🌐 Update translations via Co-op Translator

pull/620/head
leestott 3 weeks ago committed by GitHub
parent f12931deca
commit acc41d4db4

@ -1,142 +1,134 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6bb17a440fdabf0823105136a5b81029",
"translation_date": "2025-08-27T08:09:13+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:48:33+00:00",
"source_file": "README.md",
"language_code": "ar"
}
-->
# علم البيانات للمبتدئين - منهج دراسي
Azure Cloud Advocates في Microsoft يسعدهم تقديم منهج دراسي لمدة 10 أسابيع يتضمن 20 درسًا حول علم البيانات. يحتوي كل درس على اختبارات قبل وبعد الدرس، وتعليمات مكتوبة لإكمال الدرس، وحل، ومهمة. تعتمد طريقتنا التعليمية على المشاريع، مما يتيح لك التعلم أثناء البناء، وهي طريقة مثبتة لجعل المهارات الجديدة "تترسخ".
Azure Cloud Advocates في مايكروسوفت يسعدهم تقديم منهج دراسي مدته 10 أسابيع يتضمن 20 درسًا حول علم البيانات. يحتوي كل درس على اختبارات قصيرة قبل وبعد الدرس، وتعليمات مكتوبة لإكمال الدرس، وحل، ومهمة. تعتمد طريقتنا التعليمية على المشاريع، مما يتيح لك التعلم أثناء البناء، وهي طريقة مثبتة لجعل المهارات الجديدة "تترسخ".
**شكر خاص لمؤلفينا:** [جاسمين جريناواي](https://www.twitter.com/paladique)، [ديمتري سوشنيكوف](http://soshnikov.com)، [نيتيا ناراسيمهان](https://twitter.com/nitya)، [جيلين ماكجي](https://twitter.com/JalenMcG)، [جين لوبر](https://twitter.com/jenlooper)، [مود ليفي](https://twitter.com/maudstweets)، [تيفاني سوتير](https://twitter.com/TiffanySouterre)، [كريستوفر هاريسون](https://www.twitter.com/geektrainer).
**شكر خاص لمؤلفينا:** [Jasmine Greenaway](https://www.twitter.com/paladique)، [Dmitry Soshnikov](http://soshnikov.com)، [Nitya Narasimhan](https://twitter.com/nitya)، [Jalen McGee](https://twitter.com/JalenMcG)، [Jen Looper](https://twitter.com/jenlooper)، [Maud Levy](https://twitter.com/maudstweets)، [Tiffany Souterre](https://twitter.com/TiffanySouterre)، [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 شكر خاص 🙏 لـ [سفراء الطلاب في Microsoft](https://studentambassadors.microsoft.com/) المؤلفين، المراجعين، والمساهمين في المحتوى،** ومن بينهم أريان أرورا، [أديتيا جارج](https://github.com/AdityaGarg00)، [ألوندرا سانشيز](https://www.linkedin.com/in/alondra-sanchez-molina/)، [أنكيتا سينغ](https://www.linkedin.com/in/ankitasingh007)، [أنوبام ميشرا](https://www.linkedin.com/in/anupam--mishra/)، [أربيتا داس](https://www.linkedin.com/in/arpitadas01/)، شيل بيهاري دوباي، [ديبري نسوفور](https://www.linkedin.com/in/dibrinsofor)، [ديشيتا بهاسين](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [مجد صافي](https://www.linkedin.com/in/majd-s/)، [ماكس بلوم](https://www.linkedin.com/in/max-blum-6036a1186/)، [ميغيل كوريا](https://www.linkedin.com/in/miguelmque/)، [محمد افتخار (إفتو) ابن جلال](https://twitter.com/iftu119)، [نورين تبسم](https://www.linkedin.com/in/nawrin-tabassum)، [ريموند وانجسا بوترا](https://www.linkedin.com/in/raymond-wp/)، [روهيت ياداف](https://www.linkedin.com/in/rty2423)، سمردهي شارما، [سانيا سينها](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [شينا نارولا](https://www.linkedin.com/in/sheena-narua-n/)، [توقير أحمد](https://www.linkedin.com/in/tauqeerahmad5201/)، يوغندراسينغ باوار، [فيدوشي جوبتا](https://www.linkedin.com/in/vidushi-gupta07/)، [جسلين سوندي](https://www.linkedin.com/in/jasleen-sondhi/)
**🙏 شكر خاص 🙏 لـ [سفراء الطلاب من مايكروسوفت](https://studentambassadors.microsoft.com/) المؤلفين، المراجعين، والمساهمين في المحتوى،** ومن بينهم Aaryan Arora، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![رسم توضيحي من [(@sketchthedocs)](https://sketchthedocs.dev)](./sketchnotes/00-Title.png)|
|![رسم توضيحي من @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.ar.png)|
|:---:|
| علم البيانات للمبتدئين - _رسم توضيحي من [@nitya](https://twitter.com/nitya)_ |
## إعلان - منهج جديد حول الذكاء الاصطناعي التوليدي تم إصداره للتو!
### 🌐 دعم متعدد اللغات
لقد أصدرنا منهجًا مكونًا من 12 درسًا حول الذكاء الاصطناعي التوليدي. تعال وتعلم أشياء مثل:
#### مدعوم عبر GitHub Action (تلقائي ومحدث دائمًا)
- التوجيه وهندسة التوجيه
- إنشاء تطبيقات نصوص وصور
- تطبيقات البحث
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](./README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
كالعادة، هناك درس، مهام لإكمالها، اختبارات معرفية وتحديات.
**إذا كنت ترغب في دعم لغات إضافية، يمكنك الاطلاع على القائمة [هنا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
اطلع عليه:
> https://aka.ms/genai-beginners
#### انضم إلى مجتمعنا
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# هل أنت طالب؟
ابدأ باستخدام الموارد التالية:
- [صفحة مركز الطلاب](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ستجد في هذه الصفحة موارد للمبتدئين، حزم الطلاب وحتى طرق للحصول على قسيمة شهادة مجانية. هذه صفحة يجب أن تضيفها إلى إشاراتك المرجعية وتفحصها من وقت لآخر حيث نقوم بتحديث المحتوى شهريًا على الأقل.
- [سفراء الطلاب في Microsoft](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) انضم إلى مجتمع عالمي من سفراء الطلاب، قد تكون هذه فرصتك للدخول إلى Microsoft.
- [صفحة مركز الطلاب](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) في هذه الصفحة، ستجد موارد للمبتدئين، وحزم للطلاب، وحتى طرق للحصول على قسيمة شهادة مجانية. هذه صفحة يجب أن تضيفها إلى مفضلتك وتعود إليها من وقت لآخر حيث نقوم بتحديث المحتوى شهريًا على الأقل.
- [سفراء الطلاب من مايكروسوفت](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) انضم إلى مجتمع عالمي من سفراء الطلاب، قد تكون هذه فرصتك للدخول إلى مايكروسوفت.
# كيفية البدء
> **للمعلمين**: لقد قمنا [بتضمين بعض الاقتراحات](for-teachers.md) حول كيفية استخدام هذا المنهج. نود أن نسمع ملاحظاتكم [في منتدى النقاش الخاص بنا](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **المعلمين**: لقد قمنا [بتضمين بعض الاقتراحات](for-teachers.md) حول كيفية استخدام هذا المنهج. نود أن نسمع ملاحظاتكم [في منتدى النقاش الخاص بنا](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[للطلاب](https://aka.ms/student-page)**: لاستخدام هذا المنهج بمفردك، قم بعمل fork للمستودع بأكمله وأكمل التمارين بنفسك، بدءًا من اختبار ما قبل المحاضرة. ثم اقرأ المحاضرة وأكمل بقية الأنشطة. حاول إنشاء المشاريع من خلال فهم الدروس بدلاً من نسخ كود الحل؛ ومع ذلك، يتوفر هذا الكود في مجلدات /solutions في كل درس قائم على المشاريع. فكرة أخرى هي تشكيل مجموعة دراسة مع أصدقائك ومراجعة المحتوى معًا. لمزيد من الدراسة، نوصي بـ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[الطلاب](https://aka.ms/student-page)**: لاستخدام هذا المنهج بمفردك، قم بعمل fork للمستودع بالكامل وأكمل التمارين بنفسك، بدءًا من اختبار ما قبل المحاضرة. ثم اقرأ المحاضرة وأكمل بقية الأنشطة. حاول إنشاء المشاريع من خلال فهم الدروس بدلاً من نسخ كود الحل؛ ومع ذلك، يتوفر هذا الكود في مجلدات /solutions في كل درس قائم على المشاريع. فكرة أخرى هي تشكيل مجموعة دراسة مع أصدقائك ومراجعة المحتوى معًا. لمزيد من الدراسة، نوصي بـ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## تعرف على الفريق
[![فيديو ترويجي](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "فيديو ترويجي")
**الرسوم المتحركة بواسطة** [موهيت جايسال](https://www.linkedin.com/in/mohitjaisal)
**الرسوم المتحركة بواسطة** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 انقر على الصورة أعلاه لمشاهدة فيديو عن المشروع والأشخاص الذين أنشأوه!
## الطريقة التعليمية
لقد اخترنا مبدأين تعليميين أثناء بناء هذا المنهج: التأكد من أنه قائم على المشاريع وأنه يتضمن اختبارات متكررة. بحلول نهاية هذه السلسلة، سيتعلم الطلاب المبادئ الأساسية لعلم البيانات، بما في ذلك المفاهيم الأخلاقية، إعداد البيانات، طرق مختلفة للعمل مع البيانات، تصور البيانات، تحليل البيانات، حالات استخدام علم البيانات في العالم الحقيقي، والمزيد.
بالإضافة إلى ذلك، يحدد الاختبار منخفض المخاطر قبل الفصل نية الطالب لتعلم موضوع معين، بينما يضمن اختبار آخر بعد الفصل مزيدًا من الاحتفاظ بالمعلومات. تم تصميم هذا المنهج ليكون مرنًا وممتعًا ويمكن تناوله بالكامل أو جزئيًا. تبدأ المشاريع صغيرة وتصبح أكثر تعقيدًا تدريجيًا بحلول نهاية دورة الـ 10 أسابيع.
## النهج التعليمي
> اعثر على [مدونة قواعد السلوك](CODE_OF_CONDUCT.md)، [إرشادات المساهمة](CONTRIBUTING.md)، [إرشادات الترجمة](TRANSLATIONS.md). نرحب بملاحظاتكم البناءة!
لقد اخترنا مبدأين تعليميين أثناء بناء هذا المنهج: التأكد من أنه قائم على المشاريع وأنه يتضمن اختبارات متكررة. بحلول نهاية هذه السلسلة، سيتعلم الطلاب المبادئ الأساسية لعلم البيانات، بما في ذلك المفاهيم الأخلاقية، وتحضير البيانات، وطرق مختلفة للعمل مع البيانات، وتصور البيانات، وتحليل البيانات، وحالات استخدام علم البيانات في العالم الحقيقي، والمزيد.
## يتضمن كل درس:
بالإضافة إلى ذلك، يحدد الاختبار البسيط قبل الدرس نية الطالب لتعلم موضوع معين، بينما يضمن اختبار آخر بعد الدرس تعزيز الفهم. تم تصميم هذا المنهج ليكون مرنًا وممتعًا ويمكن تناوله بالكامل أو جزئيًا. تبدأ المشاريع صغيرة وتصبح أكثر تعقيدًا مع نهاية الدورة التي تستمر 10 أسابيع.
> يمكنك العثور على [مدونة السلوك](CODE_OF_CONDUCT.md)، [إرشادات المساهمة](CONTRIBUTING.md)، [إرشادات الترجمة](TRANSLATIONS.md). نرحب بملاحظاتك البناءة!
## كل درس يتضمن:
- رسم توضيحي اختياري
- فيديو إضافي اختياري
- اختبار تمهيدي قبل الدرس
- درس مكتوب
- بالنسبة للدروس القائمة على المشاريع، إرشادات خطوة بخطوة حول كيفية بناء المشروع
- بالنسبة للدروس القائمة على المشاريع، أدلة خطوة بخطوة حول كيفية بناء المشروع
- اختبارات معرفية
- تحدٍ
- قراءة إضافية
- مهمة
- اختبار بعد الدرس
- واجب
- [اختبار بعد الدرس](https://ff-quizzes.netlify.app/en/)
> **ملاحظة حول الاختبارات**: جميع الاختبارات موجودة في مجلد Quiz-App، بإجمالي 40 اختبارًا يحتوي كل منها على ثلاثة أسئلة. يتم ربطها من داخل الدروس، ولكن يمكن تشغيل تطبيق الاختبار محليًا أو نشره على Azure؛ اتبع التعليمات في مجلد `quiz-app`. يتم ترجمتها تدريجيًا.
> **ملاحظة حول الاختبارات**: جميع الاختبارات موجودة في مجلد Quiz-App، بإجمالي 40 اختبارًا يحتوي كل منها على ثلاثة أسئلة. يتم الربط بها من داخل الدروس، ولكن يمكن تشغيل تطبيق الاختبارات محليًا أو نشره على Azure؛ اتبع التعليمات في مجلد `quiz-app`. يتم ترجمتها تدريجيًا.
## الدروس
|![رسم توضيحي من [(@sketchthedocs)](https://sketchthedocs.dev)](./sketchnotes/00-Roadmap.png)|
|![رسم توضيحي بواسطة @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.ar.png)|
|:---:|
| علم البيانات للمبتدئين: خارطة الطريق - _رسم توضيحي من [@nitya](https://twitter.com/nitya)_ |
| علم البيانات للمبتدئين: خارطة الطريق - _رسم توضيحي بواسطة [@nitya](https://twitter.com/nitya)_ |
| رقم الدرس | الموضوع | مجموعة الدروس | أهداف التعلم | الدرس المرتبط | المؤلف |
| رقم الدرس | الموضوع | تصنيف الدرس | أهداف التعلم | رابط الدرس | المؤلف |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | تعريف علم البيانات | [المقدمة](1-Introduction/README.md) | تعلم المفاهيم الأساسية وراء علم البيانات وكيف يرتبط بالذكاء الاصطناعي، التعلم الآلي، والبيانات الضخمة. | [الدرس](1-Introduction/01-defining-data-science/README.md) [الفيديو](https://youtu.be/beZ7Mb_oz9I) | [ديمتري](http://soshnikov.com) |
| 02 | أخلاقيات علم البيانات | [المقدمة](1-Introduction/README.md) | مفاهيم أخلاقيات البيانات، التحديات والأطر. | [الدرس](1-Introduction/02-ethics/README.md) | [نيتيا](https://twitter.com/nitya) |
| 03 | تعريف البيانات | [المقدمة](1-Introduction/README.md) | كيفية تصنيف البيانات ومصادرها الشائعة. | [الدرس](1-Introduction/03-defining-data/README.md) | [جاسمين](https://www.twitter.com/paladique) |
| 04 | مقدمة في الإحصاء والاحتمالات | [المقدمة](1-Introduction/README.md) | التقنيات الرياضية للاحتمالات والإحصاء لفهم البيانات. | [الدرس](1-Introduction/04-stats-and-probability/README.md) [الفيديو](https://youtu.be/Z5Zy85g4Yjw) | [ديمتري](http://soshnikov.com) |
| 05 | العمل مع البيانات العلائقية | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة في البيانات العلائقية وأساسيات استكشاف وتحليل البيانات العلائقية باستخدام لغة الاستعلام الهيكلية، المعروفة أيضًا بـ SQL (تُنطق "سي-كويل"). | [الدرس](2-Working-With-Data/05-relational-databases/README.md) | [كريستوفر](https://www.twitter.com/geektrainer) |
| 06 | العمل مع بيانات NoSQL | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة في البيانات غير العلائقية، أنواعها المختلفة وأساسيات استكشاف وتحليل قواعد بيانات الوثائق. | [الدرس](2-Working-With-Data/06-non-relational/README.md) | [جاسمين](https://twitter.com/paladique) |
| 07 | العمل مع بايثون | [العمل مع البيانات](2-Working-With-Data/README.md) | أساسيات استخدام بايثون لاستكشاف البيانات باستخدام مكتبات مثل Pandas. يُفضل وجود فهم أساسي لبرمجة بايثون. | [الدرس](2-Working-With-Data/07-python/README.md) [الفيديو](https://youtu.be/dZjWOGbsN4Y) | [ديمتري](http://soshnikov.com) |
| 08 | إعداد البيانات | [العمل مع البيانات](2-Working-With-Data/README.md) | مواضيع حول تقنيات تنظيف وتحويل البيانات للتعامل مع تحديات البيانات المفقودة أو غير الدقيقة أو غير المكتملة. | [الدرس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 01 | تعريف علم البيانات | [المقدمة](1-Introduction/README.md) | تعلم المفاهيم الأساسية لعلم البيانات وكيف يرتبط بالذكاء الاصطناعي، التعلم الآلي، والبيانات الضخمة. | [الدرس](1-Introduction/01-defining-data-science/README.md) [الفيديو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | أخلاقيات علم البيانات | [المقدمة](1-Introduction/README.md) | مفاهيم أخلاقيات البيانات، التحديات والأطر. | [الدرس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | تعريف البيانات | [المقدمة](1-Introduction/README.md) | كيفية تصنيف البيانات ومصادرها الشائعة. | [الدرس](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | مقدمة في الإحصاء والاحتمالات | [المقدمة](1-Introduction/README.md) | التقنيات الرياضية للإحصاء والاحتمالات لفهم البيانات. | [الدرس](1-Introduction/04-stats-and-probability/README.md) [الفيديو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | العمل مع البيانات العلائقية | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة عن البيانات العلائقية وأساسيات استكشاف وتحليل البيانات العلائقية باستخدام لغة SQL. | [الدرس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | العمل مع بيانات NoSQL | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة عن البيانات غير العلائقية، أنواعها المختلفة وأساسيات استكشاف وتحليل قواعد بيانات الوثائق. | [الدرس](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | العمل مع بايثون | [العمل مع البيانات](2-Working-With-Data/README.md) | أساسيات استخدام بايثون لاستكشاف البيانات باستخدام مكتبات مثل Pandas. يُفضل وجود فهم أساسي لبرمجة بايثون. | [الدرس](2-Working-With-Data/07-python/README.md) [الفيديو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | تحضير البيانات | [العمل مع البيانات](2-Working-With-Data/README.md) | مواضيع حول تقنيات تنظيف وتحويل البيانات للتعامل مع التحديات مثل البيانات المفقودة أو غير الدقيقة أو غير المكتملة. | [الدرس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | تصور الكميات | [تصور البيانات](3-Data-Visualization/README.md) | تعلم كيفية استخدام Matplotlib لتصور بيانات الطيور 🦆 | [الدرس](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | تصور توزيع البيانات | [تصور البيانات](3-Data-Visualization/README.md) | تصور الملاحظات والاتجاهات ضمن فترة زمنية. | [الدرس](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | تصور النسب | [تصور البيانات](3-Data-Visualization/README.md) | تصور النسب المئوية المنفصلة والمجمعة. | [الدرس](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | تصور العلاقات | [تصور البيانات](3-Data-Visualization/README.md) | تصور الروابط والارتباطات بين مجموعات البيانات ومتغيراتها. | [الدرس](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | تصورات ذات معنى | [تصور البيانات](3-Data-Visualization/README.md) | تقنيات وإرشادات لجعل تصوراتك ذات قيمة لحل المشكلات بشكل فعال واستخلاص الأفكار. | [الدرس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | مقدمة في دورة حياة علم البيانات | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | مقدمة في دورة حياة علم البيانات وخطوتها الأولى في الحصول على البيانات واستخراجها. | [الدرس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 13 | تصورات ذات معنى | [تصور البيانات](3-Data-Visualization/README.md) | تقنيات وإرشادات لجعل تصوراتك ذات قيمة لحل المشكلات بفعالية واستخلاص الأفكار. | [الدرس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | مقدمة في دورة حياة علم البيانات | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | مقدمة في دورة حياة علم البيانات وخطوتها الأولى في جمع واستخراج البيانات. | [الدرس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | التحليل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | تركز هذه المرحلة من دورة حياة علم البيانات على تقنيات تحليل البيانات. | [الدرس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | التواصل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | تركز هذه المرحلة من دورة حياة علم البيانات على تقديم الأفكار المستخلصة من البيانات بطريقة تسهل على صناع القرار فهمها. | [الدرس](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تقدم هذه السلسلة من الدروس علم البيانات في السحابة وفوائده. | [الدرس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 18 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تدريب النماذج باستخدام أدوات Low Code. | [الدرس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 19 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | نشر النماذج باستخدام Azure Machine Learning Studio. | [الدرس](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 20 | علم البيانات في العالم الحقيقي | [في العالم الحقيقي](6-Data-Science-In-Wild/README.md) | مشاريع علم البيانات المدفوعة في العالم الحقيقي. | [الدرس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 18 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تدريب النماذج باستخدام أدوات Low Code. |[الدرس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 19 | علم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | نشر النماذج باستخدام Azure Machine Learning Studio. | [الدرس](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 20 | علم البيانات في العالم الواقعي | [في العالم الواقعي](6-Data-Science-In-Wild/README.md) | مشاريع علم البيانات المدفوعة في العالم الواقعي. | [الدرس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
اتبع هذه الخطوات لفتح هذا المثال في Codespace:
1. انقر على القائمة المنسدلة "Code" واختر خيار "Open with Codespaces".
1. انقر على قائمة Code المنسدلة واختر خيار Open with Codespaces.
2. اختر + New codespace في أسفل اللوحة.
لمزيد من المعلومات، تحقق من [وثائق GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
لمزيد من المعلومات، اطلع على [وثائق GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
اتبع هذه الخطوات لفتح هذا المستودع في حاوية باستخدام جهازك المحلي وVSCode باستخدام امتداد VS Code Remote - Containers:
1. إذا كانت هذه هي المرة الأولى التي تستخدم فيها حاوية تطوير، يرجى التأكد من أن نظامك يلبي المتطلبات الأساسية (مثل تثبيت Docker) في [وثائق البدء](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
اتبع هذه الخطوات لفتح هذا المستودع في حاوية باستخدام جهازك المحلي وVSCode باستخدام إضافة VS Code Remote - Containers:
1. إذا كانت هذه هي المرة الأولى التي تستخدم فيها حاوية تطوير، يرجى التأكد من أن نظامك يلبي المتطلبات الأساسية (مثل تثبيت Docker) في [وثائق البداية](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
لاستخدام هذا المستودع، يمكنك فتحه إما في وحدة تخزين Docker معزولة:
**ملاحظة**: في الخلفية، سيتم استخدام أمر Remote-Containers: **Clone Repository in Container Volume...** لنسخ الكود المصدر في وحدة تخزين Docker بدلاً من نظام الملفات المحلي. [الوحدات التخزينية](https://docs.docker.com/storage/volumes/) هي الآلية المفضلة للحفاظ على بيانات الحاوية.
**ملاحظة**: في الخلفية، سيتم استخدام الأمر Remote-Containers: **Clone Repository in Container Volume...** لاستنساخ الكود المصدري في وحدة تخزين Docker بدلاً من نظام الملفات المحلي. [الوحدات التخزينية](https://docs.docker.com/storage/volumes/) هي الآلية المفضلة لحفظ بيانات الحاوية.
أو فتح نسخة محلية مستنسخة أو محملة من المستودع:
أو فتح نسخة مستنسخة أو محملة محليًا من المستودع:
- قم باستنساخ هذا المستودع إلى نظام الملفات المحلي.
- اضغط F1 واختر الأمر **Remote-Containers: Open Folder in Container...**.
- استنسخ هذا المستودع إلى نظام الملفات المحلي.
- اضغط على F1 واختر الأمر **Remote-Containers: Open Folder in Container...**.
- اختر النسخة المستنسخة من هذا المجلد، انتظر حتى تبدأ الحاوية، وجرب الأمور.
## الوصول دون اتصال
يمكنك تشغيل هذا التوثيق دون اتصال باستخدام [Docsify](https://docsify.js.org/#/). قم باستنساخ هذا المستودع، [تثبيت Docsify](https://docsify.js.org/#/quickstart) على جهازك المحلي، ثم في المجلد الجذري لهذا المستودع، اكتب `docsify serve`. سيتم تقديم الموقع على المنفذ 3000 على localhost: `localhost:3000`.
> ملاحظة، لن يتم عرض دفاتر الملاحظات عبر Docsify، لذا عندما تحتاج إلى تشغيل دفتر ملاحظات، قم بذلك بشكل منفصل في VS Code باستخدام نواة Python.
## مطلوب مساعدة!
يمكنك تشغيل هذا التوثيق دون اتصال باستخدام [Docsify](https://docsify.js.org/#/). قم بعمل Fork لهذا المستودع، [قم بتثبيت Docsify](https://docsify.js.org/#/quickstart) على جهازك المحلي، ثم في المجلد الجذر لهذا المستودع، اكتب `docsify serve`. سيتم تشغيل الموقع على المنفذ 3000 على localhost: `localhost:3000`.
إذا كنت ترغب في ترجمة كل أو جزء من المنهج، يرجى اتباع دليلنا [Translations](TRANSLATIONS.md).
> ملاحظة، لن يتم عرض دفاتر الملاحظات عبر Docsify، لذا عند الحاجة إلى تشغيل دفتر ملاحظات، قم بذلك بشكل منفصل في VS Code باستخدام نواة Python.
## مناهج أخرى
@ -148,7 +140,7 @@ Azure Cloud Advocates في Microsoft يسعدهم تقديم منهج دراسي
- [الذكاء الاصطناعي التوليدي باستخدام Java](https://aka.ms/genaijava)
- [الذكاء الاصطناعي للمبتدئين](https://aka.ms/ai-beginners)
- [علم البيانات للمبتدئين](https://aka.ms/datascience-beginners)
- [تعلم الآلة للمبتدئين](https://aka.ms/ml-beginners)
- [التعلم الآلي للمبتدئين](https://aka.ms/ml-beginners)
- [الأمن السيبراني للمبتدئين](https://github.com/microsoft/Security-101)
- [تطوير الويب للمبتدئين](https://aka.ms/webdev-beginners)
- [إنترنت الأشياء للمبتدئين](https://aka.ms/iot-beginners)
@ -160,4 +152,4 @@ Azure Cloud Advocates في Microsoft يسعدهم تقديم منهج دراسي
---
**إخلاء المسؤولية**:
تمت ترجمة هذا المستند باستخدام خدمة الترجمة الآلية [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو معلومات غير دقيقة. يجب اعتبار المستند الأصلي بلغته الأصلية هو المصدر الموثوق. للحصول على معلومات حساسة أو هامة، يُوصى بالاستعانة بترجمة بشرية احترافية. نحن غير مسؤولين عن أي سوء فهم أو تفسيرات خاطئة تنشأ عن استخدام هذه الترجمة.
تمت ترجمة هذا المستند باستخدام خدمة الترجمة بالذكاء الاصطناعي [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو معلومات غير دقيقة. يجب اعتبار المستند الأصلي بلغته الأصلية هو المصدر الموثوق. للحصول على معلومات حساسة أو هامة، يُوصى بالاستعانة بترجمة بشرية احترافية. نحن غير مسؤولين عن أي سوء فهم أو تفسيرات خاطئة تنشأ عن استخدام هذه الترجمة.

@ -1,114 +1,109 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a746eb3b41f67cde5a0b648b8910a656",
"translation_date": "2025-08-28T09:44:42+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:57:01+00:00",
"source_file": "README.md",
"language_code": "bn"
}
-->
# ডেটা সায়েন্সের জন্য শিক্ষাক্রম - শিক্ষার্থীদের জন্য
# শিক্ষার্থীদের জন্য ডেটা সায়েন্স - একটি পাঠক্রম
Azure Cloud Advocates টিম Microsoft থেকে ১০ সপ্তাহের একটি শিক্ষাক্রম নিয়ে এসেছে, যেখানে ২০টি পাঠ অন্তর্ভুক্ত। প্রতিটি পাঠে রয়েছে প্রাক-পাঠ এবং পর-পাঠ কুইজ, পাঠ সম্পন্ন করার জন্য লিখিত নির্দেশিকা, একটি সমাধান এবং একটি অ্যাসাইনমেন্ট। প্রকল্প-ভিত্তিক শিক্ষাদানের মাধ্যমে শেখার এই পদ্ধতি নতুন দক্ষতাগুলোকে আরও কার্যকরভাবে শিখতে সাহায্য করে
Azure Cloud Advocates at Microsoft একটি ১০-সপ্তাহের, ২০-লেসনের পাঠক্রম নিয়ে এসেছে যা সম্পূর্ণ ডেটা সায়েন্স নিয়ে। প্রতিটি লেসনে রয়েছে প্রাক-লেসন এবং পরবর্তী লেসনের কুইজ, লেসন সম্পন্ন করার জন্য লিখিত নির্দেশনা, একটি সমাধান এবং একটি অ্যাসাইনমেন্ট। আমাদের প্রকল্প-ভিত্তিক পদ্ধতি আপনাকে শেখার সময় তৈরি করতে সাহায্য করে, যা নতুন দক্ষতা অর্জনের একটি প্রমাণিত উপায়
**লেখকদের প্রতি আন্তরিক ধন্যবাদ:** [জেসমিন গ্রিনওয়ে](https://www.twitter.com/paladique), [দিমিত্রি সশনিকভ](http://soshnikov.com), [নিত্য নারাসিমহান](https://twitter.com/nitya), [জালেন ম্যাকগি](https://twitter.com/JalenMcG), [জেন লুপার](https://twitter.com/jenlooper), [মড লেভি](https://twitter.com/maudstweets), [টিফানি সুটের](https://twitter.com/TiffanySouterre), [ক্রিস্টোফার হ্যারিসন](https://www.twitter.com/geektrainer)।
**আমাদের লেখকদের প্রতি আন্তরিক ধন্যবাদ:** [জেসমিন গ্রিনওয়ে](https://www.twitter.com/paladique), [দিমিত্রি সশনিকভ](http://soshnikov.com), [নিত্য নারাসিমহান](https://twitter.com/nitya), [জালেন ম্যাকগি](https://twitter.com/JalenMcG), [জেন লুপার](https://twitter.com/jenlooper), [মড লেভি](https://twitter.com/maudstweets), [টিফানি সুটের](https://twitter.com/TiffanySouterre), [ক্রিস্টোফার হ্যারিসন](https://www.twitter.com/geektrainer)।
**🙏 বিশেষ ধন্যবাদ 🙏 আমাদের [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) লেখক, পর্যালোচক এবং কন্টেন্ট অবদানকারীদের প্রতি,** বিশেষত আরিয়ান অরোরা, [আদিত্য গার্গ](https://github.com/AdityaGarg00), [আলন্দ্রা সানচেজ](https://www.linkedin.com/in/alondra-sanchez-molina/), [অঙ্কিতা সিং](https://www.linkedin.com/in/ankitasingh007), [অনুপম মিশ্র](https://www.linkedin.com/in/anupam--mishra/), [অর্পিতা দাস](https://www.linkedin.com/in/arpitadas01/), ছাইলবিহারী দুবে, [িব্রি এনসোফর](https://www.linkedin.com/in/dibrinsofor), [দিশিতা ভাসিন](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [মাজদ সাফি](https://www.linkedin.com/in/majd-s/), [ম্যাক্স ব্লুম](https://www.linkedin.com/in/max-blum-6036a1186/), [মিগুয়েল কোরিয়া](https://www.linkedin.com/in/miguelmque/), [মোহাম্মদ ইফতেখার (ইফটু) ইবনে জালাল](https://twitter.com/iftu119), [ওরিন তাবাসসুম](https://www.linkedin.com/in/nawrin-tabassum), [রেমন্ড ওয়াংসা পুত্র](https://www.linkedin.com/in/raymond-wp/), [রোহিত যাদব](https://www.linkedin.com/in/rty2423), সমৃদ্ধি শর্মা, [সানিয়া সিনহা](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [শীনা নারুলা](https://www.linkedin.com/in/sheena-narua-n/), [তৌকির আহমদ](https://www.linkedin.com/in/tauqeerahmad5201/), যোগেন্দ্রসিং পাওয়ার, [বিদুষী গুপ্তা](https://www.linkedin.com/in/vidushi-gupta07/), [সলিন সোধি](https://www.linkedin.com/in/jasleen-sondhi/)।
**🙏 বিশেষ ধন্যবাদ 🙏 আমাদের [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) লেখক, রিভিউয়ার এবং কন্টেন্ট কন্ট্রিবিউটরদের প্রতি,** বিশেষত আরিয়ান অরোরা, [আদিত্য গার্গ](https://github.com/AdityaGarg00), [আলন্দ্রা সানচেজ](https://www.linkedin.com/in/alondra-sanchez-molina/), [অঙ্কিতা সিং](https://www.linkedin.com/in/ankitasingh007), [অনুপম মিশ্র](https://www.linkedin.com/in/anupam--mishra/), [অর্পিতা দাস](https://www.linkedin.com/in/arpitadas01/), ছাইলবিহারী দুবে, [িব্রি এনসোফর](https://www.linkedin.com/in/dibrinsofor), [দিশিতা ভাসিন](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [মাজদ সাফি](https://www.linkedin.com/in/majd-s/), [ম্যাক্স ব্লুম](https://www.linkedin.com/in/max-blum-6036a1186/), [মিগুয়েল কোরিয়া](https://www.linkedin.com/in/miguelmque/), [মোহাম্মদ ইফতেখার (ইফটু) ইবনে জালাল](https://twitter.com/iftu119), [ওরিন তাবাসসুম](https://www.linkedin.com/in/nawrin-tabassum), [রেমন্ড ওয়াংসা পুত্র](https://www.linkedin.com/in/raymond-wp/), [রোহিত যাদব](https://www.linkedin.com/in/rty2423), সমৃদ্ধি শর্মা, [সানিয়া সিনহা](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [শীনা নারুলা](https://www.linkedin.com/in/sheena-narua-n/), [তৌকির আহমদ](https://www.linkedin.com/in/tauqeerahmad5201/), যোগেন্দ্রসিং পাওয়ার, [বিদুষী গুপ্তা](https://www.linkedin.com/in/vidushi-gupta07/), [সলিন সোধি](https://www.linkedin.com/in/jasleen-sondhi/)।
|![(@sketchthedocs) দ্বারা স্কেচনোট](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.bn.png)|
|![@sketchthedocs দ্বারা স্কেচনোট https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.bn.png)|
|:---:|
| ডেটা সায়েন্স শিক্ষার্থীদের জন্য - _[@nitya](https://twitter.com/nitya) দ্বারা স্কেচনোট_ |
| শিক্ষার্থীদের জন্য ডেটা সায়েন্স - _[@nitya](https://twitter.com/nitya) দ্বারা স্কেচনোট_ |
## ঘোষণা - জেনারেটিভ এআই-এর জন্য নতুন শিক্ষাক্রম প্রকাশিত হয়েছে!
### 🌐 বহু-ভাষার সমর্থন
আমরা সম্প্রতি জেনারেটিভ এআই নিয়ে ১২টি পাঠের একটি শিক্ষাক্রম প্রকাশ করেছি। এখানে আপনি শিখতে পারবেন:
#### GitHub Action এর মাধ্যমে সমর্থিত (স্বয়ংক্রিয় এবং সর্বদা আপডেটেড)
- প্রম্পটিং এবং প্রম্পট ইঞ্জিনিয়ারিং
- টেক্সট এবং ইমেজ অ্যাপ তৈরি
- সার্চ অ্যাপ্লিকেশন
[ফরাসি](../fr/README.md) | [স্প্যানিশ](../es/README.md) | [জার্মান](../de/README.md) | [রাশিয়ান](../ru/README.md) | [আরবি](../ar/README.md) | [ফার্সি](../fa/README.md) | [উর্দু](../ur/README.md) | [চীনা (সরলীকৃত)](../zh/README.md) | [চীনা (প্রথাগত, ম্যাকাও)](../mo/README.md) | [চীনা (প্রথাগত, হংকং)](../hk/README.md) | [চীনা (প্রথাগত, তাইওয়ান)](../tw/README.md) | [জাপানি](../ja/README.md) | [কোরিয়ান](../ko/README.md) | [হিন্দি](../hi/README.md) | [বাংলা](./README.md) | [মারাঠি](../mr/README.md) | [নেপালি](../ne/README.md) | [পাঞ্জাবি (গুরুমুখী)](../pa/README.md) | [পর্তুগিজ (পর্তুগাল)](../pt/README.md) | [পর্তুগিজ (ব্রাজিল)](../br/README.md) | [ইতালিয়ান](../it/README.md) | [পোলিশ](../pl/README.md) | [তুর্কি](../tr/README.md) | [গ্রিক](../el/README.md) | [থাই](../th/README.md) | [সুইডিশ](../sv/README.md) | [ড্যানিশ](../da/README.md) | [নরওয়েজিয়ান](../no/README.md) | [ফিনিশ](../fi/README.md) | [ডাচ](../nl/README.md) | [হিব্রু](../he/README.md) | [ভিয়েতনামি](../vi/README.md) | [ইন্দোনেশিয়ান](../id/README.md) | [মালয়](../ms/README.md) | [তাগালগ (ফিলিপিনো)](../tl/README.md) | [সোয়াহিলি](../sw/README.md) | [হাঙ্গেরিয়ান](../hu/README.md) | [চেক](../cs/README.md) | [স্লোভাক](../sk/README.md) | [রোমানিয়ান](../ro/README.md) | [বুলগেরিয়ান](../bg/README.md) | [সার্বিয়ান (সিরিলিক)](../sr/README.md) | [ক্রোয়েশিয়ান](../hr/README.md) | [স্লোভেনিয়ান](../sl/README.md) | [ইউক্রেনিয়ান](../uk/README.md) | [বার্মিজ (মিয়ানমার)](../my/README.md)
প্রতিটি পাঠে রয়েছে পাঠ, অ্যাসাইনমেন্ট, জ্ঞান যাচাই এবং চ্যালেঞ্জ।
**যদি আপনি অতিরিক্ত অনুবাদ চান, সমর্থিত ভাষাগুলোর তালিকা [এখানে](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) পাওয়া যাবে।**
এটি দেখুন:
> https://aka.ms/genai-beginners
#### আমাদের কমিউনিটিতে যোগ দিন
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# আপনি কি একজন শিক্ষার্থী?
