From 810a53be1d71e5bd727e16c2578c9c953f2f9859 Mon Sep 17 00:00:00 2001 From: "localizeflow[bot]" Date: Fri, 30 Jan 2026 02:54:09 +0000 Subject: [PATCH] chore(i18n): sync translations with latest source changes (chunk 1/1, 213 changes) --- translations/kn/.co-op-translator.json | 422 ++++++++++++++++++ .../01-defining-data-science/README.md | 9 - .../01-defining-data-science/assignment.md | 9 - .../solution/assignment.md | 9 - .../kn/1-Introduction/02-ethics/README.md | 9 - .../kn/1-Introduction/02-ethics/assignment.md | 9 - .../1-Introduction/03-defining-data/README.md | 9 - .../03-defining-data/assignment.md | 9 - .../04-stats-and-probability/README.md | 9 - .../04-stats-and-probability/assignment.md | 9 - translations/kn/1-Introduction/README.md | 9 - .../05-relational-databases/README.md | 9 - .../05-relational-databases/assignment.md | 9 - .../06-non-relational/README.md | 9 - .../06-non-relational/assignment.md | 9 - .../2-Working-With-Data/07-python/README.md | 9 - .../07-python/assignment.md | 9 - .../08-data-preparation/README.md | 9 - .../08-data-preparation/assignment.md | 9 - translations/kn/2-Working-With-Data/README.md | 9 - .../09-visualization-quantities/README.md | 9 - .../09-visualization-quantities/assignment.md | 9 - .../10-visualization-distributions/README.md | 9 - .../assignment.md | 9 - .../11-visualization-proportions/README.md | 9 - .../assignment.md | 9 - .../12-visualization-relationships/README.md | 9 - .../assignment.md | 9 - .../13-meaningful-visualizations/README.md | 9 - .../assignment.md | 9 - .../solution/README.md | 9 - .../starter/README.md | 9 - .../R/09-visualization-quantities/README.md | 9 - .../09-visualization-quantities/assignment.md | 9 - .../10-visualization-distributions/README.md | 9 - .../assignment.md | 9 - .../R/11-visualization-proportions/README.md | 9 - .../12-visualization-relationships/README.md | 9 - .../R/13-meaningful-vizualizations/README.md | 9 - .../kn/3-Data-Visualization/README.md | 9 - .../14-Introduction/README.md | 9 - .../14-Introduction/assignment.md | 9 - .../15-analyzing/README.md | 9 - .../15-analyzing/assignment.md | 9 - .../16-communication/README.md | 9 - .../16-communication/assignment.md | 9 - .../kn/4-Data-Science-Lifecycle/README.md | 9 - .../17-Introduction/README.md | 9 - .../17-Introduction/assignment.md | 9 - .../18-Low-Code/README.md | 9 - .../18-Low-Code/assignment.md | 9 - .../19-Azure/README.md | 9 - .../19-Azure/assignment.md | 9 - .../kn/5-Data-Science-In-Cloud/README.md | 9 - .../20-Real-World-Examples/README.md | 9 - .../20-Real-World-Examples/assignment.md | 9 - .../kn/6-Data-Science-In-Wild/README.md | 9 - translations/kn/AGENTS.md | 9 - translations/kn/CODE_OF_CONDUCT.md | 9 - translations/kn/CONTRIBUTING.md | 9 - translations/kn/INSTALLATION.md | 9 - translations/kn/README.md | 285 ++++++------ translations/kn/SECURITY.md | 9 - translations/kn/SUPPORT.md | 9 - translations/kn/TROUBLESHOOTING.md | 9 - translations/kn/USAGE.md | 9 - translations/kn/docs/_sidebar.md | 9 - translations/kn/examples/README.md | 9 - translations/kn/for-teachers.md | 9 - translations/kn/quiz-app/README.md | 9 - translations/kn/sketchnotes/README.md | 9 - translations/ml/.co-op-translator.json | 422 ++++++++++++++++++ .../01-defining-data-science/README.md | 9 - .../01-defining-data-science/assignment.md | 9 - .../solution/assignment.md | 9 - .../ml/1-Introduction/02-ethics/README.md | 9 - .../ml/1-Introduction/02-ethics/assignment.md | 9 - .../1-Introduction/03-defining-data/README.md | 9 - .../03-defining-data/assignment.md | 9 - .../04-stats-and-probability/README.md | 9 - .../04-stats-and-probability/assignment.md | 9 - translations/ml/1-Introduction/README.md | 9 - .../05-relational-databases/README.md | 9 - .../05-relational-databases/assignment.md | 9 - .../06-non-relational/README.md | 9 - .../06-non-relational/assignment.md | 9 - .../2-Working-With-Data/07-python/README.md | 9 - .../07-python/assignment.md | 9 - .../08-data-preparation/README.md | 9 - .../08-data-preparation/assignment.md | 9 - translations/ml/2-Working-With-Data/README.md | 9 - .../09-visualization-quantities/README.md | 9 - .../09-visualization-quantities/assignment.md | 9 - .../10-visualization-distributions/README.md | 9 - .../assignment.md | 9 - .../11-visualization-proportions/README.md | 9 - .../assignment.md | 9 - .../12-visualization-relationships/README.md | 9 - .../assignment.md | 9 - .../13-meaningful-visualizations/README.md | 9 - .../assignment.md | 9 - .../solution/README.md | 9 - .../starter/README.md | 9 - .../R/09-visualization-quantities/README.md | 9 - .../09-visualization-quantities/assignment.md | 9 - .../10-visualization-distributions/README.md | 9 - .../assignment.md | 9 - .../R/11-visualization-proportions/README.md | 9 - .../12-visualization-relationships/README.md | 9 - .../R/13-meaningful-vizualizations/README.md | 9 - .../ml/3-Data-Visualization/README.md | 9 - .../14-Introduction/README.md | 9 - .../14-Introduction/assignment.md | 9 - .../15-analyzing/README.md | 9 - .../15-analyzing/assignment.md | 9 - .../16-communication/README.md | 9 - .../16-communication/assignment.md | 9 - .../ml/4-Data-Science-Lifecycle/README.md | 9 - .../17-Introduction/README.md | 9 - .../17-Introduction/assignment.md | 9 - .../18-Low-Code/README.md | 9 - .../18-Low-Code/assignment.md | 9 - .../19-Azure/README.md | 9 - .../19-Azure/assignment.md | 9 - .../ml/5-Data-Science-In-Cloud/README.md | 9 - .../20-Real-World-Examples/README.md | 9 - .../20-Real-World-Examples/assignment.md | 9 - .../ml/6-Data-Science-In-Wild/README.md | 9 - translations/ml/AGENTS.md | 9 - translations/ml/CODE_OF_CONDUCT.md | 9 - translations/ml/CONTRIBUTING.md | 9 - translations/ml/INSTALLATION.md | 9 - translations/ml/README.md | 263 ++++++----- translations/ml/SECURITY.md | 9 - translations/ml/SUPPORT.md | 9 - translations/ml/TROUBLESHOOTING.md | 9 - translations/ml/USAGE.md | 9 - translations/ml/docs/_sidebar.md | 9 - translations/ml/examples/README.md | 9 - translations/ml/for-teachers.md | 9 - translations/ml/quiz-app/README.md | 9 - translations/ml/sketchnotes/README.md | 9 - translations/te/.co-op-translator.json | 422 ++++++++++++++++++ .../01-defining-data-science/README.md | 9 - .../01-defining-data-science/assignment.md | 9 - .../solution/assignment.md | 9 - .../te/1-Introduction/02-ethics/README.md | 9 - .../te/1-Introduction/02-ethics/assignment.md | 9 - .../1-Introduction/03-defining-data/README.md | 9 - .../03-defining-data/assignment.md | 9 - .../04-stats-and-probability/README.md | 9 - .../04-stats-and-probability/assignment.md | 9 - translations/te/1-Introduction/README.md | 9 - .../05-relational-databases/README.md | 9 - .../05-relational-databases/assignment.md | 9 - .../06-non-relational/README.md | 9 - .../06-non-relational/assignment.md | 9 - .../2-Working-With-Data/07-python/README.md | 9 - .../07-python/assignment.md | 9 - .../08-data-preparation/README.md | 9 - .../08-data-preparation/assignment.md | 9 - translations/te/2-Working-With-Data/README.md | 9 - .../09-visualization-quantities/README.md | 9 - .../09-visualization-quantities/assignment.md | 9 - .../10-visualization-distributions/README.md | 9 - .../assignment.md | 9 - .../11-visualization-proportions/README.md | 9 - .../assignment.md | 9 - .../12-visualization-relationships/README.md | 9 - .../assignment.md | 9 - .../13-meaningful-visualizations/README.md | 9 - .../assignment.md | 9 - .../solution/README.md | 9 - .../starter/README.md | 9 - .../R/09-visualization-quantities/README.md | 9 - .../09-visualization-quantities/assignment.md | 9 - .../10-visualization-distributions/README.md | 9 - .../assignment.md | 9 - .../R/11-visualization-proportions/README.md | 9 - .../12-visualization-relationships/README.md | 9 - .../R/13-meaningful-vizualizations/README.md | 9 - .../te/3-Data-Visualization/README.md | 9 - .../14-Introduction/README.md | 9 - .../14-Introduction/assignment.md | 9 - .../15-analyzing/README.md | 9 - .../15-analyzing/assignment.md | 9 - .../16-communication/README.md | 9 - .../16-communication/assignment.md | 9 - .../te/4-Data-Science-Lifecycle/README.md | 9 - .../17-Introduction/README.md | 9 - .../17-Introduction/assignment.md | 9 - .../18-Low-Code/README.md | 9 - .../18-Low-Code/assignment.md | 9 - .../19-Azure/README.md | 9 - .../19-Azure/assignment.md | 9 - .../te/5-Data-Science-In-Cloud/README.md | 9 - .../20-Real-World-Examples/README.md | 9 - .../20-Real-World-Examples/assignment.md | 9 - .../te/6-Data-Science-In-Wild/README.md | 9 - translations/te/AGENTS.md | 9 - translations/te/CODE_OF_CONDUCT.md | 9 - translations/te/CONTRIBUTING.md | 9 - translations/te/INSTALLATION.md | 9 - translations/te/README.md | 275 ++++++------ translations/te/SECURITY.md | 9 - translations/te/SUPPORT.md | 9 - translations/te/TROUBLESHOOTING.md | 9 - translations/te/USAGE.md | 9 - translations/te/docs/_sidebar.md | 9 - translations/te/examples/README.md | 9 - translations/te/for-teachers.md | 9 - translations/te/quiz-app/README.md | 9 - translations/te/sketchnotes/README.md | 9 - 213 files changed, 1663 insertions(+), 2289 deletions(-) create mode 100644 translations/kn/.co-op-translator.json create mode 100644 translations/ml/.co-op-translator.json create mode 100644 translations/te/.co-op-translator.json diff --git a/translations/kn/.co-op-translator.json b/translations/kn/.co-op-translator.json new file mode 100644 index 00000000..7fe91d8c --- /dev/null +++ b/translations/kn/.co-op-translator.json @@ -0,0 +1,422 @@ +{ + "1-Introduction/01-defining-data-science/README.md": { + "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4", + "translation_date": "2025-12-19T13:39:07+00:00", + "source_file": "1-Introduction/01-defining-data-science/README.md", + "language_code": "kn" + }, + "1-Introduction/01-defining-data-science/assignment.md": { + "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de", + "translation_date": "2025-12-19T13:46:19+00:00", + "source_file": "1-Introduction/01-defining-data-science/assignment.md", + "language_code": "kn" + }, + "1-Introduction/01-defining-data-science/solution/assignment.md": { + "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56", + "translation_date": "2025-12-19T14:40:03+00:00", + "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md", + "language_code": "kn" + }, + "1-Introduction/02-ethics/README.md": { + "original_hash": "58860ce9a4b8a564003d2752f7c72851", + "translation_date": "2025-12-19T14:22:03+00:00", + "source_file": "1-Introduction/02-ethics/README.md", + "language_code": "kn" + }, + "1-Introduction/02-ethics/assignment.md": { + "original_hash": "b588c0fc73014f52520c666efc3e0cc3", + "translation_date": "2025-12-19T14:28:52+00:00", + "source_file": "1-Introduction/02-ethics/assignment.md", + "language_code": "kn" + }, + "1-Introduction/03-defining-data/README.md": { + "original_hash": "12339119c0165da569a93ddba05f9339", + "translation_date": "2025-12-19T14:00:15+00:00", + "source_file": "1-Introduction/03-defining-data/README.md", + "language_code": "kn" + }, + "1-Introduction/03-defining-data/assignment.md": { + "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4", + "translation_date": "2025-12-19T14:01:59+00:00", + "source_file": "1-Introduction/03-defining-data/assignment.md", + "language_code": "kn" + }, + "1-Introduction/04-stats-and-probability/README.md": { + "original_hash": "ce95884566a74db72572cd51f0cb25ad", + "translation_date": "2025-12-19T13:54:48+00:00", + "source_file": "1-Introduction/04-stats-and-probability/README.md", + "language_code": "kn" + }, + "1-Introduction/04-stats-and-probability/assignment.md": { + "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff", + "translation_date": "2025-12-19T13:57:31+00:00", + "source_file": "1-Introduction/04-stats-and-probability/assignment.md", + "language_code": "kn" + }, + "1-Introduction/README.md": { + "original_hash": "696a8474a01054281704cbfb09148949", + "translation_date": "2025-12-19T13:23:24+00:00", + "source_file": "1-Introduction/README.md", + "language_code": "kn" + }, + "2-Working-With-Data/05-relational-databases/README.md": { + "original_hash": "11739c7b40e7c6b16ad29e3df4e65862", + "translation_date": "2025-12-19T15:49:38+00:00", + "source_file": "2-Working-With-Data/05-relational-databases/README.md", + "language_code": "kn" + }, + "2-Working-With-Data/05-relational-databases/assignment.md": { + "original_hash": "25b37acdfb2452917c1aa2e2ca44317a", + "translation_date": "2025-12-19T15:52:02+00:00", + "source_file": "2-Working-With-Data/05-relational-databases/assignment.md", + "language_code": "kn" + }, + "2-Working-With-Data/06-non-relational/README.md": { + "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf", + "translation_date": "2025-12-19T15:39:41+00:00", + "source_file": "2-Working-With-Data/06-non-relational/README.md", + "language_code": "kn" + }, + "2-Working-With-Data/06-non-relational/assignment.md": { + "original_hash": "f824bfdb8b12d33293913f76f5c787c5", + "translation_date": "2025-12-19T15:41:16+00:00", + "source_file": "2-Working-With-Data/06-non-relational/assignment.md", + "language_code": "kn" + }, + "2-Working-With-Data/07-python/README.md": { + "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3", + "translation_date": "2025-12-19T15:34:55+00:00", + "source_file": "2-Working-With-Data/07-python/README.md", + "language_code": "kn" + }, + "2-Working-With-Data/07-python/assignment.md": { + "original_hash": "dc8f035ce92e4eaa078ab19caa68267a", + "translation_date": "2025-12-19T15:37:42+00:00", + "source_file": "2-Working