKymllBrI1wGpTbZn2R5t+/vANylxwWOAPSmD/e6kJAZuTwcbATFA8DPAm8Atkj7eZL9MDEwppW6QjYDUlKQN697TDwSeozzsjwUesP0y8AHKokBT5z/LPP4FrFQ5/7rA07bPBm6grEWQUkqph+TrgNSWPsA5sZbAu8AfKd3yr1NG+o+J/SYD/+72QycmA7MiDGkEsBzwBUkzgb8Bp3b5HaSUUmoqw4LSYiXDglJKqeOahQXl64CUUkppCZWvA3qIJAM/t/3/4ufjgT62T5Z0BPCG7UvaOP4wYLDtbzbY9l3bp1Z+/r3t7bqo3tsCX7H9tfj5LOAAysI/s+vrJulkYIbt/64mB3ZFXWDhJwb2lEwmTCn1hOwJ6DlvA5+VtFr9BtsXtNUAaMF3687XcgNARVv/HexJWcyoturfvpTUwJ3aO3ddcmBKKaVFTDYCes67wHDguPoNkk6OngEkbR3peRMlnSGpOuJ+TUm3SnpK0k9j/9OA3rH/yCirLfzTR9JdkiZImiJp7yjvJ+kJSZdQRvSvHSl/U2O/ah0/QZkGCDAEeAw4n7IOQJtqyYHxeStJ90p6RNJtkvpG+dGSpsU9X9Hi7zKllFIXyNcBPes8YHLtAd7ExcDXbD8QD/iqgcCWlF6FJySdY3uYpG9GNn+9t4B9bf8zeiAelHRjbOsPHGr7wQgEWsv2ZgAxG4A4Zqbt2jLCQ4HLKdP5TpW0jO2Z7d20pGWAc4C9bb8s6SDgx8CXKeFDH7b9du26KaWUekb2BPQg2/8ELgGObrQ9HoIr2X4giupX27vL9nTbbwHTgHXauaQoD+vJlG/za1Gm9gE8Z/vB+Pw0sK6kcyTtAfwzynejRAcTsb6fBK6P+3gI2L29ew4bApsBd8RKhN8DPhjbJgMjJX2e0lsy/01Ih0saL2n8rDemN9olpZRSJ2QjoOedBXwFWLETx75d+TyL9ntyDgFWB7aKnoIXgeVj2+u1nWy/CmwBjAaOAC6KTXPGA1Ae+KsCUyQ9S0kIbPeVQBDwmO2B8Wdz27vFtr0oPSSDgIclzXdPmRiYUkrdIxsBPcz2P4D/pTQE6re9BvxL0kei6OAWTzszutzrrQK8ZHumpJ1p0nMQ3f5L2b6G8i19kCRREvwmxm5Dga/a7me7H/BhYFdJK7RQvyeA1SV9NK63TKwguBRllsE9wAlR3z4t3nNKKaUFlGMCFo6fUXL4G/kKcKGk2cC9QCv938MpYw0m2D4EqCVAjQRukjQFGA883uT4tYCLK7MEvgNsBTxq2/Gg34PSSwCA7dcl3Q98ur3K2X4nBgieLWkVyn93ZwFPApdFmYCzoyGUUkqpB2Ri4CJGUh/btdH9w4C+to/pwPEfACbYbm+8QHvn+R7wR9uL1Ij9TAxMKaWOa5YYmD0Bi569JH2H8m/zHHBYqwdKWpPyXv+/F7QStk9Z0HOklFJatGVPwBJI0r9TuuO3Bl6jDBg81vaTHTjHYTRJMOxOy/Xt776HntWTl1yoMjkwpdQVsicgASUhELgO+I3tg6NsC8rUwZYbASmllBZ/OTtgybMzJQDoglqB7UlAL0k318oknRvf9msphr+XNEnSOEkrVU8oaS9JD0haLdII744EwLskfSj2aVZ+QCQVTpI0hpRSSj0mGwFLns2AR1rdOUKCrgSOsb0FsAvwZmX7vpTUv0/afoWSDPgb2wMosxPOjl2blZ8E7B7n/syC3FhKKaWOyUZAas+GwAu2H4aSemi7luz3ccr8/r0icAjgo8xNOryUEirUVvlYYISkrwG9GlUgEwNTSql7ZCNgyfMYJQOg3rvM+9/D8g32qfcnYCVgg85WxvYRlICitYFHYopj/T6ZGJhSSt0gGwFLnruB5SQdXiuQNIAS1rOJpOViDYNPxOYngL6Sto59V6pE+z4H7AdcImnTKPs9c5MODwHua6tc0nq2H7J9EvAypTGQUkqpB+TsgCVMJADuC5wl6QTKSoPPAsdS4oynAs8Aj8b+78Sqf+dI6k0ZD7BL5XyPSzoEuErSp4GjKOmD36I81L8UuzYrP0NSf0oj5C5gUrfdfEoppXlkTkBarGRiYEopdVyznIB8HZBSSiktofJ1QA+TNAuYQvnd/wE41PYbkn5ve7uFWzuQdAFl9P7XgJ2AfwK9gQeB79r+y0KsHlP+Op1+w0YtzCos0jJhMKXUEdkT0PPetD3Q9mbAO8TKfItCAyBsS3ngA3wr5u9vSBkjcHfkBqSUUnoPyEbAwnUfsD6ApNrKgUtJ+qWkxyXdIemWWIYXSVtJulfSI5Juk9Q3ygdKejDS+K6T9L4oHy3p9Ej5e1LSDlG+aZRNjGP6R/nGwJO2Z1Ur6eJM4G/AnrHvUElTIu3v9Cg7QtIZteMkHSbp3Pj8+co1/0dSr/gzIs4xRdJx3ferTimlVC8bAQtJTLPbk/JqoOqzQD9gE+ALlJAdJC1DSd3b3/ZWwK+BH8cxlwAnRBrfFOD7lfMtbXsbyuj/WvkRwC9sDwQGA7Uu/j2BW9uo9gRgo1it8HRKWNBAYGtJ+wDXAPtW9j8IuCIaFwcBH4trzqJMExwIrGV7M9ubAxe3ce2UUkpdLMcE9LzekibG5/uAX9Vt3x64yvZs4G+S7onyDSmRv3eUNYDoBbwgaRVgVdv3xn6/Aa6qnO/a+PsRSuMC4AHgREkfBK61/VSU787cqXuNKP7eGhht+2UASSOBHW1fL+lpSdsCTwEbURIBj6QEFD0cde8NvATcBKwr6RxgFHB7w4uWTIPDAXqtvHob1UsppdQR2QjoeW/Gt+GOEvCY7Y/OU1gaAW15O/6eRfx72/6tpIeAvYBbJH2dMg5gVdvPt3GuLSlz+dXGPlcABwKPA9dFLoEo6wZ8Z76bKisY7k7pnTgQ+HL9PraHA8OhLCXcxrVTSil1QL4OWPSMBfaLsQFrAEOi/AlgdUlzXg9I2tT2dODV2vt+yiuEe+tPWiVpXeBp22cDNwADKKsL3tNkf0k6GuhLeV0wDtgpVg3sBQytXPM6YO8ouyLK7gL2l/Rvcb73S1pH0mrAUravoUQHD2rtV5RSSqkrZE/AoucaSmTvNODPlPfw0yO5b3/g7Pj2vzRwFmUtgEOBCyStADxN2136UL5xf0HSTMpgv1OBHwJX1+13hqT/Alag9BTsbPsdymuIYZRGg4BRtm8AsP2qpD8Am9geF2XTJH0PuF3SUsBMyiuCNykpgrXG6Hw9BfU2X2sVxuc0uJRS6hKZGLgIktTH9oxYTGccZUDd37r5mhOAj9ie2Z3XWVCZGJhSSh3XLDEwewIWTTfHIj7LAj/q7gYAgO3Fois+w4JSvQxISqnzshGwCLI9ZGFcN8YgnEkJDHqVEmb0U9vXtXh8P+DmCEJKKaW0iMuBgQkog/+A64ExtteNLIKDgQ/W7ZcNx5RSeo/IRkCq+Tjwju0LagW2n7N9TiT/3SjpbspIfyR9S9LDkTj4g8p5lpY0UtIfJF0dgxXbSjs8WtK0OM8VpJRS6jHZCEg1m1JmIjQziJJWuJOk3YD+wDaU1L+tJO0Y+20I/NL2xpTFh/6jnbTDYcCWkXZ4RKMLSzpc0nhJ42e9MX3B7jKllNIc2QhIDUk6T9IkSQ9H0R22/xGfd4s/jxJRwpRGAcCfbY+Nz5dREhCraYcTKZkAtdcMk4GRkj4PvNuoLraH2x5se3CvFdrLRkoppdSqfL+bah4D9qv9YPvICPOpzcd7vbKvgJ/Y/p/qCWJgYP2cU9Mk7TDsBewIfJoSZby57YaNgZRSSl0rewJSzd3A8pK+USlbocm+twFfltQHQNJatTRA4EO1VEPgc8D9NEk7jJCgtW3fA5wArAL06dK7Siml1FT2BCSgLBccKwGeKenbwMuUb/8nUBb8qe57e6wM+EAsCDQD+DxlfYIngCMl/ZqSenh+G2mHTwKXRZmAs22/1lY9MzEwpZS6TiYGpsVKJgamlFLHZWJgek/IxMCUWpdpiqk9i+WYAEmzJE2UNFXSVZJWkNRP0tSFXbeqmF+/Zgv79ZV0e3zuL+lmSX+KOfX3VKbf9bhq3eLnYyW9VV3CWNIQSTfH58MknRufj5D0xZ6vdUoppVYslo0A4E3bAyOe9h2azC9fBBwGtNsIAPYAbpO0PDAKGG57vZhTfxSwbv0BPZjctwdlIGDNUOBh4LPtHWj7AtuXdFfFUkopLZjFtRFQdR+wfnzuJelCSY9Jul1SbwBJ60m6Nb5Z3ydpoyj/tKSHJD0q6c7IzkfSTtHTMDG2rSSpj6S7JE2QNEXS3rFvv0jHm+e6MRBuMGUO/MQoO62SjvfflXvYA/gdcAjwgO0baxtsT7U9Iq51sqRLJY0FLpW0vKSLoz6PSto59pvzbTx+vjm+rfeSNCJ6UKZIOq6t309d3ZC0HmX0/vcojYE2RX2Pb+ff4ICozyRJY9r9104ppdRlFutGQHwb3hOYEkX9gfNsbwq8xtx578OBo+Kb9fHAL6P8fmBb21sCVwDfjvLjgSNtDwR2oKx7/xawb6y2tzPwM8XQ+EbXtX01ZY79IXGeFYB9gU0jHe+UuIdewIa2p9F+ah/AJsAutocCR1IG9m9OeSj/JnoTmhkIrGV7szjm4rZ+P3V1g7KWwBWUhteGtUZTi5r9G5wE7G57C+AzjQ5UJgamlFK3WFwHBvZWSZ6D8kD6FaXb/RnbtfJHgH4qc9m3A66a+8xmufj7g8CVKjn2ywLPRPlY4OeSRgLX2v6LSvTtqfF+fjawFlB7CM533QZ1nk5pSPwq3p/fHOUfAR5qdJOSrqM0MJ60Xet+v9H2m/F5e0ocL7Yfl/QcsEGjc4WngXUlnUN57XB7O7+f+roNpTSEZku6BjgAOJd2tHONscAISf8LXNvoeNvDKY0IluvbP6ezpJRSF1lcGwFvxrfrOeLh8nalaBZlfvtSwGv1+4dzgJ/bvlHSEOBkANunSRoFfBIYK2l3yvK6qwNb2Z4p6Vmg9q270XXnYftdSdsAnwD2B75JWbRnT+DW2O0xSnpe7Zh9JQ0Gqq8Oqsl9zbzLvL08y8f5XpW0BbA7ZRzFgcCxNP/9zKnb/2/v3qPtHu88jr8/klAVkhphJEJSjVYHK9LUpSRLBylqXKodjA7K1GW5jHZomVqqxtRtlFLDMDVD3bs0Gre6E8QlTZAICSqxSENaLGQQxHf+eL47Z5/Tvc85iZyz98n+vNY6K3s/57d/+7ufs1d+39/ze37fR9LmlITkruzrStLUZRJAJ3+DiDhC0taUyoHTJH0pIl7vxj7NzOwT6tOXA7ojIt4G5kr6FpQlc/NACKVC3fx8fFDlNZI2joiZEXEWZRLcF3LbhZkAfBXYqBtv/w6wZu5zIDAoIm4DvgdUYtgRuDsfXwNsJ6l6WLxe1T4ooyAH5P43ATakFOuZB4yWtIqk4ZSFflApA7xKRNxIua4/pov+qY5tf+DUiBiRP0OBoZK67IfO3iP7+rGIOIVSoGh4V/szM7MVo6+OBCyrA4CLJZ0MDKBc136Kcub/a0lvUsrmjsztj8sD/ceUs/PbKQfzmyXNpFzrn92N9/1f4BJJ71HOqn+b1+wFfF/SEOD9iHgHICLek7Q75VLE+cBrlETi9Dr7/8/8XDMpZ/8HR8TinDg4l1Kx71na5hkMA/5HpVwvwEn1+kfSH6tjo8wH2K3D+0/M9pqXMzqo9zc4R9Ko7JN7sq0uVww0M1txXDGwgVRWztsgIs5sdCwdNWtsrhhoZrbsVKdioJMA61NWW39UrH/Q+Y0O4xNxFTcz6231koCVfk5Ab5MUks6ten68pFNX4P4nqiz0U3k+J4fYK89vlNRlIZ+q7etWWpR0f05M7DGSbpM0OB8v6sn3MjOz9pwErHiLgW/kJLye8DDldjsk/RXlboFtq36/LTClOztS71UdrCsidutq5UAzM+sZTgJWvI8o97R/r+MvJA3JM/Wp+bNdts+UNDhnzb+urLcv6UpJO3fYzRQyCch/bwaG5GtHUm6ffFWdVxOcJOleykS86vhWl3SdSgXEidS41TG320XSbJXqiReobd2ApRUC8/nTkkbk45tUqgXOknRY1TbzejBhMjOzTjT8THAldREwQ9LZHdp/DpwXEQ9J2pBSk39Tytn9dsBLlII+44ArKWf1R3bYxzRgM0mrUpKAByhrC2wKbEnbKMDSaoIqJXrvzNsIAcYAW0TEG5WDdDoSeDciNpW0BTWqF+bdDZdRahy8AFzfzT45JN9vdWCqpBu7Ww8gk4bDAPqtNaSbb2dmZl3xSEAPyPvirwSO7fCrnYBfqFQ7nASslfUDHqQUCRoPXAxsLmkY8GZEtCsOFBGLKbctjqEUMHoMeISSEHyFklBAqSZ4Vb5mNiXBqCQBd0XEGzVCH1/1mhnAjBrbfIFSIfH5KLNKr+qyQ4pjJT0FPEqpBTCqm68jIi6NiLERMbbfpwd1/QIzM+sWJwE953zgUGCNqrZVKGsVjM6fYRGxCJhMOfsfB9xPKZrzTUpyUMvDlAP2mhHxJuXAWkkCujMfoDtVB5dHzUqFKtUYdwK2zTUCnqCt2qKZmTWIk4AekmfaN1ASgYo7KUsDAyBpdG77MrAOMCoiXqQsbHQ8JTmoZQpwOG2FdWZQRgU2BCoz/etVE+zMZOAf8jWbAVvU2GY2ZU2GjfN59WqC8ygjFEgaQ1vxpUGUUY1389LENl3EYWZmvcBzAnrWuZQ1AiqOBS6SNIPS95MpNfzO4QhgAAALtUlEQVShDOv3y8cPAmdQkoFaplDmAZwBS9clWAi8HBEf5zb1qgl2Fu/FlIqCz1IqDU7ruEFEvJ/X6G+V9G7Gumb++kbgQEmz8vM8l+2/A47I/c6hjFwsF1cMNDNbcVwsyD6RHOo/PiJ27433c8VAM7NlV69YkEcCrE+ZOf8tRpx4a6PDMDPrVT1VabTPzgmQtETSk3nf+VOS/qVqYZxl3Ve7+9u7sf0ASdPz8XqSrpH0Yt4H/4ikvZcnjuUhaRtJl2UtgNHZ1l/Soqz/X9luWl6nr7ef0ZI6LhDUpYi4H3g2/w7nLM9nyPc/WFJ3liU2M7MVpC+PBLxXWZ9e0rqUZXjXAn7cC++9PfCwygX2m4ArIqIyoW4jYI/OXryC7Uq55r6YcnfAk5Rlip/L51dJWgPYmM5X6BsNjAVu6+4bS+ofER9R7uFfOyKWLNcnMDOzhuizIwHVImIh5UB0dFbOa3dWKemWvHZdqXY3PUcP7um4L0nflXR7Vs87VtIzkmZIuq5qs10oywv/LfBBRFxSFctLEXFh7qufpHNUqgPOkHR41fucUNX+k2xbQ9KtGdvTkvbN9i9JeiDP5u+QtH5VLDsCd/OXlQQvoRzYAbYCpkXEEklb5WjFE5KmSPp8Fh46Ddg3R1f2zVgul/R4brtnxtKu4qCkScBAYFq+boSke/Nz3SNpw+yHufm3GZyjOONzf5NVlhI2M7Ne1pdHAtqJiBcl9QPWrbeNpCGUanfjI2KupLU7/P5oYGdgr5xJfyIwMh8Prtr0q8BPgH+iRlW9KocCb0XElyWtRhk9uJNSKGcU5eAsYFIeFIcAf4yIr2c8gyQNAC4E9oyIP2Vi8O/AISrldj+MiLckPQycnu/7lYxvf0lr0r5+wGxgXN5RsBPw04jYR9IpwNiIODrf+6fAvRFxSH72xyXdnftYWnEwt11UNSpzM2Vk5ApJhwAXRMRekuYAX6TcNjgdGCfpMWB4RDyvLKFci1wx0MysR6w0SUA3bQNMjoi5sPRe/ooDgZcpCcCH2TYDuFrSTZRhf1Qq+b2R97y327mkiyiXCj6IiC8DE4AtJH0zNxlEOfhPyJ8nsn1gtj8InCvpLOCWiHhQ5X79zYC78v36AQvydRMotQeIiJckrSrprylV/eYAU4GtKUnAhVUxXJFn3wEMqNNXE4A91DZX4lOUWgNQv+IglFLHlVUMfwVUSidXqiKOpNza+F1KyeOpdfazVERcSlmPgdXWH+XbWczMVpCVJgmQ9FlgCbCQOpXrujCTMny+ATA3275OOXD9HfAjSZtTLgXckb+fBexT2UFEHJVn55V72AQcExGV7Suxfg04IyL+q8bnGAPsBpyelysmArMiYtuO21LmA/ys6vkU4FvAgogISY9S1iTYilJaGODfgPsiYm+VdQPur9MfAvaJiHYFhiRtzfJVHJxMWZtgKHAKcAKwA/WrIpqZWQ9bKeYE5DD/JcAvsp79PGC0pFUkDaccBKEUqRmvstoeHS4HPEGpwjdJ0lCVOw2GR8R9wA8pZ9ADaZsPAHAv8ClJ1Yv8fLrq8R3AkTmkj6RNVCbp3UEZzh+Y7cMkrStpKGUBn6uAcyjD7nMoqwRum9sOkPQ3KsMCW1AmAlZMAY6j7YD/CGWE49WIeCvbBgHz8/HBVa99h7aiP5XYj8n3QdKWdM8UYL98fABtB/nHKSMSH0fE+xn34dSvimhmZj2sL48ErK6yEM8Aypn/r2g7K36Ycjb/DKXy3XSAvKZ+GPCbPMgvpMwBIH//UA5/30oZDr9K0iDKWfEFlAPl53JBHvJsey/gPEk/oNT8/z9K0gDw38AIYHoeTP9Eudxwp6RNgUfyGLsI+DbwOeAcSR8DHwJHRsQHeTnhgoylP2VdgtWBJ6J9taeHgfPIJCAiFuQ8ier1BM6mXA44OT9nxX3AidmnZ1BGDM6nrIa4SvZndwoCHUOpOnhCft7vZCyLJb1MW7XAByklh2d2Y59LuWKgmdmK44qBy0DS9sC3I+KILjfu+VhOBl6IiOu63Hgl4oqBZmbLTq4Y+MlFxEPUr+ffqyLi9K63MjMzq2+lmBNgZmZmy85JgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtaiFBGNjsGs2yS9A8xpdBzLYB3gz40OYhn0tXih78XseHteX4u5N+LdKCKGdGzs38NvaraizYmIsY0Oorsk/d7x9qy+FrPj7Xl9LeZGxuvLAWZmZi3KSYCZmVmLchJgfc2ljQ5gGTnentfXYna8Pa+vxdyweD0x0MzMrEV5JMDMzKxFOQkwMzNrUU4CrE+QtIukOZJekHRio+PpSNJwSfdJekbSLEn/nO2nSpov6cn82a3RsVaTNE/SzIzt99m2tqS7JD2f/36m0XECSPp8VT8+KeltScc1Wx9LulzSQklPV7XV7FMVF+T3eoakMU0S7zmSZmdMEyUNzvYRkt6r6utLmiTeut8BSSdl/86R9LUmiff6qljnSXoy23u9fz0nwJqepH7Ac8DOwCvAVGD/iHimoYFVkbQ+sH5ETJe0JjAN2Av4e2BRRPxHQwOsQ9I8YGxE/Lmq7WzgjYg4MxOuz0TEDxsVYy35nZgPbA18hybqY0njgUXAlRGxWbbV7NM8WB0D7Eb5LD+PiK2bIN4JwL0R8ZGkswAy3hHALZXtGqFOvKdS4zsg6YvAtcBWwFDgbmCTiFjSyHg7/P5c4K2IOK0R/euRAOsLtgJeiIgXI+ID4DpgzwbH1E5ELIiI6fn4HeBZYFhjo1puewJX5OMrKMlMs9kR+ENEvNToQDqKiMnAGx2a6/XpnpSDQ0TEo8DgTCh7Ta14I+LOiPgonz4KbNCbMXWmTv/WsydwXUQsjoi5wAuU/096TWfxShLlROHa3oypmpMA6wuGAS9XPX+FJj7AZja/JfBYNh2dw6qXN8vQepUA7pQ0TdJh2bZeRCzIx68C6zUmtE7tR/v/OJu5j6F+n/aF7/YhwO1Vz0dKekLSA5LGNSqoGmp9B5q9f8cBr0XE81Vtvdq/TgLMViBJA4EbgeMi4m3gYmBjYDSwADi3geHVsn1EjAF2BY7KoculolwvbKprhpJWBfYAfp1Nzd7H7TRjn9Yj6UfAR8DV2bQA2DAitgS+D1wjaa1GxVelT30HquxP+2S21/vXSYD1BfOB4VXPN8i2piJpACUBuDoifgMQEa9FxJKI+Bi4jF4eiuxKRMzPfxcCEynxvVYZks5/FzYuwpp2BaZHxGvQ/H2c6vVp0363JR0M7A4ckIkLOaz+ej6eBvwB2KRhQaZOvgPN3L/9gW8A11faGtG/TgKsL5gKjJI0Ms8C9wMmNTimdvLa3i+BZyPiZ1Xt1dd39wae7vjaRpG0Rk5iRNIawARKfJOAg3Kzg4DfNibCutqdPTVzH1ep16eTgAPzLoFtKBPEFtTaQW+StAvwA2CPiHi3qn1ITspE0meBUcCLjYmyTSffgUnAfpJWkzSSEu/jvR1fHTsBsyPilUpDI/rXqwha08sZykcDdwD9gMsjYlaDw+poO+AfgZmV232AfwX2lzSaMvw7Dzi8MeHVtB4wseQv9AeuiYjfSZoK3CDpUOAlysSlppDJys6078ezm6mPJV0L7ACsI+kV4MfAmdTu09sodwa8ALxLudOhGeI9CVgNuCu/H49GxBHAeOA0SR8CHwNHRER3J+n1ZLw71PoORMQsSTcAz1AuaxzVm3cG1Is3In7JX85rgQb0r28RNDMza1G+HGBmZtainASYmZm1KCcBZmZmLcpJgJmZWYtyEmBmZtainASYmZm1KCcBZmZmLer/AbVc5imsN8bcAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "maxlength = birds['MaxLength']\n", + "plt.barh(y=birds['Category'], width=maxlength)\n", + "plt.rcParams['figure.figsize'] = [6, 12]\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAKrCAYAAABoYV7pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdedhd093/8fdHVMUURaqiNDXPgphC1NwqLVqKUtXJo62qtvrr8zxtFdXWUBSt+SlVaqihFDUPiUQSGWQQRUtUqRqLECR8fn+s70l2Ts65h+Sekvv7uq77yjn77L322vftstdZe63Pkm1SSiml1Pss1t0VSCmllFL3yEZASiml1EtlIyCllFLqpbIRkFJKKfVS2QhIKaWUeqnFu7sCKbXHSiut5IEDB3Z3NVJKaaEybty4F233r9+ejYC0UBk4cCBjx47t7mqklNJCRdJTjbbn44CUUkqpl8pGQEoppdRLZSMgpZRS6qWyEZBSSin1UtkISCmllHqpbASklFJKvVQ2AlJKKaVeKhsBKaWUUi+VjYCUUkqpl8pGQEoppdRLZSMgpZRS6qWyEZBSSin1UtkISCmllHqpbASklFJKvVQ2AlJKKaVeKhsBKaWUUi+VjYCUUkqpl8pGQEoppdRLZSMgpZRS6qWyEZBSSin1UtkISCmllHqpbASklFJKvVQ2AlJKKaVeKhsBKaWUUi+VjYCUUkqpl8pGQEoppdRLZSMgpZRS6qWyEZBSSin1Uot3dwVSapdnJ8Bx/bq7FnMZ+NYf5no/7aQ9u6kmKaXUPtkT0AUkfUjSlZL+LmmcpFskrTOfZR0m6dfx+ghJh85nOQMlTWnDfudJ2i5eLy7pBUkn1e1zr6TB8XqapJXi9cj5qVtKKaWukY2ATiZJwPXAvbbXtL0F8D/Aym05VlLTv5Ht82xf2nG1bWgbYFS83g14DNg/rqtFtod0ZsVSSiktmGwEdL6dgJm2z6ttsD0RmCDpLknjJU2WtDfM/ob+qKRLgSnAapK+JOkxSWOA7WrlSDpO0jHx+l5JJ0saE/sOrZQ3PM4zXtI8N2ZJG8ZxD0maJGnt2L4+8Jjtd2PXg4AzgX8A27Z24ZKmV15/X9KDUf7xsW1pSTdLmihpiqQD2vOLTSmltGByTEDn2wgY12D7W8C+tl+L7vNRkm6Mz9YGvmh7lKRVgOOBLYBXgXuACU3OtbjtrSR9EvgJsCvwPLCb7bfi5n4FMLjuuCOAM21fLmkJoE9s3wO4FUDSklHefwHLUxoEberul7R7XNNWgIAbJe0A9Aeetb1n7NfwYb+kw4HDAVbv12oHREoppTbKnoDuI+DnkiYBdwKrMucRwVO2a13wW1MeJbxg+x3gqhbKvC7+HQcMjNfvAy6UNBn4I7BBg+MeAP5X0g+Aj9ieEds/TjQCgL2Ae+Kza4F9JPWZt6iGdo+fCcB4YD1Ko2AysFv0YAy1/Wqjg21fYHuw7cH9l8pGQEopdZRsBHS+hynf4usdTPkmvIXtQcC/gSXjszfm81xvx7/vMqeX5ztR9qaUHoAl6g+y/Qfg08AM4BZJO0taClje9rOx20HArpKmURoZKwI7t7FeAn5he1D8rGX7/2w/BmxOaQycKOnY9l1uSimlBZGNgM53N/D+6NIGQNImwEeA523PlLRTvG9kNPAxSStKeh+wfzvP3w/4l+33gC8wp6t/NklrAE/YPgu4AdiEMpbhnvh8OWAosLrtgbYHAt+kNAza4jbgy5KWifJWlfRBSQOAN21fBpxKaRCklFLqIjkmoJPZtqR9gV9Fd/tbwDTgOOCs6KYfC/y1yfH/knQcpcv+P8BD7azCOcC1MZXwVhr3MnwO+IKkmcBzwM+BE4Br4vN9gbttv1055gbgFEnvb60Ctm+PQYYPxKSC6cAhwFrAqZLeA2YCX2/1agZsBseNbXW3rjStuyuQUkrzSba7uw6pB5I0Htja9szurkvV4MGDPXZsz2oEpJRSTydpnO36QeHZE5Aas90zu+a7IDGwPgGwKtMAU0qLkhwTECRZ0mmV98dEN3xHlX+9pH0q7x+V9KPK+2slfaYd5TVN/Ksm+HWGaj5BW+uUUkqp58lGwBxvA5+pRd52ghHAEABJK1KezVcDd7al7fPuu60HpyPP3Z3XkVJKKRsBVbOACyhT6uYiqX98U38wfmpZ+pMlLR/xvi/F4DskXSppt7piRhKNgPj3z0D/OPajwAzbz0laUtLFUfaEmDlQWzPgRkl3A3fV1a+vytoEj0i6Hujb4Bq2lHRdvN5b0gxJS8T5nojtX4vrmxjXu1Rsv0RlDYHRwClR5KaSHpD0uKSvNThfH0mnVlIC/yu276iSYHgjMFWZGphSSt0mv4nN7TfAJEmn1G0/EzjD9v2SVqdMeVuf8u1+O+Ap4AnKNLpLKd/q60e6jwM2ikS+IcB9wBpRzmbM6QX4JmVSwcaS1gNu15zFhjYHNrH9sqSBlbK/Tplqt35MPxzf4NomAIPi9VBKJPGWlP8GRsf262xfCCDpROArwNnx2YeBIbbfjcckm1DWFViaEoF8c935vgK8anvLmEEwQtLtlevYyPaTkj5LK6mBysTAlFLqFNkIqIgI30uBoyjBOTW7Ahtozpo5y8Wc9+HADpRGwLnA4ZJWBV6xPddUPNtvS3qYcgPchvKNeg1Kg2AzSoMCYHvixmv7r5KeAmqNgDtsv9yg6jsAZ8Uxk1RSCOuvbZbKKobrU+J7T4/j+sR1QGmknEiJBV6G0tip+WNlDQGAGyI9cIake6LM6vTF3YFNJO0X7/tRUgLfAcbYfjK2TwZOk3QycJPt4dSxfQGll4bBA/rkdJaUUuog+ThgXr+ifItdurJtMWCbSuLdqranA8Mo36qHAvcCLwD7MeemWm8E5ca7rO1XKKvzDYmftowHmN8kwZphlPUAZlKiirePn1p9LwGOtL0xZb2CJSvH1p+7/mZc/17Atyq/s4/arvUEzC4rUwNTSqn7ZCOgTnzTvprSEKi5HfhW7Y2kQbHv08BKwNq2nwDuB46h3GwbGUlZgGdivJ9E6RVYndI9D+WGfHCcZ5347NFWqj0M+HwcsxGlq76R4cDRwAO2X6BE/65bOfeywL9UkgkPbuWce8d4ghWBHYEH6z6/Dfh6lIWkdSQtXbcPytTAlFLqNvk4oLHTgCMr748CfhPd7ItTbrpHxGejmRPFOxz4BaUx0MhIyiOAX8DsLvrngacj1hdKwt+5KkmCs4DD4lFCS/U9F7hY0iPAIzRetbBW15WZ00iZBHzIcxKjfhz7vBD/LtvCOSdRYoVXAn5q+9m6cQoXURYxGq9S+ReAfZjXxrQnNbALEgOndWrpKaXUc2RiYFqoZGJgSim1nzIxMC0SuiAxcGHRUrJhSzL1MKVUk2MCuoDKCoAPxc9zkp6pvJ9nad8OOufWks5oZZ9dJf2pDWXdIelD8XplSbMkfbVun39GZsLikv4T21aTdNWCXEdKKaXOkz0BXcD2S8Qc/ZhjP932L6v7xHNzVcYGLOg5RzNn/v98i8F8y9p+LjZ9jrKi4UGU5/4t1eFpIMN/Ukqph8qegG4kaS1JUyVdDjwMrCLpkEgLnCLp57Hf7G/X8f5ASRfF68sknStpnKTHJO0R22d/y5e0TaT7TZA0QtLaDeqyc6T2PSRpfGUk/87A3ZVdD6LMMFhD0iptuL6HKtdwuqQxkSD41di+qqT747xTJA1pqcyUUkodJxsB3W89ShrhBpS59ScCO1EChLaTtFcbyliNkv73KeCCSOiregQYansz4KdxjnrfBw63PYiSZfBWbN8DuBXKAkHACrbHAX+k9Aq01eHA87a3irp+M9IXDwH+HOfdlDLrYC6SDpc0VtLYF97MgawppdRRshHQ/f5uuzbcfWvgbtsv2p4J/IFyQ27N1bbfs/0o8DQlma9qeeBalRX+fgls2KCMEcCZkr4FLFdJB6wubHQgUHvGfyWlV6Ctdge+FD0Do6NOa1PyBb4q6SeUKOHp9QfavsD2YNuD+y+VscEppdRRckxA92tLCuB7lF6CmiXrPm8tve9nwG22z5G0FvHNfq4D7BNVFvXZExglaRdKI/EJ27Nit4OAlSR9Md4PkLRGBCW1RsA3bN81zwfSjnHeSyWdYvvyNpSXUkppAWVPQM8yGtgpZhMsTvnmfV8MFnxF0tqSFgP2rTtufxXrUB4NPF73eT/gmXh9WKMTS1rT9iTbv6AsQLQu8AngL/H5BsDiEZk80PZASsLfgW28ttuAb8R1IWldldUPPwI8F+sDXEx5DJJSSqkLZE9AD2L7n5J+TFmHQJRn5bXV+X5AuZE+T0kErD73fwYYS1n053Db79QlDJ4M/Da63P/S5PTHSBpK6XWYRIlKvgGoLRN8EHB93THXAr8Dft6GyzufEoH8UNTteWBvYBfgu5JmAq8DX2ixlC5IDFxYTOvuCqSUFnqZGLiQk3QZcI3tVuf7t7PcvsAw21t2ZLkLKhMDU0qp/TIxMLVLLBPcoxoAQLclBtan82XqXkppUdDrxgTEs/P7a/PpY9v+kuYZLFf5fJ40vA6sz4mSjp7f420f0p5eAEmfkbRee87R3uuO7IJGiwU1238FSUe0vmdKKaWO1OsaAbFi3hHA6SpL4S5Deab9ze6tWXO1wXQd5DOUbIKeZAXmrMqYUkqpi/S6RgCA7SnAnymD7Y4FLrX9d0lfjES7hySdEyPxG5K0WCTgTYmEv/1i+/mSPhmv/yzpgnh9uKTjmxS3maRRkh6X9OXYf1dJ90q6CZgc2xrWT9IFEabzsKRjK3U8VSWRcJKkk2Pg3yeBM6KMgTHj4DaVxMFhMcMASWtKGq2ypHGzeiPpS1H+REkXVz7aSdJISU9I2jf2XU7S3SqJhJMqQUgnAetGnU5qdq6UUkodqzePCTieMhXuHWCwpI0oU++G2J4VN+8DKYE9jewPrE9JuesPPChpGDAcGCrpL8DKwEqx/1DgkiZlbQwMAZYDxkuqzQgYDGxg+x+t1O+/bb8cPQb3SLoGeIlyw9/QtiUtb/s/km6hMpBQ0j3AV6MRtB3wa0qwz9nAmbb/IOnbjSotaVNKQ2pInH+FyscfBLaLa7uaMrNgBrCP7dckfZASUHQT8N/AWpEa2Og8h1MSB1m9X4YFpZRSR+m1jQDbb6iscDfd9tuSdqUMhBsbU9j6UtL3mtkeuCKS9Z6TdD/lpj0c+Drl5jcJ+JCk/sA2NO/y/pPtt4C3oiGxJSW29wHb/4h9WqrfQZK+Qvl7DgA2oEzvew+4MBoVN9WfVNLyUa9rK1MKa/9NbEuJIQb4PY17A3YGrrL9MkDt38o1GZgkadXaKYGTJG0fdVtN0kq0IjIELgAYPKBPTmdJKaUO0msbAeG9+IFyg/qt7R8vSIG2n4pvubsDwyg35YOAl6LhcRTw5dh999ph9cXEv9U0wYb1U1kM6NvAVvFN/zJgSdszJQ0GdqP0Wny9cr5qmS82+wbeoF7t8XbdeQAOpQQXbR69Gf9k3vTDlFJKXaRXjglo4k7gc7Vvpiqpfau3sP9w4MAYG7Aypeu7NoF9NHAUpREwnLI4z3AA22fZHhQ/z8f++0h6f/QYDK2U05b6LUcJ2XlNZVW/j8fny1LWALgJ+A5zkvheB5aNurwC/KvyzH6x6OKHslxwbYGgg5v8Du4GDqg9Bqh7HNBIP8oiQrMk7QbUeghm1ymllFLX6e09AbPZnhwD9+6MAXczKd33/2hyyDWUrvRJlG/M363c1IcDO9ieJulZyriA4S2cfgpwH7Ai8BPb/5a0cRvrNxaYCvwVeIrynB3KDfc6lRUFFwO+G9uvAM6X9D1gH8q4gnMlHQcsAVwGTKQ0Yi6X9L/AjU1+ZxMlnQIMkzSLkmT4lRau8/fAn2Ow4Rgi3jiud1xsv9n2fzctoZsSA6d1+RlTSqnzZWJgWqhkYmBKKbWfMjFwXpIMnG77e/H+GGAZ28d1UPnXA7+rjMR/FPi97RPj/bXA5bava2N5A4GbbG/U4LN7gWMqyxIvmropMbCmPjmwkUwTTCktLHr7mIC3gc+0ZYT6fBpBmfqHpBUpA/22rXy+LTCyLQWpYwOD5lt9PVT09v+OUkppodTb/+c9izL17Dv1H0jqL+laSQ/Gz3axfbJKhLAkvSTp0Nh+aQx2qxpJNALi3z8D/ePYjwIzbD+nklx4cZQ9QdJOUeZhkm6UdDdwV139+kq6UtIj0ePQt9EFSjpJcwKDfhnbLpF0nkrA0GOK0B6V8KDhKmE+4yXVGjA7xvYbgamx36OSLqWMZ1hN0kFR/ymSTo7j9pd0erz+tqQn4vUakkY0q19KKaWu0SO+XXaz31Dmsp9St/1M4Azb98co/Nso4UAjKDMBngKeoIzmv5Tyrf7rdWWMAzaStASlEXAfsEaUsxlzegG+SUk03lgl1/92RXIfsDmwSYTxDKyU/XXgTdvrS9qEEnw0l+h92BdYrxYYVPl4ILAVsCYlYGgtyvK+u9l+S2Xq4RWU7INaPTay/WTUY23gi7ZHSRpAWa54C+CVqP8+lMGQ/y+OHwq8pJIZMJQymLCl+qWUUupkvb0nANuvUW7iR9V9tCvwa0kPUUbHL6eyzsBwYIf4ORfYOG5sr9iuzuvH9tvAw5Qb6DaUqYMPUBoEQ5gzkn97yqh8bNdG+dcaAXfUhfDU7FA5ZhJllkK9VymhQ/8n6TPAm5XPrrb9nu3HKY2Z9YD3UcKFJgN/pIQO1Yyx/WTl/VO2R8XrLYF7bb9gexZwOWV2xHPAMjFdcTVKuuEOlEbA8FbqN5tK5PJYSWNfeDMHsqaUUkfp9Y2A8CvK1LalK9sWA7apzOlf1fZ0ytz/ofFzL/ACsB/NpwCOoNz4lo15+aOY0whoy3iAN1rfpbG4IW9Fmc64F1BdKbFRQNF3gH9TopAHU6YMNqtHW+s1EvgS8CgRqUzpNRnRSv2q13GB7cG2B/dfKmODU0qpo2QjgNlxt1cz9xz324Fv1d5IGhT7Pk2Z97+27SeA+4FjKI2DRkYC/0WZew/lG/s2wOqU5+lQbo4Hx3nWic8ebaXaw4DPxzEbAZvU7xA9F/1s30K5wW9a+Xh/lXCgNSmPKB6lZAv8y/Z7wBeAPq3UoWYM8DFJK0nqQ0lIvK9ybbXfzwRgJ+Bt26+2Ur+UUkqdLBsBc5zGnMV+oDweGBwD1qYyd+7/aOCxeD2cknx3f5NyR1Jusg/A7G/nzwNj42YLcA6wWHTDXwUcFo8SWnIupav9EeAEyviDessCN0maFPX7buWzf1Bu3n8Bjoi1C84BvihpIuXxQJu+7dv+F2URoHsojZ1xtm+Ij4dTHgUMi3UWnmbO76ql+qWUUupkGRbUC0m6hJI3cE1316W9MiwopZTar1lYUPYEpJRSSr1Uj5wiKGm67WW6ux4dRWVhn98Bn6AMQtyZMhDvLeBzdaPuO+P8hwGDbR8JYPuwBShrEDAgnuMj6dPABrZP6oCqtq6LEgPrkwEzBTCltCjqkY2AhZGkPvHMu5FPUHIGDqAsLbyJ7fckfZgFGP3fTQZRZg7cAmD7RposMJRSSqlnW2geB0RK3d0xUO+uCPCppd+dJWmkpCck7RfbF5N0jqS/SrpD0i2Vz9qToneYpF9X6nGTpB3j9XRJp8VAum1bSL/7BGUA3irMGX2P7X/GtMFaWT+TNFHSKJXliRtet6Q+kp5UsbykdyXtEPsPi6CfeqtJulfS45J+Uim7NkMBSceorCZI7HuypDHx+xgaoUcnUJYPfkjSAdXfT0f9LVJKKXWNhaYRAJxNWYxnE0oYzVmVz1ahBO7sBdS6pT9DScXbgDLdbVuYK0VvwyjrxEo5Aynz1vcEzpO0ZCt1WhoYbXtT4JFG5caUuXVtT6VMQ/xU3EBPk7RZXVmjoqxhwNeaXXf0ODwa17Y9JS1wqMqywatFAFC9rYDPUqYS7i9pngEiDSxueyvgaMoSx+8AxwJXRXbCVQ2O6ai/RUoppU62MDUCtqUkzkFZl377ymd/ivS7qcDKsW174I+x/TnK9DVof4peS94Frm2l3K0pUwqx/U9gXeB/gPeAuyTtEvu9A9wUr8dRbpotXXc1ufAXsX1L4MEmdb3D9ku2ZwDXMffvr5na6obV+rSmo/4WsykTA1NKqVMsTI2AllTn1LcYKTcfKXqzmPv3VO0deKs2DqCFcveonsP227b/Yvv7wM+BfeKjmZ4zX/NdWh+vUUsu3IryfH55YEeaJxe299pgzu+1LfWpPwYW7G9R3S8TA1NKqRMsTI2AkcCB8fpgmt/sakYAn43n0StTbpDzk6I3DRgU21ej3LTm0UK5uwB3xj6bqyy2g8ryu5tQ1gmYn+seQ4kefi+Cfh6iJBM2Sy7cTdIKkvpSGh4jKBHBH5S0YjxK2KuVugC8Tgn5aY/5+VuklFLqZD11dsBSkv5ZeX86JcL3Yknfp+T1f6mVMq6l3ICnUlLqxlO6n5cFbojn/aJxit5yRIqeypK3T0Y5j9Bgtb4wT7mS+lN6C16PfT5IWaDn/fF+DPDreYuaS8Prtv22pKcpaxFAaRwcBExuUs6Y+J18GLjM9lgASSfEZ88Af22lLlC68v9bZWGlX7Rhf5i/v0VKKaVOtkgnBkpaxvb0GIA2Btgunkk32vcSOjhFT9IhwIe7bA59D9aev0VLMjEwpZTaT00SA3tqT0BHuUlljfolgJ/Oz01nQdi+rCvP18N1698ipZTSvBaangBJ7zJ3V/c+lAV/DrV91HyUdwkd9M1f0oHAmpQu9VPj35rPx0j57qzfRcDp81mPVShTFHeP90dTpv6tbPvV2LYjcIztvVRJJ5R0BPCm7UsX9BpqBg/o47GH94wwyfpUwWYybTCl1N0WhZ6AGbYH1W2bBvSEvuE9KLkFG1Pm0B/ZzfWZi+2vLsDhtbTDmoMo0xA/A1zcynnPW4DzppRS6mQL0+yAeUjaUdJN8fo4Sb+NpLsnJB1V2e/QSKSbKOn3lSJ2qE+3i/2/L+nBOOb42La0pJujjCmSDojtokTpNhswOFc94/2v4xszkqZJOkXS5EjnW6ul+qk4NeowuVKPHePar4lkvsujbrX0v8Hx+tyYc/9w7dpie2tph8SsiWWAH1EaA639fY6TdEztWEm3Shonabik9WL7/nEtEyU1m9mQUkqpEyxMPQF9Y0Q6wJO2922wz3rATpRR549KOhdYh3LTGmL7RUkrVPavpdutR8m/v0bS7sDalKmAAm5UieTtDzxre08ASbVVbDYDJtp23HMPkFQN4tm2Ddf2qu2NJR1KWWCoNlVvnvpRvoEPokynWwl4sHLz3AzYEHiWMi1vO+D+unP90PbLKkmGd0nahPL4Yl9gvbiO5eMaq2mHUKYqXkmZibCupJVt/7sN1wdwAWXGxeOStgbOoSykdCzwcdvP1M6bUkqpayxMPQEzIqp2UJMGAMDNEcbzIvA8JbFuZ0pa3YsAtl+u7N8o3W73+JlA+Xa/HqVRMJky1/5kSUNrz8OpfFMOV1XqOSgS+lpzReXfaqOhWfreFbbfjRvwfZSkQIAxsR7Be5TcgIENzvU5SePj+jakRPm2mnYYDgKujPKvBfZvw7XV8gCGAH+Mhtz5lAYOlMbKJZK+BvRpcnwmBqaUUidYmHoC2qKaVteWlLtG6XYCfmH7/PqdJW0OfBI4UdJdtk+gNBg+28p5Wkvmc5PXbU7fa7D/PNcv6aPAMcCWtl+JwYdL2p4laSvKXP79gCMpjafZaYeSNqY0hu6IHo8lKPkJreUcQLn2/zQY04HtI6JnYE9gnKQtbL9Ut88FlJ4EBg/ok62AlFLqIAtTT8D8upuSBLgiQN3jgEZuA74c316RtKqkD6ok/b0Z0/5OBTaPRwKL19+0GngK2EDS+6PLe5e6zw+o/PtAK2UNpzxy6KMSRrQDZd59WyxHWbr4VZXkvj3iGltNO6T0Ahxne2D8DAAGSPpIaye1/RrwpKT943yStGm8XtP2aNvHUsKQVmvjtaSUUlpAi1pPwDxsPyzpZ8B9KtMMJwCHtbD/7ZLWBx6Ib7zTgUOAtYBTJb0HzAS+DuzGnJtkTf2YgG/YHinpamAK5dvzhLpjPiBpEuWbfGsD7q6nPDKYSOk1+H+2n6sNtGuJ7YmSJlCSAZ+mdMVD29IOD6T0gtTX5UDmfmTQzMHAuZJ+BLyPMrZgIuV3unac967YllJKqQssNDkBPZHK/PuLbI9qdefmZUyjzKt/scMq1gHUQ9MOMzEwpZTaT4tATkCPs4Dz73u0TDtMKaVFXzYCOpGkM4CnbP8q3t8GPF1rPEg6DTirvb0AkTFwu+1nW9nvBGCY7Tsl3UtJ9Wv6NVrSNsBXgMuBGyiPLt5PmRFwfGQNHGr7KJWUwHdsj2ylDu0+pkXPToDj+rW+XweppQJm6l9KaVHUGwYGdqcRlKlxtaWDV6JMy6sZQlkquL0OAwa0tpPtY23Xj1loyezZAMDwGM0/GDhE0ua2x1Yimnckrq2VOrT7mJRSSl0jGwGdayRz5v1vSBkY+LqkD6gsJ7w+MFXSXZLGRwLg3rWDJf1Y0qOS7pd0haRjVJIDBwOXS3pIUl9Jx6okHE6RdIE0OynwElWSEGNbn9heSxz8TuXj6mwAAGy/AYwD1lIkH0oaCBwBfCfqMDTKPC/m8z8maa84X0vHZFpgSil1o3wc0IlsPytplqTVKd+AHwBWpTQMXqUEEL0J7Gv7NUkrAaMk3Ui50X+WMl3vfZTgonG2r5F0JJWufUm/jswCVGKR9wL+3KRag4BVbW8U+9fSAVcCZtp+NdoQxPYVgW2An1JSE7E9TdJ5wHTbv4z9vkIJJ9qKspjSPapEIDc5ZjKZFphSSt0mewI630hKA6DWCHig8n4EZWrcz2OK4J2URsLKlMjfG2zXpuk1u6kD7CRpdNxUd2buRw71ngDWkHS2pE8Ar8X23YHbK/sNjemEtwMn2X64Ddd6dSQcPh7naW3aYqtpgZCJgSml1FmyEdD5auMCNqY8DhhF6QmojQc4mPINe4t4Bv9v5k0UbCrm9p8D7Gd7Y+DClo63/Qqld+FeSvf8RfFRdTwAlDEBm9neoh2rAdbfoVu8Y9s+grKuw2qUtMAVm+x3ge3Btgf3X6otwYkppclis3sAACAASURBVJTaIhsBnW8kpXv+5cj7fxlYntIQGAn0A563PVPSTkAtgW8E8ClJS0ai316VMl+nBPzAnBv+i7HfXGMA6kW3/2K2r6XcgDePMQSbUNYbaKtqHWr2l7SYymqDawCPtnRMpgWmlFL3yjEBnW8yZVbAH+q2LROrGl4O/Dm68sdS0vyw/WCMDZhE6R2YTBlHAHAJcJ6kGZTGxIWUXobngAdbqc+qwMUxWwHgf4AtgAluX3LUnymrLu4NfCu2/YMSYbwcZcXAt6rjCxoc8512pwUO2AyO67qwoGlddqaUUup6mRjYg0laxvZ0SUsBw4DDbY/vhPP8CPib7SsXoIxLgJtsX9NhFWsgEwNTSqn9MjFw4XSBpA0oXf6/64wGAIDtEzuj3E7RBWFBtYCgRjI0KKW0KMkxAXUkfVjSDZIel/R3SWdKWiI+21HSTU2OmxbP26vbvi3pV5X350u6s/L+W5LOalYX25+3Pcj2erZ/0ew8sf04Sce0/4o7hu3DOrsXIKWUUsfKRkBFDJC7DviT7bWBdYBlgJ/NZ5GzEwPDpkA/SbXpcG1ODFTRI/5elfo3fJ9SSmnh0CNuKj3IzpTlcy8GsP0u8B3gy/FcfjZJK0q6XdLDKqsJNpq79hCwTqT69QNmxLaN4/NaVgCSvhvpeVMkHR3bBqokBl5KGfg31+h5ST+MdL77gXUbXVCjVD5Jh0Vvx73R4/GTyv5/kjQuruvwyvbpkk6TNBHYNnokTpY0njIrYJCkUZImSbpeJRXxg5LGxfGbSrJKcBLRy7JUo/qllFLqGjkmYG4bUiJyZ4skv38Aa9Xt+xPgftsnSNqTsvAOdcfOisCdLYG+wGjgcWCIpBcoAzOflrQF8CVga0pjYrSk+4BXgLWBL9aWK66Nto9jDqQkAC5OJAo2uKZjaZzKtxWwESWx8EFJN0cC4Zdtvyypb2y/1vZLwNLAaNvfq9TjJdubx/tJwLds36eycNFPbB8dUxyXA4ZSZj8MjUbL87bflNSsfrNFY+RwgNX7ZU5ASil1lOwJmH87AJcB2L6ZcsNupKXEwNqjgO2B622/YXs65ZHE0PjsqVoDoM7QOOZN268BNzY5f7NUvjtsv2R7Rpxv+9h+VHzbH0XpeVg7tr8LXFtX9lUA0cuxvO37YvvvKL+f2vVvF+9/Hv8OBYa3Ur/ZMiwopZQ6RzYC5jaVMmd+tvgWuzrwt/ksszYuYFtKA+ARYAPaPh7gjfk8L9BiKt886X4qS/3uCmxre1NgAnPCiN6KxyPtrdswyk3/I5TliTelNDiGt1K/lFJKnSwbAXO7C1hK0qEwe8DbacAltt+s23cY8PnYbw/gA03KfICyAE9/289HIM8LwN7EeADKDXGfeEa+NLAvc74pNzMsjukraVngU412UvNUvt0krRDd/vtEXfoBr0Q3/XpR71bZfhV4RVKt9+ILQK1XYDhwCPC47feAl4FPAve3Ur+UUkqdLMcEVNi2pH2BcyT9mNJIugX43wa7Hw9cIelhyjf6fzQp85V4/l9dgOcBShf5xNhnvErYzpj4/CLbE1SW321W1/GSrooynqd5UuCpmjeVb1Cc61rgw8BltseqpBYeIekRSuRvo8cQzXyRkmK4FGXxoC9FPafFrIvaoL/7gQ/HGgbN6tdcFyQGTuvU0lNKqefIxMBeSNJhwGDbR3Z3XdorEwNTSqn9lImBaZHQBYmBrWkpURAyVTCltPDIMQGLCEln1PIF4v1tkV9Qe3+apO8C2L6ko3oBJLUp7CillFLPk42ARcfsdMJIFlyJkntQ0+Z0wvawPaT1vVJKKfVE2QhYdIykTEOEcvOfArweyX3vB9YHpkq6S9J4SZNVlvRF0paR9LekpKUjLXAjSb+R9OnY53pJv43XX5b0s3g9Pf7dMRIIr5H0V0mXx4BAJH0yto2TdJZi/QVJH5P0UPxMiFkOKaWUukiOCVhE2H5W0qyI5a0FE61KaRi8CkympAPuGymIKwGjJN1o+0FJNwInUpINL7M9RdJwyhz/G6OsVeJ0Q4FGyw5vRmmAPEvpmdhO0ljgfGAH209KuqKy/zHAN22PkLQM8Faja8vEwJRS6hzZE7BoaSmdcARlGt7PI+L3TsqNfeU49gRgN2AwcEpsG06J+d2AEqT0b0mrUBoWjR4tjLH9z8gDeAgYCKwHPGH7ydin2ggYAZwu6ShK4uCsRheViYEppdQ5shGwaKmNC9iY8jhgFOWGXRsPcDDQH9jC9iDg38xJBFyRsmLisrVttp8Blgc+QZnnPxz4HDDd9usNzv925fW7tNLTZPsk4KuU3ocREVCUUkqpi2QjYNEyEtgLeNn2u7ZfptzEa9/c+1EW7pkpaSdKlG/N+cCPgcuBkyvbRwFHM6cRcAytpxlWPQqsUQk+OqD2QaQFTrZ9MiXsKBsBKaXUhXJMwKJlMmVWwB/qti1j+0VJlwN/jmTAscBfASImeabtP0RU8khJO9u+m3LD39323yQ9BaxAOxoBtmdI+gZwq6Q3mDvZ8OhojLxHSVT8S6sFdkFiYGumdevZU0qp42RiYOp0kpaxPT1mC/yGso7AGfNTViYGppRS+2ViYOpOX5P0RWAJysqE5893SZkYmFJKHSbHBPQSkn4Y8/8nxbz8rSUdHQv+tLesSyTtF68vitkDTdk+w/Yg2xvYPrjBiowppZS6QfYE9AKStqUMGNzc9tuREbAEcBVwGSU/oK1l9am+t/3VjqxrSimlrpM9Ab3DKsCLtt8GsP0isB8wALhH0j0Aks6VNDZ6DI6vHSxpmqSTJY0H9q8WHCmBg+P1dEk/kzRR0ihJK8f2NeP9ZEknVlIGV5E0LHompkga2gW/i5RSSiEbAb3D7cBqkh6TdI6kj9k+i5Lst5PtnWK/H8bAkU2Aj0napFLGS7Y3t90oKbBmaWCU7U0pUwq/FtvPBM60vTHwz8r+nwdui8yCTSkBQ/OQdHg0Tsa+8GYOZE0ppY6SjYBewPZ0YAtK9O4LwFWSDmuw6+fi2/4ESvxv9Vn/VW041TvATfF6HCUxEEpOwR/jdXVU3YPAlyQdB2zcJIAoEwNTSqmTZCOgl4jwoHtt/wQ4Evhs9XNJH6UEAe1iexPgZuakCQK80YbTzPScOadtSQwcBuwAPANcEnkFKaWUukg2AnoBSetKWruyaRDwFPA6JSYYYDnKjf7VeJa/RwdWYRRzGh0HVur1EeDfti8ELgI278BzppRSakXODugdlgHOlrQ8MAv4G+XRwEGUJL9nbe8kaQIlRfBpyjoEHeVo4DJJPwRupaxqCLAj8H1JM4HpQOs9AZkYmFJKHSYTA1OniyyCGbYt6UDgINt7z09ZmRiYUkrtl4mBqTttAfw6YoP/A3x5vkvqAYmBC6JZ2mCmDKaUusNCOyZAkiVdVnm/uKQXJN3U0nEtlDe9wbYBkq5ZgDrOTtar2z5Y0lltLGP2PPwW9tlG0pMx3/6hmK//aLy+VNJhkn49v9fRwnmPk3RMa/vZHm57U9ub2N7B9t86ui4ppZTab2HuCXgD2EhSX9szgN0oo8w7jO1nKaE6Hcr2WMoqfnORtLjtWfNR5B7AMbavjXLujfdj4/1hbSlEUh/b787H+edLV58vpZTS3BbanoBwC1DrRz0IuKL2gaQVJP0psvJH1YJvJC0j6eJIr5skqX6q3EqSHpC0p6SBkqbE9sMkXSfpVkmPSzqlcsxXIohnjKQL67517xpBN49J2iv237HWYxHfpn8vaQTwe0l9JV0p6RFJ1wN9Y78+0bMwJer+nco5dgHubOV3NaBJ3adLOk3SRGBbScdKejDOc0F04SPpKElT43dWDQzaIHornpB0VKXcQ+L38ZCk8xVxww3Od1Kl3F+2cg0ppZQ60MLcEwBwJXBs3FA3AX4L1KJnjwcm2N5H0s7ApZSpcT8GXo30OiR9oFZYTI27EfiR7TskDaw73yBgM+Bt4FFJZ1Pmw/+YMr3tdeBuYGLlmIHAVsCalIjetRpcxwbA9rZnSPou8Kbt9aPhMr5y7lVtbxR1XT7+XYkyP//VBuW2WHfbT1NS/kbb/l6UN9X2CfH695Q1B/4M/Dfw0Vh7YPlKuesBO1GmGj4q6VxgLeAAYDvbMyWdAxxM+RvMPp+kFYH/A9aLQYPVcmeTdDhlNgOr98uwoJRS6igLdU+A7UmUm+xBlF6Bqu2B38d+dwMrSloO2JWypn2tjFfi5fuAu4D/Z/uOJqe8y/artt8CpgIfodzg77P9su2ZzEnGq7na9nu2HweeoNw0690YjzSghOdcVrm+SbH9CWANSWdL+gTwWmzfnRIL3JpGdYfSiLm2st9OkkZLmgzsTEkOJOpxuaRDKNMMa262/XasR/A8sDKlZ2IL4EFJD8X7NRqc71XgLeD/JH2GJgsZZWJgSil1joW6ERBuBH5J5VHAfJpFibr9eAv7vF153WoiXqifg9loTmaraXzRWNkUuBc4ghKuA2U8wK1tqEezur9Vey4vaUngHGC/6Cm5kDmpgXtSGk+bU27uteMblSvgd7F88CDb69o+rv58Mf5hK+AaSo9DW64jpZRSB1kUGgG/BY63Pblu+3BKFzSSdqSsovcacAfwzdpOlccBpkxdW0/SD9px/gcpi+18IG6Mn637fH9Ji0lak/Jt+NFWyhtGWVgHSRtRHnPUuv0Xi8F/PwI2j+f1m9Bk4Z35ULvhvyhpGWJQpKTFgNVs3wP8AOhHCSBq5i5gP0kfjONXUEkHnEuco5/tW4DvUBo5KaWUusjCPiYA2/8EGk23Ow74raRJlG7mL8b2E4HfxIC/dyljB66Lst6VdBBwo6TXmfcRQ6PzPyPp58AY4GVK4l71+fw/4rPlgCNsvxVj7Zo5F7hY0iPAI5TeCYBVY3ut4fY/lC73CZW8/gVi+z+SLgSmAM9RGjgAfSiJf/0o3/LPin2blTNV0o+A26O+MykNr6fqdl0WuCF6IAR8t9VK9oDEwAUxrbsrkFJKFZkY2AEkLWN7evQEXA/81vb1XXDeHwF/a2V530VKJgamlFL7KRMDO9VxknaldKffDvypK05q+8SuOE+PspAlBjZKCMx0wJRST7EojAnodraPiQFw69k+qr57XtKKmpPm95ykZ+L1fyRN7Yw6qUEC4gKU9RdJH47XK0maKemIun2mxbiF2efWAiYuppRS6lzZCOgCtl+qjZQHzgPOiNeDgPdaO74yEr/LSeoLrBhjLwD2pywNfFBrx9p+1naHJy6mlFLqGNkI6H59VFIGH5Z0e9x0a2sG/ErSWODbqluHoPJtexVJw6JnYYqkoZV9fiZpokpi4sqxrb+ka1VSAR+UtF1s/1ilt2KCpGWjmB0p0xJrDgK+B6xa6x1oRnMnLvaRdGqcc5Kk/2qt/imllDpXNgK639rAb2xvSFlhrzrFcIkIyTmtheM/D9wWPQubMme64NLAKNubUqYdfi22n0npidgyzlXLGzgG+GaUMxSohRfNziGQtBqwiu0xwNWUVMC2+golqXFLYEvga5I+2kL9Z5N0uEr08tgX3syBrCml1FFyYGD3e9J27cY3jpKAWHNVG45/kDIV8n3AnyplvQPUVlQcR1lgCUpi4gaV6X3LxXz9EcDpki4Hrqt0/29HaSBAuelfHa+vpGQ0tNRAqdod2KTSm9GP0gBqVv/ZbF8AXAAweECfbAWklFIHyUZA96tP3OtbeV9NEpxF9NzE3PslAGwPk7QDJdHvEkmn276Usp5A7YZZTQhcDNgm4oOrTpJ0M/BJYISkj1MaEk/bfif2OQj4kKSD4/0ASWtHJHJrBHzL9m3zfNC4/imllDpZPg5YeEyjhAMBfJqy1gGRxPdv2xdSuvY3b6Wc24Fv1d5IGhT/rml7su2TKd/O12PuRwHrAMvYXtX2QNsDgV/QhgGC4Tbg6/GNH0nrSFp6PuqfUkqpg2RPwMLjQkq63kTKjbnWS7Aj8H1JM4HpwKGtlHMUJTFxEuXvP4yyFsHRknaizFZ4GPgLJdO/1mA4iBKEVHUt5ZHFCW2o/0WURx3jI+74BWCfdtd/IUsMnNbdFUgppRZkYmBqSNL7gRGNEqa6UyYGppRS+2ViYGoX228DPaoBAHRZYmAt6S/T/VJKi7JeMyZA0ocl3SDpcUl/l3SmpCXisx0l3dTkuNlJeJVt35b0q8r78yXdWXn/LUmNFjVqqX7znCe2HyfpmAbb+0saHXP6hzY7fn5J2kfSBq3s0/T3llJKqefrFY2AeAZ9HWUK2trAOpSlcH82n0WOAIZU3m8K9JPUJ94PAUa2tW6aszJge+wCTLa9me3h83F8a/YBWmwELKjuTEJMKaXUSxoBwM7AW7YvhrJkMGX9+i9LWqq6o0rO/+2R4HcRZWpbvYeAdST1VVled0Zs2zg+H0JpKCDpu5GEN0XS0bFtoKRHJV1KWbZ3tbo6/FDSY5LuB9atP3mM6D8F2DuS9vpWPjuhdp54/zNJ347XP5A0OVIET4ptX4sUv4kqSYJLSRpCmYFwapS/pqS1JN0Z+42XtGacYhlJ10j6q6TLo8GFpC0k3SdpnKTbJK0S2+uTEPeP381EScOa/wlTSil1tN7yTWxDSmDObLZfk/QPYK26fX8C3G/7BEl7UpLuqDt2lqQJlOS7vsBo4HFgiKQXKAMun5a0BfAlYGtKY2K0pPuAVyhBOV+0PQog7p3EMQdS1hVYHBjfoO4PSToWGGz7yOrxlACf64BfRQ/DgcBWkvYA9ga2tv2mpBVi/+tieh6STgS+YvtsSTcCN9m+Jj4bDZxk+3pJS1IakKsBm8Xv91lKw2e72PdsYG/bL0g6gNLr8uU45xK1ASqSJgMft/2MpOXrf9exz+HA4QCr92vUJksppTQ/eksjoD12AD4DYPtmSa802W8k5Rt/X+ABSiPgfylT32qPArYHrrf9BoCk6yiRvDcCT9UaAHWGxjFvxjE3tqfytqdJeknSZsDKwATbL6ksdXxxrVzbL8chG8XNf3nKI5JGYT7LAqvavj6OfSu2A4yppQtKeogyDfA/wEbAHbFPH+BflSKrSYgjKCFBV1MaL42uKRMDU0qpE/SWRsBUYK7V7CQtB6wO/A3Yaj7KHEGZX78k8BvKzX8D5m4EtOSN1neZbxcBhwEfovQMtOQSYB/bEyUdRpm33x71iYeLU3o9Hra9bZNjZl+77SMkbU1JDBwnaQvbL7WzDimllOZDbxkTcBewlKRDoaxoR8m8v6T2zbhiGGVRG6IL/QNNynwA2Abob/v5iOh9gdLlPiL2GQ7sE8/Zlwb2jW0tGRbH9I1v4J9qx3XWXA98gvK4ovbN/g7gS7UxEJXHAcsC/1JJ8ju4Usbr8Rm2Xwf+KWmfOPb99WMp6jwK9Je0bez/PkkbNtpRJalwtO1jKb+/1Rrtl1JKqeP1ip4A25a0L3COpB9TGj+3ULrv6x0PXCHpYco3+n80KfOVeP7/cGXzA5QFdybGPuMlXQKMic8vsj1B0sAW6jpe0lVRxvOUCN92sf2OpHuA/8QgSGzfGgMKx0p6hznX/2PKmIYX4t/aEsJXAhdKOorSi/IF4HxJJwAzgf1bOf9+wFkxcHJx4FfM/buqOVXS2pTeg7viupvrosTAaZ1+hpRS6n6ZGLgIigGB44H927i4z0IjEwNTSqn9lImBvYNKwM9NlMGFi1QDAFjgxMBaEiBkGmBKKfWWMQG9hu2pttew/b2W9pM0vfL6k5FL8BFJR9TGTswPtSG5UFKjxzAppZS6WDYCejlJuwBnAXvYfsr2ebYv7eTTZiMgpZR6gGwE9GKSdqAsUbyX7b/HttlrFUS638mSxkRPwdDYvpSkqyVNlXS9yhoG8zxrknRIHPuQyvoKfVSSCvvGtsslLS3p5kgMnBLBQimllLpAjgnovd4P/AnY0fZfW9hvcdtbSfokJU1xV+AbwCu2N5C0ESUyeS6S1gcOALazPVPSOcDBtv9b0pG2B8V+nwWetb1nvJ/ngX8mBqaUUufInoDeayZlCuQ8sch1ail+4yhpgFCSEK8EsD0FmNTguF2ALYAHI0lwF2CNBvtNBnaLHoehtl+t38H2BbYH2x7cf6lsBKSUUkfJRkDv9R7wOcq6Ai09o68lAtbSANtKwO9sD4qfdW0fV7+T7ceAzSmNgRNjTYSUUkpdIBsBvVikJe4JHCyptR6BqhGUBkRtSuLGDfa5C9hP0gdjvxUkfSQ+mxkJhUgaALxp+zLgVEqDIKWUUhfIMQG9nO2XJX0CGBYJiG1xDvA7SVOBv1KSAOfqxrc9VdKPgNsjvGgm8E3gKcpiQJMkjQcupaQGvhf7fL3FMy9gYuC0+T4ypZQWPZkYmNot1l54n+23JK0J3Amsa/udzj53JgamlFL7ZWJg6khLAfdEl76Ab3RFAwBY4MTA+XLcPGMVU0ppkZCNgF5M0ruUAXnvA2ZRuubPsP1ezPs/1PZR9cfFqoLztChTSiktXLIR0LvNqMzX/yDwB2A54Ce2xwKd2u8uqU9tlcOUUkpdL2cHJABsP08J5DlSxY6SboLZKYK/l/SApMclfS227yhpWCT+PSrpvBgEiKTdY//xkv4oaZnYPi0yAcYD+0s6KpIHJ0m6spsuP6WUeqXsCUiz2X4iBv19sMHHmwDbAEsDEyTdHNu3AjagjPq/FfiMpHuBHwG72n5D0g+A7wInxDEv2d4cQNKzwEdtvy1p+Ub1ysTAlFLqHNkISG11g+0ZwAxJ91Bu/v8Bxth+AkDSFZQ0wbcoDYMRkgCWAB6olHVV5fUk4HJJf6LEGM/D9gWUaYUMHtAnp7OklFIHyUZAmk3SGpRkwOeB9es+rr/5uoXtAu6wfVCTU71Reb0nsAPwKeCHkja2Pau9dU8ppdR+OSYgASCpP3Ae8Gs3Do/YW9KSklYEdgQejO1bSfpojAU4ALgfGAVsJ2mtKHtpSes0OOdiwGq27wF+APQDlungS0sppdRE9gT0bn1jcZ/aFMHfA6c32XcScA+wEvBT28/Gjf1B4NfAWvH59THF8DDgCknvj+N/BDxWV2Yf4LJYOVDAWbb/02KNFzAxMKWU0hzZCOjFbPdp4bN7gXsrmybZPrTBrq/Z3qvB8XcDWzbYPrDyeiZlDEFKKaVukI2AHkTSysAZlFH4rwDvAKfYvn4+yjoauCAWCWrvsYOAAbZvaWXXv1AWCuo6HZQYOPCtP8yzbdpJey5wuSmltDDJMQE9hMow+j8Bw2yvYXsL4EDgw/NZ5NGUeN/5MQj4ZO2N7eNs/7LBfu826gVoC0nZAE0ppW6WjYCeY2fgHdvn1TbYfsr22ZIOk3SdpFsjrOeU2j6SzpU0VtLDko6PbUcBAyj5/vfEtk9EcM9ESXfFtq0i0GeCpJGS1pW0BGU+/wGSHpJ0gKRlJF0saXKE+ny2cv6fRZmjoicDSf0lXSvpwfjZLrbXQodGAL+XtKGkMXGeSZLW7uxfckoppTny21jPsSEwvoXPBwGbAW8Dj0o62/bTwA9jOeA+wF2SNrF9lqTvAjvZfjFG/l8I7GD7SUkrRJl/BYbaniVpV+Dntj8r6VhgsO0jASSdDLxqe+N4/4E4fmlglO0fRsPka8CJwJmUNQjul7Q6cBtzphxuAGxve4aks4EzbV8ejY+mYxRSSil1vGwE9FCSfkMZNPcO8BvgLtuvxmdTgY8ATwOfi0S9xYFVKDfZSXXFbUN5zPAkgO2XY3s/4HfxDdyUWQKN7Ep5NEEc/0q8fAe4KV6PA3ar7L9BBAUBLFeLDQZujNAhKAFCP5T0YeA62483+V1kYmBKKXWCfBzQczwMbF57Y/ubwC5A/9j0dmXfd4HFJX0UOAbYxfYmwM3Aku0450+Be2xvRAnrac+xADMrmQLvMqdRuRiwje1B8bOq7enx2eygINt/AD4NzABukbRzo5PYvsD2YNuD+y+VjYCUUuoo2QjoOe4GlpT09cq21gb2LUe5qb4az+P3qHz2OrBsvB4F7BCNBiqPA/oBz8Trw5ocC3AH8M3am8rjgGZuB75V2X9Qo50iofAJ22cBN1DWJ0gppdRFshHQQ8Q36n2Aj0l6UtIY4HeUJL1mx0wEJlCe7f8BGFH5+ALgVkn32H6B0p1+naSJzMnuPwX4haQJzP1o6B5Kd/5Dkg6gPOf/gKQpcfxOrVzOUcDgGOw3FTiiyX6fA6ZEYNFGwKWtlJtSSqkDqXFCbEo90+DBgz12bCYGppRSe0gaZ3tw/fbsCUgppZR6qZwdkOYh6QzgKdu/ive3AU/b/mq8Pw14xnazdQY6TwclBjZSTRHM9MCUUm+QPQGpkRHAEJi90t9KlByDmiHAyNqbTP9LKaWFUzYCUiMjgW3j9YbAFOB1SR+IVQHXp8z9Hy7pRmAqgKRDKgmA50eAEZKmN0kW3L822FDSsC6/ypRS6uWyEZDmYftZYFak/Q2hhPqMpjQMBgOTKUFBmwPftr2OpPWBA4DtbA+i5AYcHEXWkgU3BYZRkgUBjgU+Hts/3SUXl1JKabbsxk3NjKQ0AIYApwOrxutXmTMVcUwthZASbLQF8GAkBfYFno/PmiULjgAukXQ1cF2zimRiYEopdY5sBKRmauMCNqY8Dnga+B7wGnBx7PNGZX8Bv7P9Pw3KapgsaPsISVsDewLjJG1h+6X6g21fQMk9YPCAPjmnNaWUOkg+DkjNjAT2Al7+/+ydd7ReVbW+n5cAQgjFK8iFUELvEEjoBEGQooCiFBWBiIKggPC7oKjIRa5KU5CugBCRqhSp0ktCEiC9gIAKQYpgEARCDeH9/bHml7Pz5ftOSc5JcpL5jHHG2Xvt1fY+GdlzzzXXO21Pi3wDy1CWBIY1qH8fsI+kT0JRJZS0amsDSFrD9qO2TwImAyt36h0kSZIkrZKegKQZEyi7Aq6uK+sVmQlnqGz7CUknAnfHjoKpFKnh51oZ48xIXiSKETGuE+efJEmStEEqBibdilQMTJIk6TipGJgkSZIkmqLxGwAAIABJREFUyQzkcsA8hKRPUNziAP9NCaKbHOdb2P5grkxsXqILFAOrSoGQaoFJkiw4pBEwDxGR8X0BJJ0MTLH9i2odlcV42f6oM8eWtLDtDzuzz3lxzCRJkqSFXA7oBkhaU9ITkq4CHgdWkLS7pOGSRku6TtISUXdzSQ9JGiXpzxV1vrUl3R/qfKMl9ZG0s6QHJd1GCfpD0sEV1b8LI8iPVsZ7QdLpkiZIelTS6lG+vKQbJY2M/raK8p9KukJSTSNgI0kjYrzxtfZJkiRJ15NGQPdhXeBs2+tTIu9PAHayvRkwHvhuSPqeA3zJdj/gSuD/ov010X4Tyv7/mpBPf+DbtteTtCGwN7BNqP4tDHw5tv3NNF5lbq/Z3gj4DUVYCOBc4IwIRNkPuLTuXnay/TXg28AvYrzNgZdm+0klSZIk7SKXA7oPf7ddC4vfBlgfGBZb9RYFHqZo+m8A3BvlPYAXJH0cWNb2rQC23wOIOsNt/yP63ZnyIh5ZUf17HninyXg1ronfVwGnVfpap7KV8OOSFo/jm2tzoGgOnBiaAjfa/lv9jadiYJIkSdeQRkD3oV6d707bB1YrSNoUGG97QF35xzvQ72W2f1zXfu9G41VotM9UNAhmDKNg+pi2fy9pOEU18E5Jh9ieIZlQKgYmSZJ0Dbkc0D0ZBnyqsv6+RIjuPAH0lrRFlC8qaQPbrwOTJe0Z5YtJ6tmg33uB/SQtG/U+EUmEmo1XY//4/RVa8grcSxELItr0bXQjkla3/Tfb51DyC2zc4aeRJEmSzBJpBHRDbL8CfAO4TtI4ykt6bdvvA/sAZ0kaD4wBtoxmBwD/E+UPA8s16HcC8BPKcsJ44G5g+WbjVZouG/WPoOQXgGIAbBvBfk/Qkjmwnq9KelzS2Ojzyll4JEmSJMkskIqByWwh6QVgQ9v/mRPjpWJgkiRJx0nFwCRJkiRJZiADA7sZkgycZft/4vw4SlKfk1tp04ey7e/qOB8I9Ld9ZAfGPQa42PY71XLbK1XqnEwDgaNOpQsUA2vUlANTMTBJkgWF9AR0P94HvlgL3msnfYCvzua4xwCNggmTJEmSbkoaAd2PDynb5Y6tvyBpkKR9KudT4vA0YECo8tXarSjpTkl/lXRGpc1FofL3uKSfRNnRwIrAA5IeiLLdQj1wnKRavgOA9UOF8JloV+v3axUlwt9I6hE/gyRNDMXBme4pSZIk6TpyOaB7cgEwvvryboMTgONs7wHTlwP6AptSPAtPSTrP9vPAj2y/JqkHcJ+kjW2fK+n/ATvaflXScsAlwPa2n5X0X5Wx1gV2BJaMfi8C1qRsI9zW9lRJF1J2KzwO9La9Ycxrmdl4JkmSJEkHSU9AN8T2m8AVwNFt1W2F+2y/Ecp9TwCrRvl+kkZTthduQFEKrGcrYLDtZ2M+r1Wu3W77fduvUqSJlwd2AvoBI2Ir4E7A6sAzwOqSzpO0G/Bmo4lKOiy8EyMnv5O7WZIkSTqL9AR0X34FjAYur5R9SBh2kfhn0Vbav185ngYsLGk14Dhgc9uvSxoELNbBec3UL0U98He2f1BfWdImwK7A4ZQcA4fU10nFwCRJkq4hPQHdlPj6/gNFxKfGJMoXN8BewCJx/BbFPd8WS1Ekfd9QyT64e+VatY9HgO3DaKBuOaAR9wH7RCIiJP2XpFUjuHEh2zcAJwKbtWOOSZIkSSeRnoDuzS+B6ja/S4CbQ9XvTlo0+scD06J8EPB6o85sj5M0BniSkjhoaOXyxRRt/5ds7xhJfW4Mj8O/gM80m6TtJySdCNwd9adSFAXfBS6PMoCZPAUzseKmcHLXiAVN6pJekyRJ5l1SMTDpVqRiYJIkScdpphiYnoCke9GFYkE1aqJBkMJBSZLM33TbmIDIcDc2fl6W9GLlfFjU6SOpXSI5kn4tads4Pk7Sk9HXCEkHRfmkRiI9kvaSdEIrffeRNHHW7nTm/f+dhaRRksbEff5D0uTKM+wj6Q5Jy8TPt2eh/8Nrzy5JkiSZ9+i2ngDb/6bsdW9NrrYPRSnvatpmK+A7kg6nrG9vYftNSUsBe7cxl1uAWzp0A3OZCOp70fZecT6QmaWEPxvX+gDfBi7syBi2f90Zc02SJEm6hm7rCWiNZkp5kjaoqNaNl7RW1F8PeNr2NOCHwBGxFx/bb9r+XaX7o0Ipb4KkdaP9QEnnx/Hykm4KJb1xkrapm9vq8fW9eXxtD4n+RtfqqnC+pKck3Qt8stK+n6SH4iv+LkkrRPkaKgqAo6LP2tz2VVHkGydpcGUqu1GCB1t7jjXPx2nAGvHczpS0Q8zhZhVlwNMkHRDPdoKkNaL9ySq5DZC0pqR7Yx6jK3WOD2/LeIVCYZIkSTJnmC+NgAonAENs97V9NmUv+jm2+wL9gRei3u6UyPelgCVtP9NKn6/a3gy4iLKnvp5zgYdsb0LZ8vZ47YKkdYAbgIG2RxBR9dHf/tEWiudhHYpQz0FAzThYBDgP2Md2P+Ay4GfR5mLgqCg/jpav9pOAXWM+e1Xm2aYRUOEE4O/xHI+Psk0oz3M94EBgbdtbAJcCRzXo4yrggpjHNsA/Je0CrAVsQfHq9JO0fX1DpVhQkiRJl9BtlwNmkeHAjyStBNxo+69Rvivw9Xb2cWP8HgV8scH1T1Ne3IRn4Q1JHweWA24Gvmj7iai7CHC+pL4UYZ21o3x74Jpo/5Kk+6N8HWBD4B5JAD0oL9NelBfrH6Mc4GPxeygwSNIfanOXtCiwUhvGTluMsP3P6O/vwN1RPoEiGzwdSUtS5IFviufyXpTvAuxCUScE6EUxCqoeixQLSpIk6SIWKCPA9tWSHgU+B9wh6VsU4ZtlbL8EZSlB0uqtvCBring1Nbz28gbwD2A7ikwvlCRAr1C+qhcC3mujDwGP2956hsLiwfhPeDhmwPbhkrak3PMoSf0oX90Pd2DujagqA35UOf+I9j8XAafa/s1sziVJkiSZBeb35YAZlPIkrQ48Y/tcylf5xpSv1gcqbU4FLogXK5J6dTDC/T7giGjbQ1JtP9sHFDf/QWrZsbA08E/bH1Fc6j2ifDCwf7RfgZYv66eA5SRtHf0vImmDiF94VtK+US4VOV4krWH7UdsnAZOBlSlLAX/uwD21V3GwIbbfAl6Q9IWY08ck9QTuAg4JTwaSeitUBZMkSZKuZ373BNQr5X0MOFDSVOBl4OfAKcD1lTYXUdzSI6LeVIoyX3v5LnCxpG9QvAVHAP8EsP22pD0o7vwplHX7G8LIqCr83URZVniC4j0YHu0/UNkqeG4YFwtTcgg8TsnKd5GKMt8iwLXAOOBMlQBIUQyUcRRlwZPae0O2/y1pqMo2xz8Dt3fgedQ4EPiNpFMoz3Rf23erBGUOj2WMKcDXKLESjelCxcAak7q09yRJknmHBV4xUCVj3pa2p87tucwJIh7iEtu7t1l5HiQVA5MkSTqOmigGLvBGQNK96L9iD488rNdcnUNNUTDVBJMk6S40MwLm95iABJD0I0mPx178sREoOKt9Vff+d4mSYZIkSTJnmN9jAhZ4IohwD2Az2++H+M+ic3laSZIkyTxAegLmf1agCBy9D2D7VaC3pJpmwOclvStpUUmLSXomyg8NJb9xkm6IaP6mSNpJRQlxgqTLYgfA5u0Y52hJT4SX4tqufBBJkiTJjKQRMP9zN7CypKclXSjpUxRxnpqmwABgIrA5sCXwaJTfaHvzUPj7C/CNZgNIWoyy+2J/2xtRPExHtHOcE4BNbW9MUSBs1H8qBiZJknQBaQTM59ieAvQDDqPoBFxH2Yb399ietwVwFkWlcAAwJJpuqJKDYAJl++EGrQyzDvCs7afj/HfA9rY/bMc444GrJH0N+LDJPVxsu7/t/sv1VKMqSZIkySyQRsACgO1pth+0/b/AkcCXKIJEu1P27N9LUTLcjpaX8yDgyPiy/wmw2CwO39Y4nwMuoORZGCEp41SSJEnmEGkEzOdIWifEgmr0BZ6jvISPAYbbngx8gvJFPzHqLUnJS7AIxRPQGk8BfSStGecHAg/FcdNxJC0ErGz7AeD7FAXFubv/L0mSZAEiv7rmf3oB50lahuJu/xtlaeBtYHlakvWMB/7bLcIRP6as20+O301lg22/J+nrlARGCwMjgF/H5UebjRN1rwz1QwHn2v5Pq3czBxQD22LSXB09SZKk80ixoKRbkYqBSZIkHaeZWFB6ApLuxUtj4OSl267XSdTUARuRioFJknR3MiYgaTeR9GhW2w6UdH5nzidJkiSZPdIISLqcjPhPkiSZN0kjIJktJO0p6dFQC7xX0vJRfrKk30saCvy+rs3nJA2XtKykfSVNDGXCwQ0HSZIkSbqENAKS2eVhYCvbmwLXAt+rXFsf2Nn2V2oFkvamqAR+NiSMTwJ2DWXCvRoNkIqBSZIkXUO6aZPZZSXgOkkrUBITPVu5dovtdyvnnwb6A7vYfjPKhgKDJP0BuLHRALYvBi6Gkkq4k+efJEmywJKegGR2OQ84P5QFv8WMyoJv19X9O0VvYO1age3DgROBlYFRkj7RtdNNkiRJaqQRkMwuSwMvxvHBbdR9jiJZfIWkDQAkrWH7UdsnUYSJVu6ymSZJkiQzkMsBSUfoKemFyvlZwMkUpcDXgfuB1VrrwPaTkg6INnsCZ4assYD7gHGtzmAOKwZOmmMjJUmSzHlSMTDpVqRiYJIkScdJxcBk/mAOKwYmLbSmntgZpAJjksx5MiaggqT/lnStpL9LGiXpDklrt91ytsfdStIlknaQdFsX9P9nSStJelDSPySpcu1Ps6ME2MqYe0k6obP7TZIkSTqPNAKCeDHeBDxoew3b/YAfUDLg1ep0ledkd+DOruhY0uLAJ2zX1vL/A2wb15YBVuiKcW3fYvu0rug7SZIk6RzSCGhhR2Cq7VoKXGyPA3pIGiLpFuAJAEn/L1TuJko6JsqOl3R0HJ8t6f44/rSkqyT1kDQo2kyQdGxl7J2Ae6uTkbRFqOqNkTRM0jpRPlhS30q9hyVtIulTksbGzxhJtdS/OwAPVrq+FvhyHH+Ryt58Sb0k3SdpdMzx85VrP5b0VIx3jaTjovxBSefEuBMlbRHl03MFSFpO0g2SRsRPzQhpNuckSZJkDpAxAS1sCIxqcm0zYEPbz0rqB3wd2JIS0f6opIeAIcD/AOdSBHE+JmkRYAAwGOgL9La9IUz/CkfSshTj442Klx7gSWCA7Q8l7Qz8nLK97rfAQOCYWKpYzPY4SbcC37E9VFIv4L3oZ3fgT5V+7wMukdSDYgwcBvw4rr0H7G37zZjXI2H89I+xNwEWAUbXPauetvtK2h64LJ5llXOAs20/LGkV4C5gPeC4JnOeAUmHxTxZZWk1qpIkSZLMAukJaB+P2a4p4W0H3GT7bdtTKF/SAygvxX6SlgLeB4ZTXp4DKAbCM8Dqks6TtBtQU8zbBbi7wZhLU7bRTQTOBjaI8j8Ce4SBcQgwKMqHAmeFN2IZ2x9G+bYUad8a0+L8y8DitidVrgn4uaTxFM9Eb8pyyLbAzbbfs/0WcGvdXK8BsD0YWKpm4FTYGThf0ljglqjTq5U5z4Dti233t91/uZ5pBCRJknQWaQS08DjQr8m1euW7mbA9lSKZOxAYRnnx7wisCfzF9uuUL+kHgcOBS6Nps3iA/wMeCM/BnoQSn+13gHuAzwP7AVdF+WnAN4HFgaGS1pW0OvC87Q/q+r6W4rH4Q135AcByQD/bfYFXmFEBsOntt3G+ECW/QN/46W17SqM5t2OsJEmSpJNII6CF+yku/MNqBZI2pnzJVxkCfEFST0lLAHtHWe3acRT3/xDKy36MbYd7fSHbN1BkcjeLYMSNgbEN5lNV4htYd+1Sykt8RBgXNeW9CbZPB0YA69LcwBgCnEp8wdeN+S/bUyXtCKwa5UOBPSUtFl/we9S12z/msB3whu036q7fDRxVO6nFNDSZc5IkSTKHyJiAIF7UewO/kvR9yvr0JGZcT8f2aEmDgMei6FLbY+J4CPAjYLjttyW9R4uB0Bu4XFLN8PoBxfMwxi2KTQtTlhIAzgB+J+lE4Pa6OYyS9CZweaX4mHhxf0TxavwZuJ7Ky7d6r8AvGjyGq4BbJU0ARlLiErA9ImIDxlO8AxOA6ov+PUljKPEChzTo92jgglhmWJhiJB3eZM6tM4cVA5MWJs3tCSRJ0umkYuBcJF7wf7N9bZx/lxI8+L022q1IWVZY1/ZHTep8DBjaSCFqFufay/YUST0pL/HDwiB6EDjO9hx5M6diYJIkScdRKgbOe9j+ae1Y0m8pUfX7tdZG0kHAz4D/18wAiL7fpwQmdhYXS1qfEiPwO9ujO7Hv9tOFioFVRbxUr0uSZEGg1ZgASQ9I2rWu7BhJl0u6vmunBpK+LOlHkpaXdJukcZKekHRHXG+3wp6kU2KrHZImxRr9rMxp+v73DrRpqMgXe+z7A9j+hu0tbT/X2hi2r7C9su0/dmD8X0vaVkWn4NnK3vxh7e3D9lcjqG9d26dWynfoiBdA0uFhyCRJkiRzmbY8AddQtpLdVSn7MvC92A42A5IWbrbNaxbZnRIAdwpwj+1zYpyNO9KJpB6Rqna+pB3PfSvgO8ChwPG2mxpws/s3jGBHNfNSVMWYkiRJkrlLW7sDrgc+J2lRAEl9gBWB52P/eu3L+BYVhbz7ouz4UIYbL+kntc7UWGlvCUm3x1f+REm1SHNRBHZGU6Rtp6ewtT2+Msdekq6X9KSKMp+i/SRJp0saDewbX8H7VG9O0uIquvqHxvnXJD0WX8m/URHUacTK8RX/V0n/W+nvTyo5Bx6v7jKIa2dH+X2SlqtcOlB1ant17Zqp7Z0s6feShgK/l7RBZe7jVdLzImk94Gnb05rcS6O+Bkq6uck9Nvob9lFRE7wCmBjPZ4qkn8Xf9RFJy1fGqqkNHh2enfGSrm02vyRJkqRraNUTYPs1SY9RvshvpngB/sDM+8A3AzaO+rsAawFbUMRnblFRknubxkp7qwMv2f4cgKTagu+mwLiI2r8AuE7SkRQRm8ttv1SptwHwEmUrW1Uc59+2N4t+d6ubcy/KfvkrbF8RL8v9gW1ji9yFlH3zVzR4NFtQ1u/fAUZIuj1c4ofEM1g8ym+w/W9gCWCk7WMlnQT8L3Bk9DWransA6wPb2X5X0nnAObavCqOtZsDUbxM8UyUgEeBx2wc06Gtgo3uk/N0b/Q1fp/zND7b9SDzvJYBHbP9I0hkUL8T0GIjgBGA12+9rZoGh6SgVA5MkSbqE9gQG1pYEakbANxrUucf2a3G8S/zUts31orwgehFKewCSakp7dwK/lHQ6cJvt2pa63YgtY7bvUhG+2Y3yUhsjqfayfKyWHEdFka4PLUbAda3c183AGbavivOdKFv2RoQzYXHgX03a3hMv99p9bEfZUne0yjZDgJXjvv9N2QJXm8uVVPT6qajtSWqmtre+WiSFa2p7ALfYfjeOhwM/krQScKPtv0b5rpQXd41mywHVvprdo2n8N7wFeK5mAAQfALV4jVHAZxqMOR64StKfqNuKWcX2xcDFAP1X7JHbWZIkSTqJ9ogF3QzsJGkzyldrI339qqKegFMr6nBr2v5ts85tP03xJEwAfhpfylAnp2v7NdtX2z6QIiyzfVx6v9LdNGY0bFpT+hsK7KaWt6soUe+1ea9j+2RJe6slkK4WbT+TQp6kHSgv7K1tb0Ixgpqp7bnJcaPzhmp79fdn+2pgL+Bd4A6VxEU9KXK8L9E29c+qrXm11X5qRf+g/u9S43PABZS//wh1XZbGJEmSpAFtGgHxwnmA4qquV5hrxF3AIbWvVUm9JX2SJkp7Knve37F9JXAmRUlvaWDhypdo7YWGSqa5NYB/dPBe6zmJ4sa+IM7vA/aJuSLpvyStavumygu4FgX/mbi+OPAFikGxNPC67XdU5G+3qoy1EFCLR/gqM2r5z5LaXj3hKXnG9rkUw21jimzxA+18HvU0usfW1BI7hIpo0sq2HwC+T3l+vVpvlSRJknQm7f3yuga4iZYUtE2xfXesrw+Pj+wpwNeaKe2pbEE8U9JHwFTgCIrruJpatx8lAc2HlBfqpaFit0M759+M7wKXSTrD9vdirfzueEFNpUTUP9eg3WPADcBKwJW2R6qo7B0u6S/AU0DVNf42sEX0/y/ixR/MqtpePftRggynAi9Tsg6eQgnurFKNCYCy9t+Ime4RoMnfsE+TPlqjB3BlGHwCzrX9nzZbdaFi4KQu6TVJkmTeZZ5UDJR0KeUF80iblZOmqOyM2NIluVFH2g0E+ts+sq26c5pUDEySJOk46k6Kgba/ObfnMD9Q2xkxX9GFioGdRZ/3rk7FwSRJugWZRTABQEWZ8fFYdjiGohfQLmVFSf0lnRvH03UAkiRJknmbedITkMxZJG1NSQ+8WezZXxZYtJ1tF454gfTRJ0mSdDPSE5BAUWR8NZIOYfvVyrbCoySNljQhdj00UhhsmMNB0qEqioyLS1pD0p0qiopDKn3tq6I+OE7STFLUSZIkSdeRRkACZRviypKelnShpE9Vrr0asQUXAVU3//rAzra/0qhDFXXHPYAvhAjRxcBRtvtFPxdG1ZOAXUNbYa8mfR0maaSkkZPfmfcCWZMkSboruRyQYHuKpH4U9b8dKRLNJ8TlmrrhKOCLlWb1CoNVDgKepxgAU0MzYhvgjxXlw4/F76HAIEl/YEYlxer8UjEwSZKkC0gjIAEgEgw9CDwYmgcHx6WaImNH1BgnUJI/rQQ8S/E4/cf2TEJHtg+XtCVFPXCUpH41kagkSZKka8nlgARJ6yiyDgZ9aSyS1F7GAN+iJI9a0fabwLOS9o3xJGmTOF7D9qOR6nkyJedCkiRJMgdIT0ACRa73vEhe9CHwN0rWvj1mtcPIengccLukz1AyMl4UaoWLUDI4jqMoGK5FUQ28L8qa04WKgZ3FpLk9gSRJknYyTyoGJkkzUjEwSZKk43QrxcAkaUo3UAycU/R57+qZylKpMEmSjpAxAe1E0icqKYVflvRi5bxdwjqzMOYXa/vpG1xbXtIISWMkbSPphXDnd/nYlTo7S/pTZ42ZJEmSzFnSE9BOImK9LxSxHGCK7V+0p22o6n04C8N+EfgIeLLBtc8Ao2wfHmPMQvezPHanMBvPJUmSJOkE0hMwm0j6eQjj1M5Pl/Sd+Ep+MJT0JsS1W0Mx73FJ34yyhSX9R9JpoZo3XNInJQ0APgucHd6GPpUx+lNSBX+p3hPRbD5x/MNQ/hsn6WdRdnh4FMZJ+mOo+800tqS1Jd0f9UZX5rOkpBslPSXpisq4m0t6KO73z5KWj/KHJZ0taSRwpKQvVxQDH+i0P0ySJEnSJukJmH0uA64BzpfUA9gX6Bc//YH1bf8j6h5s+zVJPYGRkm4A3gKWBh6yfYKks4BDbJ8m6Q7getszuNxtj5R0CrCh7WNgBk9Aw/lI2hPYHdjC9ruS/ivq/9H2r6OP04CBti+qH1vSKOBk27dKWoxiQK4JbAZsALwCPCJpK8oWwXOAvWy/KukA4P8oOw4AetQCVCT9BdjB9ivNljMkHVZru8rSne7xSJIkWWBJI2A2sf03SW9J2ghYFXjM9uvxUh5eMQAAjpVUk8ZdCVgDGAu8a/vPUT6KotzX2fPZGbispvJn+7VosnEYFMsASwKNcgB8HFjW9q3R9r0oB3iklmdA0ligD/AexTC4N+r0AF6odHld5XgocIWkP5KKgUmSJHOUNAI6h98CAykvwN9Uyqer6sVLeHtgq/gSfxhYLC5/UGlTr8zXmfNpxBXA7rYnxhLFVh0c6/3KcW3uAsbbbmbMVNUGDwW2pGgSjJa0qe3XOziHJEmSZBbImIDO4QZgT0rg4L1N6iwNvBYGwAbA5u3o9y3K13lnzOce4BBJiwNUlgOWAF6WtAjw1UZjx0t5ciwpIGmxWNJoxhNAb0lbRP1F454bsbrtR4AfA68DvTt0p0mSJMksk56ATsD2eyppcF+2/VGTarcDh0l6AngKeLQdXV8D/EbS/1CS8Uya1fnYvk1FqnekpKnArZQX70nACIpk72O0eCdmGJui+PebCCj8APhSK+O/L2kf4FxJS1GWA34JPN6g+tmSVqN4D+62PbHVm+sGioFziklzewJJknR7UjGwE5C0EGVt/wu2n8n5dB2pGJgkSdJxlIqBXUME4N1CibKf6y/ceW0+nU4qBnYZjRQIu5JUN0ySuU/GBLSCpGlqUQWcYa9+DdsTbK8GXCipdVd2FyHp15K2jdNdKcF6u8T+/4PmxpySJEmSeZ/0BLTOu7b7zu1JtIOtgO9IOpyiJLiF7TdjPX7v9naiLlLwk9TD9rTO7jdJkiSZPdIT0EFCPW9IqOaNlrRNgzo9JP0ilPDGSzoqyndS0fqfIOkySR+L8kmSfhL9TVBo9kv6VMULMUbSTDsFJK0HPB0v2R8CR9h+E8D2m7Z/F/VOCs/AREkXKzbwq6ga/ioU/L4raU9Jj8Z491aU/npJujzmN17Sl6L8IkkjVVQQf1KZ1yQVtcLRwL6SDlWLMuENtd0FkvZVi2Lg4E77QyVJkiRtkkZA6yxeeQnfFGX/Aj5jezNgf+DcBu0Oo+zR72t7Y+CqUNkbBOxveyOKF+aISptXo8+LgOOi7DjgO+GNGAC822Cs3YE746t/yVbiAM63vbntDYHFKfvyayxqu7/tXwIPU7QMNgWuBb4XdX4MvGF7o7in+6P8RxFssjHwKUkbV/r9t+3NbF8L3BjjbwL8BfhG1DkJ2DXK96IBkg4LQ2Pk5HcykDVJkqSzSCOgdd613Td+am71RYBLJE0A/gis36DdzsBvaq71UOdbB3jW9tNR53cU8aAaNbW8URQDAoqa3lmSjgaWaeKq3xW4sx33smN84U8APk1R9KtRVfBbCbgr6h1fqbczcEGtUkXQZ7/42h8TdavPo9rvhuFBmUDZbljrdygwSNKhlK2EM2H74jBS+i/XM2WDkySyV3C2AAAgAElEQVRJOos0AjrOsRSd/E0ouQE6K41wTXlvumKg7dOAb1K+3IeqLrVvuNSXsf1SLAFMkbR6fcfhhbgQ2Ce8EJfQogcAMyr4nUfxGmwEfKuuXn2/q1G8FTuFd+D2VvodBBwZ/f6kVi+yIJ4IrAyMkvSJZuMlSZIknUsaAR1naeCfIcJzII2/Xu8BviVpYZiuzvcU0EfSmlHnQOCh1gaStEbsPjidIuizbl2VHYFq5r1TgQtiaaC2jn8QLS/mVyX1AvZp4/5ejOOD6+7pO5W5fRxYivKifyNiB3Zvpd8lgX+qKBMeUHePj9o+iSJYtHIrfSRJkiSdSO4O6DgXAjfEy/VOZvzarXEpsDYwPtT5LrF9vqSvA38M42AE8Os2xjpG0o7ARxS1vT/XXd8duL5yfhHQCxgR404Ffmn7P5IuASYCL8fYzTg55vg6Zd1/tSj/KcXAmEjxVvzE9o2SxgBPAs9TXPvN+DFFJXFy/K4FOZ4paS2KYuB9wLhW+kjFwC5k0tyeQJIkc5xUDOzGxFr8lranzu25zClSMTBJkqTjpGLgPI6ks4HnbP8qzu8Cnrf9zTj/JfCi7bNqbWI3QUfGGATcZvv6tup2oM8ptnt1Vn9tkoqBTZldxb9U8EuSBY+MCZh3GApsA9O1/5dlxgj+bYBhc2FeXYIK+e8vSZJkLpL/Cc87DAO2juMNKOv3b0n6eIgKrQeMkXRmiOtMkLQ/TH+hNis/X9JTku4FPlkbLMR8zoj6j9UCFiUtF2I+I+Jn2yhvKBZU6W9ZScMlfS7Oj4/242siQipCS09JuiLub2VJgyrzPrbLnm6SJEkyE7kcMI9g+yVJH0pahfLVPxzoTTEM3gAmUAR++lK2Jy5LCQAcHPUblW9N0SdYH1geeAK4rDLsG7Y3iiDHX0X/5wBn23445nIXxQCZLhYE03cHEMfLU5IWnWj7Hkm7AGsBW1AC/m6RtD3wjyg/2PYjkvoBvUPACEnLdNLjTJIkSdpBGgHzFsMoL/RtgLMoRsA2FCNgKLAdcE1IBL8i6SFg81bKt6+UvyTp/rrxrqn8PjuOdwbWl6aL8iwV2wp3Br5cK6yIBS1Cier/ju3alsdd4mdMnPeivPz/QYl7eCTKnwFWl3QeRWPg7kYPRdJhFBVGVlk6xYKSJEk6i1wOmLeoxQVsRHGXP0L5mu+qeAA3OF6IIhtcU0rsbXtKK318SFE53LVSJuDUSh9r2v5tXJu+pTIMiU2AB4HDKVsrZ55kKgYmSZJ0CWkEzFsMo7jkX7M9LeSGl6EYAsOAIcD+KgmKlqN86T/WSvngSvkKFHGhKvtXfg+P47uBo2oVJNWyKDYSC4JiPBwCrCvp+1F2F3BIeBCQ1FvS9HiESh/LAgvZvoGiGtih3Q5JkiTJ7JHLAfMWEyhr+lfXlfWy/apKEqOtKYI6Br5n++U2yj9NiQX4By0v+hoflzSeIln8lSg7miIKNJ7y72Mw5St9JrEgIt+B7WmSvkJZ+3/L9oUq2Q2Hx7LCFOBr0a5Kb+Dyyi6BH3T8kSVJkiSzSooFLaBImgT0t/3q3J5LR0ixoCRJko7TTCwolwOSJEmSZAEllwO6KVWlPkmfpWzx+wwln8A7tq9orb3tPk363Rc4hZJj4HjgINtHN6m7A3Cc7T1m8TY6znygGDgryn6p5pckSVeQRkA3R9JOwLnArrafo+2kRG3xDeBQ2w/HeZf53iUtbPvDruo/SZIkaZ1cDujGhADPJcAetv8eZSdLOi6OH5R0eigCPi1pQJT3lPQHSU9IuknSo5L6SzqJojnw21Ag3EHSbdHmU5LGxs8YSbUsgL0kXS/pSUlXKSIBJfWT9JCkUZLuit0JtTn9StJI4LuS9g3FwHEhcJQkSZLMIdIT0H35GPAnYAfbT7ZSb2HbW8SSwf9SRH++Dbxue31JGwJjAWyfIunTFBf/yHD31ziOIgg0NLb+vRflm1Jkjl+i6BxsK+lR4Dzg87Ynq8gY/4yylRBg0VqAiqQJFC/Gi6kYmCRJMmdJT0D3ZSpFO+AbbdS7MX6PAvrE8XbAtQC2JwLj2zHeUOAsSUcDy1Tc+I/ZfsH2RxRjog9FqnhD4B5JYykaACtV+rqurt9Bkg4FejQaWNJhkkZKGjn5ndzNkiRJ0lmkEdB9+QjYD9hC0g9bqfd+/J7GbHh+bJ8GfBNYHBgqad26/qtjCHi8ohi4ke1dKvWqqoGHU4yElYFRkj7RYOxUDEySJOkC0gjoxth+B/gccICktjwCVYZSDAgkrU+RKW4VSWvYnmD7dGAEsG4r1Z8ClpO0dbRdRNIGjSpGv4/aPgmYTDEGkiRJkjlAxgR0c2y/Jmk3YLCkye1sdiHwO0lPAE8Cj1OSFLXGMZJ2pHggHgf+TEvq4/o5fSBpH+BcSUtT/p39KtrVc6aktSjeg/soqodJkiTJHCAVAxdAJPUAFrH9nqQ1gHuBdWx/MJen1iapGJgkSdJxmikGpidgwaQn8ICkRShf4N/uDgZAkiRJ0rmkEbAAYvstYCaLsCNIWgm4AFifEltyG3B8W8aEpD7AbbY3nKWB5wPFwAWJWVFHnNOkGmOyIJOBgUmHCUGgG4E/2V4LWBvoRdECSJIkSboJaQQks8KngfdsXw4llTBwLHCIpAckbQwQyoInxfEpoQUwHUkbhJrhWEnjI0AwSZIkmUOkEZDMChtQxIemY/tN4B/AA8CA2BXwIbBtVBkA1MsCHw6cY7svZXniha6cdJIkSTIjaQQknc1DwPaUl//tlNwCPYHVbD9VV3c48ENJ3wdWtf1uow5TMTBJkqRrSCMgmRWeAPpVCyQtBawCjKF81de+/McAh1LnOQCwfTWwF/AucEfkLZiJVAxMkiTpGtIISGaF+4Cekg6C6boDvwQGxbLA88C+lC/9IZTkQzNlCJS0OvCM7XOBm4GN58z0kyRJEkgjIJkFXBSm9gb2lfRX4GlKVsFaDoMhwL/CvT+EkjxoSIOu9gMmRpKhDYErunruSZIkSQupGJh0K1IxMEmSpOM0UwxMT0CSJEmSLKCkYuB8hqRpwASKHPA04Ejbw+burGZE0oPAcbY7/km/gCgGdkRpLxXvkiSZVdIImP94N/bdI2lX4FTgU+1pGEqAsv1RF84vSZIkmUfI5YD5m6WA1wEk9ZJ0n6TRkiZI+nyU95H0lKQrgInAypKmSPqZpHGSHpG0fKPOJX0l+poo6fQo21fSWXH8XUnPxPHqkobWte8haVC0nyDp2C57EkmSJMlMpCdg/mPxiLZfDFiBIvELJXp/b9tvSloWeETSLXFtLeBg248ASFoCeMT2jySdQdnn/9PqIJJWBE6n6AW8Dtwt6QuUXQDfi2oDgH9L6k1jxcC+QO9aMiFJy3TKE0iSJEnaRXoC5j/etd3X9rrAbsAVNTc/8HNJ44F7gd5A7Qv/uZoBEHxAyQoIReSnT4NxNgcetD3Z9ofAVcD2tl+mqAQuCawMXE1REBzAzNsEnwFWl3SepN2ANxvdUCoGJkmSdA1pBMzH2B4OLAssBxwQv/tFzMArFG8BwNt1Tae6Ze/oNGDhcN2PjZ9T2hh6GPB14CnKi38AsDUww3KA7deBTYAHKXkELm1yH6kYmCRJ0gXkcsB8jKR1gR7Av4GlKQI+UyXtCKzakb4iU2DfSt8rAOfG0sLrwFeA8+LyEOCU+BkD7EjxULxRN79lgQ9s3yDpKeDKjt9lkiRJMqukETD/UYsJgLIEcLDtaZKuAm6VNAEYCTw5O4PY/qekEyhZAwXcbvvmuDyEshQwOMZ+vsl4vYHLJdU8Uj9oc+AVN4WT53+xoElzewJJkiwQpGJg0q1IxcAkSZKO00wxMD0BSfdiARELSgodEU3qrqTYUzI3ycDAeQBJU+rOB0o6fzb77HAfkkZJ+pikSbFvvxYIeO4szqGPpImz0jZJkiTpetITkAAgaTXgRdvvlx2F7Gj71bk8rSRJkqQLSU/API6kPSU9KmmMpHtr6n3xpb6MCv+WdFCUXyHpM3V9fE7ScEnLhqLfxFADrIr37Abc2cZcDpU0ItreIKlnlK8RyoITJP203rMRdXpIOjPaj5f0rShfQdLg8DhMlDRg9p5YkiRJ0l7SCJg3WLzieh9L2VpX42FgK9ubAtfSosY3FNgW2IAiulN7eW5N2acPgKS9gROAz8aX/UnArrY3AfaqjFNvBDxQmVNNzvdG25tH278A34jyc4BzbG8EvNDkHr8BvGF7c4rQ0KHhffgqcFdoF2wCjK1vmGJBSZIkXUMuB8wbTE/6A2U9H6hFca4EXBf78hcFno3yIRQlvueAi4DDQp73ddtvh0v/09HPLrZranxDgUGS/gDcGOMtCqxk+5nKnBotB2wo6afAMkAv4K4o3xr4QhxfDfyiwT3uAmwsaZ84X5oiVzwCuEzSIsCfbM9kBNi+GLgYoP+KPdIKSJIk6STSEzDvcx5wfnxlf4sWlb/BlK//ARTFvcnAPswozft3YElg7VqB7cOBEyn7+EdJ+kT08XA75jKIkpp4I+Anlbm0BwFHhaRxX9ur2b7b9mCKMfMixTg5qAN9JkmSJLNBGgHzPktTXpAAB9cKbT9PkQReK77gHwaOY8YkPc8BX6LkD9gAyvq97Udtn0QxHFamLAX8uR1zWRL4Z3y1H1ApfyTGAfhyk7Z3AUdEWyStLWkJSasCr9i+hCIbvFk75pEkSZJ0ArkcMO9zMvBHSa8D9wOrVa49SpEFhuIBOJW6L3rbT0o6IPrYEzhT0lqUL/P7gHHAJZRYgSoPSJoWx+NtHwT8OMacHL+XjOvHAFdK+hElruANZuZSSiKi0ZHQaDJlCWEH4HhJU4EpQOuegAVEMTApTJrbE0iS+ZxUDFzAkbQScInt3Wejj56UuAZL+jLwFduf77RJVkjFwCRJko6TioFJQ2y/AMyyARD0A86PL/z/AIfM9sSakYqBXcrcUOhLxbwkmXukEZBMJ7wCFwDrU+JFbgOOt/1Ba+1sD6Fs70uSJEm6ERkYmAAQX/E3UrbprUXZUdAL+Nls9tuj7VpJkiTJ3CCNgKTGp4H3bF8OYHsacCxwiKQNJD0WwkHjJa0VeQGelHSVpL9Iur6iIDhJ0umSRgP7hqLgnZGbYIikdSUtKenZym6BparnSZIkSdeTRkBSYwNgVLUgBIb+AZxPUQTsSxEfqqkCrgNcaHs94E3g25Xm/7a9me1rKUI/R9nuR9nGeKHttyj6BrUF4S9TFAmn1k8sFQOTJEm6hjQCkvbwAPBDSd8HVrX9bpQ/b3toHF8JbFdpcx2ApF7ANpQtimOB3wArRJ1Lga/H8deByxsNbvti2/1t91+upzrrnpIkSRZ40ghIajxBifKfjqSlgFUoMsB7Ae8Cd0j6dFSp/yyvnr8dvxcC/lNRCuwbngPCgOgjaQegh+1MO5wkSTIHSSMgqXEf0LOSjbAH8EuKVPB/A8/YPhe4Gdg42qwiaes4/ioNpIdjSeFZSftGv5JU3UlwBSXfQEMvQJIkSdJ1pFhQMh1JKwMXAutSDMQ7KGv4xwIHAlOBlykv/KUo6oAjKR6EJ4ADbb8jaRLQv5aAKLIFXkRZBlgEuNb2KXHtvylJkVaw/Z+25phiQUmSJB0nxYKSNol8BHs2uHRa/Ewnlgo+tP21Bv30qTt/lpKfoBHbAde3xwBIkiRJOpc0ApK5hqTzKGqFn213o1QM7JbMDSXCelKZMElmJmMC6pBkSb+snB8n6eRO7P8mSV+onD8l6cTK+Q2SvtiB/vpIahhQJ+lBSTO5fzqKpJMlHRfHAyWtaHuS7Q1np1/bR9le0/bTszvHJEmSpOOkETAz7wNflLRsF/U/lLJlDkmfoETRb125vjUwrD0dSZobnpyBwIodaTCX5pkkSZK0QRoBM/MhRdzm2PoLkpaLL/UR8bNtlE+QtExEvv+7EmF/haTP1HUzjDAC4vetwHLRdjVKNr6XJS0m6fLoe4ykHaPPgZJukXQ/JaK/Or/FJV0bCn43AYs3uIfdJP2xcr6DpNvieEqlfB9Jg+ra7kMRC7oq1AMXD3XAZeN6f0kPxvHJkn4vaSjwe0k9JJ0Zz228pG9FvRUkDY7+Jkoa0PQvkyRJknQq+YXWmAuA8ZLOqCs/Bzjb9sOSVgHuAtajfN1vCzwHPAMMoGx92xo4oq6PUcCGkhalGAEPAatHP5vS4gX4DmDbG0laF7hb0tpxbTNgY9uvSepT6fsI4B3b60naGBjd4N7uBS6WtITtt4H9gWvb81BsXy/pSOA42yMBpFbFe9YHtrP9rqTDgDdsby7pY8BQSXcDXwTusv2z2JbYs76TaHsYwCpLp1hQkiRJZ5FGQANsvynpCuBoikBOjZ2B9SsvvqVCEW8IsD3FCLgIOExSb+D1eNFW+35f0uOUF/lWwBkUI2AbihFQU+DbDjgv2jwp6TlKUh+Ae2y/1mDq2wPnRpvxksY3uLcPJd0J7Cnpeops7/fa92Q6zC0VdcFdgI3DmwCwNLAWMAK4TCVnwJ9sj20w54sp3hn6r9gj97QmSZJ0Erkc0JxfAd8AlqiULQRsVVG+6217CjCY8vU/gKKHPxnYh2IcNGIo5YW9pO3XgUcoRsA2tC8e4O22q7TKtcB+lKRBI0PHH2ZU/FusnX19SMu/o/o21XmKkj+g9uxWs3237cGUZ/EiMKi2lJIkSZJ0PWkENCG+tP9AMQRq3A0cVTuR1DfqPg8sC6xl+xmKct5xFOOgEcOAbwHj4nw8xSuwClCL9B8CHBDjrB3Xnmpj2oMpQj5I2pAWZb96HqJ4Ig5lxqWAVyStJ2khYO8mbd8ClqycT6JFbvhLrcztLuAItWQNXFvSEpJWBV6xfQkll8BmrfSRJEmSdCK5HNA6vwSOrJwfDVwQbvaFKS/dw+Pao0CPOB4CnEoDGd1gGGUJ4FSY7qL/FyUhz0dR50LgIkkTKF/bA2MpobX5XgRcLukvwF+oywpYw/a0CAYcCBxcuXQCcBvFkzES6NWg+SDg15LepcQ8/AT4raT/o3hBmnEp0AcYrXITk4EvADsAx0uaCkwBWvcErLgpnJyKgd2NSXN7AkmSNCRlg5NuRcoGJ0mSdBylbHAyX5CKgQskc0pxMFUFkwWNjAnoRGr77Kt77xvUuUPSMp045iKSRsfxjyQ9Hvvwx0rasrPGaWMO7brfyvNpqnKYJEmSzDnSEzCHsd1+nfz2sR1lz/3WwB7AZhE7sCywaCeP1WG64H6TJEmSTiI9AV3HUpJuV8kN8OuIuKemsBeR8bdLGhdKefvH9X6SHpI0StJdklaI8qMlPRFf+dWI/t2AP1PS9L5q+30A26/afqky5hkq6oOPSVozyvtIuj/6vC8EkForHyTpXEnDJD1T2fPf5v02e0iSNog5jY3x1uqUp58kSZK0SRoBXccWlO2E6wNrUJTxquwGvGR7k0jEc2dsnzsP2Md2P+Ay4GdR/wRgU9sb07IjAWBHSlT+3cDKkp6WdKGkT9WN94btjYDzKRoIxFi/iz6vIoSGWimHYmxsR/E6VNMLt3W/zTgcOMd2X4ok8Qv1FSQdJmmkpJGT38lA1iRJks4ijYCu4zHbz9ieBlxDeXFWmQB8RtLpkgbYfgNYB9gQuEfSWOBEYKWoP56i2f81ypZBQpXwNdvvhGhRP4q87mTgOkkDK+NdU/ldS1i0NVCLuPp9ZY7NyqGo+n1k+wlg+Q7cbzOGAz+U9H1g1YrC4HRsX2y7v+3+y/VM2eAkSZLOIo2ArqP+k3WG80ifuxnFGPippJMoqnqPV1T1NrK9SzT5HCWnwWbACJXMfLtRRHhqfU6z/aDt/6XoG1TFe9zkuKO8XzmuvpFbvd9m2L4a2Isiz3yHpE/PxtySJEmSDpBGQNexhaTVYm18f+qEgyStSEn2cyVwJuXl/hQlo+DWUWeRWDNfCFjZ9gPA9ym6+71oiQdA0jp16+l9KbkMauxf+T08jocBX47jA2iROW5WPsv32wxJqwPP2D4XuJnmKodJkiRJJ5O7A7qOEZT19zWBB4Cb6q5vBJwp6SNgKnCE7Q8i2O5cSUtT/j6/Ap4GrowyUdbo3wLWtP1k9NcLOC+2430I/I3IvBd8PJQO3we+EmVHURQGj6csIXy9jfLZud9m7AccGIqBLwM/b7V2KgYukEya2xNIkvmUVAzspkjaDvia7cPbUXcS0N/2q10+sS4mFQOTJEk6TioGzmfYfph2utznK1IxMJnLzCn1wvmdVGecN5jvYgJqqnSV84GSzp+L89lK0iWhqvdG7Iev/ezcSWPsIGmbZtdt96l5AUJ/4GOxf39CzGOCpM9X+hsWv/tI+mqlvK+kFP9JkiSZT5jvjIDZJaLuO5PdgTvjeEgl8r+v7Xs7aV47AE2NgEofqwEv1gSFgB1jf/4+VLQAbNf66kOkJg76Ah0yArrgeSZJkiSdxAJlBEhaTtINkkbEz7ZRfrKk30saCvxe0mKSLo8v5DGSdox6AyXdKOlOSX+VdEaU9wg1vYnR5tjKsDsBrb7sJf04lPYelnSNpOOi/EFJv5I0Evhuo/lL6kMR3Dk2vuoHSNo35jJO0uDKULvRYpBUWQp4vTKfmjflNGBA9Pt94BRg/zjfX0X18LJQ/BtT8ybEc7pF0v3AfeGpeFDS9ZKelHSVVHIiSzpNLUqIv2jzj5gkSZJ0GvPjV9riKkI7Nf4LuCWOzwHOtv2wihTuXcB6cW19YDvb70r6H8C2N5K0LnC3pLWjXl9gU0qU/VOSzgM+CfQO5T/UkjBnWWCq7TfinTegbm5fivl9CdgEWAQYDYyq1Fm0Fswh6er6+dteT9KvgSm2fxH1JgC72n5RMyYr2g2oGigPxMt4dUqUfj0nAMfZ3iP6fYUSYHhknP8cuN/2ITHOY5JqBs9mwMa2X5O0QzyzDYCXgKHAtpL+AuwNrGvbapJYSdJhxE6HVZZOsaAkSZLOYn40At4NFzdQvkopcrQAOwPrxwsZit59rzi+paJWtx1FOhfbT0p6DqgZAfeFuh+SngBWBR4HVg+D4HaKhC/ALpVjKMsBe1QnK2lP4Gbb7wHvSbq17n6uqxy3Nv8qQ4FBkv4A3BjjLAqsZPuZSr0dbb8qaQ3KF/uDoTzYXnYB9qp5LoDFgFXi+B7br1XqPmb7hZjLWMpSwyPAe8BvVbIQNsxEaPti4GKA/iv2yO0sSZIkncT8aAS0xkLAVvHCnU68VN9uZx9VxbxpwMK2X5e0CbArxTW/H3AIJR7grNmcc3Verc1/OrYPV0kj/DlglKR+FA9Gw90Etv8eX/nrA491YG4CvmT7qbr5bMnMz7PRc/tQ0haUJZN9KCqHqRiYJEkyh1igYgIoX+VH1U4k9W1SbwhFKY9YBliFoubXkHD7L2T7Bore/2bhZt8YGNusXTAU2DPiEHpREvN0dP5vAUtWytew/ajtkyhiPytTURdsMP9PAqsxo8LgTP02OL8LOKqyvr9pK3NvNG4vYGnbd1CWKTbpSPskSZJk9ljQPAFHAxeoKOctDAxmxox8NS4ELoq19Q+Bgbbfr//irtCborBXM6p+QEnmM8YzqjHVxwT81Pb1km6hJAh6hZJL4I0Ozv9W4PoIzDuKEiS4FuVL/T5gHHAJcFJdfw9ImkaJRTjB9it118cD0ySNAwYBvwNOiHs4Ffg/iqLh+Lj3Z2ndiKlnSeBmSYvFXP9fmy1SMTCZy0ya2xNIkk4kFQO7CEknAn+zfW076vayPUVST8qL/TDboztxLisBl9jevbP6nFukYmCSJEnHURPFwDQC5gEi6n99SmDd72yfOpenNM/Sf8UeHnlYo1jIJEnmFqmi2PXMrsJiMyNgQVsOmCex/dW2a3UesQQwgfL3/wtwsO13Wqk/icg9IGlYRUwoSZIk6cYsaIGBSeHdUCzcEPiAxnERDUkDIEmSZP4hjYBkCCX9L5K+Fup/YyX9RlKP+soVNUEkfV9FIXGcpNOi7FAVNcNxKuqGPaN8kKRzJQ2T9IxKymQkrSBpcIw5UdKAOXLXSZIkSRoBCzIquv67AxMkrQfsD2wbYkvTiG2STdruDnwe2NL2JsAZcelG25tH2f9n77yj7arKvf38CC0QBBUuFxCI9BpCEhCREpQqKiA1YsEW8SrtfigoXkRFBLk2inADSAQiIB0B6cSECISQTqQohKsXRFBAQw3J7/tjvjtZ2dn7nH1OTkl5nzHOOGvPNdecc+2TkTXXLM/7B+DzlcvWoYiYPkJREkOJTXBH1LkdDbZUShouaYKkCS+8lmtYkiRJuopcE7BsUlUrjwUuoWh5BwMPx1bIvsDf2ihjT+DS2lqCih1wG0mnA2sA/SgugRo32p4LzJC0dqQ9DPxC0gpxfqFOQBoDkyRJuofsBCybLKBWBgjhzy9tf2MRyx4JHGh7Siibh1bOVa2BArA9RtJuFLvhSEk/tn3ZIrYhSZIkaYGcDkhq3AMcEvZAJL1L0oZt5L8L+Gxlzv9dkb4a8Fy82TedTqgRdTxv+yLgYkrgoSRJkqQHyJGABADbM0JwdGfY/2YDX2FhlXAt/+2hLZ4g6S3gNuCbwH8BD1F0xQ+xoGa4EUOBr0maDcwCPt1m7jQGJslix8zebkDSaVIWlCxRpDEwSZKk46QsKFk6eHYSnLZ6b7ci6SEWJxPdohrbkmRxJNcEtIikf5d0laQ/SXpE0m0RYXCJQNLxtfn7dvLtJOkiSatIGhUegOmS7pfUT1J/SdN7os1JkiRJ95IjAS0QK+dvoKyePyLStgPWBp5o59rlbb/dhW3pbHnHA1cATfXAwX7A7cBxlAV720a9m1PWCSRJkiRLCTkS0Bp7ALNtX1hLsD0FuF/S2fGmPE3S4QCShkoaGyGCZ8Tb82NhzXsi3rD3lDRO0pOSdozr3iXpRklTJT0oaUCknybpcknjgMujvLGSJsbPzpV6R0u6NuobpcKxwLqU0MH3SeoTbam1+4TKvX4IuJsi9rBacM0AACAASURBVPm/yv0+bru2xa9PjBY8KulOSX2j/ma2wI3jfqZJOl1hHUxbYJIkSe+SnYDW2AZ4pEH6x4Ga6W5P4GxJ68S5QcBxtmtTBpsAPwK2iJ9PUOx5J1JW1QN8B5hke0CkVffLbwXsaXsYReKzl+1BFMvfOZV821Pe+rcCNqIYAM8BngX2sL1HtHk929vEm/6lAJLWpHR2XgF+AZwk6YF4cG9aqWNT4HzbWwMvAwdHejNb4M+An0Vdf6mU064tMNqVxsAkSZJuIDsBi8YuwJW259h+HvgdsEOcG2/76Urep21PC2Peo8A9LlszpgH9K+VdDmD7XuDdkt4R5262/XocrwBcJGkacA3lgV9jvO2/RD2TK2VXeQrYSNK5kvYF/hnpewN3Rv2TKZ2Is4F3UUyCW1bupfbAfqRSxzYxQjGN4gjYOtLfH+0EqK70epjiGjgN2Nb2vxq0FdsjbA+xPWStVdQoS5IkSdIJshPQGo9SlLod4dW6z1Vb3tzK57m0tjajWt4JwPOUt+chwIpN6pnTqGzbL8W1oykRBC+OU7X1ALV8s2xfb/s/KOsJPtxOHSOBr8Yb/3eAldu6IdtjgN0o0w4jJbXtCEiSJEm6lOwEtMa9wEqShtcSYr7+ZeDwmGNfi/JAG78I9YwlLHuShgIv2v5ng3yrA8/F2/6ngIWi/TXgX4S4J4b9l7N9HfAtYFAsfhxADMlL+oCkd8bxipTRhobioArNbIEPMn/K4IhaYtoCkyRJepfcHdACti3pIOCnkk4C3qBIso6nBMmZAhj4uu2/Stqik1WdRgmmM5Wyiv8zTfL9HLgu3pxvZ+FRh0aMAG6X9Gy0+1IVMyDANygjHZM83x61MXBBdA6WA24FrgPaUgk3swUeD1wh6ZRo7yuRPpSO2AIhjYHLGDN7uwFJspSTxsAEABVl8B9tX9UNZa9CCVpkSUcAw2wf0Jmy0hiYJEnScZTGwKQtbJ/ejcUPBs6LUYWXgc91uqQ0BiY9zOJkLWyVtBsmrZJrApYQJM2J/fS1n/4N8qwr6dpFqKNVq+DMWFdQn350o8V9tsfa3s72ANu72f5jzRWQJEmS9B45ErDk8Hrsp29ImASfBQ5ZhDpatQo2pCpTatC2LrMmJkmSJF1DjgQswUg6StLNku4F7lHF66/i/v+1pBmSbpD0kKQhce6CkO88Kuk7kbaAVTDS9g5Z0ERJ10jqV6n+62EAHC9pk8h/mqQT43i0pJ9KmgAcJ+m9UdY0SadX7iGtgUmSJL1EdgKWHPpWpgJuqKQPAg6xvXtd/v8AXrK9FWXVftVzcEosEBkA7C5pQL1VMIb7v0WxFA4CJgD/WSnjlfABnAf8tEmbVwzJz48o1sAL4prnKnnatQamMTBJkqR7yOmAJYdm0wF32f5Hg/RdKA9ebE+PbYc1DgvnwfKUGAFbAVPrrt8p0seV9XysCDxQOX9l5fdPmrT56srxB5jvCrgcOCuOH6Zsi1wBuLFiIpyH7RGULY4MWbdP9gKSJEm6iOwELPm04giYh6T3UuIV7GD7JUkjaWz2E6WDMaxJUW5y3FbbFspne4yk3YD9KdbAH9u+rD5fkiRJ0vXkdMDSyzjgMABJWwHbRvo7KA/nVyStTVEF15hnFaRY/j5Qme9fVdJmlbyHV35XRwjaak/NFjjPJpjWwCRJkt4jRwKWXn4O/FLSDOAxSvyDV2w/KWlSpP2Z8nCuMc8qGOsCjgKulLRSnP8W8EQcvzOmGN4Emo0WVDkO+FUYF2+qpA+lI9bANAYmPczM3m5AknQjaQxcSpHUB1jB9huSNgbuBja3/VYvN22RSGNgkiRJx0lj4LLHKpTtfitQ5vf/o6MdgHD9f4ISKXAu8CVKWOARtjvkEpA0Exhi+8WOXLcQaQxMuogl0QTYUdIcmLRHdgKWUmz/ixJmuFNIej/wEWCQ7Tdjy+CKlBX/HRIKxahEkiRJspiRCwOTZqxDCWX8JkC8wR/CwkKhYSEAmi6ptu0PSbMk/UjSFMroQS29r6TfSvpiLDa8VdKUuP5wkiRJkh4jOwFJM+4E1pf0hKSfS9q9gVBoXcp+/w8CA4EdJB0Y168KPBQxA+6PtH7Ab4ArYzfAvsCzkWcbSpjhJEmSpIfITkDSENuzKJbB4cALwNWxW6DKDsBo2y9EbIBRwG5xbg5wXV3+m4BLKx6AacBeks6StKvtVxq1JY2BSZIk3UN2ApKm2J5je7TtbwNfZb7xrxXesD2nLm0csG+EFMb2ExQvwDTgdEmnNmnHiNAPD1lrFXX8RpIkSZKGZCcgaYikzSVtWkkaCDzDgkKh8ZTYA2vG4r9hwO/aKPZU4CXg/KhjXeA121cAZ5OioCRJkh4ldwckzegHnCtpDeBt4I+UqYFhLCgUOhm4j7IN8VbbNzUtsXAcJVbAD4F7gLMlzQVmA1/upntJkiRJGpCyoGSJImVBSZIkHaeZLCinA5IkSZJkGWWJmg5oZLCz/VCX2ei6EEnH0wmzXncjaShwou2PdEFZ37R9RieuGx1t6PgrfRoDF53TGm7CSJJkGWSJGQmoM9gNAPakBMDprvoWtYN0PEXd25E6lzSz3jcbJaqwxPzbSpIkWVZZkv6jXshgZ/vZyvljJE0Me90WMC/87S8kjZc0SdIBkd5f0tjIP1HSzpE+NNJvBmZI+pqkY+PcTyTdG8cflDQqji+IPeyPSvpOpB3Lwma9vSU9EPVdI6lfpM+MffITgUMlHStphqSpkq6q/xLaaftoSddKekzSqNpWPEn7RtpE4OONvlxJR0m6Kcp4UtK3K+c+Gd/hZEn/I6mPpDOBvpE2Ktr1uKTLgOkU0VDDe66U20fSyLAFTpN0Qqv/GJIkSZJFZ0nqBCxksKs7/6LtQcAFwImRdgpwr+0dgT0oK9FXBf4G7BX5DwfOqZQzCDjO9mbAWGDXSB8C9FMJyLMrMKZWRyy2GEDZLjeggVlvTUoY3j2jzgnAf1bq/LvtQbavAk4Gto/RjqMbfA9ttX17ygjEVsBGwAckrQxcBHyUIv/590ZfbrAjxQUwgNIhGSJpy6jnA7YHUqZijrR9MvC67YG2j4zrNwV+bntr4NV27hnKtsP1bG9je1vg0jbaliRJknQxS8yaANuzJA2mPID3oBjsTrY9MrJcH78fYf7b7t7AxyTVOgUrAxtQHtDnSao91DarVDXe9tOVsgZLegfwJjCR0hnYFTg28hwmaTjlu1yH8gCeWtf8nSJ9XLycrwg8UDl/deV4KjBK0o3AjQ2+ihXaaftfACRNBvoDs4CnbT8Z6VdQtvo14i7bf4981wO7ULYHDgYejrb3pXREGvGM7QdbvGeAp4CNJJ0L3Erp6C1EfL/DATZYPWVBSZIkXcUS0wmAYrADRgOjJU0DPgOMjNNvxu85zL8vAQfbfrxajqTTgOeB7SijIW9UTr9aqW+2pKeBo4DfUx7QewCbAH+Q9F7KqMMOtl+SNJLS0ahHlAfssCa39mrleH+KevejwCmStg0lb40T2mj7m5Xj6vfQKvX7RR1t/6Xtb7RwffU+2rtn4jvbDtiHMupxGPC5BvlGACMAhqzbJ/e0JkmSdBFLzHSAmhvs2uIOylqB2tz49pG+OvCc7bnAp4C2FuSNpTzox8Tx0cAkF8HCOygPvlckrQ3sV7muatZ7kDI0v0m0Y1VJ1Tf42j0uB6xv+z7gpGhnv7psHWk7wGNAf0kbx+emD2WKx/9dkvoCB1I0v/cAh0j6t2jjuyRtGPlnx/RII9q955gmWc72dZSpgzQGJkmS9CBLTCeA8jD8ZW3RHGWo+bR2rvkeZfh8qqRH4zPAz4HPqIS53YIF32DrGUsZ5n/A9vOUN++xALanAJMoD9pfUR6aNUZQzHr32X6BMppwZbT9gai3nj7AFTHKMQk4x/bLdXk60nZsv0EZSr81FgY2G8qHogG+jjLicZ3tCbZnUB7Qd0bb74rvo3aPU2uLJOvqbeWe16OM6kwGrgBaGW1IkiRJuog0BiZA2R1AcS18tbfb0hZpDEySJOk4SmNgkiRJkiRVciQgaRdJs2zXr03oFYas28cThi8WTUkWI/q/8avebkJDZp65f283IUmAHAlIkiRJkqSO7AQknSIMgfeG2fAeSRu0kz5S0jmSfi/pKUmHRPo6ksaEeXC6pF3bqjdJkiTpOrITkHSWcyn+gAHAKOabC5ulQ9lVsAslBsSZkfYJ4I6wEW4HTO6BtidJkiRkJyDpPO+nbIsEuJzycG8rHeBG23Nj2+HakfYw8NkQOG1r+1/1FUkarhKfYcILr+UaliRJkq4iOwFJT1I1GgrA9hiKIfH/gJGSPl1/ke0RtofYHrLWKqkNTpIk6SqyE5B0lt8DR8TxkYRAqY30hoR98HnbFwEXk9bAJEmSHmOJih2Q9BqrSPpL5fOPgWOASyV9DXgB+Gyca5bejKHA1yTNpgQ7WmgkIEmSJOke0hOQLFGkMTBJkqTjpCcgSZIkSZIFWCamAyLC308oMe5fAt4Cfmj7hjaumUlx6b/YijFP0smUAECHRtK2wLQ4/oXtcxpe2AVI2oUy//41yrz61pSFdy9RwvSuC1wb2/Cq170POML2Cd3Vti7n2Ulw2uq93YpkEehJu18a+5KkbZb6TkCEEb6Rsnf9E5G2IfCxLq5qH+Aw29+POmbVP3RbaOvytt/uRN37AbcDJwD/a/uIKG8LYHazi2w/BDzUifoWmfi7KEIiJ0mSJL3AsjAd8EHgLdsX1hJsP2P7XElHSTqvli7pFklDmxXUzG4n6R3AihE+t9m1a0u6Pva7j5e0U6SfLukySeMoW+S+IOlaSXdIelLSDyLf8pIulzQt6j627h7voch4/q9yn4/ZXqATIGkTSZMkDZK0p6QbK+0YKel+Sc9IOlDSj6KuWyUtH/n+IukMSVMkPRzl3CnpT5K+WKnn5LjPqZJOrdQ9I0IPPwqs38Y9JUmSJN3MUj8SQBkan9hFZdXsdt+X1AdYJdL3pDyE2+IcyhTEg5L6A7cA28S5LYDdbL8h6QsUc95gylv8E5LOBdYH1rS9LYCkNeL32sCrtmdJugS4XdLh0Z5f2v5jrQGStqSIfD5te5qkPeva+F7Kav3tKFv7DrD9/yT9Btg32gzwtO3tol2XUIRA/YApwEWSPgxsALyPMi1xm6Sdgb/FvX7a9oSYjljonpIkSZKeYVnoBCyApPMpD623gPM7ePnDwC8krUCx39UUt/sCl7Zz7Z7A5mUUHIB3SuobxzfZfqOS927b/4z2PkZ5oD4Z158D3ArcGXn3Ae4AsP2IpI2AvaO+CZJ2BOZSDH03AAfafqxJG2+z/bakaVHeXZE+DehfyXdzJX15268Cr0qaK6lf1L8fMCny9QM2o3QC/mS7trz/j03uaQEkDQeGA2ywesqCkiRJuoplYTrgUSoCGttfAT4ErAW8zYLfwcptFdSG3W5HYHw77RCwo+2B8bOe7dfj3Kt1eatmvTmUB+3fgQGUN/SvAP8T52vrAWpt/Jft62x/GbgqzgO8HO3euY021uqdS+kkUfm8fJN8bzbIJ+D0yr1uYntk/b22cU8LkMbAJEmS7mFZ6ATcC6ws6cuVtNow/kxgoKTlJK1PeZg3pZHdTtLWwGO257TTjrspD7paWR1dNLgWZSHdNcCpUfdywJa2p0WeXSrTBCsBWwLPRBFvAgcAX5B0WEfq7gR3AJ+XtGq05T2S1mzlnrq5XUmSJEmFpX46wLYlHQj8RNLXKRa7V4GTgHHA08AM4A+0v3ZgKAvb7Q6m8ibeBl8BLpD0Wcr3fh+VTkELrA9cEqvqHe3fEaiaczaNOqB08H4D3ARsDBDrBj4C3CXpVRZ8i+8ybN8WOxMejLb8i7KeopV7apt1t4fTUha0JDOztxuQJMk80hi4iEi6i7LQ7bleqPs0YLrta3u67t4ijYFJkiQdR02MgdkJSJYohqzbxxOGt+ltWuKol+ek4CZJkq6mWSdgWVgT0DKxN94xlN1e3pmN5rnbyH+EpFNU3ASubs+r1HtIZ9veWera9YKKA2FGdc9/G9ceK+kPkkZJWknS3XH94ZIulrRVT9xDkiRJ0jmyE7Agw4D743dXU13FP4354XZr9U7pSGE1eU+zz51s19VhORwKnBEOgrb4D2Av20cC2wPEboCrbX/B9oxOtilJkiTpAbITEMT+9l2AzxMPaElDJd1SyXOepKPqrusr6beSvihp1bDrTQkD3uGRR8BA5i88HAvsKGmFqHcTYHKlzHmjDJKGSBodx6eFYW8ccHm8vd8s6V5CViTpayomv6mSvhNprbYLANt/A/4EbBh1nlhp23RJ/SVdCGwE/FbSScAVwA4xErCxpNGShsQ1syR9P+p/sNa5kHRolDdF0pgO/9GSJEmSRWKp3x3QAQ4Abrf9hKS/SxrcwjX9KHvxL7N9maSDgWdt7w8gqRbpZntgSuxUgLIS/m6K6Gd1inznvS22cytgF9uvR4dkEDDA9j8k7U3ZIbAjZa/+zZJ2ozgRWmkXcX4jygN+nm2wHttHS9oX2COCLD0EnGj7I1FGNfuqwIO2T5H0Q+CLwOmUbYH72P4/tWELVMqCkiRJuoUcCZjPMMoDnfjdypTATcClti+Lz9OAvSSdJWlX269E+r7Ab+uuvYoy4nAEcGUH2nlzRTIEcJftf8Tx3vEzifJ2vwWlU9Bquw6XNDna86VKuYvKW8xXDj/CfPtgLV7CFykRGBuSsqAkSZLuIUcCAEnvogTh2VaSKQ8kUx7ybRkFxwH7SvqVC09IGgR8GDhd0j22v0t5MB9cvdD2eEnbAq/FddXTVZNhfZ31dsHqZwE/sL2Qea/Fdl1t+6t1l3bIqtiE2Z6/DWUO8e8uRhPeB+wPPCJpcFgEkyRJkh4gRwIKhwCX297Qdn/b61MkQssBW8XK9zUouuEqpwIvETEIJK1LeahfAZxNsfqtznztbz0nA99skD6TEkAI6joP7XAH8LlYZ4Ck9ST9WyfaVd+WQVHeIFqftmgXSRvbfsj2qRSJ0/pdVXaSJEnSPjkSUBgGnFWXdh1lqP7XwHRKp2ASC3McJajQDymL886WNJcSAfDLwF6U+f+FsF0/RVDjOxST3veA0a3ehO07VSIFPhAjC7OAT1IWHrbcrjquAz4t6VHgIeCJVtvTAmdL2pQygnEPreyQWAqNgTN7uwFJkiyzpCyom5F0MXCx7Qd7uy1VFtd2tUcaA5MkSTqO0hiYLA0sjcbAnqbeULi4kKbEJOk+mnUCck1Ai6hY9R6N/feTY0Fbh82BvUXs7Z/eIH1dSctM7IEkSZJkPrkmoAUkvR/4CDDI9pvx0F+xl5vVJdh+lrIwsseRtLztt3uj7iRJkiRHAlplHeBF228C2H4xHp7zqDMHLvDWLelElYh/xPmHw5J3naRVIr1Ne56kfpLukTRR0jRJB0R6fxV//0UxUnGnpL5xbnCUN4UmYYurbY3jsVHHREk7V/ItZCKM9P+S9Lik+yVdqbALqlgDb5f0SJS5RaSPlHRhyIV+KGn3GFmZLGmSpNU6/udJkiRJOkN2AlrjTmB9SU9I+rmk3evO9wN+A1xp+6J2yrre9g62twP+QNEUw3x73nbAxxpc9wZwkO1BwB7AjzRfLrApcL7trYGXmb+t8FLgmCizFf5GiQUwCDgcOAdAC5oIBwKDJe0maYeoaztKDILqfNOIqHswcCLw88q59wA72/7POPeViFmwK1AVIRH1D5c0QdKEF17LNSxJkiRdRU4HtIDtWSoa4V0pD+CrJZ1se2RkuQn4oe1RLRS3jaTTgTUonYc7Ir1mz/s1cH2D60QJ6rMbMBdYD6gF+Hnadi32wCNA//AarGG7NqpwOeVB3RYrAOdJGkiR+mwW6VUTIdHuTYHVgJtsvwG8Iek3MC8Ow87ANRUJ0kqVeq6xPady3z+WNIrSQfpLfaNsj6B0Khiybp/sBSRJknQR2QlokXhojQZGS5oGfAYYGacXMAfStmVvJHCg7Skq7v+hUX579rwjKTEABtueLWlmpdw3K/nmAH07eZsnAM9T3uyXo4w+QBMToaTjm5SzHPByvN03Yp7l0PaZkm6l2AzHSdrH9mOdbH+SJEnSAXI6oAUkbR5SmxoDgWcqnxcwB1IepP8m6d2SVqIsKqyxGvCcpBUoD/ZaHe3Z81YH/hYdgD2ADdtqs+2XgZcl7RJJR7aVv1LHc7bnAp9ivs+/oYmQ0vn5qKSV49xHou5/Ak9LOjTyS1LDKYm472m2zwIepsQ7SJIkSXqAHAlojX7AuTHE/jYlut7wujzzzIG2vy7pu8B44P+A6pvtf1HMey/E79pCuPbseaOA38QoxIS6Mpvx2WiTKesamlEbYv85cJ2kTwO3E2/szUyEth+WdDMwldLxmQbUghMdCVwg6VuUaYarGtwTwPHRqZkLPMrCgZYWZCk0BvY0M3u7AUmSLDakLGgZJ9Y6/Nh2/WLHVq/vF2smVgHGAMNtT+zSRlZIY2CSJEnHURNZUI4ELMNIGgL8ihLIqLOMkLQVZX3CL7uzAwDAs5PgtNW7tYplmZ60CaYhMEl6n1wTsIioiUlwEcscHQ/otvJ8V9Kei1KP7Qm2N7PdaDdCrZ4LJX0gjpeX9IKkMytlfIKyLfGTtn+gikFR0u8XpX1JkiRJ95KdgEVAC5oEBwB7An/uibptn2q7lSiAbSKpvdGgnYBakKG9KFEED604Cppie+f28iRJkiS9R3YCFo2GJkFJp4Zdb7qkEbUHZrzhnyVpfIiHdo30vpKuUjH/3UBli5+kWZJ+EqMN90haK9JHSjokjmdK+qGKSXC8pE0ifS0VK+HD8VN7oz9N0uWSxgGXS9o6rpscIxqbRr4tgScqe/qHAT8D/hd4f3tfjqRZleOFjIOSVpV0q4rVcLqkwzv/p0iSJEk6SnYCFo1mJsHzwgq4DeWBXt0iuLztHYHjgW9H2peB12xvGWmDK/lXBSaEDfB3lWvqecX2tsB5wE8j7WfAT2zXzH4XV/JvBexpexhwNPCz2Nc/BKgJe/aj7BJA0sqUkY7fAFdSOgQtoSbGQWBf4Fnb28V3dXuT69MYmCRJ0g1kJ2ARsD2L8sAeTtnyd3UIgPaQ9FBs5/sgsHXlstr8+yNA/zjeDbgiypxK2XJXYy5wdRxfAexCY66s/K69pe9JMQBOBm4G3lHb6w/cbLum6H0A+Kakk4ANK+n7MP/B/BHgvjh3HXCgpJpHoD2qxsGJFBfAppQthXvF6Miutl9pdLHtEbaH2B6y1irtzkIkSZIkLZK7AxaRBibBLwEDgCG2/6wSOKhqDKzZ/ebQue+/2auwGxwvB+wUWt95xOxE1dr3K5WAPvsDt0n6EmUdwBqVQEnDgF1UTIUA76Z0cO5qoc0NjYPRlkEUW+Dpku6x/d0WykuSJEm6gBwJWATU2CT4eBy/GG/drYTpHQN8IsrchtKJqLFcpYxPAPc3KePwyu8H4vhO4JhKextqfCVtBDxl+xxKHIQBlBgJ98X5d1DiJmxgu7/t/pSohK1OCTQ0DkpalzINcgVwNjCoxfKSJEmSLiBHAhaNZibBl4HpwF8pKtz2uAC4VNIfKJEFH6mcexXYMcx7f2P+w76ed0qaShlpqD2cjwXOj/TlKZ2NoxtcexjwKUmzo81nAN8Fro3zBwH31hZABjdRQgGvRDs0Mw4Cm1BMiXOB2ZS1EW2TxsBuZWZvNyBJkh4ljYGLOZJm2e7XTp6ZlOmHF7uw3onA+2zP7qoyu4I0BiZJknScNAYmHcL24jk0v4QbAxsZ+dKclyRJb5GdgEVA0hzKCvflKcP4n7H9Witv763SSjkxR19r0xHAxpTARUNsf7Ur2tEMSR8DtrJ9ZruZkyRJksWKXBi4aLxue2DscX+LxvPtXUoLhr95e/t7Ats3ZwcgSZJkySQ7AV3HWMpCt3mocHbY8KbVjHhhB9y/km+kpEMk9Yn8NbPel+L8UEljVcL2zmhm2lNZdTeQshe/IZIuCPHOozVzX6QvZB2M9jwd97GGpDkh+