নিম্নলিখিত রিসোর্স দিয়ে শুরু করুন:
- [স্টুডেন্ট হাব পেজ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum): এখানে আপনি পাবেন শিক্ষার্থীদের জন্য প্রাথমিক রিসোর্স, স্টুডেন্ট প্যাক এবং এমনকি বিনামূল্যে সার্টিফিকেট ভাউচার পাওয়ার উপায়। এই পেজটি বুকমার্ক করে রাখুন এবং নিয়মিত চেক করুন কারণ আমরা প্রতি মাসে কন্টেন্ট আপডেট করি।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum): একটি গ্লোবাল স্টুডেন্ট অ্যাম্বাসেডর কমিউনিটিতে যোগ দিন, এটি হতে পারে Microsoft-এ আপনার প্রবেশের পথ।
- [স্টুডেন্ট হাব পেজ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) এই পেজে আপনি পাবেন শিক্ষার্থীদের জন্য রিসোর্স, স্টুডেন্ট প্যাক এবং এমনকি বিনামূল্যে সার্টিফিকেট ভাউচার পাওয়ার উপায়। এটি একটি পেজ যা আপনি বুকমার্ক করতে এবং সময়ে সময়ে চেক করতে চাইবেন কারণ আমরা অন্তত মাসিক ভিত্তিতে কন্টেন্ট পরিবর্তন করি।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) একটি গ্লোবাল স্টুডেন্ট অ্যাম্বাসেডর কমিউনিটিতে যোগ দিন, এটি হতে পারে মাইক্রোসফটে প্রবেশের আপনার পথ।
# শুরু করা যাক
> **শিক্ষকগণ**: আমরা এই শিক্ষাক্রমটি কীভাবে ব্যবহার করবেন তার জন্য [কিছু পরামর্শ](for-teachers.md) অন্তর্ভুক্ত করেছি। আমাদের [আলোচনা ফোরামে](https://github.com/microsoft/Data-Science-For-Beginners/discussions) আপনার মতামত জানাতে ভুলবেন না!
> **শিক্ষকগণ**: আমরা [কিছু পরামর্শ অন্তর্ভুক্ত করেছি](for-teachers.md) কীভাবে এই পাঠক্রম ব্যবহার করবেন। আমাদের [আলোচনা ফোরামে](https://github.com/microsoft/Data-Science-For-Beginners/discussions) আপনার মতামত জানাতে ভালো লাগবে!
> **[শিক্ষার্থীরা](https://aka.ms/student-page)**: এই শিক্ষাক্রমটি নিজে ব্যবহার করতে, পুরো রিপোজিটরি ফর্ক করুন এবং নিজে নিজে এক্সারসাইজ সম্পন্ন করুন, প্রাক-পাঠ কুইজ দিয়ে শুরু করুন। তারপর পাঠ পড়ুন এবং বাকি কার্যক্রম সম্পন্ন করুন। পাঠগুলো বুঝে প্রকল্প তৈরি করার চেষ্টা করুন, সমাধান কোড কপি না করে; তবে সেই কোডটি প্রতিটি প্রকল্প-ভিত্তিক পাঠের /solutions ফোল্ডারে পাওয়া যাবে। আরেকটি ধারণা হতে পারে বন্ধুদের সাথে একটি স্টাডি গ্রুপ তৈরি করা এবং একসাথে কন্টেন্টটি পড়া। আরও পড়াশোনার জন্য আমরা [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) সুপারিশ করি।
> **[শিক্ষার্থীরা](https://aka.ms/student-page)**: এই পাঠক্রমটি নিজের জন্য ব্যবহার করতে, পুরো রিপোজিটরি ফর্ক করুন এবং নিজের মতো করে এক্সারসাইজগুলো সম্পন্ন করুন, প্রাক-লেকচার কুইজ দিয়ে শুরু করুন। তারপর লেকচার পড়ুন এবং বাকি কার্যক্রম সম্পন্ন করুন। লেসনগুলো বুঝে প্রজেক্ট তৈরি করার চেষ্টা করুন, সমাধান কোড কপি না করে; তবে, সেই কোড /solutions ফোল্ডারে পাওয়া যাবে প্রতিটি প্রজেক্ট-ভিত্তিক লেসনে। আরেকটি ধারণা হতে পারে বন্ধুদের সাথে একটি স্টাডি গ্রুপ তৈরি করা এবং একসাথে কন্টেন্টটি পড়া। আরও পড়াশোনার জন্য, আমরা [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) সুপারিশ করি।
## টিমের সাথে পরিচিত হন
[![প্রোমো ভিডিও](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "প্রোমো ভিডিও")
**গিফ তৈরি করেছেন** [মোহিত জয়সল](https://www.linkedin.com/in/mohitjaisal)
> 🎥 উপরের ছবিতে ক্লিক করুন প্রকল্প এবং এটি তৈরি করা ব্যক্তিদের সম্পর্কে একটি ভিডিও দেখার জন্য!
## শিক্ষাদানের পদ্ধতি
**Gif তৈরি করেছেন** [মোহিত জয়সল](https://www.linkedin.com/in/mohitjaisal)
আমরা এই শিক্ষাক্রমটি তৈরি করার সময় দুটি শিক্ষাদান নীতি অনুসরণ করেছি: এটি প্রকল্প-ভিত্তিক এবং এতে নিয়মিত কুইজ অন্তর্ভুক্ত। এই সিরিজের শেষে, শিক্ষার্থীরা ডেটা সায়েন্সের মৌলিক নীতিগুলি শিখবে, যার মধ্যে রয়েছে নৈতিক ধারণা, ডেটা প্রস্তুতি, ডেটার সাথে কাজ করার বিভিন্ন উপায়, ডেটা ভিজ্যুয়ালাইজেশন, ডেটা বিশ্লেষণ, ডেটা সায়েন্সের বাস্তব জীবনের ব্যবহার এবং আরও অনেক কিছু।
> 🎥 উপরের ছবিতে ক্লিক করুন প্রজেক্ট এবং এটি তৈরি করা ব্যক্তিদের সম্পর্কে একটি ভিডিও দেখার জন্য!
এছাড়াও, ক্লাসের আগে একটি সহজ কুইজ শিক্ষার্থীর মনোযোগ বিষয়বস্তুর দিকে নিয়ে যায়, এবং ক্লাসের পরে একটি দ্বিতীয় কুইজ বিষয়টি আরও ভালোভাবে মনে রাখতে সাহায্য করে। এই শিক্ষাক্রমটি নমনীয় এবং মজাদারভাবে ডিজাইন করা হয়েছে এবং এটি সম্পূর্ণ বা আংশিকভাবে নেওয়া যেতে পারে। প্রকল্পগুলো ছোট থেকে শুরু হয় এবং ১০ সপ্তাহের চক্রের শেষে ক্রমশ জটিল হয়ে ওঠে।
## শিক্ষাদান পদ্ধতি
> আমাদের [আচরণবিধি](CODE_OF_CONDUCT.md), [অবদান](CONTRIBUTING.md), [অনুবাদ](TRANSLATIONS.md) নির্দেশিকা দেখুন। আমরা আপনার গঠনমূলক প্রতিক্রিয়া স্বাগত জানাই!
আমরা এই পাঠক্রম তৈরি করার সময় দুটি শিক্ষাদান নীতি বেছে নিয়েছি: এটি প্রকল্প-ভিত্তিক নিশ্চিত করা এবং এতে ঘন ঘন কুইজ অন্তর্ভুক্ত করা। এই সিরিজের শেষে, শিক্ষার্থীরা ডেটা সায়েন্সের মৌলিক নীতিগুলো শিখবে, যার মধ্যে রয়েছে নৈতিক ধারণা, ডেটা প্রস্তুতি, ডেটার সাথে কাজ করার বিভিন্ন উপায়, ডেটা ভিজ্যুয়ালাইজেশন, ডেটা বিশ্লেষণ, ডেটা সায়েন্সের বাস্তব জীবনের ব্যবহারিক কেস এবং আরও অনেক কিছু।
## প্রতিটি পাঠে অন্তর্ভুক্ত:
এছাড়াও, একটি ক্লাসের আগে একটি কম ঝুঁকির কুইজ শিক্ষার্থীর মনোযোগ একটি বিষয় শেখার দিকে নিয়ে যায়, যখন ক্লাসের পরে একটি দ্বিতীয় কুইজ আরও ধারণ নিশ্চিত করে। এই পাঠক্রমটি নমনীয় এবং মজাদার করার জন্য ডিজাইন করা হয়েছে এবং এটি পুরোপুরি বা আংশিকভাবে নেওয়া যেতে পারে। প্রকল্পগুলো ছোট থেকে শুরু হয় এবং ১০ সপ্তাহের চক্রের শেষে ক্রমশ জটিল হয়ে ওঠে।
আমাদের [আচরণবিধি](CODE_OF_CONDUCT.md), [অবদান](CONTRIBUTING.md), [অনুবাদ](TRANSLATIONS.md) নির্দেশিকা দেখুন। আমরা আপনার গঠনমূলক প্রতিক্রিয়া স্বাগত জানাই!
## প্রতিটি পাঠ অন্তর্ভুক্ত করে:
- ঐচ্ছিক স্কেচনোট
- ঐচ্ছিক সম্পূরক ভিডিও
- প্রাক-পাঠ উষ্ণতা কুইজ
- পাঠের আগে উষ্ণতা পরীক্ষা
- লিখিত পাঠ
- প্রকল্প-ভিত্তিক পাঠের জন্য, প্রকল্পটি কীভাবে তৈরি করবেন তার ধাপে ধাপে নির্দেশিকা
- প্রকল্প-ভিত্তিক পাঠের জন্য, প্রকল্প তৈরি করার ধাপে ধাপে নির্দেশিকা
- জ্ঞান যাচাই
- একটি চ্যালেঞ্জ
- সম্পূরক পড়াশোনা
- সম্পূরক পাঠ্য
- অ্যাসাইনমেন্ট
- পর-পাঠ কুইজ
- [পাঠ-পরবর্তী কুইজ](https://ff-quizzes.netlify.app/en/)
> **কুইজ সম্পর্কে একটি নোট**: সমস্ত কুইজ Quiz-App ফোল্ডারে রয়েছে, মোট ৪০টি কুইজ, প্রতিটিতে তিনটি প্রশ্ন। এগুলো পাঠের মধ্যে থেকে লিঙ্ক করা হয়েছে, তবে কুইজ অ্যাপটি স্থানীয়ভাবে চালানো বা Azure-এ ডিপ্লয় করা যেতে পারে; `quiz-app` ফোল্ডারে নির্দেশিকা অনুসরণ করুন। এগুলো ধীরে ধীরে স্থানীয় ভাষায় অনুবাদ করা হচ্ছে।
> **কুইজ সম্পর্কে একটি নোট**: সমস্ত কুইজ `Quiz-App` ফোল্ডারে অন্তর্ভুক্ত, যেখানে মোট ৪০টি কুইজ রয়েছে, প্রতিটিতে তিনটি প্রশ্ন। এগুলো পাঠের মধ্যে থেকে লিঙ্ক করা হয়েছে, তবে কুইজ অ্যাপটি স্থানীয়ভাবে চালানো বা Azure-এ ডিপ্লয় করা যেতে পারে; `quiz-app` ফোল্ডারের নির্দেশনা অনুসরণ করুন। এগুলো ধীরে ধীরে স্থানীয় ভাষায় অনুবাদ করা হচ্ছে।
## পাঠসমূহ
|![(@sketchthedocs) দ্বারা স্কেচনোট](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.bn.png)|
|![ @sketchthedocs দ্বারা স্কেচনোট https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.bn.png)|
|:---:|
| ডেটা সায়েন্স শিক্ষার্থীদের জন্য: রোডম্যাপ - _[@nitya](https://twitter.com/nitya) দ্বারা স্কেচনোট_ |
| ডেটা সায়েন্স ফর বিগিনার্স: রোডম্যাপ - _[@nitya](https://twitter.com/nitya) দ্বারা স্কেচনোট_ |
| পাঠ নম্বর | বিষয় | পাঠের গ্রুপিং | শেখার উদ্দেশ্য | লিঙ্ক করা পাঠ | লেখক |
| পাঠ নম্বর | বিষয় | পাঠের বিভাগ | শেখার উদ্দেশ্য | লিঙ্ককৃত পাঠ | লেখক |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| ০১ | ডেটা সায়েন্স সংজ্ঞায়িত করা | [পরিচিতি](1-Introduction/README.md) | ডেটা সায়েন্সের মৌলিক ধারণাগুলি এবং এটি কৃত্রিম বুদ্ধিমত্তা, মেশিন লার্নিং এবং বিগ ডেটার সাথে কীভাবে সম্পর্কিত। | [পাঠ](1-Introduction/01-defining-data-science/README.md) [ভিডিও](https://youtu.be/beZ7Mb_oz9I) | [দিমিত্রি](http://soshnikov.com) |
| ০২ | ডেটা সায়েন্সের নৈতিকতা | [পরিচিতি](1-Introduction/README.md) | ডেটা নৈতিকতার ধারণা, চ্যালেঞ্জ এবং কাঠামো। | [পাঠ](1-Introduction/02-ethics/README.md) | [নিত্য](https://twitter.com/nitya) |
| ০৩ | ডেটা সংজ্ঞায়িত করা | [পরিচিতি](1-Introduction/README.md) | ডেটা কীভাবে শ্রেণীবদ্ধ হয় এবং এর সাধারণ উৎস। | [পাঠ](1-Introduction/03-defining-data/README.md) | [জেসমিন](https://www.twitter.com/paladique) |
| | পরিসংখ্যান ও সম্ভাবনার পরিচিতি | [পরিচিতি](1-Introduction/README.md) | ডেটা বোঝার জন্য সম্ভাবনা এবং পরিসংখ্যানের গাণিতিক কৌশল। | [পাঠ](1-Introduction/04-stats-and-probability/README.md) [ভিডিও](https://youtu.be/Z5Zy85g4Yjw) | [দিমিত্রি](http://soshnikov.com) |
| ০৫ | সম্পর্কযুক্ত ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | সম্পর্কযুক্ত ডেটার পরিচিতি এবং SQL (যা "সিকুয়েল" নামে পরিচিত) ব্যবহার করে সম্পর্কযুক্ত ডেটা অন্বেষণ এবং বিশ্লেষণের মৌলিক বিষয়। | [পাঠ](2-Working-With-Data/05-relational-databases/README.md) | [ক্রিস্টোফার](https://www.twitter.com/geektrainer) | | |
| ০৬ | নন-রিলেশনাল ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | নন-রিলেশনাল ডেটার পরিচিতি, এর বিভিন্ন প্রকার এবং ডকুমেন্ট ডেটাবেস অন্বেষণ এবং বিশ্লেষণের মৌলিক বিষয়। | [পাঠ](2-Working-With-Data/06-non-relational/README.md) | [জেসমিন](https://twitter.com/paladique)|
| | পাইথনের সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | পাইথন ব্যবহার করে ডেটা অন্বেষণের মৌলিক বিষয়, যেমন Pandas লাইব্রেরি। পাইথন প্রোগ্রামিংয়ের প্রাথমিক ধারণা সুপারিশ করা হয়। | [পাঠ](2-Working-With-Data/07-python/README.md) [ভিডিও](https://youtu.be/dZjWOGbsN4Y) | [দিমিত্রি](http://soshnikov.com) |
| 08 | ডেটা প্রস্তুতি | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | ডেটা পরিষ্কার এবং রূপান্তর করার কৌশল নিয়ে আলোচনা, যা অনুপস্থিত, ভুল বা অসম্পূর্ণ ডেটার চ্যালেঞ্জ মোকাবেলা করতে সাহায্য করে। | [পাঠ](2-Working-With-Data/08-data-preparation/README.md) | [জ্যাসমিন](https://www.twitter.com/paladique) |
| 09 | পরিমাণের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | ম্যাটপ্লটলিব ব্যবহার করে পাখির ডেটা 🦆 ভিজ্যুয়ালাইজ করতে শিখুন। | [পাঠ](3-Data-Visualization/09-visualization-quantities/README.md) | [জেন](https://twitter.com/jenlooper) |
| 10 | ডেটার বিতরণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | একটি নির্দিষ্ট সময়সীমার মধ্যে পর্যবেক্ষণ এবং প্রবণতা ভিজ্যুয়ালাইজ করা। | [পাঠ](3-Data-Visualization/10-visualization-distributions/README.md) | [জেন](https://twitter.com/jenlooper) |
| 11 | অনুপাতের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | পৃথক এবং গোষ্ঠীভুক্ত শতাংশের ভিজ্যুয়ালাইজেশন। | [পাঠ](3-Data-Visualization/11-visualization-proportions/README.md) | [জেন](https://twitter.com/jenlooper) |
| 12 | সম্পর্কের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | ডেটার সেট এবং তাদের ভেরিয়েবলের মধ্যে সংযোগ এবং সম্পর্ক ভিজ্যুয়ালাইজ করা। | [পাঠ](3-Data-Visualization/12-visualization-relationships/README.md) | [জেন](https://twitter.com/jenlooper) |
| 13 | অর্থপূর্ণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | আপনার ভিজ্যুয়ালাইজেশনকে কার্যকর সমস্যা সমাধান এবং অন্তর্দৃষ্টির জন্য মূল্যবান করার কৌশল এবং নির্দেশা। | [পাঠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [জেন](https://twitter.com/jenlooper) |
| 14 | ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি এবং ডেটা সংগ্রহ ও নিষ্কাশনের প্রথম ধাপ। | [পাঠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [জ্যাসমিন](https://twitter.com/paladique) |
| 15 | বিশ্লেষণ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের এই ধাপটি ডেটা বিশ্লেষণের কৌশলগুলির উপর কেন্দ্রীভূত। | [পাঠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [জ্যাসমিন](https://twitter.com/paladique) |
| 16 | যোগাযোগ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের এই ধাপটি ডেটা থেকে অন্তর্দৃষ্টি উপস্থাপন করার উপর কেন্দ্রীভূত, যা সিদ্ধান্ত গ্রহণকারীদের জন্য সহজবোধ্য করে তোলে। | [পাঠ](4-Data-Science-Lifecycle/16-communication/README.md) | [জালেন](https://twitter.com/JalenMcG) |
| 17 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | ক্লাউডে ডেটা সায়েন্স এবং এর সুবিধাগুলি নিয়ে পাঠ। | [পাঠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [টিফানি](https://twitter.com/TiffanySouterre) এবং [মড](https://twitter.com/maudstweets) |
| 18 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | লো কোড টুল ব্যবহার করে মডেল প্রশিক্ষণ। | [পাঠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [টিফানি](https://twitter.com/TiffanySouterre) এবং [মড](https://twitter.com/maudstweets) |
| 19 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ব্যবহার করে মডেল স্থাপন। | [পাঠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [টিফানি](https://twitter.com/TiffanySouterre) এবং [মড](https://twitter.com/maudstweets) |
| 20 | বাস্তব জীবনে ডেটা সায়েন্স | [বাস্তব জীবনে](6-Data-Science-In-Wild/README.md) | বাস্তব জীবনের ডেটা সায়েন্স চালিত প্রকল্প। | [পাঠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [নিত্য](https://twitter.com/nitya) |
| 01 | ডেটা সায়েন্স সংজ্ঞায়িত করা | [ভূমিকা](1-Introduction/README.md) | ডেটা সায়েন্সের মৌলিক ধারণাগুলি এবং এটি কীভাবে কৃত্রিম বুদ্ধিমত্তা, মেশিন লার্নিং এবং বিগ ডেটার সাথে সম্পর্কিত তা শিখুন। | [পাঠ](1-Introduction/01-defining-data-science/README.md) [ভিডিও](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | ডেটা সায়েন্স নৈতিকতা | [ভূমিকা](1-Introduction/README.md) | ডেটা নৈতিকতার ধারণা, চ্যালেঞ্জ এবং কাঠামো। | [পাঠ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | ডেটা সংজ্ঞায়িত করা | [ভূমিকা](1-Introduction/README.md) | ডেটা কীভাবে শ্রেণীবদ্ধ হয় এবং এর সাধারণ উৎস। | [পাঠ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | পরিসংখ্যান ও সম্ভাবনার পরিচিতি | [ভূমিকা](1-Introduction/README.md) | ডেটা বোঝার জন্য সম্ভাবনা এবং পরিসংখ্যানের গাণিতিক কৌশল। | [পাঠ](1-Introduction/04-stats-and-probability/README.md) [ভিডিও](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | সম্পর্কিত ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | সম্পর্কিত ডেটার পরিচিতি এবং SQL (যাকে "see-quell" বলা হয়) নামে পরিচিত স্ট্রাকচার্ড কোয়েরি ল্যাঙ্গুয়েজ ব্যবহার করে সম্পর্কিত ডেটা অন্বেষণ এবং বিশ্লেষণের মৌলিক বিষয়। | [পাঠ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ডেটার সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | অ-সম্পর্কিত ডেটার পরিচিতি, এর বিভিন্ন প্রকার এবং ডকুমেন্ট ডেটাবেস অন্বেষণ এবং বিশ্লেষণের মৌলিক বিষয়। | [পাঠ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | পাইথনের সাথে কাজ করা | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | Pandas-এর মতো লাইব্রেরি ব্যবহার করে ডেটা অন্বেষণের জন্য পাইথন ব্যবহার করার মৌলিক বিষয়। পাইথন প্রোগ্রামিংয়ের প্রাথমিক ধারণা সুপারিশ করা হয়। | [পাঠ](2-Working-With-Data/07-python/README.md) [ভিডিও](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ডেটা প্রস্তুতি | [ডেটার সাথে কাজ করা](2-Working-With-Data/README.md) | ডেটা পরিষ্কার এবং রূপান্তর করার কৌশলগুলি, যেমন অনুপস্থিত, ভুল বা অসম্পূর্ণ ডেটা পরিচালনা। | [পাঠ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | পরিমাণের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | Matplotlib ব্যবহার করে পাখির ডেটা 🦆 ভিজ্যুয়ালাইজ করতে শিখুন। | [পাঠ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ডেটার বিতরণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | একটি অন্তরালের পর্যবেক্ষণ এবং প্রবণতা ভিজ্যুয়ালাইজ করা। | [পাঠ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | অনুপাতের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | পৃথক এবং গোষ্ঠীভুক্ত শতাংশের ভিজ্যুয়ালাইজেশন। | [পাঠ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | সম্পর্কের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | ডেটার সেট এবং এর ভেরিয়েবলগুলির মধ্যে সংযোগ এবং সম্পর্কের ভিজ্যুয়ালাইজেশন। | [পাঠ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | অর্থপূর্ণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | কার্যকর সমস্যা সমাধান এবং অন্তর্দৃষ্টির জন্য আপনার ভিজ্যুয়ালাইজেশনকে মূল্যবান করার কৌশল এবং নির্দেশিকা। | [পাঠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি এবং ডেটা সংগ্রহ ও নিষ্কাশনের প্রথম ধাপ। | [পাঠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | বিশ্লেষণ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা বিশ্লেষণের কৌশলগুলির উপর ভিত্তি করে ডেটা সায়েন্স লাইফসাইকেলের এই ধাপ। | [পাঠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | যোগাযোগ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা থেকে অন্তর্দৃষ্টি উপস্থাপন করার কৌশল, যা সিদ্ধান্ত গ্রহণকারীদের জন্য বোঝা সহজ করে। | [পাঠ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | ক্লাউডে ডেটা সায়েন্স এবং এর সুবিধাগুলির পরিচিতি। | [পাঠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 18 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | লো কোড টুল ব্যবহার করে মডেল প্রশিক্ষণ। |[পাঠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 19 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ব্যবহার করে মডেল ডিপ্লয় করা। | [পাঠ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
| 20 | বাস্তব জীবনে ডেটা সায়েন্স | [ইন দ্য ওয়াইল্ড](6-Data-Science-In-Wild/README.md) | বাস্তব জীবনের ডেটা সায়েন্স চালিত প্রকল্প। | [পাঠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
এই নমুনাটি Codespace-এ খুলতে নিম্নলিখিত ধাপগুলি অনুসরণ করুন:
Codespace-এ এই নমুনা খুলতে নিম্নলিখিত ধাপগুলি অনুসরণ করুন:
1. Code ড্রপ-ডাউন মেনুতে ক্লিক করুন এবং Open with Codespaces অপশনটি নির্বাচন করুন।
2. প্যানেলের নিচে + New codespace নির্বাচন করুন।
আরও তথ্যের জন্য, [GitHub ডকুমেন্টেশন](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) দেখুন।
@ -120,9 +115,9 @@ Azure Cloud Advocates টিম Microsoft থেকে ১০ সপ্তাহ
এই রিপোজিটরি ব্যবহার করতে, আপনি হয় রিপোজিটরিটি একটি বিচ্ছিন্ন Docker ভলিউমে খুলতে পারেন:
**নোট**: এটি Remote-Containers: **Clone Repository in Container Volume...** কমান্ড ব্যবহার করে সোর্স কোডটি স্থানীয় ফাইল সিস্টেমের পরিবর্তে একটি Docker ভলিউমে ক্লোন করবে। [ভলিউম](https://docs.docker.com/storage/volumes/) কন্টেইনার ডেটা সংরক্ষণের জন্য পছন্দনীয় পদ্ধতি।
**নোট**: ভিতরে, এটি Remote-Containers: **Clone Repository in Container Volume...** কমান্ড ব্যবহার করবে, যা স্থানীয় ফাইল সিস্টেমের পরিবর্তে Docker ভলিউমে সোর্স কোড ক্লোন করবে। [Volumes](https://docs.docker.com/storage/volumes/) ডেটা সংরক্ষণের জন্য পছন্দনীয় পদ্ধতি।
অথবা স্থানীয়ভাবে ক্লোন করা বা ডাউনলোড করা রিপোজিটরিটি খুলুন:
অথবা স্থানীয়ভাবে ক্লোন করা বা ডাউনলোড করা সংস্করণ খুলুন:
- এই রিপোজিটরিটি আপনার স্থানীয় ফাইল সিস্টেমে ক্লোন করুন।
- F1 চাপুন এবং **Remote-Containers: Open Folder in Container...** কমান্ড নির্বাচন করুন।
@ -130,34 +125,30 @@ Azure Cloud Advocates টিম Microsoft থেকে ১০ সপ্তাহ
## অফলাইন অ্যাক্সেস
আপনি [Docsify](https://docsify.js.org/#/) ব্যবহার করে এই ডকুমেন্টেশনটি অফলাইনে চালাতে পারেন। এই রিপোজিটরিটি ফর্ক করুন, [Docsify ইনস্টল করুন](https://docsify.js.org/#/quickstart) আপনার স্থানীয় মেশিনে, তারপর এই রিপোজিটরির মূল ফোল্ডারে `docsify serve` টাইপ করুন। ওয়েবসাইটটি আপনার লোকালহোস্টে পোর্ট 3000-এ পরিবেশন করা হবে: `localhost:3000`
> নোট, নোটবুকগুলি Docsify-এ রেন্ডার হবে না, তাই যখন আপনাকে একটি নোটবুক চালাতে হবে, তখন এটি আলাদাভাবে VS Code-এ একটি Python কের্নেল চালিয়ে করুন।