-With-Data/07-python/assignment.md", + "language_code": "kn" + }, + "2-Working-With-Data/08-data-preparation/README.md": { + "original_hash": "1b560955ff39a2bcf2a049fce474a951", + "translation_date": "2025-12-19T15:43:47+00:00", + "source_file": "2-Working-With-Data/08-data-preparation/README.md", + "language_code": "kn" + }, + "2-Working-With-Data/08-data-preparation/assignment.md": { + "original_hash": "f9d5a7275e046223fa6474477674b810", + "translation_date": "2025-12-19T15:45:50+00:00", + "source_file": "2-Working-With-Data/08-data-preparation/assignment.md", + "language_code": "kn" + }, + "2-Working-With-Data/README.md": { + "original_hash": "abc3309ab41bc5a7846f70ee1a055838", + "translation_date": "2025-12-19T13:29:56+00:00", + "source_file": "2-Working-With-Data/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/09-visualization-quantities/README.md": { + "original_hash": "a49d78e32e280c410f04e5f2a2068e77", + "translation_date": "2025-12-19T16:15:58+00:00", + "source_file": "3-Data-Visualization/09-visualization-quantities/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/09-visualization-quantities/assignment.md": { + "original_hash": "ad163c4fda72c8278280b61cad317ff4", + "translation_date": "2025-12-19T16:17:36+00:00", + "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/10-visualization-distributions/README.md": { + "original_hash": "80a20467e046d312809d008395051fc7", + "translation_date": "2025-12-19T15:55:45+00:00", + "source_file": "3-Data-Visualization/10-visualization-distributions/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/10-visualization-distributions/assignment.md": { + "original_hash": "40eeb9b9f94009c537c7811f9f27f037", + "translation_date": "2025-12-19T15:57:18+00:00", + "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/11-visualization-proportions/README.md": { + "original_hash": "42119bcc97bee88254e381156d770f3c", + "translation_date": "2025-12-19T16:03:58+00:00", + "source_file": "3-Data-Visualization/11-visualization-proportions/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/11-visualization-proportions/assignment.md": { + "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f", + "translation_date": "2025-12-19T16:05:27+00:00", + "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/12-visualization-relationships/README.md": { + "original_hash": "0764fd4077f3f04a1d968ec371227744", + "translation_date": "2025-12-19T15:58:52+00:00", + "source_file": "3-Data-Visualization/12-visualization-relationships/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/12-visualization-relationships/assignment.md": { + "original_hash": "680419753c086eef51be86607c623945", + "translation_date": "2025-12-19T16:00:21+00:00", + "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/13-meaningful-visualizations/README.md": { + "original_hash": "cfb068050337a36e348debaa502a24fa", + "translation_date": "2025-12-19T16:10:02+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/13-meaningful-visualizations/assignment.md": { + "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4", + "translation_date": "2025-12-19T16:11:44+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": { + "original_hash": "5c51a54dd89075a7a362890117b7ed9e", + "translation_date": "2025-12-19T16:19:08+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": { + "original_hash": "5c51a54dd89075a7a362890117b7ed9e", + "translation_date": "2025-12-19T16:18:22+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/09-visualization-quantities/README.md": { + "original_hash": "22acf28f518a4769ea14fa42f4734b9f", + "translation_date": "2025-12-19T16:33:36+00:00", + "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/09-visualization-quantities/assignment.md": { + "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1", + "translation_date": "2025-12-19T16:35:04+00:00", + "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/10-visualization-distributions/README.md": { + "original_hash": "ea67c0c40808fd723594de6896c37ccf", + "translation_date": "2025-12-19T16:22:32+00:00", + "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/10-visualization-distributions/assignment.md": { + "original_hash": "a233d542512136c4dd29aad38ca0175f", + "translation_date": "2025-12-19T16:23:54+00:00", + "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/11-visualization-proportions/README.md": { + "original_hash": "47028abaaafa2bcb1079702d20569066", + "translation_date": "2025-12-19T16:29:36+00:00", + "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/12-visualization-relationships/README.md": { + "original_hash": "a33c5d4b4156a2b41788d8720b6f724c", + "translation_date": "2025-12-19T16:25:43+00:00", + "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": { + "original_hash": "b4039f1c76548d144a0aee0bf28304ec", + "translation_date": "2025-12-19T16:39:52+00:00", + "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md", + "language_code": "kn" + }, + "3-Data-Visualization/README.md": { + "original_hash": "1441550a0d789796b2821e04f7f4cc94", + "translation_date": "2025-12-19T13:36:00+00:00", + "source_file": "3-Data-Visualization/README.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/14-Introduction/README.md": { + "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b", + "translation_date": "2025-12-19T15:27:40+00:00", + "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/14-Introduction/assignment.md": { + "original_hash": "564445c39ad29a491abcb9356fc4d47d", + "translation_date": "2025-12-19T15:29:05+00:00", + "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/15-analyzing/README.md": { + "original_hash": "661dad02c3ac239644d34c1eb51e76f8", + "translation_date": "2025-12-19T15:25:24+00:00", + "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/15-analyzing/assignment.md": { + "original_hash": "fcc7547171f4530f159676dd73ed772e", + "translation_date": "2025-12-19T15:26:15+00:00", + "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/16-communication/README.md": { + "original_hash": "215a3254ba5a222a57c5bb0192cea8e3", + "translation_date": "2025-12-19T15:21:08+00:00", + "source_file": "4-Data-Science-Lifecycle/16-communication/README.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/16-communication/assignment.md": { + "original_hash": "8980d7efd101c82d6d6ffc3458214120", + "translation_date": "2025-12-19T15:23:15+00:00", + "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md", + "language_code": "kn" + }, + "4-Data-Science-Lifecycle/README.md": { + "original_hash": "dd173fd30fc039a7a299898920680723", + "translation_date": "2025-12-19T13:24:49+00:00", + "source_file": "4-Data-Science-Lifecycle/README.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/17-Introduction/README.md": { + "original_hash": "5f8e7cdefa096664ae86f795be571580", + "translation_date": "2025-12-19T15:16:46+00:00", + "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/17-Introduction/assignment.md": { + "original_hash": "96f3696153d9ed54b19a1bb65438c104", + "translation_date": "2025-12-19T15:18:09+00:00", + "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/18-Low-Code/README.md": { + "original_hash": "bd4da10766c64fce4294a98f6479dfb0", + "translation_date": "2025-12-19T15:01:15+00:00", + "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": { + "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f", + "translation_date": "2025-12-19T15:04:10+00:00", + "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/19-Azure/README.md": { + "original_hash": "472d3fab1c5be50f387336e7a686dbe1", + "translation_date": "2025-12-19T14:45:41+00:00", + "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/19-Azure/assignment.md": { + "original_hash": "386efdbc19786951341f6956247ee990", + "translation_date": "2025-12-19T14:47:52+00:00", + "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md", + "language_code": "kn" + }, + "5-Data-Science-In-Cloud/README.md": { + "original_hash": "8dfe141a0f46f7d253e07f74913c7f44", + "translation_date": "2025-12-19T13:23:55+00:00", + "source_file": "5-Data-Science-In-Cloud/README.md", + "language_code": "kn" + }, + "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": { + "original_hash": "0f67a4139454816631526779a456b734", + "translation_date": "2025-12-19T16:57:54+00:00", + "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md", + "language_code": "kn" + }, + "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": { + "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0", + "translation_date": "2025-12-19T16:59:35+00:00", + "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md", + "language_code": "kn" + }, + "6-Data-Science-In-Wild/README.md": { + "original_hash": "07faf02ff163e609edf0b0308dc5d4e6", + "translation_date": "2025-12-19T13:36:52+00:00", + "source_file": "6-Data-Science-In-Wild/README.md", + "language_code": "kn" + }, + "AGENTS.md": { + "original_hash": "cc2e18ab65df63e75d3619c4752e9b22", + "translation_date": "2025-12-19T13:07:24+00:00", + "source_file": "AGENTS.md", + "language_code": "kn" + }, + "CODE_OF_CONDUCT.md": { + "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56", + "translation_date": "2025-12-19T13:09:19+00:00", + "source_file": "CODE_OF_CONDUCT.md", + "language_code": "kn" + }, + "CONTRIBUTING.md": { + "original_hash": "10f86fb29b5407088445ac803b3d0ed1", + "translation_date": "2025-12-19T12:50:17+00:00", + "source_file": "CONTRIBUTING.md", + "language_code": "kn" + }, + "INSTALLATION.md": { + "original_hash": "a64d8afa22ffcc2016bb239188d6acb1", + "translation_date": "2025-12-19T13:13:01+00:00", + "source_file": "INSTALLATION.md", + "language_code": "kn" + }, + "README.md": { + "original_hash": "8ec92ecfeb14923af733851239552146", + "translation_date": "2026-01-30T02:53:57+00:00", + "source_file": "README.md", + "language_code": "kn" + }, + "SECURITY.md": { + "original_hash": "0d575483100c332b2dbaefef915bb3c4", + "translation_date": "2025-12-19T13:14:12+00:00", + "source_file": "SECURITY.md", + "language_code": "kn" + }, + "SUPPORT.md": { + "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab", + "translation_date": "2025-12-19T12:48:40+00:00", + "source_file": "SUPPORT.md", + "language_code": "kn" + }, + "TROUBLESHOOTING.md": { + "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0", + "translation_date": "2025-12-19T12:59:04+00:00", + "source_file": "TROUBLESHOOTING.md", + "language_code": "kn" + }, + "USAGE.md": { + "original_hash": "f546349678757508d69ce9e1d2688446", + "translation_date": "2025-12-19T12:47:17+00:00", + "source_file": "USAGE.md", + "language_code": "kn" + }, + "docs/_sidebar.md": { + "original_hash": "3767555b3cc28a2865c79202f4374204", + "translation_date": "2025-12-19T13:31:12+00:00", + "source_file": "docs/_sidebar.md", + "language_code": "kn" + }, + "examples/README.md": { + "original_hash": "9bef7fd96c8f262339933117d9b3e342", + "translation_date": "2025-12-19T13:28:44+00:00", + "source_file": "examples/README.md", + "language_code": "kn" + }, + "for-teachers.md": { + "original_hash": "f7440be10c17a8a9262713af3d2818a9", + "translation_date": "2025-12-19T12:41:35+00:00", + "source_file": "for-teachers.md", + "language_code": "kn" + }, + "quiz-app/README.md": { + "original_hash": "e92c33ea498915a13c9aec162616db18", + "translation_date": "2025-12-19T13:26:21+00:00", + "source_file": "quiz-app/README.md", + "language_code": "kn" + }, + "sketchnotes/README.md": { + "original_hash": "3a848466cb63aff1a93411affb152c2a", + "translation_date": "2025-12-19T13:32:13+00:00", + "source_file": "sketchnotes/README.md", + "language_code": "kn" + } +} \ No newline at end of file diff --git a/translations/kn/1-Introduction/01-defining-data-science/README.md b/translations/kn/1-Introduction/01-defining-data-science/README.md index 0d85d201..f698e87f 100644 --- a/translations/kn/1-Introduction/01-defining-data-science/README.md +++ b/translations/kn/1-Introduction/01-defining-data-science/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಸೈನ್ಸ್ ಅನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು | ![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/01-Definitions.png) | diff --git a/translations/kn/1-Introduction/01-defining-data-science/assignment.md b/translations/kn/1-Introduction/01-defining-data-science/assignment.md index 448d22d3..8cd83b52 100644 --- a/translations/kn/1-Introduction/01-defining-data-science/assignment.md +++ b/translations/kn/1-Introduction/01-defining-data-science/assignment.md @@ -1,12 +1,3 @@ - # ನಿಯೋಜನೆ: ಡೇಟಾ ಸೈನ್ಸ್ ದೃಶ್ಯಗಳು ಈ ಮೊದಲ ನಿಯೋಜನೆಯಲ್ಲಿ, ನಾವು ನಿಮಗೆ ವಿವಿಧ ಸಮಸ್ಯಾ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಕೆಲವು ನೈಜ ಜೀವನ ಪ್ರಕ್ರಿಯೆ ಅಥವಾ ಸಮಸ್ಯೆಯನ್ನು ಕುರಿತು ಯೋಚಿಸಲು ಕೇಳುತ್ತೇವೆ, ಮತ್ತು ನೀವು ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅದನ್ನು ಹೇಗೆ ಸುಧಾರಿಸಬಹುದು ಎಂದು. ಕೆಳಗಿನ ವಿಷಯಗಳನ್ನು ಯೋಚಿಸಿ: diff --git a/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md index 46effb8f..5fc68e29 100644 --- a/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md +++ b/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md @@ -1,12 +1,3 @@ - # ನಿಯೋಜನೆ: ಡೇಟಾ ಸೈನ್ಸ್ ದೃಶ್ಯಗಳು ಈ ಮೊದಲ ನಿಯೋಜನೆಯಲ್ಲಿ, ನಾವು ನಿಮಗೆ ವಿವಿಧ ಸಮಸ್ಯಾ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಕೆಲವು ನೈಜ ಜೀವನ ಪ್ರಕ್ರಿಯೆ ಅಥವಾ ಸಮಸ್ಯೆಯನ್ನು ಕುರಿತು ಯೋಚಿಸಲು ಕೇಳುತ್ತೇವೆ, ಮತ್ತು ನೀವು ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅದನ್ನು ಹೇಗೆ ಸುಧಾರಿಸಬಹುದು ಎಂದು. ಕೆಳಗಿನ ವಿಷಯಗಳನ್ನು ಯೋಚಿಸಿ: diff --git a/translations/kn/1-Introduction/02-ethics/README.md b/translations/kn/1-Introduction/02-ethics/README.md index 31e64764..6478cc97 100644 --- a/translations/kn/1-Introduction/02-ethics/README.md +++ b/translations/kn/1-Introduction/02-ethics/README.md @@ -1,12 +1,3 @@ - Translation for chunk 1 of 'README.md' skipped due to timeout. * ಮಾಹಿತಿ ವಾಸ್ತವಿಕತೆಯನ್ನು ಪ್ರತಿಬಿಂಬಿಸುವಲ್ಲಿ _ನಿಖರವಾಗಿ_ ಸೆರೆಹಿಡಿದಿದೆಯೇ? diff --git a/translations/kn/1-Introduction/02-ethics/assignment.md b/translations/kn/1-Introduction/02-ethics/assignment.md index 09c55500..9bd05617 100644 --- a/translations/kn/1-Introduction/02-ethics/assignment.md +++ b/translations/kn/1-Introduction/02-ethics/assignment.md @@ -1,12 +1,3 @@ - ## ಡೇಟಾ ನೈತಿಕತೆ ಪ್ರಕರಣ ಅಧ್ಯಯನವನ್ನು ಬರೆಯಿರಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/1-Introduction/03-defining-data/README.md b/translations/kn/1-Introduction/03-defining-data/README.md index 9d070fe6..da19b334 100644 --- a/translations/kn/1-Introduction/03-defining-data/README.md +++ b/translations/kn/1-Introduction/03-defining-data/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ವ್ಯಾಖ್ಯಾನ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/03-DefiningData.png)| diff --git a/translations/kn/1-Introduction/03-defining-data/assignment.md b/translations/kn/1-Introduction/03-defining-data/assignment.md index adeb343b..521fef7f 100644 --- a/translations/kn/1-Introduction/03-defining-data/assignment.md +++ b/translations/kn/1-Introduction/03-defining-data/assignment.md @@ -1,12 +1,3 @@ - # ಡೇಟಾಸೆಟ್‌ಗಳನ್ನು ವರ್ಗೀಕರಿಸುವುದು ## ಸೂಚನೆಗಳು diff --git a/translations/kn/1-Introduction/04-stats-and-probability/README.md b/translations/kn/1-Introduction/04-stats-and-probability/README.md index d01f0db5..58ce8063 100644 --- a/translations/kn/1-Introduction/04-stats-and-probability/README.md +++ b/translations/kn/1-Introduction/04-stats-and-probability/README.md @@ -1,12 +1,3 @@ - # ಅಂಕಿಅಂಶಗಳು ಮತ್ತು ಸಂಭವನೀಯತೆಯ ಸಂಕ್ಷಿಪ್ತ ಪರಿಚಯ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/04-Statistics-Probability.png)| diff --git a/translations/kn/1-Introduction/04-stats-and-probability/assignment.md b/translations/kn/1-Introduction/04-stats-and-probability/assignment.md index 42c40be6..24b97e2d 100644 --- a/translations/kn/1-Introduction/04-stats-and-probability/assignment.md +++ b/translations/kn/1-Introduction/04-stats-and-probability/assignment.md @@ -1,12 +1,3 @@ - # ಸಣ್ಣ ಮಧುಮೇಹ ಅಧ್ಯಯನ ಈ ನಿಯೋಜನೆಯಲ್ಲಿ, ನಾವು [ಇಲ್ಲಿ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) ತೆಗೆದುಕೊಂಡಿರುವ ಮಧುಮೇಹ ರೋಗಿಗಳ ಸಣ್ಣ ಡೇಟಾಸೆಟ್‌ನೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುತ್ತೇವೆ. diff --git a/translations/kn/1-Introduction/README.md b/translations/kn/1-Introduction/README.md index 640a2cf9..fdae055e 100644 --- a/translations/kn/1-Introduction/README.md +++ b/translations/kn/1-Introduction/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಸೈನ್ಸ್ ಪರಿಚಯ ![data in action](../../../translated_images/kn/data.48e22bb7617d8d92188afbc4c48effb920ba79f5cebdc0652cd9f34bbbd90c18.jpg) diff --git a/translations/kn/2-Working-With-Data/05-relational-databases/README.md b/translations/kn/2-Working-With-Data/05-relational-databases/README.md index b55da652..79113918 100644 --- a/translations/kn/2-Working-With-Data/05-relational-databases/README.md +++ b/translations/kn/2-Working-With-Data/05-relational-databases/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು: ಸಂಬಂಧಿತ ಡೇಟಾಬೇಸ್‌ಗಳು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್‌ನೋಟ್ ](../../sketchnotes/05-RelationalData.png)| diff --git a/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md b/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md index 3ddfd129..05b1b836 100644 --- a/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md +++ b/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md @@ -1,12 +1,3 @@ - # ವಿಮಾನ ನಿಲ್ದಾಣದ ಡೇಟಾ ಪ್ರದರ್ಶನ ನೀವು ವಿಮಾನ ನಿಲ್ದಾಣಗಳ ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು ಹೊಂದಿರುವ [ಡೇಟಾಬೇಸ್](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) ಅನ್ನು [SQLite](https://sqlite.org/index.html) ಆಧಾರಿತವಾಗಿ ಒದಗಿಸಲಾಗಿದೆ. ಕೆಳಗಿನಂತೆ ಸ್ಕೀಮಾ ಪ್ರದರ್ಶಿಸಲಾಗಿದೆ. ನೀವು [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) ನಲ್ಲಿ [SQLite ವಿಸ್ತರಣೆ](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ಬಳಸಿ ವಿವಿಧ ನಗರಗಳ ವಿಮಾನ ನಿಲ್ದಾಣಗಳ ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು ಪ್ರದರ್ಶಿಸುವಿರಿ. diff --git a/translations/kn/2-Working-With-Data/06-non-relational/README.md b/translations/kn/2-Working-With-Data/06-non-relational/README.md index a7bcfc9f..0a5530b5 100644 --- a/translations/kn/2-Working-With-Data/06-non-relational/README.md +++ b/translations/kn/2-Working-With-Data/06-non-relational/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು: ಅಸಂಬಂಧಿತ ಡೇಟಾ |![ ಸ್ಕೆಚ್‌ನೋಟ್ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ](../../sketchnotes/06-NoSQL.png)| diff --git a/translations/kn/2-Working-With-Data/06-non-relational/assignment.md b/translations/kn/2-Working-With-Data/06-non-relational/assignment.md index 904e8236..7f167fb6 100644 --- a/translations/kn/2-Working-With-Data/06-non-relational/assignment.md +++ b/translations/kn/2-Working-With-Data/06-non-relational/assignment.md @@ -1,12 +1,3 @@ - # ಸೋಡಾ ಲಾಭಗಳು ## ಸೂಚನೆಗಳು diff --git a/translations/kn/2-Working-With-Data/07-python/README.md b/translations/kn/2-Working-With-Data/07-python/README.md index 08211e30..ae1f3d21 100644 --- a/translations/kn/2-Working-With-Data/07-python/README.md +++ b/translations/kn/2-Working-With-Data/07-python/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಜೊತೆ ಕೆಲಸ ಮಾಡುವುದು: ಪೈಥಾನ್ ಮತ್ತು ಪಾಂಡಾಸ್ ಲೈಬ್ರರಿ | ![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/07-WorkWithPython.png) | diff --git a/translations/kn/2-Working-With-Data/07-python/assignment.md b/translations/kn/2-Working-With-Data/07-python/assignment.md index b0fe768e..6feaa638 100644 --- a/translations/kn/2-Working-With-Data/07-python/assignment.md +++ b/translations/kn/2-Working-With-Data/07-python/assignment.md @@ -1,12 +1,3 @@ - # ಪೈಥಾನ್‌ನಲ್ಲಿ ಡೇಟಾ ಪ್ರೊಸೆಸಿಂಗ್‌ಗಾಗಿ ಅಸೈನ್‌ಮೆಂಟ್ ಈ ಅಸೈನ್‌ಮೆಂಟ್‌ನಲ್ಲಿ, ನಾವು ನಮ್ಮ ಚಾಲೆಂಜ್‌ಗಳಲ್ಲಿ ಅಭಿವೃದ್ಧಿಪಡಿಸಲು ಪ್ರಾರಂಭಿಸಿದ ಕೋಡ್ ಬಗ್ಗೆ ನೀವು ವಿವರಿಸಲು ಕೇಳುತ್ತೇವೆ. ಅಸೈನ್‌ಮೆಂಟ್ ಎರಡು ಭಾಗಗಳಿಂದ ಕೂಡಿದೆ: diff --git a/translations/kn/2-Working-With-Data/08-data-preparation/README.md b/translations/kn/2-Working-With-Data/08-data-preparation/README.md index 2f5998aa..98f50a1a 100644 --- a/translations/kn/2-Working-With-Data/08-data-preparation/README.md +++ b/translations/kn/2-Working-With-Data/08-data-preparation/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು: ಡೇಟಾ ತಯಾರಿ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/08-DataPreparation.png)| diff --git a/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md b/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md index 752046b1..cda1aa24 100644 --- a/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md +++ b/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md @@ -1,12 +1,3 @@ - # ಫಾರ್ಮ್‌ನಿಂದ ಡೇಟಾವನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವುದು ಒಂದು ಗ್ರಾಹಕರು ತಮ್ಮ ಗ್ರಾಹಕ ಆಧಾರದ ಬಗ್ಗೆ ಕೆಲವು ಮೂಲಭೂತ ಡೇಟಾವನ್ನು ಸಂಗ್ರಹಿಸಲು [ಸಣ್ಣ ಫಾರ್ಮ್](../../../../2-Working-With-Data/08-data-preparation/index.html) ಅನ್ನು ಪರೀಕ್ಷಿಸುತ್ತಿದ್ದಾರೆ. ಅವರು ಸಂಗ್ರಹಿಸಿದ ಡೇಟಾವನ್ನು ಮಾನ್ಯಗೊಳಿಸಲು ತಮ್ಮ ಕಂಡುಹಿಡಿದಿರುವುದನ್ನು ನಿಮಗೆ ತಂದುಕೊಟ್ಟಿದ್ದಾರೆ. ಫಾರ್ಮ್ ಅನ್ನು ನೋಡಲು ನೀವು ಬ್ರೌಸರ್‌ನಲ್ಲಿ `index.html` ಪುಟವನ್ನು ತೆರೆಯಬಹುದು. diff --git a/translations/kn/2-Working-With-Data/README.md b/translations/kn/2-Working-With-Data/README.md index 78b9cdfb..eea8b14c 100644 --- a/translations/kn/2-Working-With-Data/README.md +++ b/translations/kn/2-Working-With-Data/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು ![data love](../../../translated_images/kn/data-love.a22ef29e6742c852505ada062920956d3d7604870b281a8ca7c7ac6f37381d5a.jpg) diff --git a/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md b/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md index f9dab517..7484a9d9 100644 --- a/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md +++ b/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md @@ -1,12 +1,3 @@ - # ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/09-Visualizing-Quantities.png)| diff --git a/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md index 07c8bc98..dcdfe459 100644 --- a/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md +++ b/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md @@ -1,12 +1,3 @@ - # ರೇಖೆಗಳು, ಚಿತ್ತಾರಗಳು ಮತ್ತು ಬಾರ್‌ಗಳು ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md b/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md index 666e70ca..3a6c7fb6 100644 --- a/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md +++ b/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md @@ -1,12 +1,3 @@ - # ವಿತರಣೆಯನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/10-Visualizing-Distributions.png)| diff --git a/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md index 6972c669..a82b9593 100644 --- a/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md +++ b/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md @@ -1,12 +1,3 @@ - # ನಿಮ್ಮ ಕೌಶಲ್ಯಗಳನ್ನು ಅನ್ವಯಿಸಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md b/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md index d6d0845b..0ae1b0ad 100644 --- a/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md +++ b/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md @@ -1,12 +1,3 @@ - # ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/11-Visualizing-Proportions.png)| diff --git a/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md index a90d9d91..d4050dab 100644 --- a/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md +++ b/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md @@ -1,12 +1,3 @@ - # Excel ನಲ್ಲಿ ಪ್ರಯತ್ನಿಸಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md b/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md index 533c8fdb..4c48e49d 100644 --- a/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md +++ b/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md @@ -1,12 +1,3 @@ - # ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು: ಜೇನುತುಪ್ಪ ಬಗ್ಗೆ ಎಲ್ಲವೂ 🍯 |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/12-Visualizing-Relationships.png)| diff --git a/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md index 0985db54..6cfaa01e 100644 --- a/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md +++ b/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md @@ -1,12 +1,3 @@ - # ಜೇನುಮಡಿಗೆಗೆ ಡೈವ್ ಮಾಡಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md index 29ee3575..dab3dcee 100644 --- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md +++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md @@ -1,12 +1,3 @@ - # ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮಾಡುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/13-MeaningfulViz.png)| diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md index c7d6a331..d55f37f9 100644 --- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md +++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md @@ -1,12 +1,3 @@ - # ನಿಮ್ಮ ಸ್ವಂತ ಕಸ್ಟಮ್ ವಿಸ್ನ್ನು ನಿರ್ಮಿಸಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md index 7d0d874e..0c5e79b3 100644 --- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md +++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md @@ -1,12 +1,3 @@ - # ಡೇಂಜರಸ್ ಲಿಯಾಜನ್ಸ್ ಡೇಟಾ ವಿಸುಯಲೈಜೆಷನ್ ಪ್ರಾಜೆಕ್ಟ್ ಪ್ರಾರಂಭಿಸಲು, ನಿಮ್ಮ ಯಂತ್ರದಲ್ಲಿ NPM ಮತ್ತು Node ಚಾಲನೆಯಲ್ಲಿರುವುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಬೇಕು. ಅವಲಂಬನೆಗಳನ್ನು ಸ್ಥಾಪಿಸಿ (npm install) ಮತ್ತು ನಂತರ ಪ್ರಾಜೆಕ್ಟ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಚಾಲನೆ ಮಾಡಿ (npm run serve): diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md index 8fa0c8e6..f96a88ee 100644 --- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md +++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md @@ -1,12 +1,3 @@ - # ಡೇಂಜರಸ್ ಲಿಯಾಜನ್ಸ್ ಡೇಟಾ ವಿಸುಯಲೈಜೆಷನ್ ಪ್ರಾಜೆಕ್ಟ್ ಪ್ರಾರಂಭಿಸಲು, ನಿಮ್ಮ ಯಂತ್ರದಲ್ಲಿ NPM ಮತ್ತು Node ಚಾಲನೆಯಲ್ಲಿರುವುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಬೇಕು. ಅವಲಂಬನೆಗಳನ್ನು ಸ್ಥಾಪಿಸಿ (npm install) ಮತ್ತು ನಂತರ ಪ್ರಾಜೆಕ್ಟ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಚಾಲನೆ ಮಾಡಿ (npm run serve): diff --git a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md index d8410463..222c1b53 100644 --- a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md +++ b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md @@ -1,12 +1,3 @@ - # ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)| |:---:| diff --git a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md index 31fa2f71..7dc10819 100644 --- a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md +++ b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md @@ -1,12 +1,3 @@ - # ರೇಖೆಗಳು, ಚಿತ್ತಾರಗಳು ಮತ್ತು ಬಾರ್‌ಗಳು ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md index d3d474e8..4ce2b04b 100644 --- a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md +++ b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md @@ -1,12 +1,3 @@ - # ವಿತರಣೆಯ ದೃಶ್ಯೀಕರಣ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)| diff --git a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md index e7153cca..20016389 100644 --- a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md +++ b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md @@ -1,12 +1,3 @@ - # ನಿಮ್ಮ ಕೌಶಲ್ಯಗಳನ್ನು ಅನ್ವಯಿಸಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md index ae3c2f58..42cbbbcc 100644 --- a/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md +++ b/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md @@ -1,12 +1,3 @@ - # ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../../sketchnotes/11-Visualizing-Proportions.png)| diff --git a/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md index 8a73a25a..19efc92c 100644 --- a/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md +++ b/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md @@ -1,12 +1,3 @@ - # ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು: ಜೇನುತುಪ್ಪ ಬಗ್ಗೆ ಎಲ್ಲವೂ 🍯 |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../../sketchnotes/12-Visualizing-Relationships.png)| diff --git a/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md index 2e6a1608..8ab74420 100644 --- a/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md +++ b/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md @@ -1,12 +1,3 @@ - # ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮಾಡುವುದು |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../../sketchnotes/13-MeaningfulViz.png)| diff --git a/translations/kn/3-Data-Visualization/README.md b/translations/kn/3-Data-Visualization/README.md index e692a19b..9aa51b7b 100644 --- a/translations/kn/3-Data-Visualization/README.md +++ b/translations/kn/3-Data-Visualization/README.md @@ -1,12 +1,3 @@ - # ದೃಶ್ಯೀಕರಣಗಳು ![ಲ್ಯಾವೆಂಡರ್ ಹೂವಿನ ಮೇಲೆ ಒಂದು ಜೇನುತುಪ್ಪ](../../../translated_images/kn/bee.0aa1d91132b12e3a8994b9ca12816d05ce1642010d9b8be37f8d37365ba845cf.jpg) diff --git a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md index 8cec84c1..204e1d3b 100644 --- a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md +++ b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರಕ್ಕೆ ಪರಿಚಯ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/14-DataScience-Lifecycle.png)| diff --git a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md index b8e88b8f..772b03ba 100644 --- a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md +++ b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md @@ -1,12 +1,3 @@ - # ಡೇಟಾಸೆಟ್ ಅನ್ನು ಅಂದಾಜಿಸುವುದು ನಿಮ್ಮ ತಂಡಕ್ಕೆ ನ್ಯೂಯಾರ್ಕ್ ನಗರದಲ್ಲಿ ಟ್ಯಾಕ್ಸಿ ಗ್ರಾಹಕರ ಋತುಮಾನ ಖರ್ಚು عادತಗಳನ್ನು ಪರಿಶೀಲಿಸಲು ಸಹಾಯ ಮಾಡಲು ಒಂದು ಗ್ರಾಹಕ ಸಂಪರ್ಕಿಸಿದ್ದಾರೆ. diff --git a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md index 495837ad..dc7b7155 100644 --- a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md +++ b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರ: ವಿಶ್ಲೇಷಣೆ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/15-Analyzing.png)| diff --git a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md index a4d1a72c..0d4431b7 100644 --- a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md +++ b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md @@ -1,12 +1,3 @@ - # ಉತ್ತರಗಳನ್ನು ಅನ್ವೇಷಿಸುವುದು ಇದು ಹಿಂದಿನ ಪಾಠದ [ಕಾರ್ಯ](../14-Introduction/assignment.md)ನ ಮುಂದುವರಿದ ಭಾಗವಾಗಿದ್ದು, ಅಲ್ಲಿ ನಾವು ಡೇಟಾ ಸೆಟ್ ಅನ್ನು ಸಂಕ್ಷಿಪ್ತವಾಗಿ ನೋಡಿದ್ದೇವೆ. ಈಗ ನಾವು ಡೇಟಾವನ್ನು ಹೆಚ್ಚು ಆಳವಾಗಿ ಪರಿಶೀಲಿಸುವೆವು. diff --git a/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md b/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md index abdc8fa3..e413c26c 100644 --- a/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md +++ b/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರ: ಸಂವಹನ |![ ಸ್ಕೆಚ್‌ನೋಟ್ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ](../../sketchnotes/16-Communicating.png)| diff --git a/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md index 2d85baed..823e5772 100644 --- a/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md +++ b/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md @@ -1,12 +1,3 @@ - # ಕಥೆಯನ್ನು ಹೇಳಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/4-Data-Science-Lifecycle/README.md b/translations/kn/4-Data-Science-Lifecycle/README.md index d1e9a0d9..c3ac6ff9 100644 --- a/translations/kn/4-Data-Science-Lifecycle/README.md +++ b/translations/kn/4-Data-Science-Lifecycle/README.md @@ -1,12 +1,3 @@ - # ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರ ![communication](../../../translated_images/kn/communication.06d8e2a88d30d168d661ad9f9f0a4f947ebff3719719cfdaf9ed00a406a01ead.jpg) diff --git a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md index 4979aeb2..37431204 100644 --- a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md +++ b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md @@ -1,12 +1,3 @@ - # ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್‌ಗೆ ಪರಿಚಯ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/17-DataScience-Cloud.png)| diff --git a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md index 09ddafc5..ff5cbdbf 100644 --- a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md +++ b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md @@ -1,12 +1,3 @@ - # ಮಾರುಕಟ್ಟೆ ಸಂಶೋಧನೆ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md index de3972e4..b0bef456 100644 --- a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md +++ b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md @@ -1,12 +1,3 @@ - # ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್: "ಲೋ ಕೋಡ್/ನೋ ಕೋಡ್" ವಿಧಾನ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/18-DataScience-Cloud.png)| diff --git a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md index 66e68845..71f3cccb 100644 --- a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md +++ b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md @@ -1,12 +1,3 @@ - # ಕಡಿಮೆ ಕೋಡ್/ಕೋಡ್ ಇಲ್ಲದ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಾಜೆಕ್ಟ್ ಆನ್ ಅಜೂರ್ ಎಂಎಲ್ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md index 3e71924e..7c8c92a2 100644 --- a/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md +++ b/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md @@ -1,12 +1,3 @@ - # ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್: "ಅಜೂರ್ ಎಂಎಲ್ ಎಸ್‌ಡಿಕೆ" ವಿಧಾನ |![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರಿಂದ ಸ್ಕೆಚ್‌ನೋಟ್ ](../../sketchnotes/19-DataScience-Cloud.png)| diff --git a/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md index 71948bf2..d70f9bed 100644 --- a/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md +++ b/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md @@ -1,12 +1,3 @@ - # ಅಜೂರ್ ಎಂಎಲ್ ಎಸ್‌ಡಿಕೆ ಬಳಸಿ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಾಜೆಕ್ಟ್ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/5-Data-Science-In-Cloud/README.md b/translations/kn/5-Data-Science-In-Cloud/README.md index 1d600e6c..fae44f35 100644 --- a/translations/kn/5-Data-Science-In-Cloud/README.md +++ b/translations/kn/5-Data-Science-In-Cloud/README.md @@ -1,12 +1,3 @@ - # ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ![cloud-picture](../../../translated_images/kn/cloud-picture.f5526de3c6c6387b2d656ba94f019b3352e5e3854a78440e4fb00c93e2dea675.jpg) diff --git a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md index 6d33d80f..c748d65a 100644 --- a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md +++ b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md @@ -1,12 +1,3 @@ - # ನಿಜಜೀವನದಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | ![ [(@sketchthedocs)](https://sketchthedocs.dev) ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/20-DataScience-RealWorld.png) | diff --git a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md index 5660214d..b2b0dc49 100644 --- a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md +++ b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md @@ -1,12 +1,3 @@ - # ಗ್ರಹಣ ಕಂಪ್ಯೂಟರ್ ಡೇಟಾಸೆಟ್ ಅನ್ನು ಅನ್ವೇಷಿಸಿ ## ಸೂಚನೆಗಳು diff --git a/translations/kn/6-Data-Science-In-Wild/README.md b/translations/kn/6-Data-Science-In-Wild/README.md index 2738aeba..6e61805f 100644 --- a/translations/kn/6-Data-Science-In-Wild/README.md +++ b/translations/kn/6-Data-Science-In-Wild/README.md @@ -1,12 +1,3 @@ - # ಕಾಡಿನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ವ್ಯವಸ್ಥೆಗಳಾದ್ಯಂತ ಡೇಟಾ ಸೈನ್ಸ್‌ನ ನೈಜ ಜಗತ್ತಿನ ಅನ್ವಯಿಕೆಗಳು. diff --git a/translations/kn/AGENTS.md b/translations/kn/AGENTS.md index 73a85e0a..8e0dd175 100644 --- a/translations/kn/AGENTS.md +++ b/translations/kn/AGENTS.md @@ -1,12 +1,3 @@ - # AGENTS.md ## ಪ್ರಾಜೆಕ್ಟ್ ಅವಲೋಕನ diff --git a/translations/kn/CODE_OF_CONDUCT.md b/translations/kn/CODE_OF_CONDUCT.md index f72b75bb..dd660f81 100644 --- a/translations/kn/CODE_OF_CONDUCT.md +++ b/translations/kn/CODE_OF_CONDUCT.md @@ -1,12 +1,3 @@ - # ಮೈಕ್ರೋಸಾಫ್ಟ್ ಓಪನ್ ಸೋರ್ಸ್ ಕೋಡ್ ಆಫ್ ಕಂಡಕ್ಟ್ ಈ ಯೋಜನೆ [ಮೈಕ್ರೋಸಾಫ್ಟ್ ಓಪನ್ ಸೋರ್ಸ್ ಕೋಡ್ ಆಫ್ ಕಂಡಕ್ಟ್](https://opensource.microsoft.com/codeofconduct/) ಅನ್ನು ಅಂಗೀಕರಿಸಿದೆ. diff --git a/translations/kn/CONTRIBUTING.md b/translations/kn/CONTRIBUTING.md index 70ea56bf..ae2f3544 100644 --- a/translations/kn/CONTRIBUTING.md +++ b/translations/kn/CONTRIBUTING.md @@ -1,12 +1,3 @@ - # ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್‌ಗೆ ಕೊಡುಗೆ ನೀಡುವುದು ಡೇಟಾ ಸೈನ್ಸ್ ಫಾರ್ ಬಿಗಿನರ್ಸ್ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಕೊಡುಗೆ ನೀಡಲು ನಿಮ್ಮ ಆಸಕ್ತಿಗೆ ಧನ್ಯವಾದಗಳು! ನಾವು ಸಮುದಾಯದಿಂದ ಕೊಡುಗೆಗಳನ್ನು ಸ್ವಾಗತಿಸುತ್ತೇವೆ. diff --git a/translations/kn/INSTALLATION.md b/translations/kn/INSTALLATION.md index 914910c7..e423c1e6 100644 --- a/translations/kn/INSTALLATION.md +++ b/translations/kn/INSTALLATION.md @@ -1,12 +1,3 @@ - # ಸ್ಥಾಪನೆ ಮಾರ್ಗದರ್ಶಿ ಈ ಮಾರ್ಗದರ್ಶಿ ನಿಮಗೆ Data Science for Beginners ಪಠ್ಯಕ್ರಮದೊಂದಿಗೆ ಕೆಲಸ ಮಾಡಲು ನಿಮ್ಮ ಪರಿಸರವನ್ನು ಸೆಟ್ ಅಪ್ ಮಾಡಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ. diff --git a/translations/kn/README.md b/translations/kn/README.md index 26ce0045..7ecb8f1c 100644 --- a/translations/kn/README.md +++ b/translations/kn/README.md @@ -1,262 +1,253 @@ - -# ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್ - ಪಠ್ಯಕ್ರಮ +# ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ವಿಜ್ಞಾನ - ಪಾಠ್ಯಕ್ರಮ [![GitHub Codespaces ನಲ್ಲಿ ತೆರೆಯಿರಿ](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198) [![GitHub ಪರವಾನಗಿ](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE) -[![GitHub ಸಹಭಾಗಿಗಳು](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/) +[![GitHub ಕೊಡುಗೆದಾರರು](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/) [![GitHub ಸಮಸ್ಯೆಗಳು](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/) -[![GitHub ಪುಲ್-ವಿನಂತಿಗಳು](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/) -[![PRs ಸ್ವಾಗತಾರ್ಹ](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) +[![GitHub ಪುಲ್-ರಿಕ್ವೆಸ್ಟ್](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/) +[![PRs ಸ್ವಾಗತ](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) -[![GitHub ವೀಕ್ಷಕರು](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/) -[![GitHub ಫಾರ್ಕ್‌ಗಳು](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/) +[![GitHub ವಾಚರ್ಸ್](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/) +[![GitHub ಫೋರ್ಕ್ಸ್](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/) [![GitHub ಸ್ಟಾರ್ಸ್](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/) [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) +[![Microsoft Foundry Developer ಫೋರಮ್](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) -Microsoft ನ Azure Cloud Advocates ಡೇಟಾ ಸೈನ್ಸ್ ಬಗ್ಗೆ 10 ವಾರಗಳ, 20 ಪಾಠಗಳ ಪಠ್ಯಕ್ರಮವನ್ನು ಸಂತೋಷದಿಂದ ನೀಡುತ್ತಿದ್ದೇವೆ. ಪ್ರತಿಯೊಬ್ಬ ಪಾಠವು ಪೂರ್ವ ಪಾಠ ಮತ್ತು ನಂತರದ ಪಾಠ ಕ್ವಿಜ್‌ಗಳನ್ನು ಒಳಗೊಂಡಿದೆ, ಪಾಠವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ಬರಹದ ಸೂಚನೆಗಳು, ಪರಿಹಾರ ಮತ್ತು ನಿಯುಕ್ತಿ ಹೊಂದಿದೆ. ನಮ್ಮ ಯೋಜನೆ ಆಧಾರಿತ ಪಠ್ಯಪದ್ಧತಿ ನಿಮಗೆ ಕಲಿಯುವಾಗ ನಿರ್ಮಿಸಲು ಅನುಮತಿಸುತ್ತದೆ, ಇದು ಹೊಸ ಕೌಶಲ್ಯಗಳ ಸಂಯೋಜನೆಗೆ ಪರಿಶೀಲಿತ ಮಾರ್ಗವಾಗಿದೆ. +Microsoft ನ Azure ಕ್ಲೌಡ್ ವಕೀಲರು ಡೇಟಾ ವಿಜ್ಞಾನ ಕುರಿತು 10 ವಾರಗಳ, 20 ಪಾಠಗಳ ಪಾಠ್ಯಕ್ರಮವನ್ನು ನೀಡಲು ಸಂತೋಷಪಡುತ್ತಾರೆ. ಪ್ರತಿ ಪಾಠದಲ್ಲಿ ಪಾಠ ಮೊದಲು ಮತ್ತು ನಂತರದ ಕ್ವಿಜ್‌ಗಳು, ಪಾಠವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ಬರಹದ ಸೂಚನೆಗಳು, ಪರಿಹಾರ ಮತ್ತು ಕಾರ್ಯನಿರ್ವಹಣೆಯ ಅಸೈನ್ಮೆಂಟ್‌ಗಳಿವೆ. ನಮ್ಮ ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತ ಪಠ್ಯದ ವಿಧಾನವು ನೀವು ನಿರ್ಮಾಣ ಮಾಡುವಾಗ ಕಲಿಯಲು ಅವಕಾಶ ನೀಡುತ್ತದೆ, ಇದು ಹೊಸ ಕೌಶಲ್ಯಗಳನ್ನ "ಇಟ್ಟುಕೊಳ್ಳಲು" ಸಾಬೀತಾದ ವಿಧಾನವಾಗಿದೆ. **ನಮ್ಮ ಲೇಖಕರಿಗೆ ಹೃದಯಪೂರ್ವಕ ಧನ್ಯವಾದಗಳು:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer). -**🙏 ವಿಶೇಷ ಧನ್ಯವಾದಗಳು 🙏 ನಮ್ಮ [Microsoft ವಿದ್ಯಾರ್ಥಿ தூತ](https://studentambassadors.microsoft.com/) ಲೇಖಕರು, ವಿಮರ್ಶಕರು ಮತ್ತು ವಿಷಯದ ದಾನಿಗಳು,** ವಿಶೇಷವಾಗಿ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), +**🙏 ವಿಶೇಷ ಧನ್ಯವಾದಗಳು 🙏 ನಮ್ಮ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ಲೇಖಕರಿಗೆ, ವಿಮರ್ಶಕರಿಗೆ ಮತ್ತು ವಿಷಯದ ತೊಡಕುಗಳವರಿಗೆ,** ವಿಶೇಷವಾಗಿ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/) -|![@sketchthedocs ಮೊದಲಾದವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ https://sketchthedocs.dev](../../../../translated_images/kn/00-Title.8af36cd35da1ac55.webp)| +|![@sketchthedocs ನಿಂದ ಸ್ಕೆಚ್‌ಡೋಕ್ https://sketchthedocs.dev](../../translated_images/kn/00-Title.8af36cd35da1ac55.webp)| |:---:| -| ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್ - _ಸ್ಕೆಚ್ ನೋಟ್ [@nitya](https://twitter.com/nitya) tərəfindən_ | +| ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ವಿಜ್ಞಾನ - _[^nitya](https://twitter.com/nitya) ಅವರ ಸ್ಕೆಚ್‌ಡೋಕ್_ | ### 🌐 ಬಹುಭಾಷಾ ಬೆಂಬಲ -#### GitHub ಕ್ರಿಯೆಯಿಂದ ಬೆಂಬಲಿಸಲಾಗುತ್ತಿದೆ (ಸ್ವಯಂ ಚಲಿತ ಮತ್ತು ಅಗತ್ಯಕ್ಕೆ ತಕ್ಕಂತೆ ನವೀಕರಿಸುವ) +#### GitHub ಕ್ರಿಯೆಗೇಟ್ ಮೂಲಕ ಬೆಂಬಲಿತ (ಸ್ವಯಂಚಾಲಿತ ಮತ್ತು ಸದಾ ನವೀಕರಿಸುವ) -[ಅರಬೆ](../ar/README.md) | [ಬೆಂಗಾಳಿ](../bn/README.md) | [ಬಲ್ಗೇರಿಯನ್](../bg/README.md) | [ಬರ್ಮೀಸ್ (ಮ್ಯಿನ್ಮಾರ್)](../my/README.md) | [ಚೀನಾ (ಸರಳೀಕೃತ)](../zh/README.md) | [ಚೀನಾ (ಪಾರಂಪರಿಕ, ಹಾಂಗ್ ಕಾಂಗ್)](../hk/README.md) | [ಚೀನಾ (ಪಾರಂಪರಿಕ, ಮಾಕಾವ್)](../mo/README.md) | [ಚೀನಾ (ಪಾರಂಪರಿಕ, ತೈವಾನ್)](../tw/README.md) | [ಕ್ರೊಯೆಷಿಯನ್](../hr/README.md) | [ಚೆಕ್](../cs/README.md) | [ಡ್ಯಾನಿಷ್](../da/README.md) | [ಡಚ್](../nl/README.md) | [ಎಸ್ಟೋನಿಯನ್](../et/README.md) | [ಫಿನ್ನಿಷ್](../fi/README.md) | [ಫ್ರೆಂಚ್](../fr/README.md) | [ಜರ್ಮನ್](../de/README.md) | [ಗ್ರೀಕ್](../el/README.md) | [ಹೀಬ್ರೂ](../he/README.md) | [ಹಿಂदी](../hi/README.md) | [ಹಂಗೇರಿಯನ್](../hu/README.md) | [ಇಂಡೋನೇಶಿಯನ್](../id/README.md) | [ಇಟಾಲಿಯನ್](../it/README.md) | [ಜಪಾನೀಸ್](../ja/README.md) | [ಕನ್ನಡ](./README.md) | [ಕೊರಿಯನ್](../ko/README.md) | [ಲಿಥುವೇನಿಯನ್](../lt/README.md) | [ಮಲಯ್](../ms/README.md) | [ಮಲಯಾಳಂ](../ml/README.md) | [ಮರಾಠಿ](../mr/README.md) | [ನепಾಳಿ](../ne/README.md) | [ನೈಜೀರಿಯನ್ ಪಿಡಿಜೆನ್](../pcm/README.md) | [ನಾರ್ವೇಜಿಯನ್](../no/README.md) | [ಪರ್ಸಿಯನ್ (ಫಾರ್ಸಿ)](../fa/README.md) | [ಪೋಲಿಷ್](../pl/README.md) | [ಪೋರ್ಟ್‌ಗೆಜೀಸ್ (ಬ್ರೆಜಿಲ್)](../br/README.md) | [ಪೋರ್ಟ್‌ಗೆಜೀಸ್ (ಪೋರ್ಚುಗಲ್)](../pt/README.md) | [ಪುಂಜಾಬಿ (ಗುರ್ಮುಖಿ)](../pa/README.md) | [ರೋಮಾನಿಯನ್](../ro/README.md) | [ರಷ್ಯನ್](../ru/README.md) | [ಸರ್ಬಿಯನ್ (ಸಿರಿಲಿಕ್)](../sr/README.md) | [ಸ್ಲೊವಾಕ್](../sk/README.md) | [ಸ್ಲೊವೇನಿಯನ್](../sl/README.md) | [ಸ್ಪ್ಯಾನಿಷ್](../es/README.md) | [ಸ್ವಾಹಿಲಿ](../sw/README.md) | [ಸ್ವೀಡಿಷ್](../sv/README.md) | [ಟಾಗಾಲೋಗ್ (ಫಿಲಿಪಿನೋ)](../tl/README.md) | [ತಮಿಳು](../ta/README.md) | [ತೆಲುಗು](../te/README.md) | [ಥಾಯಿ](../th/README.md) | [ಟರ್ಕಿಶ್](../tr/README.md) | [ಯುಕ್ರೇನಿಯನ್](../uk/README.md) | [ಉರ್ದು](../ur/README.md) | [ವಿಯೆಟ್ನಾಮೀಸ್](../vi/README.md) +[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](./README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md) > **ಸ್ಥಳೀಯವಾಗಿ ಕ್ಲೋನ್ ಮಾಡಬೇಕೆ?