UHSGEmbSjpK0nmV+zhH0u8lPaX5RsPlQqb0mKS7JN1WOXempBlxv//dFX+IJEmSpDVyOqALiLfzRm/gH6c8lLcD1gQeljSGIv85DLhV0orAhygr4z9PMf/tEKvux0m6M8oaBGxj+2lJB1NMe/tH/bVJ8u2BKbat5mr/U2z/I0Q/90gaEIIiou5tJX0a+Kntj0h6nGIXfC+lc7FrOAXWt/2kQkVcYR2K0GgLiqDo2vge+kc5/0aZOvmFpHdTdh5sEW1eo8n3O5yy64INVk9ZUJIkSVeRIwGLRt+w8U2g+PQvqTu/C3Cl7Tm2n6dof3cAfkuxCq5E6TyMCRPf3sCno8yHKEKemodgvO2n47iZaW/fKLstDouV/5MoJsOtKucaWQfHUoyGuwE/iHvageZbH2+0Pdf2DGDtyvdwTaT/lfAPAK8AbwCXSPo48FqjAtMYmCRJ0j1kJ2DRqK0JGGj7GNtvtXJRGPxGU7S8hzNfCyzgmEqZ77VdGwmoGv6eoIwMTKOY9k6NU3tTBEENkfRe4ETgQxH18FYWtBk2sg6OoYiCdgRuA9YAhlI6B42ougTafGLbfjvKvZaiJe6xtQxJkiRJdgK6m7HA4TG3vhblbXp8nLsa+CzlAVt7+N0BfFnSCgCSNpO0an2hjUx7MSWwvO2/t9Ged1A6E69IWpsyClGlkXVwPLAzMDc6L5MpauQxrXwBwTjg4FgbsDalE0EYBFe3fRtwAmXaJEmSJOkhck1A93IDZVh9CuXN+usxHA7ljf1y4KbKCMLFlLnzibHI7wXgwAblbsvCpr29gLvr8h0lqXr9TpRpgMeAP1MezlUWsg7aflPSnymxBKB0bIZRRiFa5TrKuocZUe9EylTAasBNKhEKBfxnuyUt4cbAmb3dgCRJkgppDFxKkHQxcLHtB9vN3Pj6mXSxdbCu/H62Z8VisaMdLQAAIABJREFUwPHAByodopZJY2CSJEnHSWPgUo7tL/R2G9rhllj9vyLwvc50AIAl3hjYnTSyEXaWtBgmybJBrgnoBJJOiX32UyVNlvS+SD9e0iqVfLfVtr1JmhW/+0v6RA+3d6akNdvKE9EBu2UUIMofansgJRLi37qrniRJkqR1shPQQSS9n7KSfVCssN+TMs8NcDwwrxNg+8O2X64roj8RNngZZSDw4d5uRJIkSZKdgM6wDvBiLayu7RdtPyvpWGBd4D5J90HTN/AzKcKdyZJOkLR1GPomx8jCpnX527P8fUfSxDD9bRHp75Z0Z+S/mCZb9RqVK2lfSddU8gyVdEscD4t6pks6q5Jn32jDFEn3RNqqkn4R9zZJ0gEhRvouZcfEZEmHS9o9jidHvtU6+gdJkiRJOkd2AjrOncD6kp5QUeHuDmD7HOBZYA/be7Rx/cnA2PAA/IQSb+BnMVQ+BPhLg2tOiQUdA4DdJQ2onHsxIv5dQHEAAHwbuN/21pQdChs0aUujcu8G3lfZmng4cFVsSzwL+CDlbX4HSQfG1seLgINtbwccWisbuNf2jsAelK2MKwCnAlfH/V8dbf5K3P+uwOv1jZQ0PDorE154LReyJkmSdBXZCeggtmcBgyka2xeAqyUdtQhFPgB8U9JJwIZhDqynLcvf9fH7EcpUAxQfwRXR3luBl5rUvVC5IfC5Hfioig55f+AmiiVwtO0XIs+oqGcnivHw6ajvH1H23sDJYT8cTZESNeqMjAN+HCMpa0TZC5DGwCRJku4hOwGdIDTAo21/G/gqcPAilPUr4GOUN+DbJH2wer4Fy1/N0DeHDuz2aKfcqyixDT4ITLD9r47eF2UK4uCK/XAD23+ozxQRCL8A9KXEStiiE3UlSZIknSA7AR1E0uZ18/YDgWfi+F8UAU5bLJBH0kbAUzGdcBNlaL5Ke5a/RowhFh9K2g94Z4M8bZX7O4qW+IuUDgGUvf27S1pTJfjQsMj3ILBbdCqQ9K7IfwdwTEiPkLR9k/vf2PY022dR4hFkJyBJkqSHSE9Ax+kHnBtb/94G/khEuANGALdLeraNdQFTgTmSpgAjgZWAT0maDfwVOKOa2fYUSW1Z/hrxHeBKSY8Cv6cEN1qAtsq1PScWAx4FfCbSnpN0MiX4j4Bbbd8E86L8XS9pOcr2v72A7wE/BaZG+tOUXRX3MX+a4AfALpL2AOYCj9JeAKQl3BjYnczs7QYkSbLEkcbAZIkijYFJkiQdJ42BydJBGgOTpEfoSgPlksiyYs3MNQHJPCT9u6SrJP1J0iNhPNyst9uVJEmSdA/ZCUgAiAV8N1C2AW5sezDwDWDtSp4cOUqSJFmKyE5AUmMPYLbtC2sJtqcAfSSNlXQzJRQwkm6MkYJHY1EgkT5L0vfDHPhg7DpA0lqSrpP0cPx8INLTFpgkSdKLZCcgqbENRTjUiEHAcbZrUwOfi5GCIcCxKuGBAVYFHgxz4BjKFkOAnwE/sb0DxalwcaS3awuENAYmSZJ0Fzm8m7TC+JoRMDhW0kFxvD6wKfB34C3glkh/hLJVEEqQpa1CGQDwDkn9mG8LHAVcb7uRMhnbIyjbLxmybp/sBSRJknQR2QlIajwKHNLk3Ku1A0lDKQ/199t+TdJo5psGZ3v+ntOqwXA5YCfbb9SVe6akWylRBcdJ2sf2Y4t8J0mSJElL5HRAUuNeYKW6Of4BlGH6KqsDL0UHYAtK7ID2uBM4plLuwPidtsAkSZJeJEcCEgBsO4b4fxrBjN6gSOhurMt6O3C0pD8Aj1O0we1xLHC+pKmUf3NjKNETj++QLRDSGJgkPcTM3m5A0iOkMTBZokhjYJIkScdJY2CydLCMGQMX1dq2rFjPkiTpHMvMmgBJc2I/+nRJv4kAQO1d8/v43V/S9BbyX1jZA/+fkh6TNC32zf9Y0grtXD9a0pA4nilpzWo7OoOkoySdtwjX/1bSeyStIOlMSU9KmijpgYhQ2Jkyv9nZ9iRJkiRdxzLTCQBej7j22wD/AL7S3gW2d+5gHTsBD0o6GtibsiJ+W2AHSnS9vh0sr7Pt6BIk9QXeHVv3vgesA2xjexBwIO2HTW5GdgKSJEkWA5alTkCVB4D1ACT1k3RPvN1Ok3RALZOkWfUXStpa0vgYVZgqadNI3xJ4wvYc4BTgy7ZfBrD9lu0zbf8z8l4Q8ptHJX2nvcbW2iFpaIwWXBujDKNC91s/cjAktu7Vl9NRc99QYLSkVSjin2Nsvxn39LztX8f1w+K7my7prEp9C6VLOhPoG3WNkrSqpFtjtGS6pMPb+z6SJEmSrmGZWxMgqQ/wIeCSSHoDOMj2P+Mh+qCkm918xeTRwM9sj5K0ItAn0vcDbpf0DqBfnVynnlNs/yPaco+kAbantngL2wNbA89SZDsfAO5v8dqaue9+SRsAdwBbMt/cNy4kPrX9/PtRdgdsAvxvrRNTRdK6wFnAYOAl4E5JBwLjG6XbPlnSV8MSiKSDgWdt7x+fF5rwj22LwwE2WF31p5MkSZJOsiyNBPSVNBn4KyUozl2RLuCM2L52N2WEYO3GRQBlFOGbsY1uQ9s11e0+lO1zCyBpn3jrnSmpNqx/mKSJwCTKA32rDtzHeNt/sT0XmAz078C1ewLnxfdwMwub+44F1rD9duRvpYOxAyXo0Atx3ShgtzbS65kG7CXpLEm72n6lPoPtEbaH2B6y1irZCUiSJOkqlqVOwOvx9rkh5cFfWxNwJLAWMDjOP898A95C2P4V8DGK5/42SR+M4fI1bD8bb8uzJL038t8R5U4HVoz0E4EP2R4A3NpWfQ14s3JctfK9zfy/Z7Pyaua+gfGznu1Zts8EvkBZszBO0haSNgL+bPst4I/ABjHK0aXYfoISm2AacLqkU7u6jiRJkqQxy1InAADbr1HkNf9PJTTu6sDfbM9WEdds2Nb18XB8yvY5wE3AAEoEvvsq2X4AXFDbgRDz9rUH8zsoGt5XVKLsdWqFfQNmUobeoQTpaURHzH37ESMb8Z1dAvwspkBq6wsOpQz77y5pzZjeGAb8ro10gNm1nRIxnfCa7SuAsykdgiRJkqQHWObWBADYnhTD/8Mow9S/kTQNmAC0564/DPiUpNmUqYUzgO8C11byXECJqPeQpDeBWZQh90m2X5E0Ker5c6R3Bd8BLpH0PWB0kzwdMfddS6XDAHwLOB2YIekNSkfmVNvPSTqZ0gkScKvtmwCapVOCAU2NKZHLgLMlzQVmA19u8y6XMWPgzN5uQJIkSzVpDOwC4mH2Ptuze7stXYGklYBxjexSvU0aA5MkSTqO0hjYfcS++aWG2Aa42HUAgC41Bjaz8aVlL0mSZYVlbk1Ab1PvHtAiGv062Ybb1IIxscm1TdurFs2Gkk6TdGJn6k+SJEm6jhwJWAax/eFuKnchs6Gk5StbDpMkSZLFiBwJWIyQNFLSIZXPVVPg7yTdJOkpFYf/kSrmwmmSNq5cf4GkByPfUEm/kPQHSSMr5c6MVfv949xFKvbCO1VUwUjaQcWIOFnS2VowdsL6KubCJyV9u0l7x0q6GZgRaadIekLS/cDmlWuOlTQj6rqqO77XJEmSpDHZCeh5asrcySHt+W6L121HWcm/JfApYDPbOwIXs+Aq/ncC7wdOoAiBfkIREm1b2xJYx6bA+ba3Bl5m/vbCS4EvheNgTt01O0a+AcChiqBHdQwCjrO9maTBwBHAQODDFJFQjZOB7cOZcHSjG5c0XEWzPOGF13Iha5IkSVeRnYCepxbIaGA8YFuV4zxs+7lYtPcnyp5/KJKd/pV8vwnl8TTg+dj/X9v6V81X42nbk+P4EaB/rBdYzfYDkV6/gu4u238PW+L1wC4Nyh1fUSfvCtxg+7WQKd1cyTcVGCXpkxTh0UKkMTBJkqR7yE7A4sU865+k5YAVK+eqpsC5lc9zWXBtx5sN8jTK16jcOU3y1FP/Ot7o9fzVFsoB2B84nzJy8HAInJIkSZIeIDsBixczmW/9+xiwQm80IqIf/kvS+yLpiLose0l6V6wfOJD2hUdjgAMl9VWJUPhRmNfRWd/2fcBJFHtjv666jyRJkqRt8q1r8eIi4CZJUyjK3lbfpruDzwMXhcnvd0A1sM944DrgPcAVttu099ieKOlqYArwN4qaGEoExitUIgcKOKcWfrkpXWgMnNklpSRJkiy5pDEwaYikfrZrq/1PBtaxfVwvNyuNgUmSJJ0gjYFJR9lf0jeAdYBVgP+N3Qxfsv1QWxdK+i4wxvbdknYFLqTEBRhG2QnQWNXXCl1oDGyLtAkmSbIskGsCkobYvpoSzOcpYM3YQrgnJehRe9eeavvu+Hgk8IPYCbE28IluanKSJEnSQbITkLTFOsCLsS0R2y8C60m6HkDSAZJel7SipJUlPRXpIyUdIukLlKiL35M0CjgT2DUcCSdI2jqER5NDFrRp79xmkiTJsklOByRtcSdwqqQngLuBqyk7AWrSoV2B6RT5z/LAAtMEti+WtAtwi+1rJQ0FTrT9EQBJ5wI/sz1K0oqUhYJJkiRJD5GdgKQptmeF7W9XYA9KJ+Bk4E+StqSYA38M7EZ5gI/tYBUPAKdIeg9wve0nG2WSNBwYDrDB6ikLSpIk6SpyOiBpE9tzbI+2/W3gqxRd8BhgP8piv7spxsBd6GAnIBYIfgx4HbhN0geb5EtjYJIkSTeQnYCkKZI2r5unHwg8Q3nYHw88YPsF4N2UoEDTFy5lAf4FrFYpfyPgKdvnADdRYhEkSZIkPUROByRt0Q84N2IJvA38kTIs/yplpf+YyDcV+He3L52YCswJGdJIYCXgU5JmA38FzujyO0iSJEmakrKgZIkiZUFJkiQdp5ksKKcDkiRJkmQZJacDeghJBn5s+//F5xOBfrZPk3Q08Jrty9q4/ihgiO2vNjj3TdtnVD7/3vbOXdTunYDP2/5ifP4pcCgl8M/c+rZJOg2YZfu/q+bArmgL0GPGwO6kmY2wSpoJkyTpCXIkoOd4E/i4pDXrT9i+sK0OQAt8s668ljsAKrT172A/SjCjWtS/gyjWwN3bK7vOHJgkSZIsZmQnoOd4GxgBnFB/QtJpMTKApB3CnjdZ0tmSqivu15V0u6QnJf0w8p8J9I38oyKtFvinn6R7JE2UNE3SAZHeX9Ljki6jrOhfPyx/0yNftY0fomwDBBgKPApcQIkD0CY1c2AcD5b0O0mPSLpD0jqRfqykGXHPV7X4XSZJkiRdQE4H9CznA1NrD/AmXAp80fYD8YCvMhDYnjKq8Likc22fLOmr4eav5w3gINv/jBGIByXdHOc2BT5j+8EQAq1nexuA2A1AXDPbdi2M8DDgSsp2vjMkrWB7dns3LWkF4FzgANsvSDoc+D7wOYp86L2236zVmyRJkvQMORLQg9j+J3AZcGyj8/EQXM32A5FUP3l8j+1XbL8BzAA2bKdKUR7WUylv8+tRtvYBPGP7wTh+CthI0rmS9gX+Gel7U9TBhNb3w8CNcR8PAfu0d8/B5sA2wF0RifBbwHvi3FRglKRPUkZLFr4JabikCZImvPBa7mZJkiTpKrIT0PP8FPg8sGonrn2zcjyH9kdyjgTWAgbHSMHzwMpx7tVaJtsvAdsBo4GjgYvj1Lz1AJQH/hrANEkzKYbAdqcEAgGP2h4YP9va3jvO7U8ZIRkEPCxpoXtKY2CSJEn3kJ2AHsb2P4BfUzoC9edeBv4l6X2RdESLxc6OIfd6Vgf+Znu2pD1oMnIQw/7L2b6O8pY+SJIoBr/JkW0Y8AXb/W33B94L7CVplRba9ziwlqT3R30rRATB5Si7DO4DTor29mvxnpMkSZJFJNcE9A4/onj4G/F54CJJc4HfAa80yVdlBGWtwUTbRwK1MfNRwG8kTQMmAI81uX494NLKLoFvAIOBSbYdD/p9KaMEANh+VdL9wEfba5ztt2KB4DmSVqf8u/sp8ARwRaQJOCc6QkmSJEkPkMbAxQxJ/WzXVvefDKxj+7gOXP9uYKLt9tYLtFfOt4A/2l6sVuynMTBJkqTjNDMG5kjA4sf+kr5B+ds8AxzV6oWS1qXM6//3ojbC9umLWkaSJEmyeJMjAcsgkv6dMhy/A/AyZcHg8baf6EAZR9HEYNidDFm3jycMX4aWDZzWymxQkiRJ2+RIQAIUQyBwA/BL20dE2naUrYMtdwKSJEmSJZ/cHbDssQdFAHRhLcH2FKCPpFtqaZLOi7f9msXw95KmSBovabVqgZL2l/SApDXDRnhvGADvkbRB5GmWfmiYCqdIGkOSJEnSY2QnYNljG+CRVjOHJOhq4Djb2wF7Aq9Xzh9Esf592PaLFDPgL20PoOxOOCeyNks/Fdgnyv7YotxYkiRJ0jGyE5C0x+bAc7YfhmI9tF0z+32Qsr9//xAOAbyf+abDyylSobbSxwEjJX0R6NOoAWkMTJIk6R6yE7Ds8SjFAVDP2yz472HlBnnq+ROwGrBZZxtj+2iKoGh94JHY4lifJ42BSZIk3UB2ApY97gVWkjS8liBpAEXWs5WklSKGwYfi9OPAOpJ2iLyrVdS+zwAHA5dJ2jrSfs980+GRwNi20iVtbPsh26cCL1A6A0mSJEkPkLsDljHCAHgQ8FNJJ1EiDc4EjqfojKcDTwOTIv9bEfXvXEl9KesB9qyU95ikI4FrJH0UOIZiH/wa5aH+2cjaLP1sSZtSOiH3AFO67eaTJEmSBUhPQLJEkcbAJEmSjtPME5DTAUmSJEmyjJLTAT2MpDnANMp3/wfgM7Zfk/R72zv3butA0oWU1ftfBHYH/gn0BR4Evmn7L73YPHh2Epy2eq82YXGj/xu/mnc888z9e7ElSZIsaeRIQM/zuu2BtrcB3iIi8y0OHYBgJ8oDH+BrsX9/c8oagXvDG5AkSZIsBWQnoHcZC2wCIKkWOXA5ST+X9JikuyTdFmF4kTRY0u8kPSLpDknrRPpASQ+Gje8GSe+M9NGSzgrL3xOSdo30rSNtclyzaaRvCTxhe061kS78BPgrsF/kHSZpWtj+zoq0oyWdXbtO0lGSzovjT1bq/B9JfeJnZJQxTdIJ3fdVJ0mSJPVkJ6CXiG12+1GmBqp8HOgPbAV8iiLZQdIKFOveIbYHA78Avh/XXAacFDa+acC3K+Utb3tHyur/WvrRwM9sDwSGALUh/v2A29to9kRgi4hWeBZFFjQQ2EHSgcB1wEGV/IcDV0Xn4nDgA1HnHMo2wYHAera3sb0tcGkbdSdJkiRdTK4J6Hn6Spocx2OBS+rO7wJcY3su8FdJ90X65hTl710lBhB9gOckrQ6sYft3ke+XwDWV8q6P349QOhcADwCnSHoPcL3tJyN9H+Zv3WtEzdSzAzDa9gsAkkYBu9m+UdJTknYCngS2oBgBv0IRFD0cbe8L/A34DbCRpHOBW4E7G1ZanAbDATZYPWVBSZIkXUV2Anqe1+NtuKMIeNT2+xdILJ2Atngzfs8h/t62fyXpIWB/4DZJX6KsA1jD9rNtlLU9ZS9/W0/iq4DDgMeAG8JLIErcgG8sdFMlguE+lNGJw4DP1eexPQIYASWUcBt1J0mSJB0gpwMWP8YBB8fagLWBoZH+OLCWpHnTA5K2tv0K8FJtvp8yhfC7+kKrSNoIeMr2OcBNwABKdMH7muSXpGOBdSjTBeOB3SNqYB9gWKXOG4ADIu2qSLsHOETSv0V575K0oaQ1geVsX0dRBw9q7StKkiRJuoIcCVj8uI6i7J0B/JkyD/9KmPsOAc6Jt//lgZ9SYgF8BrhQ0irAU7Q9pA/ljftTkmZTFvudAXwXuLYu39mS/gtYhTJSsIfttyjTECdTOg0CbrV9E4DtlyT9AdjK9vhImyHpW8CdkpYDZlOmCF6nWARrndGFRgoWYt3t4bSUBVWZ2dsNSJJkiSWNgYshkvrZnhXBdMZTFtT9tZvrnAi8z/bs7qxnUUljYJIkScdpZgzMkYDFk1siiM+KwPe6uwMAYHvJGIpPWdBiQ1VS1JukIClJOk92AhZDbA/tjXpjDcJPKMKglygyox/avqHF6/sDt4QIKUmSJFnMyYWBCVAW/wE3AmNsbxQugiOA99Tly45jkiTJUkJ2ApIaHwTesn1hLcH2M7bPDfPfzZLupaz0R9LXJD0cxsHvVMpZXtIoSX+QdG0sVmzLdnispBlRzlUkSZIkPUZ2ApIaW1N2IjRjEMVWuLukvYFNgR0p1r/BknaLfJsDP7e9JSX40H+0Yzs8Gdg+bIdHN6pY0nBJEyRNeOG1XMiaJEnSVWQnIGmIpPMlTZH0cCTdZfsfcbx3/EwiVMKUTgHAn22Pi+MrKAbEqu1wMsUJUJtmmAqMkvRJ4O1GbbE9wvYQ20PWWiWNgUmSJF1Fzu8mNR4FDq59sP2VkPnU9uO9Wskr4Ae2/6daQCwMrH9VN01sh8H+wG7ARykq421tN+wMJEmSJF1LjgQkNe4FVpb05UraKk3y3gF8TlI/AEnr1WyAwAY1qyHwCeB+mtgOQxK0vu37gJOA1YF+XXpXSZIkSVNyJCABSrjgiAT4E0lfB16gvP2fRAn4U817Z0QGfCACAs0CPkmJT/A48BVJv6BYDy9ow3b4BHBFpAk4x/bLbTY0jYGLDTN7uwFJkiwyaQxMlijSGJgkSdJx0hiYLB2kMTBJgNaMjWlTTNpjiVwTIGmOpMmSpku6RtIqkvpLmt7bbasS++vXbSHfOpLujONNJd0i6U+xp/6+yva7Hqfatvh8vKQ3qiGMJQ2VdEscHyXpvDg+WtKne77VSZIkSSsskZ0A4HXbA0NP+xZN9pcvBhwFtNsJAPYF7pC0MnArMML2xrGn/hhgo/oLetDcty9lIWCNYcDDwMfbu9D2hbYv666GJUmSJIvGktoJqDIW2CSO+0i6SNKjku6U1BdA0saSbo8367GStoj0j0p6SNIkSXeHOx9Ju8dIw+Q4t5qkfpLukTRR0jRJB0Te/mHHW6DeWAg3hLIHfnKknVmx4/135R72BX4LHAk8YPvm2gnb022PjLpOk3S5pHHA5ZJWlnRptGeSpD0i37y38fh8S7yt95E0MkZQpkk6oa3vp65tSNqYsnr/W5TOQJtEe09s529waLRniqQx7f61kyRJki5jie4ExNvwfsC0SNoUON/21sDLzN/3PgI4Jt6sTwR+Hun3AzvZ3h64Cvh6pJ8IfMX2QGBXStz7N4CDItreHsCPFEvjG9Vr+1rKHvsjo5xVgIOArcOOd3rcQx9gc9szaN/aB7AVsKftYcBXKAv7t6U8lH8ZownNGAisZ3ubuObStr6furZBiSVwFaXjtXmt09Qizf4GpwL72N4O+FijC5XGwCRJkm5hSV0Y2FfFPAflgXQJZdj9adu19EeA/ip72XcGrpn/zGal+P0e4GoVj/2KwNORPg74saRRwPW2/6Kivj0j5ufnAusBtYfgQvU2aPMrlI7EJTF/fkukvw94qNFNSrqB0sF4wnZt+P1m26/H8S4UHS+2H5P0DLBZo7KCp4CNJJ1LmXa4s53vp75twygdobmSrgMOBc6jHdqpYxwwUtKvgesbXW97BKUTwZB1+2QvIEmSpItYUjsBr8fb9Tzi4fJmJWkOZX/7csDL9fmDc4Ef275Z0lDgNADbZ0q6FfgwME7SPpTwumsBg23PljQT/n979x4tZXXecfz7E/ASMRArWkEQYjAxVYuEoEZhmap4iRWNJmpN1WjjZYnWpJpo4zLG2nihRqOxWm1sNd6zDAbveEfBCwIKoqBEcCmiJOpSqYoCT//YezjvOZk5Z8Bzzswwv89aZzGzzzvvPLPPLN7n3e9+n03prLvc+7YSEcsljQR2Bw4GxpEW7dkHuDdvNodUPa/0mgMljQCKlw6KlfsqWU7rUZ718/7elfS3wF6keRTfBU6hcv+sik3SdqSE5P7c16WkqcMkgHb+BhFxvKQdSZUDp0v6WkS8XcU+zczsM2roywHViIj3gQWSvgNpydx8IIRUoW5Rfnxk6TWStoqI2RFxAWkS3FfytktyAvBNYMsq3v4DYKO8z95An4i4G/ghUIphd+CB/PhGYBdJxWHxSlX7II2CHJ73vzUwiFSsZyEwTNI6kgaSFvpBqQzwOhFxG+m6/vAO+qcY22HA2RExOP/0B/pL6rAf2nuP3NdPRcRZpAJFAzvan5mZdY5GHQlYXYcDV0g6E+hFuq79HOnM/3eS3iWVzR2Stz8lH+hXks7O7yEdzO+QNJt0rX9uFe/7v8CVkj4inVX/IV+zF/AjSf2AjyPiA4CI+EjSfqRLEZcAb5ESiXMr7P8/8+eaTTr7PyoiluWJgwtIFftepGWewQDgf5TK9QKcUal/JL1RjI00H2DfNu8/IbeXvZzRRqW/wXhJQ3OfPJjbKnPFQDPAFRutc7hiYA0prZy3RUScX+tY2qrX2Fwx0Mxs9alCxUAnAdZQRvTvEc8cW/9rDLVXzc1V3Mysu1VKAtb6OQHdTVJIuqjw/FRJZ3fi/icoLfRTej4vD7GXnt8mqcNCPoXtK1ZalPRInpjYZSTdLalvfry0K9/LzMxacxLQ+ZYB386T8LrCFNLtdkj6K9LdAjsXfr8zMLWaHan7qg5WFBH7drhyoJmZdQknAZ1vOeme9h+2/YWkfvlMfVr+2SW3z5bUN8+af1u53r6k6yTt2WY3U8lJQP73DqBffu0Q0u2Tb6r9aoITJT1EmohXjG8DSTcrVUCcQJlbHfN2e0uaq1Q98VK1rBuwqkJgfv68pMH58e1K1QLnSDq2sM3CLkyYzMysHTU/E1xLXQ7MknRhm/ZfARdHxOOSBpFq8m9DOrvfBXiVVNBnFHAd6az+hDb7mA5sK2ldUhLwKGltgW2AHWgZBVhVTVCpRO+kfBshwHBg+4h4p3SQzk4APoyIbSRtT5nqhfnuhqtJNQ7mA7dU2SdH5/fbAJgm6bZq6wHkpOFYgEF91MHWZmZWLY8EdIF8X/x1wMltfrUH8GulaocTgc/n+gFIfkTMAAAM+0lEQVSPkYoEjQauALaTNAB4NyJaFQeKiGWk2xaHkwoYPQU8QUoIvkFKKCBVE7w+v2YuKcEoJQH3R8Q7ZUIfXXjNLGBWmW2+QqqQ+HKkWaXXd9ghycmSngOeJNUCGFrl64iIqyJiRESM6Pc5JwFmZp3FSUDXuQQ4Btiw0LYOaa2CYflnQEQsBSaTzv5HAY+QiuYcTEoOyplCOmBvFBHvkg6spSSgmvkA1VQdXBNlKxUqVWPcA9g5rxEwk5Zqi2ZmViNOArpIPtO+lZQIlEwiLQ0MgKRhedvXgE2AoRHxCmlho1NJyUE5U4HjaCmsM4s0KjAIKM30r1RNsD2TgX/Ir9kW2L7MNnNJazJslZ8XVxNcSBqhQNJwWoov9SGNanyYL03s1EEcZmbWDTwnoGtdRFojoORk4HJJs0h9P5lUwx/SsH6P/Pgx4DxSMlDOVNI8gPNg1boES4DXImJl3qZSNcH24r2CVFHwRVKlweltN4iIj/M1+rskfZhj3Sj/+jbgCElz8ud5KbffCxyf9zuPNHKxZhqkYuDCWgdgZlYFFwuyzyQP9Z8aEft1x/u5YqCZ2eqrVCzIIwHWWN6YCWf3qXUUZtYJ2qusaa11VaXRhp0TIGmFpGfzfefPSfqXwsI4q7uvVve3V7F9L0kz8uPNJN0o6ZV8H/wTkg5ckzjWhKSdJF2dawEMy209JS3N9f9L203P1+kr7WeYpLYLBHUoIh4BXsx/h/Fr8hny+x8lqZplic3MrJM08kjAR6X16SVtSlqG9/PAz7rhvXcFpihdYL8duDYiShPqtgT2b+/FnWwf0jX3ZaS7A54lLVP8Un5+vaQNga1of4W+YcAI4O5q31hSz4hYTrqHf+OIWLFGn8DMzGqiYUcCiiJiCelANC5Xzmt1VinpznztulTtbkYePXiw7b4k/UDSPbl63smSXpA0S9LNhc32Ji0v/HfAJxFxZSGWVyPisryvHpLGK1UHnCXpuML7nFZo/3lu21DSXTm25yUdktu/JunRfDZ/n6TNC7HsDjzAX1YSvJJ0YAcYCUyPiBWSRubRipmSpkr6ci48dA5wSB5dOSTHco2kp/O2Y3MsrSoOSpoI9Aam59cNlvRQ/lwPShqU+2FB/tv0zaM4o/P+JistJWxmZt2skUcCWomIVyT1ADattI2kfqRqd6MjYoGkjdv8fhywJ3BAnkl/OjAkP+5b2PSbwM+Bf6JMVb2CY4D3IuLrktYjjR5MIhXKGUo6OAuYmA+K/YA3IuJbOZ4+knoBlwFjI+JPOTH4d+BopXK7n0bEe5KmAOfm9/1Gju8wSRvRun7AXGBUvqNgD+AXEXGQpLOAERExLr/3L4CHIuLo/NmflvRA3seqioN526WFUZk7SCMj10o6Grg0Ig6QNA/4Kum2wRnAKElPAQMj4mXlEsrlyBUDzcy6xFqTBFRpJ2ByRCyAVffylxwBvEZKAD7NbbOAGyTdThr2R6mS3zv5nvdWO5d0OelSwScR8XVgDLC9pIPzJn1IB/8x+Wdmbu+d2x8DLpJ0AXBnRDymdL/+tsD9+f16AIvz68aQag8QEa9KWlfSX5Oq+s0DpgE7kpKAywoxXJvPvgPoVaGvxgD7q2WuxPqkWgNQueIgpFLHpVUMfwuUSieXqiIOId3a+ANSyeNpFfazSkRcRVqPgRH9e/h2FjOzTrLWJAGSvgisAJZQoXJdB2aThs+3ABbktm+RDlx/D/xU0nakSwH35d/PAQ4q7SAiTsxn56V72AScFBGl7Uux7gWcFxH/VeZzDAf2Bc7NlysmAHMiYue225LmA/yy8Hwq8B1gcUSEpCdJaxKMJJUWBvg34OGIOFBp3YBHKvSHgIMiolWBIUk7smYVByeT1iboD5wFnAbsRuWqiGZm1sXWijkBeZj/SuDXuZ79QmCYpHUkDSQdBCEVqRmttNoebS4HzCRV4Zsoqb/SnQYDI+Jh4CekM+jetMwHAHgIWF9ScZGfzxUe3weckIf0kbS10iS9+0jD+b1z+wBJm0rqT1rA53pgPGnYfR5plcCd87a9JP2N0rDA9qSJgCVTgVNoOeA/QRrheDMi3sttfYBF+fFRhdd+QEvRn1LsJ+X3QdIOVGcqcGh+fDgtB/mnSSMSKyPi4xz3cVSuimhmZl2skUcCNlBaiKcX6cz/t7ScFU8hnc2/QKp8NwMgX1M/Fvh9PsgvIc0BIP/+8Tz8fRdpOPx6SX1IZ8WXkg6UX8oL8pDPtg8ALpb0Y1LN//8jJQ0A/w0MBmbkg+mfSJcbJknaBngiH2OXAt8DvgSMl7QS+BQ4ISI+yZcTLs2x9CStS7ABMDNaV3uaAlxMTgIiYnGeJ1FcT+BC0uWAM/PnLHkYOD336XmkEYNLSKshrpP7s5qCQCeRqg6elj/v93MsyyS9Rku1wMdIJYdnV7HPFg1SMdDMOraw1gGYKwauDkm7At+LiOM73LjrYzkTmB8RN3e48VrEFQPNzFafXDHws4uIx6lcz79bRcS5HW9lZmZW2VoxJ8DMzMxWn5MAMzOzJuUkwMzMrEk5CTAzM2tSTgLMzMyalJMAMzOzJuUkwMzMrEk5CTAzM2tSTgLMzMyalJMAMzOzJuUkwMzMrEk5CTAzM2tSTgLMzMyalJMAMzOzJuUkwMzMrEk5CTAzM2tSTgLMzMyalJMAMzOzJuUkwMzMrEk5CTAzM2tSTgLMzMyalJMAMzOzJuUkwMzMrEk5CTAzM2tSTgLMzMyalJMAMzOzJuUkwMzMrEkpImodg1nVJH0AzKt1HKthE+DPtQ5iNTRavNB4MTvertdoMXdHvFtGRL+2jT27+E3NOtu8iBhR6yCqJekZx9u1Gi1mx9v1Gi3mWsbrywFmZmZNykmAmZlZk3ISYI3mqloHsJocb9drtJgdb9drtJhrFq8nBpqZmTUpjwSYmZk1KScBZmZmTcpJgDUESXtLmidpvqTTax1PW5IGSnpY0guS5kj659x+tqRFkp7NP/vWOtYiSQslzc6xPZPbNpZ0v6SX879fqHWcAJK+XOjHZyW9L+mUeutjSddIWiLp+UJb2T5Vcmn+Xs+SNLxO4h0vaW6OaYKkvrl9sKSPCn19ZZ3EW/E7IOmM3L/zJO1VJ/HeUoh1oaRnc3u396/nBFjdk9QDeAnYE3gdmAYcFhEv1DSwAkmbA5tHxAxJGwHTgQOA7wJLI+I/ahpgBZIWAiMi4s+FtguBdyLi/JxwfSEiflKrGMvJ34lFwI7A96mjPpY0GlgKXBcR2+a2sn2aD1YnAfuSPsuvImLHOoh3DPBQRCyXdAFAjncwcGdpu1qoEO/ZlPkOSPoqcBMwEugPPABsHRErahlvm99fBLwXEefUon89EmCNYCQwPyJeiYhPgJuBsTWOqZWIWBwRM/LjD4AXgQG1jWqNjQWuzY+vJSUz9WZ34I8R8WqtA2krIiYD77RprtSnY0kHh4iIJ4G+OaHsNuXijYhJEbE8P30S2KI7Y2pPhf6tZCxwc0Qsi4gFwHzS/yfdpr14JYl0onBTd8ZU5CTAGsEA4LXC89ep4wNszuZ3AJ7KTePysOo19TK0XhDAJEnTJR2b2zaLiMX58ZvAZrUJrV2H0vo/znruY6jcp43w3T4auKfwfIikmZIelTSqVkGVUe47UO/9Owp4KyJeLrR1a/86CTDrRJJ6A7cBp0TE+8AVwFbAMGAxcFENwytn14gYDuwDnJiHLleJdL2wrq4ZSloX2B/4XW6q9z5upR77tBJJPwWWAzfkpsXAoIjYAfgRcKOkz9cqvoKG+g4UHEbrZLbb+9dJgDWCRcDAwvMtcltdkdSLlADcEBG/B4iItyJiRUSsBK6mm4ciOxIRi/K/S4AJpPjeKg1J53+X1C7CsvYBZkTEW1D/fZxV6tO6/W5LOgrYDzg8Jy7kYfW38+PpwB+BrWsWZNbOd6Ce+7cn8G3gllJbLfrXSYA1gmnAUElD8lngocDEGsfUSr629xvgxYj4ZaG9eH33QOD5tq+tFUkb5kmMSNoQGEOKbyJwZN7sSOAPtYmwolZnT/XcxwWV+nQicES+S2An0gSxxeV20J0k7Q38GNg/Ij4stPfLkzKR9EVgKPBKbaJs0c53YCJwqKT1JA0hxft0d8dXwR7A3Ih4vdRQi/71KoJW9/IM5XHAfUAP4JqImFPjsNraBfhHYHbpdh/gX4HDJA0jDf8uBI6rTXhlbQZMSPkLPYEbI+JeSdOAWyUdA7xKmrhUF3Kysiet+/HCeupjSTcBuwGbSHod+BlwPuX79G7SnQHzgQ9JdzrUQ7xnAOsB9+fvx5MRcTwwGjhH0qfASuD4iKh2kl5Xxrtbue9ARMyRdCvwAumyxondeWdApXgj4jf85bwWqEH/+hZBMzOzJuXLAWZmZk3KSYCZmVmTchJgZmbWpJwEmJmZNSknAWZmZk3KSYCZmVmTchJgZmbWpP4fMDcGcZCQc8EAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "minLength = birds['MinLength']\n", + "maxLength = birds['MaxLength']\n", + "category = birds['Category']\n", + "\n", + "plt.barh(category, maxLength)\n", + "plt.barh(category, minLength)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ] +} \ No newline at end of file diff --git a/visualizations/data/birds.csv b/visualizations/data/birds.csv index 932069e..21b147c 100644 --- a/visualizations/data/birds.csv +++ b/visualizations/data/birds.csv @@ -1,445 +1,445 @@ -Name,Scientific Name,Indicator or Other Notes,Category,State,Kingdom,Phylum,Class,Order,Family,Genus,Conservation status,Length Min (cm),Length Max (cm),Body Mass Min (g),Body Mass Max (g),Wingspan Min (cm),Wingspan Max (cm) -Black-bellied whistling-duck,Dendrocygna autumnalis,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Dendrocygna,LC,47,56,652,1020,76,94 -Fulvous whistling-duck,Dendrocygna bicolor,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Dendrocygna,LC,45,53,712,1050,85,93 -Snow goose,Anser caerulescens,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anser,LC,64,79,2050,4050,135,165 -Ross's goose,Anser rossii,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anser,LC,57.3,64,1066,1567,113,116 -Greater white-fronted goose,Anser albifrons,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anser,LC,64,81,1930,3310,130,165 -Brant,Branta bernicla,(C),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Branta,LC,55,66,880,2200,206,121 -Cackling goose,Branta hutchinsii,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Branta,LC,63,65,1398,2380,108,111 -Canada goose,Branta canadensis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Branta,LC,75,110,2600,6500,127,185 -Mute swan,Cygnus olor,(I),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Cygnus,LC,125,170,9200,14300,200,240 -Trumpeter swan,Cygnus buccinator,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Cygnus,LC,138,180,7000,13600,185,250 -Tundra swan,Cygnus columbianus,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Cygnus,LC,115,150,3400,9600,168,211 -Wood duck,Aix sponsa,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aix,LC,47,54,454,862,66,73 -Garganey,Spatula querquedula,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,41,41,300,400,58,69 -Blue-winged teal,Spatula discors,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,40,40,370,370,58,58 -Cinnamon teal,Spatula cyanoptera,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,41,41,400,400,56,56 -Northern shoveler,Spatula clypeata,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Spatula,LC,48,48,600,600,76,76 -Gadwall,Mareca strepera,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mareca,LC,46,56,850,990,78,90 -Eurasian wigeon,Mareca penelope,(C),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mareca,LC,42,42,500,1073,71,80 -American wigeon,Mareca americana,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mareca,LC,42,59,512,1330,76,71 -Mallard,Anas platyrhynchos,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,50,65,720,1580,81,98 -American black duck,Anas rubripes,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,54,59,720,1640,88,95 -Mottled duck,Anas fulvigula,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,46.9,57.2,699,1241,80,87.2 -Northern pintail,Anas acuta,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,51,76,450,1360,80,95 -Green-winged teal,Anas crecca,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Anas,LC,31,39,140,500,53,59 -Canvasback,Aythya valisineria,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,48,56,862,1600,79,89 -Redhead,Aythya americana,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,37,84,907,1134,84,84 -Ring-necked duck,Aythya collaris,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,39,46,490,910,62,63 -Tufted duck,Aythya fuligula,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,40.6,45.7,629,1026,19.4,21.2 -Greater scaup,Aythya marila,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,39,56,726,1360,71,84 -Lesser scaup,Aythya affinis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Aythya,LC,38,48,454,1089,19,20 -King eider,Somateria spectabilis,(C),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Somateria,LC,50,70,900,2200,86,102 -Common eider,Somateria mollissima,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Somateria,NT,50,71,810,3040,80,110 -Harlequin duck,Histrionicus histrionicus,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Histrionicus,LC,38,43,600,600,26,26 -Surf scoter,Melanitta perspicillata,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Melanitta,LC,48,60,900,1293,76,77 -White-winged scoter,Melanitta deglandi,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Melanitta,LC,48,60,950,2128,80,80 -Black scoter,Melanitta americana,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Melanitta,NT,43,55,950,950,71,71 -Long-tailed duck,Clangula hyemalis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Clangula,VU,44,60,740,740,71,71 -Bufflehead,Bucephala albeola,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Bucephala,LC,32,40,270,550,55,55 -Common goldeneye,Bucephala clangula,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Bucephala,LC,45,51,1000,1000,77,83 -Barrow's goldeneye,Bucephala islandica,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Bucephala,LC,43,49,590,970,70,73 -Smew,Mergellus albellus,(A),"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mergellus,LC,38,44,450,650,56,69 -Hooded merganser,Lophodytes cucullatus,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Lophodytes,LC,40,49,453,879,60,66 -Common merganser,Mergus merganser,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mergus,LC,58,72,900,2100,78,97 -Red-breasted merganser,Mergus serrator,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Mergus,LC,51,62,800,1350,70,86 -Ruddy duck,Oxyura jamaicensis,,"Ducks, geese, and waterfowl",Minnesota,Animalia,Chordata,Aves,Anseriformes,Anatidae,Oxyura,LC,34,43,560,560,47,47 -Northern bobwhite,Colinus virginianus,(Ex),New World quail,,Animalia,Chordata,Aves,Galliformes,Odontophoridae,Colinus,NT,24,28,129,173,33,38 -Wild turkey,Meleagris gallopavo,(Introduced to Minnesota per the MOURC),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Meleagris,LC,110,115,2500,10800,125,144 -Ruffed grouse,Bonasa umbellus,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Bonasa,LC,40,50,450,750,50,64 -Spruce grouse,Falcipennis canadensis,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Falcipennis,LC,38,43,450,650,54.5,57.5 -Willow ptarmigan,Lagopus lagopus,(A),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Lagopus,LC,35,44,430,810,60,65 -Rock ptarmigan,Lagopus muta,(A),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Lagopus,LC,34,36,440,640,54,60 -Sharp-tailed grouse,Tympanuchus phasianellus,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Tympanuchus,LC,38.1,48.3,596,880,62,65 -Greater prairie-chicken,Tympanuchus cupido,,"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Tympanuchus,VU,43,43,700,1200,69.5,72.5 -Gray partridge,Perdix perdix,(I),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Perdix,LC,30,33,385,500,53,56 -Ring-necked pheasant,Phasianus colchicus,(I),"Pheasants, grouse, and allies",,Animalia,Chordata,Aves,Galliformes,Phasianidae,Phasianus,LC,60,89,500,3000,56,86 -Pied-billed grebe,Podilymbus podiceps,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podilymbus,LC,31,38,253,568,45,62 -Horned grebe,Podiceps auritus,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podiceps,VU,31,38,300,570,55,74 -Red-necked grebe,Podiceps grisegena,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podiceps,LC,40,50,692,925,77,85 -Eared grebe,Podiceps nigricollis,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Podiceps,LC,28,34,265,450,52,55 -Western grebe,Aechmorphorus occidentalis,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Aechmophorus,LC,55,75,795,2000,79,102 -Clark's grebe,Aechmorphorus clarkii,,Grebes,,Animalia,Chordata,Aves,Podicipediformes,Podicipedidae,Aechmophorus,LC,56,74,718,1258,24,24 -Rock pigeon,Columba livia,(I),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Columba,LC,29,37,238,380,62,72 -Band-tailed pigeon,Patagioenas fasciata,(A),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Patagioenas,LC,33,40,225,515,26,26 -Eurasian collared-dove,Streptopelia decaocto,(I),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Streptopelia,LC,32,32,125,240,47,55 -Passenger pigeon,Ectopistes migratorius,(E),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Ectopistes,EX,39,41,260,340,18,21.5 -Inca dove,Scardafella inca,(A),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Columbina,LC,16.5,23,30,58,28.5,32 -Common ground dove,Columbina passerina,(A),Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Columbina,LC,15,18,26,40,27,27 -White-winged dove,Zenaida asiatica,,Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Zenaida,LC,29,29,150,150,48,58 -Mourning dove,Zenaida macroura,,Pigeons and doves,,Animalia,Chordata,Aves,Columbiformes,Columbidae,Zenaida,LC,31,31,112,170,37,45 -Groove-billed ani,Crotophaga sulcirostris,(A),Cuckoos,,Animalia,Chordata,Aves,Cuculiformes,Cuculidae,Crotophaga,LC,34,34,70,90,41,46 -Black-billed cuckoo,Coccyzus erythropthalmus,,Cuckoos,,Animalia,Chordata,Aves,Cuculiformes,Cuculidae,Cuculidae,LC,28,32,45,55,44,44 -Yellow-billed cuckoo,Coccyzus americanus,,Cuckoos,,Animalia,Chordata,Aves,Cuculiformes,Cuculidae,Coccyzus,LC,26,30,55,65,38,43 -Common nighthawk,Chordeiles minor,,Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Chordeiles,LC,22,25,55,98,51,61 -Common poorwill,Phalaenoptilus nuttallii,(A),Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Phalaenoptilus,LC,18,18,36,58,30,30 -Chuck-will's-widow,Antrostomus carolinensis,(A),Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Antrostomus,NT,28,33,66,188,58,66 -Eastern whip-poor-will,Antrostomus vociferus,,Nightjars and allies,,Animalia,Chordata,Aves,Caprimulgiformes,Caprimulgidae,Antrostomus,NT,22,27,42,69,45,50 -Chimney swift,Chaetura pelagica,,Swifts,,Animalia,Chordata,Aves,Apodiformes,Apodidae,Chaetura,VU,12,15,17,30,27,30 -White-throated swift,Aeronautes saxatalis,(A),Swifts,,Animalia,Chordata,Aves,Apodiformes,Apodidae,Aeronautes,LC,15,18,28,36,35.5,35.5 -Mexican violetear,Colibri thalassinus,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Colibri,LC,9.7,12,4.8,5.6,12,12 -Rivoli's hummingbird,Eugenes fulgens,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Eugenes,LC,11,14,6,10,18,18 -Ruby-throated hummingbird,Archilochus colubris,,Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Archilochus,LC,7,9,2,6,8,11 -Anna's hummingbird,Calypte anna,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Calypte,LC,9.9,10.9,3,6,12,12 -Costa's hummingbird,Calypte costae,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Calypte,LC,7.6,8.9,3.05,3.22,11,11 -Calliope hummingbird,Selasphorus calliope,(A),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Selasphorus,LC,7,10,2,3,11,11 -Rufous hummingbird,Selasphorus rufus,(C),Hummingbirds,,Animalia,Chordata,Aves,Apodiformes,Trochilidae,Selasphorus,NT,7,9,2,5,11,11 -King rail,Rallus elegans,(A),"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Rallus,NT,15.5,19,290,290,48,48 -Virginia rail,Rallus limicola,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Rallus,LC,20,27,65,95,32,38 -Sora,Porzana carolina,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Porzana,LC,19,30,49,112,35,40 -Common gallinule,Gallinula galeata,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Gallinula,LC,32,35,310,456,54,62 -American coot,Fulica americana,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Fulica,LC,34,43,427,848,58,71 -Purple gallinule,Porphyrio martinicus,(A),"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Porphyrio,LC,26,37,141,305,50,61 -Yellow rail,Coturnicops noveboracensis,,"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Cotorunicops,LC,13,18,41,68,28,32 -Black rail,Laterallus jamaicensis,(A),"Rails, gallinules, and coots",,Animalia,Chordata,Aves,Gruiformes,Rallidae,Laterallus,EN,10,15,29,39,22,28 -Sandhill crane,Antigone canadensis,,Cranes,,Animalia,Chordata,Aves,Gruiformes,Gruidae,Antigone,LC,80,136,4020,4570,200,200 -Whooping crane,Grus americana,(A),Cranes,,Animalia,Chordata,Aves,Gruiformes,Gruidae,Grus,EN,124,160,4500,8500,200,230 -Black-necked stilt,Himantopus mexicanus,(C),Stilts and avocets,,Animalia,Chordata,Aves,Charadriiformes,Recurvirostridae,Himantopus,LC,35,39,150,176,71.5,75.5 -American avocet,Recurvirostra americana,,Stilts and avocets,,Animalia,Chordata,Aves,Charadriiformes,Recurvirostridae,Recurvirostra,LC,40,51,275,420,68,76 -Black-bellied plover,Pluvialis squatarola,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Pluvialis,LC,27,30,190,280,71,83 -American golden-plover,Pluvialis dominica,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Pluvialis,LC,24,28,122,194,65,67 -Killdeer,Charadrius vociferus,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,LC,20,28,72,121,59,63 -Semipalmated plover,Charadrius semipalmatus,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,LC,14,20,22,63,35,56 -Piping plover,Charadrius melodus,,Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,NT,15,19,42,64,35,41 -Wilson's plover,Charadrius wilsonia,(A),Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,LC,16,20,55,70,48.2,48.2 -Snowy plover,Charadrius nivosus,(A),Plovers and lapwings,,Animalia,Chordata,Aves,Charadriiformes,Charadriidae,Charadrius,NT,15,17,32.5,58,34,43.2 -Upland sandpiper,Bartramia longicauda,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Bartramia,LC,30,30,170,170,66,66 -Whimbrel,Numenius phaeopus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Numenius,,37,47,270,493,75,90 -Eskimo curlew,Numenius borealis,(E),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Numenius,CR,30,30,360,360,70,70 -Long-billed curlew,Numenius americanus,(A),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Numenius,LC,50,65,490,950,62,90 -Hudsonian godwit,Limosa haemastica,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limosa,LC,37,42,300,300,74,74 -Marbled godwit,Limosa fedoa,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limosa,LC,40,50,240,510,70,88 -Ruddy turnstone,Arenaria interpres,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Arenaria,LC,22,24,85,150,50,57 -Red knot,Calidris canutus,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,23,26,100,200,47,53 -Ruff,Calidris pugnax,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,29,32,180,180,54,60 -Sharp-tailed sandpiper,Calidris acuminata,(A),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,22,22,39,114,36,43 -Stilt sandpiper,Calidris himantopus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,20,23,50,70,38,41 -Curlew sandpiper,Calidris ferruginea,(A),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,18,23,44,117,38,41 -Sanderling,Calidris alba,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,18,22,60,60,43,43 -Dunlin,Calidris alpina,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,16,22,48.7,75.9,36,38 -Purple sandpiper,Calidris maritima,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,20,22,50,105,42,46 -Baird's sandpiper,Calidris bairdii,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,18,19,38,38,43,43 -Least sandpiper,Calidris minutilla,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,13,15,19,30,27,28 -White-rumped sandpiper,Calidris fuscicollis,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,17,20,42,42,43,43 -Buff-breasted sandpiper,Calidris subruficollis,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,19,23,63,63,46,46 -Pectoral sandpiper,Calidris melanotos,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,20,24,73,73,46,46 -Semipalmated sandpiper,Calidris pusilla,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,NT,13,15,20,32,35,57 -Western sandpiper,Calidris mauri,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Calidris,LC,14,17,22,35,35,37 -Short-billed dowitcher,Limnodromus griseus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limnodromus,LC,23,32,73,155,46,56 -Long-billed dowitcher,Limnodromus scolopaceus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Limnodromus,LC,29,29,88,131,47,49 -American woodcock,Scolopax minor,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Scolopax,LC,25,30,140,230,42,48 -Wilson's snipe,Gallinago delicata,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Gallinago,LC,23,28,76,146,39,45 -Spotted sandpiper,Actitis macularius,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Actitis,LC,18,20,34,50,37,40 -Solitary sandpiper,Tringa solitaria,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,18,23,31,65,50,50 -Lesser yellowlegs,Tringa flavipes,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,23,27,79.5,90.9,59,64 -Willet,Tringa semipalmata,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,33,41,200,330,70,70 -Greater yellowlegs,Tringa melanoleuca,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Tringa,LC,29,40,111,250,60,60 -Wilson's phalarope,Phalaropus tricolor,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Phalaropus,LC,22,24,38,110,39,43 -Red-necked phalarope,Phalaropus lobatus,,Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Phalaropus,LC,17,20,35,35,38,38 -Red phalarope,Phalaropus fulicarius,(C),Sandpipers and allies,,Animalia,Chordata,Aves,Charadriiformes,Scolopacidae,Phalaropus,LC,20,23,55,55,43,43 -Pomarine jaeger,Stercorarius pomarinus,(C),Skuas and jaegers,,Animalia,Chordata,Aves,Charadriiformes,Stercorariidae,Stercorarius,LC,46,67,540,920,110,138 -Parasitic jaeger,Stercorarius parasiticus,,Skuas and jaegers,,Animalia,Chordata,Aves,Charadriiformes,Stercorariidae,Stercorarius,LC,41,48,300,650,107,125 -Long-tailed jaeger,Stercorarius longicaudus,(A),Skuas and jaegers,,Animalia,Chordata,Aves,Charadriiformes,Stercorariidae,Stercorarius,LC,38,58,230,444,102,117 -Dovekie,Alle alle,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Alle,LC,19,21,134,204,34,38 -Black guillemot,Cepphus grylle,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Cepphus,LC,30,32,300,460,52,58 -Long-billed murrelet,Brachyramphus perdix,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Brachyramphus,NT,25,25,310,210,43,43 -Ancient murrelet,Synthliboramphus antiquus,(A),"Auks, murres, and puffins",,Animalia,Chordata,Aves,Charadriiformes,Alcidae,Synthliboramphus,LC,20,24,153,250,45,46 -Black-legged kittiwake,Rissa tridactyla,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Rissa,VU,37,41,305,525,91,105 -Ivory gull,Pagophila eburnea,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Pagophila,NT,40,43,448,687,108,120 -Sabine's gull,Xema sabini,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Xema,LC,27,33,135,225,81,87 -Bonaparte's gull,Chroicocephalus philadelphia,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Chroicocephalus,LC,28,38,180,225,76,84 -Black-headed gull,Chroicocephalus ridibundus,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Chroicocephalus,LC,38,44,190,400,94,105 -Little gull,Hydrocoloeus minutus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Hydrocoloeus,LC,25,30,68,162,61,78 -Ross's gull,Rhodostethia rosea,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Rhodostethia,LC,29,31,140,250,90,100 -Laughing gull,Leucophaeus atricilla,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Leucophaeus,LC,36,41,203,371,98,110 -Franklin's gull,Leucophaeus pipixcan,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Leucophaeus,LC,32,36,230,300,85,95 -Mew gull,Larus canus,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,40,46,290,586,96,125 -Ring-billed gull,Larus delawarensis,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,43,54,300,700,105,117 -California gull,Larus californicus,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,46,55,430,1045,122,137 -Herring gull,Larus argentatus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,53,66,600,1650,120,155 -Iceland gull,Larus glaucoides,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,50,64,480,1100,115,150 -Lesser black-backed gull,Larus fuscus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,51,64,452,1100,124,150 -Slaty-backed gull,Larus schistisagus,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,55,68.5,1050,1700,52,63 -Glaucous-winged gull,Larus glaucescens,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,50,68,730,1690,120,150 -Glaucous gull,Larus hyperboreus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,55,77,960,2700,132,170 -Great black-backed gull,Larus marinus,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Larus,LC,64,79,750,2300,150,170 -Least tern,Sternula antillarum,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sternula,LC,22,24,39,52,50,50 -Gull-billed tern,Gelochelidon nilotica,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Gelochelidon,LC,33,42,150,292,76,91 -Caspian tern,Hydroprogne caspia,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Hydroprogne,LC,48,60,530,782,127,145 -Black tern,Chlidonias niger,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Childonias,LC,25,25,62,62,61,61 -Common tern,Sterna hirundo,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sterna,LC,31,35,110,141,77,98 -Arctic tern,Sterna paradisaea,(C),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sterna,LC,28,39,86,127,65,75 -Forster's tern,Sterna forsteri,,"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Sterna,LC,33,36,130,190,64,70 -Sandwich tern,Thalasseus sandvicensis,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Thalasseus,LC,37,43,180,300,85,97 -Elegant tern,Thalasseus elegans,(A),"Gulls, terns, and skimmers",,Animalia,Chordata,Aves,Charadriiformes,Laridae,Thalasseus,NT,39,42,190,325,76,81 -Red-throated loon,Gavia stellata,,Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,LC,53,69,1000,2700,91,120 -Pacific loon,Gavia pacifica,,Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,LC,58,74,1000,2500,110,128 -Common loon,Gavia immer,,Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,LC,66,91,2200,7600,127,147 -Yellow-billed loon,Gavia adamsii,(A),Loons,,Animalia,Chordata,Aves,Gaviiformes,Gaviidae,Gavia,NT,76,97,4000,6400,135,160 -Northern fulmar,Fulmarus glacialis,(A),Shearwaters and petrels,,Animalia,Chordata,Aves,Procellariiformes,Procellariidae,Fulmarus,LC,46,46,450,1000,102,112 -Wood stork,Mycteria americana,(A),Storks,,Animalia,Chordata,Aves,Ciconiiformes,Ciconiidae,Mycteria,LC,83,115,2000,3300,140,180 -Magnificent frigatebird,Fregata magnificens,(A),Frigatebirds,,Animalia,Chordata,Aves,Suliformes,Fregatidae,Fregata,LC,89,114,1100,1590,217,244 -Double-crested cormorant,Phalacrocorax auritus,,Cormorants and shags,,Animalia,Chordata,Aves,Suliformes,Phalacrocoracidae,Phalacrocorax,LC,70,90,1200,2500,114,123 -Neotropic cormorant,Phalacrocorax brasilianus,(A),Cormorants and shags,,Animalia,Chordata,Aves,Suliformes,Phalacrocoracidae,Phalacrocorax,LC,64,64,1000,1500,100,100 -American white pelican,Pelecanus erythrorhynchos,,Pelicans,,Animalia,Chordata,Aves,Pelecaniformes,Pelecanidae,Pelecanus,LC,130,180,3500,13600,240,300 -Brown pelican,Pelecanus occidentalis,(C),Pelicans,,Animalia,Chordata,Aves,Pelecaniformes,Pelecanidae,Pelecanus,LC,100,152,2000,5000,203,228 -American bittern,Botaurus lentiginosus,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Botarus,LC,58,85,370,1072,92,115 -Least bittern,Ixobrychus exilis,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Ixobrychus,LC,28,36,51,102,41,46 -Great blue heron,Ardea herodias,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Ardea,LC,91,137,1820,3600,167,201 -Great egret,Ardea alba,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Ardea,LC,80,104,700,1500,131,170 -Snowy egret,Egretta thula,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Egretta,LC,56,66,370,370,100,100 -Little blue heron,Egretta caerulea,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Egretta,LC,64,76,325,325,102,102 -Tricolored heron,Egretta tricolor,(A),"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Egretta,LC,56,75,334,425,96,96 -Cattle egret,Bubulcus ibis,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Bubulcus,LC,46,56,270,512,88,96 -Green heron,Butorides virescens,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Butorides,LC,41,46,240,240,64,68 -Black-crowned night-heron,Nycticorax nycticorax,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Nycticorax,LC,58,66,727,1014,115,118 -Yellow-crowned night-heron,Nyctanassa violacea,,"Herons, egrets, and bitterns",,Animalia,Chordata,Aves,Pelecaniformes,Ardeidae,Nyctsnassa,LC,55,70,650,850,101,112 -White ibis,Eudocimus albus,(A),Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Eudocimus,LC,53,70,592.7,1261,90,105 -Glossy ibis,Plegadis falcinellus,(C),Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Plegadis,LC,48,66,485,970,80,105 -White-faced ibis,Plegadis chihi,,Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Plegadis,LC,46,56,450,525,90,93 -Roseate spoonbill,Ajaia ajaja,(A),Ibises and spoonbills,,Animalia,Chordata,Aves,Pelecaniformes,Threskiornithidae,Platalea,LC,71,86,1200,1800,120,133 -Black vulture,Coragyps atratus,(C),New World vultures,,Animalia,Chordata,Aves,Cathartiformes,Cathartidae,Coragyps,LC,56,74,1600,3000,133,167 -Turkey vulture,Cathartes aura,,New World vultures,,Animalia,Chordata,Aves,Cathartiformes,Cathartidae,Cathartes,LC,62,81,800,2410,160,183 -Osprey,Pandion haliaetus,,Osprey,,Animalia,Chordata,Aves,Accipitriformes,Pandionidae,Pandion,LC,50,66,900,2100,127,180 -White-tailed kite,Elanus leucurus,(A),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Elanus,LC,35,43,250,380,88,102 -Swallow-tailed kite,Elanoides forficatus,(A),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Elanoides,LC,50,68,310,600,112,136 -Golden eagle,Aquila chrysaetos,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Aquila,LC,66,102,2500,6350,180,234 -Northern harrier,Circus hudsonius,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Circus,LC,41,52,290,750,97,122 -Sharp-shinned hawk,Accipiter striatus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Accipiter,LC,23,37,82,219,42,68 -Cooper's hawk,Accipiter cooperii,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Accipiter,LC,35,50,215,701,62,99 -Northern goshawk,Accipiter gentilis,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Accipiter,LC,46,69,357,1200,89,127 -Bald eagle,Haliaeetus leucocephalus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Haliaeetus,LC,70,102,3000,6300,1800,2300 -Mississippi kite,Ictinia mississippiensis,(C),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Ictinia,LC,30,37,214,388,91,91 -Red-shouldered hawk,Buteo lineatus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,38,61,460,930,90,127 -Broad-winged hawk,Buteo platypterus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,32,44,265,560,74,100 -Swainson's hawk,Buteo swainsoni,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,43,56,500,1700,117,137 -Red-tailed hawk,Buteo jamaicensis,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,45,65,690,1600,110,141 -Rough-legged hawk,Buteo lagopus,,"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,46,60,600,1660,120,153 -Ferruginous hawk,Buteo regalis,(A),"Hawks, eagles, and kites",,Animalia,Chordata,Aves,Accipitriformes,Accipitridae,Buteo,LC,51,69,907,2268,122,152 -Barn owl,Tyto alba,(C),Barn-owls,,Animalia,Chordata,Aves,Strigiformes,Tytonidae,Tyto,LC,33,39,224,710,80,95 -Eastern screech-owl,Megascops asio,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Megascops,LC,16,25,121,244,46,61 -Great horned owl,Bubo virginianus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Bubo,LC,43,64,910,2500,91,153 -Snowy owl,Bubo scandiacus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Bubo,VU,52.5,64,1300,2951,116,165.6 -Northern hawk owl,Surnia ulula,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Surnia,LC,36,42.5,300,300,45,45 -Burrowing owl,Athene cunicularia,(C),Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Athene,LC,19,28,140,240,50.8,61 -Barred owl,Strix varia,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Strix,LC,40,63,468,1150,96,125 -Great gray owl,Strix nebulosa,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Strix,LC,61,84,580,1900,140,142 -Long-eared owl,Asio otus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Asio,LC,31,40,160,435,86,102 -Short-eared owl,Asio flammeus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Asio,LC,34,43,206,475,85,110 -Boreal owl,Aegolius funereus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Aegolius,LC,22,27,93,215,50,62 -Northern saw-whet owl,Aegolius acadicus,,Owls,,Animalia,Chordata,Aves,Strigiformes,Strigidae,Aegolius,LC,17,22,54,151,42,56.3 -Belted kingfisher,Megaeryle alcyon,,Kingfishers,,Animalia,Chordata,Aves,Coraciiformes,Alcedinidae,Megaceryle,LC,28,35,113,178,48,58 -Lewis's woodpecker,Melanerpes lewis,(C),Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,26,28,88,138,49,52 -Red-headed woodpecker,Melanerpes erythrocephalus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,19,25,56,97,42.5,42.5 -Acorn woodpecker,Melanerpes formicivorus,(A),Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,19,23,65,90,35,43 -Red-bellied woodpecker,Melanerpes carolinus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Melanerpes,LC,22.85,26.7,56,91,38,46 -Williamson's sapsucker,Sphyrapicus thyroideus,(A),Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Sphyrapicus,LC,21,25,44,55,43,43 -Yellow-bellied sapsucker,Sphyrapicus varius,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Sphyrapicus,LC,19,21,35,62,34,40 -American three-toed woodpecker,Picoides dorsalis,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Picoides,LC,21,21,55,55,38,38 -Black-backed woodpecker,Picoides arcticus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Picoides,LC,23,23,61,88,40,42 -Downy woodpecker,Dryobates pubescens,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Dryobates,LC,14,18,20,33,25,31 -Hairy woodpecker,Dryobates villosus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Leuconotopicus,LC,18,26,40,95,33,43 -Northern flicker,Colaptes auratus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Colaptes,LC,28,36,86,167,42,54 -Pileated woodpecker,Dryocopus pileatus,,Woodpeckers,,Animalia,Chordata,Aves,Piciformes,Picidae,Dryocopus,LC,40,49,250,400,66,75 -Crested caracara,Caracara cheriway,(A),Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Caracara,LC,49,63,701,1387,118,132 -American kestrel,Falco sparverius,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,22,31,80,165,51,61 -Merlin,Falco columbarius,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,24,33,125,210,50,73 -Gyrfalcon,Falco rusticolus,(C),Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Hierofalco,LC,48,65,805,2100,110,160 -Peregrine falcon,Falco peregrinus,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,34,58,330,1500,74,120 -Prairie falcon,Falco mexicanus,,Falcons and caracaras,,Animalia,Chordata,Aves,Falconformes,Falconidae,Falco,LC,37,45,500,970,1100,1100 -Ash-throated flycatcher,Myiarchus cinerascens,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Myiarchus,LC,19,22,20,37,30,32 -Great crested flycatcher,Myiarchus crinitus,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Myiarchus,LC,17,21,27,40,34,34 -Tropical kingbird,Tyrannus melancholicus,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,22,22,39,39,38,41 -Cassin's kingbird,Tyrannus vociferans,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,21,23,45,45,41,41 -Western kingbird,Tyrannus verticalis,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,20,24,40,40,39,39 -Eastern kingbird,Tyrannus tyrannus,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,19,23,33,55,33,38 -Scissor-tailed flycatcher,Tyrannus forficatus,(C),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,38,38,43,43,15,15 -Fork-tailed flycatcher,Tyrannus savana,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Tyrannus,LC,37,41,28,32,38,38 -Olive-sided flycatcher,Contopus cooperi,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Contopus,NT,18,20,28,40.4,31.5,34.5 -Western wood-pewee,Contopus sordidulus,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Contopus,LC,14,16,11,14,26,26 -Eastern wood-pewee,Contopus virens,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Contopus,LC,13.5,15,14,14,23,26 -Yellow-bellied flycatcher,Empidonax flaviventris,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,13,15,9,16,18,20 -Acadian flycatcher,Empidonax virescens,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,14,15,11.1,13.9,22,23 -Alder flycatcher,Empidonax alnorum,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,13,17,12,14,21,24 -Willow flycatcher,Empidonax traillii,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,13,15,13.5,13.5,22,22 -Least flycatcher,Empidonax minimus,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Empidonax,LC,12,14,10.3,10.3,19,22 -Eastern phoebe,Sayornis phoebe,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Sayornis,LC,14,17,16,21,26,28 -Say's phoebe,Sayornis saya,,Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Sayornis,LC,19,19,21,21,33,33 -Vermilion flycatcher,Pyrocephalus rubinus,(A),Tyrant flycatchers,,Animalia,Chordata,Aves,Passeriformes,Tyrannidae,Pyrocephalus,LC,13,14,11,14,24,25 -Loggerhead shrike,Lanius ludovicianus,,Shrikes,,Animalia,Chordata,Aves,Passeriformes,Laniidae,Lanius,NT,20,23,35,50,28,32 -Northern shrike,Lanius borealis,,Shrikes,,Animalia,Chordata,Aves,Passeriformes,Laniidae,Lanius,LC,23,24,56,79,30,35 -White-eyed vireo,Vireo griseus,(C),"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,11,13,10,14,17,17 -Bell's vireo,Vireo bellii,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,11.5,12.5,7.4,9.8,17,19 -Yellow-throated vireo,Vireo flavifrons,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,13,15,15,21,23,23 -Blue-headed vireo,Vireo solitarius,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,12.6,14.8,13,19,20,24 -Philadelphia vireo,Vireo philadelphicus,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,11,13,12,12,20,20 -Warbling vireo,Vireo gilvus,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,12,13,10,16,22,22 -Red-eyed vireo,Vireo olivaceus,,"Vireos, shrike-babblers, and erpornis",,Animalia,Chordata,Aves,Passeriformes,Vireonidae,Vireo,LC,12,13,12,26,23,25 -Canada jay,Perisoreus canadensis,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Perisoreus,LC,25,33,65,70,45,45 -Blue jay,Cyanocitta cristata,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Cyanocitta,LC,22,30,70,100,34,43 -Clark's nutcracker,Nucifraga columbiana,(C),"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Nucifraga,LC,27,30,106,161,46,46 -Black-billed magpie,Pica hudsonia,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Pica,LC,45,60,141,216,17.5,21.9 -American crow,Corvus brachyrhynchos,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Corvus,LC,40,53,316,620,85,100 -Common raven,Corvus corax,,"Crows, jays, and magpies",,Animalia,Chordata,Aves,Passeriformes,Corvidae,Corvus,LC,54,67,690,2000,115,150 -Horned lark,Eremophila alpestris,,Larks,,Animalia,Chordata,Aves,Passeriformes,Alaudidae,Eremophila,LC,16,20,28,48,30,34 -Bank swallow,Riparia riparia,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Riparia,LC,12,14,10.2,18.8,25,33 -Tree swallow,Tachycineta bicolor,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Tachycineta,LC,12,14,17,25.5,30,35 -Violet-green swallow,Tachycineta thalassina,(A),Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Tachycineta,LC,11.7,11.8,13.9,14.4,10.6,10.6 -Northern rough-winged swallow,Stelgidopteryx serripennis,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Stelgidopteryx,LC,13,15,10,18,27,30 -Purple martin,Progne subis,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Progne,LC,19,20,45,60,39,41 -Barn swallow,Hirundo rustica,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Hirundo,LC,17,19,16,22,32,34.5 -Cliff swallow,Petrochelidon pyrrhonota,,Swallows,,Animalia,Chordata,Aves,Passeriformes,Hirundinidae,Petrochelidon,LC,13,15,19,31,28,33 -Black-capped chickadee,Poecile atricapilla,,"Tits, chickadees, and titmice",,Animalia,Chordata,Aves,Passeriformes,Paridae,Poecile,LC,12,15,9,14,16,21 -Boreal chickadee,Poecile hudsonica,,"Tits, chickadees, and titmice",,Animalia,Chordata,Aves,Passeriformes,Paridae,Poecile,LC,13,14,10,10,21,21 -Tufted titmouse,Baeolophus bicolor,,"Tits, chickadees, and titmice",,Animalia,Chordata,Aves,Passeriformes,Paridae,Baeolophus,LC,14,16,18,26,20,26 -Red-breasted nuthatch,Sitta canadensis,,Nuthatches,,Animalia,Chordata,Aves,Passeriformes,Sittidae,Sitta,LC,11,11,9.9,9.9,22,22 -White-breasted nuthatch,Sitta carolinensis,,Nuthatches,,Animalia,Chordata,Aves,Passeriformes,Sittidae,Sitta,LC,13,14,18,30,20,27 -Pygmy nuthatch,Sitta pygmaea,(A),Nuthatches,,Animalia,Chordata,Aves,Passeriformes,Sittidae,Sitta,LC,9,11,9,11,19.7,19.7 -Brown creeper,Certhia americana,,Treecreepers,,Animalia,Chordata,Aves,Passeriformes,Certhiidae,Certhia,LC,12,14,5,10,17,20 -Rock wren,Salpinctes obsoletus,(A),Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Salpinctes,LC,12.5,15,15,18,22,24 -House wren,Troglodytes aedon,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Troglodytes,LC,11,13,10,12,15,15 -Winter wren,Troglodytes hiemalis,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Nannus,LC,8,12,8,12,12,16 -Sedge wren,Cistothorus platensis,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Cistothorus,LC,10,12,7,10,12,14 -Marsh wren,Cistothorus palustris,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Cistothorus,LC,10,14,9,14,15,15 -Carolina wren,Thryothorus ludovicianus,,Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Thryothorus,LC,12.5,14,18,23,29,29 -Bewick's wren,Thryomanes bewickii,(A),Wrens,,Animalia,Chordata,Aves,Passeriformes,Troglodytidae,Thryomanes,LC,13,13,8,12,18,18 -Blue-gray gnatcatcher,Polioptila caerulea,,Gnatcatchers,,Animalia,Chordata,Aves,Passeriformes,Polioptilidae,Polioptila,LC,10,13,5,7,16,16 -American dipper,Cinclus mexicanus,(A),Dippers,,Animalia,Chordata,Aves,Passeriformes,Cinclidae,Cinclus,LC,16.5,16.5,46,46,23,23 -Golden-crowned kinglet,Regulus satrapa,,Kinglets,,Animalia,Chordata,Aves,Passeriformes,Regulidae,Regulus,LC,8,11,4,7.8,14,18 -Ruby-crowned kinglet,Regulus calendula,,Kinglets,,Animalia,Chordata,Aves,Passeriformes,Regulidae,Regulus,LC,9,11,5,10,9,11 -Northern wheatear,Oenanthe oenanthe,(A),Old World flycatchers,,Animalia,Chordata,Aves,Passeriformes,Muscicapidae,Oenanthe,LC,14.5,16,17,30,26,32 -Eastern bluebird,Sialia sialis,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Sialia,LC,16,21,27,34,25,32 -Mountain bluebird,Sialia currucoides,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Sialia,LC,15.5,18,24,37,28,36 -Townsend's solitaire,Myadestes townsendi,(C),Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Myadestes,LC,20,24,34,34,37,37 -Veery,Catharus fuscescens,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,16,19.5,26,39,28.5,28.5 -Gray-cheeked thrush,Catharus minimus,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,16,17,26,30,32,34 -Swainson's thrush,Catharus ustulatus,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,16,20,23,45,30,30 -Hermit thrush,Catharus guttatus,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Catharus,LC,15,18,18,37,25,30 -Wood thrush,Hylocichla mustelina,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Hylocichla,NT,18,21.5,48,72,30,40 -Fieldfare,Turdus pilaris,(A),Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Turdus,LC,25,25,80,140,39,42 -American robin,Turdus migratorius,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Turdus,LC,23,28,59,94,31,41 -Varied thrush,Ixoreus naevius,,Thrushes and allies,,Animalia,Chordata,Aves,Passeriformes,Turdidae,Ixoreus,LC,20,26,65,100,34,42 -Gray catbird,Dumetella carolinensis,,Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Dumetella,LC,20.5,24,23.2,56.5,22,30 -Curve-billed thrasher,Toxostoma curvirostre,(A),Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Toxostoma,LC,27,28,60.8,93.6,34,34.5 -Brown thrasher,Toxostoma rufum,,Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Toxostoma,LC,23.5,30.5,61,89,29,33 -Sage thrasher,Oreoscoptes montanus,(A),Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Oreoscoptes,LC,20,23,40,50,32,32 -Northern mockingbird,Mimus polyglottos,,Mockingbirds and thrashers,,Animalia,Chordata,Aves,Passeriformes,Mimidae,Mimus,LC,20.5,28,40,58,31,38 -European starling,Sturnus vulgaris,(I),Starlings,,Animalia,Chordata,Aves,Passeriformes,Sturnidae,Sturnus,LC,19,23,58,101,31,44 -Bohemian waxwing,Bombycilla garrulus,,Waxwings,,Animalia,Chordata,Aves,Passeriformes,Bombycillidae,Bombycilla,LC,19,23,55,55,32,35.5 -Cedar waxwing,Bombycilla cedrorum,,Waxwings,,Animalia,Chordata,Aves,Passeriformes,Bombycillidae,Bombycilla,LC,15,18,30,30,22,30 -House sparrow,Passer domesticus,(I),Old World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passeridae,Passer,LC,14,18,24,29.5,19,25 -Eurasian tree sparrow,Passer montanus,(I),Old World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passeridae,Passer,LC,12.5,14,24,24,21,21 -American pipit,Anthus rubescens,,Wagtails and pitpits,,Animalia,Chordata,Aves,Passeriformes,Motacillidae,Anthus,LC,16,16,22,22,24,24 -Sprague's pipit,Anthus spragueii,(C),Wagtails and pitpits,,Animalia,Chordata,Aves,Passeriformes,Motacillidae,Anthus,VU,15,17,18.2,27,25.4,25.4 -Brambling,Fringilla montifringilla,(A),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Fringilla,LC,16,16,23,29,25,26 -Evening grosbeak,Coccothraustes vespertinus,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Coccothraustes,VU,16,22,38.7,86.1,30,36 -Pine grosbeak,Pinicola enucleator,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Carduelinae,LC,20,25.5,52,78,33,33 -Gray-crowned rosy-finch,Leucosticte tephrocotis,(C),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Leucosticte,LC,14,16,22,60,33,33 -House finch,Haemorhous mexicanus,(Native to the southwestern U.S.; introduced to the east),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Haemorhous,LC,12.5,15,16,27,20,25 -Purple finch,Haemorhous purpureus,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Haemorhous,LC,12,16,18,32,22,26 -Cassin's finch,Haemorhous cassinii,(A),"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Haemorhous,LC,16,16,24,34,25,27 -Common redpoll,Acanthis flammea,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Acanthis,LC,11.5,14,12,16,19,22 -Hoary redpoll,Acanthis hornemanni,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Acanthis,LC,12,14,12,16,20,25 -Red crossbill,Loxia curvirostra,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Loxia,LC,20,20,40,53,27,29 -White-winged crossbill,Loxia leucoptera,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Loxia,LC,17,17,30,40,26,29 -Pine siskin,Spinus pinus,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Spinus,LC,11,14,12,18,18,22 -American goldfinch,Spinus tristis,,"Finches, euphonias, and allies",,Animalia,Chordata,Aves,Passeriformes,Fringillidae,Spinus,LC,11,14,11,20,19,22 -Lapland longspur,Calcarius lapponicus,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Calcarius,LC,15,16,22.3,33.1,22,29 -Chestnut-collared longspur,Calcarius ornatus,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Calcarius,VU,13,16.5,17,23,25,27 -Smith's longspur,Calcarius pictus,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Calcarius,LC,15,17,20,32,25,25 -Thick-billed longspur,Rhynchophanes mccownii,(A),Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Rhynchophanes,LC,15,15,25,25,28,28 -Snow bunting,Plectrophenax nivalis,,Longspurs and snow buntings,,Animalia,Chordata,Aves,Passeriformes,Calcariidae,Plextrophenax,LC,15,15,30,40,32,38 -Grasshopper sparrow,Ammodramus savannarum,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Ammodramus,LC,10,14,13.8,28.4,17.5,17.5 -Black-throated sparrow,Amphispiza bilineata,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Amphispiza,LC,12,14,11,15,19.5,19.5 -Lark sparrow,Chondestes grammacus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Chondestes,LC,15,17,24,33,28,28 -Lark bunting,Calamospiza melanocorys,(C),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Calamospiza,LC,14,18,35.3,41.3,25,28 -Chipping sparrow,Spizella passerina,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,12,15,11,16,21,21 -Clay-colored sparrow,Spizella pallida,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,12,15,12,12,19,19 -Field sparrow,Spizella pusilla,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,13,15,12.5,12.5,20,20 -Brewer's sparrow,Spizella breweri,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizella,LC,13,15,11,14,18,20 -Fox sparrow,Passerella iliaca,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Passerella,LC,15,19,26,44,26.7,29 -American tree sparrow,Spizelloides arborea,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Spizelloides,LC,14,14,13,28,24,24 -Dark-eyed junco,Junco hyemalis,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Junco,LC,13,17.5,18,30,18,25 -White-crowned sparrow,Zonotrichia leucophrys,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,LC,15,16,25,28,21,24 -Golden-crowned sparrow,Zonotrichia atricapilla,(C),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,LC,15,18,19,35.4,24.75,24.75 -Harris's sparrow,Zonotrichia querula,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,NT,17,20,26,49,27,27 -White-throated sparrow,Zonotrichia albicollis,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Zonotrichia,LC,15,19,22,32,23,23 -Vesper sparrow,Pooecetes gramineus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pooecetes,LC,13,16,20,28,24,24 -LeConte's sparrow,Ammospiza leconteii,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Ammospiza,LC,12,12,12,16,18,18 -Nelson's sparrow,Ammospiza nelsoni,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Ammospiza,LC,11,13,17,21,16.5,20 -Baird's sparrow,Centronyx bairdii,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Centronyx,LC,12,12,17,21,23,23 -Henslow's sparrow,Centronyx henslowii,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Centronyx,LC,11,13,11,15,16,20 -Savannah sparrow,Passerculus sandwichensis,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Passerculus,LC,11,17,15,29,18,25 -Song sparrow,Melospiza melodia,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Melospiza,LC,11,18,11.9,53,18,25.4 -Lincoln's sparrow,Melospiza lincolnii,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Melospiza,LC,13,15,17,19,19,22 -Swamp sparrow,Melospiza georgiana,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Melospiza,LC,12,15,15,23,18,19 -Green-tailed towhee,Pipilo chlorurus,(A),New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pipilo,LC,18.4,18.4,29,29,, -Spotted towhee,Pipilo maculatus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pipilo,LC,17,21,22,49,28,28 -Eastern towhee,Pipilo erythrophthalmus,,New World sparrows,,Animalia,Chordata,Aves,Passeriformes,Passerellidae,Pipilo,LC,17.3,23,32,53,20,30 -Yellow-breasted chat,Icteria virens,,Yellow-breasted chat,,Animalia,Chordata,Aves,Passeriformes,Icteriidae,Icteria,LC,17,19.1,20.2,33.8,23,27 -Yellow-headed blackbird,Xanthocephalus xanthocephalus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Xanthocephalus,LC,21,26,44,100,42,44 -Bobolink,Dolichonyx oryzivorus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Dolichonyx,LC,15,21,29,56,27,27 -Eastern meadowlark,Sturnella magna,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Sturnella,NT,19,28,76,150,35,40 -Western meadowlark,Sturnella neglecta,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Sturnella,LC,16,26,89,115,41,41 -Orchard oriole,Icterus spurius,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,15,18,16,28,25,25 -Bullock's oriole,Icterus bullockii,(A),Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,17,19,29,43,31,31 -Baltimore oriole,Icterus galbula,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,17,22,22.3,42,23,32 -Scott's oriole,Icterus parisorum,(A),Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Icterus,LC,23,23,32,41,32,32 -Red-winged blackbird,Agelaius phoeniceus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Agelaius,LC,17,24,29,82,31,40 -Brown-headed cowbird,Molothrus ater,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Molothrus,LC,16,22,30,60,36,36 -Rusty blackbird,Euphagus carolinus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Euphagus,VU,22,25,60,60,36,36 -Brewer's blackbird,Euphagus cyanocephalus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Euphagus,LC,20,26,63,63,39,39 -Common grackle,Quiscalus quiscula,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Quiscalus,NT,28,34,74,142,36,46 -Great-tailed grackle,Quiscalus mexicanus,,Troupials and allies,,Animalia,Chordata,Aves,Passeriformes,Icteridae,Quiscalus,LC,38,46,115,265,48,58 -Ovenbird,Seiurus aurocapilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Seiurus,LC,11,16,14,28.8,19,26 -Worm-eating warbler,Helmitheros vermivorum,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Helmitheros,LC,11.2,13.1,12,14,20,22 -Louisiana waterthrush,Parkesia motacilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Parkesia,LC,14,17,17.4,28,21,25.4 -Northern waterthrush,Parkesia noveboracensis,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Parkesia,LC,12,15,13,25,21,24 -Golden-winged warbler,Vermivora chrysoptera,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Vermivora,NT,11.6,11.6,8,10,20,20 -Blue-winged warbler,Vermivora cyanoptera,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Vermivora,LC,11.4,12.7,8.5,8.5,17,19.5 -Black-and-white warbler,Mniotilta varia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Mniotilta,LC,11,13,8,15,18,22 -Prothonotary warbler,Protonotaria citrea,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Protonotaria,LC,13,13,12.5,12.5,22,22 -Tennessee warbler,Leiothlypis peregrina,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Leiothlypis,LC,11.5,11.5,10,10,19.7,19.7 -Orange-crowned warbler,Leiothlypis celata,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Leiothlypis,LC,12,13,9,9,18.4,18.4 -Nashville warbler,Leiothlypis ruficapilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Leiothlypis,LC,11,13,6.7,13.9,17,20 -Connecticut warbler,Oporornis agilis,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Oporornis,LC,13,15,15,15,22,23 -MacGillivray's warbler,Geothlypis tolmiei,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,10,15,9,13,19,19 -Mourning warbler,Geothlypis philadelphia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,10,15,11,13,18,18 -Kentucky warbler,Geothlypis formosa,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,13,13,13,14,20,22 -Common yellowthroat,Geothlypis trichas,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Geothlypis,LC,11,13,9,10,15,19 -Hooded warbler,Setophaga citrina,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,13,9,12,17.5,17.5 -American redstart,Setophaga ruticilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,14,6.9,8.7,16,23 -Kirtland's warbler,Setophaga kirtlandii,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,NT,14,15,12,16,22,22 -Cape May warbler,Setophaga tigrina,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12,14,9,17.3,19,22 -Cerulean warbler,Setophaga cerulea,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,NT,11,11,8,10,20,20 -Northern parula,Setophaga americana,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,10.8,12.4,5,11,16,18 -Magnolia warbler,Setophaga magnolia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,13,6.6,12.6,16,20 -Bay-breasted warbler,Setophaga castanea,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,15,12.5,12.5,23,23 -Blackburnian warbler,Setophaga fusca,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,13,8,13,20,22 -Yellow warbler,Setophaga petechia,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,10,18,7,25,16,22 -Chestnut-sided warbler,Setophaga pensylvanica,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,10,14,8,13.1,16,21 -Blackpoll warbler,Setophaga striata,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,NT,12.5,15,9.7,21,20,25 -Black-throated blue warbler,Setophaga caerulescens,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,13,8.4,12.4,19,20 -Palm warbler,Setophaga palmarum,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12,14,7,13,20,21 -Pine warbler,Setophaga pinus,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12.7,14.6,12,12,22.2,22.2 -Yellow-rumped warbler,Setophaga coronata,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,12,15,9.9,17.7,19,24 -Yellow-throated warbler,Setophaga dominica,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,14,9,11,21,21 -Prairie warbler,Setophaga discolor,(C),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,12,7.7,7.7,18,18 -Black-throated gray warbler,Setophaga nigrescens,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,13,13,8.4,8.4,19,19.7 -Townsend's warbler,Setophaga townsendi,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,13,8.8,8.8,20,20 -Hermit warbler,Setophaga occidentalis,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,14,14,9,13,20,20 -Black-throated green warbler,Setophaga virens,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Setophaga,LC,11,12,7,11,17,20 -Canada warbler,Cardellina canadensis,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Cardellina,LC,12,15,9,13,17,22 -Wilson's warbler,Cardellina pusilla,,New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Cardellina,LC,10,12,5,10,14,17 -Painted redstart,Myioborus pictus,(A),New World warblers,,Animalia,Chordata,Aves,Passeriformes,Parulidae,Myioborus,LC,13,15,8,11,21,21 -Summer tanager,Piranga rubra,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Piranga,LC,17,17,29,29,28,30 -Scarlet tanager,Piranga olivacea,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Piranga,LC,16,19,23.5,38,25,30 -Western tanager,Piranga ludoviciana,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Piranga,LC,16,19,24,36,29,29 -Northern cardinal,Cardinalis cardinalis,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Cardinalis,LC,21,23.5,33.6,65,25,31 -Rose-breasted grosbeak,Pheucticus ludovicianus,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Pheucticus,LC,18,22,35,65,29,33 -Black-headed grosbeak,Pheucticus melanocephalus,(C),Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Pheucticus,LC,18,19,34,49,32,32 -Blue grosbeak,Passerina caerulea,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,14,19,26,31.5,26,29 -Lazuli bunting,Passerina amoena,(C),Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,13,15,13,18,22,22 -Indigo bunting,Passerina cyanea,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,11.5,15,11.2,21.4,18,23 -Painted bunting,Passerina ciris,(C),Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Passerina,LC,12,14,13,19,21,23 -Dickcissel,Spiza americana,,Cardinals and allies,,Animalia,Chordata,Aves,Passeriformes,Cardinalidae,Spiza,LC,14,16,25.6,38.4,24.8,26 \ No newline at end of file +Name,ScientificName,Category,Order,Family,Genus,ConservationStatus,MinLength,MaxLength,MinBodyMass,MaxBodyMass,MinWingspan,MaxWingspan +Black-bellied whistling-duck,Dendrocygna autumnalis,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Dendrocygna,LC,47,56,652,1020,76,94 +Fulvous whistling-duck,Dendrocygna bicolor,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Dendrocygna,LC,45,53,712,1050,85,93 +Snow goose,Anser caerulescens,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anser,LC,64,79,2050,4050,135,165 +Ross's goose,Anser rossii,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anser,LC,57.3,64,1066,1567,113,116 +Greater white-fronted goose,Anser albifrons,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anser,LC,64,81,1930,3310,130,165 +Brant,Branta bernicla,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Branta,LC,55,66,880,2200,206,121 +Cackling goose,Branta hutchinsii,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Branta,LC,63,65,1398,2380,108,111 +Canada goose,Branta canadensis,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Branta,LC,75,110,2600,6500,127,185 +Mute swan,Cygnus olor,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Cygnus,LC,125,170,9200,14300,200,240 +Trumpeter swan,Cygnus buccinator,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Cygnus,LC,138,180,7000,13600,185,250 +Tundra swan,Cygnus columbianus,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Cygnus,LC,115,150,3400,9600,168,211 +Wood duck,Aix sponsa,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aix,LC,47,54,454,862,66,73 +Garganey,Spatula querquedula,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Spatula,LC,41,41,300,400,58,69 +Blue-winged teal,Spatula discors,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Spatula,LC,40,40,370,370,58,58 +Cinnamon teal,Spatula cyanoptera,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Spatula,LC,41,41,400,400,56,56 +Northern shoveler,Spatula clypeata,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Spatula,LC,48,48,600,600,76,76 +Gadwall,Mareca strepera,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Mareca,LC,46,56,850,990,78,90 +Eurasian wigeon,Mareca penelope,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Mareca,LC,42,42,500,1073,71,80 +American wigeon,Mareca americana,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Mareca,LC,42,59,512,1330,76,71 +Mallard,Anas platyrhynchos,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anas,LC,50,65,720,1580,81,98 +American black duck,Anas rubripes,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anas,LC,54,59,720,1640,88,95 +Mottled duck,Anas fulvigula,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anas,LC,46.9,57.2,699,1241,80,87.2 +Northern pintail,Anas acuta,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anas,LC,51,76,450,1360,80,95 +Green-winged teal,Anas crecca,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Anas,LC,31,39,140,500,53,59 +Canvasback,Aythya valisineria,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aythya,LC,48,56,862,1600,79,89 +Redhead,Aythya americana,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aythya,LC,37,84,907,1134,84,84 +Ring-necked duck,Aythya collaris,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aythya,LC,39,46,490,910,62,63 +Tufted duck,Aythya fuligula,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aythya,LC,40.6,45.7,629,1026,19.4,21.2 +Greater scaup,Aythya marila,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aythya,LC,39,56,726,1360,71,84 +Lesser scaup,Aythya affinis,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Aythya,LC,38,48,454,1089,19,20 +King eider,Somateria spectabilis,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Somateria,LC,50,70,900,2200,86,102 +Common eider,Somateria mollissima,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Somateria,NT,50,71,810,3040,80,110 +Harlequin duck,Histrionicus histrionicus,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Histrionicus,LC,38,43,600,600,26,26 +Surf scoter,Melanitta perspicillata,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Melanitta,LC,48,60,900,1293,76,77 +White-winged scoter,Melanitta deglandi,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Melanitta,LC,48,60,950,2128,80,80 +Black scoter,Melanitta americana,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Melanitta,NT,43,55,950,950,71,71 +Long-tailed duck,Clangula hyemalis,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Clangula,VU,44,60,740,740,71,71 +Bufflehead,Bucephala albeola,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Bucephala,LC,32,40,270,550,55,55 +Common goldeneye,Bucephala clangula,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Bucephala,LC,45,51,1000,1000,77,83 +Barrow's goldeneye,Bucephala islandica,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Bucephala,LC,43,49,590,970,70,73 +Smew,Mergellus albellus,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Mergellus,LC,38,44,450,650,56,69 +Hooded merganser,Lophodytes cucullatus,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Lophodytes,LC,40,49,453,879,60,66 +Common merganser,Mergus merganser,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Mergus,LC,58,72,900,2100,78,97 +Red-breasted merganser,Mergus serrator,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Mergus,LC,51,62,800,1350,70,86 +Ruddy duck,Oxyura jamaicensis,Ducks/Geese/Waterfowl,Anseriformes,Anatidae,Oxyura,LC,34,43,560,560,47,47 +Northern bobwhite,Colinus virginianus,New World quail,Galliformes,Odontophoridae,Colinus,NT,24,28,129,173,33,38 +Wild turkey,Meleagris gallopavo,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Meleagris,LC,110,115,2500,10800,125,144 +Ruffed grouse,Bonasa umbellus,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Bonasa,LC,40,50,450,750,50,64 +Spruce grouse,Falcipennis canadensis,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Falcipennis,LC,38,43,450,650,54.5,57.5 +Willow ptarmigan,Lagopus lagopus,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Lagopus,LC,35,44,430,810,60,65 +Rock ptarmigan,Lagopus muta,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Lagopus,LC,34,36,440,640,54,60 +Sharp-tailed grouse,Tympanuchus phasianellus,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Tympanuchus,LC,38.1,48.3,596,880,62,65 +Greater prairie-chicken,Tympanuchus cupido,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Tympanuchus,VU,43,43,700,1200,69.5,72.5 +Gray partridge,Perdix perdix,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Perdix,LC,30,33,385,500,53,56 +Ring-necked pheasant,Phasianus colchicus,Pheasants/Grouse/Allies,Galliformes,Phasianidae,Phasianus,LC,60,89,500,3000,56,86 +Pied-billed grebe,Podilymbus podiceps,Grebes,Podicipediformes,Podicipedidae,Podilymbus,LC,31,38,253,568,45,62 +Horned grebe,Podiceps auritus,Grebes,Podicipediformes,Podicipedidae,Podiceps,VU,31,38,300,570,55,74 +Red-necked grebe,Podiceps grisegena,Grebes,Podicipediformes,Podicipedidae,Podiceps,LC,40,50,692,925,77,85 +Eared grebe,Podiceps nigricollis,Grebes,Podicipediformes,Podicipedidae,Podiceps,LC,28,34,265,450,52,55 +Western grebe,Aechmorphorus occidentalis,Grebes,Podicipediformes,Podicipedidae,Aechmophorus,LC,55,75,795,2000,79,102 +Clark's grebe,Aechmorphorus clarkii,Grebes,Podicipediformes,Podicipedidae,Aechmophorus,LC,56,74,718,1258,24,24 +Rock pigeon,Columba livia,Pigeons/Doves,Columbiformes,Columbidae,Columba,LC,29,37,238,380,62,72 +Band-tailed pigeon,Patagioenas fasciata,Pigeons/Doves,Columbiformes,Columbidae,Patagioenas,LC,33,40,225,515,26,26 +Eurasian collared-dove,Streptopelia decaocto,Pigeons/Doves,Columbiformes,Columbidae,Streptopelia,LC,32,32,125,240,47,55 +Passenger pigeon,Ectopistes migratorius,Pigeons/Doves,Columbiformes,Columbidae,Ectopistes,EX,39,41,260,340,18,21.5 +Inca dove,Scardafella inca,Pigeons/Doves,Columbiformes,Columbidae,Columbina,LC,16.5,23,30,58,28.5,32 +Common ground dove,Columbina passerina,Pigeons/Doves,Columbiformes,Columbidae,Columbina,LC,15,18,26,40,27,27 +White-winged dove,Zenaida asiatica,Pigeons/Doves,Columbiformes,Columbidae,Zenaida,LC,29,29,150,150,48,58 +Mourning dove,Zenaida macroura,Pigeons/Doves,Columbiformes,Columbidae,Zenaida,LC,31,31,112,170,37,45 +Groove-billed ani,Crotophaga sulcirostris,Cuckoos,Cuculiformes,Cuculidae,Crotophaga,LC,34,34,70,90,41,46 +Black-billed cuckoo,Coccyzus erythropthalmus,Cuckoos,Cuculiformes,Cuculidae,Cuculidae,LC,28,32,45,55,44,44 +Yellow-billed cuckoo,Coccyzus americanus,Cuckoos,Cuculiformes,Cuculidae,Coccyzus,LC,26,30,55,65,38,43 +Common nighthawk,Chordeiles minor,Nightjars/Allies,Caprimulgiformes,Caprimulgidae,Chordeiles,LC,22,25,55,98,51,61 +Common poorwill,Phalaenoptilus nuttallii,Nightjars/Allies,Caprimulgiformes,Caprimulgidae,Phalaenoptilus,LC,18,18,36,58,30,30 +Chuck-will's-widow,Antrostomus carolinensis,Nightjars/Allies,Caprimulgiformes,Caprimulgidae,Antrostomus,NT,28,33,66,188,58,66 +Eastern whip-poor-will,Antrostomus vociferus,Nightjars/Allies,Caprimulgiformes,Caprimulgidae,Antrostomus,NT,22,27,42,69,45,50 +Chimney swift,Chaetura pelagica,Swifts,Apodiformes,Apodidae,Chaetura,VU,12,15,17,30,27,30 +White-throated swift,Aeronautes saxatalis,Swifts,Apodiformes,Apodidae,Aeronautes,LC,15,18,28,36,35.5,35.5 +Mexican violetear,Colibri thalassinus,Hummingbirds,Apodiformes,Trochilidae,Colibri,LC,9.7,12,4.8,5.6,12,12 +Rivoli's hummingbird,Eugenes fulgens,Hummingbirds,Apodiformes,Trochilidae,Eugenes,LC,11,14,6,10,18,18 +Ruby-throated hummingbird,Archilochus colubris,Hummingbirds,Apodiformes,Trochilidae,Archilochus,LC,7,9,2,6,8,11 +Anna's hummingbird,Calypte anna,Hummingbirds,Apodiformes,Trochilidae,Calypte,LC,9.9,10.9,3,6,12,12 +Costa's hummingbird,Calypte costae,Hummingbirds,Apodiformes,Trochilidae,Calypte,LC,7.6,8.9,3.05,3.22,11,11 +Calliope hummingbird,Selasphorus calliope,Hummingbirds,Apodiformes,Trochilidae,Selasphorus,LC,7,10,2,3,11,11 +Rufous hummingbird,Selasphorus rufus,Hummingbirds,Apodiformes,Trochilidae,Selasphorus,NT,7,9,2,5,11,11 +King rail,Rallus elegans,Rails/Gallinules/Coots,Gruiformes,Rallidae,Rallus,NT,15.5,19,290,290,48,48 +Virginia rail,Rallus limicola,Rails/Gallinules/Coots,Gruiformes,Rallidae,Rallus,LC,20,27,65,95,32,38 +Sora,Porzana carolina,Rails/Gallinules/Coots,Gruiformes,Rallidae,Porzana,LC,19,30,49,112,35,40 +Common gallinule,Gallinula galeata,Rails/Gallinules/Coots,Gruiformes,Rallidae,Gallinula,LC,32,35,310,456,54,62 +American coot,Fulica americana,Rails/Gallinules/Coots,Gruiformes,Rallidae,Fulica,LC,34,43,427,848,58,71 +Purple gallinule,Porphyrio martinicus,Rails/Gallinules/Coots,Gruiformes,Rallidae,Porphyrio,LC,26,37,141,305,50,61 +Yellow rail,Coturnicops noveboracensis,Rails/Gallinules/Coots,Gruiformes,Rallidae,Cotorunicops,LC,13,18,41,68,28,32 +Black rail,Laterallus jamaicensis,Rails/Gallinules/Coots,Gruiformes,Rallidae,Laterallus,EN,10,15,29,39,22,28 +Sandhill crane,Antigone canadensis,Cranes,Gruiformes,Gruidae,Antigone,LC,80,136,4020,4570,200,200 +Whooping crane,Grus americana,Cranes,Gruiformes,Gruidae,Grus,EN,124,160,4500,8500,200,230 +Black-necked stilt,Himantopus mexicanus,Stilts and avocets,Charadriiformes,Recurvirostridae,Himantopus,LC,35,39,150,176,71.5,75.5 +American avocet,Recurvirostra americana,Stilts and avocets,Charadriiformes,Recurvirostridae,Recurvirostra,LC,40,51,275,420,68,76 +Black-bellied plover,Pluvialis squatarola,Plovers/Lapwings,Charadriiformes,Charadriidae,Pluvialis,LC,27,30,190,280,71,83 +American golden-plover,Pluvialis dominica,Plovers/Lapwings,Charadriiformes,Charadriidae,Pluvialis,LC,24,28,122,194,65,67 +Killdeer,Charadrius vociferus,Plovers/Lapwings,Charadriiformes,Charadriidae,Charadrius,LC,20,28,72,121,59,63 +Semipalmated plover,Charadrius semipalmatus,Plovers/Lapwings,Charadriiformes,Charadriidae,Charadrius,LC,14,20,22,63,35,56 +Piping plover,Charadrius melodus,Plovers/Lapwings,Charadriiformes,Charadriidae,Charadrius,NT,15,19,42,64,35,41 +Wilson's plover,Charadrius wilsonia,Plovers/Lapwings,Charadriiformes,Charadriidae,Charadrius,LC,16,20,55,70,48.2,48.2 +Snowy plover,Charadrius nivosus,Plovers/Lapwings,Charadriiformes,Charadriidae,Charadrius,NT,15,17,32.5,58,34,43.2 +Upland sandpiper,Bartramia longicauda,Sandpipers/Allies,Charadriiformes,Scolopacidae,Bartramia,LC,30,30,170,170,66,66 +Whimbrel,Numenius phaeopus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Numenius,LC,37,47,270,493,75,90 +Eskimo curlew,Numenius borealis,Sandpipers/Allies,Charadriiformes,Scolopacidae,Numenius,CR,30,30,360,360,70,70 +Long-billed curlew,Numenius americanus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Numenius,LC,50,65,490,950,62,90 +Hudsonian godwit,Limosa haemastica,Sandpipers/Allies,Charadriiformes,Scolopacidae,Limosa,LC,37,42,300,300,74,74 +Marbled godwit,Limosa fedoa,Sandpipers/Allies,Charadriiformes,Scolopacidae,Limosa,LC,40,50,240,510,70,88 +Ruddy turnstone,Arenaria interpres,Sandpipers/Allies,Charadriiformes,Scolopacidae,Arenaria,LC,22,24,85,150,50,57 +Red knot,Calidris canutus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,NT,23,26,100,200,47,53 +Ruff,Calidris pugnax,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,29,32,180,180,54,60 +Sharp-tailed sandpiper,Calidris acuminata,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,22,22,39,114,36,43 +Stilt sandpiper,Calidris himantopus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,20,23,50,70,38,41 +Curlew sandpiper,Calidris ferruginea,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,NT,18,23,44,117,38,41 +Sanderling,Calidris alba,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,18,22,60,60,43,43 +Dunlin,Calidris alpina,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,16,22,48.7,75.9,36,38 +Purple sandpiper,Calidris maritima,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,20,22,50,105,42,46 +Baird's sandpiper,Calidris bairdii,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,18,19,38,38,43,43 +Least sandpiper,Calidris minutilla,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,13,15,19,30,27,28 +White-rumped sandpiper,Calidris fuscicollis,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,17,20,42,42,43,43 +Buff-breasted sandpiper,Calidris subruficollis,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,NT,19,23,63,63,46,46 +Pectoral sandpiper,Calidris melanotos,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,20,24,73,73,46,46 +Semipalmated sandpiper,Calidris pusilla,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,NT,13,15,20,32,35,57 +Western sandpiper,Calidris mauri,Sandpipers/Allies,Charadriiformes,Scolopacidae,Calidris,LC,14,17,22,35,35,37 +Short-billed dowitcher,Limnodromus griseus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Limnodromus,LC,23,32,73,155,46,56 +Long-billed dowitcher,Limnodromus scolopaceus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Limnodromus,LC,29,29,88,131,47,49 +American woodcock,Scolopax minor,Sandpipers/Allies,Charadriiformes,Scolopacidae,Scolopax,LC,25,30,140,230,42,48 +Wilson's snipe,Gallinago delicata,Sandpipers/Allies,Charadriiformes,Scolopacidae,Gallinago,LC,23,28,76,146,39,45 +Spotted sandpiper,Actitis macularius,Sandpipers/Allies,Charadriiformes,Scolopacidae,Actitis,LC,18,20,34,50,37,40 +Solitary sandpiper,Tringa solitaria,Sandpipers/Allies,Charadriiformes,Scolopacidae,Tringa,LC,18,23,31,65,50,50 +Lesser yellowlegs,Tringa flavipes,Sandpipers/Allies,Charadriiformes,Scolopacidae,Tringa,LC,23,27,79.5,90.9,59,64 +Willet,Tringa semipalmata,Sandpipers/Allies,Charadriiformes,Scolopacidae,Tringa,LC,33,41,200,330,70,70 +Greater yellowlegs,Tringa melanoleuca,Sandpipers/Allies,Charadriiformes,Scolopacidae,Tringa,LC,29,40,111,250,60,60 +Wilson's phalarope,Phalaropus tricolor,Sandpipers/Allies,Charadriiformes,Scolopacidae,Phalaropus,LC,22,24,38,110,39,43 +Red-necked phalarope,Phalaropus lobatus,Sandpipers/Allies,Charadriiformes,Scolopacidae,Phalaropus,LC,17,20,35,35,38,38 +Red phalarope,Phalaropus fulicarius,Sandpipers/Allies,Charadriiformes,Scolopacidae,Phalaropus,LC,20,23,55,55,43,43 +Pomarine jaeger,Stercorarius pomarinus,Skuas and jaegers,Charadriiformes,Stercorariidae,Stercorarius,LC,46,67,540,920,110,138 +Parasitic jaeger,Stercorarius parasiticus,Skuas and jaegers,Charadriiformes,Stercorariidae,Stercorarius,LC,41,48,300,650,107,125 +Long-tailed jaeger,Stercorarius longicaudus,Skuas and jaegers,Charadriiformes,Stercorariidae,Stercorarius,LC,38,58,230,444,102,117 +Dovekie,Alle alle,Auks/Murres/Puffins,Charadriiformes,Alcidae,Alle,LC,19,21,134,204,34,38 +Black guillemot,Cepphus grylle,Auks/Murres/Puffins,Charadriiformes,Alcidae,Cepphus,LC,30,32,300,460,52,58 +Long-billed murrelet,Brachyramphus perdix,Auks/Murres/Puffins,Charadriiformes,Alcidae,Brachyramphus,NT,25,25,310,210,43,43 +Ancient murrelet,Synthliboramphus antiquus,Auks/Murres/Puffins,Charadriiformes,Alcidae,Synthliboramphus,LC,20,24,153,250,45,46 +Black-legged kittiwake,Rissa tridactyla,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Rissa,VU,37,41,305,525,91,105 +Ivory gull,Pagophila eburnea,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Pagophila,NT,40,43,448,687,108,120 +Sabine's gull,Xema sabini,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Xema,LC,27,33,135,225,81,87 +Bonaparte's gull,Chroicocephalus philadelphia,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Chroicocephalus,LC,28,38,180,225,76,84 +Black-headed gull,Chroicocephalus ridibundus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Chroicocephalus,LC,38,44,190,400,94,105 +Little gull,Hydrocoloeus minutus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Hydrocoloeus,LC,25,30,68,162,61,78 +Ross's gull,Rhodostethia rosea,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Rhodostethia,LC,29,31,140,250,90,100 +Laughing gull,Leucophaeus atricilla,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Leucophaeus,LC,36,41,203,371,98,110 +Franklin's gull,Leucophaeus pipixcan,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Leucophaeus,LC,32,36,230,300,85,95 +Mew gull,Larus canus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,40,46,290,586,96,125 +Ring-billed gull,Larus delawarensis,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,43,54,300,700,105,117 +California gull,Larus californicus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,46,55,430,1045,122,137 +Herring gull,Larus argentatus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,53,66,600,1650,120,155 +Iceland gull,Larus glaucoides,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,50,64,480,1100,115,150 +Lesser black-backed gull,Larus fuscus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,51,64,452,1100,124,150 +Slaty-backed gull,Larus schistisagus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,55,68.5,1050,1700,52,63 +Glaucous-winged gull,Larus glaucescens,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,50,68,730,1690,120,150 +Glaucous gull,Larus hyperboreus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,55,77,960,2700,132,170 +Great black-backed gull,Larus marinus,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Larus,LC,64,79,750,2300,150,170 +Least tern,Sternula antillarum,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Sternula,LC,22,24,39,52,50,50 +Gull-billed tern,Gelochelidon nilotica,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Gelochelidon,LC,33,42,150,292,76,91 +Caspian tern,Hydroprogne caspia,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Hydroprogne,LC,48,60,530,782,127,145 +Black tern,Chlidonias niger,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Childonias,LC,25,25,62,62,61,61 +Common tern,Sterna hirundo,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Sterna,LC,31,35,110,141,77,98 +Arctic tern,Sterna paradisaea,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Sterna,LC,28,39,86,127,65,75 +Forster's tern,Sterna forsteri,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Sterna,LC,33,36,130,190,64,70 +Sandwich tern,Thalasseus sandvicensis,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Thalasseus,LC,37,43,180,300,85,97 +Elegant tern,Thalasseus elegans,Gulls/Terns/Skimmers,Charadriiformes,Laridae,Thalasseus,NT,39,42,190,325,76,81 +Red-throated loon,Gavia stellata,Loons,Gaviiformes,Gaviidae,Gavia,LC,53,69,1000,2700,91,120 +Pacific loon,Gavia pacifica,Loons,Gaviiformes,Gaviidae,Gavia,LC,58,74,1000,2500,110,128 +Common loon,Gavia immer,Loons,Gaviiformes,Gaviidae,Gavia,LC,66,91,2200,7600,127,147 +Yellow-billed loon,Gavia adamsii,Loons,Gaviiformes,Gaviidae,Gavia,NT,76,97,4000,6400,135,160 +Northern fulmar,Fulmarus glacialis,Shearwaters and petrels,Procellariiformes,Procellariidae,Fulmarus,LC,46,46,450,1000,102,112 +Wood stork,Mycteria americana,Storks,Ciconiiformes,Ciconiidae,Mycteria,LC,83,115,2000,3300,140,180 +Magnificent frigatebird,Fregata magnificens,Frigatebirds,Suliformes,Fregatidae,Fregata,LC,89,114,1100,1590,217,244 +Double-crested cormorant,Phalacrocorax auritus,Cormorants/Shags,Suliformes,Phalacrocoracidae,Phalacrocorax,LC,70,90,1200,2500,114,123 +Neotropic cormorant,Phalacrocorax brasilianus,Cormorants/Shags,Suliformes,Phalacrocoracidae,Phalacrocorax,LC,64,64,1000,1500,100,100 +American white pelican,Pelecanus erythrorhynchos,Pelicans,Pelecaniformes,Pelecanidae,Pelecanus,LC,130,180,3500,13600,240,300 +Brown pelican,Pelecanus occidentalis,Pelicans,Pelecaniformes,Pelecanidae,Pelecanus,LC,100,152,2000,5000,203,228 +American bittern,Botaurus lentiginosus,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Botarus,LC,58,85,370,1072,92,115 +Least bittern,Ixobrychus exilis,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Ixobrychus,LC,28,36,51,102,41,46 +Great blue heron,Ardea herodias,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Ardea,LC,91,137,1820,3600,167,201 +Great egret,Ardea alba,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Ardea,LC,80,104,700,1500,131,170 +Snowy egret,Egretta thula,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Egretta,LC,56,66,370,370,100,100 +Little blue heron,Egretta caerulea,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Egretta,LC,64,76,325,325,102,102 +Tricolored heron,Egretta tricolor,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Egretta,LC,56,75,334,425,96,96 +Cattle egret,Bubulcus ibis,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Bubulcus,LC,46,56,270,512,88,96 +Green heron,Butorides virescens,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Butorides,LC,41,46,240,240,64,68 +Black-crowned night-heron,Nycticorax nycticorax,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Nycticorax,LC,58,66,727,1014,115,118 +Yellow-crowned night-heron,Nyctanassa violacea,Herons/Egrets/Bitterns,Pelecaniformes,Ardeidae,Nyctsnassa,LC,55,70,650,850,101,112 +White ibis,Eudocimus albus,Ibises/Spoonbills,Pelecaniformes,Threskiornithidae,Eudocimus,LC,53,70,592.7,1261,90,105 +Glossy ibis,Plegadis falcinellus,Ibises/Spoonbills,Pelecaniformes,Threskiornithidae,Plegadis,LC,48,66,485,970,80,105 +White-faced ibis,Plegadis chihi,Ibises/Spoonbills,Pelecaniformes,Threskiornithidae,Plegadis,LC,46,56,450,525,90,93 +Roseate spoonbill,Ajaia ajaja,Ibises/Spoonbills,Pelecaniformes,Threskiornithidae,Platalea,LC,71,86,1200,1800,120,133 +Black vulture,Coragyps atratus,New World vultures,Cathartiformes,Cathartidae,Coragyps,LC,56,74,1600,3000,133,167 +Turkey vulture,Cathartes aura,New World vultures,Cathartiformes,Cathartidae,Cathartes,LC,62,81,800,2410,160,183 +Osprey,Pandion haliaetus,Osprey,Accipitriformes,Pandionidae,Pandion,LC,50,66,900,2100,127,180 +White-tailed kite,Elanus leucurus,Hawks/Eagles,Accipitriformes,Accipitridae,Elanus,LC,35,43,250,380,88,102 +Swallow-tailed kite,Elanoides forficatus,Hawks/Eagles,Accipitriformes,Accipitridae,Elanoides,LC,50,68,310,600,112,136 +Golden eagle,Aquila chrysaetos,Hawks/Eagles,Accipitriformes,Accipitridae,Aquila,LC,66,102,2500,6350,180,234 +Northern harrier,Circus hudsonius,Hawks/Eagles,Accipitriformes,Accipitridae,Circus,LC,41,52,290,750,97,122 +Sharp-shinned hawk,Accipiter striatus,Hawks/Eagles,Accipitriformes,Accipitridae,Accipiter,LC,23,37,82,219,42,68 +Cooper's hawk,Accipiter cooperii,Hawks/Eagles,Accipitriformes,Accipitridae,Accipiter,LC,35,50,215,701,62,99 +Northern goshawk,Accipiter gentilis,Hawks/Eagles,Accipitriformes,Accipitridae,Accipiter,LC,46,69,357,1200,89,127 +Bald eagle,Haliaeetus leucocephalus,Hawks/Eagles,Accipitriformes,Accipitridae,Haliaeetus,LC,70,102,3000,6300,1800,2300 +Mississippi kite,Ictinia mississippiensis,Hawks/Eagles,Accipitriformes,Accipitridae,Ictinia,LC,30,37,214,388,91,91 +Red-shouldered hawk,Buteo lineatus,Hawks/Eagles,Accipitriformes,Accipitridae,Buteo,LC,38,61,460,930,90,127 +Broad-winged hawk,Buteo platypterus,Hawks/Eagles,Accipitriformes,Accipitridae,Buteo,LC,32,44,265,560,74,100 +Swainson's hawk,Buteo swainsoni,Hawks/Eagles,Accipitriformes,Accipitridae,Buteo,LC,43,56,500,1700,117,137 +Red-tailed hawk,Buteo jamaicensis,Hawks/Eagles,Accipitriformes,Accipitridae,Buteo,LC,45,65,690,1600,110,141 +Rough-legged hawk,Buteo lagopus,Hawks/Eagles,Accipitriformes,Accipitridae,Buteo,LC,46,60,600,1660,120,153 +Ferruginous hawk,Buteo regalis,Hawks/Eagles,Accipitriformes,Accipitridae,Buteo,LC,51,69,907,2268,122,152 +Barn owl,Tyto alba,Barn-owls,Strigiformes,Tytonidae,Tyto,LC,33,39,224,710,80,95 +Eastern screech-owl,Megascops asio,Owls,Strigiformes,Strigidae,Megascops,LC,16,25,121,244,46,61 +Great horned owl,Bubo virginianus,Owls,Strigiformes,Strigidae,Bubo,LC,43,64,910,2500,91,153 +Snowy owl,Bubo scandiacus,Owls,Strigiformes,Strigidae,Bubo,VU,52.5,64,1300,2951,116,165.6 +Northern hawk owl,Surnia ulula,Owls,Strigiformes,Strigidae,Surnia,LC,36,42.5,300,300,45,45 +Burrowing owl,Athene cunicularia,Owls,Strigiformes,Strigidae,Athene,LC,19,28,140,240,50.8,61 +Barred owl,Strix varia,Owls,Strigiformes,Strigidae,Strix,LC,40,63,468,1150,96,125 +Great gray owl,Strix nebulosa,Owls,Strigiformes,Strigidae,Strix,LC,61,84,580,1900,140,142 +Long-eared owl,Asio otus,Owls,Strigiformes,Strigidae,Asio,LC,31,40,160,435,86,102 +Short-eared owl,Asio flammeus,Owls,Strigiformes,Strigidae,Asio,LC,34,43,206,475,85,110 +Boreal owl,Aegolius funereus,Owls,Strigiformes,Strigidae,Aegolius,LC,22,27,93,215,50,62 +Northern saw-whet owl,Aegolius acadicus,Owls,Strigiformes,Strigidae,Aegolius,LC,17,22,54,151,42,56.3 +Belted kingfisher,Megaeryle alcyon,Kingfishers,Coraciiformes,Alcedinidae,Megaceryle,LC,28,35,113,178,48,58 +Lewis's woodpecker,Melanerpes lewis,Woodpeckers,Piciformes,Picidae,Melanerpes,LC,26,28,88,138,49,52 +Red-headed woodpecker,Melanerpes erythrocephalus,Woodpeckers,Piciformes,Picidae,Melanerpes,LC,19,25,56,97,42.5,42.5 +Acorn woodpecker,Melanerpes formicivorus,Woodpeckers,Piciformes,Picidae,Melanerpes,LC,19,23,65,90,35,43 +Red-bellied woodpecker,Melanerpes carolinus,Woodpeckers,Piciformes,Picidae,Melanerpes,LC,22.85,26.7,56,91,38,46 +Williamson's sapsucker,Sphyrapicus thyroideus,Woodpeckers,Piciformes,Picidae,Sphyrapicus,LC,21,25,44,55,43,43 +Yellow-bellied sapsucker,Sphyrapicus varius,Woodpeckers,Piciformes,Picidae,Sphyrapicus,LC,19,21,35,62,34,40 +American three-toed woodpecker,Picoides dorsalis,Woodpeckers,Piciformes,Picidae,Picoides,LC,21,21,55,55,38,38 +Black-backed woodpecker,Picoides arcticus,Woodpeckers,Piciformes,Picidae,Picoides,LC,23,23,61,88,40,42 +Downy woodpecker,Dryobates pubescens,Woodpeckers,Piciformes,Picidae,Dryobates,LC,14,18,20,33,25,31 +Hairy woodpecker,Dryobates villosus,Woodpeckers,Piciformes,Picidae,Leuconotopicus,LC,18,26,40,95,33,43 +Northern flicker,Colaptes auratus,Woodpeckers,Piciformes,Picidae,Colaptes,LC,28,36,86,167,42,54 +Pileated woodpecker,Dryocopus pileatus,Woodpeckers,Piciformes,Picidae,Dryocopus,LC,40,49,250,400,66,75 +Crested caracara,Caracara cheriway,Falcons /Caracaras,Falconformes,Falconidae,Caracara,LC,49,63,701,1387,118,132 +American kestrel,Falco sparverius,Falcons /Caracaras,Falconformes,Falconidae,Falco,LC,22,31,80,165,51,61 +Merlin,Falco columbarius,Falcons /Caracaras,Falconformes,Falconidae,Falco,LC,24,33,125,210,50,73 +Gyrfalcon,Falco rusticolus,Falcons /Caracaras,Falconformes,Falconidae,Hierofalco,LC,48,65,805,2100,110,160 +Peregrine falcon,Falco peregrinus,Falcons /Caracaras,Falconformes,Falconidae,Falco,LC,34,58,330,1500,74,120 +Prairie falcon,Falco mexicanus,Falcons /Caracaras,Falconformes,Falconidae,Falco,LC,37,45,500,970,1100,1100 +Ash-throated flycatcher,Myiarchus cinerascens,Tyrant flycatchers,Passeriformes,Tyrannidae,Myiarchus,LC,19,22,20,37,30,32 +Great crested flycatcher,Myiarchus crinitus,Tyrant flycatchers,Passeriformes,Tyrannidae,Myiarchus,LC,17,21,27,40,34,34 +Tropical kingbird,Tyrannus melancholicus,Tyrant flycatchers,Passeriformes,Tyrannidae,Tyrannus,LC,22,22,39,39,38,41 +Cassin's kingbird,Tyrannus vociferans,Tyrant flycatchers,Passeriformes,Tyrannidae,Tyrannus,LC,21,23,45,45,41,41 +Western kingbird,Tyrannus verticalis,Tyrant flycatchers,Passeriformes,Tyrannidae,Tyrannus,LC,20,24,40,40,39,39 +Eastern kingbird,Tyrannus tyrannus,Tyrant flycatchers,Passeriformes,Tyrannidae,Tyrannus,LC,19,23,33,55,33,38 +Scissor-tailed flycatcher,Tyrannus forficatus,Tyrant flycatchers,Passeriformes,Tyrannidae,Tyrannus,LC,38,38,43,43,15,15 +Fork-tailed flycatcher,Tyrannus savana,Tyrant flycatchers,Passeriformes,Tyrannidae,Tyrannus,LC,37,41,28,32,38,38 +Olive-sided flycatcher,Contopus cooperi,Tyrant flycatchers,Passeriformes,Tyrannidae,Contopus,NT,18,20,28,40.4,31.5,34.5 +Western wood-pewee,Contopus sordidulus,Tyrant flycatchers,Passeriformes,Tyrannidae,Contopus,LC,14,16,11,14,26,26 +Eastern wood-pewee,Contopus virens,Tyrant flycatchers,Passeriformes,Tyrannidae,Contopus,LC,13.5,15,14,14,23,26 +Yellow-bellied flycatcher,Empidonax flaviventris,Tyrant flycatchers,Passeriformes,Tyrannidae,Empidonax,LC,13,15,9,16,18,20 +Acadian flycatcher,Empidonax virescens,Tyrant flycatchers,Passeriformes,Tyrannidae,Empidonax,LC,14,15,11.1,13.9,22,23 +Alder flycatcher,Empidonax alnorum,Tyrant flycatchers,Passeriformes,Tyrannidae,Empidonax,LC,13,17,12,14,21,24 +Willow flycatcher,Empidonax traillii,Tyrant flycatchers,Passeriformes,Tyrannidae,Empidonax,LC,13,15,13.5,13.5,22,22 +Least flycatcher,Empidonax minimus,Tyrant flycatchers,Passeriformes,Tyrannidae,Empidonax,LC,12,14,10.3,10.3,19,22 +Eastern phoebe,Sayornis phoebe,Tyrant flycatchers,Passeriformes,Tyrannidae,Sayornis,LC,14,17,16,21,26,28 +Say's phoebe,Sayornis saya,Tyrant flycatchers,Passeriformes,Tyrannidae,Sayornis,LC,19,19,21,21,33,33 +Vermilion flycatcher,Pyrocephalus rubinus,Tyrant flycatchers,Passeriformes,Tyrannidae,Pyrocephalus,LC,13,14,11,14,24,25 +Loggerhead shrike,Lanius ludovicianus,Shrikes,Passeriformes,Laniidae,Lanius,NT,20,23,35,50,28,32 +Northern shrike,Lanius borealis,Shrikes,Passeriformes,Laniidae,Lanius,LC,23,24,56,79,30,35 +White-eyed vireo,Vireo griseus,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,11,13,10,14,17,17 +Bell's vireo,Vireo bellii,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,11.5,12.5,7.4,9.8,17,19 +Yellow-throated vireo,Vireo flavifrons,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,13,15,15,21,23,23 +Blue-headed vireo,Vireo solitarius,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,12.6,14.8,13,19,20,24 +Philadelphia vireo,Vireo philadelphicus,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,11,13,12,12,20,20 +Warbling vireo,Vireo gilvus,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,12,13,10,16,22,22 +Red-eyed vireo,Vireo olivaceus,Vireos/Shrike-babblers/Erpornis,Passeriformes,Vireonidae,Vireo,LC,12,13,12,26,23,25 +Canada jay,Perisoreus canadensis,Crows/Jays/Magpies,Passeriformes,Corvidae,Perisoreus,LC,25,33,65,70,45,45 +Blue jay,Cyanocitta cristata,Crows/Jays/Magpies,Passeriformes,Corvidae,Cyanocitta,LC,22,30,70,100,34,43 +Clark's nutcracker,Nucifraga columbiana,Crows/Jays/Magpies,Passeriformes,Corvidae,Nucifraga,LC,27,30,106,161,46,46 +Black-billed magpie,Pica hudsonia,Crows/Jays/Magpies,Passeriformes,Corvidae,Pica,LC,45,60,141,216,17.5,21.9 +American crow,Corvus brachyrhynchos,Crows/Jays/Magpies,Passeriformes,Corvidae,Corvus,LC,40,53,316,620,85,100 +Common raven,Corvus corax,Crows/Jays/Magpies,Passeriformes,Corvidae,Corvus,LC,54,67,690,2000,115,150 +Horned lark,Eremophila alpestris,Larks,Passeriformes,Alaudidae,Eremophila,LC,16,20,28,48,30,34 +Bank swallow,Riparia riparia,Swallows,Passeriformes,Hirundinidae,Riparia,LC,12,14,10.2,18.8,25,33 +Tree swallow,Tachycineta bicolor,Swallows,Passeriformes,Hirundinidae,Tachycineta,LC,12,14,17,25.5,30,35 +Violet-green swallow,Tachycineta thalassina,Swallows,Passeriformes,Hirundinidae,Tachycineta,LC,11.7,11.8,13.9,14.4,10.6,10.6 +Northern rough-winged swallow,Stelgidopteryx serripennis,Swallows,Passeriformes,Hirundinidae,Stelgidopteryx,LC,13,15,10,18,27,30 +Purple martin,Progne subis,Swallows,Passeriformes,Hirundinidae,Progne,LC,19,20,45,60,39,41 +Barn swallow,Hirundo rustica,Swallows,Passeriformes,Hirundinidae,Hirundo,LC,17,19,16,22,32,34.5 +Cliff swallow,Petrochelidon pyrrhonota,Swallows,Passeriformes,Hirundinidae,Petrochelidon,LC,13,15,19,31,28,33 +Black-capped chickadee,Poecile atricapilla,Tits/Chickadees/Titmice,Passeriformes,Paridae,Poecile,LC,12,15,9,14,16,21 +Boreal chickadee,Poecile hudsonica,Tits/Chickadees/Titmice,Passeriformes,Paridae,Poecile,LC,13,14,10,10,21,21 +Tufted titmouse,Baeolophus bicolor,Tits/Chickadees/Titmice,Passeriformes,Paridae,Baeolophus,LC,14,16,18,26,20,26 +Red-breasted nuthatch,Sitta canadensis,Nuthatches,Passeriformes,Sittidae,Sitta,LC,11,11,9.9,9.9,22,22 +White-breasted nuthatch,Sitta carolinensis,Nuthatches,Passeriformes,Sittidae,Sitta,LC,13,14,18,30,20,27 +Pygmy nuthatch,Sitta pygmaea,Nuthatches,Passeriformes,Sittidae,Sitta,LC,9,11,9,11,19.7,19.7 +Brown creeper,Certhia americana,Treecreepers,Passeriformes,Certhiidae,Certhia,LC,12,14,5,10,17,20 +Rock wren,Salpinctes obsoletus,Wrens,Passeriformes,Troglodytidae,Salpinctes,LC,12.5,15,15,18,22,24 +House wren,Troglodytes aedon,Wrens,Passeriformes,Troglodytidae,Troglodytes,LC,11,13,10,12,15,15 +Winter wren,Troglodytes hiemalis,Wrens,Passeriformes,Troglodytidae,Nannus,LC,8,12,8,12,12,16 +Sedge wren,Cistothorus platensis,Wrens,Passeriformes,Troglodytidae,Cistothorus,LC,10,12,7,10,12,14 +Marsh wren,Cistothorus palustris,Wrens,Passeriformes,Troglodytidae,Cistothorus,LC,10,14,9,14,15,15 +Carolina wren,Thryothorus ludovicianus,Wrens,Passeriformes,Troglodytidae,Thryothorus,LC,12.5,14,18,23,29,29 +Bewick's wren,Thryomanes bewickii,Wrens,Passeriformes,Troglodytidae,Thryomanes,LC,13,13,8,12,18,18 +Blue-gray gnatcatcher,Polioptila caerulea,Gnatcatchers,Passeriformes,Polioptilidae,Polioptila,LC,10,13,5,7,16,16 +American dipper,Cinclus mexicanus,Dippers,Passeriformes,Cinclidae,Cinclus,LC,16.5,16.5,46,46,23,23 +Golden-crowned kinglet,Regulus satrapa,Kinglets,Passeriformes,Regulidae,Regulus,LC,8,11,4,7.8,14,18 +Ruby-crowned kinglet,Regulus calendula,Kinglets,Passeriformes,Regulidae,Regulus,LC,9,11,5,10,9,11 +Northern wheatear,Oenanthe oenanthe,Old World flycatchers,Passeriformes,Muscicapidae,Oenanthe,LC,14.5,16,17,30,26,32 +Eastern bluebird,Sialia sialis,Thrushes/Allies,Passeriformes,Turdidae,Sialia,LC,16,21,27,34,25,32 +Mountain bluebird,Sialia currucoides,Thrushes/Allies,Passeriformes,Turdidae,Sialia,LC,15.5,18,24,37,28,36 +Townsend's solitaire,Myadestes townsendi,Thrushes/Allies,Passeriformes,Turdidae,Myadestes,LC,20,24,34,34,37,37 +Veery,Catharus fuscescens,Thrushes/Allies,Passeriformes,Turdidae,Catharus,LC,16,19.5,26,39,28.5,28.5 +Gray-cheeked thrush,Catharus minimus,Thrushes/Allies,Passeriformes,Turdidae,Catharus,LC,16,17,26,30,32,34 +Swainson's thrush,Catharus ustulatus,Thrushes/Allies,Passeriformes,Turdidae,Catharus,LC,16,20,23,45,30,30 +Hermit thrush,Catharus guttatus,Thrushes/Allies,Passeriformes,Turdidae,Catharus,LC,15,18,18,37,25,30 +Wood thrush,Hylocichla mustelina,Thrushes/Allies,Passeriformes,Turdidae,Hylocichla,NT,18,21.5,48,72,30,40 +Fieldfare,Turdus pilaris,Thrushes/Allies,Passeriformes,Turdidae,Turdus,LC,25,25,80,140,39,42 +American robin,Turdus migratorius,Thrushes/Allies,Passeriformes,Turdidae,Turdus,LC,23,28,59,94,31,41 +Varied thrush,Ixoreus naevius,Thrushes/Allies,Passeriformes,Turdidae,Ixoreus,LC,20,26,65,100,34,42 +Gray catbird,Dumetella carolinensis,Mockingbirds/Thrashers,Passeriformes,Mimidae,Dumetella,LC,20.5,24,23.2,56.5,22,30 +Curve-billed thrasher,Toxostoma curvirostre,Mockingbirds/Thrashers,Passeriformes,Mimidae,Toxostoma,LC,27,28,60.8,93.6,34,34.5 +Brown thrasher,Toxostoma rufum,Mockingbirds/Thrashers,Passeriformes,Mimidae,Toxostoma,LC,23.5,30.5,61,89,29,33 +Sage thrasher,Oreoscoptes montanus,Mockingbirds/Thrashers,Passeriformes,Mimidae,Oreoscoptes,LC,20,23,40,50,32,32 +Northern mockingbird,Mimus polyglottos,Mockingbirds/Thrashers,Passeriformes,Mimidae,Mimus,LC,20.5,28,40,58,31,38 +European starling,Sturnus vulgaris,Starlings,Passeriformes,Sturnidae,Sturnus,LC,19,23,58,101,31,44 +Bohemian waxwing,Bombycilla garrulus,Waxwings,Passeriformes,Bombycillidae,Bombycilla,LC,19,23,55,55,32,35.5 +Cedar waxwing,Bombycilla cedrorum,Waxwings,Passeriformes,Bombycillidae,Bombycilla,LC,15,18,30,30,22,30 +House sparrow,Passer domesticus,Old World sparrows,Passeriformes,Passeridae,Passer,LC,14,18,24,29.5,19,25 +Eurasian tree sparrow,Passer montanus,Old World sparrows,Passeriformes,Passeridae,Passer,LC,12.5,14,24,24,21,21 +American pipit,Anthus rubescens,Wagtails/Pitpits,Passeriformes,Motacillidae,Anthus,LC,16,16,22,22,24,24 +Sprague's pipit,Anthus spragueii,Wagtails/Pitpits,Passeriformes,Motacillidae,Anthus,VU,15,17,18.2,27,25.4,25.4 +Brambling,Fringilla montifringilla,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Fringilla,LC,16,16,23,29,25,26 +Evening grosbeak,Coccothraustes vespertinus,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Coccothraustes,VU,16,22,38.7,86.1,30,36 +Pine grosbeak,Pinicola enucleator,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Carduelinae,LC,20,25.5,52,78,33,33 +Gray-crowned rosy-finch,Leucosticte tephrocotis,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Leucosticte,LC,14,16,22,60,33,33 +House finch,Haemorhous mexicanus,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Haemorhous,LC,12.5,15,16,27,20,25 +Purple finch,Haemorhous purpureus,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Haemorhous,LC,12,16,18,32,22,26 +Cassin's finch,Haemorhous cassinii,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Haemorhous,LC,16,16,24,34,25,27 +Common redpoll,Acanthis flammea,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Acanthis,LC,11.5,14,12,16,19,22 +Hoary redpoll,Acanthis hornemanni,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Acanthis,LC,12,14,12,16,20,25 +Red crossbill,Loxia curvirostra,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Loxia,LC,20,20,40,53,27,29 +White-winged crossbill,Loxia leucoptera,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Loxia,LC,17,17,30,40,26,29 +Pine siskin,Spinus pinus,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Spinus,LC,11,14,12,18,18,22 +American goldfinch,Spinus tristis,Finches/Euphonias/Allies,Passeriformes,Fringillidae,Spinus,LC,11,14,11,20,19,22 +Lapland longspur,Calcarius lapponicus,Longspurs/Snow buntings,Passeriformes,Calcariidae,Calcarius,LC,15,16,22.3,33.1,22,29 +Chestnut-collared longspur,Calcarius ornatus,Longspurs/Snow buntings,Passeriformes,Calcariidae,Calcarius,VU,13,16.5,17,23,25,27 +Smith's longspur,Calcarius pictus,Longspurs/Snow buntings,Passeriformes,Calcariidae,Calcarius,LC,15,17,20,32,25,25 +Thick-billed longspur,Rhynchophanes mccownii,Longspurs/Snow buntings,Passeriformes,Calcariidae,Rhynchophanes,LC,15,15,25,25,28,28 +Snow bunting,Plectrophenax nivalis,Longspurs/Snow buntings,Passeriformes,Calcariidae,Plextrophenax,LC,15,15,30,40,32,38 +Grasshopper sparrow,Ammodramus savannarum,New World sparrows,Passeriformes,Passerellidae,Ammodramus,LC,10,14,13.8,28.4,17.5,17.5 +Black-throated sparrow,Amphispiza bilineata,New World sparrows,Passeriformes,Passerellidae,Amphispiza,LC,12,14,11,15,19.5,19.5 +Lark sparrow,Chondestes grammacus,New World sparrows,Passeriformes,Passerellidae,Chondestes,LC,15,17,24,33,28,28 +Lark bunting,Calamospiza melanocorys,New World sparrows,Passeriformes,Passerellidae,Calamospiza,LC,14,18,35.3,41.3,25,28 +Chipping sparrow,Spizella passerina,New World sparrows,Passeriformes,Passerellidae,Spizella,LC,12,15,11,16,21,21 +Clay-colored sparrow,Spizella pallida,New World sparrows,Passeriformes,Passerellidae,Spizella,LC,12,15,12,12,19,19 +Field sparrow,Spizella pusilla,New World sparrows,Passeriformes,Passerellidae,Spizella,LC,13,15,12.5,12.5,20,20 +Brewer's sparrow,Spizella breweri,New World sparrows,Passeriformes,Passerellidae,Spizella,LC,13,15,11,14,18,20 +Fox sparrow,Passerella iliaca,New World sparrows,Passeriformes,Passerellidae,Passerella,LC,15,19,26,44,26.7,29 +American tree sparrow,Spizelloides arborea,New World sparrows,Passeriformes,Passerellidae,Spizelloides,LC,14,14,13,28,24,24 +Dark-eyed junco,Junco hyemalis,New World sparrows,Passeriformes,Passerellidae,Junco,LC,13,17.5,18,30,18,25 +White-crowned sparrow,Zonotrichia leucophrys,New World sparrows,Passeriformes,Passerellidae,Zonotrichia,LC,15,16,25,28,21,24 +Golden-crowned sparrow,Zonotrichia atricapilla,New World sparrows,Passeriformes,Passerellidae,Zonotrichia,LC,15,18,19,35.4,24.75,24.75 +Harris's sparrow,Zonotrichia querula,New World sparrows,Passeriformes,Passerellidae,Zonotrichia,NT,17,20,26,49,27,27 +White-throated sparrow,Zonotrichia albicollis,New World sparrows,Passeriformes,Passerellidae,Zonotrichia,LC,15,19,22,32,23,23 +Vesper sparrow,Pooecetes gramineus,New World sparrows,Passeriformes,Passerellidae,Pooecetes,LC,13,16,20,28,24,24 +LeConte's sparrow,Ammospiza leconteii,New World sparrows,Passeriformes,Passerellidae,Ammospiza,LC,12,12,12,16,18,18 +Nelson's sparrow,Ammospiza nelsoni,New World sparrows,Passeriformes,Passerellidae,Ammospiza,LC,11,13,17,21,16.5,20 +Baird's sparrow,Centronyx bairdii,New World sparrows,Passeriformes,Passerellidae,Centronyx,LC,12,12,17,21,23,23 +Henslow's sparrow,Centronyx henslowii,New World sparrows,Passeriformes,Passerellidae,Centronyx,LC,11,13,11,15,16,20 +Savannah sparrow,Passerculus sandwichensis,New World sparrows,Passeriformes,Passerellidae,Passerculus,LC,11,17,15,29,18,25 +Song sparrow,Melospiza melodia,New World sparrows,Passeriformes,Passerellidae,Melospiza,LC,11,18,11.9,53,18,25.4 +Lincoln's sparrow,Melospiza lincolnii,New World sparrows,Passeriformes,Passerellidae,Melospiza,LC,13,15,17,19,19,22 +Swamp sparrow,Melospiza georgiana,New World sparrows,Passeriformes,Passerellidae,Melospiza,LC,12,15,15,23,18,19 +Green-tailed towhee,Pipilo chlorurus,New World sparrows,Passeriformes,Passerellidae,Pipilo,LC,18.4,18.4,29,29,, +Spotted towhee,Pipilo maculatus,New World sparrows,Passeriformes,Passerellidae,Pipilo,LC,17,21,22,49,28,28 +Eastern towhee,Pipilo erythrophthalmus,New World sparrows,Passeriformes,Passerellidae,Pipilo,LC,17.3,23,32,53,20,30 +Yellow-breasted chat,Icteria virens,Yellow-breasted chat,Passeriformes,Icteriidae,Icteria,LC,17,19.1,20.2,33.8,23,27 +Yellow-headed blackbird,Xanthocephalus xanthocephalus,Troupials/Allies,Passeriformes,Icteridae,Xanthocephalus,LC,21,26,44,100,42,44 +Bobolink,Dolichonyx oryzivorus,Troupials/Allies,Passeriformes,Icteridae,Dolichonyx,LC,15,21,29,56,27,27 +Eastern meadowlark,Sturnella magna,Troupials/Allies,Passeriformes,Icteridae,Sturnella,NT,19,28,76,150,35,40 +Western meadowlark,Sturnella neglecta,Troupials/Allies,Passeriformes,Icteridae,Sturnella,LC,16,26,89,115,41,41 +Orchard oriole,Icterus spurius,Troupials/Allies,Passeriformes,Icteridae,Icterus,LC,15,18,16,28,25,25 +Bullock's oriole,Icterus bullockii,Troupials/Allies,Passeriformes,Icteridae,Icterus,LC,17,19,29,43,31,31 +Baltimore oriole,Icterus galbula,Troupials/Allies,Passeriformes,Icteridae,Icterus,LC,17,22,22.3,42,23,32 +Scott's oriole,Icterus parisorum,Troupials/Allies,Passeriformes,Icteridae,Icterus,LC,23,23,32,41,32,32 +Red-winged blackbird,Agelaius phoeniceus,Troupials/Allies,Passeriformes,Icteridae,Agelaius,LC,17,24,29,82,31,40 +Brown-headed cowbird,Molothrus ater,Troupials/Allies,Passeriformes,Icteridae,Molothrus,LC,16,22,30,60,36,36 +Rusty blackbird,Euphagus carolinus,Troupials/Allies,Passeriformes,Icteridae,Euphagus,VU,22,25,60,60,36,36 +Brewer's blackbird,Euphagus cyanocephalus,Troupials/Allies,Passeriformes,Icteridae,Euphagus,LC,20,26,63,63,39,39 +Common grackle,Quiscalus quiscula,Troupials/Allies,Passeriformes,Icteridae,Quiscalus,NT,28,34,74,142,36,46 +Great-tailed grackle,Quiscalus mexicanus,Troupials/Allies,Passeriformes,Icteridae,Quiscalus,LC,38,46,115,265,48,58 +Ovenbird,Seiurus aurocapilla,New World warblers,Passeriformes,Parulidae,Seiurus,LC,11,16,14,28.8,19,26 +Worm-eating warbler,Helmitheros vermivorum,New World warblers,Passeriformes,Parulidae,Helmitheros,LC,11.2,13.1,12,14,20,22 +Louisiana waterthrush,Parkesia motacilla,New World warblers,Passeriformes,Parulidae,Parkesia,LC,14,17,17.4,28,21,25.4 +Northern waterthrush,Parkesia noveboracensis,New World warblers,Passeriformes,Parulidae,Parkesia,LC,12,15,13,25,21,24 +Golden-winged warbler,Vermivora chrysoptera,New World warblers,Passeriformes,Parulidae,Vermivora,NT,11.6,11.6,8,10,20,20 +Blue-winged warbler,Vermivora cyanoptera,New World warblers,Passeriformes,Parulidae,Vermivora,LC,11.4,12.7,8.5,8.5,17,19.5 +Black-and-white warbler,Mniotilta varia,New World warblers,Passeriformes,Parulidae,Mniotilta,LC,11,13,8,15,18,22 +Prothonotary warbler,Protonotaria citrea,New World warblers,Passeriformes,Parulidae,Protonotaria,LC,13,13,12.5,12.5,22,22 +Tennessee warbler,Leiothlypis peregrina,New World warblers,Passeriformes,Parulidae,Leiothlypis,LC,11.5,11.5,10,10,19.7,19.7 +Orange-crowned warbler,Leiothlypis celata,New World warblers,Passeriformes,Parulidae,Leiothlypis,LC,12,13,9,9,18.4,18.4 +Nashville warbler,Leiothlypis ruficapilla,New World warblers,Passeriformes,Parulidae,Leiothlypis,LC,11,13,6.7,13.9,17,20 +Connecticut warbler,Oporornis agilis,New World warblers,Passeriformes,Parulidae,Oporornis,LC,13,15,15,15,22,23 +MacGillivray's warbler,Geothlypis tolmiei,New World warblers,Passeriformes,Parulidae,Geothlypis,LC,10,15,9,13,19,19 +Mourning warbler,Geothlypis philadelphia,New World warblers,Passeriformes,Parulidae,Geothlypis,LC,10,15,11,13,18,18 +Kentucky warbler,Geothlypis formosa,New World warblers,Passeriformes,Parulidae,Geothlypis,LC,13,13,13,14,20,22 +Common yellowthroat,Geothlypis trichas,New World warblers,Passeriformes,Parulidae,Geothlypis,LC,11,13,9,10,15,19 +Hooded warbler,Setophaga citrina,New World warblers,Passeriformes,Parulidae,Setophaga,LC,13,13,9,12,17.5,17.5 +American redstart,Setophaga ruticilla,New World warblers,Passeriformes,Parulidae,Setophaga,LC,11,14,6.9,8.7,16,23 +Kirtland's warbler,Setophaga kirtlandii,New World warblers,Passeriformes,Parulidae,Setophaga,NT,14,15,12,16,22,22 +Cape May warbler,Setophaga tigrina,New World warblers,Passeriformes,Parulidae,Setophaga,LC,12,14,9,17.3,19,22 +Cerulean warbler,Setophaga cerulea,New World warblers,Passeriformes,Parulidae,Setophaga,NT,11,11,8,10,20,20 +Northern parula,Setophaga americana,New World warblers,Passeriformes,Parulidae,Setophaga,LC,10.8,12.4,5,11,16,18 +Magnolia warbler,Setophaga magnolia,New World warblers,Passeriformes,Parulidae,Setophaga,LC,11,13,6.6,12.6,16,20 +Bay-breasted warbler,Setophaga castanea,New World warblers,Passeriformes,Parulidae,Setophaga,LC,13,15,12.5,12.5,23,23 +Blackburnian warbler,Setophaga fusca,New World warblers,Passeriformes,Parulidae,Setophaga,LC,11,13,8,13,20,22 +Yellow warbler,Setophaga petechia,New World warblers,Passeriformes,Parulidae,Setophaga,LC,10,18,7,25,16,22 +Chestnut-sided warbler,Setophaga pensylvanica,New World warblers,Passeriformes,Parulidae,Setophaga,LC,10,14,8,13.1,16,21 +Blackpoll warbler,Setophaga striata,New World warblers,Passeriformes,Parulidae,Setophaga,NT,12.5,15,9.7,21,20,25 +Black-throated blue warbler,Setophaga caerulescens,New World warblers,Passeriformes,Parulidae,Setophaga,LC,13,13,8.4,12.4,19,20 +Palm warbler,Setophaga palmarum,New World warblers,Passeriformes,Parulidae,Setophaga,LC,12,14,7,13,20,21 +Pine warbler,Setophaga pinus,New World warblers,Passeriformes,Parulidae,Setophaga,LC,12.7,14.6,12,12,22.2,22.2 +Yellow-rumped warbler,Setophaga coronata,New World warblers,Passeriformes,Parulidae,Setophaga,LC,12,15,9.9,17.7,19,24 +Yellow-throated warbler,Setophaga dominica,New World warblers,Passeriformes,Parulidae,Setophaga,LC,13,14,9,11,21,21 +Prairie warbler,Setophaga discolor,New World warblers,Passeriformes,Parulidae,Setophaga,LC,11,12,7.7,7.7,18,18 +Black-throated gray warbler,Setophaga nigrescens,New World warblers,Passeriformes,Parulidae,Setophaga,LC,13,13,8.4,8.4,19,19.7 +Townsend's warbler,Setophaga townsendi,New World warblers,Passeriformes,Parulidae,Setophaga,LC,11,13,8.8,8.8,20,20 +Hermit warbler,Setophaga occidentalis,New World warblers,Passeriformes,Parulidae,Setophaga,LC,14,14,9,13,20,20 +Black-throated green warbler,Setophaga virens,New World warblers,Passeriformes,Parulidae,Setophaga,LC,11,12,7,11,17,20 +Canada warbler,Cardellina canadensis,New World warblers,Passeriformes,Parulidae,Cardellina,LC,12,15,9,13,17,22 +Wilson's warbler,Cardellina pusilla,New World warblers,Passeriformes,Parulidae,Cardellina,LC,10,12,5,10,14,17 +Painted redstart,Myioborus pictus,New World warblers,Passeriformes,Parulidae,Myioborus,LC,13,15,8,11,21,21 +Summer tanager,Piranga rubra,Cardinals/Allies,Passeriformes,Cardinalidae,Piranga,LC,17,17,29,29,28,30 +Scarlet tanager,Piranga olivacea,Cardinals/Allies,Passeriformes,Cardinalidae,Piranga,LC,16,19,23.5,38,25,30 +Western tanager,Piranga ludoviciana,Cardinals/Allies,Passeriformes,Cardinalidae,Piranga,LC,16,19,24,36,29,29 +Northern cardinal,Cardinalis cardinalis,Cardinals/Allies,Passeriformes,Cardinalidae,Cardinalis,LC,21,23.5,33.6,65,25,31 +Rose-breasted grosbeak,Pheucticus ludovicianus,Cardinals/Allies,Passeriformes,Cardinalidae,Pheucticus,LC,18,22,35,65,29,33 +Black-headed grosbeak,Pheucticus melanocephalus,Cardinals/Allies,Passeriformes,Cardinalidae,Pheucticus,LC,18,19,34,49,32,32 +Blue grosbeak,Passerina caerulea,Cardinals/Allies,Passeriformes,Cardinalidae,Passerina,LC,14,19,26,31.5,26,29 +Lazuli bunting,Passerina amoena,Cardinals/Allies,Passeriformes,Cardinalidae,Passerina,LC,13,15,13,18,22,22 +Indigo bunting,Passerina cyanea,Cardinals/Allies,Passeriformes,Cardinalidae,Passerina,LC,11.5,15,11.2,21.4,18,23 +Painted bunting,Passerina ciris,Cardinals/Allies,Passeriformes,Cardinalidae,Passerina,LC,12,14,13,19,21,23 +Dickcissel,Spiza americana,Cardinals/Allies,Passeriformes,Cardinalidae,Spiza,LC,14,16,25.6,38.4,24.8,26 \ No newline at end of file From 3c3f965f7608090726cfed6cd1d9ccdc4c9a815d Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Fri, 16 Jul 2021 01:06:40 +0000 Subject: [PATCH 13/16] Bump elliptic from 6.5.3 to 6.5.4 in /quiz-app Bumps [elliptic](https://github.com/indutny/elliptic) from 6.5.3 to 6.5.4. - [Release notes](https://github.com/indutny/elliptic/releases) - [Commits](https://github.com/indutny/elliptic/compare/v6.5.3...v6.5.4) --- updated-dependencies: - dependency-name: elliptic dependency-type: indirect ... Signed-off-by: dependabot[bot] --- quiz-app/package-lock.json | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/quiz-app/package-lock.json b/quiz-app/package-lock.json index c12d9f3..53042e0 100644 --- a/quiz-app/package-lock.json +++ b/quiz-app/package-lock.json @@ -4493,24 +4493,24 @@ "dev": true }, "elliptic": { - "version": "6.5.3", - "resolved": "https://registry.npmjs.org/elliptic/-/elliptic-6.5.3.tgz", - "integrity": "sha512-IMqzv5wNQf+E6aHeIqATs0tOLeOTwj1QKbRcS3jBbYkl5oLAserA8yJTT7/VyHUYG91PRmPyeQDObKLPpeS4dw==", + "version": "6.5.4", + "resolved": "https://registry.npmjs.org/elliptic/-/elliptic-6.5.4.tgz", + "integrity": "sha512-iLhC6ULemrljPZb+QutR5TQGB+pdW6KGD5RSegS+8sorOZT+rdQFbsQFJgvN3eRqNALqJer4oQ16YvJHlU8hzQ==", "dev": true, "requires": { - "bn.js": "^4.4.0", - "brorand": "^1.0.1", + "bn.js": "^4.11.9", + "brorand": "^1.1.0", "hash.js": "^1.0.0", - "hmac-drbg": "^1.0.0", - "inherits": "^2.0.1", - "minimalistic-assert": "^1.0.0", - "minimalistic-crypto-utils": "^1.0.0" + "hmac-drbg": "^1.0.1", + "inherits": "^2.0.4", + "minimalistic-assert": "^1.0.1", + "minimalistic-crypto-utils": "^1.0.1" }, "dependencies": { "bn.js": { - "version": "4.11.9", - "resolved": "https://registry.npmjs.org/bn.js/-/bn.js-4.11.9.tgz", - "integrity": "sha512-E6QoYqCKZfgatHTdHzs1RRKP7ip4vvm+EyRUeE2RF0NblwVvb0p6jSVeNTOFxPn26QXN2o6SMfNxKp6kU8zQaw==", + "version": "4.12.0", + "resolved": "https://registry.npmjs.org/bn.js/-/bn.js-4.12.0.tgz", + "integrity": "sha512-c98Bf3tPniI+scsdk237ku1Dc3ujXQTSgyiPUDEOe7tRkhrqridvh8klBv0HCEso1OLOYcHuCv/cS6DNxKH+ZA==", "dev": true } } From dd57c81bee574718ac9311d6703a25113fa2964c Mon Sep 17 00:00:00 2001 From: Jen Looper Date: Thu, 15 Jul 2021 21:53:14 -0400 Subject: [PATCH 14/16] reworking folder structures and README --- .../01-defining-data-science}/README.md | 0 .../01-defining-data-science}/assignment.md | 0 .../01-defining-data-science}/notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../02-ethics}/README.md | 0 .../02-ethics}/assignment.md | 0 .../02-ethics}/notebook.ipynb | 0 .../02-ethics}/solution/notebook.ipynb | 0 .../02-ethics}/translations/README.es.md | 0 .../03-defining-data}/README.md | 0 .../03-defining-data}/assignment.md | 0 .../03-defining-data}/notebook.ipynb | 0 .../03-defining-data}/solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../04-stats-and-probability}/README.md | 0 .../04-stats-and-probability}/assignment.md | 0 .../04-stats-and-probability}/notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../01.md => 1-Introduction/README.md | 0 .../translations/README.es.md | 0 .../05-spreadsheets/README.md | 0 .../05-spreadsheets}/assignment.md | 0 .../05-spreadsheets}/notebook.ipynb | 0 .../05-spreadsheets}/solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../06-relational-databases/README.md | 0 .../06-relational-databases}/assignment.md | 0 .../06-relational-databases}/notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../07-nosql/README.md | 0 .../07-nosql}/assignment.md | 0 .../07-nosql}/notebook.ipynb | 0 .../07-nosql}/solution/notebook.ipynb | 0 .../07-nosql}/translations/README.es.md | 0 .../08-python/README.md | 0 .../08-python}/assignment.md | 0 .../08-python}/notebook.ipynb | 0 .../08-python}/solution/notebook.ipynb | 0 .../08-python}/translations/README.es.md | 0 .../09-cleaning-transformations/README.md | 0 .../assignment.md | 0 .