## সাহায্য প্রয়োজন!
আপনি [Docsify](https://docsify.js.org/#/) ব্যবহার করে এই ডকুমেন্টেশন অফলাইনে চালাতে পারেন। এই রিপোজিটরি ফর্ক করুন, [Docsify ইনস্টল করুন](https://docsify.js.org/#/quickstart) আপনার স্থানীয় মেশিনে, তারপর এই রিপোজিটরির মূল ফোল্ডারে `docsify serve` টাইপ করুন। ওয়েবসাইটটি আপনার লোকালহোস্টে পোর্ট 3000-এ পরিবেশন করা হবে: `localhost:3000`
আপনি যদি পাঠ্যক্রমের সম্পূর্ণ বা অংশ অনুবাদ করতে চান, তাহলে আমাদের [অনুবাদ](TRANSLATIONS.md) গাইড অনুসরণ করুন।
> নোট, নোটবুকগুলি Docsify-এর মাধ্যমে রেন্ডার করা হবে না, তাই যখন আপনাকে একটি নোটবুক চালাতে হবে, তখন এটি আলাদাভাবে VS Code-এ একটি পাইথন কার্নেল চালিয়ে করুন।
## অন্যান্য পাঠ্যক্রম
আমাদের টিম অন্যান্য পাঠ্যক্রম তৈরি করে! দেখুন:
- [শুরু করার জন্য জেনারেটিভ AI](https://aka.ms/genai-beginners)
- [শুরু করার জন্য জেনারেটিভ AI .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [জেনারেটিভ AI জাভাস্ক্রিপ্ট দিয়ে](https://github.com/microsoft/generative-ai-with-javascript)
- [জেনারেটিভ AI জাভা দিয়ে](https://aka.ms/genaijava)
- [শুরু করার জন্য AI](https://aka.ms/ai-beginners)
- [শুরু করার জন্য ডেটা সায়েন্স](https://aka.ms/datascience-beginners)
- [শুরু করার জন্য ML](https://aka.ms/ml-beginners)
- [শুরু করার জন্য সাইবারসিকিউরিটি](https://github.com/microsoft/Security-101)
- [শুরু করার জন্য ওয়েব ডেভেলপমেন্ট](https://aka.ms/webdev-beginners)
- [শুরু করার জন্য IoT](https://aka.ms/iot-beginners)
- [শুরু করার জন্য XR ডেভেলপমেন্ট](https://github.com/microsoft/xr-development-for-beginners)
- [পেয়ারড প্রোগ্রামিংয়ের জন্য GitHub Copilot আয়ত্ত করা](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [C#/.NET ডেভেলপারদের জন্য GitHub Copilot আয়ত্ত করা](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [আপনার নিজস্ব Copilot অ্যাডভেঞ্চার নির্বাচন করুন](https://github.com/microsoft/CopilotAdventures)
আমাদের দল অন্যান্য পাঠ্যক্রম তৈরি করে! দেখুন:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**অস্বীকৃতি**:
এই নথিটি AI অনুবাদ পরিষেবা [Co-op Translator](https://github.com/Azure/co-op-translator) ব্যবহার করে অনুবাদ করা হয়েছে। আমরা যথাসাধ্য সঠিক অনুবাদের চেষ্টা করি, তবে দয়া করে মনে রাখবেন যে স্বয়ংক্রিয় অনুবাদে ত্রুটি বা অসঙ্গতি থাকতে পারে। নথিটির মূল ভাষায় লেখা সংস্করণটিকেই প্রামাণিক উৎস হিসেবে বিবেচনা করা উচিত। গুরুত্বপূর্ণ তথ্যের জন্য, পেশাদার মানব অনুবাদ ব্যবহার করার পরামর্শ দেওয়া হয়। এই অনুবাদ ব্যবহারের ফলে সৃষ্ট কোনো ভুল বোঝাবুঝি বা ভুল ব্যাখ্যার জন্য আমরা দায়ী নই।
এই নথিটি AI অনুবাদ পরিষেবা [Co-op Translator](https://github.com/Azure/co-op-translator) ব্যবহার করে অনুবাদ করা হয়েছে। আমরা যথাসম্ভব সঠিক অনুবাদের চেষ্টা করি, তবে অনুগ্রহ করে মনে রাখবেন যে স্বয়ংক্রিয় অনুবাদে ত্রুটি বা অসঙ্গতি থাকতে পারে। নথিটির মূল ভাষায় লেখা সংস্করণটিকেই প্রামাণিক উৎস হিসেবে বিবেচনা করা উচিত। গুরুত্বপূর্ণ তথ্যের জন্য, পেশাদার মানব অনুবাদ ব্যবহার করার পরামর্শ দেওয়া হয়। এই অনুবাদ ব্যবহারের ফলে সৃষ্ট কোনো ভুল বোঝাবুঝি বা ভুল ব্যাখ্যার জন্য আমরা দায়ী নই।

@ -1,50 +1,63 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a746eb3b41f67cde5a0b648b8910a656",
"translation_date": "2025-08-28T09:47:18+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:59:23+00:00",
"source_file": "README.md",
"language_code": "mo"
}
-->
# 資料科學入門 - 課程大綱
# 初學者的數據科學課程
Azure Cloud Advocates 團隊很高興提供一個為期10週、共20課的資料科學課程。每堂課包含課前和課後測驗、詳細的課程指導、解答以及作業。我們採用以專案為基礎的教學法讓您在實作中學習這是一種能讓新技能更容易記住的有效方法。
[![在 GitHub Codespaces 中打開](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
**衷心感謝我們的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
[![GitHub 授權](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
[![GitHub 貢獻者](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[![GitHub 問題](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[![GitHub 拉取請求](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[![歡迎 PR](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
**🙏 特別感謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審稿人及內容貢獻者,** 特別是 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)。
[![GitHub 關注者](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[![GitHub 分叉](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[![GitHub 星標](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
|![由 (@sketchthedocs) 繪製的速寫 https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.mo.png)|
|:---:|
| 資料科學入門 - _速寫由 [@nitya](https://twitter.com/nitya) 繪製_ |
[![](https://dcbadge.vercel.app/api/server/ByRwuEEgH4)](https://discord.gg/zxKYvhSnVp?WT.mc_id=academic-000002-leestott)
[![Azure AI Foundry 開發者論壇](https://img.shields.io/badge/GitHub-Azure_AI_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum)
Microsoft 的 Azure Cloud Advocates 團隊很高興為您提供一個為期 10 週、共 20 節課的數據科學課程。每節課都包含課前和課後測驗、完成課程的書面指導、解決方案以及作業。我們的專案式教學法讓您在實作中學習,這是一種被證明能讓新技能更牢固掌握的方法。
## 公告 - 新的生成式 AI 課程已發布!
**特別感謝我們的作者們:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
**🙏 特別感謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審稿人和內容貢獻者,** 特別是 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)。
|![由 @sketchthedocs 繪製的草圖 https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.mo.png)|
|:---:|
| 初學者的數據科學 - _由 [@nitya](https://twitter.com/nitya) 繪製的草圖_ |
我們剛剛發布了一個包含12堂課的生成式 AI 課程。來學習以下內容:
### 🌐 多語言支援
- 提示設計與提示工程
- 文本與圖像應用生成
- 搜索應用
#### 通過 GitHub Action 支援(自動化且始終保持最新)
和往常一樣,每堂課都有課程、作業、知識檢查和挑戰。
[法文](../fr/README.md) | [西班牙文](../es/README.md) | [德文](../de/README.md) | [俄文](../ru/README.md) | [阿拉伯文](../ar/README.md) | [波斯文(法爾西)](../fa/README.md) | [烏爾都文](../ur/README.md) | [中文(簡體)](../zh/README.md) | [中文(繁體,澳門)](./README.md) | [中文(繁體,香港)](../hk/README.md) | [中文(繁體,台灣)](../tw/README.md) | [日文](../ja/README.md) | [韓文](../ko/README.md) | [印地文](../hi/README.md) | [孟加拉文](../bn/README.md) | [馬拉地文](../mr/README.md) | [尼泊爾文](../ne/README.md) | [旁遮普文(古木基文)](../pa/README.md) | [葡萄牙文(葡萄牙)](../pt/README.md) | [葡萄牙文(巴西)](../br/README.md) | [義大利文](../it/README.md) | [波蘭文](../pl/README.md) | [土耳其文](../tr/README.md) | [希臘文](../el/README.md) | [泰文](../th/README.md) | [瑞典文](../sv/README.md) | [丹麥文](../da/README.md) | [挪威文](../no/README.md) | [芬蘭文](../fi/README.md) | [荷蘭文](../nl/README.md) | [希伯來文](../he/README.md) | [越南文](../vi/README.md) | [印尼文](../id/README.md) | [馬來文](../ms/README.md) | [塔加洛文(菲律賓語)](../tl/README.md) | [斯瓦希里文](../sw/README.md) | [匈牙利文](../hu/README.md) | [捷克文](../cs/README.md) | [斯洛伐克文](../sk/README.md) | [羅馬尼亞文](../ro/README.md) | [保加利亞文](../bg/README.md) | [塞爾維亞文(西里爾文)](../sr/README.md) | [克羅埃西亞文](../hr/README.md) | [斯洛維尼亞文](../sl/README.md) | [烏克蘭文](../uk/README.md) | [緬甸文(緬甸)](../my/README.md)
查看課程:
**如果您希望支援其他語言,請參考 [這裡](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
> https://aka.ms/genai-beginners
#### 加入我們的社群
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# 您是學生嗎?
以下資源可以幫助您開始:
可以從以下資源開始:
- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在這個頁面,您可以找到入門資源、學生套件,甚至有機會獲得免費認證券。這是您應該收藏並定期查看的頁面,因為我們至少每月更新一次內容。
- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球學生大使社群,這可能是您進入 Microsoft 的途徑。
- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在這個頁面上,您可以找到初學者資源、學生套件,甚至是獲取免費認證憑證的方法。這是一個值得收藏的頁面,因為我們至少每月更新一次內容。
- [Microsoft 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入一個全球性的學生大使社群,這可能是您進入 Microsoft 的途徑。
# 開始使用
> **教師們**:我們已[提供一些建議](for-teachers.md)來幫助您使用這份課程。我們期待您在[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)中的饋!
> **教師們**:我們已[提供一些建議](for-teachers.md)來幫助您使用這份課程。我們期待您在[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)中的饋!
> **[學生們](https://aka.ms/student-page)**:如果您想自行使用這份課程,請 fork 整個 repo 並自行完成練習,從課前測驗開始。然後閱讀課程並完成其餘活動。嘗試通過理解課程內容來創建專案,而不是直接複製解答程式碼;不過,這些程式碼可以在每個專案課程的 /solutions 資料夾中找到。另一個建議是與朋友組成學習小組,一起學習內容。若需進一步學習,我們推薦 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
> **[學生們](https://aka.ms/student-page)**:如果您想自行使用這份課程,請分叉整個倉庫並自行完成練習,從課前測驗開始。然後閱讀講義並完成其餘活動。嘗試通過理解課程內容來創建專案,而不是直接複製解決方案代碼;不過,這些代碼可以在每個專案課程的 /solutions 資料夾中找到。另一個建議是與朋友組成學習小組,一起學習這些內容。進一步學習,我們推薦 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
## 認識團隊
@ -52,91 +65,86 @@ Azure Cloud Advocates 團隊很高興提供一個為期10週、共20課的資料
**Gif 作者** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 點擊上方圖片觀看影片,了解這個專案及其創作者
> 🎥 點擊上方圖片觀看關於這個專案及其創作者的影片
## 教學法
我們在設計這份課程時選擇了兩個教學原則:確保課程以專案為基礎,並包含頻繁的測驗。完成這系列課程後,學生將學習到資料科學的基本原則,包括倫理概念、資料準備、不同的資料處理方式、資料視覺化、資料分析、資料科學的實際應用案例等。
在設計這份課程時,我們選擇了兩個教學原則:確保課程是專案導向的,並且包含頻繁的測驗。在這個系列結束時,學生將學習到數據科學的基本原則,包括倫理概念、數據準備、不同的數據處理方式、數據視覺化、數據分析、數據科學的實際應用案例等。
此外課前的低壓測驗能幫助學生專注於學習主題而課後測驗則能加強記憶。這份課程設計靈活有趣可以完整學習或部分選修。專案從簡單開始並在10週的課程中逐漸變得複雜。
此外,課前的低壓力測驗可以幫助學生專注於學習主題,而課後的第二次測驗則能進一步鞏固記憶。這份課程設計靈活且有趣,可以整體學習,也可以部分學習。專案從簡單開始,並在 10 週的課程中逐漸變得更具挑戰性。
> 查看我們的[行為準則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指南](TRANSLATIONS.md)。我們歡迎您的建設性反饋!
## 每節課包含:
> 查看我們的 [行為準則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指南](TRANSLATIONS.md)。我們歡迎您的建設性回饋!
## 每堂課包含:
- 可選的速寫筆記
- 可選的手繪筆記
- 可選的補充影片
- 課前暖身測驗
- 書面課程
- 專案課程的逐步指導
- 對於基於專案的課程,提供逐步指導如何完成專案
- 知識檢查
- 挑戰
- 挑戰
- 補充閱讀
- 作業
- 課後測驗
- [課後測驗](https://ff-quizzes.netlify.app/en/)
> **關於測驗的說明**:所有測驗都包含在 Quiz-App 資料夾中,共40個測驗每個測驗有三個問題。測驗在課程中有連結但 Quiz-App 可以在本地運行或部署到 Azure請按照 `quiz-app` 資料夾中的指導進行操作。測驗正在逐步本地化。
> **關於測驗的說明**:所有測驗都包含在 Quiz-App 資料夾中,共有 40 個測驗,每個測驗包含三個問題。這些測驗已經在課程中鏈接,但測驗應用程式可以在本地運行或部署到 Azure請按照 `quiz-app` 資料夾中的指示操作。測驗正在逐步進行本地化。
## 課程
## 課程列表
|![由 [(@sketchthedocs)](https://sketchthedocs.dev) 繪製的速寫 ](./sketchnotes/00-Roadmap.png)|
|![由 @sketchthedocs 繪製的手繪筆記 https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.mo.png)|
|:---:|
| 資料科學入門:路線圖 - _速寫由 [@nitya](https://twitter.com/nitya) 繪製_ |
| 初學者數據科學:學習路線圖 - _手繪筆記由 [@nitya](https://twitter.com/nitya) 提供_ |
| 課程編號 | 主題 | 課程分組 | 學習目標 | 課程連結 | 作者 |
| 課程編號 | 主題 | 課程分組 | 學習目標 | 課程鏈接 | 作者 |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | 定義資料科學 | [簡介](1-Introduction/README.md) | 學習資料科學的基本概念及其與人工智慧、機器學習和大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | 資料科學倫理 | [簡介](1-Introduction/README.md) | 資料倫理概念、挑戰與框架。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | 定義資料 | [簡介](1-Introduction/README.md) | 資料的分類及其常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | 統計與機率簡介 | [簡介](1-Introduction/README.md) | 使用機率與統計的數學技術來理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | 使用關聯式資料 | [資料操作](2-Working-With-Data/README.md) | 關聯式資料簡介及使用 SQL結構化查詢語言探索與分析關聯式資料的基礎。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | 使用 NoSQL 資料 | [資料操作](2-Working-With-Data/README.md) | 非關聯式資料簡介、其各種類型及探索與分析文件型資料庫的基礎。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | 使用 Python | [資料操作](2-Working-With-Data/README.md) | 使用 Python 進行資料探索的基礎,包含 Pandas 等庫。建議具備 Python 程式設計的基礎知識。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | 數據準備 | [處理數據](2-Working-With-Data/README.md) | 關於清理和轉換數據的技術主題,以應對缺失、不準確或不完整數據的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 01 | 定義數據科學 | [簡介](1-Introduction/README.md) | 學習數據科學的基本概念,以及它與人工智慧、機器學習和大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | 數據科學倫理 | [簡介](1-Introduction/README.md) | 數據倫理的概念、挑戰與框架。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | 定義數據 | [簡介](1-Introduction/README.md) | 數據的分類方式及其常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | 統計與機率入門 | [簡介](1-Introduction/README.md) | 使用機率與統計的數學技術來理解數據。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | 使用關聯數據 | [數據操作](2-Working-With-Data/README.md) | 關聯數據的介紹以及使用結構化查詢語言SQL發音為“see-quell”探索和分析關聯數據的基礎知識。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | 使用 NoSQL 數據 | [數據操作](2-Working-With-Data/README.md) | 非關聯數據的介紹、其各種類型以及探索和分析文檔數據庫的基礎知識。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | 使用 Python | [數據操作](2-Working-With-Data/README.md) | 使用 Python 進行數據探索的基礎知識,包括 Pandas 等庫。建議具備 Python 程式設計的基礎知識。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | 數據準備 | [數據操作](2-Working-With-Data/README.md) | 關於清理和轉換數據的技術,以應對缺失、不準確或不完整數據的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | 數量可視化 | [數據可視化](3-Data-Visualization/README.md) | 學習如何使用 Matplotlib 可視化鳥類數據 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | 數據分佈可視化 | [數據可視化](3-Data-Visualization/README.md) | 可視化區間內的觀察和趨勢。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | 數據分佈可視化 | [數據可視化](3-Data-Visualization/README.md) | 可視化區間內的觀察和趨勢。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | 比例可視化 | [數據可視化](3-Data-Visualization/README.md) | 可視化離散和分組百分比。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | 關係可視化 | [數據可視化](3-Data-Visualization/README.md) | 可視化數據集及其變量之間的連接和相關性。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | 有意義的可視化 | [數據可視化](3-Data-Visualization/README.md) | 提供技術和指導,使您的可視化在有效解決問題和洞察方面更有價值。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | 數據科學生命周期介 | [生命周期](4-Data-Science-Lifecycle/README.md) | 介紹數據科學生命周期及其第一步:獲取和提取數據。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | 分析 | [生命周期](4-Data-Science-Lifecycle/README.md) | 數據科學生命周期的這一階段專注於分析數據的技術。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | 溝通 | [生命周期](4-Data-Science-Lifecycle/README.md) | 數據科學生命周期的這一階段專注於以易於決策者理解的方式呈現數據洞察。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | 雲端中的數據科學 | [雲端數據](5-Data-Science-In-Cloud/README.md) | 這系列課程介紹雲端中的數據科學及其優勢。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
| 18 | 雲端中的數據科學 | [雲端數據](5-Data-Science-In-Cloud/README.md) | 使用低代碼工具訓練模型。 | [課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
| 19 | 雲端中的數據科學 | [雲端數據](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
| 20 | 野外的數據科學 | [野外應用](6-Data-Science-In-Wild/README.md) | 現實世界中的數據科學驅動項目。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 12 | 關係可視化 | [數據可視化](3-Data-Visualization/README.md) | 可視化數據集及其變數之間的連結和相關性。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | 有意義的可視化 | [數據可視化](3-Data-Visualization/README.md) | 提供使可視化更有價值的技術和指導,以便有效解決問題並獲得洞察。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | 數據科學生命周期介 | [生命周期](4-Data-Science-Lifecycle/README.md) | 數據科學生命周期的介紹及其第一步:數據的獲取與提取。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | 數據分析 | [生命周期](4-Data-Science-Lifecycle/README.md) | 數據科學生命周期中專注於數據分析的技術。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | 溝通 | [生命周期](4-Data-Science-Lifecycle/README.md) | 數據科學生命周期專注於以易於決策者理解的方式呈現數據洞察。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | 雲端數據科學 | [雲端數據](5-Data-Science-In-Cloud/README.md) | 本系列課程介紹雲端數據科學及其優勢。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
| 18 | 雲端數據科學 | [雲端數據](5-Data-Science-In-Cloud/README.md) | 使用低代碼工具訓練模型。 |[課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
| 19 | 雲端數據科學 | [雲端數據](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
| 20 | 野外數據科學 | [實際應用](6-Data-Science-In-Wild/README.md) | 現實世界中的數據科學驅動專案。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
按照以下步驟在 Codespace 中打開此範例:
1. 點擊 Code 下拉菜單並選擇 Open with Codespaces 選項。
1. 點擊 Code 下拉選單,選擇 Open with Codespaces 選項。
2. 在面板底部選擇 + New codespace。
如需更多資訊,請查看 [GitHub 文檔](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
更多資訊,請參考 [GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
## VSCode Remote - Containers
按照以下步驟使用本地機器和 VSCode 的 VS Code Remote - Containers 擴展在容器中打開此倉庫:
1. 如果您是第一次使用開發容器,請確保您的系統符合前置要求(例如已安裝 Docker請參考[入門文檔](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
按照以下步驟,使用本地機器和 VSCode 的 VS Code Remote - Containers 擴展,在容器中打開此存儲庫:
1. 如果是第一次使用開發容器,請確保您的系統滿足前置需求(例如安裝 Docker詳情請參考[入門文檔](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
要使用此倉庫,您可以選擇在隔離的 Docker 卷中打開倉庫:
要使用此存儲庫,您可以選擇在隔離的 Docker 卷中打開存儲庫:
**注意**:在底層,這將使用 Remote-Containers: **Clone Repository in Container Volume...** 命令將源代碼克隆到 Docker 卷中,而不是本地文件系統。[卷](https://docs.docker.com/storage/volumes/)是持久化容器數據的首選機制。
**注意**:在底層,這將使用 Remote-Containers: **Clone Repository in Container Volume...** 命令將源代碼克隆到 Docker 卷中,而不是本地文件系統。[卷](https://docs.docker.com/storage/volumes/) 是持久化容器數據的首選機制。
或者打開本地克隆或下載的庫版本:
或者打開本地克隆或下載的存儲庫版本:
- 將此倉庫克隆到您的本地文件系統。
- 按 F1選擇 **Remote-Containers: Open Folder in Container...** 命令。
- 將此存儲庫克隆到本地文件系統。
- 按 F1選擇 **Remote-Containers: Open Folder in Container...** 命令。
- 選擇此文件夾的克隆副本,等待容器啟動,然後試用。
## 離線訪問
您可以使用 [Docsify](https://docsify.js.org/#/) 離線運行此文檔。Fork 此倉庫,在您的本地機器上[安裝 Docsify](https://docsify.js.org/#/quickstart),然後在此倉庫的根文件夾中輸入 `docsify serve`。網站將在本地端口 3000 上提供服務:`localhost:3000`。
> 注意,筆記本文件不會通過 Docsify 渲染,因此當您需要運行筆記本時,請在 VS Code 中使用 Python kernel 單獨運行。
## 尋求幫助!
您可以使用 [Docsify](https://docsify.js.org/#/) 離線運行此文檔。Fork 此存儲庫,在本地機器上[安裝 Docsify](https://docsify.js.org/#/quickstart),然後在此存儲庫的根目錄中輸入 `docsify serve`。網站將在本地端口 3000 上提供服務:`localhost:3000`。
如果您希望翻譯全部或部分課程,請遵循我們的[翻譯指南](TRANSLATIONS.md)
> 注意,筆記本無法通過 Docsify 渲染,因此當您需要運行筆記本時,請在運行 Python 核心的 VS Code 中單獨運行。
## 其他課程
@ -144,8 +152,8 @@ Azure Cloud Advocates 團隊很高興提供一個為期10週、共20課的資料
- [生成式 AI 初學者課程](https://aka.ms/genai-beginners)
- [生成式 AI 初學者課程 .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [生成式 AI 與 JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [生成式 AI 與 Java](https://aka.ms/genaijava)
- [使用 JavaScript 的生成式 AI](https://github.com/microsoft/generative-ai-with-javascript)
- [使用 Java 的生成式 AI](https://aka.ms/genaijava)
- [AI 初學者課程](https://aka.ms/ai-beginners)
- [數據科學初學者課程](https://aka.ms/datascience-beginners)
- [機器學習初學者課程](https://aka.ms/ml-beginners)
@ -153,11 +161,11 @@ Azure Cloud Advocates 團隊很高興提供一個為期10週、共20課的資料
- [Web 開發初學者課程](https://aka.ms/webdev-beginners)
- [物聯網初學者課程](https://aka.ms/iot-beginners)
- [XR 開發初學者課程](https://github.com/microsoft/xr-development-for-beginners)
- [掌握 GitHub Copilot 進行配對編程](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [掌握 GitHub Copilot 用於 C#/.NET 開發者](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [選擇的 Copilot 冒險](https://github.com/microsoft/CopilotAdventures)
- [精通 GitHub Copilot 配對編程](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [精通 GitHub Copilot 用於 C#/.NET 開發者](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [選擇的 Copilot 冒險](https://github.com/microsoft/CopilotAdventures)
---
**免責聲明**
本文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任
本文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對於因使用此翻譯而引起的任何誤解或錯誤解讀概不負責

@ -1,110 +1,105 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6bb17a440fdabf0823105136a5b81029",
"translation_date": "2025-08-27T16:33:06+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:52:42+00:00",
"source_file": "README.md",
"language_code": "mr"
}
-->
# डेटा सायन्ससाठी नवशिक्यांसाठी - अभ्यासक्रम
Azure Cloud Advocates at Microsoft यांनी डेटा सायन्ससाठी 10 आठवड्यांचा, 20 धड्यांचा अभ्यासक्रम सादर केला आहे. प्रत्येक धड्यात प्री-लेसन आणि पोस्ट-लेसन क्विझ, धडा पूर्ण करण्यासाठी लेखी सूचना, एक सोल्यूशन आणि एक असाइनमेंट समाविष्ट आहे. प्रकल्प-आधारित शिकण्याच्या पद्धतीमुळे तुम्हाला शिकताना तयार करण्याची संधी मिळते, जी नवीन कौशल्ये आत्मसात करण्याचा सिद्ध मार्ग आहे.
Azure Cloud Advocates at Microsoft ने डेटा सायन्सवर आधारित 10 आठवड्यांचा, 20 धड्यांचा अभ्यासक्रम तयार केला आहे. प्रत्येक धड्यात प्री-लेसन आणि पोस्ट-लेसन क्विझ, धडा पूर्ण करण्यासाठी लेखी सूचना, एक समाधान आणि एक असाइनमेंट समाविष्ट आहे. प्रकल्प-आधारित शिक्षण पद्धतीमुळे तुम्हाला शिकताना तयार करण्याची संधी मिळते, जी नवीन कौशल्ये आत्मसात करण्यासाठी प्रभावी पद्धत आहे.
**आमच्या लेखकांचे मनःपूर्वक आभार:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 विशेष आभार 🙏 आमच्या [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखक, पुनरावलोकक आणि सामग्री योगदानकर्त्यांचे,** विशेषतः Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
**🙏 विशेष आभार 🙏 आमच्या [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखक, समीक्षक आणि सामग्री योगदानकर्त्यांचे,** विशेषतः Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Title.png)|
|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.mr.png)|
|:---:|
| डेटा सायन्ससाठी नवशिक्यांसाठी - _[@nitya](https://twitter.com/nitya) यांचे स्केच_ |
| डेटा सायन्ससाठी नवशिक्यांसाठी - _[@nitya](https://twitter.com/nitya) यांच्याकडून स्केच नोट_ |
## घोषणा - जनरेटिव्ह AI साठी नवीन अभ्यासक्रम प्रकाशित झाला आहे!
### 🌐 बहुभाषिक समर्थन
आम्ही नुकताच जनरेटिव्ह AI वर 12 धड्यांचा अभ्यासक्रम प्रकाशित केला आहे. येथे तुम्ही शिकू शकता:
#### GitHub Action द्वारे समर्थित (स्वयंचलित आणि नेहमी अद्ययावत)
- प्रॉम्प्टिंग आणि प्रॉम्प्ट इंजिनिअरिंग
- टेक्स्ट आणि इमेज अॅप्स तयार करणे
- सर्च अॅप्स
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](./README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
नेहमीप्रमाणे, प्रत्येक धड्यात शिकण्याची सामग्री, असाइनमेंट्स, ज्ञान तपासणी आणि आव्हाने आहेत.
**जर तुम्हाला अतिरिक्त भाषांसाठी समर्थन हवे असेल, तर [येथे](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) सूचीबद्ध भाषांचा संदर्भ घ्या.**
पहा:
> https://aka.ms/genai-beginners
#### आमच्या समुदायात सामील व्हा
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# तुम्ही विद्यार्थी आहात का?
खालील संसाधनांपासून सुरुवात करा:
खालील संसाधनांसह सुरुवात करा:
- [Student Hub पृष्ठ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) येथे तुम्हाला नवशिक्यांसाठी संसाधने, विद्यार्थी पॅक्स आणि अगदी मोफत प्रमाणपत्र वाउचर मिळवण्याचे मार्ग सापडतील. हे पृष्ठ बुकमार्क करा आणि वेळोवेळी तपासा कारण आम्ही दर महिन्याला सामग्री बदलतो.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) जागतिक विद्यार्थी अॅम्बेसेडर समुदायात सामील व्हा, हे Microsoft मध्ये प्रवेश करण्याचा तुमचा मार्ग असू शकतो.
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) या पृष्ठावर तुम्हाला नवशिक्यांसाठी संसाधने, विद्यार्थी पॅक्स आणि अगदी मोफत प्रमाणपत्र व्हाउचर मिळवण्याचे मार्ग सापडतील. हे पृष्ठ बुकमार्क करा आणि वेळोवेळी तपासा, कारण आम्ही दर महिन्याला सामग्री अद्ययावत करतो.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) जागतिक विद्यार्थी अॅम्बेसेडर समुदायात सामील व्हा, हे Microsoft मध्ये तुमच्या प्रवेशाचे साधन असू शकते.
# सुरुवात कशी करावी
> **शिक्षकांसाठी**: आम्ही [काही सूचना समाविष्ट केल्या आहेत](for-teachers.md) की हा अभ्यासक्रम कसा वापरायचा. आम्हाला तुमचे अभिप्राय [आमच्या चर्चा फोरममध्ये](https://github.com/microsoft/Data-Science-For-Beginners/discussions) आवडतील!
> **शिक्षकांसाठी**: आम्ही या अभ्यासक्रमाचा वापर कसा करावा याबद्दल [काही सूचना समाविष्ट केल्या आहेत](for-teachers.md). आम्हाला तुमचा अभिप्राय [आमच्या चर्चा मंचावर](https://github.com/microsoft/Data-Science-For-Beginners/discussions) आवडेल!
> **[विद्यार्थ्यांसाठी](https://aka.ms/student-page)**: हा अभ्यासक्रम स्वतःसाठी वापरण्यासाठी, संपूर्ण रेपो फोर्क करा आणि स्वतःच सराव करा, प्री-लेक्चर क्विझपासून सुरुवात करा. नंतर लेक्चर वाचा आणि उर्वरित क्रियाकलाप पूर्ण करा. धड्यांमधून समजून प्रकल्प तयार करण्याचा प्रयत्न करा, सोल्यूशन कोड कॉपी करण्याऐवजी; तथापि, तो कोड प्रत्येक प्रकल्प-आधारित धड्याच्या /solutions फोल्डरमध्ये उपलब्ध आहे. आणखी एक कल्पना म्हणजे मित्रांसह अभ्यास गट तयार करणे आणि सामग्री एकत्रितपणे शिकणे. पुढील अभ्यासासाठी, आम्ही [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ची शिफारस करतो.
> **[विद्यार्थी](https://aka.ms/student-page)**: हा अभ्यासक्रम स्वतः वापरण्यासाठी, संपूर्ण रेपो फोर्क करा आणि स्वतःच सराव करा, प्री-लेक्चर क्विझपासून सुरुवात करा. मग लेक्चर वाचा आणि उर्वरित क्रियाकलाप पूर्ण करा. धड्यांमधून समजून प्रकल्प तयार करण्याचा प्रयत्न करा, समाधान कोड कॉपी करण्याऐवजी; तथापि, तो कोड प्रत्येक प्रकल्प-आधारित धड्याच्या /solutions फोल्डरमध्ये उपलब्ध आहे. आणखी एक कल्पना म्हणजे मित्रांसह अभ्यास गट तयार करणे आणि एकत्र सामग्रीचा अभ्यास करणे. पुढील अभ्यासासाठी, आम्ही [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ची शिफारस करतो.
## टीमला भेटा
[![Promo video](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif द्वारे** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 वरील प्रतिमेवर क्लिक करा प्रकल्पाबद्दल आणि त्याचे निर्माते जाणून घेण्यासाठी!
> 🎥 वरील प्रतिमेवर क्लिक करा आणि प्रकल्पाबद्दल आणि ते तयार करणाऱ्या लोकांबद्दल अधिक जाणून घ्या!
## शिक्षण पद्धती
आम्ही हा अभ्यासक्रम तयार करताना दोन शिक्षण पद्धती निवडल्या आहेत: प्रकल्प-आधारित शिकवणी आणि वारंवार क्विझ समाविष्ट करणे. या मालिकेच्या शेवटी, विद्यार्थ्यांना डेटा सायन्सचे मूलभूत तत्त्वे, नैतिक संकल्पना, डेटा तयारी, डेटा हाताळण्याचे विविध मार्ग, डेटा व्हिज्युअलायझेशन, डेटा विश्लेषण, डेटा सायन्सचे वास्तविक जीवनातील उपयोग आणि बरेच काही शिकलेले असेल.
याशिवाय, वर्गापूर्वीचा क्विझ विद्यार्थ्याला विषय शिकण्याच्या दिशेने प्रेरित करतो, तर वर्गानंतरचा क्विझ शिकलेले ज्ञान अधिक चांगल्या प्रकारे लक्षात ठेवण्यास मदत करतो. हा अभ्यासक्रम लवचिक आणि मजेदार बनविण्यासाठी डिझाइन केला गेला आहे आणि तो पूर्ण किंवा अंशतः घेतला जाऊ शकतो. प्रकल्प लहान स्वरूपात सुरू होतात आणि 10 आठवड्यांच्या चक्राच्या शेवटी अधिकाधिक गुंतागुंतीचे होतात.
> आमचा [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) मार्गदर्शक तत्त्वे शोधा. आम्ही तुमच्या रचनात्मक अभिप्रायांचे स्वागत करतो!
या अभ्यासक्रमाची रचना करताना आम्ही दोन शिक्षण पद्धतींचा अवलंब केला आहे: प्रकल्प-आधारित शिक्षण आणि वारंवार क्विझ समाविष्ट करणे. या मालिकेच्या शेवटी, विद्यार्थ्यांनी डेटा सायन्सचे मूलभूत तत्त्वे शिकलेली असतील, ज्यामध्ये नैतिक संकल्पना, डेटा तयारी, डेटासह काम करण्याचे विविध मार्ग, डेटा व्हिज्युअलायझेशन, डेटा विश्लेषण, डेटा सायन्सचे वास्तविक जीवनातील उपयोग आणि बरेच काही समाविष्ट आहे.
याशिवाय, वर्गापूर्वीचा कमी ताणाचा क्विझ विद्यार्थ्याला विषय शिकण्याच्या उद्देशाने तयार करतो, तर वर्गानंतरचा क्विझ अधिक चांगल्या प्रकारे शिकलेले ज्ञान टिकवून ठेवतो. हा अभ्यासक्रम लवचिक आणि मजेदार बनविण्यासाठी डिझाइन केला गेला आहे आणि तो पूर्ण किंवा अंशतः घेतला जाऊ शकतो. प्रकल्प लहान स्वरूपात सुरू होतात आणि 10 आठवड्यांच्या चक्राच्या शेवटी अधिकाधिक गुंतागुंतीचे होतात.
आमच्या [आचारसंहितेचे नियम](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [भाषांतर](TRANSLATIONS.md) मार्गदर्शक तत्त्वे येथे पहा. आम्ही तुमच्या रचनात्मक अभिप्रायाचे स्वागत करतो!
## प्रत्येक धड्यात समाविष्ट आहे:
- वैकल्पिक स्केच
- वैकल्पिक पूरक व्हिडिओ
- प्री-लेसन वॉर्मअप क्विझ
- ऐच्छिक स्केच नोट
- ऐच्छिक पूरक व्हिडिओ
- धड्यापूर्वीचा वॉर्मअप क्विझ
- लेखी धडा
- प्रकल्प-आधारित धड्यांसाठी, प्रकल्प कसा तयार करायचा याचे चरण-दर-चरण मार्गदर्शन
- प्रकल्प-आधारित धड्यांसाठी, प्रकल्प कसा तयार करायचा याचे टप्प्याटप्प्याने मार्गदर्शन
- ज्ञान तपासणी
- एक आव्हान
- पूरक वाचन
- असाइनमेंट
- पोस्ट-लेसन क्विझ
- [धड्यानंतरचा क्विझ](https://ff-quizzes.netlify.app/en/)
> **क्विझबद्दल एक टीप**: सर्व क्विझ Quiz-App फोल्डरमध्ये आहेत, एकूण 40 क्विझ, प्रत्येकी तीन प्रश्नांसह. ते धड्यांमधून लिंक केलेले आहेत, परंतु क्विझ अॅप स्थानिकरित्या चालवले जाऊ शकते किंवा Azure वर तैनात केले जाऊ शकते; `quiz-app` फोल्डरमधील सूचनांचे अनुसरण करा. ते हळूहळू स्थानिक भाषांमध्ये अनुवादित केले जात आहेत.