** -> ಈ ರೆಪೊದಲ್ಲಿ 50+ ಭಾಷಾ ಅನುವಾದಗಳು ಸೇರಿವೆ, ಇದು ಡೌನ್ಲೋಡ್ ಗಾತ್ರವನ್ನು ಬಹಳಷ್ಟು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಅನುವಾದಗಳನ್ನು ಇಲ್ಲದೆ ಕ್ಲೋನ್ ಮಾಡಲು sparse checkout ಬಳಸಿ: +> ಈ ರೆಪೋಸಿಟರಿಗೆ 50+ ಭಾಷಾ ಅನುವಾದಗಳಿವೆ, ಇದು ಡೌನ್ಲೋಡ್ ಗಾತ್ರವನ್ನು ಬಹಳ ಹೆಚ್ಚಿಸುತ್ತದೆ. ಅನುವಾದಗಳಿಲ್ಲದೆ ಕ್ಲೋನ್ ಮಾಡಲು, ಸ್ಪಾರ್ಸ್ ಚೆಕ್ಔಟ್ ಬಳಸಿ: > ```bash > git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git > cd Data-Science-For-Beginners > git sparse-checkout set --no-cone '/*' '!translations' '!translated_images' > ``` -> ಇದು ಪಾಠವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ನಿಮಗೆ ಬೇಕಾದ ಎಲ್ಲ ವಸ್ತುಗಳನ್ನು ತುಂಬಾ ವೇಗವಾಗಿ ಡೌನ್ಲೋಡ್ ಮಾಡುವ ಅವಕಾಶ ನೀಡುತ್ತದೆ. +> ಇದರಿಂದ ನಿಮ್ಮ ಪಾಠ ನಡಿಸುವಿಕೆಗೆ ಬೇಕಾದ ಎಲ್ಲವೂ ಸಿಗುತ್ತದೆ ಮತ್ತು ಡೌನ್ಲೋಡ್ ವೇಗವಾಗಿರುತ್ತದೆ. -**ನಿಮಗೆ ಹೆಚ್ಚುವರಿ ಅನುವಾದ ಭಾಷೆಗಳ ಬೆಂಬಲ ಬೇಕಾದರೆ ಅವುಗಳನ್ನು ಇಲ್ಲಿ ಪಟ್ಟಿಮಾಡಲಾಗಿದೆ [ಇಲ್ಲಿ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)** +**ನೀವು ಹೆಚ್ಚುವರಿ ಭಾಷಾ ಅನುವಾದಗಳನ್ನು ಬೆಂಬಲಿಸಲು ಇಚ್ಛಿಸಿದರೆ ಅವುಗಳು [ಇಲ್ಲಿ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ಪಟ್ಟಿಮಾಡಲಾಗಿದೆ** -#### ನಮ್ಮ ಸಮುದಾಯದಲ್ಲಿ ಸೇರಿ +#### ನಮ್ಮ ಸಮುದಾಯಕ್ಕೆ ಸೇರಿ [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -ನಾವು Discord ನಲ್ಲಿ AI ಸಿರೀಸ್ ನೊಂದಿಗೆ ಕಲಿಕೆಯ ಕಾರ್ಯಕ್ರಮ ನಡೆಸುತ್ತಿದ್ದೇವೆ, ಇನ್ನಷ್ಟು ತಿಳಿದುಕೊಳ್ಳಿ ಮತ್ತು ನಮಗೂ ಸೇರಿಕೊಳ್ಳಿ [Learn with AI Series](https://aka.ms/learnwithai/discord) 18 - 30 ಸೆಪ್ಟೆಂಬರ್, 2025 ರವರೆಗೆ. ನೀವು GitHub Copilot ಅನ್ನು ಡೇಟಾ ಸೈನ್ಸ್ ಗಾಗಿ ಬಳಸುವ ಉಪಾಯ ಮತ್ತು ಸಲಹೆಗಳನ್ನು ಪಡೆಯುತ್ತೀರಿ. +ನಮ್ಮ ಬಳಿ ಡಿಸ್ಕಾರ್ಡ್ನಲ್ಲಿ AI ಸಹಿತ ಕಲಿಯುವುದು ಸರಣಿ ಪ್ರವಾಹವಾಗಿ ಇದೆ, ಹೆಚ್ಚು ತಿಳಿದುಕೊಳ್ಳಿ ಮತ್ತು ನಮ್ಮೊಂದಿಗೆ ಸೇರಿಕೊಳ್ಳಿ [Learn with AI Series](https://aka.ms/learnwithai/discord) 2025ರ ಸೆಪ್ಟೆಂಬರ್ 18 - 30 ರವರೆಗೆ. ನೀವು GitHub Copilot ಅನ್ನು ಡೇಟಾ ಸೈನ್ಸ್‌ಗೆ ಬಳಸುವ ಸಲಹೆಗಳು ಮತ್ತು ತಂತ್ರಗಳನ್ನು ಪಡೆಯುತ್ತೀರಿ. -![AI ಸಿರೀಸ್ ನೊಂದಿಗೆ ಕಲಿಯಿರಿ](../../../../translated_images/kn/1.2b28cdc6205e26fe.webp) +![AI ಸರಣಿಯೊಂದಿಗೆ ಕಲಿಯಿರಿ](../../translated_images/kn/1.2b28cdc6205e26fe.webp) -# ನೀವು ವಿದ್ಯಾರ್ಥಿಯರಾ? +# ನೀವು ವಿದ್ಯಾರ್ಥಿಗಳಾದೀರಾ? ಕೆಳಗಿನ ಸಂಪನ್ಮೂಲಗಳಿಂದ ಪ್ರಾರಂಭಿಸಿ: -- [ವಿದ್ಯಾರ್ಥಿ ಹಬ್ ಪುಟ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ಈ ಪುಟದಲ್ಲಿ ನೀವು ಆರಂಭಿಕರಿಗಾಗಿ ಸಂಪನ್ಮೂಲಗಳು, ವಿದ್ಯಾರ್ಥಿ ಪ್ಯಾಕ್‌ಗಳು ಮತ್ತು ಉಚಿತ ಪ್ರಮಾಣಪತ್ರ ಚವಟೆಯುಳ್ಳ ಮಾರ್ಗಗಳನ್ನು ಕಂಡು ಹಿಡಿಯಬಹುದು. ಇದು ಒಂದು ಪುಟವನ್ನು ಬುಕ್‌ಮಾರ್ಕ್ ಮಾಡಿ ಮತ್ತು ಕಾಲಕಾಲಕ್ಕೆ ಪರಿಶೀಲಿಸಿ, ಏಕೆಂದರೆ ನಾವು ವಿಷಯವನ್ನು ಸುದೀರ್ಘಾವಧಿಯಂತೆ ಪ್ರತಿಮಾಸವೂ ಬದಲಿಸುತ್ತೇವೆ. -- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ವಿಶ್ವದಾದ್ಯಾಂತ ವಿದ್ಯಾರ್ಥಿ தூತ ಸಮುದಾಯಕ್ಕೆ ಸೇರಿ, ಇದು ನಿಮಗೆ Microsoft ನಲ್ಲಿ ಅವಕಾಶ ನೀಡಬಹುದು. +- [ವಿದ್ಯಾರ್ಥಿ ಕೇಂದ್ರ ಪುಟ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ಈ ಪುಟದಲ್ಲಿ ಆರಂಭಿಕರಿಗೆ ಸಂಪನ್ಮೂಲಗಳು, ವಿದ್ಯಾರ್ಥಿ ಪ್ಯಾಕ್ಗಳು ಮತ್ತು ಉಚಿತ ಪ್ರಮಾಣಿ ಸರ್ಟಿಫಿಕೇಟ್ ವಚರ್ ಪಡೆಯುವ ಮಾರ್ಗಗಳಿವೆ. ಇದು ನೀವು ಸಮಯಕ್ಕೆ ಸಮಯಕ್ಕೆ ಪರಿಶೀಲಿಸಲು ಬುಕ್ಮಾರ್ಕ್ ಮಾಡಬೇಕಾದ ಒಂದು ಪುಟ. +- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ಜಾಗತಿಕ ವಿದ್ಯಾರ್ಥಿ ಅಂಬಾಸಡರ್ ಸಮುದಾಯವನ್ನು ಸೇರಿ, ಇದು Microsoft ಗೆ ನಿಮ್ಮ ಪ್ರವೇಶವಾಗಬಹುದು. # ಪ್ರಾರಂಭಿಸುವುದು -## 📚 ದಾಖಲಾತಿಗಳು +## 📚 ಡೋಕ್ಯುಮೆಂಟೇಶನ್ -- **[ಸ್ಥಾಪನೆ ಗೈಡ್](INSTALLATION.md)** - ಆರಂಭಿಕರಿಗಾಗಿ ಹಂತ ಹಂತದ ಸೆಟ್‌ಅಪ್ ಸೂಚನೆಗಳು -- **[ಬಳಕೆ ಗೈಡ್](USAGE.md)** - ಉದಾಹರಣೆಗಳು ಮತ್ತು ಸಾಮಾನ್ಯ ಕೆಲಸಗಳು -- **[ಸಮಸ್ಯೆ ಪರಿಹಾರ](TROUBLESHOOTING.md)** - ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳ ಪರಿಹಾರ -- **[ಯೋಗદાન ಗೈಡ್](CONTRIBUTING.md)** - ಈ ಯೋಜನೆಗೆ ಯಾವಾಗ ಮತ್ತು ಹೇಗೆ ಸಹಕರಿಸುವುದು +- **[ಸೆಟ್ ಅಪ್ ಮಾರ್ಗದರ್ಶಿ](INSTALLATION.md)** - ಆರಂಭಿಕರಿಗಾಗಿ ಹಂತ ಹಂತದ ಸ್ಥಾಪನೆ ಸೂಚನೆಗಳು +- **[ಬಳಕೆ ಮಾರ್ಗದರ್ಶಿ](USAGE.md)** - ಉದಾಹರಣೆಗಳು ಮತ್ತು ಸಾಮಾನ್ಯ ಕಾರ್ಯವೃಂದ +- **[ಸamas್ಯೆಗಳ ಪರಿಹಾರ](TROUBLESHOOTING.md)** - ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳಿಗೆ ಪರಿಹಾರಗಳು +- **[ ಕೊಡುಗೆ ಮಾರ್ಗದರ್ಶಿ](CONTRIBUTING.md)** - ಈ ಯೋಜನೆಗೆ ಹೇಗೆ ಕೊಡುಗೆ ನೀಡುವುದು - **[ಶಿಕ್ಷಕರಿಗಾಗಿ](for-teachers.md)** - ಬೋಧನೆ ಮಾರ್ಗದರ್ಶನ ಮತ್ತು ತರಗತಿ ಸಂಪನ್ಮೂಲಗಳು -## 👨‍🎓 ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ -> **ಪೂರ್ಣ ಆರಂಭಿಕರು**: ಡೇಟಾ ಸೈನ್ಸ್‌ನಲ್ಲಿ ಹೊಸವರು? ನಮ್ಮ [ಆರಂಭಿಕ ಸ್ನೇಹಿ ಉದಾಹರಣೆಗಳು](examples/README.md)ದಿಂದ ಪ್ರಾರಂಭಿಸಿ! ಈ ಸರಳ ಮತ್ತು ಚೆನ್ನಾಗಿ ಟಿಪ್ಪಣಿಸಲಾದ ಉದಾಹರಣೆಗಳು ನೀವು ಪಾಠಕ್ರಮದ ಪೂರ್ಣ ಸಹಿತಕ್ಕೆ ಮುಂದುಹೋಗುವ ಮೊದಲು ಮೂಲಭೂತಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಹಾಯ ಮಾಡುತ್ತವೆ. -> **[ವಿದ್ಯಾರ್ಥಿಗಳು](https://aka.ms/student-page)**: ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ಸ್ವತಃ ಬಳಸಲು, ಸಂಪೂರ್ಣ ರೆಪೋವನ್ನು ಫೋರ್ಕ್ ಮಾಡಿ ಮತ್ತು ಸ್ವತಃ ವ್ಯಾಯಾಮಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ, ಪೂರ್ವ ಭಾಷಣ ಕ್ವಿಜ್ನೊಂದಿಗೆ ಪ್ರಾರಂಭಿಸಿ. ನಂತರ ಭಾಷಣವನ್ನು ಓದಿ ಮತ್ತು ಇತರ ಚಟುವಟಿಕೆಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ. ಪರಿಹಾರ ಕೋಡ್ ನಕಲು ಮಾಡುವುದಕ್ಕಿಂತ ಪಾಠಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವ ಮೂಲಕ ಯೋಜನೆಗಳನ್ನು ನಿರ್ಮಿಸಲು ಪ್ರಯತ್ನಿಸಿ; ಆದಾಗ್ಯೂ, ಆ ಕೋಡ್ ಪ್ರತಿ ಪ್ರಾಜೆಕ್ಟ್-ಕೇಂದ್ರಿತ ಪಾಠದ /solutions ಫೋಲ್ಡರ್ಗಳಲ್ಲಿ ಲಭ್ಯವಿದೆ. ಇನ್ನೊಂದು ಆಯ್ಕೆ ಸುಧಾರಿತ ಅಧ್ಯಯನಕ್ಕಾಗಿ ಸ್ನೇಹಿತರೊಂದಿಗೆ ಅಧ್ಯಯನ ಗುಂಪು ರೂಪಿಸಿ ಮತ್ತು ವಿಷಯವನ್ನು ಒಂದಾಗಿ ಓದಿ. ನಮ್ಮ ಶಿಫಾರಸು [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ಮೇಲೆ ಅಧ್ಯಯನಕ್ಕೆ. +## 👨‍🎓 ವಿದ್ಯಾರ್ಥಿಗಳಿಗಾಗಿ +> **ಪೂರ್ಣ ನವೀಕರು**: ಡೇಟಾ ವಿಜ್ಞಾನಕ್ಕೆ ಹೊಸದಾದರೆ? ನಮ್ಮ [ಶುರುಆತಿಗೆ ಸೂಕ್ತ ಉದಾಹರಣೆಗಳು](examples/README.md) ಅಲ್ಲಿ ಪ್ರಾರಂಭಿಸಿ! ಈ ಸರಳ, ಚೆನ್ನಾಗಿ ಟಿಪ್ಪಣಿಗಳು ಮಾಡಿದ ಉದಾಹರಣೆಗಳು ನೀವು ಪೂರ್ಣ ಪಾಠ್ಯಕ್ರಮಕ್ಕೆ ಮುಂದಾಗುವ ಮುಂಚೆ ಮೂಲಭೂತಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಹಾಯಮಾಡುತ್ತವೆ. +> **[ವಿದ್ಯಾರ್ಥಿಗಳು](https://aka.ms/student-page)**: ಈ ಪಾಠ್ಯಕ್ರಮವನ್ನು ಸ್ವತಂತ್ರವಾಗಿ ಬಳಸಲು, ಸಂಪೂರ್ಣ ರೆಪೋವನ್ನು ಫೋರ್ಕ್ ಮಾಡಿ ಮತ್ತು ಮುಂಚಿನ ಉಪನ್ಯಾಸ ಕ್ವಿಜಿನಿಂದ ಪ್ರಾರಂಭಿಸಿ ವ್ಯಾಯಾಮಗಳನ್ನು ಸ್ವತಃ ಸಂಪೂರ್ಣಗೊಳಿಸಿ. ನಂತರ ಉಪನ್ಯಾಸವನ್ನು ಓದಿ ಉಳಿದ ಚಟುವಟಿಕೆಗಳನ್ನು ಮಾಡಿರಿ. ಪರಿಹಾರಕೋಡ್ ನಕಲಿಸುವ ಬದಲು ಪಾಠಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಂಡು ಪ್ರಾಜೆಕ್ಟ್‌ಗಳನ್ನು ನಿರ್ಮಿಸಲು ಪ್ರಯತ್ನಿಸಿ; ಈ ಕೋಡ್ ಪ್ರತಿ ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತ ಪಾಠದಲ್ಲಿನ /solutions ಫೋಲ್ಡರ್‌ಗಳಲ್ಲಿ ಲಭ್ಯವಿದೆ. ಇನ್ನೊಂದು ಆಲೋಚನೆ ಎಂದರೆ ಸ್ನೇಹಿತರೊಂದಿಗೆ ಅಧ್ಯಯನ ಗುಂಪು ರಚಿಸಿ ಮತ್ತು ವಿಷಯವನ್ನು ಒಂದೇಗೂಹಾಗಿ ಓದಿಕೊಳ್ಳುವುದು. ಮುಂದುವರಿದ ಅಧ್ಯಯನಕ್ಕೆ, ನಾವು [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ಅನ್ನು ಶಿಫಾರಸು ಮಾಡುತ್ತೇವೆ. **ತ್ವರಿತ ಪ್ರಾರಂಭ:** -1. ನಿಮ್ಮ ಪರಿಸರವನ್ನು ಸೆಟ್‌ಅಪ್ ಮಾಡಲು [ಸ್ಥಾಪನಾ ಗೈಡ್](INSTALLATION.md) ಪರಿಶೀಲಿಸಿ -2. ಪಠ್ಯಕ್ರಮದ ಸಹಾಯಕ್ಕಾಗಿ [ಬಳಕೆ ಗೈಡ್](USAGE.md) ಪರಿಶೀಲಿಸಿ -3. ಪಾಠ 1ರಿಂದ ಪ್ರಾರಂಭಿಸಿ ಕ್ರಮೇಣ ಕೆಲಸ ಮಾಡಿ -4. ಬೆಂಬಲಕ್ಕೆ ನಮ್ಮ [ಡಿಸ್ಕಾರ್ಡ್ ಸಮುದಾಯ](https://aka.ms/ds4beginners/discord) ಸೇರಿ +1. ನಿಮ್ಮ ಪರಿಸರವನ್ನು ಸೆಟ್ ಅಪ್ ಮಾಡಲು [ಸೆಟ್ ಅಪ್ ಮಾರ್ಗದರ್ಶಿ](INSTALLATION.md) ಪರಿಶೀಲಿಸಿ +2. ಪಾಠ್ಯಕ್ರಮದೊಂದಿಗೆ ಹೇಗೆ ಕೆಲಸಮಾಡುವುದು ಎಂದು ತಿಳಿಯಲು [ಬಳಕೆ ಮಾರ್ಗದರ್ಶಿ](USAGE.md) ಪರಿಶೀಲಿಸಿ +3. ಪಾಠ 1 ರಿಂದ ಪ್ರಾರಂಭಿಸಿ ಮತ್ತು ಕ್ರಮೇಣ ಮುಂದುವರಿಯಿರಿ +4. ಬೆಂಬಲಕ್ಕಾಗಿ ನಮ್ಮ [Discord ಸಮುದಾಯ](https://aka.ms/ds4beginners/discord)ದಲ್ಲಿ ಸೇರಿ -## 👩‍🏫 ಶಿಕ್ಷಕರಿಗೆ - -> **ಶಿಕ್ಷಕರು**: ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೇಗೆ ಬಳಸಬಹುದು ಎಂಬುದರ ಬಗ್ಗೆ ನಾವು ಕೆಲ ಸಲಹೆಗಳನ್ನು [ಸೇರಿಸಲಾಗಿದೆ](for-teachers.md). ನಿಮ್ಮ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ನಾವು [ನಮ್ಮ ಚರ್ಚಾ ವೇದಿಕೆಯಲ್ಲಿ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ಸ್ವಾಗತಿಸುತ್ತೇವೆ! +## 👩‍🏫 ಶಿಕ್ಷಕರಿಗಾಗಿ +> **ಶಿಕ್ಷಕರು**: ಈ ಪಾಠ್ಯಕ್ರಮವನ್ನು ಹೇಗೆ ಬಳಸಬೇಕು ಎಂಬ ಕೆಲವು ಸಲಹೆಗಳನ್ನು [ನಾವು ಸೇರಿಸಿರುವೆವು](for-teachers.md). ದಯವಿಟ್ಟು ನಿಮ್ಮ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ನಮ್ಮ [ಚರ್ಚಾ ವೇದಿಕೆ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ನಲ್ಲಿ ವಂಚಿಸಬೇಡಿ! ## ತಂಡವನ್ನು ಭೇಟಿ ಮಾಡಿ -[![ಪ್ರಚಾರ ವೀಡಿಯೊ](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "ಪ್ರಚಾರ ವೀಡಿಯೊ") -**ಗಿಫ್** [ಮೊಹಿತ್ ಜೈಸಾಲ್](https://www.linkedin.com/in/mohitjaisal) +[![ಪ್ರಚಾರ ವೀಡಿಯೋ](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "ಪ್ರಚಾರ ವೀಡಿಯೋ") + +**ಗಿಫ್ ಮಾಡಿದ್ದು** [ಮೊಹಿತ್ ಜೈಸಲ್](https://www.linkedin.com/in/mohitjaisal) -> 🎥 ಅದರ ಸೃಷ್ಟಿಕರ್ತರು ಮಾಡಿದ ಪ್ರಾಜೆಕ್ಟ್ ಬಗ್ಗೆ ವೀಡಿಯೊವನ್ನು ನೋಡಲು ಮೇಲಿನ ಚಿತ್ರವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ! +> 🎥 ಮೇಲಿನ ಚಿತ್ರವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ ಯೋಜನೆ ಮತ್ತು ಅದನ್ನು ರಚಿಸಿದ ಅಧಿಕಾರಿಗಳ ಕುರಿತು ವೀಡಿಯೋ ವೀಕ್ಷಿಸಲು! -## ಪಠ್ಯವಿಧಾನ +## ಶಿಕ್ಷಣಶಾಸ್ತ್ರ -ನಾವು ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ನಿರ್ಮಿಸುವಾಗ ಎರಡು ಪಠ್ಯವಿಧಾನದ ತತ್ವಗಳನ್ನು ಆಯ್ಕೆಮಾಡಿಕೊಂಡಿದ್ದೇವೆ: ಇದು ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತವಾಗಿರಬೇಕು ಮತ್ತು ಅದರಲ್ಲಿ ನಿಯಮಿತವಾಗಿ ಪ್ರಶ್ನೋತ್ತರಗಳು ಇದಾಗಿರಬೇಕು. ಈ ಸರಣಿಯ ಅಂತ್ಯದಲ್ಲಿ, ವಿದ್ಯಾರ್ಥಿಗಳು ಮೂಲಭೂತ ಡೇಟಾ ವಿಜ್ಞಾನ ತತ್ವಗಳನ್ನು ಕಲಿತಿರುತ್ತಾರೆ, ಇದರಲ್ಲಿ ನೈತಿಕ ಸಂಶೋಧನೆಗಳು, ಡೇಟಾ ತಯಾರಿಕೆ, ಡೇಟಾವಿನೊಂದಿಗೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ವಿಭಿನ್ನ ರೀತಿಗಳು, ಡೇಟಾ ದೃಶ್ಯೀಕರಣ, ಡೇಟಾ ವಿಶ್ಲೇಷಣೆ, ಡೇಟಾ ವಿಜ್ಞಾನದ ನೈಜ ಜಗತ್ತಿನ ಬಳಕೆ ಪ್ರಕರಣಗಳು ಮತ್ತು ಇನ್ನೂ ಅನೇಕ ವಿಷಯಗಳು ಸೇರಿವೆ. +ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ನಿರ್ಮಿಸುವ ವೇಳೆ ನಾವು ಎರಡು ಶಿಕ್ಷಣದ ತತ್ವಗಳನ್ನು ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿದ್ದೇವೆ: ಇದು ಯೋಜನೆ ಆಧಾರಿತವಾಗಿರಬೇಕು ಮತ್ತು ಇದರಲ್ಲಿ ನಿಯಮಿತ ಪ್ರಶ್ನೋತ್ತರಗಳು ಇರಬೇಕು ಎಂಬುದನ್ನು ಖಚಿತಪಡಿಸುವುದು. ಈ ಸರಣಿಯ ಕೊನೆಯಲ್ಲಿ, ವಿದ್ಯಾರ್ಥಿಗಳು ಡೇಟಾ ಸೈನ್ಸ್‌ನ ಮೂಲಭೂತ ಸಿದ್ಧಾಂತಗಳನ್ನು, ಅದರ ಒಳಗೊಂಡ ನೈತಿಕ ವಿಚಾರಗಳನ್ನು, ಡೇಟಾ ಸಿದ್ಧತೆ, ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವ ವಿವಿಧ ಮಾರ್ಗಗಳು, ಡೇಟಾ ದೃಷ್ಯೀಕರಣ, ಡೇಟಾ ವಿಶ್ಲೇಷಣೆ, ಡೇಟಾ ಸೈನ್ಸ್‌ನ ನೈಜ ಜಾಗತಿಕ ಬಳಕೆ ಉದಾಹರಣೆಗಳು ಮತ್ತು ಇನ್ನಷ್ಟು ಕಲಿಯುತ್ತಾರೆ. -ಇದಕ್ಕೂ ಜೊತೆಗೆ, ತರಗತಿಗೆ ಮುಂಚಿತವಾಗಿ ಕಡಿಮೆ ಒತ್ತಡದ ಪ್ರಶ್ನೋತ್ತರವು ವಿದ್ಯಾರ್ಥಿಯ ಕಲಿಕೆಗೆ ಉದ್ದೇಶವನ್ನು ಸ್ಥಾಪಿಸುತ್ತದೆ, ಮತ್ತು ತರಗತಿಯ ನಂತರದ ಎರಡನೆಯ ಪ್ರಶ್ನೋತ್ತರವು ಮುಂದಿನ ನೆನಪು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ಲಚೀಲ ಮತ್ತು ಮನರಂಜನೆಯಾಗಿಯೂ ವಿನ್ಯಾಸಗೊಳ್ಳಿಸಿದ್ದು, ಸಂಪೂರ್ಣವಾಗಿ ಅಥವಾ ಭಾಗವಾಗಿ ಪಠ್ಯಕ್ರಮವನ್ನು ಪೂರ್ಣಗೊಳಿಸಬಹುದು. ಪ್ರಾಜೆಕ್ಟುಗಳು ಚಿಕ್ಕದಾಗಿ ಆರಂಭಿಸಿ 10 ವಾರಗಳ ಸೈಕಲ್ ನಲ್ಲಿ ಹಂತ ಹಂತವಾಗಿ ಕೋಷ್ಟಕ್ಯವಾಗಿ ಆಗಿದೆ. +ಅದರಲ್ಲೂ, ತರಗತಿಗೆ ಮುನ್ನ ಒಂದು ಕಡಿಮ್ಮ ಹಂತದ ಪ್ರಶ್ನೋತ್ತರವು ವಿದ್ಯಾರ್ಥಿಯು ವಿಷಯವನ್ನು ಕಲಿಯಲು ಉದ್ದೇಶ ಹೊಂದಿದ್ದಂತೆ ಮಾಡುತ್ತದೆ, ಟ್ರಿಗರ್ ನಂತರದ ಪ್ರಶ್ನೋತ್ತರವು ಹೆಚ್ಚು ಪಟುವಿಕೆಯನ್ನು ಖಚಿತಪಡಿಸುತ್ತದೆ. ಈ ಪಠ್ಯಕ್ರಮವು ಲವಚಿಕವಾದ ಮತ್ತು ಮನರಂಜನೆಯಾಗಿದೆ, ಸಂಪೂರ್ಣವಾಗಿ ಅಥವಾ ಭಾಗವಾಗಿ ತೆಗೆದುಕೊಳ್ಳಬಹುದು. ಯೋಜನೆಗಳು ಸಣ್ಣದು ಪ್ರಾರಂಭವಾಗಿ 10 ವಾರಗಳ ಚಕ್ರದ ಕೊನೆಯಲ್ಲಿ ಹೆಚ್ಚು ಸಂಕೀರ್ಣವಾಗುತ್ತವೆ. -> ನಮ್ಮ [ನಡವಳಿಕೆ ಸಂಹಿತೆಯನ್ನು](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [ಭಾಷಾಂತರಿಸುವಿಕೆ](TRANSLATIONS.md) ನಿಯಮಾವಳಿಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳಿ. ನಿಮ್ಮ ನಿರ್ಮಾಣಕಾರಿ ಪ್ರತಿಕ್ರಿಯೆಗೆ ಸ್ವಾಗತ! +> ನಮ್ಮ [ನಡವಳಿಕೆ ನಿಯಮಾವಳಿ](CODE_OF_CONDUCT.md), [ಹೊಂದಾಣಿಕೆ](CONTRIBUTING.md), [ಭಾಷಾಂತರ](TRANSLATIONS.md) ಮಾರ್ಗಸೂಚಿಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. ನಿಮ್ಮ ರಚನೆಯಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ನಾವು ಸ್ವಾಗತಿಸುತ್ತೇವೆ! -## ಪ್ರತಿ ಪಾಠದಲ್ಲಿ ಒಳಗೊಂಡಿರುತ್ತವೆ: +## ಪ್ರತಿ ಪಾಠದಲ್ಲಿ ಸೇರಿವೆ: -- ಐಚ್ಛಿಕ ಸ್ಕೆಚ್ನೋಟ್ -- ಐಚ್ಛಿಕ ಸಹಾಯಕ ವೀಡಿಯೊ -- ಪಾಠದ ಮುಂಚಿನ ಸಿದ್ದತೆ ಪ್ರಶ್ನೋತ್ತರ -- ಬರಹ ಬೋಧನೆ -- ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತ ಪಾಠಗಳಿಗೆ ಪ್ರಾಜೆಕ್ಟ್ ನಿರ್ಮಾಣದ ಹಂತ ಹಂತ ಮಾರ್ಗದರ್ಶಿಗಳು +- ಐಚ್ಛಿಕ ಸ್ಕೆಚ್ ನೋಟ್ +- ಐಚ್ಛಿಕ ಪೂರಕ ವೀಡಿಯೋ +- ಪಾಠ ಮುಂಚಿನ ತಯಾರಿ ಪ್ರಶ್ನೋತ್ತರ +- ಬರೆಯಲಾದ ಪಾಠ +- ಯೋಜನೆ ಆಧಾರಿತ ಪಾಠಗಳಿಗಾಗಿ, ಯೋಜನೆಯನ್ನು ನಿರ್ಮಿಸುವ ಕುರಿತು ಹಂತ-ಬಂದಿ ಮಾರ್ಗದರ್ಶನ - ಜ್ಞಾನ ಪರಿಶೀಲನೆಗಳು - ಒಂದು ಸವಾಲು -- ಸಹಾಯಕ ಓದು -- ನಿಬಂಧನೆ -- [ಪಾಠದ ನಂತರ ಪ್ರಶ್ನೋತ್ತರ](https://ff-quizzes.netlify.app/en/) +- ಪೂರಕ ಓದು +- ನಿಯೋಜನೆ +- [ಪಾಠದ ನಂತರದ ಪ್ರಶ್ನೋತ್ತರ](https://ff-quizzes.netlify.app/en/) -> **ಪ್ರಶ್ನೋತ್ತರಗಳ ಬಗ್ಗೆ ಟಿಪ್ಪಣಿ**: ಎಲ್ಲಾ ಪ್ರಶ್ನೋತ್ತರಗಳು Quiz-App ಫೋಲ್ಡರ್‌ನಲ್ಲಿ ಇವೆ, ಮೂರೂ ಪ್ರಶ್ನೆಗಳ 40 ಒಟ್ಟು ಕ್ವಿಜ್‌ಗಳಿವೆ. ಅವು ಪಾಠಗಳಲ್ಲಿ ಲಿಂಕ್ ಆಗಿವೆ, ಆದರೆ ಕ್ವಿಜ್ ಅಪ್ಲಿಕೇಶನ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ನಡೆಯಿಸಲು ಅಥವಾ ಆಜುರ್‌ಗೆ ನಿಯೋಜಿಸಲು ಸಾಧ್ಯ; `quiz-app` ಫೋಲ್ಡರ್‌ನ ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ. ಅವು ಕ್ರಮೇಣ ಸ್ಥಳೀಯ ಭಾಷೆಗಳಲ್ಲಿಗೂ ಅನುವಾದಗೊಳ್ಳುತ್ತಿವೆ. +> **ಪ್ರಶ್ನೋತ್ತರಗಳ ಕುರಿತು ಒಂದು ಟಿಪ್ಪಣಿ**: ಎಲ್ಲಾ ಪ್ರಶ್ನೋತ್ತರಗಳು Quiz-App ಫೋಲ್ಡರ್‌ನಲ್ಲಿ ಇರುತ್ತವೆ, 40 ಒಟ್ಟು ಪ್ರಶ್ನೋತ್ತರಗಳು ಪ್ರತಿ 3 ಪ್ರಶ್ನೆಗಳೊಂದಿಗೆ. ಅವು ಪಾಠಗಳಲ್ಲಿ ಲಿಂಕ್ ಆಗಿವೆ, ಆದರೆ ಪ್ರಶ್ನೋತ್ತರ ಆಪ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಚಾಲನೆ ಮಾಡಬಹುದು ಅಥವಾ ಅಜ್ಯೂರ್‌ಗೆ ಸ್ಥಾಪಿಸಬಹುದು; `quiz-app` ಫೋಲ್ಡರ್‌ನ ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ. ಅವು ಕ್ರಮೇಣ ಸ್ಥಳೀಯಗೊಳ್ಳುತ್ತಿರುವುವು. -## 🎓 ಪ್ರಾರಂಭಿಕರಿಗೆ ಅನುಕೂಲವಾಗುವ ಉದಾಹರಣೆಗಳು +## 🎓 ಆರಂಭಿಕ ಸ್ನೇಹಿ ಉದಾಹರಣೆಗಳು -**ಡೇಟಾ ವಿಜ್ಞಾನಕ್ಕೆ ಹೊಸವೋ?** ನಾವು ಪ್ರಾರಂಭಿಸಲು ಸರಳ ಮತ್ತು ಸಮರ್ಥನೆಗೊಂಡ ಕೋಡ್‌ನೊಂದಿಗೆ ವಿಶಿಷ್ಟ [ಉದಾಹರಣೆ ಡೈರೆಕ್ಟರಿ](examples/README.md) ರಚಿಸಿದ್ದೇವೆ: +**ಡೇಟಾ ಸೈನ್ಸ್‌ಗೆ ಹೊಸವರೇ?