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 2-Working-With-Data/README.md | 13 +++++ .../translations/README.es.md | 0 .../10-visualization-quantities/README.md | 0 .../assignment.md | 0 .../images/category-counts.png | Bin .../images/category-length.png | Bin .../images/full-data-bar.png | Bin .../images/labeled-wingspan.png | Bin .../images/max-wingspan-labels.png | Bin .../images/max-wingspan.png | Bin .../images/scatterplot-wingspan.png | Bin .../images/superimposed.png | Bin .../notebook.ipynb | 0 .../solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../11-visualization-distributions/README.md | 0 .../assignment.md | 0 .../notebook.ipynb | 0 .../solution}/notebook.ipynb | 0 .../translations/README.es.md | 0 .../12-visualization-proportions/README.md | 0 .../assignment.md | 0 .../notebook.ipynb | 0 .../solution}/notebook.ipynb | 0 .../translations/README.es.md | 0 .../13-visualization-relationships/README.md | 0 .../assignment.md | 0 .../notebook.ipynb | 0 .../solution}/notebook.ipynb | 0 .../translations/README.es.md | 0 .../14-meaningful-visualizations/README.md | 0 .../assignment.md | 0 .../notebook.ipynb | 0 .../solution}/notebook.ipynb | 0 .../translations/README.es.md | 0 .../README.md | 0 .../data/birds.csv | 0 .../data/honey.csv | 0 .../data/mushrooms.csv | 0 .../images/bee.jpg | Bin .../translations/README.es.md | 0 .../15-capturing/README.md | 0 .../15-capturing}/assignment.md | 0 .../15-capturing}/notebook.ipynb | 0 .../15-capturing/solution}/notebook.ipynb | 0 .../15-capturing}/translations/README.es.md | 0 .../16-processing/README.md | 0 .../16-processing}/assignment.md | 0 .../16-processing}/notebook.ipynb | 0 .../16-processing}/solution/notebook.ipynb | 0 .../16-processing}/translations/README.es.md | 0 .../17-analyzing/README.md | 0 .../17-analyzing}/assignment.md | 0 .../17-analyzing}/notebook.ipynb | 0 .../17-analyzing}/solution/notebook.ipynb | 0 .../17-analyzing}/translations/README.es.md | 0 .../18-communication/README.md | 0 .../18-communication}/assignment.md | 0 .../18-communication}/notebook.ipynb | 0 .../18-communication}/solution/notebook.ipynb | 0 .../translations/README.es.md | 0 .../19-maintaining/README.md | 0 .../19-maintaining}/assignment.md | 0 .../19-maintaining}/notebook.ipynb | 0 .../19-maintaining}/solution/notebook.ipynb | 0 .../19-maintaining}/translations/README.es.md | 0 .../README.md | 0 .../assignment.md | 0 .../translations/README.es.md | 0 .../20-tbd/README.md | 0 .../20-tbd}/assignment.md | 0 .../20-tbd}/notebook.ipynb | 0 .../20-tbd}/solution/notebook.ipynb | 0 .../20-tbd}/translations/README.es.md | 0 .../21-tbd/README.md | 0 .../21-tbd}/assignment.md | 0 .../21-tbd}/notebook.ipynb | 0 .../21-tbd}/solution/notebook.ipynb | 0 .../21-tbd}/translations/README.es.md | 0 .../22-tbd/README.md | 0 .../22-tbd}/assignment.md | 0 .../22-tbd}/notebook.ipynb | 0 .../22-tbd}/solution/notebook.ipynb | 0 .../22-tbd}/translations/README.es.md | 0 .../README.md | 0 .../23-tbd/README.md | 0 .../23-tbd}/assignment.md | 0 .../23-tbd}/notebook.ipynb | 0 .../23-tbd}/solution/notebook.ipynb | 0 .../23-tbd}/translations/README.es.md | 0 .../24-tbd/README.md | 0 .../24-tbd}/assignment.md | 0 .../24-tbd}/notebook.ipynb | 0 .../24-tbd}/solution/notebook.ipynb | 0 .../24-tbd/translations/README.es.md | 0 .../README.md | 0 README.md | 52 +++++++++--------- sketchnotes/README.md | 3 + working-with-data/README.md | 13 ----- 146 files changed, 42 insertions(+), 39 deletions(-) rename {01-defining-data-science => 1-Introduction/01-defining-data-science}/README.md (100%) rename {01-defining-data-science => 1-Introduction/01-defining-data-science}/assignment.md (100%) rename {01-defining-data-science => 1-Introduction/01-defining-data-science}/notebook.ipynb (100%) rename {01-defining-data-science => 1-Introduction/01-defining-data-science}/solution/notebook.ipynb (100%) rename {01-defining-data-science => 1-Introduction/01-defining-data-science}/translations/README.es.md (100%) rename {02-ethics => 1-Introduction/02-ethics}/README.md (100%) rename {02-ethics => 1-Introduction/02-ethics}/assignment.md (100%) rename {02-ethics => 1-Introduction/02-ethics}/notebook.ipynb (100%) rename {02-ethics => 1-Introduction/02-ethics}/solution/notebook.ipynb (100%) rename {02-ethics => 1-Introduction/02-ethics}/translations/README.es.md (100%) rename {03-defining-data => 1-Introduction/03-defining-data}/README.md (100%) rename {03-defining-data => 1-Introduction/03-defining-data}/assignment.md (100%) rename {03-defining-data => 1-Introduction/03-defining-data}/notebook.ipynb (100%) rename {03-defining-data => 1-Introduction/03-defining-data}/solution/notebook.ipynb (100%) rename {03-defining-data => 1-Introduction/03-defining-data}/translations/README.es.md (100%) rename {04-stats-and-probability => 1-Introduction/04-stats-and-probability}/README.md (100%) rename {04-stats-and-probability => 1-Introduction/04-stats-and-probability}/assignment.md (100%) rename {04-stats-and-probability => 1-Introduction/04-stats-and-probability}/notebook.ipynb (100%) rename {04-stats-and-probability => 1-Introduction/04-stats-and-probability}/solution/notebook.ipynb (100%) rename {04-stats-and-probability => 1-Introduction/04-stats-and-probability}/translations/README.es.md (100%) rename 00-sketchnotes/01.md => 1-Introduction/README.md (100%) rename {data-science-in-the-cloud/20-tbd => 1-Introduction}/translations/README.es.md (100%) rename {working-with-data => 2-Working-With-Data}/05-spreadsheets/README.md (100%) rename {data-science-in-the-cloud/20-tbd => 2-Working-With-Data/05-spreadsheets}/assignment.md (100%) rename {data-science-in-the-cloud/20-tbd => 2-Working-With-Data/05-spreadsheets}/notebook.ipynb (100%) rename {data-science-in-the-cloud/20-tbd => 2-Working-With-Data/05-spreadsheets}/solution/notebook.ipynb (100%) rename {data-science-in-the-cloud/21-tbd => 2-Working-With-Data/05-spreadsheets}/translations/README.es.md (100%) rename {working-with-data => 2-Working-With-Data}/06-relational-databases/README.md (100%) rename {data-science-in-the-cloud/21-tbd => 2-Working-With-Data/06-relational-databases}/assignment.md (100%) rename {data-science-in-the-cloud/21-tbd => 2-Working-With-Data/06-relational-databases}/notebook.ipynb (100%) rename {data-science-in-the-cloud/21-tbd => 2-Working-With-Data/06-relational-databases}/solution/notebook.ipynb (100%) rename {data-science-in-the-cloud/22-tbd => 2-Working-With-Data/06-relational-databases}/translations/README.es.md (100%) rename {working-with-data => 2-Working-With-Data}/07-nosql/README.md (100%) rename {data-science-in-the-cloud/22-tbd => 2-Working-With-Data/07-nosql}/assignment.md (100%) rename {data-science-in-the-cloud/22-tbd => 2-Working-With-Data/07-nosql}/notebook.ipynb (100%) rename {data-science-in-the-cloud/22-tbd => 2-Working-With-Data/07-nosql}/solution/notebook.ipynb (100%) rename {data-science-in-the-wild/23-tbd => 2-Working-With-Data/07-nosql}/translations/README.es.md (100%) rename {working-with-data => 2-Working-With-Data}/08-python/README.md (100%) rename {data-science-in-the-wild/23-tbd => 2-Working-With-Data/08-python}/assignment.md (100%) rename {data-science-in-the-wild/23-tbd => 2-Working-With-Data/08-python}/notebook.ipynb (100%) rename {data-science-in-the-wild/23-tbd => 2-Working-With-Data/08-python}/solution/notebook.ipynb (100%) rename {data-science-in-the-wild/24-tbd => 2-Working-With-Data/08-python}/translations/README.es.md (100%) rename {working-with-data => 2-Working-With-Data}/09-cleaning-transformations/README.md (100%) rename {data-science-in-the-wild/24-tbd => 2-Working-With-Data/09-cleaning-transformations}/assignment.md (100%) rename {data-science-in-the-wild/24-tbd => 2-Working-With-Data/09-cleaning-transformations}/notebook.ipynb (100%) rename {data-science-in-the-wild/24-tbd => 2-Working-With-Data/09-cleaning-transformations}/solution/notebook.ipynb (100%) rename {data-science-lifecycle/15-capturing => 2-Working-With-Data/09-cleaning-transformations}/translations/README.es.md (100%) create mode 100644 2-Working-With-Data/README.md rename {data-science-lifecycle/16-processing => 2-Working-With-Data}/translations/README.es.md (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/README.md (100%) rename {data-science-lifecycle/15-capturing => 3-Data-Visualization/10-visualization-quantities}/assignment.md (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/category-counts.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/category-length.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/full-data-bar.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/labeled-wingspan.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/max-wingspan-labels.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/max-wingspan.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/scatterplot-wingspan.png (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/images/superimposed.png (100%) rename {data-science-lifecycle/15-capturing => 3-Data-Visualization/10-visualization-quantities}/notebook.ipynb (100%) rename {visualizations => 3-Data-Visualization}/10-visualization-quantities/solution/notebook.ipynb (100%) rename {data-science-lifecycle/17-analyzing => 3-Data-Visualization/10-visualization-quantities}/translations/README.es.md (100%) rename {visualizations => 3-Data-Visualization}/11-visualization-distributions/README.md (100%) rename {data-science-lifecycle/16-processing => 3-Data-Visualization/11-visualization-distributions}/assignment.md (100%) rename {data-science-lifecycle/15-capturing/solution => 3-Data-Visualization/11-visualization-distributions}/notebook.ipynb (100%) rename {data-science-lifecycle/16-processing => 3-Data-Visualization/11-visualization-distributions/solution}/notebook.ipynb (100%) rename {data-science-lifecycle/18-communication => 3-Data-Visualization/11-visualization-distributions}/translations/README.es.md (100%) rename {visualizations => 3-Data-Visualization}/12-visualization-proportions/README.md (100%) rename {data-science-lifecycle/17-analyzing => 3-Data-Visualization/12-visualization-proportions}/assignment.md (100%) rename {data-science-lifecycle/16-processing/solution => 3-Data-Visualization/12-visualization-proportions}/notebook.ipynb (100%) rename {data-science-lifecycle/17-analyzing => 3-Data-Visualization/12-visualization-proportions/solution}/notebook.ipynb (100%) rename {data-science-lifecycle/19-maintaining => 3-Data-Visualization/12-visualization-proportions}/translations/README.es.md (100%) rename {visualizations => 3-Data-Visualization}/13-visualization-relationships/README.md (100%) rename {data-science-lifecycle/18-communication => 3-Data-Visualization/13-visualization-relationships}/assignment.md (100%) rename {data-science-lifecycle/17-analyzing/solution => 3-Data-Visualization/13-visualization-relationships}/notebook.ipynb (100%) rename {data-science-lifecycle/18-communication => 3-Data-Visualization/13-visualization-relationships/solution}/notebook.ipynb (100%) rename {data-science-lifecycle => 3-Data-Visualization/13-visualization-relationships}/translations/README.es.md (100%) rename {visualizations => 3-Data-Visualization}/14-meaningful-visualizations/README.md (100%) rename {data-science-lifecycle/19-maintaining => 3-Data-Visualization/14-meaningful-visualizations}/assignment.md (100%) rename {data-science-lifecycle/18-communication/solution => 3-Data-Visualization/14-meaningful-visualizations}/notebook.ipynb (100%) rename {data-science-lifecycle/19-maintaining => 3-Data-Visualization/14-meaningful-visualizations/solution}/notebook.ipynb (100%) rename {visualizations/10-visualization-quantities => 3-Data-Visualization/14-meaningful-visualizations}/translations/README.es.md (100%) rename {visualizations => 3-Data-Visualization}/README.md (100%) rename {visualizations => 3-Data-Visualization}/data/birds.csv (100%) rename {visualizations => 3-Data-Visualization}/data/honey.csv (100%) rename {visualizations => 3-Data-Visualization}/data/mushrooms.csv (100%) rename {visualizations => 3-Data-Visualization}/images/bee.jpg (100%) rename {visualizations/11-visualization-distributions => 3-Data-Visualization}/translations/README.es.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle}/15-capturing/README.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle/15-capturing}/assignment.md (100%) rename {data-science-lifecycle/19-maintaining/solution => 4-Data-Science-Lifecycle/15-capturing}/notebook.ipynb (100%) rename {visualizations/10-visualization-quantities => 4-Data-Science-Lifecycle/15-capturing/solution}/notebook.ipynb (100%) rename {visualizations/12-visualization-proportions => 4-Data-Science-Lifecycle/15-capturing}/translations/README.es.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle}/16-processing/README.md (100%) rename {visualizations/10-visualization-quantities => 4-Data-Science-Lifecycle/16-processing}/assignment.md (100%) rename {visualizations/11-visualization-distributions => 4-Data-Science-Lifecycle/16-processing}/notebook.ipynb (100%) rename {visualizations/11-visualization-distributions => 4-Data-Science-Lifecycle/16-processing}/solution/notebook.ipynb (100%) rename {visualizations/13-visualization-relationships => 4-Data-Science-Lifecycle/16-processing}/translations/README.es.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle}/17-analyzing/README.md (100%) rename {visualizations/11-visualization-distributions => 4-Data-Science-Lifecycle/17-analyzing}/assignment.md (100%) rename {visualizations/12-visualization-proportions => 4-Data-Science-Lifecycle/17-analyzing}/notebook.ipynb (100%) rename {visualizations/12-visualization-proportions => 4-Data-Science-Lifecycle/17-analyzing}/solution/notebook.ipynb (100%) rename {visualizations/14-meaningful-visualizations => 4-Data-Science-Lifecycle/17-analyzing}/translations/README.es.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle}/18-communication/README.md (100%) rename {visualizations/12-visualization-proportions => 4-Data-Science-Lifecycle/18-communication}/assignment.md (100%) rename {visualizations/13-visualization-relationships => 4-Data-Science-Lifecycle/18-communication}/notebook.ipynb (100%) rename {visualizations/13-visualization-relationships => 4-Data-Science-Lifecycle/18-communication}/solution/notebook.ipynb (100%) rename {visualizations => 4-Data-Science-Lifecycle/18-communication}/translations/README.es.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle}/19-maintaining/README.md (100%) rename {visualizations/13-visualization-relationships => 4-Data-Science-Lifecycle/19-maintaining}/assignment.md (100%) rename {visualizations/14-meaningful-visualizations => 4-Data-Science-Lifecycle/19-maintaining}/notebook.ipynb (100%) rename {visualizations/14-meaningful-visualizations => 4-Data-Science-Lifecycle/19-maintaining}/solution/notebook.ipynb (100%) rename {working-with-data/05-spreadsheets => 4-Data-Science-Lifecycle/19-maintaining}/translations/README.es.md (100%) rename {data-science-lifecycle => 4-Data-Science-Lifecycle}/README.md (100%) rename {visualizations/14-meaningful-visualizations => 4-Data-Science-Lifecycle}/assignment.md (100%) rename {working-with-data/06-relational-databases => 4-Data-Science-Lifecycle}/translations/README.es.md (100%) rename {data-science-in-the-cloud => 5-Data-Science-In-Cloud}/20-tbd/README.md (100%) rename {working-with-data/05-spreadsheets => 5-Data-Science-In-Cloud/20-tbd}/assignment.md (100%) rename {working-with-data/05-spreadsheets => 5-Data-Science-In-Cloud/20-tbd}/notebook.ipynb (100%) rename {working-with-data/05-spreadsheets => 5-Data-Science-In-Cloud/20-tbd}/solution/notebook.ipynb (100%) rename {working-with-data/07-nosql => 5-Data-Science-In-Cloud/20-tbd}/translations/README.es.md (100%) rename {data-science-in-the-cloud => 5-Data-Science-In-Cloud}/21-tbd/README.md (100%) rename {working-with-data/06-relational-databases => 5-Data-Science-In-Cloud/21-tbd}/assignment.md (100%) rename {working-with-data/06-relational-databases => 5-Data-Science-In-Cloud/21-tbd}/notebook.ipynb (100%) rename {working-with-data/06-relational-databases => 5-Data-Science-In-Cloud/21-tbd}/solution/notebook.ipynb (100%) rename {working-with-data/08-python => 5-Data-Science-In-Cloud/21-tbd}/translations/README.es.md (100%) rename {data-science-in-the-cloud => 5-Data-Science-In-Cloud}/22-tbd/README.md (100%) rename {working-with-data/07-nosql => 5-Data-Science-In-Cloud/22-tbd}/assignment.md (100%) rename {working-with-data/07-nosql => 5-Data-Science-In-Cloud/22-tbd}/notebook.ipynb (100%) rename {working-with-data/07-nosql => 5-Data-Science-In-Cloud/22-tbd}/solution/notebook.ipynb (100%) rename {working-with-data/09-cleaning-transformations => 5-Data-Science-In-Cloud/22-tbd}/translations/README.es.md (100%) rename {data-science-in-the-cloud => 5-Data-Science-In-Cloud}/README.md (100%) rename {data-science-in-the-wild => 6-Data-Science-In-Wild}/23-tbd/README.md (100%) rename {working-with-data/08-python => 6-Data-Science-In-Wild/23-tbd}/assignment.md (100%) rename {working-with-data/08-python => 6-Data-Science-In-Wild/23-tbd}/notebook.ipynb (100%) rename {working-with-data/08-python => 6-Data-Science-In-Wild/23-tbd}/solution/notebook.ipynb (100%) rename {working-with-data => 6-Data-Science-In-Wild/23-tbd}/translations/README.es.md (100%) rename {data-science-in-the-wild => 6-Data-Science-In-Wild}/24-tbd/README.md (100%) rename {working-with-data/09-cleaning-transformations => 6-Data-Science-In-Wild/24-tbd}/assignment.md (100%) rename {working-with-data/09-cleaning-transformations => 6-Data-Science-In-Wild/24-tbd}/notebook.ipynb (100%) rename {working-with-data/09-cleaning-transformations => 6-Data-Science-In-Wild/24-tbd}/solution/notebook.ipynb (100%) create mode 100644 6-Data-Science-In-Wild/24-tbd/translations/README.es.md rename {data-science-in-the-wild => 6-Data-Science-In-Wild}/README.md (100%) create mode 100644 sketchnotes/README.md delete mode 100644 working-with-data/README.md diff --git a/01-defining-data-science/README.md b/1-Introduction/01-defining-data-science/README.md similarity index 100% rename from 01-defining-data-science/README.md rename to 1-Introduction/01-defining-data-science/README.md diff --git a/01-defining-data-science/assignment.md b/1-Introduction/01-defining-data-science/assignment.md similarity index 100% rename from 01-defining-data-science/assignment.md rename to 1-Introduction/01-defining-data-science/assignment.md diff --git a/01-defining-data-science/notebook.ipynb b/1-Introduction/01-defining-data-science/notebook.ipynb similarity index 100% rename from 01-defining-data-science/notebook.ipynb rename to 1-Introduction/01-defining-data-science/notebook.ipynb diff --git a/01-defining-data-science/solution/notebook.ipynb b/1-Introduction/01-defining-data-science/solution/notebook.ipynb similarity index 100% rename from 01-defining-data-science/solution/notebook.ipynb rename to 1-Introduction/01-defining-data-science/solution/notebook.ipynb diff --git a/01-defining-data-science/translations/README.es.md b/1-Introduction/01-defining-data-science/translations/README.es.md similarity index 100% rename from 01-defining-data-science/translations/README.es.md rename to 1-Introduction/01-defining-data-science/translations/README.es.md diff --git a/02-ethics/README.md b/1-Introduction/02-ethics/README.md similarity index 100% rename from 02-ethics/README.md rename to 1-Introduction/02-ethics/README.md diff --git a/02-ethics/assignment.md b/1-Introduction/02-ethics/assignment.md similarity index 100% rename from 02-ethics/assignment.md rename to 1-Introduction/02-ethics/assignment.md diff --git a/02-ethics/notebook.ipynb b/1-Introduction/02-ethics/notebook.ipynb similarity index 100% rename from 02-ethics/notebook.ipynb rename to 1-Introduction/02-ethics/notebook.ipynb diff --git a/02-ethics/solution/notebook.ipynb b/1-Introduction/02-ethics/solution/notebook.ipynb similarity index 100% rename from 02-ethics/solution/notebook.ipynb rename to 1-Introduction/02-ethics/solution/notebook.ipynb diff --git a/02-ethics/translations/README.es.md b/1-Introduction/02-ethics/translations/README.es.md similarity index 100% rename from 02-ethics/translations/README.es.md rename to 1-Introduction/02-ethics/translations/README.es.md diff --git a/03-defining-data/README.md b/1-Introduction/03-defining-data/README.md similarity index 100% rename from 03-defining-data/README.md rename to 1-Introduction/03-defining-data/README.md diff --git a/03-defining-data/assignment.md b/1-Introduction/03-defining-data/assignment.md similarity index 100% rename from 03-defining-data/assignment.md rename to 1-Introduction/03-defining-data/assignment.md diff --git a/03-defining-data/notebook.ipynb b/1-Introduction/03-defining-data/notebook.ipynb similarity index 100% rename from 03-defining-data/notebook.ipynb rename to 1-Introduction/03-defining-data/notebook.ipynb diff --git a/03-defining-data/solution/notebook.ipynb b/1-Introduction/03-defining-data/solution/notebook.ipynb similarity index 100% rename from 03-defining-data/solution/notebook.ipynb rename to 1-Introduction/03-defining-data/solution/notebook.ipynb diff --git a/03-defining-data/translations/README.es.md b/1-Introduction/03-defining-data/translations/README.es.md similarity index 100% rename from 03-defining-data/translations/README.es.md rename to 1-Introduction/03-defining-data/translations/README.es.md diff --git a/04-stats-and-probability/README.md b/1-Introduction/04-stats-and-probability/README.md similarity index 100% rename from 04-stats-and-probability/README.md rename to 1-Introduction/04-stats-and-probability/README.md diff --git a/04-stats-and-probability/assignment.md b/1-Introduction/04-stats-and-probability/assignment.md similarity index 100% rename from 04-stats-and-probability/assignment.md rename to 1-Introduction/04-stats-and-probability/assignment.md diff --git a/04-stats-and-probability/notebook.ipynb b/1-Introduction/04-stats-and-probability/notebook.ipynb similarity index 100% rename from 04-stats-and-probability/notebook.ipynb rename to 1-Introduction/04-stats-and-probability/notebook.ipynb diff --git a/04-stats-and-probability/solution/notebook.ipynb b/1-Introduction/04-stats-and-probability/solution/notebook.ipynb similarity index 100% rename from 04-stats-and-probability/solution/notebook.ipynb rename to 1-Introduction/04-stats-and-probability/solution/notebook.ipynb diff --git a/04-stats-and-probability/translations/README.es.md b/1-Introduction/04-stats-and-probability/translations/README.es.md similarity index 100% rename from 04-stats-and-probability/translations/README.es.md rename to 1-Introduction/04-stats-and-probability/translations/README.es.md diff --git a/00-sketchnotes/01.md b/1-Introduction/README.md similarity index 100% rename from 00-sketchnotes/01.md rename to 1-Introduction/README.md diff --git a/data-science-in-the-cloud/20-tbd/translations/README.es.md b/1-Introduction/translations/README.es.md similarity index 100% rename from data-science-in-the-cloud/20-tbd/translations/README.es.md rename to 1-Introduction/translations/README.es.md diff --git a/working-with-data/05-spreadsheets/README.md b/2-Working-With-Data/05-spreadsheets/README.md similarity index 100% rename from working-with-data/05-spreadsheets/README.md rename to 2-Working-With-Data/05-spreadsheets/README.md diff --git a/data-science-in-the-cloud/20-tbd/assignment.md b/2-Working-With-Data/05-spreadsheets/assignment.md similarity index 100% rename from data-science-in-the-cloud/20-tbd/assignment.md rename to 2-Working-With-Data/05-spreadsheets/assignment.md diff --git a/data-science-in-the-cloud/20-tbd/notebook.ipynb b/2-Working-With-Data/05-spreadsheets/notebook.ipynb similarity index 100% rename from data-science-in-the-cloud/20-tbd/notebook.ipynb rename to 2-Working-With-Data/05-spreadsheets/notebook.ipynb diff --git a/data-science-in-the-cloud/20-tbd/solution/notebook.ipynb b/2-Working-With-Data/05-spreadsheets/solution/notebook.ipynb similarity index 100% rename from data-science-in-the-cloud/20-tbd/solution/notebook.ipynb rename to 2-Working-With-Data/05-spreadsheets/solution/notebook.ipynb diff --git a/data-science-in-the-cloud/21-tbd/translations/README.es.md b/2-Working-With-Data/05-spreadsheets/translations/README.es.md similarity index 100% rename from data-science-in-the-cloud/21-tbd/translations/README.es.md rename to 2-Working-With-Data/05-spreadsheets/translations/README.es.md diff --git a/working-with-data/06-relational-databases/README.md b/2-Working-With-Data/06-relational-databases/README.md similarity index 100% rename from working-with-data/06-relational-databases/README.md rename to 2-Working-With-Data/06-relational-databases/README.md diff --git a/data-science-in-the-cloud/21-tbd/assignment.md b/2-Working-With-Data/06-relational-databases/assignment.md similarity index 100% rename from data-science-in-the-cloud/21-tbd/assignment.md rename to 2-Working-With-Data/06-relational-databases/assignment.md diff --git a/data-science-in-the-cloud/21-tbd/notebook.ipynb b/2-Working-With-Data/06-relational-databases/notebook.ipynb similarity index 100% rename from data-science-in-the-cloud/21-tbd/notebook.ipynb rename to 2-Working-With-Data/06-relational-databases/notebook.ipynb diff --git a/data-science-in-the-cloud/21-tbd/solution/notebook.ipynb b/2-Working-With-Data/06-relational-databases/solution/notebook.ipynb similarity index 100% rename from data-science-in-the-cloud/21-tbd/solution/notebook.ipynb rename to 2-Working-With-Data/06-relational-databases/solution/notebook.ipynb diff --git a/data-science-in-the-cloud/22-tbd/translations/README.es.md b/2-Working-With-Data/06-relational-databases/translations/README.es.md similarity index 100% rename from data-science-in-the-cloud/22-tbd/translations/README.es.md rename to 2-Working-With-Data/06-relational-databases/translations/README.es.md diff --git a/working-with-data/07-nosql/README.md b/2-Working-With-Data/07-nosql/README.md similarity index 100% rename from working-with-data/07-nosql/README.md rename to 2-Working-With-Data/07-nosql/README.md diff --git a/data-science-in-the-cloud/22-tbd/assignment.md b/2-Working-With-Data/07-nosql/assignment.md similarity index 100% rename from data-science-in-the-cloud/22-tbd/assignment.md rename to 2-Working-With-Data/07-nosql/assignment.md diff --git a/data-science-in-the-cloud/22-tbd/notebook.ipynb b/2-Working-With-Data/07-nosql/notebook.ipynb similarity index 100% rename from data-science-in-the-cloud/22-tbd/notebook.ipynb rename to 2-Working-With-Data/07-nosql/notebook.ipynb diff --git a/data-science-in-the-cloud/22-tbd/solution/notebook.ipynb b/2-Working-With-Data/07-nosql/solution/notebook.ipynb similarity index 100% rename from data-science-in-the-cloud/22-tbd/solution/notebook.ipynb rename to 2-Working-With-Data/07-nosql/solution/notebook.ipynb diff --git a/data-science-in-the-wild/23-tbd/translations/README.es.md b/2-Working-With-Data/07-nosql/translations/README.es.md similarity index 100% rename from data-science-in-the-wild/23-tbd/translations/README.es.md rename to 2-Working-With-Data/07-nosql/translations/README.es.md diff --git a/working-with-data/08-python/README.md b/2-Working-With-Data/08-python/README.md similarity index 100% rename from working-with-data/08-python/README.md rename to 2-Working-With-Data/08-python/README.md diff --git a/data-science-in-the-wild/23-tbd/assignment.md b/2-Working-With-Data/08-python/assignment.md similarity index 100% rename from data-science-in-the-wild/23-tbd/assignment.md rename to 2-Working-With-Data/08-python/assignment.md diff --git a/data-science-in-the-wild/23-tbd/notebook.ipynb b/2-Working-With-Data/08-python/notebook.ipynb similarity index 100% rename from data-science-in-the-wild/23-tbd/notebook.ipynb rename to 2-Working-With-Data/08-python/notebook.ipynb diff --git a/data-science-in-the-wild/23-tbd/solution/notebook.ipynb b/2-Working-With-Data/08-python/solution/notebook.ipynb similarity index 100% rename from data-science-in-the-wild/23-tbd/solution/notebook.ipynb rename to 2-Working-With-Data/08-python/solution/notebook.ipynb diff --git a/data-science-in-the-wild/24-tbd/translations/README.es.md b/2-Working-With-Data/08-python/translations/README.es.md similarity index 100% rename from data-science-in-the-wild/24-tbd/translations/README.es.md rename to 2-Working-With-Data/08-python/translations/README.es.md diff --git a/working-with-data/09-cleaning-transformations/README.md b/2-Working-With-Data/09-cleaning-transformations/README.md similarity index 100% rename from working-with-data/09-cleaning-transformations/README.md rename to 2-Working-With-Data/09-cleaning-transformations/README.md diff --git a/data-science-in-the-wild/24-tbd/assignment.md b/2-Working-With-Data/09-cleaning-transformations/assignment.md similarity index 100% rename from data-science-in-the-wild/24-tbd/assignment.md rename to 2-Working-With-Data/09-cleaning-transformations/assignment.md diff --git a/data-science-in-the-wild/24-tbd/notebook.ipynb b/2-Working-With-Data/09-cleaning-transformations/notebook.ipynb similarity index 100% rename from data-science-in-the-wild/24-tbd/notebook.ipynb rename to 2-Working-With-Data/09-cleaning-transformations/notebook.ipynb diff --git a/data-science-in-the-wild/24-tbd/solution/notebook.ipynb b/2-Working-With-Data/09-cleaning-transformations/solution/notebook.ipynb similarity index 100% rename from data-science-in-the-wild/24-tbd/solution/notebook.ipynb rename to 2-Working-With-Data/09-cleaning-transformations/solution/notebook.ipynb diff --git a/data-science-lifecycle/15-capturing/translations/README.es.md b/2-Working-With-Data/09-cleaning-transformations/translations/README.es.md similarity index 100% rename from data-science-lifecycle/15-capturing/translations/README.es.md rename to 2-Working-With-Data/09-cleaning-transformations/translations/README.es.md diff --git a/2-Working-With-Data/README.md b/2-Working-With-Data/README.md new file mode 100644 index 0000000..42cda6e --- /dev/null +++ b/2-Working-With-Data/README.md @@ -0,0 +1,13 @@ +# Working with Data + +[Brief description about the lessons in this section] + +### Topics + +1. [Spreadsheets](05-spreadsheets/README.md) +2. [Relational Databases](06-relational-databases/README.md) +3. [NoSQL](07-nosql/README.md) +4. [Python](08-python/README.md) +5. [Cleaning and Transformations](09-cleaning-transformations/README.md) + +### Credits diff --git a/data-science-lifecycle/16-processing/translations/README.es.md b/2-Working-With-Data/translations/README.es.md similarity index 100% rename from data-science-lifecycle/16-processing/translations/README.es.md rename to 2-Working-With-Data/translations/README.es.md diff --git a/visualizations/10-visualization-quantities/README.md b/3-Data-Visualization/10-visualization-quantities/README.md similarity index 100% rename from visualizations/10-visualization-quantities/README.md rename to 3-Data-Visualization/10-visualization-quantities/README.md diff --git a/data-science-lifecycle/15-capturing/assignment.md b/3-Data-Visualization/10-visualization-quantities/assignment.md similarity index 100% rename from data-science-lifecycle/15-capturing/assignment.md rename to 3-Data-Visualization/10-visualization-quantities/assignment.md diff --git a/visualizations/10-visualization-quantities/images/category-counts.png b/3-Data-Visualization/10-visualization-quantities/images/category-counts.png similarity index 100% rename from visualizations/10-visualization-quantities/images/category-counts.png rename to 3-Data-Visualization/10-visualization-quantities/images/category-counts.png diff --git a/visualizations/10-visualization-quantities/images/category-length.png b/3-Data-Visualization/10-visualization-quantities/images/category-length.png similarity index 100% rename from visualizations/10-visualization-quantities/images/category-length.png rename to 3-Data-Visualization/10-visualization-quantities/images/category-length.png diff --git a/visualizations/10-visualization-quantities/images/full-data-bar.png b/3-Data-Visualization/10-visualization-quantities/images/full-data-bar.png similarity index 100% rename from visualizations/10-visualization-quantities/images/full-data-bar.png rename to 3-Data-Visualization/10-visualization-quantities/images/full-data-bar.png diff --git a/visualizations/10-visualization-quantities/images/labeled-wingspan.png b/3-Data-Visualization/10-visualization-quantities/images/labeled-wingspan.png similarity index 100% rename from visualizations/10-visualization-quantities/images/labeled-wingspan.png rename to 3-Data-Visualization/10-visualization-quantities/images/labeled-wingspan.png diff --git a/visualizations/10-visualization-quantities/images/max-wingspan-labels.png b/3-Data-Visualization/10-visualization-quantities/images/max-wingspan-labels.png similarity index 100% rename from visualizations/10-visualization-quantities/images/max-wingspan-labels.png rename to 3-Data-Visualization/10-visualization-quantities/images/max-wingspan-labels.png diff --git a/visualizations/10-visualization-quantities/images/max-wingspan.png b/3-Data-Visualization/10-visualization-quantities/images/max-wingspan.png similarity index 100% rename from visualizations/10-visualization-quantities/images/max-wingspan.png rename to 3-Data-Visualization/10-visualization-quantities/images/max-wingspan.png diff --git a/visualizations/10-visualization-quantities/images/scatterplot-wingspan.png b/3-Data-Visualization/10-visualization-quantities/images/scatterplot-wingspan.png similarity index 100% rename from visualizations/10-visualization-quantities/images/scatterplot-wingspan.png rename to 3-Data-Visualization/10-visualization-quantities/images/scatterplot-wingspan.png diff --git a/visualizations/10-visualization-quantities/images/superimposed.png b/3-Data-Visualization/10-visualization-quantities/images/superimposed.png similarity index 100% rename from visualizations/10-visualization-quantities/images/superimposed.png rename to 3-Data-Visualization/10-visualization-quantities/images/superimposed.png diff --git a/data-science-lifecycle/15-capturing/notebook.ipynb b/3-Data-Visualization/10-visualization-quantities/notebook.ipynb similarity index 100% rename from data-science-lifecycle/15-capturing/notebook.ipynb rename to 3-Data-Visualization/10-visualization-quantities/notebook.ipynb diff --git a/visualizations/10-visualization-quantities/solution/notebook.ipynb b/3-Data-Visualization/10-visualization-quantities/solution/notebook.ipynb similarity index 100% rename from visualizations/10-visualization-quantities/solution/notebook.ipynb rename to 3-Data-Visualization/10-visualization-quantities/solution/notebook.ipynb diff --git a/data-science-lifecycle/17-analyzing/translations/README.es.md b/3-Data-Visualization/10-visualization-quantities/translations/README.es.md similarity index 100% rename from data-science-lifecycle/17-analyzing/translations/README.es.md rename to 3-Data-Visualization/10-visualization-quantities/translations/README.es.md diff --git a/visualizations/11-visualization-distributions/README.md b/3-Data-Visualization/11-visualization-distributions/README.md similarity index 100% rename from visualizations/11-visualization-distributions/README.md rename to 3-Data-Visualization/11-visualization-distributions/README.md diff --git a/data-science-lifecycle/16-processing/assignment.md b/3-Data-Visualization/11-visualization-distributions/assignment.md