> **क्विझबद्दल एक टीप**: सर्व क्विझ Quiz-App फोल्डरमध्ये आहेत, ज्यामध्ये प्रत्येकी तीन प्रश्न असलेले एकूण 40 क्विझ आहेत. हे धड्यांमधून लिंक केलेले आहेत, परंतु क्विझ अॅप स्थानिक पातळीवर चालवले जाऊ शकते किंवा Azure वर डिप्लॉय केले जाऊ शकते; `quiz-app` फोल्डरमधील सूचनांचे अनुसरण करा. हे हळूहळू स्थानिक भाषांमध्ये उपलब्ध केले जात आहेत.
## धडे
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Roadmap.png)|
|![ @sketchthedocs कडून स्केच नोट https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.mr.png)|
|:---:|
| डेटा सायन्ससाठी नवशिक्यांसाठी: रोडमॅप - _[@nitya](https://twitter.com/nitya) यांचे स्केच_ |
| डेटा सायन्स फॉर बिगिनर्स: रोडमॅप - _[@nitya](https://twitter.com/nitya) कडून स्केच नोट_ |
| धडा क्रमांक | विषय | धड्यांचे गटिंग | शिकण्याचे उद्दिष्ट | लिंक केलेला धडा | लेखक |
| धड्याचा क्रमांक | विषय | धड्याचे गटिंग | शिकण्याची उद्दिष्टे | लिंक केलेला धडा | लेखक |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | डेटा सायन्सची व्याख्या | [परिचय](1-Introduction/README.md) | डेटा सायन्समागील मूलभूत संकल्पना आणि त्याचा कृत्रिम बुद्धिमत्ता, मशीन लर्निंग आणि बिग डेटा यांच्याशी कसा संबंध आहे हे जाणून घ्या. | [धडा](1-Introduction/01-defining-data-science/README.md) [व्हिडिओ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | डेटा सायन्स नैतिकता | [परिचय](1-Introduction/README.md) | डेटा नैतिकतेच्या संकल्पना, आव्हाने आणि फ्रेमवर्क. | [धडा](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | डेटा सायन्सची व्याख्या | [परिचय](1-Introduction/README.md) | डेटा सायन्समागील मूलभूत संकल्पना आणि त्याचा कृत्रिम बुद्धिमत्ता, मशीन लर्निंग, आणि बिग डेटा यांच्याशी असलेला संबंध जाणून घ्या. | [धडा](1-Introduction/01-defining-data-science/README.md) [व्हिडिओ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | डेटा सायन्स नीतिशास्त्र | [परिचय](1-Introduction/README.md) | डेटा नीतिशास्त्राच्या संकल्पना, आव्हाने आणि चौकट. | [धडा](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | डेटाची व्याख्या | [परिचय](1-Introduction/README.md) | डेटा कसा वर्गीकृत केला जातो आणि त्याचे सामान्य स्रोत काय आहेत. | [धडा](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | सांख्यिकी आणि संभाव्यता परिचय | [परिचय](1-Introduction/README.md) | डेटा समजण्यासाठी संभाव्यता आणि सांख्यिकीचे गणितीय तंत्र. | [धडा](1-Introduction/04-stats-and-probability/README.md) [व्हिडिओ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | रिलेशनल डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | रिलेशनल डेटाचा परिचय आणि स्ट्रक्चर्ड क्वेरी लँग्वेज (SQL) चा वापर करून रिलेशनल डेटा एक्सप्लोर आणि विश्लेषण करण्याच्या मूलभूत गोष्टी. | [धडा](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
| 06 | NoSQL डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | नॉन-रिलेशनल डेटाचा परिचय, त्याचे विविध प्रकार आणि डॉक्युमेंट डेटाबेस एक्सप्लोर आणि विश्लेषण करण्याच्या मूलभूत गोष्टी. | [धडा](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
| 07 | Python सह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | Pandas सारख्या लायब्ररीसह डेटा एक्सप्लोरेशनसाठी Python वापरण्याच्या मूलभूत गोष्टी. Python प्रोग्रामिंगचे मूलभूत ज्ञान शिफारसीय आहे. | [धडा](2-Working-With-Data/07-python/README.md) [व्हिडिओ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटासोबत काम करणे](2-Working-With-Data/README.md) | हरवलेला, अचूक नसलेला किंवा अपूर्ण डेटा हाताळण्यासाठी डेटा स्वच्छ करणे आणि त्याचे रूपांतर करण्याच्या तंत्रांवर आधारित विषय. | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [जॅस्मिन](https://www.twitter.com/paladique) |
| 09 | प्रमाणांचे दृश्यांकन | [डेटा दृश्यांकन](3-Data-Visualization/README.md) | मॅटप्लॉटलिब वापरून पक्ष्यांच्या डेटाचे दृश्यांकन कसे करावे ते शिका 🦆 | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
| 10 | डेटाच्या वितरणांचे दृश्यांकन | [डेटा दृश्यांकन](3-Data-Visualization/README.md) | एका अंतरालातील निरीक्षणे आणि ट्रेंड्सचे दृश्यांकन. | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
| 11 | प्रमाणांचे दृश्यांकन | [डेटा दृश्यांकन](3-Data-Visualization/README.md) | वेगळ्या आणि गटबद्ध टक्केवारींचे दृश्यांकन. | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
| 12 | नातेसंबंधांचे दृश्यांकन | [डेटा दृश्यांकन](3-Data-Visualization/README.md) | डेटाच्या संचांमधील कनेक्शन आणि सहसंबंधांचे दृश्यांकन. | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
| 13 | अर्थपूर्ण दृश्यांकन | [डेटा दृश्यांकन](3-Data-Visualization/README.md) | प्रभावी समस्या सोडवण्यासाठी आणि अंतर्दृष्टीसाठी तुमच्या दृश्यांकनांना मूल्यवान बनवण्याच्या तंत्रांचा आणि मार्गदर्शनाचा अभ्यास. | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
| 14 | डेटा सायन्स जीवनचक्राची ओळख | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राची ओळख आणि डेटा मिळवणे व काढणे या पहिल्या टप्प्याची माहिती. | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जॅस्मिन](https://www.twitter.com/paladique) |
| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा विश्लेषणाच्या तंत्रांवर केंद्रित आहे. | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जॅस्मिन](https://www.twitter.com/paladique) | | |
| 16 | संवाद | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा अंतर्दृष्टी निर्णय घेणाऱ्यांना समजण्यास सोपे होईल अशा प्रकारे सादर करण्यावर केंद्रित आहे. | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमधील डेटा सायन्स आणि त्याचे फायदे यांची ओळख करून देणारे धडे. | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
| 18 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड साधनांचा वापर करून मॉडेल्स प्रशिक्षण. | [पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
| 19 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio वापरून मॉडेल्स तैनात करणे. | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
| 20 | जंगली परिस्थितीत डेटा सायन्स | [जंगली परिस्थितीत](6-Data-Science-In-Wild/README.md) | वास्तविक जगातील डेटा सायन्स चालवलेले प्रकल्प. | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्या](https://twitter.com/nitya) |
| 04 | सांख्यिकी आणि संभाव्यता यांचा परिचय | [परिचय](1-Introduction/README.md) | डेटा समजण्यासाठी संभाव्यता आणि सांख्यिकीचे गणितीय तंत्र. | [धडा](1-Introduction/04-stats-and-probability/README.md) [व्हिडिओ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | रिलेशनल डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | रिलेशनल डेटाचा परिचय आणि स्ट्रक्चर्ड क्वेरी लँग्वेज (SQL) चा वापर करून रिलेशनल डेटा एक्सप्लोर आणि विश्लेषण करण्याचे मूलभूत तत्त्व. | [धडा](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | नॉन-रिलेशनल डेटाचा परिचय, त्याचे विविध प्रकार आणि डॉक्युमेंट डेटाबेस एक्सप्लोर आणि विश्लेषण करण्याचे मूलभूत तत्त्व. | [धडा](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | पायथनसह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | Pandas सारख्या लायब्ररीसह डेटा एक्सप्लोरेशनसाठी पायथनचा वापर करण्याचे मूलभूत तत्त्व. पायथन प्रोग्रामिंगचे प्राथमिक ज्ञान शिफारसीय आहे. | [धडा](2-Working-With-Data/07-python/README.md) [व्हिडिओ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटासह काम करणे](2-Working-With-Data/README.md) | डेटामधील गहाळ, अचूक नसलेल्या किंवा अपूर्ण डेटाशी संबंधित आव्हाने हाताळण्यासाठी डेटा स्वच्छ आणि रूपांतरित करण्याच्या तंत्रांवरील विषय. | [धडा](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | प्रमाणांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | Matplotlib चा वापर करून पक्ष्यांच्या डेटाचे व्हिज्युअलायझेशन कसे करायचे ते शिका 🦆 | [धडा](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | डेटाच्या वितरणांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | एका अंतरालातील निरीक्षणे आणि ट्रेंड्सचे व्हिज्युअलायझेशन. | [धडा](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | प्रमाणांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | डिस्क्रीट आणि गटबद्ध टक्केवारींचे व्हिज्युअलायझेशन. | [धडा](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | नातेसंबंधांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | डेटाच्या संचांमधील कनेक्शन आणि सहसंबंधांचे व्हिज्युअलायझेशन. | [धडा](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | अर्थपूर्ण व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | प्रभावी समस्या सोडवण्यासाठी आणि अंतर्दृष्टीसाठी तुमच्या व्हिज्युअलायझेशनला मूल्यवान बनवण्यासाठी तंत्र आणि मार्गदर्शन. | [धडा](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | डेटा सायन्स जीवनचक्राचा परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा परिचय आणि डेटा मिळवणे आणि काढणे याच्या पहिल्या टप्प्याचा परिचय. | [धडा](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | विश्लेषण करणे | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा विश्लेषण करण्याच्या तंत्रांवर केंद्रित आहे. | [धडा](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | संवाद साधणे | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटा मधून मिळालेल्या अंतर्दृष्टी निर्णय घेणाऱ्यांना समजण्यास सोपे होईल अशा प्रकारे सादर करण्यावर केंद्रित आहे. | [धडा](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमधील डेटा सायन्स आणि त्याचे फायदे यांचा परिचय देणाऱ्या धड्यांची मालिका. | [धडा](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) आणि [Maud](https://twitter.com/maudstweets) |
| 18 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स वापरून मॉडेल्स प्रशिक्षण. |[धडा](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) आणि [Maud](https://twitter.com/maudstweets) |
| 19 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio वापरून मॉडेल्स डिप्लॉय करणे. | [धडा](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) आणि [Maud](https://twitter.com/maudstweets) |
| 20 | वाइल्डमधील डेटा सायन्स | [वाइल्डमध्ये](6-Data-Science-In-Wild/README.md) | वास्तविक जगातील डेटा सायन्स-चालित प्रकल्प. | [धडा](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -114,50 +109,46 @@ Azure Cloud Advocates at Microsoft यांनी डेटा सायन्
अधिक माहितीसाठी, [GitHub दस्तऐवज](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) तपासा.
## VSCode Remote - Containers
तुमच्या स्थानिक मशीन आणि VSCode वापरून VS Code Remote - Containers विस्ताराचा वापर करून हे रेपो कंटेनरमध्ये उघडण्यासाठी खालील चरणांचे अनुसरण करा:
तुमच्या स्थानिक मशीन आणि VSCode चा वापर करून VS Code Remote - Containers विस्ताराचा वापर करून हे रेपो कंटेनरमध्ये उघडण्यासाठी खालील चरणांचे अनुसरण करा:
1. जर तुम्ही प्रथमच विकास कंटेनर वापरत असाल, तर कृपया तुमची प्रणाली पूर्व-आवश्यकता पूर्ण करते याची खात्री करा (उदा. Docker स्थापित केले आहे) [सुरुवातीच्या दस्तऐवजामध्ये](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. जर तुम्ही प्रथमच डेव्हलपमेंट कंटेनर वापरत असाल, तर कृपया तुमची प्रणाली प्री-रेक्विझिट्स पूर्ण करते याची खात्री करा (उदा. Docker स्थापित केले आहे) [प्रारंभ दस्तऐवज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मध्ये.
या रेपोचा वापर करण्यासाठी, तुम्ही रेपो एका वेगळ्या Docker व्हॉल्यूममध्ये उघडू शकता:
या रेपॉजिटरीचा वापर करण्यासाठी, तुम्ही रेपॉजिटरीला एक वेगळ्या Docker व्हॉल्यूममध्ये उघडू शकता:
**टीप**: अंतर्गत, हे Remote-Containers: **Clone Repository in Container Volume...** कमांड वापरेल जेणेकरून स्थानिक फाइल सिस्टमऐवजी Docker व्हॉल्यूममध्ये स्रोत कोड क्लोन होईल. [व्हॉल्यूम्स](https://docs.docker.com/storage/volumes/) कंटेनर डेटा टिकवण्यासाठी प्राधान्य दिलेल यंत्रणा आहेत.
**टीप**: अंतर्गत, हे Remote-Containers: **Clone Repository in Container Volume...** कमांड वापरेल जे स्थानिक फाइल सिस्टमऐवजी Docker व्हॉल्यूममध्ये स्रोत कोड क्लोन करेल. [व्हॉल्यूम्स](https://docs.docker.com/storage/volumes/) कंटेनर डेटा टिकवण्यासाठी प्राधान्य दिलेल यंत्रणा आहेत.
किंवा स्थानिक पातळीवर क्लोन केलेली किंवा डाउनलोड केलेली रेपो आवृत्ती उघडा:
किंवा स्थानिक पातळीवर क्लोन केलेली किंवा डाउनलोड केलेली रेपॉजिटरी उघडा:
- हे रेपो तुमच्या स्थानिक फाइल सिस्टमवर क्लोन करा.
- ही रेपॉजिटरी तुमच्या स्थानिक फाइल सिस्टमवर क्लोन करा.
- F1 दाबा आणि **Remote-Containers: Open Folder in Container...** कमांड निवडा.
- या फोल्डरची क्लोन केलेली प्रत निवडा, कंटेनर सुरू होईपर्यंत प्रतीक्षा करा आणि गोष्टी वापरून पहा.
- या फोल्डरची क्लोन केलेली प्रत निवडा, कंटेनर सुरू होईपर्यंत थांबा आणि गोष्टी वापरून पहा.
## ऑफलाइन प्रवेश
[Docsify](https://docsify.js.org/#/) वापरून तुम्ही ही दस्तऐवज ऑफलाइन चालवू शकता. हे रेपो फोर्क करा, [Docsify स्थापित करा](https://docsify.js.org/#/quickstart) तुमच्या स्थानिक मशीनवर, नंतर या रेपोच्या मूळ फोल्डरमध्ये `docsify serve` टाइप करा. वेबसाइट तुमच्या localhost वर पोर्ट 3000 वर चालवली जाईल: `localhost:3000`.
> टीप, नोटबुक्स Docsify द्वारे प्रस्तुत केले जाणार नाहीत, त्यामुळे जेव्हा तुम्हाला नोटबुक चालवायचे असेल, तेव्हा ते स्वतंत्रपणे VS Code मध्ये Python कर्नल चालवून करा.
## मदतीची गरज आहे!
तुम्ही [Docsify](https://docsify.js.org/#/) चा वापर करून ही दस्तऐवज ऑफलाइन चालवू शकता. या रेपोला Fork करा, तुमच्या स्थानिक मशीनवर [Docsify स्थापित करा](https://docsify.js.org/#/quickstart), नंतर या रेपोच्या मूळ फोल्डरमध्ये `docsify serve` टाइप करा. वेबसाइट तुमच्या localhost वर पोर्ट 3000 वर चालवली जाईल: `localhost:3000`.
जर तुम्हाला अभ्यासक्रमाचा संपूर्ण किंवा काही भाग भाषांतरित करायचा असेल, तर कृपया आमच्या [भाषांतर मार्गदर्शक](TRANSLATIONS.md) चे अनुसरण करा.
> टीप, नोटबुक्स Docsify द्वारे रेंडर केले जाणार नाहीत, त्यामुळे जेव्हा तुम्हाला नोटबुक चालवायचे असेल, तेव्हा ते वेगळ्या पायथन कर्नल चालवणाऱ्या VS Code मध्ये करा.
## इतर अभ्यासक्रम
आमची टीम इतर अभ्यासक्रम तयार करते! तपासा:
- [सुरुवातीसाठी जनरेटिव्ह AI](https://aka.ms/genai-beginners)
- [सुरुवातीसाठी जनरेटिव्ह AI .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [JavaScript सह जनरेटिव्ह AI](https://github.com/microsoft/generative-ai-with-javascript)
- [Java सह जनरेटिव्ह AI](https://aka.ms/genaijava)
- [सुरुवातीसाठी AI](https://aka.ms/ai-beginners)
- [सुरुवातीसाठी डेटा सायन्स](https://aka.ms/datascience-beginners)
- [सुरुवातीसाठी ML](https://aka.ms/ml-beginners)
- [सुरुवातीसाठी सायबरसुरक्षा](https://github.com/microsoft/Security-101)
- [सुरुवातीसाठी वेब डेव्हलपमेंट](https://aka.ms/webdev-beginners)
- [सुरुवातीसाठी IoT](https://aka.ms/iot-beginners)
- [सुरुवातीसाठी XR डेव्हलपमेंट](https://github.com/microsoft/xr-development-for-beginners)
- [जोडीदार प्रोग्रामिंगसाठी GitHub Copilot मास्टर करणे](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [C#/.NET डेव्हलपर्ससाठी GitHub Copilot मास्टर करणे](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [तुमचा स्वतःचा Copilot साहस निवडा](https://github.com/microsoft/CopilotAdventures)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**अस्वीकरण**:
हा दस्तऐवज AI भाषांतर सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) वापरून भाषांतरित करण्यात आला आहे. आम्ही अचूकतेसाठी प्रयत्नशील असलो तरी कृपया लक्षात ठेवा की स्वयंचलित भाषांतरांमध्ये त्रुटी किंवा अचूकतेचा अभाव असू शकतो. मूळ भाषेतील दस्तऐवज हा अधिकृत स्रोत मानला जावा. महत्त्वाच्या माहितीसाठी व्यावसायिक मानवी भाषांतराची शिफारस केली जाते. या भाषांतराचा वापर करून निर्माण होणाऱ्या कोणत्याही गैरसमज किंवा चुकीच्या अर्थासाठी आम्ही जबाबदार राहणार नाही.
हा दस्तऐवज AI भाषांतर सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) चा वापर करून भाषांतरित करण्यात आला आहे. आम्ही अचूकतेसाठी प्रयत्नशील असलो तरी कृपया लक्षात ठेवा की स्वयंचलित भाषांतरे त्रुटी किंवा अचूकतेच्या अभावाने युक्त असू शकतात. मूळ भाषेतील दस्तऐवज हा अधिकृत स्रोत मानला जावा. महत्त्वाच्या माहितीसाठी व्यावसायिक मानवी भाषांतराची शिफारस केली जाते. या भाषांतराचा वापर करून निर्माण होणाऱ्या कोणत्याही गैरसमज किंवा चुकीच्या अर्थासाठी आम्ही जबाबदार राहणार नाही.

@ -1,110 +1,105 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6bb17a440fdabf0823105136a5b81029",
"translation_date": "2025-08-27T16:34:14+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:54:03+00:00",
"source_file": "README.md",
"language_code": "ne"
}
-->
# डेटा साइन्सका लागि शुरुवातकर्ता - पाठ्यक्रम
# डाटा साइन्सका लागि सुरुवातकर्ता - एक पाठ्यक्रम
Azure Cloud Advocates मा Microsoftले डेटा साइन्स सम्बन्धी १० हप्ताको, २० पाठको पाठ्यक्रम प्रस्तुत गर्न पाउँदा खुशी छ। प्रत्येक पाठमा प्रि-पाठ र पोस्ट-पाठ क्विजहरू, पाठ पूरा गर्नका लागि लेखिएको निर्देशन, समाधान, र असाइनमेन्ट समावेश छ। हाम्रो परियोजना-आधारित शिक्षण विधिले तपाईंलाई निर्माण गर्दै सिक्न अनुमति दिन्छ, नयाँ सीपहरू 'टिक्न' को लागि प्रमाणित तरिका
Azure Cloud Advocates at Microsoft ले डाटा साइन्स सम्बन्धी १० हप्ताको, २० पाठहरूको पाठ्यक्रम प्रस्तुत गर्न पाउँदा खुशी छ। प्रत्येक पाठमा पाठ अघि र पाठ पछि क्विजहरू, पाठ पूरा गर्नका लागि लेखिएका निर्देशनहरू, समाधान, र असाइनमेन्ट समावेश छन्। हाम्रो परियोजना-आधारित शिक्षण पद्धतिले तपाईंलाई निर्माण गर्दै सिक्न अनुमति दिन्छ, जसले नयाँ सीपहरूलाई स्थायी बनाउन मद्दत गर्दछ
**हाम्रो लेखकहरूलाई हार्दिक धन्यवाद:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)।
**🙏 विशेष धन्यवाद 🙏 हाम्रो [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखकहरू, समीक्षकहरू र सामग्री योगदानकर्ताहरूलाई,** विशेष गरी Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)।
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Title.png)|
|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.ne.png)|
|:---:|
| डेटा साइन्सका लागि शुरुवातकर्ता - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| डाटा साइन्सका लागि सुरुवातकर्ता - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
## घोषणा - नयाँ पाठ्यक्रम "Generative AI" जारी गरियो!
### 🌐 बहुभाषिक समर्थन
हामीले हालै "Generative AI" सम्बन्धी १२ पाठको पाठ्यक्रम जारी गरेका छौं। यहाँ सिक्न सकिने विषयहरू:
#### GitHub Action मार्फत समर्थित (स्वचालित र सधैं अद्यावधिक)
- प्रम्प्टिङ र प्रम्प्ट इन्जिनियरिङ
- टेक्स्ट र इमेज एप निर्माण
- सर्च एप्स
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](./README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
जस्तै सधैं, प्रत्येक पाठमा असाइनमेन्टहरू, ज्ञान जाँच र चुनौतीहरू समावेश छन्।
**यदि तपाईंलाई थप भाषाहरूमा अनुवाद चाहिन्छ भने, समर्थित भाषाहरूको सूची [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) हेर्नुहोस्।**
हेर्नुहोस्:
> https://aka.ms/genai-beginners
#### हाम्रो समुदायमा सामेल हुनुहोस्
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# के तपाईं विद्यार्थी हुनुहुन्छ?
तलका स्रोतहरूबाट शुरुवात गर्नुहोस्:
तलका स्रोतहरूबाट सुरु गर्नुहोस्:
- [Student Hub पृष्ठ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) यस पृष्ठमा, तपाईंले शुरुवातकर्ता स्रोतहरू, विद्यार्थी प्याकहरू र नि:शुल्क प्रमाणपत्र भौचर प्राप्त गर्ने तरिकाहरू पाउन सक्नुहुन्छ। यो पृष्ठलाई बुकमार्क गर्नुहोस् र समय-समयमा जाँच गर्नुहोस् किनकि हामी कम्तीमा मासिक सामग्री परिवर्तन गर्छौं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) विद्यार्थी राजदूतहरूको विश्वव्यापी समुदायमा सामेल हुनुहोस्, यो Microsoftमा प्रवेश गर्ने तपाईंको तरिका हुन सक्छ।
- [विद्यार्थी हब पृष्ठ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) यस पृष्ठमा, तपाईंलाई सुरुवातकर्ताहरूका लागि स्रोतहरू, विद्यार्थी प्याकहरू र नि:शुल्क प्रमाणपत्र भौचर प्राप्त गर्ने तरिकाहरू भेट्नुहुनेछ। यो पृष्ठलाई बुकमार्क गर्नुहोस् र समय-समयमा हेर्नुहोस् किनभने हामीले कम्तीमा मासिक रूपमा सामग्री परिवर्तन गर्छौं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) एक विश्वव्यापी विद्यार्थी राजदूतहरूको समुदायमा सामेल हुनुहोस्, यो Microsoft मा तपाईंको प्रवेशद्वार हुन सक्छ।
# शुरुवात गर्दै
# सुरु गर्दै
> **शिक्षकहरू**: हामीले [केही सुझावहरू समावेश गरेका छौं](for-teachers.md) यो पाठ्यक्रम कसरी प्रयोग गर्ने। हामी तपाईंको प्रतिक्रिया [हाम्रो छलफल फोरममा](https://github.com/microsoft/Data-Science-For-Beginners/discussions) चाहन्छौं!
> **[विद्यार्थीहरू](https://aka.ms/student-page)**: यो पाठ्यक्रमलाई आफैं प्रयोग गर्न, सम्पूर्ण रिपोजिटरीलाई फोर्क गर्नुहोस् र अभ्यासहरू आफैं पूरा गर्नुहोस्, प्रि-लेक्चर क्विजबाट शुरुवात गर्दै। त्यसपछि लेक्चर पढ्नुहोस् र बाँकी गतिविधिहरू पूरा गर्नुहोस्। पाठहरू बुझेर परियोजनाहरू निर्माण गर्ने प्रयास गर्नुहोस् समाधान कोडको प्रतिलिपि नगरी; यद्यपि, त्यो कोड प्रत्येक परियोजना-उन्मुख पाठको /solutions फोल्डरहरूमा उपलब्ध छ। अर्को विचार भनेको साथीहरूसँग अध्ययन समूह बनाउनुहोस् र सामग्री सँगै जानुहोस्। थप अध्ययनको लागि, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) सिफारिस गर्छौं।
> **[विद्यार्थीहरू](https://aka.ms/student-page)**: यो पाठ्यक्रमलाई आफैं प्रयोग गर्न, सम्पूर्ण रिपोजिटरीलाई फोर्क गर्नुहोस् र आफैं अभ्यासहरू पूरा गर्नुहोस्, प्रारम्भिक क्विजबाट सुरु गर्दै। त्यसपछि व्याख्यान पढ्नुहोस् र बाँकी गतिविधिहरू पूरा गर्नुहोस्। समाधान कोडलाई नक्कल नगरी पाठहरू बुझेर परियोजनाहरू बनाउन प्रयास गर्नुहोस्; यद्यपि, त्यो कोड प्रत्येक परियोजना-उन्मुख पाठको /solutions फोल्डरहरूमा उपलब्ध छ। अर्को विचार भनेको साथीहरूसँग अध्ययन समूह बनाउनु र सामग्री सँगै अध्ययन गर्नु हो। थप अध्ययनका लागि, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) सिफारिस गर्छौं।
## टिमलाई भेट्नुहोस्
## टोलीसँग भेट्नुहोस्
[![Promo video](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Promo video")
[![प्रोमो भिडियो](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "प्रोमो भिडियो")
**Gif द्वारा** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 माथिको छवि क्लिक गर्नुहोस् परियोजनाको बारेमा भिडियो हेर्न र यसलाई सिर्जना गर्ने व्यक्तिहरूलाई भेट्न!
## शिक्षण विधि
हामीले यो पाठ्यक्रम निर्माण गर्दा दुई शिक्षण विधिहरू रोजेका छौं: सुनिश्चित गर्नु कि यो परियोजना-आधारित हो र यसमा बारम्बार क्विजहरू समावेश छन्। यो श्रृंखलाको अन्त्यसम्ममा, विद्यार्थीहरूले डेटा साइन्सका आधारभूत सिद्धान्तहरू सिकेका हुनेछन्, जसमा नैतिक अवधारणाहरू, डेटा तयारी, डेटा काम गर्ने विभिन्न तरिकाहरू, डेटा भिजुअलाइजेसन, डेटा विश्लेषण, डेटा साइन्सका वास्तविक-विश्व प्रयोगहरू, र अन्य धेरै समावेश छन्।
> 🎥 माथिको छविमा क्लिक गर्नुहोस् परियोजनाबारे र यसलाई सिर्जना गर्ने व्यक्तिहरूबारे भिडियो हेर्न!
त्यसैगरी, कक्षाको अगाडि कम-जोखिमको क्विजले विद्यार्थीलाई विषय सिक्नको लागि उद्देश्य सेट गर्छ, जबकि कक्षापछि दोस्रो क्विजले थप स्मरण सुनिश्चित गर्छ। यो पाठ्यक्रम लचिलो र रमाइलो बनाउन डिजाइन गरिएको हो र पूर्ण वा आंशिक रूपमा लिन सकिन्छ। परियोजनाहरू साना बाट सुरु हुन्छन् र १० हप्ताको चक्रको अन्त्यसम्ममा क्रमशः जटिल बन्छन्।
## शिक्षण पद्धति
> हाम्रो [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) दिशानिर्देशहरू पत्ता लगाउनुहोस्। हामी तपाईंको रचनात्मक प्रतिक्रिया स्वागत गर्छौं!
हामीले यो पाठ्यक्रम निर्माण गर्दा दुई शिक्षण सिद्धान्तहरू रोजेका छौं: सुनिश्चित गर्नु कि यो परियोजना-आधारित छ र यसमा बारम्बार क्विजहरू समावेश छन्। यस श्रृंखलाको अन्त्यसम्ममा, विद्यार्थीहरूले डाटा साइन्सका आधारभूत सिद्धान्तहरू सिकेका हुनेछन्, जसमा नैतिक अवधारणाहरू, डाटा तयारी, डाटासँग काम गर्ने विभिन्न तरिकाहरू, डाटा भिजुअलाइजेसन, डाटा विश्लेषण, डाटा साइन्सका वास्तविक जीवनका प्रयोगहरू, र अन्य धेरै समावेश छन्।
## प्रत्येक पाठमा समावेश छ:
यसका अतिरिक्त, कक्षाको अघि गरिएको कम-जोखिमको क्विजले विद्यार्थीलाई विषयवस्तु सिक्न प्रेरित गर्छ, जबकि कक्षापछि गरिएको दोस्रो क्विजले थप सम्झनामा मद्दत गर्दछ। यो पाठ्यक्रम लचिलो र रमाइलो बनाउन डिजाइन गरिएको हो र यसलाई पूर्ण रूपमा वा आंशिक रूपमा लिन सकिन्छ। परियोजनाहरू साना बाट सुरु हुन्छन् र १० हप्ताको चक्रको अन्त्यसम्ममा क्रमशः जटिल बन्छन्।
हाम्रो [आचार संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देशहरू फेला पार्नुहोस्। हामी तपाईंको रचनात्मक प्रतिक्रिया स्वागत गर्दछौं!
