Update 1 link error

pull/360/head
Sachin Vinayak Dabhade 4 years ago committed by GitHub
parent 100becd753
commit 9650f54eaf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -72,7 +72,7 @@
#### 2.1 डेटा स्वामित्व
डेटा संग्रह में अक्सर व्यक्तिगत डेटा शामिल होता है जो डेटा विषयों की पहचान कर सकता है । [डेटा स्वामित्व](https://permission.io/blog/data-ownership) _नियंत्रण_ के बारे में और उन [_उपयोगकर्ता अधिकारो_](https://permission.io/blog/data-ownership)के सम्भंदित है जो निर्माण , प्रसंस्करण और से संबंधित है ।
डेटा संग्रह में अक्सर व्यक्तिगत डेटा शामिल होता है जो डेटा विषयों की पहचान कर सकता है । [डेटा स्वामित्व](https://permission.io/blog/data-ownership) _नियंत्रण_ के बारे में और उन [उपयोगकर्ता अधिकारो(https://permission.io/blog/data-ownership) के सम्भंदित है जो निर्माण , प्रसंस्करण और से संबंधित है ।
हमें जो नैतिक प्रश्न पूछने चाहिए, वे हैं :
* डेटा का मालिक कौन है ? (उपयोगकर्ता या संगठन)
@ -178,7 +178,7 @@
| **सूचित सहमति** | १९७२ - [टस्केगी सिफलिस अध्ययन](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) - अध्ययन में भाग लेने वाले अफ्रीकी अमेरिकी पुरुषों को उन शोधकर्ताओं द्वारा मुफ्त चिकित्सा देखभाल का वादा किया गया था जो उनके निदान या उपचार की उपलब्धता के बारे में विषयों को सूचित करने में विफल रहे। कई विषयों की मृत्यु हो गई और साथी या बच्चे प्रभावित हुए; अध्ययन 40 साल तक चला । |
| **डाटा प्राइवेसी** | २००७ - [नेटफ्लिक्स डेटा प्राइज](https://www.wired.com/2007/12/why-anonymous-data-only-isnt/) ने शोधकर्ताओं को सिफारिश एल्गोरिदम को बेहतर बनाने में मदद करने के लिए 50K ग्राहकों_ से _10M अनाम मूवी रैंकिंग प्रदान की। हालांकि, शोधकर्ता अज्ञात डेटा को व्यक्तिगत रूप से पहचाने जाने योग्य डेटा के साथ _बाहरी डेटासेट_ (उदाहरण के लिए, IMDb टिप्पणियों) में सहसंबंधित करने में सक्षम थे - कुछ नेटफ्लिक्स ग्राहकों को प्रभावी रूप से "डी-अनामीकरण" ।|
| **संग्रह पूर्वाग्रह** | २०१३ - द सिटी ऑफ़ बोस्टन [विकसित स्ट्रीट बम्प](https://www.boston.gov/transportation/street-bump), एक ऐप जो नागरिकों को गड्ढों की रिपोर्ट करने देता है, जिससे शहर को समस्याओं को खोजने और ठीक करने के लिए बेहतर रोडवे डेटा मिलता है । हालांकि, [निम्न आय वर्ग के लोगों के पास कारों और फोन तक कम पहुंच थी](https://hbr.org/2013/04/the-hidden-biases-in-big-data), जिससे इस ऐप में उनके सड़क संबंधी मुद्दे अदृश्य हो गए थे। . डेवलपर्स ने शिक्षाविदों के साथ निष्पक्षता के लिए _न्यायसंगत पहुंच और डिजिटल विभाजन_ मुद्दों पर काम किया । |
| **एल्गोरिथम निष्पक्षता** | २०१८ - एमआईटी [जेंडर शेड्स स्टडी] (http://gendershades.org/overview.html) ने लिंग वर्गीकरण एआई उत्पादों की सटीकता का मूल्यांकन किया, महिलाओं और रंग के व्यक्तियों के लिए सटीकता में अंतराल को उजागर किया । एक [2019 ऐप्पल कार्ड](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) पुरुषों की तुलना में महिलाओं को कम क्रेडिट प्रदान करता है। दोनों ने एल्गोरिथम पूर्वाग्रह में सचित्र मुद्दों को सामाजिक-आर्थिक नुकसान की ओर अग्रसर किया ।|
| **एल्गोरिथम निष्पक्षता** | २०१८ - एमआईटी [जेंडर शेड्स स्टडी](http://gendershades.org/overview.html) ने लिंग वर्गीकरण एआई उत्पादों की सटीकता का मूल्यांकन किया, महिलाओं और रंग के व्यक्तियों के लिए सटीकता में अंतराल को उजागर किया । एक [2019 ऐप्पल कार्ड](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) पुरुषों की तुलना में महिलाओं को कम क्रेडिट प्रदान करता है। दोनों ने एल्गोरिथम पूर्वाग्रह में सचित्र मुद्दों को सामाजिक-आर्थिक नुकसान की ओर अग्रसर किया ।|
| **डेटा गलत बयानी** | २०२० - [जॉर्जिया डिपार्टमेंट ऑफ पब्लिक हेल्थ ने जारी किया COVID-19 चार्ट](https://www.vox.com/covid-19-coronavirus-us-response-trump/2020/5/18/21262265/georgia-covid-19-cases-declining-reopening) जो एक्स-अक्ष पर गैर-कालानुक्रमिक क्रम के साथ पुष्टि किए गए मामलों में रुझानों के बारे में नागरिकों को गुमराह करने के लिए प्रकट हुए। यह विज़ुअलाइज़ेशन ट्रिक्स के माध्यम से गलत बयानी दिखाता है । |
| **स्वतंत्र चुनाव का भ्रम** | २०२० - लर्निंग ऐप [एबीसीमाउस ने एफटीसी शिकायत को निपटाने के लिए 10 मिलियन डॉलर का भुगतान किया](https://www.washingtonpost.com/business/2020/09/04/abcmouse-10-million-ftc-settlement/) जहां माता-पिता भुगतान करने में फंस गए थे सदस्यता वे रद्द नहीं कर सके । यह पसंद वास्तुकला में काले पैटर्न को दिखाता है, जहां उपयोगकर्ता संभावित रूप से हानिकारक विकल्पों की ओर झुकाव कर रहे थे । |
| **डेटा गोपनीयता और उपयोगकर्ता अधिकार** | २०२१ - फेसबुक [डेटा ब्रीच](https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users) 530M उपयोगकर्ताओं के डेटा को उजागर किया, जिसके परिणामस्वरूप FTC को $ 5B का समझौता हुआ । हालांकि इसने डेटा पारदर्शिता और पहुंच के आसपास उपयोगकर्ता अधिकारों का उल्लंघन करने वाले उल्लंघन के उपयोगकर्ताओं को सूचित करने से इनकार कर दिया । |

Loading…
Cancel
Save