similarity index 100% rename from data-science-lifecycle/16-processing/assignment.md rename to 3-Data-Visualization/11-visualization-distributions/assignment.md diff --git a/data-science-lifecycle/15-capturing/solution/notebook.ipynb b/3-Data-Visualization/11-visualization-distributions/notebook.ipynb similarity index 100% rename from data-science-lifecycle/15-capturing/solution/notebook.ipynb rename to 3-Data-Visualization/11-visualization-distributions/notebook.ipynb diff --git a/data-science-lifecycle/16-processing/notebook.ipynb b/3-Data-Visualization/11-visualization-distributions/solution/notebook.ipynb similarity index 100% rename from data-science-lifecycle/16-processing/notebook.ipynb rename to 3-Data-Visualization/11-visualization-distributions/solution/notebook.ipynb diff --git a/data-science-lifecycle/18-communication/translations/README.es.md b/3-Data-Visualization/11-visualization-distributions/translations/README.es.md similarity index 100% rename from data-science-lifecycle/18-communication/translations/README.es.md rename to 3-Data-Visualization/11-visualization-distributions/translations/README.es.md diff --git a/visualizations/12-visualization-proportions/README.md b/3-Data-Visualization/12-visualization-proportions/README.md similarity index 100% rename from visualizations/12-visualization-proportions/README.md rename to 3-Data-Visualization/12-visualization-proportions/README.md diff --git a/data-science-lifecycle/17-analyzing/assignment.md b/3-Data-Visualization/12-visualization-proportions/assignment.md similarity index 100% rename from data-science-lifecycle/17-analyzing/assignment.md rename to 3-Data-Visualization/12-visualization-proportions/assignment.md diff --git a/data-science-lifecycle/16-processing/solution/notebook.ipynb b/3-Data-Visualization/12-visualization-proportions/notebook.ipynb similarity index 100% rename from data-science-lifecycle/16-processing/solution/notebook.ipynb rename to 3-Data-Visualization/12-visualization-proportions/notebook.ipynb diff --git a/data-science-lifecycle/17-analyzing/notebook.ipynb b/3-Data-Visualization/12-visualization-proportions/solution/notebook.ipynb similarity index 100% rename from data-science-lifecycle/17-analyzing/notebook.ipynb rename to 3-Data-Visualization/12-visualization-proportions/solution/notebook.ipynb diff --git a/data-science-lifecycle/19-maintaining/translations/README.es.md b/3-Data-Visualization/12-visualization-proportions/translations/README.es.md similarity index 100% rename from data-science-lifecycle/19-maintaining/translations/README.es.md rename to 3-Data-Visualization/12-visualization-proportions/translations/README.es.md diff --git a/visualizations/13-visualization-relationships/README.md b/3-Data-Visualization/13-visualization-relationships/README.md similarity index 100% rename from visualizations/13-visualization-relationships/README.md rename to 3-Data-Visualization/13-visualization-relationships/README.md diff --git a/data-science-lifecycle/18-communication/assignment.md b/3-Data-Visualization/13-visualization-relationships/assignment.md similarity index 100% rename from data-science-lifecycle/18-communication/assignment.md rename to 3-Data-Visualization/13-visualization-relationships/assignment.md diff --git a/data-science-lifecycle/17-analyzing/solution/notebook.ipynb b/3-Data-Visualization/13-visualization-relationships/notebook.ipynb similarity index 100% rename from data-science-lifecycle/17-analyzing/solution/notebook.ipynb rename to 3-Data-Visualization/13-visualization-relationships/notebook.ipynb diff --git a/data-science-lifecycle/18-communication/notebook.ipynb b/3-Data-Visualization/13-visualization-relationships/solution/notebook.ipynb similarity index 100% rename from data-science-lifecycle/18-communication/notebook.ipynb rename to 3-Data-Visualization/13-visualization-relationships/solution/notebook.ipynb diff --git a/data-science-lifecycle/translations/README.es.md b/3-Data-Visualization/13-visualization-relationships/translations/README.es.md similarity index 100% rename from data-science-lifecycle/translations/README.es.md rename to 3-Data-Visualization/13-visualization-relationships/translations/README.es.md diff --git a/visualizations/14-meaningful-visualizations/README.md b/3-Data-Visualization/14-meaningful-visualizations/README.md similarity index 100% rename from visualizations/14-meaningful-visualizations/README.md rename to 3-Data-Visualization/14-meaningful-visualizations/README.md diff --git a/data-science-lifecycle/19-maintaining/assignment.md b/3-Data-Visualization/14-meaningful-visualizations/assignment.md similarity index 100% rename from data-science-lifecycle/19-maintaining/assignment.md rename to 3-Data-Visualization/14-meaningful-visualizations/assignment.md diff --git a/data-science-lifecycle/18-communication/solution/notebook.ipynb b/3-Data-Visualization/14-meaningful-visualizations/notebook.ipynb similarity index 100% rename from data-science-lifecycle/18-communication/solution/notebook.ipynb rename to 3-Data-Visualization/14-meaningful-visualizations/notebook.ipynb diff --git a/data-science-lifecycle/19-maintaining/notebook.ipynb b/3-Data-Visualization/14-meaningful-visualizations/solution/notebook.ipynb similarity index 100% rename from data-science-lifecycle/19-maintaining/notebook.ipynb rename to 3-Data-Visualization/14-meaningful-visualizations/solution/notebook.ipynb diff --git a/visualizations/10-visualization-quantities/translations/README.es.md b/3-Data-Visualization/14-meaningful-visualizations/translations/README.es.md similarity index 100% rename from visualizations/10-visualization-quantities/translations/README.es.md rename to 3-Data-Visualization/14-meaningful-visualizations/translations/README.es.md diff --git a/visualizations/README.md b/3-Data-Visualization/README.md similarity index 100% rename from visualizations/README.md rename to 3-Data-Visualization/README.md diff --git a/visualizations/data/birds.csv b/3-Data-Visualization/data/birds.csv similarity index 100% rename from visualizations/data/birds.csv rename to 3-Data-Visualization/data/birds.csv diff --git a/visualizations/data/honey.csv b/3-Data-Visualization/data/honey.csv similarity index 100% rename from visualizations/data/honey.csv rename to 3-Data-Visualization/data/honey.csv diff --git a/visualizations/data/mushrooms.csv b/3-Data-Visualization/data/mushrooms.csv similarity index 100% rename from visualizations/data/mushrooms.csv rename to 3-Data-Visualization/data/mushrooms.csv diff --git a/visualizations/images/bee.jpg b/3-Data-Visualization/images/bee.jpg similarity index 100% rename from visualizations/images/bee.jpg rename to 3-Data-Visualization/images/bee.jpg diff --git a/visualizations/11-visualization-distributions/translations/README.es.md b/3-Data-Visualization/translations/README.es.md similarity index 100% rename from visualizations/11-visualization-distributions/translations/README.es.md rename to 3-Data-Visualization/translations/README.es.md diff --git a/data-science-lifecycle/15-capturing/README.md b/4-Data-Science-Lifecycle/15-capturing/README.md similarity index 100% rename from data-science-lifecycle/15-capturing/README.md rename to 4-Data-Science-Lifecycle/15-capturing/README.md diff --git a/data-science-lifecycle/assignment.md b/4-Data-Science-Lifecycle/15-capturing/assignment.md similarity index 100% rename from data-science-lifecycle/assignment.md rename to 4-Data-Science-Lifecycle/15-capturing/assignment.md diff --git a/data-science-lifecycle/19-maintaining/solution/notebook.ipynb b/4-Data-Science-Lifecycle/15-capturing/notebook.ipynb similarity index 100% rename from data-science-lifecycle/19-maintaining/solution/notebook.ipynb rename to 4-Data-Science-Lifecycle/15-capturing/notebook.ipynb diff --git a/visualizations/10-visualization-quantities/notebook.ipynb b/4-Data-Science-Lifecycle/15-capturing/solution/notebook.ipynb similarity index 100% rename from visualizations/10-visualization-quantities/notebook.ipynb rename to 4-Data-Science-Lifecycle/15-capturing/solution/notebook.ipynb diff --git a/visualizations/12-visualization-proportions/translations/README.es.md b/4-Data-Science-Lifecycle/15-capturing/translations/README.es.md similarity index 100% rename from visualizations/12-visualization-proportions/translations/README.es.md rename to 4-Data-Science-Lifecycle/15-capturing/translations/README.es.md diff --git a/data-science-lifecycle/16-processing/README.md b/4-Data-Science-Lifecycle/16-processing/README.md similarity index 100% rename from data-science-lifecycle/16-processing/README.md rename to 4-Data-Science-Lifecycle/16-processing/README.md diff --git a/visualizations/10-visualization-quantities/assignment.md b/4-Data-Science-Lifecycle/16-processing/assignment.md similarity index 100% rename from visualizations/10-visualization-quantities/assignment.md rename to 4-Data-Science-Lifecycle/16-processing/assignment.md diff --git a/visualizations/11-visualization-distributions/notebook.ipynb b/4-Data-Science-Lifecycle/16-processing/notebook.ipynb similarity index 100% rename from visualizations/11-visualization-distributions/notebook.ipynb rename to 4-Data-Science-Lifecycle/16-processing/notebook.ipynb diff --git a/visualizations/11-visualization-distributions/solution/notebook.ipynb b/4-Data-Science-Lifecycle/16-processing/solution/notebook.ipynb similarity index 100% rename from visualizations/11-visualization-distributions/solution/notebook.ipynb rename to 4-Data-Science-Lifecycle/16-processing/solution/notebook.ipynb diff --git a/visualizations/13-visualization-relationships/translations/README.es.md b/4-Data-Science-Lifecycle/16-processing/translations/README.es.md similarity index 100% rename from visualizations/13-visualization-relationships/translations/README.es.md rename to 4-Data-Science-Lifecycle/16-processing/translations/README.es.md diff --git a/data-science-lifecycle/17-analyzing/README.md b/4-Data-Science-Lifecycle/17-analyzing/README.md similarity index 100% rename from data-science-lifecycle/17-analyzing/README.md rename to 4-Data-Science-Lifecycle/17-analyzing/README.md diff --git a/visualizations/11-visualization-distributions/assignment.md b/4-Data-Science-Lifecycle/17-analyzing/assignment.md similarity index 100% rename from visualizations/11-visualization-distributions/assignment.md rename to 4-Data-Science-Lifecycle/17-analyzing/assignment.md diff --git a/visualizations/12-visualization-proportions/notebook.ipynb b/4-Data-Science-Lifecycle/17-analyzing/notebook.ipynb similarity index 100% rename from visualizations/12-visualization-proportions/notebook.ipynb rename to 4-Data-Science-Lifecycle/17-analyzing/notebook.ipynb diff --git a/visualizations/12-visualization-proportions/solution/notebook.ipynb b/4-Data-Science-Lifecycle/17-analyzing/solution/notebook.ipynb similarity index 100% rename from visualizations/12-visualization-proportions/solution/notebook.ipynb rename to 4-Data-Science-Lifecycle/17-analyzing/solution/notebook.ipynb diff --git a/visualizations/14-meaningful-visualizations/translations/README.es.md b/4-Data-Science-Lifecycle/17-analyzing/translations/README.es.md similarity index 100% rename from visualizations/14-meaningful-visualizations/translations/README.es.md rename to 4-Data-Science-Lifecycle/17-analyzing/translations/README.es.md diff --git a/data-science-lifecycle/18-communication/README.md b/4-Data-Science-Lifecycle/18-communication/README.md similarity index 100% rename from data-science-lifecycle/18-communication/README.md rename to 4-Data-Science-Lifecycle/18-communication/README.md diff --git a/visualizations/12-visualization-proportions/assignment.md b/4-Data-Science-Lifecycle/18-communication/assignment.md similarity index 100% rename from visualizations/12-visualization-proportions/assignment.md rename to 4-Data-Science-Lifecycle/18-communication/assignment.md diff --git a/visualizations/13-visualization-relationships/notebook.ipynb b/4-Data-Science-Lifecycle/18-communication/notebook.ipynb similarity index 100% rename from visualizations/13-visualization-relationships/notebook.ipynb rename to 4-Data-Science-Lifecycle/18-communication/notebook.ipynb diff --git a/visualizations/13-visualization-relationships/solution/notebook.ipynb b/4-Data-Science-Lifecycle/18-communication/solution/notebook.ipynb similarity index 100% rename from visualizations/13-visualization-relationships/solution/notebook.ipynb rename to 4-Data-Science-Lifecycle/18-communication/solution/notebook.ipynb diff --git a/visualizations/translations/README.es.md b/4-Data-Science-Lifecycle/18-communication/translations/README.es.md similarity index 100% rename from visualizations/translations/README.es.md rename to 4-Data-Science-Lifecycle/18-communication/translations/README.es.md diff --git a/data-science-lifecycle/19-maintaining/README.md b/4-Data-Science-Lifecycle/19-maintaining/README.md similarity index 100% rename from data-science-lifecycle/19-maintaining/README.md rename to 4-Data-Science-Lifecycle/19-maintaining/README.md diff --git a/visualizations/13-visualization-relationships/assignment.md b/4-Data-Science-Lifecycle/19-maintaining/assignment.md similarity index 100% rename from visualizations/13-visualization-relationships/assignment.md rename to 4-Data-Science-Lifecycle/19-maintaining/assignment.md diff --git a/visualizations/14-meaningful-visualizations/notebook.ipynb b/4-Data-Science-Lifecycle/19-maintaining/notebook.ipynb similarity index 100% rename from visualizations/14-meaningful-visualizations/notebook.ipynb rename to 4-Data-Science-Lifecycle/19-maintaining/notebook.ipynb diff --git a/visualizations/14-meaningful-visualizations/solution/notebook.ipynb b/4-Data-Science-Lifecycle/19-maintaining/solution/notebook.ipynb similarity index 100% rename from visualizations/14-meaningful-visualizations/solution/notebook.ipynb rename to 4-Data-Science-Lifecycle/19-maintaining/solution/notebook.ipynb diff --git a/working-with-data/05-spreadsheets/translations/README.es.md b/4-Data-Science-Lifecycle/19-maintaining/translations/README.es.md similarity index 100% rename from working-with-data/05-spreadsheets/translations/README.es.md rename to 4-Data-Science-Lifecycle/19-maintaining/translations/README.es.md diff --git a/data-science-lifecycle/README.md b/4-Data-Science-Lifecycle/README.md similarity index 100% rename from data-science-lifecycle/README.md rename to 4-Data-Science-Lifecycle/README.md diff --git a/visualizations/14-meaningful-visualizations/assignment.md b/4-Data-Science-Lifecycle/assignment.md similarity index 100% rename from visualizations/14-meaningful-visualizations/assignment.md rename to 4-Data-Science-Lifecycle/assignment.md diff --git a/working-with-data/06-relational-databases/translations/README.es.md b/4-Data-Science-Lifecycle/translations/README.es.md similarity index 100% rename from working-with-data/06-relational-databases/translations/README.es.md rename to 4-Data-Science-Lifecycle/translations/README.es.md diff --git a/data-science-in-the-cloud/20-tbd/README.md b/5-Data-Science-In-Cloud/20-tbd/README.md similarity index 100% rename from data-science-in-the-cloud/20-tbd/README.md rename to 5-Data-Science-In-Cloud/20-tbd/README.md diff --git a/working-with-data/05-spreadsheets/assignment.md b/5-Data-Science-In-Cloud/20-tbd/assignment.md similarity index 100% rename from working-with-data/05-spreadsheets/assignment.md rename to 5-Data-Science-In-Cloud/20-tbd/assignment.md diff --git a/working-with-data/05-spreadsheets/notebook.ipynb b/5-Data-Science-In-Cloud/20-tbd/notebook.ipynb similarity index 100% rename from working-with-data/05-spreadsheets/notebook.ipynb rename to 5-Data-Science-In-Cloud/20-tbd/notebook.ipynb diff --git a/working-with-data/05-spreadsheets/solution/notebook.ipynb b/5-Data-Science-In-Cloud/20-tbd/solution/notebook.ipynb similarity index 100% rename from working-with-data/05-spreadsheets/solution/notebook.ipynb rename to 5-Data-Science-In-Cloud/20-tbd/solution/notebook.ipynb diff --git a/working-with-data/07-nosql/translations/README.es.md b/5-Data-Science-In-Cloud/20-tbd/translations/README.es.md similarity index 100% rename from working-with-data/07-nosql/translations/README.es.md rename to 5-Data-Science-In-Cloud/20-tbd/translations/README.es.md diff --git a/data-science-in-the-cloud/21-tbd/README.md b/5-Data-Science-In-Cloud/21-tbd/README.md similarity index 100% rename from data-science-in-the-cloud/21-tbd/README.md rename to 5-Data-Science-In-Cloud/21-tbd/README.md diff --git a/working-with-data/06-relational-databases/assignment.md b/5-Data-Science-In-Cloud/21-tbd/assignment.md similarity index 100% rename from working-with-data/06-relational-databases/assignment.md rename to 5-Data-Science-In-Cloud/21-tbd/assignment.md diff --git a/working-with-data/06-relational-databases/notebook.ipynb b/5-Data-Science-In-Cloud/21-tbd/notebook.ipynb similarity index 100% rename from working-with-data/06-relational-databases/notebook.ipynb rename to 5-Data-Science-In-Cloud/21-tbd/notebook.ipynb diff --git a/working-with-data/06-relational-databases/solution/notebook.ipynb b/5-Data-Science-In-Cloud/21-tbd/solution/notebook.ipynb similarity index 100% rename from working-with-data/06-relational-databases/solution/notebook.ipynb rename to 5-Data-Science-In-Cloud/21-tbd/solution/notebook.ipynb diff --git a/working-with-data/08-python/translations/README.es.md b/5-Data-Science-In-Cloud/21-tbd/translations/README.es.md similarity index 100% rename from working-with-data/08-python/translations/README.es.md rename to 5-Data-Science-In-Cloud/21-tbd/translations/README.es.md diff --git a/data-science-in-the-cloud/22-tbd/README.md b/5-Data-Science-In-Cloud/22-tbd/README.md similarity index 100% rename from data-science-in-the-cloud/22-tbd/README.md rename to 5-Data-Science-In-Cloud/22-tbd/README.md diff --git a/working-with-data/07-nosql/assignment.md b/5-Data-Science-In-Cloud/22-tbd/assignment.md similarity index 100% rename from working-with-data/07-nosql/assignment.md rename to 5-Data-Science-In-Cloud/22-tbd/assignment.md diff --git a/working-with-data/07-nosql/notebook.ipynb b/5-Data-Science-In-Cloud/22-tbd/notebook.ipynb similarity index 100% rename from working-with-data/07-nosql/notebook.ipynb rename to 5-Data-Science-In-Cloud/22-tbd/notebook.ipynb diff --git a/working-with-data/07-nosql/solution/notebook.ipynb b/5-Data-Science-In-Cloud/22-tbd/solution/notebook.ipynb similarity index 100% rename from working-with-data/07-nosql/solution/notebook.ipynb rename to 5-Data-Science-In-Cloud/22-tbd/solution/notebook.ipynb diff --git a/working-with-data/09-cleaning-transformations/translations/README.es.md b/5-Data-Science-In-Cloud/22-tbd/translations/README.es.md similarity index 100% rename from working-with-data/09-cleaning-transformations/translations/README.es.md rename to 5-Data-Science-In-Cloud/22-tbd/translations/README.es.md diff --git a/data-science-in-the-cloud/README.md b/5-Data-Science-In-Cloud/README.md similarity index 100% rename from data-science-in-the-cloud/README.md rename to 5-Data-Science-In-Cloud/README.md diff --git a/data-science-in-the-wild/23-tbd/README.md b/6-Data-Science-In-Wild/23-tbd/README.md similarity index 100% rename from data-science-in-the-wild/23-tbd/README.md rename to 6-Data-Science-In-Wild/23-tbd/README.md diff --git a/working-with-data/08-python/assignment.md b/6-Data-Science-In-Wild/23-tbd/assignment.md similarity index 100% rename from working-with-data/08-python/assignment.md rename to 6-Data-Science-In-Wild/23-tbd/assignment.md diff --git a/working-with-data/08-python/notebook.ipynb b/6-Data-Science-In-Wild/23-tbd/notebook.ipynb similarity index 100% rename from working-with-data/08-python/notebook.ipynb rename to 6-Data-Science-In-Wild/23-tbd/notebook.ipynb diff --git a/working-with-data/08-python/solution/notebook.ipynb b/6-Data-Science-In-Wild/23-tbd/solution/notebook.ipynb similarity index 100% rename from working-with-data/08-python/solution/notebook.ipynb rename to 6-Data-Science-In-Wild/23-tbd/solution/notebook.ipynb diff --git a/working-with-data/translations/README.es.md b/6-Data-Science-In-Wild/23-tbd/translations/README.es.md similarity index 100% rename from working-with-data/translations/README.es.md rename to 6-Data-Science-In-Wild/23-tbd/translations/README.es.md diff --git a/data-science-in-the-wild/24-tbd/README.md b/6-Data-Science-In-Wild/24-tbd/README.md similarity index 100% rename from data-science-in-the-wild/24-tbd/README.md rename to 6-Data-Science-In-Wild/24-tbd/README.md diff --git a/working-with-data/09-cleaning-transformations/assignment.md b/6-Data-Science-In-Wild/24-tbd/assignment.md similarity index 100% rename from working-with-data/09-cleaning-transformations/assignment.md rename to 6-Data-Science-In-Wild/24-tbd/assignment.md diff --git a/working-with-data/09-cleaning-transformations/notebook.ipynb b/6-Data-Science-In-Wild/24-tbd/notebook.ipynb similarity index 100% rename from working-with-data/09-cleaning-transformations/notebook.ipynb rename to 6-Data-Science-In-Wild/24-tbd/notebook.ipynb diff --git a/working-with-data/09-cleaning-transformations/solution/notebook.ipynb b/6-Data-Science-In-Wild/24-tbd/solution/notebook.ipynb similarity index 100% rename from working-with-data/09-cleaning-transformations/solution/notebook.ipynb rename to 6-Data-Science-In-Wild/24-tbd/solution/notebook.ipynb diff --git a/6-Data-Science-In-Wild/24-tbd/translations/README.es.md b/6-Data-Science-In-Wild/24-tbd/translations/README.es.md new file mode 100644 index 0000000..e69de29 diff --git a/data-science-in-the-wild/README.md b/6-Data-Science-In-Wild/README.md similarity index 100% rename from data-science-in-the-wild/README.md rename to 6-Data-Science-In-Wild/README.md diff --git a/README.md b/README.md index 0813ba1..36d1efb 100644 --- a/README.md +++ b/README.md @@ -40,32 +40,32 @@ In addition, a low-stakes quiz before a class sets the intention of the student ## Lessons -| | Project Name | Concepts Taught | Learning Objectives | Linked Lesson | Author | -| :---: | :-------------------------------------: | :------------------------------: | ------------------- | :-----------: | :----: | -| 01 | Defining Data Science | TBD | | | | -| 02 | Data Science Ethics | TBD | | | | -| 03 | Defining Data | TBD | | | | -| 04 | Introduction to Statistics Probability | TBD | | | | -| 05 | Working with Data | Spreadsheets | | | | -| 06 | Working with Data | Relational Databases | | | | -| 07 | Working with Data | NoSQL | | | | -| 08 | Working with Data | Python Data | | | | -| 09 | Working with Data | Cleaning Transformations | | | | -| 10 | Visualizing Data | Quantities | | | | -| 11 | Visualizing Data | Distributions | | | | -| 12 | Visualizing Data | Proportions | | | | -| 13 | Visualizing Data | Relationships | | | | -| 14 | Visualizing Data | Making meaningful visualizations | | | | -| 15 | The Data Science Lifecycle | Capturing | | | | -| 16 | The Data Science Lifecycle | Processing | | | | -| 17 | The Data Science Lifecycle | Analyzing | | | | -| 18 | The Data Science Lifecycle | Communication | | | | -| 19 | The Data Science Lifecycle | Maintaining | | | | -| 20 | Data Science in the Cloud | TBD | | | | -| 21 | Data Science in the Cloud | TBD | | | | -| 22 | Data Science in the Cloud | TBD | | | | -| 23 | Data Science in the Wild | TBD | | | | -| 24 | Data Science in the Wild | TBD | | | | +| Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author | +| :-----------: | :--------------------------------------: | :--------------------------------------------------: | :--------------------------------------------------: | :----------------------------------------------------------------------: | :----: | +| 01 | Defining Data Science | [Introduction](1-Introduction/README.md) | TBD | | | +| 02 | Data Science Ethics | [Introduction](1-Introduction/README.md) | TBD | | Nitya | +| 03 | Defining Data | [Introduction](1-Introduction/README.md) | TBD | | | +| 04 | Introduction to Statistics & Probability | [Introduction](1-Introduction/README.md) | TBD | | | +| 05 | Working with Spreadsheets | [Working With Data](2-Working-With-Data/README.md) | Spreadsheets | | | +| 06 | Working with Relational Databases | [Working With Data](2-Working-With-Data/README.md) | Relational Databases | | | +| 07 | Working with NoSQL Data | [Working With Data](2-Working-With-Data/README.md) | NoSQL | | | +| 08 | Working with Python | [Working With Data](2-Working-With-Data/README.md) | Python Data | | | +| 09 | Cleaning and Transforming Data | [Working With Data](2-Working-With-Data/README.md) | Cleaning Transformations | | | +| 10 | Visualizing Quantities | [Data Visualization](3-Data-Visualization/README.md) | Learn how to use Matplotlib to visualize bird data 🦆 | [Quantities](3-Data-Visualization/10-visualization-quantities/README.md) | Jen | +| 11 | Visualizing Distributions of Data | [Data Visualization](3-Data-Visualization/README.md) | Distributions | | Jen | +| 12 | Visualizing Proportions | [Data Visualization](3-Data-Visualization/README.md) | Proportions | | Jen | +| 13 | Visualizing Relationships | [Data Visualization](3-Data-Visualization/README.md) | Relationships | | Jen | +| 14 | Meaningful Visualizations | [Data Visualization](3-Data-Visualization/README.md) | Making meaningful visualizations | | Jen | +| 15 | The Data Science Lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Capturing | | | +| 16 | The Data Science Lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Processing | | | +| 17 | The Data Science Lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Analyzing | | | +| 18 | The Data Science Lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Communication | | | +| 19 | The Data Science Lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Maintaining | | | +| 20 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | TBD | | | +| 21 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | TBD | | | +| 22 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | TBD | | | +| 23 | Data Science in the Wild | [In the Wild](6-Data-Science-In-Wild/README.md) | TBD | | | +| 24 | Data Science in the Wild | [In the Wild](6-Data-Science-In-Wild/README.md) | TBD | | | ## Offline access diff --git a/sketchnotes/README.md b/sketchnotes/README.md new file mode 100644 index 0000000..cf26574 --- /dev/null +++ b/sketchnotes/README.md @@ -0,0 +1,3 @@ +Find all sketchnotes here! + +## Credits \ No newline at end of file diff --git a/working-with-data/README.md b/working-with-data/README.md deleted file mode 100644 index ed17c0d..0000000 --- a/working-with-data/README.md +++ /dev/null @@ -1,13 +0,0 @@ -# Working with Data - -[Brief description about the lessons in this section] - -### Topics - -1. [Spreadsheets](10-visualization-quantities/README.md) -1. [Relational Databases](11-visualization-distributions/README.md) -1. [NoSQL](12-visualization-proportions/README.md) -1. [Python](13-visualization-relationships/README.md) -1. [Cleaning and Transformations](14-meaningful-visualizations/README.md) - -### Credits From 9f45444667216dd8932009116b9554968dc38c27 Mon Sep 17 00:00:00 2001 From: Nitya Narasimhan Date: Sat, 17 Jul 2021 21:35:18 -0400 Subject: [PATCH 15/16] Data Ethics: Initial Lesson Plan Organized as 6 sections with 4 units per section. Provides high-level coverage of concepts, challenges & frameworks. --- 1-Introduction/02-ethics/README.md | 87 ++++++++++++++++++++++++++++++ 1 file changed, 87 insertions(+) diff --git a/1-Introduction/02-ethics/README.md b/1-Introduction/02-ethics/README.md index 8e97ecf..9230dde 100644 --- a/1-Introduction/02-ethics/README.md +++ b/1-Introduction/02-ethics/README.md @@ -1,9 +1,95 @@ # Data Ethics +> Summary Sketchnote from [Nitya Narasimhan](https://twitter.com/nitya) / [SketchTheDocs](https://twitter.com/sketchthedocs) + +
+ ## Pre-Lecture Quiz [Pre-lecture quiz]() +## Introduction + +This lesson dives into a critical topic for the modern data scientist: _data ethics_. + +In this lesson we'll cover: + 1. _[Fundamentals]()_ - Principles & History + 2. _[Data Collection](#2-data-collection)_ - Ownership & Consent + 3. _[Data Privacy](#2-data-privacy)_ - Protection & Anonymity + 4. _[Fairness](#4-fairness)_ - Algorithm Bias & + 5. _[Tools](5-tools)_ - Checklists & Frameworks + 6. _[Summary](6-summary)_ - Related Work + +
+ +## 1. Fundamentals + +| Topics| +|--| +| 1.1 What is Ethics and why do we care?| +| 1.2 History and challenges | +| 1.3 Concepts in Ethics| +| 1.4 Ethical Principles and Responsible AI| + +
+ +## 2. Data Collection + +| Topics| +|--| +| 2.1 Data Ownership & Intellectual Property | +| 2.2 Ethics & Human Consent | +| 2.3 Data Quality & Representation | +| 2.4 The 5Cs Framework | + + +
+ +## 3. Data Privacy + +| Topics| +|--| +| 3.1 Data Privacy & Degrees of Privacy | +| 3.2 Data Anonymity & De-Identification | +| 3.3 Challenges & Frameworks | +| 3.4 Case Studies | + +
+ +## 4. Algorithms Fairness + +| Topics| +|--| +| 4.1 Fairness, Unfairness & Harms | +| 4.2 Data Validity & Misrepresentation | +| 4.3 Algorithm Bias & Mitigation | +| 4.4 Case Studies | + +
+ +## 5. Tools + +| Topics| +|--| +| 5.1 Data Ethics & Culture | +| 5.2 Codes of Conduct & Checklists | +| 5.3 Industry Frameworks (Google, IBM, Microsoft, Facebook) | +| 5.4 Government Frameworks (UK, US, India) | + +
+ +## 6. Summary + +| Topics| +|--| +| 6.1 Understanding Ethics (History) | +| 6.2 Applying Ethics (Principles) | +| 6.3 Evolving Ethics (Research) | +| 6.4 Further Reading (References) | + + +
+ ## 🚀 Challenge @@ -11,6 +97,7 @@ [Post-lecture quiz]() + ## Review & Self Study From 9747ff9a37c07a82c28772a0a2c08739ee7dbb85 Mon Sep 17 00:00:00 2001 From: Nitya Narasimhan Date: Sat, 17 Jul 2021 21:51:00 -0400 Subject: [PATCH 16/16] Project README updated for Ethics lesson plus minor link fixes to ethics lesson plan README. --- 1-Introduction/02-ethics/README.md | 12 ++++++------ README.md | 2 +- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/1-Introduction/02-ethics/README.md b/1-Introduction/02-ethics/README.md index 9230dde..4162a83 100644 --- a/1-Introduction/02-ethics/README.md +++ b/1-Introduction/02-ethics/README.md @@ -13,11 +13,11 @@ This lesson dives into a critical topic for the modern data scientist: _data ethics_. In this lesson we'll cover: - 1. _[Fundamentals]()_ - Principles & History + 1. _[Fundamentals](#1-fundamentals)_ - Principles & History 2. _[Data Collection](#2-data-collection)_ - Ownership & Consent - 3. _[Data Privacy](#2-data-privacy)_ - Protection & Anonymity - 4. _[Fairness](#4-fairness)_ - Algorithm Bias & - 5. _[Tools](5-tools)_ - Checklists & Frameworks + 3. _[Data Privacy](#3-data-privacy)_ - Protection & Anonymity + 4. _[Algorithms & Fairness](#4-algorithms-and-fairness)_ - Unfairness, Harms & Bias + 5. _[Tools & Frameworks](5-tools-and-frameworks)_ - Codes, Checklists & Frameworks 6. _[Summary](6-summary)_ - Related Work
@@ -56,7 +56,7 @@ In this lesson we'll cover:
-## 4. Algorithms Fairness +## 4. Algorithms and Fairness | Topics| |--| @@ -67,7 +67,7 @@ In this lesson we'll cover:
-## 5. Tools +## 5. Tools and Frameworks | Topics| |--| diff --git a/README.md b/README.md index 36d1efb..6ebbe2c 100644 --- a/README.md +++ b/README.md @@ -43,7 +43,7 @@ In addition, a low-stakes quiz before a class sets the intention of the student | Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author | | :-----------: | :--------------------------------------: | :--------------------------------------------------: | :--------------------------------------------------: | :----------------------------------------------------------------------: | :----: | | 01 | Defining Data Science | [Introduction](1-Introduction/README.md) | TBD | | | -| 02 | Data Science Ethics | [Introduction](1-Introduction/README.md) | TBD | | Nitya | +| 02 | Data Science Ethics | [Introduction](1-Introduction/README.md) | Data Ethics Concepts, Challenges & Frameworks. | | [Nitya Narasimhan](https://github.com/nitya) | | 03 | Defining Data | [Introduction](1-Introduction/README.md) | TBD | | | | 04 | Introduction to Statistics & Probability | [Introduction](1-Introduction/README.md) | TBD | | | | 05 | Working with Spreadsheets | [Working With Data](2-Working-With-Data/README.md) | Spreadsheets | | |