## प्रत्येक पाठमा समावेश हुन्छ:
- वैकल्पिक स्केच नोट
- वैकल्पिक पूरक भिडियो
- प्रि-पाठ वार्मअप क्विज
- लेखिएको पाठ
- पाठ अघि वार्मअप क्विज
- लिखित पाठ
- परियोजना-आधारित पाठहरूको लागि, परियोजना निर्माण गर्ने चरण-दर-चरण मार्गदर्शन
- ज्ञान जाँच
- चुनौती
- पूरक पढाइ
- असाइनमेन्ट
- पोस्ट-पाठ क्विज
- [पाठ पछि क्विज](https://ff-quizzes.netlify.app/en/)
> **क्विजहरूको बारेमा नोट**: सबै क्विजहरू Quiz-App फोल्डरमा समावेश छन्, प्रत्येकमा तीन प्रश्नका ४० कुल क्विजहरू। तिनीहरू पाठहरू भित्र लिंक गरिएका छन्, तर क्विज एपलाई स्थानीय रूपमा चलाउन वा Azureमा तैनात गर्न सकिन्छ; `quiz-app` फोल्डरमा निर्देशनहरू पालना गर्नुहोस्। तिनीहरू क्रमशः स्थानीयकरण हुँदैछन्।
> **क्विजहरूको बारेमा नोट**: सबै क्विजहरू `Quiz-App` फोल्डरमा समावेश छन्, जसमा प्रत्येकमा तीन प्रश्नहरू सहित ४० वटा क्विजहरू छन्। यी पाठहरूबाट लिंक गरिएका छन्, तर क्विज एपलाई स्थानीय रूपमा चलाउन वा Azure मा डिप्लोय गर्न सकिन्छ; `quiz-app` फोल्डरमा दिइएको निर्देशनहरू पालना गर्नुहोस्। यी क्रमिक रूपमा स्थानीयकरण हुँदैछन्।
## पाठहरू
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Roadmap.png)|
|![ @sketchthedocs द्वारा स्केच नोट https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.ne.png)|
|:---:|
| डेटा साइन्सका लागि शुरुवातकर्ता: रोडम्याप - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| डेटा साइन्सका लागि शुरुआतीहरू: रोडम्याप - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
| पाठ संख्या | विषय | पाठ समूह | सिक्ने उद्देश्यहरू | लिंक गरिएको पाठ | लेखक |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | डेटा साइन्स परिभाषित गर्दै | [परिचय](1-Introduction/README.md) | डेटा साइन्सको आधारभूत अवधारणाहरू सिक्नुहोस् र यो कृत्रिम बुद्धिमत्ता, मेसिन लर्निङ, र बिग डेटा संग कसरी सम्बन्धित छ। | [पाठ](1-Introduction/01-defining-data-science/README.md) [भिडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | डेटा साइन्सको परिभाषा | [परिचय](1-Introduction/README.md) | डेटा साइन्सको आधारभूत अवधारणाहरू सिक्नुहोस् र यो कृत्रिम बुद्धिमत्ता, मेसिन लर्निङ, र बिग डेटा संग कसरी सम्बन्धित छ। | [पाठ](1-Introduction/01-defining-data-science/README.md) [भिडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | डेटा साइन्स नैतिकता | [परिचय](1-Introduction/README.md) | डेटा नैतिकता अवधारणाहरू, चुनौतीहरू र फ्रेमवर्कहरू। | [पाठ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | डेटा परिभाषित गर्दै | [परिचय](1-Introduction/README.md) | डेटा कसरी वर्गीकृत गरिन्छ र यसको सामान्य स्रोतहरू। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | तथ्यांक र सम्भावनाको परिचय | [परिचय](1-Introduction/README.md) | डेटा बुझ्नका लागि तथ्यांक र सम्भावनाका गणितीय प्रविधिहरू। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [भिडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | सम्बन्धित डेटा संग काम गर्दै | [डेटा संग काम गर्दै](2-Working-With-Data/README.md) | सम्बन्धित डेटा र SQL (Structured Query Language) को प्रयोग गरेर सम्बन्धित डेटा अन्वेषण र विश्लेषणको आधारभूत कुरा। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा संग काम गर्दै | [डेटा संग काम गर्दै](2-Working-With-Data/README.md) | गैर-सम्बन्धित डेटा, यसको विभिन्न प्रकारहरू र दस्तावेज डेटाबेसहरूको अन्वेषण र विश्लेषणको आधारभूत कुरा। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python संग काम गर्दै | [डेटा संग काम गर्दै](2-Working-With-Data/README.md) | Pandas जस्ता पुस्तकालयहरूको प्रयोग गरेर डेटा अन्वेषणक लागि Python प्रयोग गर्ने आधारभूत कुरा। Python प्रोग्रामिङको आधारभूत समझ सिफारिस गरिन्छ। | [पाठ](2-Working-With-Data/07-python/README.md) [भिडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटासँग काम गर्ने](2-Working-With-Data/README.md) | हराएको, गलत, वा अपूर्ण डाटाको चुनौतीलाई समाधान गर्न डाटा सफा गर्ने र परिवर्तन गर्ने प्रविधिहरूको विषय। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [ज्यास्मिन](https://www.twitter.com/paladique) |
| 09 | मात्राको दृश्यात्मकता | [ाटा दृश्यात्मकता](3-Data-Visualization/README.md) | चरा डाटालाई 🦆 Matplotlib प्रयोग गरेर कसरी दृश्यात्मक बनाउने सिक्नुहोस्। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
| 10 | डाटाको वितरणको दृश्यात्मकता | [डाटा दृश्यात्मकता](3-Data-Visualization/README.md) | अन्तरालभित्रको अवलोकन र प्रवृत्तिहरूलाई दृश्यात्मक बनाउने। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
| 11 | अनुपातको दृश्यात्मकता | [टा दृश्यात्मकता](3-Data-Visualization/README.md) | छुट्टै र समूहबद्ध प्रतिशतलाई दृश्यात्मक बनाउने। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
| 12 | सम्बन्धको दृश्यात्मकता | [ाटा दृश्यात्मकता](3-Data-Visualization/README.md) | डाटाको सेटहरू र तिनका भेरिएबलहरू बीचको सम्बन्ध र सहसम्बन्धलाई दृश्यात्मक बनाउने। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
| 13 | अर्थपूर्ण दृश्यात्मकता | [टा दृश्यात्मकता](3-Data-Visualization/README.md) | प्रभावकारी समस्या समाधान र जानकारीका लागि तपाईंको दृश्यात्मकतालाई मूल्यवान बनाउने प्रविधि र मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
| 14 | डटा साइन्स जीवनचक्रको परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटा साइन्स जीवनचक्रको परिचय र डाटा प्राप्त गर्ने र निकाल्ने पहिलो चरण। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ज्यास्मिन](https://twitter.com/paladique) |
| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटा साइन्स जीवनचक्रको यो चरणले डाटा विश्लेषण गर्ने प्रविधिमा केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ज्यास्मिन](https://twitter.com/paladique) | | |
| 16 | सञ्चार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटाबाट प्राप्त जानकारीलाई निर्णयकर्ताहरूले सजिलै बुझ्न सक्ने तरिकामा प्रस्तुत गर्ने जीवनचक्रको यो चरण। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउडमा डाटा साइन्स | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमा डाटा साइन्स र यसको फाइदाहरूको परिचय दिने पाठहरूको श्रृंखला। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) र [मौड](https://twitter.com/maudstweets) |
| 18 | क्लाउडमा डाटा साइन्स | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | लो कोड उपकरणहरू प्रयोग गरेर मोडेलहरू प्रशिक्षण गर्ने। | [पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) र [मौड](https://twitter.com/maudstweets) |
| 19 | क्लाउडमा डाटा साइन्स | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio प्रयोग गरेर मोडेलहरू तैनाथ गर्ने। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [टिफनी](https://twitter.com/TiffanySouterre) र [मौड](https://twitter.com/maudstweets) |
| 20 | जङ्गलमा डटा साइन्स | [जङ्गलमा](6-Data-Science-In-Wild/README.md) | वास्तविक संसारमा आधारित डाटा साइन्स परियोजनाहरू। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्या](https://twitter.com/nitya) |
| 03 | डेटा परिभाष | [परिचय](1-Introduction/README.md) | डेटा कसरी वर्गीकृत गरिन्छ र यसको सामान्य स्रोतहरू। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | तथ्यांक र सम्भावनाको परिचय | [परिचय](1-Introduction/README.md) | डेटा बुझ्नको लागि सम्भावना र तथ्यांकको गणितीय प्रविधिहरू। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [भिडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | सम्बन्धित डेटा संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | सम्बन्धित डेटा र संरचित क्वेरी भाषा (SQL) को आधारभूत अन्वेषण र विश्लेषणको परिचय। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | गैर-सम्बन्धित डेटा, यसको विभिन्न प्रकारहरू र दस्तावेज डेटाबेसहरूको अन्वेषण र विश्लेषणको आधारभूत परिचय। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python संग काम गर्ने | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | Pandas जस्ता पुस्तकालयहरू प्रयोग गरेर डेटा अन्वेषणक लागि Python प्रयोग गर्ने आधारभूत कुरा। Python प्रोग्रामिङको आधारभूत ज्ञान सिफारिस गरिन्छ। | [पाठ](2-Working-With-Data/07-python/README.md) [भिडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तयारी | [डेटा संग काम गर्ने](2-Working-With-Data/README.md) | हराएको, गलत, वा अपूर्ण डेटा सामना गर्न सफा गर्ने र रूपान्तरण गर्ने डेटा प्रविधिहरूको विषयहरू। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | मात्राहरूको दृश्यात्मकता | [ेटा दृश्यात्मकता](3-Data-Visualization/README.md) | Matplotlib प्रयोग गरेर चरा डेटा 🦆 दृश्यात्मकता गर्न सिक्नुहोस्। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | डेटा वितरणको दृश्यात्मकता | [डेटा दृश्यात्मकता](3-Data-Visualization/README.md) | अन्तराल भित्रको अवलोकन र प्रवृत्तिहरू दृश्यात्मकता। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | अनुपातहरूको दृश्यात्मकता | [टा दृश्यात्मकता](3-Data-Visualization/README.md) | छुट्टै र समूहबद्ध प्रतिशतहरूको दृश्यात्मकता। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | सम्बन्धहरूको दृश्यात्मकता | [ेटा दृश्यात्मकता](3-Data-Visualization/README.md) | डेटा सेटहरू र तिनका भेरिएबलहरू बीचको सम्बन्ध र सहसंबंध दृश्यात्मकता। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | अर्थपूर्ण दृश्यात्मकता | [टा दृश्यात्मकता](3-Data-Visualization/README.md) | प्रभावकारी समस्या समाधान र अन्तर्दृष्टिका लागि तपाईंको दृश्यात्मकतालाई मूल्यवान बनाउने प्रविधिहरू र मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | डटा साइन्स जीवनचक्रको परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइन्स जीवनचक्रको परिचय र डेटा प्राप्त गर्ने र निकाल्ने पहिलो चरण। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइन्स जीवनचक्रको यो चरण डेटा विश्लेषण गर्ने प्रविधिहरूमा केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | सञ्चार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइन्स जीवनचक्रको यो चरण डेटा बाट प्राप्त अन्तर्दृष्टिलाई निर्णयकर्ताहरूलाई बुझ्न सजिलो बनाउने तरिकामा प्रस्तुत गर्न केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउडमा डेटा साइन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमा डेटा साइन्स र यसको फाइदाहरूको परिचय दिने पाठहरूको श्रृंखला। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
| 18 | क्लाउडमा डेटा साइन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड उपकरणहरू प्रयोग गरेर मोडेलहरू प्रशिक्षण। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
| 19 | क्लाउडमा डेटा साइन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio प्रयोग गरेर मोडेलहरू डिप्लोय गर्ने। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
| 20 | जङ्गलमा डटा साइन्स | [जङ्गलमा](6-Data-Science-In-Wild/README.md) | वास्तविक संसारमा डेटा साइन्स द्वारा संचालित परियोजनाहरू। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -114,18 +109,18 @@ Azure Cloud Advocates मा Microsoftले डेटा साइन्स स
थप जानकारीको लागि, [GitHub दस्तावेज](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) हेर्नुहोस्।
## VSCode Remote - Containers
तपाईंको स्थानीय मेसिन र VSCode प्रयोग गरेर यो रिपोजिटरीलाई कन्टेनरमा खोल्न निम्न चरणहरू पालना गर्नुहोस्:
तपाईंको स्थानीय मेसिन र VSCode प्रयोग गरेर VS Code Remote - Containers एक्सटेन्सनको प्रयोग गरेर यो रिपोजिटरीलाई कन्टेनरमा खोल्न निम्न चरणहरू पालना गर्नुहोस्:
1. यदि यो पहिलो पटक विकास कन्टेनर प्रयोग गर्दै हुनुहुन्छ भने, कृपया सुनिश्चित गर्नुहोस् कि तपाईंको प्रणालीले पूर्व-आवश्यकताहरू पूरा गरेको छ (जस्तै Docker स्थापना गरिएको छ) [शुरुवात दस्तावेज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मा।
1. यदि यो पहिलो पटक विकास कन्टेनर प्रयोग गर्दै हुनुहुन्छ भने, कृपया सुनिश्चित गर्नुहोस् कि तपाईंको प्रणालीले पूर्व-आवश्यकताहरू पूरा गर्दछ (जस्तै Docker स्थापना गरिएको छ) [शुरुआती दस्तावेज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मा।
यो रिपोजिटरी प्रयोग गर्न, तपाईंले या त रिपोजिटरीलाई अलग Docker भोल्युममा खोल्न सक्नुहुन्छ:
यो रिपोजिटरी प्रयोग गर्न, तपाईं या त रिपोजिटरीलाई अलग Docker भोल्युममा खोल्न सक्नुहुन्छ:
**नोट**: यसले Remote-Containers: **Clone Repository in Container Volume...** आदेश प्रयोग गरेर स्रोत कोडलाई स्थानीय फाइल प्रणालीको सट्टा Docker भोल्युममा क्लोन गर्नेछ। [भोल्युमहरू](https://docs.docker.com/storage/volumes/) कन्टेनर डाटा कायम राख्नको लागि प्राथमिक विधि हुन्
**नोट**: भित्री रूपमा, यसले Remote-Containers: **Clone Repository in Container Volume...** कमाण्ड प्रयोग गर्नेछ जसले स्रोत कोडलाई स्थानीय फाइल प्रणालीको सट्टा Docker भोल्युममा क्लोन गर्नेछ। [Volumes](https://docs.docker.com/storage/volumes/) कन्टेनर डेटा कायम राख्नको लागि प्राथमिक मेकानिज्म हो
वा स्थानीय रूपमा क्लोन गरिएको वा डाउनलोड गरिएको संस्करण खोल्न सक्नुहुन्छ:
- यो रिपोजिटरीलाई तपाईंको स्थानीय फाइल प्रणालीमा क्लोन गर्नुहोस्।
- F1 थिच्नुहोस् र **Remote-Containers: Open Folder in Container...** आदेश चयन गर्नुहोस्।
- F1 थिच्नुहोस् र **Remote-Containers: Open Folder in Container...** कमाण्ड चयन गर्नुहोस्।
- यस फोल्डरको क्लोन गरिएको प्रतिलिपि चयन गर्नुहोस्, कन्टेनर सुरु हुने प्रतीक्षा गर्नुहोस्, र परीक्षण गर्नुहोस्।
## अफलाइन पहुँच
@ -134,30 +129,26 @@ Azure Cloud Advocates मा Microsoftले डेटा साइन्स स
> नोट, नोटबुकहरू Docsify मार्फत प्रस्तुत गरिने छैनन्, त्यसैले जब तपाईंलाई नोटबुक चलाउन आवश्यक छ, Python कर्नेल चलाउँदै VS Code मा अलग्गै गर्नुहोस्।
## सहयोग चाहिएको छ!
यदि तपाईं पाठ्यक्रमको सम्पूर्ण वा कुनै भाग अनुवाद गर्न चाहनुहुन्छ भने, कृपया हाम्रो [अनुवाद](TRANSLATIONS.md) मार्गदर्शन पालना गर्नुहोस्।
## अन्य पाठ्यक्रमहरू
हाम्रो टोलीले अन्य पाठ्यक्रमहरू उत्पादन गर्दछ! हेर्नुहोस्:
- [सुरुवातीका लागि जेनेरेटिभ AI](https://aka.ms/genai-beginners)
- [सुरुवातीका लागि जेनेरेटिभ AI .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [JavaScript सँग जेनेरेटिभ AI](https://github.com/microsoft/generative-ai-with-javascript)
- [Java सँग जेनेरेटिभ AI](https://aka.ms/genaijava)
- [सुरुवातीका लागि AI](https://aka.ms/ai-beginners)
- [सुरुवातीका लागि डाटा साइन्स](https://aka.ms/datascience-beginners)
- [सुरुवातीका लागि ML](https://aka.ms/ml-beginners)
- [सुरक्षाका लागि सुरुवाती](https://github.com/microsoft/Security-101)
- [सुरुवातीका लागि वेब विकास](https://aka.ms/webdev-beginners)
- [सुरुवातीका लागि IoT](https://aka.ms/iot-beginners)
- [सुरुवातीका लागि XR विकास](https://github.com/microsoft/xr-development-for-beginners)
- [GitHub Copilot को जोडी प्रोग्रामिङका लागि मास्टरी](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [C#/.NET विकासकर्ताहरूका लागि GitHub Copilot को मास्टरी](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [शुरुआतीहरूको लागि Generative AI](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [JavaScript संग Generative AI](https://github.com/microsoft/generative-ai-with-javascript)
- [Java संग Generative AI](https://aka.ms/genaijava)
- [शुरुआतीहरूको लागि AI](https://aka.ms/ai-beginners)
- [शुरुआतीहरूको लागि डेटा साइन्स](https://aka.ms/datascience-beginners)
- [शुरुआतीहरूको लागि ML](https://aka.ms/ml-beginners)
- [शुरुआतीहरूको लागि साइबर सुरक्षा](https://github.com/microsoft/Security-101)
- [शुरुआतीहरूको लागि वेब विकास](https://aka.ms/webdev-beginners)
- [शुरुआतीहरूको लागि IoT](https://aka.ms/iot-beginners)
- [शुरुआतीहरूको लागि XR विकास](https://github.com/microsoft/xr-development-for-beginners)
- [Paired Programming को लागि GitHub Copilot मास्टर गर्ने](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [C#/.NET विकासकर्ताहरूको लागि GitHub Copilot मास्टर गर्ने](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [आफ्नै Copilot साहसिक यात्रा चयन गर्नुहोस्](https://github.com/microsoft/CopilotAdventures)
---
**अस्वीकरण**:
यो दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) प्रयोग गरेर अनुवाद गरिएको छ। हामी शुद्धताको लागि प्रयास गर्छौं, तर कृपया ध्यान दिनुहोस् कि स्वचालित अनुवादमा त्रुटिहरू वा अशुद्धताहरू हुन सक्छ। यसको मूल भाषा मा रहेको मूल दस्तावेज़लाई आधिकारिक स्रोत मानिनुपर्छ। महत्वपूर्ण जानकारीको लागि, व्यावसायिक मानव अनुवाद सिफारिस गरिन्छ। यस अनुवादको प्रयोगबाट उत्पन्न हुने कुनै पनि गलतफहमी वा गलत व्याख्याक लागि हामी जिम्मेवार हुने छैनौं।
यो दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) प्रयोग गरी अनुवाद गरिएको हो। हामी यथासम्भव सटीकता सुनिश्चित गर्न प्रयास गर्छौं, तर कृपया ध्यान दिनुहोस् कि स्वचालित अनुवादमा त्रुटिहरू वा अशुद्धताहरू हुन सक्छन्। यसको मूल भाषामा रहेको मूल दस्तावेज़लाई आधिकारिक स्रोत मानिनुपर्छ। महत्त्वपूर्ण जानकारीका लागि, व्यावसायिक मानव अनुवाद सिफारिस गरिन्छ। यस अनुवादको प्रयोगबाट उत्पन्न हुने कुनै पनि गलतफहमी वा गलत व्याख्याक लागि हामी जिम्मेवार हुने छैनौं।

@ -1,163 +1,149 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6bb17a440fdabf0823105136a5b81029",
"translation_date": "2025-08-27T16:35:09+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:55:28+00:00",
"source_file": "README.md",
"language_code": "pa"
}
-->
# ਡਾਟਾ ਸਾਇੰਸ ਸ਼ੁਰੂਆਤੀ ਲਈ - ਇੱਕ ਪਾਠਕ੍ਰਮ
Azure Cloud Advocates ਮਾਈਕਰੋਸਾਫਟ ਵਿੱਚ 10 ਹਫ਼ਤਿਆਂ, 20 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰਨ ਵਿੱਚ ਖੁਸ਼ ਹਨ ਜੋ ਡਾਟਾ ਸਾਇੰਸ ਬਾਰੇ ਹੈ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼, ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤ ਨਿਰਦੇਸ਼, ਇੱਕ ਹੱਲ ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੈ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪੈਡਾਗੌਜੀ ਤੁਹਾਨੂੰ ਸਿੱਖਣ ਦਿੰਦਾ ਹੈ ਜਦੋਂ ਤੁਸੀਂ ਬਣਾਉਂਦੇ ਹੋ, ਨਵੀਂ ਕੌਸ਼ਲਾਂ ਨੂੰ 'ਟਿਕਾਉਣ' ਦਾ ਸਾਬਤ ਤਰੀਕਾ।
Azure Cloud Advocates at Microsoft ਨੇ 10 ਹਫ਼ਤਿਆਂ, 20 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰਨ ਵਿੱਚ ਖੁਸ਼ੀ ਮਹਿਸੂਸ ਕੀਤੀ ਹੈ ਜੋ ਡਾਟਾ ਸਾਇੰਸ ਬਾਰੇ ਹੈ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਪਾਠ ਤੋਂ ਬਾਅਦ ਦੇ ਪ੍ਰਸ਼ਨ, ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤ ਨਿਰਦੇਸ਼, ਇੱਕ ਹੱਲ ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੈ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪੈਡਾਗੌਜੀ ਤੁਹਾਨੂੰ ਸਿੱਖਣ ਦਿੰਦੀ ਹੈ ਜਦੋਂ ਤੁਸੀਂ ਬਣਾਉਂਦੇ ਹੋ, ਜੋ ਨਵੀਆਂ ਹੁਨਰਾਂ ਨੂੰ 'ਟਿਕਾਉਣ' ਦਾ ਸਾਬਤ ਤਰੀਕਾ ਹੈ
**ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [ਜੈਸਮਿਨ ਗ੍ਰੀਨਵੇ](https://www.twitter.com/paladique), [ਦਿਮਿਤਰੀ ਸੋਸ਼ਨਿਕੋਵ](http://soshnikov.com), [ਨਿਤਿਆ ਨਰਸਿੰਹਨ](https://twitter.com/nitya), [ਜੇਲਨ ਮੈਕਗੀ](https://twitter.com/JalenMcG), [ਜੇਨ ਲੂਪਰ](https://twitter.com/jenlooper), [ਮੌਦ ਲੇਵੀ](https://twitter.com/maudstweets), [ਟਿਫਨੀ ਸੌਟਰ](https://twitter.com/TiffanySouterre), [ਕ੍ਰਿਸਟੋਫਰ ਹੈਰਿਸਨ](https://www.twitter.com/geektrainer)।
**ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ 🙏 ਸਾਡੇ [ਮਾਈਕਰੋਸਾਫਟ ਸਟੂਡੈਂਟ ਐਮਬੈਸਡਰ](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਾਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਰਤਾਵਾਂ ਨੂੰ,** ਜਿਵੇਂ ਕਿ ਆਰਿਆਨ ਅਰੋੜਾ, [ਅਦਿਤਿਆ ਗਰਗ](https://github.com/AdityaGarg00), [ਅਲੋਂਡਰਾ ਸਾਂਚੇਜ਼](https://www.linkedin.com/in/alondra-sanchez-molina/), [ਅੰਕਿਤਾ ਸਿੰਘ](https://www.linkedin.com/in/ankitasingh007), [ਅਨੁਪਮ ਮਿਸ਼ਰਾ](https://www.linkedin.com/in/anupam--mishra/), [ਅਰਪਿਤਾ ਦਾਸ](https://www.linkedin.com/in/arpitadas01/), ਚਹਿਲਬਿਹਾਰੀ ਦੁਬੇ, [ਦਿਬਰੀ ਨਸੋਫਰ](https://www.linkedin.com/in/dibrinsofor), [ਦਿਸ਼ਿਤਾ ਭਾਸਿਨ](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [ਮਜਦ ਸਾਫੀ](https://www.linkedin.com/in/majd-s/), [ਮੈਕਸ ਬਲਮ](https://www.linkedin.com/in/max-blum-6036a1186/), [ਮਿਗੁਏਲ ਕੋਰੇਆ](https://www.linkedin.com/in/miguelmque/), [ਮੋਹੰਮਾ ਇਫ਼ਤੇਖਰ (ਇਫ਼ਤੂ) ਇਬਨੇ ਜਲਾਲ](https://twitter.com/iftu119), [ਨਾਵਰਿਨ ਤਬਸੁਮ](https://www.linkedin.com/in/nawrin-tabassum), [ਰੇਮੰਡ ਵਾਂਗਸਾ ਪੁਤਰਾ](https://www.linkedin.com/in/raymond-wp/), [ਰੋਹਿਤ ਯਾਦਵ](https://www.linkedin.com/in/rty2423), ਸਮਰਿਧੀ ਸ਼ਰਮਾ, [ਸੰਯਾ ਸਿੰਹਾ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [ਸ਼ੀਨਾ ਨਰੂਲਾ](https://www.linkedin.com/in/sheena-narua-n/), [ਤੌਕੀਰ ਅਹਿਮਦ](https://www.linkedin.com/in/tauqeerahmad5201/), ਯੋਗੇਂਦਰਸਿੰਘ ਪਵਾਰ, [ਵਿਦੁਸ਼ੀ ਗੁਪਤਾ](https://www.linkedin.com/in/vidushi-gupta07/), [ਜਸਲੀਨ ਸੋਂਧੀ](https://www.linkedin.com/in/jasleen-sondhi/)।
**🙏 ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ 🙏 ਸਾਡੇ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਾਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਰਤਿਆਂ ਨੂੰ,** ਖਾਸ ਤੌਰ 'ਤੇ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![(@sketchthedocs)](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.pa.png)|
|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.pa.png)|
|:---:|
| ਡਾਟਾ ਸਾਇੰਸ ਸ਼ੁਰੂਆਤੀ ਲਈ - _ਸਕੈਚਨੋਟ [@ਨਿਤਿਆ](https://twitter.com/nitya)_ |
| ਡਾਟਾ ਸਾਇੰਸ ਸ਼ੁਰੂਆਤੀ ਲਈ - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
## ਐਲਾਨ - ਜਨਰੇਟਿਵ AI 'ਤੇ ਨਵਾਂ ਪਾਠਕ੍ਰਮ ਜਾਰੀ ਕੀਤਾ ਗਿਆ ਹੈ!
### 🌐 ਬਹੁ-ਭਾਸ਼ਾ ਸਹਾਇਤਾ
ਅਸੀਂ ਜਨਰੇਟਿਵ AI 'ਤੇ 12 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਜਾਰੀ ਕੀਤਾ ਹੈ। ਆਓ ਸਿੱਖੋ:
#### GitHub Action ਰਾਹੀਂ ਸਹਾਇਤ (ਆਟੋਮੈਟਿਕ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)
- ਪ੍ਰੋਮਪਟਿੰਗ ਅਤੇ ਪ੍ਰੋਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ
- ਟੈਕਸਟ ਅਤੇ ਚਿੱਤਰ ਐਪ ਜਨਰੇਸ਼ਨ
- ਖੋਜ ਐਪਸ
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](./README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
ਹਮੇਸ਼ਾ ਦੀ ਤਰ੍ਹਾਂ, ਇੱਕ ਪਾਠ, ਅਸਾਈਨਮੈਂਟਸ, ਗਿਆਨ ਜਾਂਚ ਅਤੇ ਚੁਣੌਤੀਆਂ ਸ਼ਾਮਲ ਹਨ।
**ਜੇ ਤੁਸੀਂ ਹੋਰ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦ ਕਰਵਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ, ਸਹਾਇਤ ਭਾਸ਼ਾਵਾਂ ਦੀ ਸੂਚੀ [ਇੱਥੇ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ਦਿੱਤੀ ਗਈ ਹੈ।**
ਇਸਨੂੰ ਚੈੱਕ ਕਰੋ:
> https://aka.ms/genai-beginners
#### ਸਾਡੇ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# ਕੀ ਤੁਸੀਂ ਵਿਦਿਆਰਥੀ ਹੋ?
ਹੇਠਾਂ ਦਿੱਤੇ ਸਰੋਤਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ:
- [ਵਿਦਿਆਰਥੀ ਹੱਬ ਪੇਜ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਪੇਜ 'ਤੇ, ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤੀ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਮਿਲਣਗੇ। ਇਹ ਇੱਕ ਪੇਜ ਹੈ ਜਿਸਨੂੰ ਤੁਸੀਂ ਬੁੱਕਮਾਰਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਸਮੇਂ-ਸਮੇਂ 'ਤੇ ਚੈੱਕ ਕਰਦੇ ਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਘੱਟੋ-ਘੱਟ ਮਹੀਨਾਵਾਰ ਸਮੱਗਰੀ ਬਦਲਦੇ ਹਾਂ।
- [ਮਾਈਕਰੋਸਾਫਟ ਲਰਨ ਸਟੂਡੈਂਟ ਐਮਬੈਸਡਰ](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਗਲੋਬਲ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ ਮਾਈਕਰੋਸਾਫਟ ਵਿੱਚ ਤੁਹਾਡਾ ਰਸਤਾ ਹੋ ਸਕਦਾ ਹੈ।
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਪੇਜ 'ਤੇ, ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤੀ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਮਿਲਣਗੇ। ਇਹ ਇੱਕ ਪੇਜ ਹੈ ਜਿਸਨੂੰ ਤੁਸੀਂ ਬੁੱਕਮਾਰਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਸਮੇਂ-ਸਮੇਂ 'ਤੇ ਚੈੱਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਘੱਟੋ-ਘੱਟ ਮਹੀਨਾਵਾਰ ਸਮੱਗਰੀ ਬਦਲਦੇ ਹਾਂ।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਦਿਆਰਥੀ ਅੰਬੈਸਡਰਾਂ ਦੇ ਗਲੋਬਲ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ Microsoft ਵਿੱਚ ਤੁਹਾਡਾ ਰਸਤਾ ਹੋ ਸਕਦਾ ਹੈ।
# ਸ਼ੁਰੂਆਤ ਕਰਨਾ
> **ਅਧਿਆਪਕਾਂ**: ਅਸੀਂ [ਕੁਝ ਸੁਝਾਅ ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ](for-teachers.md) ਕਿ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਕਿਵੇਂ ਵਰਤਣਾ ਹੈ। ਅਸੀਂ ਤੁਹਾਡੀ ਪ੍ਰਤੀਕ੍ਰਿਆ [ਸਾਡੇ ਚਰਚਾ ਫੋਰਮ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ਵਿੱਚ ਪਸੰਦ ਕਰਦੇ ਹਾਂ!
> **ਅਧਿਆਪਕਾਂ**: ਅਸੀਂ [ਕੁਝ ਸੁਝਾਅ ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ](for-teachers.md) ਕਿ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਕਿਵੇਂ ਵਰਤਣਾ ਹੈ। ਅਸੀਂ ਤੁਹਾਡਾ ਫੀਡਬੈਕ [ਸਾਡੇ ਚਰਚਾ ਫੋਰਮ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ਵਿੱਚ ਚਾਹੁੰਦੇ ਹਾਂ!
> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ ਅਤੇ ਆਪਣੇ ਆਪ ਅਭਿਆਸ ਪੂਰੇ ਕਰੋ, ਪਾਠਕ੍ਰਮ ਕਵਿਜ਼ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ। ਫਿਰ ਪਾਠ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀਆਂ ਕਰੋ। ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਨਾ ਕਿ ਹੱਲ ਕੋਡ ਨੂੰ ਕਾਪੀ ਕਰਨ ਦੀ; ਹਾਲਾਂਕਿ, ਉਹ ਕੋਡ ਹਰ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠ ਵਿੱਚ /solutions ਫੋਲਡਰ ਵਿੱਚ ਉਪਲਬਧ ਹੈ। ਇੱਕ ਹੋਰ ਵਿਚਾਰ ਇਹ ਹੋਵੇਗਾ ਕਿ ਦੋਸਤਾਂ ਨਾਲ ਇੱਕ ਅਧਿਐਨ ਸਮੂਹ ਬਣਾਓ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਇਕੱਠੇ ਪੜ੍ਹੋ। ਅਗਲੇ ਅਧਿਐਨ ਲਈ, ਅਸੀਂ [ਮਾਈਕਰੋਸਾਫਟ ਲਰਨ](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।
> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ ਅਤੇ ਆਪਣੇ ਆਪ ਅਭਿਆਸ ਪੂਰੇ ਕਰੋ, ਪਾਠਕ੍ਰਮ ਦੇ ਪਹਿਲਾਂ ਪ੍ਰਸ਼ਨ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ। ਫਿਰ ਪਾਠ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀਆਂ ਕਰੋ। ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਨਾ ਕਿ ਹੱਲ ਕੋਡ ਨੂੰ ਕਾਪੀ ਕਰਨ ਦੀ; ਹਾਲਾਂਕਿ, ਉਹ ਕੋਡ /solutions ਫੋਲਡਰ ਵਿੱਚ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਵਿੱਚ ਉਪਲਬਧ ਹੈ। ਇੱਕ ਹੋਰ ਵਿਚਾਰ ਇਹ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਦੋਸਤਾਂ ਨਾਲ ਇੱਕ ਅਧਿਐਨ ਸਮੂਹ ਬਣਾਓ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਇਕੱਠੇ ਪੜ੍ਹੋ। ਹੋਰ ਅਧਿਐਨ ਲਈ, ਅਸੀਂ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।
## ਟੀਮ ਨਾਲ ਮਿਲੋ
[![ਪ੍ਰੋਮੋ ਵੀਡੀਓ](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "ਪ੍ਰੋਮੋ ਵੀਡੀਓ")
[![Promo video](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif by** [ਮੋਹਿਤ ਜੈਸਲ](https://www.linkedin.com/in/mohitjaisal)
**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 ਉਪਰੋਕਤ ਚਿੱਤਰ 'ਤੇ ਕਲਿਕ ਕਰੋ ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਇਸਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਦੇਖਣ ਲਈ!
> 🎥 ਉਪਰੋਕਤ ਚਿੱਤਰ 'ਤੇ ਕਲਿਕ ਕਰੋ ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਉਹ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਦੇਖਣ ਲਈ ਜਿਨ੍ਹਾਂ ਨੇ ਇਸਨੂੰ ਬਣਾਇਆ!