** ನಾವು ವಿಶೇಷ [ಉದಾಹರಣೆ ಫೋಲ್ಡರ್](examples/README.md) ರಚಿಸಿದ್ದೇವೆ, ಸರಳ, ಸುಸ್ಪಷ್ಟ ಟಿಪ್ಪಣಿಗಳನ್ನೊಳಗೊಂಡ ಕೋಡ್ ಸಹಿತ ನಿಮ್ಮ ಆರಂಭಕ್ಕೆ ಸಹಾಯವಾಗುತ್ತದೆ: -- 🌟 **ಹೆಲೋ ವರ್ಲ್ಡ್** - ನಿಮ್ಮ ಮೊದಲ ಡೇಟಾ ವಿಜ್ಞಾನ ಕಾರ್ಯಕ್ರಮ -- 📂 **ಡೇಟಾ ಲೋಡಿಂಗ್** - ಡೇಟಾಸೆಟ್‌ಗಳನ್ನು ಓದಿ ಅನ್ವೇಷಣೆ ಮಾಡಲು ಕಲಿಯಿರಿ -- 📊 **ಸರಳ ವಿಶ್ಲೇಷಣೆ** - ಅಂಕಿಅಂಶಗಳನ್ನು ಗಣನೆಮಾಡಿ, ಮಾದರಿಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ -- 📈 **ಮೂಲಭೂತ ದೃಶ್ಯೀಕರಣ** - ಚಾರ್ಟ್‌ಗಳು ಮತ್ತು ಗ್ರಾಫ್‌ಗಳನ್ನು ರಚಿಸಿ -- 🔬 **ನೈಜ ಜಗತ್ತಿನ ಪ್ರಾಜೆಕ್ಟ್** - ಪ್ರಾರಂಭದಿಂದ ಅಂತ್ಯವರೆಗಿನ ಸಂಪೂರ್ಣ ಕಾರ್ಯಪ್ರವಾಹ +- 🌟 **ಹೇಲ್\u200cಲೋ ವರ್ಲ್ಡ್** - ನಿಮ್ಮ ಮೊದಲ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರೋಗ್ರಾಂ +- 📂 **ಡೇಟಾ ಲೋಡ್ ಮಾಡುವುದು** - ಡೇಟಾಗುಚ್ಛಗಳನ್ನು ಓದಿ ಅನ್ವೇಷಿಸಲು ಕಲಿಯಿರಿ +- 📊 **ಸರಳ ವಿಶ್ಲೇಷಣೆ** - ಅಂಕಿ ಅಂಶಗಳನ್ನು ಗಣನೆ ಮಾಡಿ ಮಾದರಿಗಳನ್ನು ಹುಡುಕಿ +- 📈 **ಮೂಲಭೂತ ದೃಷ್ಯೀಕರಣ** - ಚಾರ್ಟ್ ಮತ್ತು ಗ್ರಾಫ್ ರಚಿಸಿ +- 🔬 **ನೈಜ ಜಾಗತಿಕ ಯೋಜನೆ** - ಪ್ರಾರಂಭದಿಂದ ಕೊನೆವರೆಗೆ ಪೂರ್ಣ ಕಾರ್ಯಪ್ರವಾಹ -ಪ್ರತಿ ಉದಾಹರಣೆಲ್ಲೂ ಪ್ರತಿ ಹಂತವನ್ನು ವಿವರಿಸುವ ಸಮಗ್ರ ಟಿಪ್ಪಣಿಗಳು ಇವೆ, ಇದು ಸಂಪೂರ್ಣ ಪ್ರಾರಂಭಿಕರಿಗೆ ಸೂಕ್ತವಾಗಿದೆ! +ಪ್ರತಿಯೊಂದು ಉದಾಹರಣೆಯೂ ಪ್ರತಿಯೊಂದು ಹಂತವನ್ನು ವಿವರಿಸುವ ಸ್ತರವಾದ ಟಿಪ್ಪಣಿಗಳನ್ನು ಒಳಗೊಂಡಿದೆ, ಇದು ಸಂಪೂರ್ಣ ಆರಂಭಿಕರಿಗೆ ಅತ್ಯುತ್ತಮ! -👉 **[ಉದಾಹರಣೆಗಳಿಂದ ಪ್ರಾರಂಭಿಸಿ](examples/README.md)** 👈 +👉 **[ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಪ್ರಾರಂಭಿಸಿ](examples/README.md)** 👈 ## ಪಾಠಗಳು -|![ @sketchthedocs ಅವರ ಸ್ಕೆಚ್ನೋಟ್ https://sketchthedocs.dev](../../../../translated_images/kn/00-Roadmap.4905d6567dff4753.webp)| +|![@sketchthedocs ರಚಿಸಿದ ಸ್ಕೆಚ್‌ನೋಟ್ https://sketchthedocs.dev](../../translated_images/kn/00-Roadmap.4905d6567dff4753.webp)| |:---:| -| ಡೇಟಾ ಸਾਇನ್ಸ್ ಫಾರ್ ಬೆಗಿನ್‌ರ್ಸ್: ರಸ್ತೆ ಮಹಡಿಯ ಚಿತ್ತಾರ - _ಸ್ಕೆಚ್ನೋಟ್ [@nitya](https://twitter.com/nitya) ಅವರಿಂದ_ | +| ಡೇಟಾ ಸೈನ್ಸ್ ಆರಂಭಿಕರಿಗಾಗಿ: ರಸ್ತೆನಕ್ಷೆ - _ಸ್ಕೆಚ್‌ನೋಟ್ [@nitya](https://twitter.com/nitya) ರಚನೆ_ | -| ಪಾಠ ಸಂಖ್ಯೆ | ವಿಷಯ | ಪಾಠ ಗುಂಪು | ಕಲಿಕೆಯ ಗುರಿಗಳು | ಲಿಂಕ್ ಪಾಠ | ಲೇಖಕ | +| ಪಾಠ ಸಂಖ್ಯೆ | ವಿಷಯ | ಪಾಠ ಗುಂಪು | ಕಲಿಕೆ ಗುರಿಗಳು | ಲಿಂಕ್ ಪಾಠ | ಲೇಖಕ | | :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: | -| 01 | ಡೇಟಾ ವಿಜ್ಞಾನವನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ವಿಜ್ಞಾನ ಹಾಗೂ ಇದರ ಕೃತಕ ಬುದ್ಧಿಮತ್ತೆ, ಯಂತ್ರಾಭ್ಯಾಸ ಮತ್ತು ದೊಡ್ಡ ಡೇಟಾ ಜೊತೆಗಿನ ಸಂಬಂಧದ ಮೂಲಭೂತ ತತ್ವಗಳನ್ನು ಕಲಿಯಿರಿ. | [ಪಾಠ](1-Introduction/01-defining-data-science/README.md) [ವೀಡಿಯೊ](https://youtu.be/beZ7Mb_oz9I) | [ಡಿಮಿಟ್ರಿ](http://soshnikov.com) | -| 02 | ಡೇಟಾ ವಿಜ್ಞಾನ ನೈತಿಕತೆ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ನೈತಿಕತೆ ತತ್ವಗಳು, ಸವಾಲುಗಳು ಮತ್ತು ರೂಪರೆಖೆಗಳು. | [ಪಾಠ](1-Introduction/02-ethics/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) | -| 03 | ಡೇಟಾ ವ್ಯಾಖ್ಯಾನ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ಹೇಗೆ ವರ್ಗೀಕರಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಅದರ ಸಾಮಾನ್ಯ ಮೂಲಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳಿ. | [ಪಾಠ](1-Introduction/03-defining-data/README.md) | [ಜasmine](https://www.twitter.com/paladique) | -| 04 | ಸಂಖ್ಯಾಶಾಸ್ತ್ರ ಮತ್ತು ಸಾದೃಶ್ಯತೆಯ ಪರಿಚಯ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಂಖ್ಯಾಶಾಸ್ತ್ರ ಮತ್ತು ಸಾದೃಶ್ಯತೆಯ ಗಣಿತೀಯ ತಂತ್ರಗಳನ್ನು ಕಲಿಯಿರಿ. | [ಪಾಠ](1-Introduction/04-stats-and-probability/README.md) [ವೀಡಿಯೊ](https://youtu.be/Z5Zy85g4Yjw) | [ಡಿಮಿಟ್ರಿ](http://soshnikov.com) | -| 05 | ಸಂಬಂಧಿತ ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಸಂಬಂಧಿತ ಡೇಟಾ ಪರಿಚಯ ಮತ್ತು ರಚನಾತ್ಮಕ ಪ್ರಶ್ನಾ ಭಾಷೆ (SQL) ಬಳಸಿ ಸಂಬಂಧಿತ ಡೇಟಾ ಅನ್ವೇಷಣೆ ಮತ್ತು ವಿಶ್ಲೇಷಣೆ ಕುರಿತ ಮೂಲಭೂತಗಳು. | [ಪಾಠ](2-Working-With-Data/05-relational-databases/README.md) | [ಕ್ರಿಸ್ಟೊಫರ್](https://www.twitter.com/geektrainer) | | | -| 06 | ನೋನ್ಎಸ್ಕ್ಯೂಎಲ್ ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಅಸಂಬದ್ಧ ಡೇಟಾಗಳ ಪರಿಚಯ, ಅದರ ವಿವಿಧ ಪ್ರಕಾರಗಳು ಮತ್ತು ಡಾಕ್ಯುಮೆಂಟ್ ಡೇಟಾಬೇಸ್ ಅನ್ನು ಅನ್ವೇಷಿಸುವ ಮತ್ತು ವಿಶ್ಲೇಷಿಸುವ ಮೂಲಗಳು. | [ಪಾಠ](2-Working-With-Data/06-non-relational/README.md) | [ಜasmine](https://twitter.com/paladique) | -| 07 | ಪೈಥಾನ್ ಬಳಸಿ ಕೆಲಸ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಪ್ಯಾಂಡಾಸ್ ಮುಂತಾದ ಲೈಬ್ರರಿಗಳೊಂದಿಗೆ ಡೇಟಾ ಅನ್ವೇಷಣೆಗೆ ಪೈಥಾನ್ ಬಳಸಲು ಮೂಲಭೂತಗಳು. ಪೈಥಾನ್ ಪ್ರೋಗ್ರಾಮಿಂಗ್ ಆಧಾರದ ಅರಿವು ಶಿಫಾರಸು ಮಾಡಲ್ಪಟ್ಟಿದೆ. | [ಪಾಠ](2-Working-With-Data/07-python/README.md) [ವೀಡಿಯೊ](https://youtu.be/dZjWOGbsN4Y) | [ಡಿಮಿಟ್ರಿ](http://soshnikov.com) | -| 08 | ಡೇಟಾ ತಯಾರಿಕೆ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಕಳೆದುಹೋಗಿದ, ತಪ್ಪು ಅಥವಾ ಅಪೂರ್ಣ ಡೇಟಾ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಹರಿಸಲು ಡೇಟಾ ತೊಳೆದು ಸುಧಾರಿಸುವ ತಂತ್ರಗಳು. | [ಪಾಠ](2-Working-With-Data/08-data-preparation/README.md) | [ಜasmine](https://www.twitter.com/paladique) | -| 09 | ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಮ್ಯಾಟ್‌ಪ್ಲಾಟ್‌ಲಿಬ್ ಬಳಸಿ ಹಕ್ಕಿಗಳ ಡೇಟಾವನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು ಕಲಿಯಿರಿ 🦆 | [ಪಾಠ](3-Data-Visualization/09-visualization-quantities/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | -| 10 | ಡೇಟಾದ ವಿತರಣೆಗಳ ದೃಶ್ಯೀಕರಣ | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಅವಧಿಯೊಳಗಿನ পর্যವಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರವರ್ತನೆಗಳ ದೃಶ್ಯೀಕರಣ. | [ಪಾಠ](3-Data-Visualization/10-visualization-distributions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | -| 11 | ಅನುಪಾತದ ದೃಶ್ಯೀಕರಣ | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ವಿಭಾಗೀಕೃತ ಮತ್ತು ಗುಂಪುಗೊಂಡ ಶೇಕಡಾವಾರುಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/11-visualization-proportions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | -| 12 | ಸಂಬಂಧಗಳ ದೃಶ್ಯೀಕರಣ | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಡೇಟಾ ಸೆಟ್‌ಗಳು ಮತ್ತು ಅವುಗಳ ಚರಗಳ ನಡುವಿನ ಸಂಪರ್ಕ ಮತ್ತು ಸಂಬಂಧಗಳ ದೃಶ್ಯೀಕರಣ. | [ಪಾಠ](3-Data-Visualization/12-visualization-relationships/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | -| 13 | ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಪರಿಣಾಮಕಾರಿಯಾದ ಸಮಸ್ಯಾ ಪರಿಹಾರ ಮತ್ತು ಅರಿವಿಗಾಗಿ ನಿಮ್ಮ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮೌಲ್ಯಮಯವಾಗಿಸುವ ತಂತ್ರಗಳು ಮತ್ತು ಮಾರ್ಗದರ್ಶನ. | [ಪಾಠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | -| 14 | ಡೇಟಾ ವಿಜ್ಞಾನ ಜೀವನಚಕ್ರಕ್ಕೆ ಪರಿಚಯ | [ಜೀವನಚಕ್ರ](4-Data-Science-Lifecycle/README.md) | ಡೇಟಾ ವಿಜ್ಞಾನ ಜೀವನಚಕ್ರ ಹಾಗೂ ಡೇಟಾ ಪಡೆಯುವ ಮತ್ತು ಹೊರತೆಗೆದುಕೊಳ್ಳುವ ಮೊದಲ ಹಂತಕ್ಕೆ ಪರಿಚಯ. | [ಪಾಠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ಜasmine](https://twitter.com/paladique) | -| 15 | ವಿಶ್ಲೇಷಣೆ | [ಜೀವನಚಕ್ರ](4-Data-Science-Lifecycle/README.md) | ಈ ಹಂತವು ಡೇಟಾ ವಿಶ್ಲೇಷಣೆಗೆ ಸಂಬಂಧಪಟ್ಟ ತಂತ್ರಗಳನ್ನು ಮಾರುಕಟ್ಟೆಗೆ ತರುತ್ತದೆ. | [ಪಾಠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ಜasmine](https://twitter.com/paladique) | | | -| 16 | ಸಂವಹನ | [ಜೀವನಚಕ್ರ](4-Data-Science-Lifecycle/README.md) | ಈ ಹಂತದಲ್ಲಿ ಡೇಟಾದಿಂದ ಪಡೆದ ಅರಿವನ್ನು ನಿರ್ಧಾರ ಕೈಗೊಳ್ಳುವವರು ಸುಲಭವಾಗಿ ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬಹುದಾದ ರೀತಿಯಲ್ಲಿ ಪ್ರಸ್ತುತಪಡಿಸುವುದು ಮುಖ್ಯವಾಗಿದೆ. | [ಪಾಠ](4-Data-Science-Lifecycle/16-communication/README.md) | [ಜಲೇನ್](https://twitter.com/JalenMcG) | | | -| 17 | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಈ ಪಾಠ ಸರಣಿಯಿಂದ ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ ಮತ್ತು ಅದರ ಪ್ರಯೋಜನಗಳು ಪರಿಚಯವಾಗುತ್ತವೆ. | [ಪಾಠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮೌಡ್](https://twitter.com/maudstweets) | -| 18 | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಕಡಿಮೆ ಕೋಡ್ ಉಪಕರಣಗಳಿಂದ ಮಾದರಿಗಳನ್ನು ತರಬೇತುಗೊಳಿಸುವುದು. | [ಪಾಠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮೌಡ್](https://twitter.com/maudstweets) | -| 19 | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಅಜುರ್ ಮಷಿನ್ ಲರ್ನಿಂಗ್ ಸ್ಟುಡಿಯೋ ಬಳಸಿ ಮಾದರಿಗಳನ್ನು ನಿಯೋಜಿಸುವುದು. | [ಪಾಠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮೌಡ್](https://twitter.com/maudstweets) | -| 20 | ಪ್ರಾಕೃತಿಕ ಪರಿಸರದಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಜೀವಂತಿರುವಲ್ಲಿ](6-Data-Science-In-Wild/README.md) | ನೈಜ ಜಗತ್ತಿನ ಡೇಟಾ ವಿಜ್ಞಾನ ಚಾಲಿತ ಪ್ರಾಜೆಕ್ಟುಗಳು. | [ಪಾಠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) | +| 01 | ಡೇಟಾ ಸೈನ್ಸ್ ವ್ಯಾಖ್ಯಾನ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ಸೈನ್ಸ್ ಹಿನ್ನಡೆಯ ಮೂಲಭೂತ ಆಲೋಚನೆಗಳನ್ನು ಮತ್ತು ಕೃತಕ ಬುದ್ಧಿಮತ್ತೆ, ಯಂತ್ರ ಅಭ್ಯಾಸ ಮತ್ತು ದೊಡ್ಡ ಡೇಟಾ ಜೊತೆಗೆ ಅದರ ಸಂಬಂಧವನ್ನು ಕಲಿಯಿರಿ. | [ಪಾಠ](1-Introduction/01-defining-data-science/README.md) [ವೀಡಿಯೋ](https://youtu.be/beZ7Mb_oz9I) | [ಡ್ಮಿಟ್ರಿ](http://soshnikov.com) | +| 02 | ಡೇಟಾ ಸೈನ್ಸ್ ನೈತಿಕತೆ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ನೈತಿಕತೆಯ ಆಲೋಚನೆಗಳು, ಸವಾಲುಗಳು ಮತ್ತು ಸಂರಚನೆಗಳು. | [ಪಾಠ](1-Introduction/02-ethics/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) | +| 03 | ಡೇಟಾ ವ್ಯಾಖ್ಯಾನ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ఎలా ವರ್ಗೀಕರಿಸಲಾಗಿದೆ ಮತ್ತು ಅದರೂ ಸಾಮಾನ್ಯ ಮೂಲಗಳು. | [ಪಾಠ](1-Introduction/03-defining-data/README.md) | [ಜಾಸ್ಮಿನ್](https://www.twitter.com/paladique) | +| 04 | ಸಂಖ್ಯಾಶಾಸ್ತ್ರ ಮತ್ತು ಸಾಧ್ಯತೆಗಳ ಪರಿಚಯ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಾಧ್ಯತೆ ಮತ್ತು ಸಂಖ್ಯಾಶಾಸ್ತ್ರದ ಗಣಿತೀಯ ತಂತ್ರಗಳನ್ನು ತಿಳಿಯಿರಿ. | [ಪಾಠ](1-Introduction/04-stats-and-probability/README.md) [ವೀಡಿಯೋ](https://youtu.be/Z5Zy85g4Yjw) | [ಡ್ಮಿಟ್ರಿ](http://soshnikov.com) | +| 05 | ಸಂಬಂಧಿತ ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | ಸಂಬಂಧಿತ ಡೇಟಾಗೆ ಪರಿಚಯ ಮತ್ತು ವಿಷಯಮಾಡಿರುವ, ಸಂಧರ್ಭದಲ್ಲಿರುವ, ಮತ್ತು ಅರ್ಹ ಡೇಟಾಗೆ ಜಾನುವಾರು ವಿವರಣೆ ಮಾಡಲು ಮೂಲತಃ ಸ್ಕ್ಯೂಎಲ್ (SQL) ಅನ್ನು ಉಪಯೋಗಿಸುವ ಮೂಲಭೂತಗಳು. | [ಪಾಠ](2-Working-With-Data/05-relational-databases/README.md) | [ಕ್ರಿಸ್ಥೋಫರ್](https://www.twitter.com/geektrainer) | +| 06 | ನೋSQL ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | ಸಂಬಂಧಹೀನ ಡೇಟಾಗೆ ಪರಿಚಯ, ಅದರ ವಿವಿಧ ಪ್ರಕಾರಗಳು ಮತ್ತು ಡಾಕ್ಯುಮೆಂಟ್ ಡೇಟಾಬೇಸ್‌ಗಳನ್ನು ಅನ್ವೇಷಿಸಲು ಮತ್ತು ವಿಶ್ಲೇಷಿಸಲು ಮೂಲಭೂತಗಳು. | [ಪಾಠ](2-Working-With-Data/06-non-relational/README.md) | [ಜಾಸ್ಮಿನ್](https://twitter.com/paladique)| +| 07 | ಪೈಥಾನ್ ಜೊತೆಗೆ ಕೆಲಸ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | Pandas ಮುಂತಾದ ಗ್ರಂಥಾಲಯಗಳೊಂದಿಗೆ ಡೇಟಾ ಅನ್ವೇಷಣೆಯಿಗಾಗಿ ಪೈಥಾನ್ ಬಳಕೆಯ ಮೂಲಭೂತಗಳು. ಪೈಥಾನ್ ಪ್ರೋಗ್ರಾಮಿಂಗ್ ಆಧಾರಭೂತ ಅರ್ಥಪೂರ್ಣತೆಯನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗಿದೆ. | [ಪಾಠ](2-Working-With-Data/07-python/README.md) [ವೀಡಿಯೋ](https://youtu.be/dZjWOGbsN4Y) | [ಡ್ಮಿಟ್ರಿ](http://soshnikov.com) | +| 08 | ಡೇಟಾ ಸಿದ್ಧತೆ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | ಇರುವ ಡೇಟಾದ ಅಭಾವ, ತಪ್ಪು ಅಥವಾ ಅಪೂರ್ಣತೆ ಸವಾಲುಗಳನ್ನು ನಿಭಾಯಿಸಲು ಡೇಟಾ ಶುಚಿಗೊಳಿಸುವಿಕೆ ಮತ್ತು ಪರಿವರ್ತನೆ ತಂತ್ರಗಳು. | [ಪಾಠ](2-Working-With-Data/08-data-preparation/README.md) | [ಜಾಸ್ಮಿನ್](https://www.twitter.com/paladique) | +| 09 | ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | Matplotlib ಬಳಸಿಕೊಂಡು ಹಕ್ಕಿಗಳ ಡೇಟಾವನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು ಕಲಿಯಿರಿ 🦆 | [ಪಾಠ](3-Data-Visualization/09-visualization-quantities/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | +| 10 | ಡೇಟಾ ವಿತರಣೆಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | engu observations ಮತ್ತು ಪ್ರವೃತ್ತಿಗಳನ್ನು ಒಂದು ಅಂತರ್ಜಾಲದಲ್ಲಿ ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/10-visualization-distributions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | +| 11 | ಅನುಪಾತಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ವಿಚಿತ್ರ ಮತ್ತು ಗುಂಪು ಶೇಕಡಾವಾರುಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/11-visualization-proportions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | +| 12 | ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಡೇಟಾ ಮತ್ತು ಅದರ ಬದಲಾಗುವ ಬದಲಾವಣೆಗಳ ನಡುವಿನ ಸಂಪರ್ಕ ಮತ್ತು ಸಹಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/12-visualization-relationships/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) | +| 13 | ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಪರಿಣಾಮಕಾರಿ ಸಮಸ್ಯೆ ಪರಿಹಾರ ಮತ್ತು ಒಳನೋಟಗಳಿಗಾಗಿ ನಿಮ್ಮ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮೌಲ್ಯಯುತವಾಗಿಸಲು ತಂತ್ರಗಳು ಮತ್ತು ಮಾರ್ಗದರ್ಶನ. | [ಪಾಠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ ಜೆನ್](https://twitter.com/jenlooper) | +| 14 | ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚರಿತ್ರೆಯ ಪರಿಚಯ | [ಜೀವನಚರಿತ್ರೆ](4-Data-Science-Lifecycle/README.md) | ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚರಿತ್ರೆಗೆ ಪರಿಚಯ ಮತ್ತು ಅದರ ಮೊದಲ ಹಂತವಾದ ಡೇಟಾ ಸಂಗ್ರಹಣೆ ಮತ್ತು ತೆಗೆಯುವಿಕೆ. | [ಪಾಠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ಜಾಸ್ಮಿನ್](https://twitter.com/paladique) | +| 15 | ವಿಶ್ಲೇಷಣೆ | [ಜೀವನಚರಿತ್ರೆ](4-Data-Science-Lifecycle/README.md) | ಡೇಟಾ ವಿಶ್ಲೇಷಣೆಗೆ ಈ ಹಂತದಲ್ಲಿ ಕೇಂದ್ರೀಕರಿಸಲಾಗುವುದು. | [ಪಾಠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ಜಾಸ್ಮಿನ್](https://twitter.com/paladique) | +| 16 | ಸಂವಹನ | [ಜೀವನಚರಿತ್ರೆ](4-Data-Science-Lifecycle/README.md) | ನಿರ್ದೇಶಕರಿಗೆ ಸುಲಭವಾಗಿ ಅರ್ಥವಾಗುವ ರೀತಿಯಲ್ಲಿ ಡೇಟಾದೊಳಗಿನ ತಿಳಿವಳಿಕೆಯನ್ನು ಪ್ರಸ್ತುತಪಡಿಸುವ ಹಂತ. | [ಪಾಠ](4-Data-Science-Lifecycle/16-communication/README.md) | [ಜೆಲೆನ್](https://twitter.com/JalenMcG) | +| 17 | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ಮತ್ತು ಅದರ ಪ್ರಯೋಜನಗಳ ಪರಿಚಯ. | [ಪಾಠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮಾಡ್](https://twitter.com/maudstweets) | +| 18 | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | Low Code ಉಪಕರಣಗಳನ್ನು ಬಳಸಿ ಮಾದರಿಗಳನ್ನು ತರಬೇತು ಮಾಡುವುದು. | [ಪಾಠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮಾಡ್](https://twitter.com/maudstweets) | +| 19 | ಕ್ಲೌಡ್‌ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ಬಳಸಿ ಮಾದರಿಗಳನ್ನು разಸ್ತಿಸಲು. | [ಪಾಠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮಾಡ್](https://twitter.com/maudstweets) | +| 20 | ವಲೆಗಳಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ವೈಲ್ಡ್‌ನಲ್ಲಿ](6-Data-Science-In-Wild/README.md) | ನೈಜ ಜಾಗತಿಕದಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ಚಾಲಿತ ಯೋಜನೆಗಳು. | [ಪಾಠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) | -## GitHub ಕೋಡ್ಸ್ಪೇಸಸ್ +## GitHub ಕೋಡ್‌ಸ್ಪೇಸ್‌ಗಳು -ಈ ಮಾದರಿಯನ್ನು ಕೋಡ್ಸ್ಪೇಸ್‌ನಲ್ಲಿ ತೆರೆಯಲು ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ: -1. ಕೋಡ್ ಡ್ರಾಪ್-ಡೌನ್ ಮেনುವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ ಮತ್ತು Open with Codespaces ಆಯ್ಕೆಮಾಡಿ. -2. ತಲುಪುವ ಫಲೇನಿನಲ್ಲಿ ಕೆಳಗಿನ + New codespace ಆಯ್ಕೆಮಾಡಿ. -ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ, [GitHub ಡಾಕ್ಯುಮೆಂಟೇಶನ್](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ನೋಡಿ. +ಈ ಮಾದರಿಯನ್ನು ಕೋಡ್‌ಸ್ಪೇಸ್‌ನಲ್ಲಿ ತೆಗೆಯಲು ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ: +1. ಕೋಡ್ ಡ್ರಾಪ್-ಡೌನ್ ಮೆನು ಕ್ಲಿಕ್ ಮಾಡಿ ಮತ್ತು Open with Codespaces ಆಯ್ಕೆ ಮಾಡಿ. +2. ಪೇನೆಲ್ ಬಾಟಮ್ನಲ್ಲಿ + New codespace ಆಯ್ಕೆಮಾಡಿ. +ಮತ್ತಷ್ಟು ಮಾಹಿತಿಗೆ, [GitHub ಡಾಕ್ಯುಮೆಂಟೇಷನ್](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ನೋಡಿ. -## VSCode ರಿಮೋಟ್ - ಕಂಟೇನರ್‌ಗಳು -ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರ ಮತ್ತು VSCode ಬಳಸಿ ಈ റെಪೋವನ್ನು ಕಂಟೇನರ್‌ನಲ್ಲಿ ತೆರೆಯಲು ಕೆಳಗಿನ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ `VS Code Remote - Containers` ವಿಸ್ತರಣೆ ಬಳಸಿ: +## VSCode ರಿಮೋಟ್ - ಕಂಟೈನರ್ಸ್ +ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರದಲ್ಲಿಯೂ ಮತ್ತು VSCode ನಲ್ಲಿ VS Code Remote - Containers ವಿಸ್ತರಣೆ ಬಳಸಿಕೊಂಡು ಈ ರೆಪೋವನ್ನು ಕಂಟೈನರ್‌ನಲ್ಲಿ ತೆಗೆಯಲು ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ: -1. ಡೆವಲಪ್‌ಮೆಂಟ್ ಕಂಟೇನರ್ ಬಳಕೆಯಲ್ಲಿದ್ದರೆ, ನಿಮ್ಮ ಸಿಸ್ಟಮ್ ಮೂಲಭೂತ ಅಗತ್ಯಗಳನ್ನು ಹೊಂದಿರುವುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಿ (ಅಂದರೆ ಡಾಕರ್ ಸ್ಥಾಪಿಸಲಾಗಿದೆ) [Getting Started ಡಾಕ್ಯುಮೆಂಟೇಶನ್](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ನಲ್ಲಿ ತಿಳಿದೆ. +1. ನೀವು ಡೆವಲಪ್ಮೆಂಟ್ ಕಂಟೈನರ್ ಮೊದಲ ಬಾರಿಗೆ ಬಳಸುತ್ತಿದ್ದರೆ, ನಿಮ್ಮ ವ್ಯವಸ್ಥೆಗೆ ಮೊದಲು ಅಗತ್ಯವಿರುವ ಅಂಶಗಳು (ಉದಾ. ಡೋಕರ್ ಇನ್‌ಸ್ಟಾಲ್ ಮಾಡಿರಬೇಕು) ಇದ್ದಾರೆ ಎಂದು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಿ [Getting Started ಡಾಕ್ಯುಮೆಂಟೇಷನ್](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ನಲ್ಲಿ. -ಈ ರೆಪೋಜಿಟೋರಿಯನ್ನು ಬಳಸಲು, ನೀವು ಐಸೋಲೇಟ್‌ಡ್ ಡಾಕರ್ ವಾಲ್ಯೂಮ್‌ನಲ್ಲಿ ರೆಪೋವನ್ನು ತೆರೆಯಬಹುದು: +ಈ ಸಂಗ್ರಹಾಲಯವನ್ನು ಬಳಸಲು, ನೀವು ಕಡತತಂತ್ರದಲ್ಲಿಲ್ಲದೆ ಒಂದು ಡೋಕರ್ ವಾಲ್ಯೂಮ್‌ನಲ್ಲಿ ರೆಪೋ ತೆಗೆಯಬಹುದು: -**ಗಮನಿಸಿ**: ಇಲ್ಲಿನ Remote-Containers: **Clone Repository in Container Volume...