## ਪੈਡਾਗੌਜੀ
ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਬਣਾਉਣ ਦੌਰਾਨ ਦੋ ਪੈਡਾਗੌਜੀਕਲ ਸਿਧਾਂਤਾਂ ਨੂੰ ਚੁਣਿਆ ਹੈ: ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਇਹ ਵਾਰੰ-ਵਾਰ ਕਵਿਜ਼ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਇਸ ਸਿਰੀਜ਼ ਦੇ ਅੰਤ ਤੱਕ, ਵਿਦਿਆਰਥੀ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੂਲ ਸਿਧਾਂਤਾਂ ਨੂੰ ਸਿੱਖ ਚੁੱਕੇ ਹੋਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਧਾਰਨਾਵਾਂ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲ-ਜਗਤ ਦੇ ਉਪਯੋਗ ਅਤੇ ਹੋਰ ਸ਼ਾਮਲ ਹਨ।
ਇਸਦੇ ਇਲਾਵਾ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਘੱਟ-ਦਬਾਅ ਵਾਲਾ ਕਵਿਜ਼ ਵਿਦਿਆਰਥੀ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇ ਨੂੰ ਸਿੱਖਣ ਵੱਲ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਸੈਟ ਕਰਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਕਵਿਜ਼ ਹੋਰ ਰਿਟੇਨਸ਼ਨ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਪਾਠਕ੍ਰਮ ਲਚਕੀਲਾ ਅਤੇ ਮਜ਼ੇਦਾਰ ਬਣਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਪੂਰੇ ਜਾਂ ਅੰਸ਼ਿਕ ਤੌਰ 'ਤੇ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵਧਦੇ ਹਨ।
> ਸਾਡੇ [ਕੋਡ ਆਫ ਕੰਡਕਟ](CODE_OF_CONDUCT.md), [ਯੋਗਦਾਨ](CONTRIBUTING.md), [ਅਨੁਵਾਦ](TRANSLATIONS.md) ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਨੂੰ ਲੱਭੋ। ਅਸੀਂ ਤੁਹਾਡੀ ਰਚਨਾਤਮਕ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਬਣਾਉਂਦੇ ਸਮੇਂ ਦੋ ਪੈਡਾਗੌਜੀਕਲ ਸਿਧਾਂਤਾਂ ਨੂੰ ਚੁਣਿਆ ਹੈ: ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਇਹ ਵਾਰੰ-ਵਾਰ ਪ੍ਰਸ਼ਨ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਇਸ ਸਿਰੀਜ਼ ਦੇ ਅੰਤ ਤੱਕ, ਵਿਦਿਆਰਥੀ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤਾਂ ਸਿੱਖ ਚੁੱਕੇ ਹੋਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਧਾਰਨਾਵਾਂ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲ-ਜਗਤ ਦੇ ਉਪਯੋਗ ਅਤੇ ਹੋਰ ਬਹੁਤ ਕੁਝ ਸ਼ਾਮਲ ਹੈ।
## ਹਰ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ:
ਇਸ ਤੋਂ ਇਲਾਵਾ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਘੱਟ-ਦਬਾਅ ਵਾਲਾ ਪ੍ਰਸ਼ਨ ਵਿਦਿਆਰਥੀ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇ ਨੂੰ ਸਿੱਖਣ ਵੱਲ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਸੈਟ ਕਰਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਪ੍ਰਸ਼ਨ ਹੋਰ ਰਿਟੇਨਸ਼ਨ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਪਾਠਕ੍ਰਮ ਲਚਕੀਲਾ ਅਤੇ ਮਜ਼ੇਦਾਰ ਬਣਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਇਸਨੂੰ ਪੂਰੇ ਜਾਂ ਅੰਸ਼ਿਕ ਤੌਰ 'ਤੇ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵਧਦੇ ਹੀ ਜਟਿਲ ਹੋ ਜਾਂਦੇ ਹਨ।
> ਸਾਡਾ [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਵੇਖੋ। ਅਸੀਂ ਤੁਹਾਡੀ ਰਚਨਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
## ਹਰ ਇਕ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ:
- ਵਿਕਲਪਿਕ ਸਕੈਚਨੋਟ
- ਵਿਕਲਪਿਕ ਸਹਾਇਕ ਵੀਡੀਓ
- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਾਰਮਅਪ ਕਵਿਜ਼
- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਾਰਮਅਪ ਕਵਿਜ਼
- ਲਿਖਤ ਪਾਠ
- ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਲਈ, ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੇ ਕਦਮ-ਦਰ-ਕਦਮ ਗਾਈਡ
- ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਤ ਪਾਠਾਂ ਲਈ, ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਲਈ ਕਦਮ-ਦਰ-ਕਦਮ ਗਾਈਡ
- ਗਿਆਨ ਜਾਂਚ
- ਇੱਕ ਚੁਣੌਤੀ
- ਸਹਾਇਕ ਪੜ੍ਹਾਈ
- ਅਸਾਈਨਮੈਂਟ
- ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼
- [ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼](https://ff-quizzes.netlify.app/en/)
> **ਕਵਿਜ਼ਾਂ ਬਾਰੇ ਇੱਕ ਨੋਟ**: ਸਾਰੇ ਕਵਿਜ਼ Quiz-App ਫੋਲਡਰ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ, ਕੁੱਲ 40 ਕਵਿਜ਼, ਹਰ ਇੱਕ ਵਿੱਚ ਤਿੰਨ ਪ੍ਰਸ਼ਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚੋਂ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ, ਪਰ Quiz-App ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ Azure 'ਤੇ ਡਿਪਲੌਇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹ ਹੌਲੀ-ਹੌਲੀ ਸਥਾਨਕ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।
> **ਕਵਿਜ਼ਾਂ ਬਾਰੇ ਇੱਕ ਨੋਟ**: ਸਾਰੀਆਂ ਕਵਿਜ਼ਾਂ Quiz-App ਫੋਲਡਰ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚ ਕੁੱਲ 40 ਕਵਿਜ਼ ਹਨ, ਹਰ ਇੱਕ ਵਿੱਚ ਤਿੰਨ ਪ੍ਰਸ਼ਨ ਹਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚੋਂ ਲਿੰਕ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ, ਪਰ ਕਵਿਜ਼ ਐਪ ਨੂੰ ਲੋਕਲ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ Azure 'ਤੇ ਡਿਪਲੌਇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਵਿੱਚ ਦਿੱਤੀਆਂ ਹਦਾਇਤਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹ ਹੌਲੀ-ਹੌਲੀ ਸਥਾਨਕ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦਿਤ ਕੀਤੀਆਂ ਜਾ ਰਹੀਆਂ ਹਨ।
## ਪਾਠ
|![(@sketchthedocs)](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.pa.png)|
|![ @sketchthedocs ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.pa.png)|
|:---:|
| ਡਾਟਾ ਸਾਇੰਸ ਸ਼ੁਰੂਆਤੀ ਲਈ: ਰੋਡਮੈਪ - _ਸਕੈਚਨੋਟ [@ਨਿਤਿਆ](https://twitter.com/nitya)_ |
| ਸ਼ੁਰੂਆਤ ਲਈ ਡਾਟਾ ਸਾਇੰਸ: ਰੋਡਮੈਪ - _[@nitya](https://twitter.com/nitya) ਦੁਆਰਾ ਸਕੈਚਨੋਟ_ |
| ਪਾਠ ਨੰਬਰ | ਵਿਸ਼ਾ | ਪਾਠ ਸਮੂਹ | ਸਿੱਖਣ ਦੇ ਉਦੇਸ਼ | ਲਿੰਕ ਕੀਤਾ ਪਾਠ | ਲੇਖਕ |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੂਲ ਧਾਰਨਾਵਾਂ ਅਤੇ ਇਹ ਕਿਵੇਂ ਕ੍ਰਿਤਮ ਬੁੱਧੀ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਅਤੇ ਵੱਡੇ ਡਾਟਾ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। | [ਪਾਠ](1-Introduction/01-defining-data-science/README.md) [ਵੀਡੀਓ](https://youtu.be/beZ7Mb_oz9I) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
| 02 | ਡਾਟਾ ਸਾਇੰਸ ਨੈਤਿਕਤਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੈਤਿਕਤਾ ਧਾਰਨਾਵਾਂ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਫਰੇਮਵਰਕ। | [ਪਾਠ](1-Introduction/02-ethics/README.md) | [ਨਿਤਿਆ](https://twitter.com/nitya) |
| 03 | ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਕਿਵੇਂ ਵਰਗਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸਦੇ ਆਮ ਸਰੋਤ। | [ਪਾਠ](1-Introduction/03-defining-data/README.md) | [ਜੈਸਮਿਨ](https://www.twitter.com/paladique) |
| 04 | ਅੰਕੜੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪ੍ਰਸਤਾਵਨਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜੇ ਦੇ ਗਣਿਤਕ ਤਕਨੀਕ। | [ਪਾਠ](1-Introduction/04-stats-and-probability/README.md) [ਵੀਡੀਓ](https://youtu.be/Z5Zy85g4Yjw) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
| 05 | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪ੍ਰਸਤਾਵਨਾ ਅਤੇ ਸਟ੍ਰਕਚਰਡ ਕਵੈਰੀ ਲੈਂਗਵੇਜ (SQL) ਨਾਲ ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੂਲ। | [ਪਾਠ](2-Working-With-Data/05-relational-databases/README.md) | [ਕ੍ਰਿਸਟੋਫਰ](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪ੍ਰਸਤਾਵਨਾ, ਇਸਦੇ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਅਤੇ ਦਸਤਾਵੇਜ਼ ਡਾਟਾਬੇਸ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੂਲ। | [ਪਾਠ](2-Working-With-Data/06-non-relational/README.md) | [ਜੈਸਮਿਨ](https://twitter.com/paladique)|
| 07 | ਪਾਇਥਨ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | Pandas ਵਰਗ ਲਾਇਬ੍ਰੇਰੀਆਂ ਨਾਲ ਡਾਟਾ ਦੀ ਖੋਜ ਲਈ ਪਾਇਥਨ ਦੀ ਵਰਤੋਂ ਦੇ ਮੂਲ। ਪਾਇਥਨ ਪ੍ਰੋਗਰਾਮਿੰਗ ਦੀ ਮੂਲ ਸਮਝ ਸਿਫਾਰਸ਼ੀ ਹੈ। | [ਪਾਠ](2-Working-With-Data/07-python/README.md) [ਵੀਡੀਓ](https://youtu.be/dZjWOGbsN4Y) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
| 08 | ਡਾਟਾ ਤਿਆਰੀ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੁੰਮ, ਗਲਤ ਜਾਂ ਅਧੂਰੇ ਡਾਟਾ ਦੀ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਡਾਟਾ ਨੂੰ ਸਾਫ ਅਤੇ ਬਦਲਣ ਦੀਆਂ ਤਕਨੀਕਾਂ ਦੇ ਵਿਸ਼ਿਆਂ। | [ਪਾਠ](2-Working-With-Data/08-data-preparation/README.md) | [ਜੈਸਮਿਨ](https://www.twitter.com/paladique) |
| 09 | ਮਾਤਰਾ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਮੈਟਪਲਾਟਲਿਬ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੰਛੀਆਂ ਦੇ ਡਾਟਾ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ ਸਿੱਖੋ 🦆 | [ਪਾਠ](3-Data-Visualization/09-visualization-quantities/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
| 10 | ਡਾਟਾ ਦੇ ਵੰਡ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਇੱਕ ਅੰਤਰਾਲ ਵਿੱਚ ਅਵਲੋਕਨ ਅਤੇ ਰੁਝਾਨਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/10-visualization-distributions/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
| 11 | ਅਨੁਪਾਤਾਂ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ ਵਿਖੇ ਵਿਸ਼ੇਸ਼ ਅਤੇ ਸਮੂਹਬੱਧ ਪ੍ਰਤੀਸ਼ਤ। | [ਪਾਠ](3-Data-Visualization/11-visualization-proportions/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
| 12 | ਸੰਬੰਧਾਂ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਡਾਟਾ ਦੇ ਸੈੱਟ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਵੈਰੀਏਬਲਾਂ ਦੇ ਵਿਚਕਾਰ ਸੰਬੰਧ ਅਤੇ ਸਹਿ-ਸੰਬੰਧਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/12-visualization-relationships/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
| 13 | ਅਰਥਪੂਰਨ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਅਤੇ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਲਈ ਤੁਹਾਡੇ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਮੁੱਲਵਾਨ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਮਾਰਗਦਰਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
| 14 | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਅਤੇ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਕੱਢਣ ਦੇ ਪਹਿਲੇ ਕਦਮ ਦਾ ਪਰਿਚਯ। | [ਪਾਠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ਜੈਸਮਿਨ](https://twitter.com/paladique) |
| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਇਹ ਚਰਨ ਡਾਟਾ ਨੂੰ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਦੀਆਂ ਤਕਨੀਕਾਂ 'ਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਦਾ ਹੈ। | [ਪਾਠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ਜੈਸਮਿਨ](https://twitter.com/paladique) | | |
| 16 | ਸੰਚਾਰ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਤੋਂ ਪ੍ਰਾਪਤ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਨੂੰ ਇਸ ਤਰੀਕੇ ਨਾਲ ਪੇਸ਼ ਕਰਨ 'ਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਦਾ ਹੈ ਜੋ ਫੈਸਲੇ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਆਸਾਨ ਬਣਾਉਂਦਾ ਹੈ। | [ਪਾਠ](4-Data-Science-Lifecycle/16-communication/README.md) | [ਜੇਲਨ](https://twitter.com/JalenMcG) | | |
| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸਦੇ ਫਾਇਦਿਆਂ ਦਾ ਪਰਿਚਯ। | [ਪਾਠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ਟਿਫਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਲੋ ਕੋਡ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲਾਂ ਨੂੰ ਟ੍ਰੇਨ ਕਰਨਾ। | [ਪਾਠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ਟਿਫਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਐਜ਼ਰ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਸਟੂਡੀਓ ਨਾਲ ਮਾਡਲਾਂ ਨੂੰ ਡਿਪਲੌਇ ਕਰਨਾ। | [ਪਾਠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [ਟਿਫਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
| 20 | ਜੰਗਲੀ ਹਾਲਾਤ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਜੰਗਲੀ ਹਾਲਾਤ](6-Data-Science-In-Wild/README.md) | ਅਸਲ ਦੁਨੀਆ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਚਲਿਤ ਪ੍ਰੋਜੈਕਟ। | [ਪਾਠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ਨਿਤਿਆ](https://twitter.com/nitya) |
| 01 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਸੰਕਲਪਾਂ ਨੂੰ ਸਿੱਖੋ ਅਤੇ ਇਹ ਕਿਵੇਂ ਕ੍ਰਿਤ੍ਰਿਮ ਬੁੱਧੀ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਅਤੇ ਬਿਗ ਡਾਟਾ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। | [ਪਾਠ](1-Introduction/01-defining-data-science/README.md) [ਵੀਡੀਓ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | ਡਾਟਾ ਸਾਇੰਸ ਨੈਤਿਕਤਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੈਤਿਕਤਾ ਦੇ ਸੰਕਲਪ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਢਾਂਚੇ। | [ਪਾਠ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਕਿਵੇਂ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਦੇ ਆਮ ਸਰੋਤ। | [ਪਾਠ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | ਅੰਕੜੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪਰਿਚਯ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜਿਆਂ ਦੀ ਗਣਿਤੀ ਤਕਨੀਕਾਂ। | [ਪਾਠ](1-Introduction/04-stats-and-probability/README.md) [ਵੀਡੀਓ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਿਚਯ ਅਤੇ ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਦੇ ਮੁੱਢਲੇ ਤਰੀਕੇ, ਜਿਨ੍ਹਾਂ ਨੰ ਸਟ੍ਰਕਚਰਡ ਕਵੈਰੀ ੈਂਗਵੇਜ (SQL) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। | [ਪਾਠ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਿਚਯ, ਇਸ ਦੇ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਅਤੇ ਦਸਤਾਵੇਜ਼ ਡਾਟਾਬੇਸ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਤਰੀਕੇ। | [ਪਾਠ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | ਪਾਇਥਨ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | Pandas ਵਰਗੀਆਂ ਲਾਇਬ੍ਰੇਰੀਆਂ ਨਾਲ ਡਾਟਾ ਦੀ ਖੋਜ ਲਈ ਪਾਇਥਨ ਦੀ ਵਰਤੋਂ ਦੇ ਮੁੱਢਲੇ ਤਰੀਕੇ। ਪਾਇਥਨ ਪ੍ਰੋਗ੍ਰਾਮਿੰਗ ਦੀ ਬੁਨਿਆਦੀ ਸਮਝ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। | [ਪਾਠ](2-Working-With-Data/07-python/README.md) [ਵੀਡੀਓ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ਡਾਟਾ ਤਿਆਰੀ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੁੰਮ, ਗਲਤ ਜਾਂ ਅਧੂਰੇ ਡਾਟਾ ਦੀ ਸਮੱਸਿਆ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਡਾਟਾ ਸਾਫ਼ ਕਰਨ ਅਤੇ ਰੂਪਾਂਤਰਿਤ ਕਰਨ ਦੀਆਂ ਤਕਨੀਕਾਂ। | [ਪਾਠ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | ਮਾਤਰਾ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਸਿੱਖੋ ਕਿ ਕਿਵੇਂ Matplotlib ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੰਛੀਆਂ ਦੇ ਡਾਟਾ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕੀਤਾ ਜਾਵੇ 🦆 | [ਪਾਠ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ਡਾਟਾ ਦੇ ਵੰਡ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਇੱਕ ਅੰਤਰਾਲ ਦੇ ਅੰਦਰ ਦੇ ਅਵਲੋਕਨ ਅਤੇ ਰੁਝਾਨਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | ਅਨੁਪਾਤ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਵਿਸ਼ੇਸ਼ ਅਤੇ ਸਮੂਹੀਕ੍ਰਿਤ ਪ੍ਰਤੀਸ਼ਤਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | ਸੰਬੰਧਾਂ ਦੀ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਡਾਟਾ ਦੇ ਸੈੱਟਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਵੈਰੀਏਬਲਾਂ ਦੇ ਵਿਚਕਾਰ ਦੇ ਸੰਬੰਧਾਂ ਅਤੇ ਸਹਸੰਬੰਧਾਂ ਨੂੰ ਵਿਜੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | ਅਰਥਪੂਰਨ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਤੁਹਾਡੇ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਅਤੇ ਅੰਦਰੂਨੀ ਜਾਣਕਾਰੀ ਲਈ ਕੀਮਤੀ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਮਾਰਗਦਰਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ ਅਤੇ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਕੱਢਣ ਦੇ ਪਹਿਲੇ ਕਦਮ। | [ਪਾਠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ ਤਕਨੀਕਾਂ 'ਤੇ ਕੇਂਦ੍ਰਿਤ। | [ਪਾਠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | ਸੰਚਾਰ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਤੋਂ ਪ੍ਰਾਪਤ ਅੰਦਰੂਨੀ ਜਾਣਕਾਰੀ ਨੂੰ ਇਸ ਤਰੀਕੇ ਨਾਲ ਪੇਸ਼ ਕਰਨ 'ਤੇ ਕੇਂਦ੍ਰਿਤ ਜੋ ਫੈਸਲੇ ਲੈਣ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਆਸਾਨ ਬਣਾਏ। | [ਪਾਠ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸ ਦੇ ਫਾਇਦਿਆਂ ਦਾ ਪਰਿਚਯ। | [ਪਾਠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | Low Code ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲਾਂ ਨੂੰ ਟ੍ਰੇਨ ਕਰਨਾ। |[ਪਾਠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ਨਾਲ ਮਾਡਲਾਂ ਨੂੰ ਡਿਪਲੌਇ ਕਰਨਾ। | [ਪਾਠ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
| 20 | ਜੰਗਲੀ ਪ੍ਰਸਥਿਤੀਆਂ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਜੰਗਲੀ ਪ੍ਰਸਥਿਤੀਆਂ](6-Data-Science-In-Wild/README.md) | ਅਸਲ ਦੁਨੀਆ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਚਲਿਤ ਪ੍ਰੋਜੈਕਟ। | [ਪਾਠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub ਕੋਡਸਪੇਸ
ਇਸ ਸੈਂਪਲ ਨੂੰ ਕੋਡਸਪੇਸ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਹੇਠਾਂ ਦਿੱਤੇ ਕਦਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ:
1. ਕੋਡ ਡ੍ਰੌਪ-ਡਾਊਨ ਮੀਨੂ 'ਤੇ ਕਲਿਕ ਕਰੋ ਅਤੇ "Open with Codespaces" ਵਿਕਲਪ ਚੁਣੋ।
ਇਸ ਨਮੂਨੇ ਨੂੰ ਇੱਕ ਕੋਡਸਪੇਸ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
1. ਕੋਡ ਡ੍ਰੌਪ-ਡਾਊਨ ਮੀਨੂ 'ਤੇ ਕਲਿਕ ਕਰੋ ਅਤੇ "Open with Codespaces" ਵਿਕਲਪ ਚੁਣੋ।
2. ਪੈਨ ਦੇ ਹੇਠਾਂ + ਨਵਾਂ ਕੋਡਸਪੇਸ ਚੁਣੋ।
ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, [GitHub ਦਸਤਾਵੇਜ਼](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ਵੇਖੋ।
## VSCode ਰਿਮੋਟ - ਕੰਟੇਨਰ
ਆਪਣੀ ਸਥਾਨਕ ਮਸ਼ੀਨ ਅਤੇ VSCode ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਰਿਪੋ ਨੂੰ ਕੰਟੇਨਰ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਹੇਠਾਂ ਦਿੱਤੇ ਕਦਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ:
ਇਹ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਆਪਣੇ ਸਥਾਨਕ ਮਸ਼ੀਨ ਅਤੇ VSCode 'ਤੇ VS Code ਰਿਮੋਟ - ਕੰਟੇਨਰ ਐਕਸਟੈਂਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਕੰਟੇਨਰ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
1. ਜੇਕਰ ਇਹ ਪਹਿਲੀ ਵਾਰ ਹੈ ਕਿ ਤੁਸੀਂ ਡਿਵੈਲਪਮੈਂਟ ਕੰਟੇਨਰ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਤੁਹਾਡੀ ਸਿਸਟਮ [ਸ਼ੁਰੂਆਤ ਦਸਤਾਵੇਜ਼](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ਵਿੱਚ ਦਿੱਤੇ ਪ੍ਰੀ-ਰਿਕਵਾਇਰਮੈਂਟਸ ਨੂੰ ਪੂਰਾ ਕਰਦੀ ਹੈ (ਜਿਵੇਂ ਕਿ Docker ਇੰਸਟਾਲ ਕੀਤਾ ਹੋਵੇ)।
1. ਜੇ ਇਹ ਪਹਿਲੀ ਵਾਰ ਹੈ ਜਦੋਂ ਤੁਸੀਂ ਇੱਕ ਡਿਵੈਲਪਮੈਂਟ ਕੰਟੇਨਰ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਤੁਹਾਡੀ ਸਿਸਟਮ [ਸ਼ੁਰੂਆਤ ਦਸਤਾਵੇਜ਼](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ਵਿੱਚ ਦਿੱਤੀਆਂ ਪੂਰਕ ਸ਼ਰਤਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦੀ ਹੈ (ਜਿਵੇਂ ਕਿ Docker ਇੰਸਟਾਲ ਹੋਣਾ)।
ਇਸ ਰਿਪੋਜ਼ਟਰੀ ਦੀ ਵਰਤੋਂ ਕਰਨ ਲਈ, ਤੁਸੀਂ ਇਸਨੂੰ ਇੱਕ ਅਲੱਗ Docker ਵਾਲਿਊਮ ਵਿੱਚ ਖੋਲ੍ਹ ਸਕਦੇ ਹੋ:
**ਨੋਟ**: ਇਸ ਦੇ ਅੰਦਰ, ਇਹ "Remote-Containers: **Clone Repository in Container Volume...**" ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰੇਗਾ ਜੋ ਸਥਾਨਕ ਫਾਈਲ ਸਿਸਟਮ ਦੀ ਬਜਾਏ Docker ਵਾਲਿਊਮ ਵਿੱਚ ਸਰੋਤ ਕੋਡ ਨੂੰ ਕਲੋਨ ਕਰੇਗਾ। [ਵਾਲਿਊਮ](https://docs.docker.com/storage/volumes/) ਡਾਟਾ ਨੂੰ ਸਥਿਰ ਕਰਨ ਲਈ ਪਸੰਦੀਦਾ ਮਕੈਨਿਜ਼ਮ ਹਨ।
**ਨੋਟ**: ਇਸ ਦੇ ਪਿੱਛੇ, ਇਹ ਰਿਮੋਟ-ਕੰਟੇਨਰ: **Clone Repository in Container Volume...** ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰੇਗਾ ਜੋ ਸਥਾਨਕ ਫਾਈਲ ਸਿਸਟਮ ਦੀ ਬਜਾਏ Docker ਵਾਲਿਊਮ ਵਿੱਚ ਸਰੋਤ ਕੋਡ ਨੂੰ ਕਲੋਨ ਕਰੇਗਾ। [ਵਾਲਿਊਮ](https://docs.docker.com/storage/volumes/) ਕੰਟੇਨਰ ਡਾਟਾ ਨੂੰ ਸਥਾਈ ਬਣਾਉਣ ਲਈ ਪਸੰਦੀਦਾ ਤਰੀਕਾ ਹਨ।
ਜਾਂ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਕਲੋਨ ਕੀਤੇ ਜਾਂ ਡਾਊਨਲੋਡ ਕੀਤੇ ਗਏ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਖੋਲ੍ਹੋ:
ਜਾਂ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਕਲੋਨ ਕੀਤੀ ਜਾਂ ਡਾਊਨਲੋਡ ਕੀਤੀ ਗਈ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਖੋਲ੍ਹੋ:
- ਇਸ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਆਪਣੇ ਸਥਾਨਕ ਫਾਈਲ ਸਿਸਟਮ 'ਤੇ ਕਲੋਨ ਕਰੋ।
- F1 ਦਬਾਓ ਅਤੇ **Remote-Containers: Open Folder in Container...** ਕਮਾਂਡ ਚੁਣੋ।
- ਇਸ ਫੋਲਡਰ ਦੀ ਕਲੋਨ ਕੀਤੀ ਕਾਪੀ ਚੁਣੋ, ਕੰਟੇਨਰ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਦੀ ਉਡੀਕ ਕਰੋ, ਅਤੇ ਚੀਜ਼ਾਂ ਨੂੰ ਅਜ਼ਮਾਓ।
- ਇਸ ਫੋਲਡਰ ਦੀ ਕਲੋਨ ਕੀਤੀ ਕਾਪੀ ਚੁਣੋ, ਕੰਟੇਨਰ ਦੇ ਸ਼ੁਰੂ ਹੋਣ ਦੀ ਉਡੀਕ ਕਰੋ, ਅਤੇ ਚੀਜ਼ਾਂ ਨੂੰ ਅਜ਼ਮਾਓ।
## ਆਫਲਾਈਨ ਪਹੁੰਚ
ਤੁਸੀਂ [Docsify](https://docsify.js.org/#/) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਆਫਲਾਈਨ ਚਲਾ ਸਕਦੇ ਹੋ। ਇਸ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ, [Docsify ਇੰਸਟਾਲ ਕਰੋ](https://docsify.js.org/#/quickstart) ਆਪਣੇ ਸਥਾਨਕ ਮਸ਼ੀਨ 'ਤੇ, ਫਿਰ ਇਸ ਰਿਪੋ ਦੇ ਰੂਟ ਫੋਲਡਰ ਵਿੱਚ `docsify serve` ਟਾਈਪ ਕਰੋ। ਵੈਬਸਾਈਟ ਤੁਹਾਡੇ localhost `localhost:3000` 'ਤੇ ਪੋਰਟ 3000 'ਤੇ ਸਰਵ ਕੀਤੀ ਜਾਵੇਗੀ।
> ਨੋਟ, ਨੋਟਬੁੱਕ Docsify ਰਾਹੀਂ ਰੈਂਡਰ ਨਹੀਂ ਕੀਤੇ ਜਾਣਗੇ, ਇਸ ਲਈ ਜਦੋਂ ਤੁਹਾਨੂੰ ਨੋਟਬੁੱਕ ਚਲਾਉਣ ਦੀ ਲੋੜ ਹੋਵੇ, ਤਾਂ ਇਸਨੂੰ Python kernel ਚਲਾਉਣ ਵਾਲੇ VS Code ਵਿੱਚ ਅਲੱਗ ਕਰਕੇ ਚਲਾਓ।
## ਮਦਦ ਦੀ ਲੋੜ ਹੈ!
ਤੁਸੀਂ ਇਸ ਦਸਤਾਵੇਜ਼ ਨੂੰ [Docsify](https://docsify.js.org/#/) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਆਫਲਾਈਨ ਚਲਾ ਸਕਦੇ ਹੋ। ਇਸ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ, ਆਪਣੇ ਸਥਾਨਕ ਮਸ਼ੀਨ 'ਤੇ [Docsify ਇੰਸਟਾਲ ਕਰੋ](https://docsify.js.org/#/quickstart), ਫਿਰ ਇਸ ਰਿਪੋ ਦੇ ਰੂਟ ਫੋਲਡਰ ਵਿੱਚ, `docsify serve` ਟਾਈਪ ਕਰੋ। ਵੈਬਸਾਈਟ ਤੁਹਾਡੇ ਲੋਕਲਹੋਸਟ `localhost:3000` 'ਤੇ ਪੋਰਟ 3000 'ਤੇ ਸਰਵ ਕੀਤੀ ਜਾਵੇਗੀ।
ਜੇਕਰ ਤੁਸੀਂ ਪੂਰੇ ਜਾਂ ਹਿੱਸੇ ਦੇ ਪਾਠਕ੍ਰਮ ਦਾ ਅਨੁਵਾਦ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਸਾਡੇ [Translations](TRANSLATIONS.md) ਗਾਈਡ ਦੀ ਪਾਲਣਾ ਕਰੋ
> ਨੋਟ, ਨੋਟਬੁੱਕ Docsify ਰਾਹੀਂ ਰੈਂਡਰ ਨਹੀਂ ਕੀਤੀਆਂ ਜਾਣਗੀਆਂ, ਇਸ ਲਈ ਜਦੋਂ ਤੁਹਾਨੂੰ ਨੋਟਬੁੱਕ ਚਲਾਉਣ ਦੀ ਲੋੜ ਹੋਵੇ, ਤਾਂ ਇਸਨੂੰ ਵੱਖਰੇ ਤੌਰ 'ਤੇ VS Code ਵਿੱਚ ਪਾਇਥਨ ਕਰਨਲ ਚਲਾਉਂਦੇ ਹੋਏ ਚਲਾਓ।
## ਹੋਰ ਪਾਠਕ੍ਰਮ
ਸਾਡੀ ਟੀਮ ਹੋਰ ਪਾਠਕ੍ਰਮ ਤਿਆਰ ਕਰਦੀ ਹੈ! ਵੇਖੋ:
- [ਸ਼ੁਰੂਆਤੀ ਲਈ ਜਨਰੇਟਿਵ AI](https://aka.ms/genai-beginners)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ ਜਨਰੇਟਿਵ AI .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [JavaScript ਨਾਲ ਜਨਰੇਟਿਵ AI](https://github.com/microsoft/generative-ai-with-javascript)
- [Java ਨਾਲ ਜਨਰੇਟਿਵ AI](https://aka.ms/genaijava)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ AI](https://aka.ms/ai-beginners)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ ਡਾਟਾ ਸਾਇੰਸ](https://aka.ms/datascience-beginners)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ ML](https://aka.ms/ml-beginners)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ ਸਾਈਬਰਸੁਰੱਖਿਆ](https://github.com/microsoft/Security-101)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ ਵੈਬ ਡਿਵੈਲਪਮੈਂਟ](https://aka.ms/webdev-beginners)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ IoT](https://aka.ms/iot-beginners)
- [ਸ਼ੁਰੂਆਤੀ ਲਈ XR ਡਿਵੈਲਪਮੈਂਟ](https://github.com/microsoft/xr-development-for-beginners)
- [ਪੇਅਰਡ ਪ੍ਰੋਗਰਾਮਿੰਗ ਲਈ GitHub Copilot ਵਿੱਚ ਮਾਹਰ ਬਣਨਾ](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [C#/.NET ਡਿਵੈਲਪਰਜ਼ ਲਈ GitHub Copilot ਵਿੱਚ ਮਾਹਰ ਬਣਨਾ](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [ਆਪਣੀ Copilot ਮੁਹਿੰਮ ਚੁਣੋ](https://github.com/microsoft/CopilotAdventures)
- [ਸ਼ੁਰੂਆਤ ਲਈ ਜਨਰੇਟਿਵ AI](https://aka.ms/genai-beginners)
- [ਸ਼ੁਰੂਆਤ ਲਈ ਜਨਰੇਟਿਵ AI .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [ਜਾਵਾਸਕ੍ਰਿਪਟ ਨਾਲ ਜਨਰੇਟਿਵ AI](https://github.com/microsoft/generative-ai-with-javascript)
- [ਜਾਵਾ ਨਾਲ ਜਨਰੇਟਿਵ AI](https://aka.ms/genaijava)
- [ਸ਼ੁਰੂਆਤ ਲਈ AI](https://aka.ms/ai-beginners)
- [ਸ਼ੁਰੂਆਤ ਲਈ ਡਾਟਾ ਸਾਇੰਸ](https://aka.ms/datascience-beginners)
- [ਸ਼ੁਰੂਆਤ ਲਈ ਮਸ਼ੀਨ ਲਰਨਿੰਗ](https://aka.ms/ml-beginners)
- [ਸ਼ੁਰੂਆਤ ਲਈ ਸਾਈਬਰਸੁਰੱਖ
---
**ਅਸਵੀਕਰਤੀ**:
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀ ਹੋਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁਣਤਾਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀ ਹੋਣ ਦਾ ਯਤਨ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁੱਤੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਮੌਜੂਦ ਮੂਲ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਪ੍ਰਮਾਣਿਕ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੇ ਪ੍ਰਯੋਗ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।

@ -1,50 +1,47 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a746eb3b41f67cde5a0b648b8910a656",
"translation_date": "2025-08-28T09:45:58+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:58:10+00:00",
"source_file": "README.md",
"language_code": "ru"
}
-->
# Основы Data Science - Учебная программа
# Основы науки о данных - Учебный курс
Azure Cloud Advocates в Microsoft рады предложить 10-недельную учебную программу из 20 уроков, посвященную Data Science. Каждый урок включает предварительные и итоговые тесты, письменные инструкции для выполнения задания, решение и домашнюю работу. Наш проектно-ориентированный подход позволяет учиться через практику, что доказано как эффективный способ закрепления новых навыков.
Azure Cloud Advocates в Microsoft рады предложить 10-недельный курс, состоящий из 20 уроков, посвященных науке о данных. Каждый урок включает в себя тесты до и после занятия, письменные инструкции для выполнения задания, готовое решение и домашнее задание. Наш проектно-ориентированный подход позволяет учиться через создание проектов, что является проверенным способом закрепления новых навыков.
**Огромная благодарность нашим авторам:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 Особая благодарность 🙏 нашим [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) авторам, рецензентам и участникам контента,** включая Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
**🙏 Особая благодарность 🙏 нашим [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) авторам, рецензентам и участникам контента,** в частности: Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![Скетчноут от (@sketchthedocs) https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.ru.png)|
|![Скетчноут от @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.ru.png)|
|:---:|
| Data Science для начинающих - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
| Наука о данных для начинающих - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
## Объявление - Новая учебная программа по генеративному ИИ уже доступна!
### 🌐 Поддержка нескольких языков
Мы только что выпустили учебную программу из 12 уроков по генеративному ИИ. Узнайте о таких темах, как:
#### Поддерживается через GitHub Action (автоматически и всегда актуально)
- создание запросов и инженерия запросов
- генерация текстовых и графических приложений
- приложения для поиска
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](./README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
Как обычно, каждый урок включает задания, проверки знаний и вызовы.
**Если вы хотите добавить поддержку дополнительных языков, список доступных языков находится [здесь](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Посмотрите:
> https://aka.ms/genai-beginners
#### Присоединяйтесь к нашему сообществу
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# Вы студент?
Начните с следующих ресурсов:
Начните с этих ресурсов:
- [Студенческая страница](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На этой странице вы найдете ресурсы для начинающих, студенческие пакеты и даже способы получить бесплатный ваучер на сертификацию. Это страница, которую стоит добавить в закладки и проверять время от времени, так как мы обновляем контент как минимум раз в месяц.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Присоединяйтесь к глобальному сообществу студенческих послов, это может стать вашим путем в Microsoft.
# Начало работы
> **Учителя**: мы [включили несколько предложений](for-teachers.md) о том, как использовать эту учебную программу. Нам будет приятно получить ваш отзыв [в нашем форуме обсуждений](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Преподаватели**: мы [добавили несколько предложений](for-teachers.md) о том, как использовать этот курс. Мы будем рады вашему отзыву [в нашем форуме обсуждений](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Студенты](https://aka.ms/student-page)**: чтобы использовать эту учебную программу самостоятельно, сделайте форк репозитория и выполните упражнения, начиная с предварительного теста. Затем прочитайте лекцию и выполните остальные задания. Постарайтесь создавать проекты, понимая уроки, а не копируя код решения; однако этот код доступен в папках /solutions в каждом проектно-ориентированном уроке. Еще одна идея — создать учебную группу с друзьями и изучать контент вместе. Для дальнейшего изучения мы рекомендуем [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Студенты](https://aka.ms/student-page)**: чтобы использовать этот курс самостоятельно, сделайте форк всего репозитория и выполняйте задания самостоятельно, начиная с теста перед лекцией. Затем прочитайте лекцию и выполните остальные задания. Постарайтесь создавать проекты, понимая уроки, а не копируя готовый код; однако этот код доступен в папках /solutions в каждом проектно-ориентированном уроке. Еще одна идея — создать учебную группу с друзьями и изучать материал вместе. Для дальнейшего изучения мы рекомендуем [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Знакомьтесь с командой
@ -54,57 +51,55 @@ Azure Cloud Advocates в Microsoft рады предложить 10-недель
> 🎥 Нажмите на изображение выше, чтобы посмотреть видео о проекте и людях, которые его создали!
## Педагогика
Мы выбрали два педагогических принципа при создании этой учебной программы: обеспечение проектно-ориентированного подхода и включение частых тестов. К концу этой серии студенты изучат основные принципы Data Science, включая этические концепции, подготовку данных, различные способы работы с данными, визуализацию данных, анализ данных, реальные примеры использования Data Science и многое другое.
Кроме того, тест с низкими ставками перед занятием настраивает студента на изучение темы, а второй тест после занятия способствует дальнейшему закреплению материала. Эта учебная программа была разработана как гибкая и увлекательная, и ее можно проходить полностью или частично. Проекты начинаются с простых и становятся все более сложными к концу 10-недельного цикла.
## Педагогический подход
> Ознакомьтесь с нашим [Кодексом поведения](CODE_OF_CONDUCT.md), [Руководством по внесению изменений](CONTRIBUTING.md), [Руководством по переводу](TRANSLATIONS.md). Мы приветствуем ваши конструктивные отзывы!
При создании этого курса мы выбрали два педагогических принципа: обеспечение проектной направленности и включение частых тестов. К концу этого курса студенты изучат основные принципы науки о данных, включая этические аспекты, подготовку данных, различные способы работы с данными, визуализацию данных, анализ данных, реальные примеры использования науки о данных и многое другое.
Кроме того, тест с низкими ставками перед занятием настраивает студента на изучение темы, а второй тест после занятия способствует лучшему запоминанию. Этот курс был разработан как гибкий и увлекательный, его можно проходить полностью или частично. Проекты начинаются с простых и становятся все более сложными к концу 10-недельного цикла.
> Ознакомьтесь с нашими [Правилами поведения](CODE_OF_CONDUCT.md), [Руководством по участию](CONTRIBUTING.md), [Руководством по переводу](TRANSLATIONS.md). Мы будем рады вашим конструктивным отзывам!
## Каждый урок включает:
- Опциональный скетчноут
- Опциональное дополнительное видео
- Разогревающий тест перед уроком
- Разминочный тест перед уроком
- Письменный урок
- Для проектно-ориентированных уроков: пошаговые инструкции по созданию проекта
- Проверки знаний
- Вызов
- Для проектных уроков — пошаговые инструкции по созданию проекта
- Проверка знаний
- Задание на вызов
- Дополнительное чтение
- Домашнее задание
- Итоговый тест после урока
- [Тест после урока](https://ff-quizzes.netlify.app/en/)
> **Примечание о тестах**: Все тесты находятся в папке Quiz-App, всего 40 тестов по три вопроса каждый. Они связаны с уроками, но приложение для тестов можно запустить локально или развернуть в Azure; следуйте инструкциям в папке `quiz-app`. Они постепенно переводятся на другие языки.
> **Примечание о тестах**: Все тесты находятся в папке Quiz-App, всего 40 тестов по три вопроса каждый. Они связаны с уроками, но приложение для тестов можно запустить локально или развернуть в Azure; следуйте инструкциям в папке `quiz-app`. Постепенно они переводятся на другие языки.
## Уроки
|![Скетчноут от [(@sketchthedocs)](https://sketchthedocs.dev)](./sketchnotes/00-Roadmap.png)|
|![ Скетчноут от @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.ru.png)|
|:---:|
| Data Science для начинающих: Дорожная карта - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
| Data Science For Beginners: Roadmap - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
| Номер урока | Тема | Группа уроков | Цели обучения | Связанный урок | Автор |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | Определение Data Science | [Введение](1-Introduction/README.md) | Узнайте основные концепции Data Science и его связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Этика в Data Science | [Введение](1-Introduction/README.md) | Концепции этики данных, вызовы и рамки. | [урок](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Определение данных | [Введение](1-Introduction/README.md) | Как классифицируются данные и их основные источники. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Введение в статистику и вероятность | [Введение](1-Introduction/README.md) | Математические методы вероятности и статистики для понимания данных. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Работа с реляционными данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в реляционные данные и основы их изучения и анализа с использованием языка SQL (произносится как "си-квел"). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Работа с данными NoSQL | [Работа с данными](2-Working-With-Data/README.md) | Введение в нереляционные данные, их различные типы и основы изучения и анализа документных баз данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Работа с Python | [Работа с данными](2-Working-With-Data/README.md) | Основы использования Python для изучения данных с библиотеками, такими как Pandas. Рекомендуется базовое понимание программирования на Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Подготовка данных | [Работа с данными](2-Working-With-Data/README.md) | Темы о методах очистки и преобразования данных для решения проблем, связанных с отсутствующими, неточными или неполными данными. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Визуализация количеств | [Визуализация данных](3-Data-Visualization/README.md) | Узнайте, как использовать Matplotlib для визуализации данных о птицах 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Визуализация распределений данных | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация наблюдений и тенденций в пределах интервала. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Визуализация пропорций | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация дискретных и сгруппированных процентов. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Визуализация взаимосвязей | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация связей и корреляций между наборами данных и их переменными. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Значимые визуализации | [Визуализация данных](3-Data-Visualization/README.md) | Методы и рекомендации для создания визуализаций, полезных для эффективного решения задач и получения инсайтов. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Введение в жизненный цикл Data Science | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл Data Science и его первый этап — получение и извлечение данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Анализ | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла Data Science посвящен методам анализа данных. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Коммуникация | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла Data Science посвящен представлению инсайтов из данных таким образом, чтобы облегчить их понимание для лиц, принимающих решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Серия уроков, посвященная Data Science в облаке и его преимуществам. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с использованием инструментов Low Code. | [урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развертывание моделей с помощью Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science в реальном мире | [В реальном мире](6-Data-Science-In-Wild/README.md) | Проекты, основанные на Data Science, в реальных условиях. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Определение Data Science | [Введение](1-Introduction/README.md) | Узнайте основные концепции Data Science и его связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитрий](http://soshnikov.com) |
| 02 | Этика Data Science | [Введение](1-Introduction/README.md) | Концепции, вызовы и рамки этики данных. | [урок](1-Introduction/02-ethics/README.md) | [Нития](https://twitter.com/nitya) |
| 03 | Определение данных | [Введение](1-Introduction/README.md) | Как классифицируются данные и их основные источники. | [урок](1-Introduction/03-defining-data/README.md) | [Жасмин](https://www.twitter.com/paladique) |
| 04 | Введение в статистику и вероятность | [Введение](1-Introduction/README.md) | Математические методы вероятности и статистики для анализа данных. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитрий](http://soshnikov.com) |
| 05 | Работа с реляционными данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в реляционные данные и основы их анализа с использованием языка SQL (произносится как "си-квел"). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
| 06 | Работа с NoSQL данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в нереляционные данные, их различные типы и основы анализа документных баз данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмин](https://twitter.com/paladique)|
| 07 | Работа с Python | [Работа с данными](2-Working-With-Data/README.md) | Основы использования Python для анализа данных с библиотеками, такими как Pandas. Рекомендуется базовое понимание программирования на Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитрий](http://soshnikov.com) |
| 08 | Подготовка данных | [Работа с данными](2-Working-With-Data/README.md) | Техники очистки и преобразования данных для решения проблем, связанных с отсутствующими, неточными или неполными данными. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Жасмин](https://www.twitter.com/paladique) |
| 09 | Визуализация количеств | [Визуализация данных](3-Data-Visualization/README.md) | Узнайте, как использовать Matplotlib для визуализации данных о птицах 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Джен](https://twitter.com/jenlooper) |
| 10 | Визуализация распределений данных | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация наблюдений и тенденций в интервале. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Джен](https://twitter.com/jenlooper) |
| 11 | Визуализация пропорций | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация дискретных и сгруппированных процентов. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Джен](https://twitter.com/jenlooper) |
| 12 | Визуализация взаимосвязей | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация связей и корреляций между наборами данных и их переменными. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Джен](https://twitter.com/jenlooper) |
| 13 | Значимые визуализации | [Визуализация данных](3-Data-Visualization/README.md) | Техники и рекомендации для создания визуализаций, которые помогают эффективно решать задачи и получать инсайты. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Джен](https://twitter.com/jenlooper) |
| 14 | Введение в жизненный цикл Data Science | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл Data Science и его первый этап — сбор и извлечение данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмин](https://twitter.com/paladique) |
| 15 | Анализ | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла Data Science посвящен техникам анализа данных. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмин](https://twitter.com/paladique) | | |
| 16 | Коммуникация | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Этот этап жизненного цикла Data Science посвящен представлению инсайтов из данных таким образом, чтобы они были понятны лицам, принимающим решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джейлен](https://twitter.com/JalenMcG) | | |
| 17 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Серия уроков, посвященная Data Science в облаке и его преимуществам. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 18 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с использованием инструментов Low Code. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 19 | Data Science в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развертывание моделей с помощью Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
| 20 | Data Science в реальном мире | [В реальном мире](6-Data-Science-In-Wild/README.md) | Проекты, основанные на Data Science, в реальном мире. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нития](https://twitter.com/nitya) |
## GitHub Codespaces
@ -114,6 +109,7 @@ Azure Cloud Advocates в Microsoft рады предложить 10-недель
Для получения дополнительной информации ознакомьтесь с [документацией GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Следуйте этим шагам, чтобы открыть этот репозиторий в контейнере, используя ваш локальный компьютер и VSCode с расширением VS Code Remote - Containers:
1. Если вы впервые используете контейнер для разработки, убедитесь, что ваша система соответствует требованиям (например, установлен Docker), указанным в [документации по началу работы](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
@ -126,21 +122,17 @@ Azure Cloud Advocates в Microsoft рады предложить 10-недель
- Клонируйте этот репозиторий на вашу локальную файловую систему.
- Нажмите F1 и выберите команду **Remote-Containers: Open Folder in Container...**.
- Выберите клонированную копию этой папки, дождитесь запуска контейнера и начните работу.
- Выберите клонированную копию этой папки, дождитесь запуска контейнера и попробуйте.
## Оффлайн-доступ
Вы можете запустить эту документацию оффлайн, используя [Docsify](https://docsify.js.org/#/). Форкните этот репозиторий, [установите Docsify](https://docsify.js.org/#/quickstart) на вашем локальном компьютере, затем в корневой папке этого репозитория введите `docsify serve`. Веб-сайт будет доступен на порту 3000 вашего localhost: `localhost:3000`.
Вы можете запустить эту документацию оффлайн, используя [Docsify](https://docsify.js.org/#/). Форкните этот репозиторий, [установите Docsify](https://docsify.js.org/#/quickstart) на вашем локальном компьютере, затем в корневой папке этого репозитория введите `docsify serve`. Веб-сайт будет доступен на порту 3000 вашего локального хоста: `localhost:3000`.
> Примечание: блокноты не будут отображаться через Docsify, поэтому, если вам нужно запустить блокнот, сделайте это отдельно в VS Code с использованием Python-ядра.
## Нужна помощь!
Если вы хотите перевести весь учебный курс или его часть, пожалуйста, следуйте нашему руководству [Translations](TRANSLATIONS.md).
## Другие учебные курсы
## Другие учебные материалы
Наша команда создает другие учебные курсы! Ознакомьтесь:
Наша команда создает другие учебные материалы! Ознакомьтесь:
- [Generative AI для начинающих](https://aka.ms/genai-beginners)
- [Generative AI для начинающих .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)

@ -1,51 +1,48 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6bb17a440fdabf0823105136a5b81029",
"translation_date": "2025-08-28T02:21:39+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:51:07+00:00",
"source_file": "README.md",
"language_code": "tl"
}
-->
# Data Science para sa mga Baguhan - Isang Kurikulum
Azure Cloud Advocates sa Microsoft ay natutuwa na mag-alok ng isang 10-linggong, 20-aralin na kurikulum tungkol sa Data Science. Ang bawat aralin ay may kasamang pre-lesson at post-lesson na mga pagsusulit, nakasulat na mga tagubilin para tapusin ang aralin, isang solusyon, at isang takdang-aralin. Ang aming project-based na paraan ng pagtuturo ay nagbibigay-daan sa iyo na matuto habang gumagawa, isang napatunayang paraan upang mas tumatak ang mga bagong kasanayan.
Azure Cloud Advocates sa Microsoft ay masayang nag-aalok ng isang 10-linggong, 20-aralin na kurikulum tungkol sa Data Science. Ang bawat aralin ay may kasamang mga pre-lesson at post-lesson na pagsusulit, nakasulat na mga tagubilin para kumpletuhin ang aralin, isang solusyon, at isang takdang-aralin. Ang aming project-based na pamamaraan ng pagtuturo ay nagbibigay-daan sa iyo na matuto habang gumagawa, isang napatunayang paraan upang mas tumatak ang mga bagong kasanayan.
**Taos-pusong pasasalamat sa aming mga may-akda:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 Espesyal na pasasalamat 🙏 sa aming [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) na mga may-akda, tagasuri, at mga tagapag-ambag ng nilalaman,** partikular na sina Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
**🙏 Espesyal na pasasalamat 🙏 sa aming [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) na mga may-akda, tagasuri, at mga nag-ambag ng nilalaman,** partikular na sina Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![Sketchnote ni [(@sketchthedocs)](https://sketchthedocs.dev)](./sketchnotes/00-Title.png)|
|![Sketchnote ni @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.tl.png)|
|:---:|
| Data Science Para sa mga Baguhan - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
## Anunsyo - Bagong Kurikulum sa Generative AI ay Kalalabas Lang!
### 🌐 Suporta sa Maraming Wika
Kakalabas lang namin ng isang 12-aralin na kurikulum tungkol sa generative AI. Matutunan ang mga bagay tulad ng:
#### Sinusuportahan sa pamamagitan ng GitHub Action (Awtomatiko at Laging Napapanahon)
- prompting at prompt engineering
- paggawa ng text at image apps
- mga search app
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](./README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
Gaya ng dati, may aralin, mga takdang-aralin na kailangang tapusin, mga pagsusuri ng kaalaman, at mga hamon.
**Kung nais mong magkaroon ng karagdagang mga wika para sa pagsasalin, ang mga sinusuportahang wika ay nakalista [dito](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Tingnan ito:
> https://aka.ms/genai-beginners
#### Sumali sa Aming Komunidad
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# Ikaw ba ay isang mag-aaral?
Simulan gamit ang mga sumusunod na mapagkukunan:
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sa pahinang ito, makakahanap ka ng mga mapagkukunan para sa mga baguhan, mga Student pack, at maging mga paraan upang makakuha ng libreng cert voucher. Isa itong pahina na dapat mong i-bookmark at balikan paminsan-minsan dahil regular naming ina-update ang nilalaman nito.
- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sa pahinang ito, makakahanap ka ng mga mapagkukunan para sa mga baguhan, mga Student pack, at maging mga paraan upang makakuha ng libreng sertipikasyon. Isa itong pahina na dapat mong i-bookmark at bisitahin paminsan-minsan dahil binabago namin ang nilalaman buwan-buwan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sumali sa isang pandaigdigang komunidad ng mga student ambassador, maaaring ito ang iyong daan papunta sa Microsoft.
# Pagsisimula
> **Mga Guro**: [kasama ang ilang mungkahi](for-teachers.md) kung paano gamitin ang kurikulum na ito. Gusto naming marinig ang inyong feedback [sa aming discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Mga Guro**: mayroon kaming [ilang mungkahi](for-teachers.md) kung paano gamitin ang kurikulum na ito. Gusto naming marinig ang inyong feedback [sa aming discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Mga Mag-aaral](https://aka.ms/student-page)**: upang gamitin ang kurikulum na ito nang mag-isa, i-fork ang buong repo at tapusin ang mga gawain nang mag-isa, simula sa pre-lecture quiz. Pagkatapos, basahin ang lektura at tapusin ang natitirang mga aktibidad. Subukang gawin ang mga proyekto sa pamamagitan ng pag-unawa sa mga aralin sa halip na kopyahin ang solution code; gayunpaman, ang code na iyon ay makikita sa /solutions na mga folder sa bawat project-oriented na aralin. Isa pang ideya ay ang bumuo ng isang study group kasama ang mga kaibigan at sabay-sabay na pag-aralan ang nilalaman. Para sa karagdagang pag-aaral, inirerekomenda namin ang [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Mga Mag-aaral](https://aka.ms/student-page)**: upang gamitin ang kurikulum na ito nang mag-isa, i-fork ang buong repo at kumpletuhin ang mga gawain nang mag-isa, simula sa isang pre-lecture quiz. Pagkatapos, basahin ang lektura at kumpletuhin ang iba pang mga aktibidad. Subukang gawin ang mga proyekto sa pamamagitan ng pag-unawa sa mga aralin sa halip na kopyahin ang solution code; gayunpaman, ang code na iyon ay makikita sa /solutions na mga folder sa bawat project-oriented na aralin. Isa pang ideya ay ang bumuo ng isang study group kasama ang mga kaibigan at sabay-sabay na pag-aralan ang nilalaman. Para sa karagdagang pag-aaral, inirerekomenda namin ang [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Kilalanin ang Koponan
@ -53,112 +50,107 @@ Simulan gamit ang mga sumusunod na mapagkukunan:
**Gif ni** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 I-click ang imahe sa itaas para sa isang video tungkol sa proyekto at sa mga taong lumikha nito!
## Pedagohiya
Pinili namin ang dalawang prinsipyo ng pagtuturo habang binubuo ang kurikulum na ito: tiyaking ito ay project-based at may kasamang madalas na pagsusulit. Sa pagtatapos ng seryeng ito, matutunan ng mga mag-aaral ang mga pangunahing prinsipyo ng data science, kabilang ang mga etikal na konsepto, paghahanda ng data, iba't ibang paraan ng pagtatrabaho sa data, data visualization, data analysis, mga tunay na kaso ng paggamit ng data science, at marami pa.
> 🎥 I-click ang larawan sa itaas para sa isang video tungkol sa proyekto at sa mga taong lumikha nito!
Bukod dito, ang isang mababang-presyur na pagsusulit bago ang klase ay nagtatakda ng intensyon ng mag-aaral na matutunan ang isang paksa, habang ang pangalawang pagsusulit pagkatapos ng klase ay nagsisiguro ng karagdagang pagkatuto. Ang kurikulum na ito ay idinisenyo upang maging flexible at masaya at maaaring kunin nang buo o bahagi lamang. Ang mga proyekto ay nagsisimula sa maliit at nagiging mas kumplikado sa pagtatapos ng 10-linggong siklo.
## Pedagogy
> Hanapin ang aming [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) na mga alituntunin. Malugod naming tinatanggap ang inyong mga nakabubuong feedback!
Pinili namin ang dalawang prinsipyo ng pagtuturo habang binubuo ang kurikulum na ito: tiyaking ito ay project-based at may kasamang madalas na pagsusulit. Sa pagtatapos ng seryeng ito, matututuhan ng mga mag-aaral ang mga pangunahing prinsipyo ng data science, kabilang ang mga etikal na konsepto, paghahanda ng datos, iba't ibang paraan ng pagtatrabaho sa datos, data visualization, data analysis, mga totoong kaso ng paggamit ng data science, at marami pa.
## Ang bawat aralin ay may kasamang:
Bukod dito, ang isang low-stakes na pagsusulit bago ang klase ay nagtatakda ng layunin ng mag-aaral patungo sa pag-aaral ng isang paksa, habang ang pangalawang pagsusulit pagkatapos ng klase ay nagsisiguro ng karagdagang pagkatuto. Ang kurikulum na ito ay idinisenyo upang maging flexible at masaya at maaaring kunin nang buo o bahagi lamang. Ang mga proyekto ay nagsisimula sa maliit at nagiging mas kumplikado habang tumatagal sa loob ng 10-linggong siklo.
Hanapin ang aming [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) na mga gabay. Malugod naming tinatanggap ang inyong mga makabuluhang puna!
## Bawat aralin ay naglalaman ng:
- Opsyonal na sketchnote
- Opsyonal na karagdagang video
- Pre-lesson warmup quiz
- Nakasulat na aralin
- Para sa mga project-based na aralin, mga step-by-step na gabay kung paano gawin ang proyekto
- Mga pagsusuri ng kaalaman
- Isang hamon
- Karagdagang babasahin
- Takdang-aralin
- Post-lesson quiz
- Opsyonal na sketchnote
- Opsyonal na karagdagang video
- Paunang pagsusulit bago ang aralin
- Nakatalang aralin
- Para sa mga araling nakabatay sa proyekto, sunud-sunod na gabay kung paano buuin ang proyekto
- Pagsusuri ng kaalaman
- Isang hamon
- Karagdagang babasahin
- Takdang-aralin
- [Pagsusulit pagkatapos ng aralin](https://ff-quizzes.netlify.app/en/)
> **Isang paalala tungkol sa mga pagsusulit**: Ang lahat ng pagsusulit ay nasa Quiz-App folder, para sa kabuuang 40 pagsusulit na may tig-tatlong tanong bawat isa. Ang mga ito ay naka-link mula sa loob ng mga aralin, ngunit ang quiz app ay maaaring patakbuhin nang lokal o i-deploy sa Azure; sundin ang mga tagubilin sa `quiz-app` folder. Unti-unti itong isinasalin sa iba't ibang wika.
> **Isang tala tungkol sa mga pagsusulit**: Ang lahat ng pagsusulit ay nasa loob ng folder na Quiz-App, na may kabuuang 40 pagsusulit na may tig-tatlong tanong bawat isa. Ang mga ito ay naka-link mula sa mga aralin, ngunit maaaring patakbuhin ang quiz app nang lokal o i-deploy sa Azure; sundin ang mga tagubilin sa folder na `quiz-app`. Unti-unti itong isinasalin sa iba't ibang wika.
## Mga Aralin
|![Sketchnote ni [(@sketchthedocs)](https://sketchthedocs.dev)](./sketchnotes/00-Roadmap.png)|
|![Sketchnote ni @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.tl.png)|
|:---:|
| Data Science Para sa mga Baguhan: Roadmap - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
| Data Science Para sa Mga Baguhan: Roadmap - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
| Bilang ng Aralin | Paksa | Pangkat ng Aralin | Mga Layunin sa Pagkatuto | Naka-link na Aralin | May-akda |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | Pagpapakilala sa Data Science | [Panimula](1-Introduction/README.md) | Matutunan ang mga pangunahing konsepto sa likod ng data science at kung paano ito nauugnay sa artificial intelligence, machine learning, at big data. | [aralin](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika sa Data Science | [Panimula](1-Introduction/README.md) | Mga Konsepto, Hamon, at Framework ng Data Ethics. | [aralin](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Pagpapakilala sa Data Science | [Panimula](1-Introduction/README.md) | Matutunan ang mga pangunahing konsepto ng data science at ang kaugnayan nito sa artificial intelligence, machine learning, at big data. | [aralin](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika sa Data Science | [Panimula](1-Introduction/README.md) | Mga Konsepto, Hamon, at Balangkas ng Etika sa Data. | [aralin](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Pagpapakilala sa Data | [Panimula](1-Introduction/README.md) | Paano inuuri ang data at ang mga karaniwang pinagmumulan nito. | [aralin](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Panimula sa Statistics at Probability | [Panimula](1-Introduction/README.md) | Ang mga matematikal na teknika ng probability at statistics upang maunawaan ang data. | [aralin](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Paggamit ng Relational Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Panimula sa relational data at ang mga batayan ng paggalugad at pagsusuri ng relational data gamit ang Structured Query Language, na kilala rin bilang SQL (binibigkas na “see-quell”). | [aralin](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Paggamit ng NoSQL Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Panimula sa non-relational data, ang iba't ibang uri nito, at ang mga batayan ng paggalugad at pagsusuri ng document databases. | [aralin](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Paggamit ng Python | [Paggamit ng Data](2-Working-With-Data/README.md) | Mga batayan ng paggamit ng Python para sa paggalugad ng data gamit ang mga library tulad ng Pandas. Inirerekomenda ang pundasyong pag-unawa sa Python programming. | [aralin](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Paghahanda ng Data | [Paggawa Sa Data](2-Working-With-Data/README.md) | Mga paksa tungkol sa mga teknik sa paglilinis at pagbabago ng data upang matugunan ang mga hamon ng nawawala, hindi tama, o hindi kumpletong data. | [aralin](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Panimula sa Statistics at Probability | [Panimula](1-Introduction/README.md) | Ang mga teknik sa matematika ng probability at statistics upang maunawaan ang data. | [aralin](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Paggamit ng Relational Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Panimula sa relational data at ang mga pangunahing kaalaman sa pag-explore at pagsusuri ng relational data gamit ang Structured Query Language, na kilala rin bilang SQL (binibigkas na “see-quell”). | [aralin](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Paggamit ng NoSQL Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Panimula sa non-relational data, ang iba't ibang uri nito, at ang mga pangunahing kaalaman sa pag-explore at pagsusuri ng document databases. | [aralin](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Paggamit ng Python | [Paggamit ng Data](2-Working-With-Data/README.md) | Mga pangunahing kaalaman sa paggamit ng Python para sa pag-explore ng data gamit ang mga library tulad ng Pandas. Inirerekomenda ang pundasyong kaalaman sa Python programming. | [aralin](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Paghahanda ng Data | [Paggamit ng Data](2-Working-With-Data/README.md) | Mga paksa tungkol sa mga teknik sa paglilinis at pagbabago ng data upang matugunan ang mga hamon ng nawawala, hindi tama, o hindi kumpletong data. | [aralin](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Pagpapakita ng Dami | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Matutunan kung paano gamitin ang Matplotlib upang ipakita ang data ng mga ibon 🦆 | [aralin](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Pagpapakita ng Pamamahagi ng Data | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga obserbasyon at trend sa loob ng isang saklaw. | [aralin](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Pagpapakita ng Proporsyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga discrete at pinagsama-samang porsyento. | [aralin](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Pagpapakita ng Relasyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga koneksyon at ugnayan sa pagitan ng mga set ng data at kanilang mga variable. | [aralin](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Pagpapakita ng Pamamahagi ng Data | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga obserbasyon at trend sa loob ng isang interval. | [aralin](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Pagpapakita ng Proporsyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga discrete at grouped na porsyento. | [aralin](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Pagpapakita ng Relasyon | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Pagpapakita ng mga koneksyon at ugnayan sa pagitan ng mga set ng data at mga variable nito. | [aralin](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Makabuluhang Pagpapakita | [Pagpapakita ng Data](3-Data-Visualization/README.md) | Mga teknik at gabay para gawing mahalaga ang iyong mga pagpapakita para sa epektibong paglutas ng problema at mga insight. | [aralin](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Panimula sa Lifecycle ng Data Science | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Panimula sa lifecycle ng data science at ang unang hakbang nito sa pagkuha at pagkuha ng data. | [aralin](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Pagsusuri | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang yugtong ito ng lifecycle ng data science ay nakatuon sa mga teknik para suriin ang data. | [aralin](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 15 | Pagsusuri | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang yugtong ito ng lifecycle ng data science ay nakatuon sa mga teknik sa pagsusuri ng data. | [aralin](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasyon | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang yugtong ito ng lifecycle ng data science ay nakatuon sa pagpapakita ng mga insight mula sa data sa paraang mas madaling maunawaan ng mga gumagawa ng desisyon. | [aralin](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ang serye ng mga araling ito ay nagpapakilala sa data science sa cloud at ang mga benepisyo nito. | [aralin](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pagsasanay ng mga modelo gamit ang Low Code tools. | [aralin](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 17 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ang seryeng ito ng mga aralin ay nagpapakilala sa data science sa cloud at ang mga benepisyo nito. | [aralin](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pagsasanay ng mga modelo gamit ang Low Code tools. |[aralin](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pag-deploy ng mga modelo gamit ang Azure Machine Learning Studio. | [aralin](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science sa Wild | [Sa Wild](6-Data-Science-In-Wild/README.md) | Mga proyektong pinapatakbo ng data science sa totoong mundo. | [aralin](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 20 | Data Science sa Ligaw | [Sa Ligaw](6-Data-Science-In-Wild/README.md) | Mga proyektong pinapatakbo ng data science sa totoong mundo. | [aralin](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sundin ang mga hakbang na ito upang buksan ang sample na ito sa isang Codespace:
1. I-click ang drop-down na menu ng Code at piliin ang opsyong Open with Codespaces.
2. Piliin ang + New codespace sa ibaba ng pane.
Sundin ang mga hakbang na ito upang buksan ang sample na ito sa isang Codespace:
1. I-click ang drop-down na menu ng Code at piliin ang opsyong Open with Codespaces.
2. Piliin ang + New codespace sa ibaba ng pane.
Para sa karagdagang impormasyon, tingnan ang [dokumentasyon ng GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sundin ang mga hakbang na ito upang buksan ang repo na ito sa isang container gamit ang iyong lokal na makina at VSCode gamit ang VS Code Remote - Containers extension:
1. Kung ito ang iyong unang beses na gumamit ng development container, tiyaking ang iyong sistema ay nakakatugon sa mga kinakailangan (hal. may naka-install na Docker) sa [dokumentasyon ng pagsisimula](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Upang magamit ang repositoryong ito, maaari mong buksan ang repositoryo sa isang hiwalay na Docker volume:
Upang gamitin ang repositoryong ito, maaari mo itong buksan sa isang nakahiwalay na Docker volume:
**Tandaan**: Sa ilalim ng hood, gagamitin nito ang Remote-Containers: **Clone Repository in Container Volume...** na utos upang i-clone ang source code sa isang Docker volume sa halip na sa lokal na filesystem. Ang [Volumes](https://docs.docker.com/storage/volumes/) ang mas pinapaborang mekanismo para sa pagpapanatili ng data ng container.
O buksan ang isang lokal na na-clone o na-download na bersyon ng repositoryo:
O buksan ang isang lokal na naka-clone o na-download na bersyon ng repositoryo:
- I-clone ang repositoryong ito sa iyong lokal na filesystem.
- Pindutin ang F1 at piliin ang **Remote-Containers: Open Folder in Container...** na utos.
- Piliin ang na-clone na kopya ng folder na ito, hintayin ang container na magsimula, at subukan ang mga bagay.
- I-clone ang repositoryong ito sa iyong lokal na filesystem.
- Pindutin ang F1 at piliin ang **Remote-Containers: Open Folder in Container...** na utos.
- Piliin ang naka-clone na kopya ng folder na ito, hintayin ang pagsisimula ng container, at subukan ang mga bagay-bagay.
## Offline na Pag-access
Maaari mong patakbuhin ang dokumentasyong ito offline gamit ang [Docsify](https://docsify.js.org/#/). I-fork ang repo na ito, [i-install ang Docsify](https://docsify.js.org/#/quickstart) sa iyong lokal na makina, pagkatapos sa root folder ng repo na ito, i-type ang `docsify serve`. Ang website ay magsisilbi sa port 3000 sa iyong localhost: `localhost:3000`.
> Tandaan, ang mga notebook ay hindi maipapakita gamit ang Docsify, kaya kapag kailangan mong patakbuhin ang isang notebook, gawin ito nang hiwalay sa VS Code gamit ang isang Python kernel.
## Kailangan ng Tulong!
Kung nais mong isalin ang lahat o bahagi ng kurikulum, sundin ang aming [Mga Pagsasalin](TRANSLATIONS.md) na gabay.
> Tandaan, ang mga notebook ay hindi mare-render gamit ang Docsify, kaya kapag kailangan mong patakbuhin ang isang notebook, gawin ito nang hiwalay sa VS Code gamit ang isang Python kernel.
## Iba Pang Kurikulum
Ang aming koponan ay gumagawa ng iba pang kurikulum! Tingnan ang:
- [Generative AI para sa Mga Baguhan](https://aka.ms/genai-beginners)
- [Generative AI para sa Mga Baguhan .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI gamit ang JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI gamit ang Java](https://aka.ms/genaijava)
- [AI para sa Mga Baguhan](https://aka.ms/ai-beginners)
- [Data Science para sa Mga Baguhan](https://aka.ms/datascience-beginners)
- [ML para sa Mga Baguhan](https://aka.ms/ml-beginners)
- [Cybersecurity para sa Mga Baguhan](https://github.com/microsoft/Security-101)
- [Web Dev para sa Mga Baguhan](https://aka.ms/webdev-beginners)
- [IoT para sa Mga Baguhan](https://aka.ms/iot-beginners)
- [XR Development para sa Mga Baguhan](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot para sa Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot para sa C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Piliin ang Iyong Sariling Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
- [Generative AI para sa Mga Baguhan](https://aka.ms/genai-beginners)
- [Generative AI para sa Mga Baguhan .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI gamit ang JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI gamit ang Java](https://aka.ms/genaijava)
- [AI para sa Mga Baguhan](https://aka.ms/ai-beginners)
- [Data Science para sa Mga Baguhan](https://aka.ms/datascience-beginners)
- [ML para sa Mga Baguhan](https://aka.ms/ml-beginners)
- [Cybersecurity para sa Mga Baguhan](https://github.com/microsoft/Security-101)
- [Web Dev para sa Mga Baguhan](https://aka.ms/webdev-beginners)
- [IoT para sa Mga Baguhan](https://aka.ms/iot-beginners)
- [XR Development para sa Mga Baguhan](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot para sa Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot para sa C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Piliin ang Iyong Sariling Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**Paunawa**:
Ang dokumentong ito ay isinalin gamit ang AI translation service na [Co-op Translator](https://github.com/Azure/co-op-translator). Bagama't sinisikap naming maging tumpak, tandaan na ang mga awtomatikong pagsasalin ay maaaring maglaman ng mga pagkakamali o hindi pagkakatugma. Ang orihinal na dokumento sa kanyang katutubong wika ang dapat ituring na opisyal na sanggunian. Para sa mahalagang impormasyon, inirerekomenda ang propesyonal na pagsasalin ng tao. Hindi kami mananagot sa anumang hindi pagkakaunawaan o maling interpretasyon na maaaring magmula sa paggamit ng pagsasaling ito.
Ang dokumentong ito ay isinalin gamit ang AI translation service na [Co-op Translator](https://github.com/Azure/co-op-translator). Bagama't sinisikap naming maging tumpak, pakitandaan na ang mga awtomatikong pagsasalin ay maaaring maglaman ng mga pagkakamali o hindi pagkakatugma. Ang orihinal na dokumento sa orihinal nitong wika ang dapat ituring na opisyal na sanggunian. Para sa mahalagang impormasyon, inirerekomenda ang propesyonal na pagsasalin ng tao. Hindi kami mananagot sa anumang hindi pagkakaunawaan o maling interpretasyon na dulot ng paggamit ng pagsasaling ito.

@ -1,50 +1,47 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6bb17a440fdabf0823105136a5b81029",
"translation_date": "2025-08-27T08:10:10+00:00",
"original_hash": "a5443b88ba402d2ec7b000e4de6cecb8",
"translation_date": "2025-08-29T07:49:55+00:00",
"source_file": "README.md",
"language_code": "ur"
}
-->
# ڈیٹا سائنس کے ابتدائی افراد کے لیے - ایک نصاب
Azure Cloud Advocates نے مائیکروسافٹ میں ایک 10 ہفتوں، 20 اسباق پر مشتمل نصاب پیش کیا ہے جو مکمل طور پر ڈیٹا سائنس کے بارے میں ہے۔ ہر سبق میں پری-سبق اور پوسٹ-سبق کوئز، سبق مکمل کرنے کے لیے تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہے۔ ہمارا پروجیکٹ پر مبنی طریقہ کار آپ کو سیکھنے کے دوران بنانے کی اجازت دیتا ہے، جو نئے ہنر کو یاد رکھنے کا ایک مؤثر طریقہ ہے۔
Azure Cloud Advocates نے مائیکروسافٹ میں ایک 10 ہفتوں، 20 اسباق پر مشتمل نصاب پیش کیا ہے جو مکمل طور پر ڈیٹا سائنس کے بارے میں ہے۔ ہر سبق میں سبق سے پہلے اور بعد کے کوئز، سبق مکمل کرنے کے لیے تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہے۔ ہمارا پروجیکٹ پر مبنی طریقہ کار آپ کو سیکھنے کے دوران بنانے کی اجازت دیتا ہے، جو نئے ہنر کو یاد رکھنے کا ایک مؤثر طریقہ ہے۔
**ہمارے مصنفین کا دل سے شکریہ:** [جیسمن گریناوے](https://www.twitter.com/paladique)، [دیمتری سوشنیکوف](http://soshnikov.com)، [نیتیا نرسمہن](https://twitter.com/nitya)، [جیلن میکگی](https://twitter.com/JalenMcG)، [جین لوپر](https://twitter.com/jenlooper)، [ماود لیوی](https://twitter.com/maudstweets)، [ٹفنی سوٹیر](https://twitter.com/TiffanySouterre)، [کرسٹوفر ہیریسن](https://www.twitter.com/geektrainer)۔
**ہمارے مصنفین کا دل سے شکریہ:** [جاسمین گریناوے](https://www.twitter.com/paladique)، [دیمتری سوشنیکوف](http://soshnikov.com)، [نیتیا نرسمہن](https://twitter.com/nitya)، [جیلن میکگی](https://twitter.com/JalenMcG)، [جین لوپر](https://twitter.com/jenlooper)، [مود لیوی](https://twitter.com/maudstweets)، [ٹفنی سوٹیر](https://twitter.com/TiffanySouterre)، [کرسٹوفر ہیریسن](https://www.twitter.com/geektrainer)۔
**🙏 خاص شکریہ 🙏 ہمارے [مائیکروسافٹ اسٹوڈنٹ ایمبیسڈر](https://studentambassadors.microsoft.com/) مصنفین، جائزہ لینے والوں اور مواد کے تعاون کرنے والوں کا،** خاص طور پر آریان اروڑا، [ادیتیہ گرگ](https://github.com/AdityaGarg00)، [الوندرا سانچیز](https://www.linkedin.com/in/alondra-sanchez-molina/)، [انکیتا سنگھ](https://www.linkedin.com/in/ankitasingh007)، [انوپم مشرا](https://www.linkedin.com/in/anupam--mishra/)، [ارپیتا داس](https://www.linkedin.com/in/arpitadas01/)، چھائل بہاری دوبے، [دیبری نسوفور](https://www.linkedin.com/in/dibrinsofor)، [دیشیتا بھاسین](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [مجید صافی](https://www.linkedin.com/in/majd-s/)، [میکس بلوم](https://www.linkedin.com/in/max-blum-6036a1186/)، [میگوئل کوریا](https://www.linkedin.com/in/miguelmque/)، [محمد افتخار (افتو) ابن جلال](https://twitter.com/iftu119)، [نورین تبسم](https://www.linkedin.com/in/nawrin-tabassum)، [ریمنڈ وانگسا پترا](https://www.linkedin.com/in/raymond-wp/)، [روہت یادو](https://www.linkedin.com/in/rty2423)، سمردھی شرما، [سانیا سنہا](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [شینا نرولا](https://www.linkedin.com/in/sheena-narua-n/)، [توقیر احمد](https://www.linkedin.com/in/tauqeerahmad5201/)، یوگندر سنگھ پاوار، [ودوشی گپتا](https://www.linkedin.com/in/vidushi-gupta07/)، [جسلین سوندھی](https://www.linkedin.com/in/jasleen-sondhi/)۔
|![ [(@sketchthedocs)](https://sketchthedocs.dev) کی اسکیچ نوٹ ](./sketchnotes/00-Title.png)|
|![اسکیچ نوٹ از @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.ur.png)|
|:---:|
| ڈیٹا سائنس کے ابتدائی افراد کے لیے - _[@nitya](https://twitter.com/nitya) کی اسکیچ نوٹ_ |
| ڈیٹا سائنس کے ابتدائی افراد کے لیے - _اسکیچ نوٹ از [@nitya](https://twitter.com/nitya)_ |
## اعلان - جنریٹو AI پر نیا نصاب جاری کیا گیا ہے!
### 🌐 کثیر زبان کی حمایت
ہم نے ابھی جنریٹو AI پر 12 اسباق کا نصاب جاری کیا ہے۔ آئیں سیکھیں:
#### GitHub ایکشن کے ذریعے سپورٹ (خودکار اور ہمیشہ تازہ ترین)
- پرامپٹنگ اور پرامپٹ انجینئرنگ
- ٹیکسٹ اور امیج ایپ جنریشن
- سرچ ایپس
[فرانسیسی](../fr/README.md) | [ہسپانوی](../es/README.md) | [جرمن](../de/README.md) | [روسی](../ru/README.md) | [عربی](../ar/README.md) | [فارسی](../fa/README.md) | [اردو](./README.md) | [چینی (سادہ)](../zh/README.md) | [چینی (روایتی، مکاؤ)](../mo/README.md) | [چینی (روایتی، ہانگ کانگ)](../hk/README.md) | [چینی (روایتی، تائیوان)](../tw/README.md) | [جاپانی](../ja/README.md) | [کوریائی](../ko/README.md) | [ہندی](../hi/README.md) | [بنگالی](../bn/README.md) | [مراٹھی](../mr/README.md) | [نیپالی](../ne/README.md) | [پنجابی (گرمکھی)](../pa/README.md) | [پرتگالی (پرتگال)](../pt/README.md) | [پرتگالی (برازیل)](../br/README.md) | [اطالوی](../it/README.md) | [پولش](../pl/README.md) | [ترکی](../tr/README.md) | [یونانی](../el/README.md) | [تھائی](../th/README.md) | [سویڈش](../sv/README.md) | [ڈینش](../da/README.md) | [نارویجین](../no/README.md) | [فنش](../fi/README.md) | [ڈچ](../nl/README.md) | [عبرانی](../he/README.md) | [ویتنامی](../vi/README.md) | [انڈونیشیائی](../id/README.md) | [ملائی](../ms/README.md) | [ٹیگالوگ (فلپائنی)](../tl/README.md) | [سواحلی](../sw/README.md) | [ہنگری](../hu/README.md) | [چیک](../cs/README.md) | [سلوواک](../sk/README.md) | [رومانیائی](../ro/README.md) | [بلغاریائی](../bg/README.md) | [سربیائی (سیریلک)](../sr/README.md) | [کروشین](../hr/README.md) | [سلووینیائی](../sl/README.md) | [یوکرینیائی](../uk/README.md) | [برمی (میانمار)](../my/README.md)
حسب معمول، ہر سبق میں اسائنمنٹس، علم کی جانچ اور چیلنجز شامل ہیں۔
**اگر آپ اضافی زبانوں میں ترجمہ چاہتے ہیں تو، سپورٹ شدہ زبانوں کی فہرست [یہاں](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) موجود ہے۔**
یہاں دیکھیں:
> https://aka.ms/genai-beginners
#### ہماری کمیونٹی میں شامل ہوں
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# کیا آپ طالب علم ہیں؟
مندرجہ ذیل وسائل سے شروعات کریں:
مندرجہ ذیل وسائل کے ساتھ شروعات کریں:
- [اسٹوڈنٹ ہب صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو ابتدائی وسائل، اسٹوڈنٹ پیک اور یہاں تک کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ ایک صفحہ ہے جسے آپ بک مارک کرنا چاہیں گے اور وقتاً فوقتاً چیک کریں گے کیونکہ ہم کم از کم ماہانہ مواد تبدیل کرتے ہیں۔
- [مائیکروسافٹ لرن اسٹوڈنٹ ایمبیسڈرز](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ایک عالمی کمیونٹی میں شامل ہوں، یہ مائیکروسافٹ میں آپ کا راستہ ہو سکتا ہے۔
- [اسٹوڈنٹ ہب صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو ابتدائی وسائل، اسٹوڈنٹ پیک اور یہاں تک کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ ایک ایسا صفحہ ہے جسے آپ بک مارک کرنا چاہیں گے اور وقتاً فوقتاً چیک کریں گے کیونکہ ہم کم از کم ماہانہ مواد تبدیل کرتے ہیں۔
- [مائیکروسافٹ لرن اسٹوڈنٹ ایمبیسڈرز](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ایک عالمی کمیونٹی میں شامل ہوں، یہ مائیکروسافٹ میں آپ کے داخلے کا راستہ ہو سکتا ہے۔
# شروعات کرنا
# شروعات کریں
> **اساتذہ**: ہم نے [کچھ تجاویز شامل کی ہیں](for-teachers.md) کہ اس نصاب کو کیسے استعمال کیا جائے۔ ہمیں آپ کی رائے [ہمارے ڈسکشن فورم](https://github.com/microsoft/Data-Science-For-Beginners/discussions) میں پسند آئے گی!
> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو خود استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور اسباق کو خود مکمل کریں، پری-لیکچر کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ اسباق کو سمجھ کر پروجیکٹس بنائیں بجائے اس کے کہ حل کوڈ کو کاپی کریں؛ تاہم، وہ کوڈ ہر پروجیکٹ پر مبنی سبق کے /solutions فولڈرز میں دستیاب ہے۔ ایک اور خیال یہ ہو سکتا ہے کہ دوستوں کے ساتھ اسٹڈی گروپ بنائیں اور مواد کو ایک ساتھ دیکھیں۔ مزید مطالعہ کے لیے، ہم [مائیکروسافٹ لرن](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کی سفارش کرتے ہیں۔
> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو خود استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور خود ہی مشقیں مکمل کریں، سبق سے پہلے کے کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ اسباق کو سمجھ کر پروجیکٹس بنائیں بجائے اس کے کہ حل کوڈ کو کاپی کریں؛ تاہم، وہ کوڈ ہر پروجیکٹ پر مبنی سبق کے /solutions فولڈرز میں دستیاب ہے۔ ایک اور خیال یہ ہو سکتا ہے کہ دوستوں کے ساتھ ایک اسٹڈی گروپ بنائیں اور مواد کو ایک ساتھ دیکھیں۔ مزید مطالعہ کے لیے، ہم [مائیکروسافٹ لرن](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کی سفارش کرتے ہیں۔
## ٹیم سے ملاقات کریں
@ -56,74 +53,71 @@ Azure Cloud Advocates نے مائیکروسافٹ میں ایک 10 ہفتوں،
## تدریسی طریقہ کار
ہم نے اس نصاب کو بناتے وقت دو تدریسی اصولوں کا انتخاب کیا ہے: یہ یقینی بنانا کہ یہ پروجیکٹ پر مبنی ہے اور اس میں بار بار کوئز شامل ہیں۔ اس سیریز کے اختتام تک، طلباء ڈیٹا سائنس کے بنیادی اصول سیکھ چکے ہوں گے، جن میں اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے ساتھ کام کرنے کے مختلف طریقے، ڈیٹا کی بصری نمائندگی، ڈیٹا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا کے استعمال کے کیسز، اور مزید شامل ہیں۔
ہم نے اس نصاب کو بناتے وقت دو تدریسی اصولوں کا انتخاب کیا ہے: یہ یقینی بنانا کہ یہ پروجیکٹ پر مبنی ہے اور اس میں بار بار کوئز شامل ہیں۔ اس سیریز کے اختتام تک، طلباء ڈیٹا سائنس کے بنیادی اصول سیکھ چکے ہوں گے، جن میں اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے ساتھ کام کرنے کے مختلف طریقے، ڈیٹا کی بصری نمائندگی، ڈیٹا کا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا کے استعمال کے کیسز، اور مزید شامل ہیں۔
اس کے علاوہ، کلاس سے پہلے ایک کم دباؤ والا کوئز طالب علم کو کسی موضوع کو سیکھنے کی طرف راغب کرتا ہے، جبکہ کلاس کے بعد دوسرا کوئز مزید یادداشت کو یقینی بناتا ہے۔ یہ نصاب لچکدار اور تفریحی طور پر ڈیزائن کیا گیا ہے اور اسے مکمل یا جزوی طور پر لیا جا سکتا ہے۔ پروجیکٹس چھوٹے شروع ہوتے ہیں اور 10 ہفتوں کے سائیکل کے اختتام تک بتدریج پیچیدہ ہو جاتے ہیں۔
> ہمارا [کوڈ آف کنڈکٹ](CODE_OF_CONDUCT.md)، [کنٹریبیوٹنگ](CONTRIBUTING.md)، [ترجمہ](TRANSLATIONS.md) کے رہنما اصول دیکھیں۔ ہم آپ کی تعمیری رائے کا خیر مقدم کرتے ہیں!
ہمارے [Code of Conduct](CODE_OF_CONDUCT.md)، [Contributing](CONTRIBUTING.md)، [Translation](TRANSLATIONS.md) رہنما اصول دیکھیں۔ ہم آپ کی تعمیری رائے کا خیرمقدم کرتے ہیں!
## ہر سبق میں شامل ہیں:
- اختیاری اسکیچ نوٹ
- اختیاری خاکہ نوٹ
- اختیاری اضافی ویڈیو
- پری-سبق وارم اپ کوئز
- سبق سے پہلے کا وارم اپ کوئز
- تحریری سبق
- پروجیکٹ پر مبنی اسباق کے لیے، پروجیکٹ بنانے کے مرحلہ وار گائیڈز
- پروجیکٹ پر مبنی اسباق کے لیے، پروجیکٹ بنانے کے مرحلہ وار رہنما
- علم کی جانچ
- ایک چیلنج
- اضافی مطالعہ
- اسائنمنٹ
- پوسٹ-سبق کوئز
- [سبق کے بعد کا کوئز](https://ff-quizzes.netlify.app/en/)
> **کوئز کے بارے میں ایک نوٹ**: تمام کوئز Quiz-App فولڈر میں موجود ہیں، کل 40 کوئز، ہر ایک میں تین سوالات۔ وہ اسباق کے اندر سے لنک کیے گئے ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا جا سکتا ہے یا Azure پر تعینات کیا جا سکتا ہے؛ `quiz-app` فولڈر میں دی گئی ہدایات پر عمل کریں۔ وہ بتدریج مقامی زبانوں میں ترجمہ کیے جا رہے ہیں۔
> **کوئزز کے بارے میں ایک نوٹ**: تمام کوئزز Quiz-App فولڈر میں موجود ہیں، جن میں کل 40 کوئزز ہیں، ہر ایک میں تین سوالات ہیں۔ یہ اسباق کے اندر سے لنک کیے گئے ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا جا سکتا ہے یا Azure پر ڈپلائے کیا جا سکتا ہے؛ `quiz-app` فولڈر میں دی گئی ہدایات پر عمل کریں۔ یہ بتدریج مقامی زبانوں میں ترجمہ کیے جا رہے ہیں۔
## اسباق
|![ [(@sketchthedocs)](https://sketchthedocs.dev) کی اسکیچ نوٹ ](./sketchnotes/00-Roadmap.png)|
|![@sketchthedocs کی خاکہ نوٹ https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.ur.png)|
|:---:|
| ڈیٹا سائنس کے ابتدائی افراد: روڈ میپ - _[@nitya](https://twitter.com/nitya) کی اسکیچ نوٹ_ |
| ڈیٹا سائنس برائے ابتدائی: روڈ میپ - اکہ نوٹ [@nitya](https://twitter.com/nitya) کی جانب سے_ |
| سبق نمبر | موضوع | سبق کی گروپ بندی | سیکھنے کے مقاصد | لنک شدہ سبق | مصنف |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | ڈیٹا سائنس کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا سائنس کے بنیادی تصورات سیکھیں اور یہ مصنوعی ذہانت، مشین لرننگ، اور بڑے ڈیٹا سے کیسے متعلق ہے۔ | [سبق](1-Introduction/01-defining-data-science/README.md) [ویڈیو](https://youtu.be/beZ7Mb_oz9I) | [دیمتری](http://soshnikov.com) |
| 02 | ڈیٹا سائنس کی اخلاقیات | [تعارف](1-Introduction/README.md) | ڈیٹا اخلاقیات کے تصورات، چیلنجز اور فریم ورک۔ | [سبق](1-Introduction/02-ethics/README.md) | [نیتیا](https://twitter.com/nitya) |
| 03 | ڈیٹا کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا کو کیسے درجہ بندی کیا جاتا ہے اور اس کے عام ذرائع۔ | [سبق](1-Introduction/03-defining-data/README.md) | [جیسمن](https://www.twitter.com/paladique) |
| 04 | شماریات اور احتمال کا تعارف | [تعارف](1-Introduction/README.md) | ڈیٹا کو سمجھنے کے لیے احتمال اور شماریات کی ریاضیاتی تکنیکیں۔ | [سبق](1-Introduction/04-stats-and-probability/README.md) [ویڈیو](https://youtu.be/Z5Zy85g4Yjw) | [دیمتری](http://soshnikov.com) |
| 05 | تعلقاتی ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | تعلقاتی ڈیٹا کا تعارف اور Structured Query Language (SQL) کے ساتھ تعلقاتی ڈیٹا کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/05-relational-databases/README.md) | [کرسٹوفر](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | غیر تعلقاتی ڈیٹا کا تعارف، اس کی مختلف اقسام اور دستاویز ڈیٹا بیسز کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/06-non-relational/README.md) | [جیسمن](https://twitter.com/paladique)|
| 07 | Python کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | Python کے ساتھ ڈیٹا کو دریافت کرنے کے لیے لائبریریوں جیسے Pandas کا استعمال کرنے کی بنیادی باتیں۔ Python پروگرامنگ کی بنیادی سمجھ بوجھ کی سفارش کی جاتی ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [دیمتری](http://soshnikov.com) |
| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | ڈیٹا کو صاف کرنے اور تبدیل کرنے کی تکنیکوں پر موضوعات تاکہ گمشدہ، غلط یا نامکمل ڈیٹا کے چیلنجز کو حل کیا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [جیسمن](https://www.twitter.com/paladique) |
| 09 | مقداروں کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | سیکھیں کہ پرندوں کے ڈیٹا کو بصری طور پر ظاہر کرنے کے لیے Matplotlib کا استعمال کیسے کریں 🦆 | [سبق](3-Data-Visualization/09-visualization-quantities/README.md) | [جین](https://twitter.com/jenlooper) |
| 10 | ڈیٹا کی تقسیمات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | وقفے کے اندر مشاہدات اور رجحانات کو بصری طور پر ظاہر کرنا۔ | [سبق](3-Data-Visualization/10-visualization-distributions/README.md) | [جین](https://twitter.com/jenlooper) |
| 11 | تناسب کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | متفرق اور گروپ شدہ فیصد کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/11-visualization-proportions/README.md) | [جین](https://twitter.com/jenlooper) |
| 12 | تعلقات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ڈیٹا کے سیٹوں اور ان کے متغیرات کے درمیان تعلقات اور ہم آہنگی کو بصری طور پر ظاہر کرنا۔ | [سبق](3-Data-Visualization/12-visualization-relationships/README.md) | [جین](https://twitter.com/jenlooper) |
| 13 | بامعنی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | آپ کی بصری نمائندگی کو مؤثر مسئلہ حل کرنے اور بصیرت کے لیے قیمتی بنانے کے لیے تکنیک اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جین](https://twitter.com/jenlooper) |
| 14 | ڈیٹا سائنس کے لائف سائیکل کا تعارف | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا تعارف اور ڈیٹا حاصل کرنے اور نکالنے کا پہلا مرحلہ۔ | [سبق](4-Data-Science-Lifecycle/14-Introduction/README.md) | [جیسمن](https://twitter.com/paladique) |
| 15 | تجزیہ کرنا | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا کا تجزیہ کرنے کی تکنیکوں پر مرکوز ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [جیسمن](https://twitter.com/paladique) | | |
| 16 | مواصلات | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا سے حاصل کردہ بصیرت کو اس انداز میں پیش کرنے پر مرکوز ہے جو فیصلہ سازوں کے لیے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [جیلن](https://twitter.com/JalenMcG) | | |
| 17 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | اس سبق کی سیریز کلاؤڈ میں ڈیٹا سائنس اور اس کے فوائد کا تعارف کراتی ہے۔ | [سبق](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ٹفنی](https://twitter.com/TiffanySouterre) اور [مود](https://twitter.com/maudstweets) |
| 18 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | لو کوڈ ٹولز کا استعمال کرتے ہوئے ماڈلز کی تربیت۔ | [سبق](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ٹفنی](https://twitter.com/TiffanySouterre) اور [مود](https://twitter.com/maudstweets) |
| 19 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio کے ساتھ ماڈلز کو تعینات کرنا۔ | [سبق](5-Data-Science-In-Cloud/19-Azure/README.md) | [ٹفنی](https://twitter.com/TiffanySouterre) اور [مود](https://twitter.com/maudstweets) |
| 20 | حقیقی دنیا میں ڈیٹا سائنس | [حقیقی دنیا میں](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس پر مبنی منصوبے۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نیتیا](https://twitter.com/nitya) |
## گٹ ہب کوڈ اسپیسز
ان مراحل پر عمل کریں تاکہ اس نمونے کو کوڈ اسپیس میں کھولا جا سکے:
1. کوڈ ڈراپ ڈاؤن مینو پر کلک کریں اور "Open with Codespaces" کا انتخاب کریں۔
2. پین کے نیچے "+ New codespace" کا انتخاب کریں۔
مزید معلومات کے لیے، [گٹ ہب دستاویزات](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) دیکھیں۔
## وی ایس کوڈ ریموٹ - کنٹینرز
ان مراحل پر عمل کریں تاکہ اس ریپو کو اپنے مقامی مشین اور وی ایس کوڈ کے ذریعے کنٹینر میں کھولا جا سکے، وی ایس کوڈ ریموٹ - کنٹینرز ایکسٹینشن کا استعمال کرتے ہوئے:
1. اگر یہ آپ کا پہلا موقع ہے کہ آپ ڈیولپمنٹ کنٹینر استعمال کر رہے ہیں، تو براہ کرم یقینی بنائیں کہ آپ کا سسٹم ضروریات کو پورا کرتا ہے (مثلاً، آپ کے پاس Docker انسٹال ہو) [شروع کرنے کی دستاویزات](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) میں۔
| 01 | ڈیٹا سائنس کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا سائنس کے بنیادی تصورات سیکھیں اور یہ مصنوعی ذہانت، مشین لرننگ، اور بڑے ڈیٹا سے کیسے جڑا ہوا ہے۔ | [سبق](1-Introduction/01-defining-data-science/README.md) [ویڈیو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | ڈیٹا سائنس کی اخلاقیات | [تعارف](1-Introduction/README.md) | ڈیٹا اخلاقیات کے تصورات، چیلنجز اور فریم ورک۔ | [سبق](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | ڈیٹا کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا کی درجہ بندی اور اس کے عام ذرائع۔ | [سبق](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | شماریات اور احتمال کا تعارف | [تعارف](1-Introduction/README.md) | ڈیٹا کو سمجھنے کے لیے احتمال اور شماریات کی ریاضیاتی تکنیکیں۔ | [سبق](1-Introduction/04-stats-and-probability/README.md) [ویڈیو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | تعلقاتی ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | تعلقاتی ڈیٹا کا تعارف اور Structured Query Language (SQL) کے ذریعے تعلقاتی ڈیٹا کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | غیر تعلقاتی ڈیٹا کا تعارف، اس کی مختلف اقسام اور دستاویزی ڈیٹا بیسز کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | Pandas جیسی لائبریریوں کے ساتھ ڈیٹا کی دریافت کے لیے Python کا استعمال۔ Python پروگرامنگ کی بنیادی سمجھ بوجھ کی سفارش کی جاتی ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | ڈیٹا کو صاف اور تبدیل کرنے کے لیے تکنیکوں پر موضوعات تاکہ گمشدہ، غلط، یا نامکمل ڈیٹا کے چیلنجز سے نمٹا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | مقداروں کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | Matplotlib کا استعمال کرتے ہوئے پرندوں کے ڈیٹا کو بصری طور پر پیش کرنا سیکھیں 🦆 | [سبق](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ڈیٹا کی تقسیمات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | وقفے کے اندر مشاہدات اور رجحانات کو بصری طور پر پیش کرنا۔ | [سبق](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | تناسب کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | الگ اور گروپ شدہ فیصد کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | تعلقات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ڈیٹا کے سیٹوں اور ان کے متغیرات کے درمیان تعلقات اور ارتباط کو بصری طور پر پیش کرنا۔ | [سبق](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | بامعنی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | آپ کی بصری نمائندگی کو مؤثر مسئلہ حل کرنے اور بصیرت کے لیے قیمتی بنانے کے لیے تکنیکیں اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | ڈیٹا سائنس کے لائف سائیکل کا تعارف | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا تعارف اور ڈیٹا حاصل کرنے اور نکالنے کا پہلا مرحلہ۔ | [سبق](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | تجزیہ کرنا | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کے اس مرحلے میں ڈیٹا کا تجزیہ کرنے کی تکنیکوں پر توجہ دی گئی ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | مواصلات | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کے اس مرحلے میں ڈیٹا سے حاصل کردہ بصیرت کو اس طرح پیش کرنے پر توجہ دی گئی ہے کہ فیصلہ سازوں کے لیے اسے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | اسباق کی یہ سیریز کلاؤڈ میں ڈیٹا سائنس اور اس کے فوائد کا تعارف کراتی ہے۔ | [سبق](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 18 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | لو کوڈ ٹولز کا استعمال کرتے ہوئے ماڈلز کی تربیت۔ |[سبق](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 19 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio کے ساتھ ماڈلز کو ڈپلائے کرنا۔ | [سبق](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 20 | جنگلی ماحول میں ڈیٹا سائنس | [جنگلی ماحول](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس پر مبنی پروجیکٹس۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Codespace میں اس نمونے کو کھولنے کے لیے ان مراحل پر عمل کریں:
1. Code ڈراپ ڈاؤن مینو پر کلک کریں اور Open with Codespaces آپشن منتخب کریں۔
2. پین کے نیچے + New codespace منتخب کریں۔
مزید معلومات کے لیے، [GitHub دستاویزات](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) دیکھیں۔
## VSCode Remote - Containers
اپنے مقامی مشین اور VSCode کا استعمال کرتے ہوئے اس ریپو کو کنٹینر میں کھولنے کے لیے ان مراحل پر عمل کریں:
1. اگر یہ آپ کا پہلا موقع ہے کہ آپ ڈیولپمنٹ کنٹینر استعمال کر رہے ہیں، تو براہ کرم یقینی بنائیں کہ آپ کا سسٹم پری ریکوزیٹس کو پورا کرتا ہے (یعنی [Docker انسٹال کریں](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started))۔
اس ریپوزٹری کو استعمال کرنے کے لیے، آپ یا تو اسے ایک الگ تھلگ Docker والیوم میں کھول سکتے ہیں:
**نوٹ**: اندرونی طور پر، یہ Remote-Containers: **Clone Repository in Container Volume...** کمانڈ استعمال کرے گا تاکہ سورس کوڈ کو مقامی فائل سسٹم کے بجائے Docker والیوم میں کلون کیا جا سکے۔ [والیومز](https://docs.docker.com/storage/volumes/) کنٹینر ڈیٹا کو محفوظ رکھنے کے لیے ترجیحی طریقہ کار ہیں۔
**نوٹ**: اندرونی طور پر، یہ Remote-Containers: **Clone Repository in Container Volume...** کمانڈ استعمال کرے گا تاکہ سورس کوڈ کو مقامی فائل سسٹم کے بجائے Docker والیوم میں کلون کیا جا سکے۔ [Volumes](https://docs.docker.com/storage/volumes/) کنٹینر ڈیٹا کو محفوظ کرنے کے لیے ترجیحی طریقہ کار ہیں۔
یا مقامی طور پر کلون شدہ یا ڈاؤن لوڈ شدہ ریپوزٹری کا ورژن کھولیں:
یا مقامی طور پر کلون شدہ یا ڈاؤن لوڈ شدہ ورژن کھولیں:
- اس ریپوزٹری کو اپنے مقامی فائل سسٹم پر کلون کریں۔
- F1 دبائیں اور **Remote-Containers: Open Folder in Container...** کمانڈ منتخب کریں۔
@ -131,13 +125,9 @@ Azure Cloud Advocates نے مائیکروسافٹ میں ایک 10 ہفتوں،
## آف لائن رسائی
آپ اس دستاویزات کو آف لائن Docsify کا استعمال کرتے ہوئے چلا سکتے ہیں۔ اس ریپو کو فورک کریں، [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart) اپنی مقامی مشین پر، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ آپ کے localhost پر پورٹ 3000 پر دستیاب ہوگی: `localhost:3000`۔
> نوٹ، نوٹ بکس Docsify کے ذریعے رینڈر نہیں ہوں گے، لہذا جب آپ کو نوٹ بک چلانے کی ضرورت ہو، تو اسے الگ سے وی ایس کوڈ میں Python کرنل چلاتے ہوئے کریں۔
## مدد درکار ہے!
آپ اس دستاویزات کو [Docsify](https://docsify.js.org/#/) کا استعمال کرتے ہوئے آف لائن چلا سکتے ہیں۔ اس ریپو کو فورک کریں، [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart) اپنے مقامی مشین پر، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ آپ کے localhost پر پورٹ 3000 پر دستیاب ہوگی: `localhost:3000`۔
اگر آپ نصاب کے تمام یا کسی حصے کا ترجمہ کرنا چاہتے ہیں، تو براہ کرم ہمارے [Translations](TRANSLATIONS.md) گائیڈ پر عمل کریں۔
> نوٹ، نوٹ بکس Docsify کے ذریعے رینڈر نہیں ہوں گے، لہذا جب آپ کو نوٹ بک چلانے کی ضرورت ہو، تو اسے الگ سے VS Code میں Python کرنل چلاتے ہوئے کریں۔
## دیگر نصاب
@ -161,4 +151,4 @@ Azure Cloud Advocates نے مائیکروسافٹ میں ایک 10 ہفتوں،
---
**ڈسکلیمر**:
یہ دستاویز AI ترجمہ سروس [Co-op Translator](https://github.com/Azure/co-op-translator) کا استعمال کرتے ہوئے ترجمہ کی گئی ہے۔ ہم درستگی کے لیے پوری کوشش کرتے ہیں، لیکن براہ کرم آگاہ رہیں کہ خودکار ترجمے میں غلطیاں یا خامیاں ہو سکتی ہیں۔ اصل دستاویز کو اس کی اصل زبان میں مستند ذریعہ سمجھا جانا چاہیے۔ اہم معلومات کے لیے، پیشہ ور انسانی ترجمہ کی سفارش کی جاتی ہے۔ اس ترجمے کے استعمال سے پیدا ہونے والی کسی بھی غلط فہمی یا غلط تشریح کے لیے ہم ذمہ دار نہیں ہیں۔
یہ دستاویز AI ترجمہ سروس [Co-op Translator](https://github.com/Azure/co-op-translator) کا استعمال کرتے ہوئے ترجمہ کی گئی ہے۔ ہم درستگی کے لیے کوشش کرتے ہیں، لیکن براہ کرم آگاہ رہیں کہ خودکار ترجمے میں غلطیاں یا عدم درستگی ہو سکتی ہیں۔ اصل دستاویز، جو اس کی مقامی زبان میں ہے، کو مستند ذریعہ سمجھا جانا چاہیے۔ اہم معلومات کے لیے، پیشہ ور انسانی ترجمہ کی سفارش کی جاتی ہے۔ اس ترجمے کے استعمال سے پیدا ہونے والی کسی بھی غلط فہمی یا غلط تشریح کے لیے ہم ذمہ دار نہیں ہیں۔
Loading…
Cancel
Save