** ಆಜ್ಞೆಯನ್ನು ಬಳಸಿ ಸ್ಥಳೀಯ ಫೈಲ್‌ಸಿಸ್ಟಮ್ ಬದಲು ಡಾಕರ್ ವಾಲ್ಯೂಮ್‌ಗೆ ಮೂಲ ಕೋಡ್ ಅನ್ನು ಕ್ಲೋನ್ ಮಾಡುತ್ತದೆ. [ವಾಲ್ಯೂಮ್‌ಗಳು](https://docs.docker.com/storage/volumes/) ಒಂದು ಕಂಟೇನರ್ ಡೇಟಾ ಉಳಿಸುವ ಪ್ರಾಥಮಿಕ ವಿಧಾನವಾಗಿವೆ. +**ಗಮನಿಸಿ**: ಇದನ್ನು ಬಳಸಲು ಹಿಂಭಾಗದಲ್ಲಿ Remote-Containers: **Clone Repository in Container Volume...** ಆಜ್ಞೆಯನ್ನು ಬಳಸಿ ಮೂಲ ಕೋಡ್ ಅನ್ನು ಡೋಕರ್ ವಾಲ್ಯೂಮ್‌ಗೆ ಕ್ಲೋನ್ ಮಾಡುತ್ತದೆ. [ವಾಲ್ಯೂಮ್‌ಗಳು](https://docs.docker.com/storage/volumes/) ಕಂಟೈನರ್ ಡೇಟಾವನ್ನು ಉಳಿಸುವುದಕ್ಕೆ ಉಚಿತ ಮಿಕೆನಿಸಮ್ ಆಗಿವೆ. -ಅಥವಾ ಕೊನೆಯಲ್ಲಿ ಕ್ಲೋನ್ ಮಾಡಲಾದ ಅಥವಾ ಡೌನ್ಲೋಡ್ ಮಾಡಲಾದ ರೆಪೋವನ್ನು ತೆರೆಯಿರಿ: +ಅಥವಾ ಈ ರೆಪೋವನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಕ್ಲೋನ್ ಅಥವಾ ಡೌನ್ಲೋಡ್ ಮಾಡಲಾಗಿರುವ ಪ್ರತಿಯನ್ನು ತೆರೆಯಿರಿ: -- ಈ ರೆಪೋವನ್ನು ನಿಮ್ಮ ಸ್ಥಳೀಯ ಫೈಲ್ ಸಿಸ್ಟಮ್‌ಗೆ ಕ್ಲೋನ್ ಮಾಡಿ. -- F1 ಒತ್ತಿ ಮತ್ತು Remote-Containers: Open Folder in Container... ಆಜ್ಞೆ ಆಯ್ಕೆಮಾಡಿ. -- ಈ ಫೋಲ್ಡರ್‌ನ ಕ್ಲೋನ್ ಮಾಡಲಾದ ನಕಲನ್ನು ಆಯ್ಕೆ ಮಾಡಿ, ಕಂಟೇನರ್ ಪ್ರಾರಂಭವಾಗಲು ಕಾಯಿರಿ ಮತ್ತು ಪ್ರಯತ್ನಿಸಿ. +- ಈ ರೆಪೋವನ್ನು ನಿಮ್ಮ ಸ್ಥಳೀಯ ಫೈಲ್ಸಿಸ್ಟಂಗೆ ಕ್ಲೋನ್ ಮಾಡಿ. +- F1 ಒತ್ತಿ ಮತ್ತು **Remote-Containers: Open Folder in Container...** ಆಜ್ಞೆಯನ್ನು ಆರಿಸಿ. +- ಈ ಫೋಲ್ಡರ್‌ನ ಕ್ಲೋನ್ ಮಾಡಲಾದ ನಕಲನ್ನು ಆಯ್ಕೆಮಾಡಿ, ಕಂಟೈನರ್ ಪ್ರಾರಂಭವಾಗುವವರೆಗೆ ಕಾಯಿರಿ ಮತ್ತು ಪ್ರಯತ್ನಿಸಿ. -## ಆಫ್ಲೈನ್ ಪ್ರವೇಶ +## ಆಫ್‌ಲೈನ್ ಪ್ರವೇಶ -ನೀವು [Docsify](https://docsify.js.org/#/) ಬಳಸಿ ಈ ಡಾಕ್ಯುಮೆಂಟೇಶನ್ ಅನ್ನು ಆಫ್ಲೈನ್‌ನಲ್ಲಿ ಓದಬಹುದು. ಈ ರೆಪೋವನ್ನು ಫೋರ್ಕ್ ಮಾಡಿ, ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರದಲ್ಲಿ [Docsify ಅನ್ನು ಸ್ಥಾಪಿಸಿ](https://docsify.js.org/#/quickstart), ನಂತರ ಈ ರೆಪೋ‌ನ ರೂಟ್ ಫೋಲ್ಡರ್‌ನಲ್ಲಿ `docsify serve` ಎಂದು ಟೈಪ್ ಮಾಡಿ. ವೆಬ್‌ಸೈಟ್ ಸ್ಥಳೀಯವಾಗಿ 3000 ಪೋರ್ಟ್‌ನಲ್ಲಿ `localhost:3000` ನಲ್ಲಿ ಸರ್ವ್ ಆಗುತ್ತದೆ. +ನೀವು ಈ ಡಾಕ್ಯುಮೆಂಟೇಶನ್ ಅನ್ನು ಆಫ್‌ಲೈನ್‌ನಲ್ಲಿ Docsify (https://docsify.js.org/#/) ಬಳಸಿ ಓಡಿಸಬಹುದು. ಈ ರೆಪೋವನ್ನು Fork ಮಾಡಿ, ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರದಲ್ಲಿ Docsify ಇನ್‌ಸ್ಟಾಲ್ ಮಾಡಿ (https://docsify.js.org/#/quickstart), ನಂತರ ಈ ರೆಪೋ ರೂಟ್ ಫೋಲ್ಡರ್ನಲ್ಲಿ `docsify serve` ಟೈಪ್ ಮಾಡಿ. ವೆಬ್‌ಸೈಟ್ ನಿಮ್ಮ ಸ್ಥಳೀಯ ಹಣಗೆ 3000 ಪೋರ್ಟ್‌ನಲ್ಲಿ ಸರ್ವ್ ಆಗುತ್ತದೆ: `localhost:3000`. -> ಟಿಪ್ಪಣಿ, ಡಾಕ್ಯುಮೆಂಟ್‌ನೋಟ್ಬುಕ್‌ಗಳು Docsify ಮೂಲಕ ರೆಂಡರ್ ಆಗುವುದಿಲ್ಲ, ಆದ್ದರಿಂದ ನೀವು ನೋಟ್‌ಬುಕ್‌ಗೆ ಚಾಲನೆ ನೀಡಬೇಕಾದರೆ, ಅದನ್ನು VS Codeದಲ್ಲಿರುವ ಪೈಥಾನ್ ಕರ್ನೆಲ್‌ನಲ್ಲಿ ಪ್ರತ್ಯೇಕವಾಗಿ ಮಾಡಬೇಕು. +> ಗಮನಿಸಿ, ನೋಟ್ಬುಕ್‌ಗಳನ್ನು Docsify ಮೂಲಕ ರೆಂಡರ್ ಮಾಡಲಾಗುವುದಿಲ್ಲ, ಆದ್ದರಿಂದ ನೀವು ನೋಟ್ಬುಕ್ ಅನ್ನು ಓಡಿಸುವ ಅಗತ್ಯವಿದ್ದರೆ, ಅದನ್ನು VS Code ನಲ್ಲಿ Python ಕೆರ್ನೆಲ್ ಮೂಲಕ ಪ್ರತ್ಯೇಕವಾಗಿ ನಡೆಸಿ. -## ಇತರ ಪಠ್ಯಕ್ರಮಗಳು +## ಇತರೆ ಪಠ್ಯಕ್ರಮಗಳು -ನಮ್ಮ ತಂಡ ಇನ್ನೂ ಹಲವಾರು ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಉತ್ಪಾದಿಸುತ್ತಿದೆ! ನೋಡಿ: +ನಮ್ಮ ತಂಡ ಇತರೆ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಉತ್ಪಾದಿಸುತ್ತದೆ! ನೋಡಿ: -### ಲ್ಯಾಂಚ್‌ಚೈನ್ +### ಲ್ಯಾಂಗ್‌ಚೈನ್ [![LangChain4j for Beginners](https://img.shields.io/badge/LangChain4j%20for%20Beginners-22C55E?style=for-the-badge&&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchain4j-for-beginners) -[![LangChain.js for Beginners](https://img.shields.io/badge/LangChain.js%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin) +[![LangChain.js ಪ್ರಾರಂಭकर्ताओंಿಗಾಗಿ](https://img.shields.io/badge/LangChain.js%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin) --- -### ಅಜೂರ್ / ಎಡ್ಜ್ / MCP / ಏಜೆಂಟ್ಸ್ -[![AZD for Beginners](https://img.shields.io/badge/AZD%20for%20Beginners-0078D4?style=for-the-badge&labelColor=E5E7EB&color=0078D4)](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst) -[![Edge AI for Beginners](https://img.shields.io/badge/Edge%20AI%20for%20Beginners-00B8E4?style=for-the-badge&labelColor=E5E7EB&color=00B8E4)](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst) -[![MCP for Beginners](https://img.shields.io/badge/MCP%20for%20Beginners-009688?style=for-the-badge&labelColor=E5E7EB&color=009688)](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst) -[![AI Agents for Beginners](https://img.shields.io/badge/AI%20Agents%20for%20Beginners-00C49A?style=for-the-badge&labelColor=E5E7EB&color=00C49A)](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst) +### ಅಜೂರ್ / ಎಡ್ಜ್ / MCP / ಏಜೆಂಟ್‍ಗಳು +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ AZD](https://img.shields.io/badge/AZD%20for%20Beginners-0078D4?style=for-the-badge&labelColor=E5E7EB&color=0078D4)](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ ಎಡ್ಜ್ AI](https://img.shields.io/badge/Edge%20AI%20for%20Beginners-00B8E4?style=for-the-badge&labelColor=E5E7EB&color=00B8E4)](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ MCP](https://img.shields.io/badge/MCP%20for%20Beginners-009688?style=for-the-badge&labelColor=E5E7EB&color=009688)](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ AI ಏಜೆಂಟ್‍ಗಳು](https://img.shields.io/badge/AI%20Agents%20for%20Beginners-00C49A?style=for-the-badge&labelColor=E5E7EB&color=00C49A)](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst) --- - + ### ಜನರೇಟಿವ್ AI ಸರಣಿಗಳು -[![Generative AI for Beginners](https://img.shields.io/badge/Generative%20AI%20for%20Beginners-8B5CF6?style=for-the-badge&labelColor=E5E7EB&color=8B5CF6)](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst) -[![Generative AI (.NET)](https://img.shields.io/badge/Generative%20AI%20(.NET)-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst) -[![Generative AI (Java)](https://img.shields.io/badge/Generative%20AI%20(Java)-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst) -[![Generative AI (JavaScript)](https://img.shields.io/badge/Generative%20AI%20(JavaScript)-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ ಜನರೇಟಿವ್ AI](https://img.shields.io/badge/Generative%20AI%20for%20Beginners-8B5CF6?style=for-the-badge&labelColor=E5E7EB&color=8B5CF6)](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst) +[![ಜನರೇಟಿವ್ AI (.NET)](https://img.shields.io/badge/Generative%20AI%20(.NET)-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst) +[![ಜನರೇಟಿವ್ AI (ಜಾವಾ)](https://img.shields.io/badge/Generative%20AI%20(Java)-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst) +[![ಜನರೇಟಿವ್ AI (ಜಾವಾಸ್ಕ್ರಿಪ್ಟ್)](https://img.shields.io/badge/Generative%20AI%20(JavaScript)-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst) --- - -### ಕೋರ್ ಲರ್ನಿಂಗ್ -[![ML for Beginners](https://img.shields.io/badge/ML%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=22C55E)](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst) -[![Data Science for Beginners](https://img.shields.io/badge/Data%20Science%20for%20Beginners-84CC16?style=for-the-badge&labelColor=E5E7EB&color=84CC16)](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst) -[![AI for Beginners](https://img.shields.io/badge/AI%20for%20Beginners-A3E635?style=for-the-badge&labelColor=E5E7EB&color=A3E635)](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst) -[![Cybersecurity for Beginners](https://img.shields.io/badge/Cybersecurity%20for%20Beginners-F97316?style=for-the-badge&labelColor=E5E7EB&color=F97316)](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung) -[![Web Dev for Beginners](https://img.shields.io/badge/Web%20Dev%20for%20Beginners-EC4899?style=for-the-badge&labelColor=E5E7EB&color=EC4899)](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst) -[![IoT for Beginners](https://img.shields.io/badge/IoT%20for%20Beginners-14B8A6?style=for-the-badge&labelColor=E5E7EB&color=14B8A6)](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst) -[![XR Development for Beginners](https://img.shields.io/badge/XR%20Development%20for%20Beginners-38BDF8?style=for-the-badge&labelColor=E5E7EB&color=38BDF8)](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst) + +### ಹೃದಯಭಾಗದ ಕಲಿಕೆ +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ ಯಂತ್ರಅಧ್ಯಯನ](https://img.shields.io/badge/ML%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=22C55E)](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್](https://img.shields.io/badge/Data%20Science%20for%20Beginners-84CC16?style=for-the-badge&labelColor=E5E7EB&color=84CC16)](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ AI](https://img.shields.io/badge/AI%20for%20Beginners-A3E635?style=for-the-badge&labelColor=E5E7EB&color=A3E635)](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ ಸೈಬರ್‌ಸುರಕ್ಷತೆ](https://img.shields.io/badge/Cybersecurity%20for%20Beginners-F97316?style=for-the-badge&labelColor=E5E7EB&color=F97316)](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ ವೆಬ್ ಡೆವಲಪ್‌ಮೆಂಟ್](https://img.shields.io/badge/Web%20Dev%20for%20Beginners-EC4899?style=for-the-badge&labelColor=E5E7EB&color=EC4899)](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ IOT](https://img.shields.io/badge/IoT%20for%20Beginners-14B8A6?style=for-the-badge&labelColor=E5E7EB&color=14B8A6)](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst) +[![ಪ್ರಾರಂಭकर्तೃಗಳಿಗಾಗಿ XR ಅಭಿವೃದ್ಧಿ](https://img.shields.io/badge/XR%20Development%20for%20Beginners-38BDF8?style=for-the-badge&labelColor=E5E7EB&color=38BDF8)](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst) --- - -### ಕೋಪೈಲಟ್ ಸರಣಿ -[![Copilot for AI Paired Programming](https://img.shields.io/badge/Copilot%20for%20AI%20Paired%20Programming-FACC15?style=for-the-badge&labelColor=E5E7EB&color=FACC15)](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst) -[![Copilot for C#/.NET](https://img.shields.io/badge/Copilot%20for%20C%23/.NET-FBBF24?style=for-the-badge&labelColor=E5E7EB&color=FBBF24)](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst) -[![Copilot Adventure](https://img.shields.io/badge/Copilot%20Adventure-FDE68A?style=for-the-badge&labelColor=E5E7EB&color=FDE68A)](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst) + +### ಕೋಪಿಲಟ್ ಸರಣಿ +[![AI ಜೋಡಣೆ ಪ್ರೋಗ್ರಾಮಿಂಗ್‌ಗೆ ಕೋಪಿಲಟ್](https://img.shields.io/badge/Copilot%20for%20AI%20Paired%20Programming-FACC15?style=for-the-badge&labelColor=E5E7EB&color=FACC15)](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst) +[![C#/.NET ಕೋಪಿಲಟ್](https://img.shields.io/badge/Copilot%20for%20C%23/.NET-FBBF24?style=for-the-badge&labelColor=E5E7EB&color=FBBF24)](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst) +[![ಕೋಪಿಲಟ್ ಸಾಹಸ](https://img.shields.io/badge/Copilot%20Adventure-FDE68A?style=for-the-badge&labelColor=E5E7EB&color=FDE68A)](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst) ## ಸಹಾಯ ಪಡೆಯುವುದು -**ಸಮಸ್ಯೆ ಎದುರಿಸುತ್ತಿದ್ದೀರಾ?** ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳ ಪರಿಹಾರಕ್ಕಾಗಿ ನಮ್ಮ [ಸಮಸ್ಯೆ ಪರಿಹಾರ ಮಾರ್ಗದರ್ಶಿ](TROUBLESHOOTING.md) ಅನ್ನು ಪರಿಶೀಲಿಸಿ. +**ಸಮಸ್ಯೆ ಎದುರಿಸುತ್ತಿದ್ದೀರಾ?** ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳ ಪರಿಹಾರಕ್ಕಾಗಿ ನಮ್ಮ [ಟ್ರಬುಲ್‌ಶೂಟಿಂಗ್ ಗೈಡ್](TROUBLESHOOTING.md) ಅನ್ನು ಪರಿಶೀಲಿಸಿ. -ನೀವು ಅಡಚಣೆಯಲ್ಲಿದ್ದರೆ ಅಥವಾ AI ಅಪ್ಲಿಕೇಶನ್‌ಗಳನ್ನು ನಿರ್ಮಿಸುವ ಬಗ್ಗೆ ಯಾವುದಾದರೂ ಪ್ರಶ್ನೆಗಳಿದ್ದರೆ, MCP ಬಗ್ಗೆ ಚರ್ಚೆಗಳಿಗಾಗಿ ಸಹಪಾಠಿಗಳು ಮತ್ತು ಅನುಭವ ಹೊಂದಿದ ಡೆವಲಪರ್‌ಗಳ ಜೊತೆ ಸೇರಿ. ಇದು ಪ್ರಶ್ನೆಗಳನ್ನು ಸ್ವಾಗತಿಸುವ ಹಾಗೂ ಜ್ಞಾನವನ್ನು ಮುಕ್ತವಾಗಿ ಹಂಚಿಕೊಳ್ಳುವ ಬೆಂಬಲ ಸಮುದಾಯವಾಗಿದೆ. +ನೀವು ಸಾಂದರ್ಭಿಕವಾಗಿ ಅಡ್ಡಿಯಾಗಿದ್ದೀರಿ ಅಥವಾ AI ಅಪ್ಲಿಕೇಶನ್‌ಗಳನ್ನು ನಿರ್ಮಿಸುವ ಕುರಿತು ಯಾವುದಾದರೂ ಪ್ರಶ್ನೆಗಳಿದ್ದರೆ, MCP ಬಗ್ಗೆ fellow ಕಲಿಯುವವರು ಮತ್ತು ಅನುಭವসূಕ್ತ ಬೆಳವಣಿಗಾರರೊಂದಿಗೆ ಚರ್ಚೆಗಳಲ್ಲಿ ಸೇರಿ. ಇದು ಸಹಾಯಕ ಸಮುದಾಯವಾಗಿದ್ದು, ಅಲ್ಲಿ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಲು ಮತ್ತು ಜ್ಞಾನವನ್ನು ಮುಕ್ತವಾಗಿ ಹಂಚಿಕೊಳ್ಳಲು ಅವಕಾಶವಿದೆ. -[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) +[![Microsoft Foundry ಡಿಸ್ಕಾರ್ಡ್](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -ನೀವು ಉತ್ಪನ್ನ ಪ್ರತಿಕ್ರಿಯೆ ಅಥವಾ ದೋಷಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದರೆ, ನಿರ್ಮಾಣ ಮಾಡುವಾಗ ಭೇಟಿ ಕೊಡಿ: +ನೀವು ಉತ್ಪನ್ನದ ಪ್ರತಿಕ್ರಿಯೆ ಅಥವಾ ದೋಷಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದರೆ, ದಯವಿಟ್ಟು ಭೇಟಿ ನೀಡಿ: -[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) +[![Microsoft Foundry Developer ಫೋರಮ್](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) --- -**ಅಪಘಾತ ನಿವರಣಾ ಸೂಚನೆ**: -ಈ ದಸ್ತಾವೇಜು [Co-op Translator](https://github.com/Azure/co-op-translator) ಎಂಬ AI ಅನುವಾದ ಸೇವೆಯ ಮೂಲಕ ಅನುವಾದಿಸಲಾಗಿದೆ. ನಾವು ಶುದ್ಧತೆಯುಳ್ಳ ಅನುವಾದಕ್ಕಾಗಿ ಪ್ರಯತ್ನಿಸುತ್ತೇವೆ ಎಂಬುದರೊಂದಿಗೆ, ಸ್ವಯಂಚಾಲಿತ ಅನುವಾದಗಳಲ್ಲಿ ತಪ್ಪುಗಳು ಅಥವಾ ಅಸತ್ಯತೆಗಳಿರಬಹುದು ಎಂಬುದನ್ನು ದಯವಿಟ್ಟು ಗಮನದಲ್ಲಿಡಿ. ಮೂಲ ಭಾಷೆಯ ದಸ್ತಾವೇಜು ಅಥವಾ ಮೂಲ ಪಠ್ಯವೇ ಅನುಷ್ಠಾನಾತ್ಮಕ ಮತ್ತು ಅಧಿಕೃತ ಮೂಲ ಎಂದು ಪರಿಗಣಿಸಬೇಕು. ಪ್ರಮುಖ ಮಾಹಿತಿಗಾಗಿ ವೃತ್ತಿಪರ ಮಾನವರ ಅನುವಾದವನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗುತ್ತದೆ. ಈ ಅನುವಾದದ ಬಳಕೆಯಿಂದ ಉಂಟಾಗಬಹುದಾದ ಯಾವುದೇ ತಪ್ಪುರ್ಥಮನೆ ಅಥವಾ ತಪ್ಪಾಗುವಿಕೆಗಳಿಗೆ ನಾವು ಹೊಣೆಗಾರರಾಗುವುದಿಲ್ಲ. +**ತಪ್ಪು ನೋಟ:** +ಈ ದಸ್ತಾವೇಜು [Co-op Translator](https://github.com/Azure/co-op-translator) ಎಂಬ AI ಅನುವಾದ ಸೇವೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅನುವಾದಿಸಲಾಗಿದೆ. ನಾವು ಸರಿಯಾಗಿರುವುದಕ್ಕೆ ಪ್ರಯತ್ನಿಸುವಾಗ, ಸ್ವಯಂಚಾಲಿತ ಅನುವಾದದಲ್ಲಿ ತಪ್ಪುಗಳು ಅಥವಾ ಅಸೂಚನೆಗಳಿರಬಹುದು ಎಂದು ಗಮನಿಸಿ. ಮೂಲ ದಸ್ತಾವೇಜನ್ನು ಅದರ ಮೂಲ ಭಾಷೆಯಲ್ಲಿ ಅಧಿಕಾರಿಕ ಮೂಲವಾಗಿಯೇ ಪರಿಗಣಿಸಬೇಕು. ಪ್ರಮುಖ ಮಾಹಿತಿಗೆ, ವೃತ್ತಿಪರ ಮಾನವ ಅನುವಾದವನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗುತ್ತದೆ. ಈ ಅನುವಾದ ಬಳಕೆಯಿಂದ ಉಂಟಾಗುವ ಯಾವುದೇ ತಪ್ಪು ನಿರ್ವಹಣೆ ಹಾಗೂ ಭ್ರಾಂತಿಗಳುಗಾಗಿ ನಾವು ಯಾರಿಗೂ ಹೊಣೆಗಾರರಾಗುವುದಿಲ್ಲ. \ No newline at end of file diff --git a/translations/kn/SECURITY.md b/translations/kn/SECURITY.md index f89a57ac..edebe6cb 100644 --- a/translations/kn/SECURITY.md +++ b/translations/kn/SECURITY.md @@ -1,12 +1,3 @@ - ## ಭದ್ರತೆ Microsoft ನಮ್ಮ ಸಾಫ್ಟ್‌ವೇರ್ ಉತ್ಪನ್ನಗಳು ಮತ್ತು ಸೇವೆಗಳ ಭದ್ರತೆಯನ್ನು ಗಂಭೀರವಾಗಿ ತೆಗೆದುಕೊಳ್ಳುತ್ತದೆ, ಇದರಲ್ಲಿ ನಮ್ಮ GitHub ಸಂಸ್ಥೆಗಳ ಮೂಲಕ ನಿರ್ವಹಿಸಲಾದ ಎಲ್ಲಾ ಮೂಲ ಕೋಡ್ ರೆಪೊಸಿಟರಿಗಳು ಸೇರಿವೆ, ಅವುಗಳಲ್ಲಿ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), ಮತ್ತು [ನಮ್ಮ GitHub ಸಂಸ್ಥೆಗಳು](https://opensource.microsoft.com/) ಸೇರಿವೆ. diff --git a/translations/kn/SUPPORT.md b/translations/kn/SUPPORT.md index 9964a5be..42d2a682 100644 --- a/translations/kn/SUPPORT.md +++ b/translations/kn/SUPPORT.md @@ -1,12 +1,3 @@ - # ಬೆಂಬಲ ## ಸಮಸ್ಯೆಗಳನ್ನು ದಾಖಲಿಸುವುದು ಮತ್ತು ಸಹಾಯ ಪಡೆಯುವುದು ಹೇಗೆ diff --git a/translations/kn/TROUBLESHOOTING.md b/translations/kn/TROUBLESHOOTING.md index caf296ec..aa30cad4 100644 --- a/translations/kn/TROUBLESHOOTING.md +++ b/translations/kn/TROUBLESHOOTING.md @@ -1,12 +1,3 @@ - # ಸಮಸ್ಯೆ ಪರಿಹಾರ ಮಾರ್ಗದರ್ಶಿ ಈ ಮಾರ್ಗದರ್ಶಿ ಡೇಟಾ ಸೈನ್ಸ್ ಫಾರ್ ಬಿಗಿನರ್ಸ್ ಪಠ್ಯಕ್ರಮದೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುವಾಗ ನೀವು ಎದುರಿಸಬಹುದಾದ ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳಿಗೆ ಪರಿಹಾರಗಳನ್ನು ಒದಗಿಸುತ್ತದೆ. diff --git a/translations/kn/USAGE.md b/translations/kn/USAGE.md index 6d7d9228..9f45db43 100644 --- a/translations/kn/USAGE.md +++ b/translations/kn/USAGE.md @@ -1,12 +1,3 @@ - # ಬಳಕೆ ಮಾರ್ಗದರ್ಶಿ ಈ ಮಾರ್ಗದರ್ಶಿ ಡೇಟಾ ಸೈನ್ಸ್ ಫಾರ್ ಬಿಗಿನರ್ಸ್ ಪಠ್ಯಕ್ರಮವನ್ನು ಬಳಸಲು ಉದಾಹರಣೆಗಳು ಮತ್ತು ಸಾಮಾನ್ಯ ಕಾರ್ಯಪ್ರವಾಹಗಳನ್ನು ಒದಗಿಸುತ್ತದೆ. diff --git a/translations/kn/docs/_sidebar.md b/translations/kn/docs/_sidebar.md index 1883fb89..1bdf772f 100644 --- a/translations/kn/docs/_sidebar.md +++ b/translations/kn/docs/_sidebar.md @@ -1,12 +1,3 @@ - - ಪರಿಚಯ - [ಡೇಟಾ ಸೈನ್ಸ್ ಅನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು](../1-Introduction/01-defining-data-science/README.md) - [ಡೇಟಾ ಸೈನ್ಸ್ ನ ನೈತಿಕತೆ](../1-Introduction/02-ethics/README.md) diff --git a/translations/kn/examples/README.md b/translations/kn/examples/README.md index c0bc6c2d..aae208da 100644 --- a/translations/kn/examples/README.md +++ b/translations/kn/examples/README.md @@ -1,12 +1,3 @@ - # ಆರಂಭಿಕರಿಗಾಗಿ ಸ್ನೇಹಪರ ಡೇಟಾ ಸೈನ್ಸ್ ಉದಾಹರಣೆಗಳು ಉದಾಹರಣೆಗಳ ಡೈರೆಕ್ಟರಿಗೆ ಸ್ವಾಗತ! ಈ ಸರಳ, ಚೆನ್ನಾಗಿ ಕಾಮೆಂಟ್ ಮಾಡಲಾದ ಉದಾಹರಣೆಗಳ ಸಂಗ್ರಹವು ನೀವು ಸಂಪೂರ್ಣ ಆರಂಭಿಕರಾಗಿದ್ದರೂ ಸಹ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಾರಂಭಿಸಲು ಸಹಾಯ ಮಾಡಲು ವಿನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ. diff --git a/translations/kn/for-teachers.md b/translations/kn/for-teachers.md index 5381e6ec..20da67bf 100644 --- a/translations/kn/for-teachers.md +++ b/translations/kn/for-teachers.md @@ -1,12 +1,3 @@ - ## ಶಿಕ್ಷಕರಿಗಾಗಿ ನೀವು ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ನಿಮ್ಮ ತರಗತಿಯಲ್ಲಿ ಬಳಸಲು ಇಚ್ಛಿಸುತ್ತೀರಾ? ದಯವಿಟ್ಟು ಮುಕ್ತವಾಗಿ ಬಳಸಿಕೊಳ್ಳಿ! diff --git a/translations/kn/quiz-app/README.md b/translations/kn/quiz-app/README.md index 8a766adf..b0052b2f 100644 --- a/translations/kn/quiz-app/README.md +++ b/translations/kn/quiz-app/README.md @@ -1,12 +1,3 @@ - # ಪ್ರಶ್ನೋತ್ತರಗಳು ಈ ಪ್ರಶ್ನೋತ್ತರಗಳು https://aka.ms/datascience-beginners ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ಪಠ್ಯಕ್ರಮದ ಪೂರ್ವ ಮತ್ತು ನಂತರದ ಉಪನ್ಯಾಸ ಪ್ರಶ್ನೋತ್ತರಗಳಾಗಿವೆ diff --git a/translations/kn/sketchnotes/README.md b/translations/kn/sketchnotes/README.md index 8a0684d5..7c9fcaca 100644 --- a/translations/kn/sketchnotes/README.md +++ b/translations/kn/sketchnotes/README.md @@ -1,12 +1,3 @@ - ಎಲ್ಲಾ ಸ್ಕೆಚ್‌ನೋಟ್ಗಳನ್ನು ಇಲ್ಲಿ ಕಂಡುಹಿಡಿಯಿರಿ! ## ಕ್ರೆಡಿಟ್ಸ್ diff --git a/translations/ml/.co-op-translator.json b/translations/ml/.co-op-translator.json new file mode 100644 index 00000000..2e8b31a2 --- /dev/null +++ b/translations/ml/.co-op-translator.json @@ -0,0 +1,422 @@ +{ + "1-Introduction/01-defining-data-science/README.md": { + "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4", + "translation_date": "2025-12-19T13:37:59+00:00", + "source_file": "1-Introduction/01-defining-data-science/README.md", + "language_code": "ml" + }, + "1-Introduction/01-defining-data-science/assignment.md": { + "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de", + "translation_date": "2025-12-19T13:41:01+00:00", + "source_file": "1-Introduction/01-defining-data-science/assignment.md", + "language_code": "ml" + }, + "1-Introduction/01-defining-data-science/solution/assignment.md": { + "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56", + "translation_date": "2025-12-19T14:34:45+00:00", + "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md", + "language_code": "ml" + }, + "1-Introduction/02-ethics/README.md": { + "original_hash": "58860ce9a4b8a564003d2752f7c72851", + "translation_date": "2025-12-19T14:10:15+00:00", + "source_file": "1-Introduction/02-ethics/README.md", + "language_code": "ml" + }, + "1-Introduction/02-ethics/assignment.md": { + "original_hash": "b588c0fc73014f52520c666efc3e0cc3", + "translation_date": "2025-12-19T14:28:24+00:00", + "source_file": "1-Introduction/02-ethics/assignment.md", + "language_code": "ml" + }, + "1-Introduction/03-defining-data/README.md": { + "original_hash": "12339119c0165da569a93ddba05f9339", + "translation_date": "2025-12-19T13:59:33+00:00", + "source_file": "1-Introduction/03-defining-data/README.md", + "language_code": "ml" + }, + "1-Introduction/03-defining-data/assignment.md": { + "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4", + "translation_date": "2025-12-19T14:01:37+00:00", + "source_file": "1-Introduction/03-defining-data/assignment.md", + "language_code": "ml" + }, + "1-Introduction/04-stats-and-probability/README.md": { + "original_hash": "ce95884566a74db72572cd51f0cb25ad", + "translation_date": "2025-12-19T13:51:35+00:00", + "source_file": "1-Introduction/04-stats-and-probability/README.md", + "language_code": "ml" + }, + "1-Introduction/04-stats-and-probability/assignment.md": { + "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff", + "translation_date": "2025-12-19T13:57:05+00:00", + "source_file": "1-Introduction/04-stats-and-probability/assignment.md", + "language_code": "ml" + }, + "1-Introduction/README.md": { + "original_hash": "696a8474a01054281704cbfb09148949", + "translation_date": "2025-12-19T13:23:07+00:00", + "source_file": "1-Introduction/README.md", + "language_code": "ml" + }, + "2-Working-With-Data/05-relational-databases/README.md": { + "original_hash": "11739c7b40e7c6b16ad29e3df4e65862", + "translation_date": "2025-12-19T15:48:02+00:00", + "source_file": "2-Working-With-Data/05-relational-databases/README.md", + "language_code": "ml" + }, + "2-Working-With-Data/05-relational-databases/assignment.md": { + "original_hash": "25b37acdfb2452917c1aa2e2ca44317a", + "translation_date": "2025-12-19T15:51:22+00:00", + "source_file": "2-Working-With-Data/05-relational-databases/assignment.md", + "language_code": "ml" + }, + "2-Working-With-Data/06-non-relational/README.md": { + "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf", + "translation_date": "2025-12-19T15:38:44+00:00", + "source_file": "2-Working-With-Data/06-non-relational/README.md", + "language_code": "ml" + }, + "2-Working-With-Data/06-non-relational/assignment.md": { + "original_hash": "f824bfdb8b12d33293913f76f5c787c5", + "translation_date": "2025-12-19T15:40:57+00:00", + "source_file": "2-Working-With-Data/06-non-relational/assignment.md", + "language_code": "ml" + }, + "2-Working-With-Data/07-python/README.md": { + "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3", + "translation_date": "2025-12-19T15:32:07+00:00", + "source_file": "2-Working-With-Data/07-python/README.md", + "language_code": "ml" + }, + "2-Working-With-Data/07-python/assignment.md": { + "original_hash": "dc8f035ce92e4eaa078ab19caa68267a", + "translation_date": "2025-12-19T15:37:13+00:00", + "source_file": "2-Working-With-Data/07-python/assignment.md", + "language_code": "ml" + }, + "2-Working-With-Data/08-data-preparation/README.md": { + "original_hash": "1b560955ff39a2bcf2a049fce474a951", + "translation_date": "2025-12-19T15:42:32+00:00", + "source_file": "2-Working-With-Data/08-data-preparation/README.md", + "language_code": "ml" + }, + "2-Working-With-Data/08-data-preparation/assignment.md": { + "original_hash": "f9d5a7275e046223fa6474477674b810", + "translation_date": "2025-12-19T15:45:32+00:00", + "source_file": "2-Working-With-Data/08-data-preparation/assignment.md", + "language_code": "ml" + }, + "2-Working-With-Data/README.md": { + "original_hash": "abc3309ab41bc5a7846f70ee1a055838", + "translation_date": "2025-12-19T13:29:38+00:00", + "source_file": "2-Working-With-Data/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/09-visualization-quantities/README.md": { + "original_hash": "a49d78e32e280c410f04e5f2a2068e77", + "translation_date": "2025-12-19T16:14:27+00:00", + "source_file": "3-Data-Visualization/09-visualization-quantities/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/09-visualization-quantities/assignment.md": { + "original_hash": "ad163c4fda72c8278280b61cad317ff4", + "translation_date": "2025-12-19T16:17:19+00:00", + "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/10-visualization-distributions/README.md": { + "original_hash": "80a20467e046d312809d008395051fc7", + "translation_date": "2025-12-19T15:54:16+00:00", + "source_file": "3-Data-Visualization/10-visualization-distributions/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/10-visualization-distributions/assignment.md": { + "original_hash": "40eeb9b9f94009c537c7811f9f27f037", + "translation_date": "2025-12-19T15:57:01+00:00", + "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/11-visualization-proportions/README.md": { + "original_hash": "42119bcc97bee88254e381156d770f3c", + "translation_date": "2025-12-19T16:02:29+00:00", + "source_file": "3-Data-Visualization/11-visualization-proportions/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/11-visualization-proportions/assignment.md": { + "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f", + "translation_date": "2025-12-19T16:05:10+00:00", + "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/12-visualization-relationships/README.md": { + "original_hash": "0764fd4077f3f04a1d968ec371227744", + "translation_date": "2025-12-19T15:58:10+00:00", + "source_file": "3-Data-Visualization/12-visualization-relationships/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/12-visualization-relationships/assignment.md": { + "original_hash": "680419753c086eef51be86607c623945", + "translation_date": "2025-12-19T16:00:04+00:00", + "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/13-meaningful-visualizations/README.md": { + "original_hash": "cfb068050337a36e348debaa502a24fa", + "translation_date": "2025-12-19T16:08:19+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/13-meaningful-visualizations/assignment.md": { + "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4", + "translation_date": "2025-12-19T16:11:28+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": { + "original_hash": "5c51a54dd89075a7a362890117b7ed9e", + "translation_date": "2025-12-19T16:18:53+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": { + "original_hash": "5c51a54dd89075a7a362890117b7ed9e", + "translation_date": "2025-12-19T16:18:07+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/09-visualization-quantities/README.md": { + "original_hash": "22acf28f518a4769ea14fa42f4734b9f", + "translation_date": "2025-12-19T16:32:46+00:00", + "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/09-visualization-quantities/assignment.md": { + "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1", + "translation_date": "2025-12-19T16:34:47+00:00", + "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/10-visualization-distributions/README.md": { + "original_hash": "ea67c0c40808fd723594de6896c37ccf", + "translation_date": "2025-12-19T16:21:13+00:00", + "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/10-visualization-distributions/assignment.md": { + "original_hash": "a233d542512136c4dd29aad38ca0175f", + "translation_date": "2025-12-19T16:23:38+00:00", + "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/11-visualization-proportions/README.md": { + "original_hash": "47028abaaafa2bcb1079702d20569066", + "translation_date": "2025-12-19T16:28:20+00:00", + "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/12-visualization-relationships/README.md": { + "original_hash": "a33c5d4b4156a2b41788d8720b6f724c", + "translation_date": "2025-12-19T16:24:50+00:00", + "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": { + "original_hash": "b4039f1c76548d144a0aee0bf28304ec", + "translation_date": "2025-12-19T16:38:09+00:00", + "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md", + "language_code": "ml" + }, + "3-Data-Visualization/README.md": { + "original_hash": "1441550a0d789796b2821e04f7f4cc94", + "translation_date": "2025-12-19T13:35:23+00:00", + "source_file": "3-Data-Visualization/README.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/14-Introduction/README.md": { + "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b", + "translation_date": "2025-12-19T15:27:04+00:00", + "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/14-Introduction/assignment.md": { + "original_hash": "564445c39ad29a491abcb9356fc4d47d", + "translation_date": "2025-12-19T15:28:43+00:00", + "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/15-analyzing/README.md": { + "original_hash": "661dad02c3ac239644d34c1eb51e76f8", + "translation_date": "2025-12-19T15:24:36+00:00", + "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/15-analyzing/assignment.md": { + "original_hash": "fcc7547171f4530f159676dd73ed772e", + "translation_date": "2025-12-19T15:26:03+00:00", + "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/16-communication/README.md": { + "original_hash": "215a3254ba5a222a57c5bb0192cea8e3", + "translation_date": "2025-12-19T15:19:45+00:00", + "source_file": "4-Data-Science-Lifecycle/16-communication/README.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/16-communication/assignment.md": { + "original_hash": "8980d7efd101c82d6d6ffc3458214120", + "translation_date": "2025-12-19T15:22:59+00:00", + "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md", + "language_code": "ml" + }, + "4-Data-Science-Lifecycle/README.md": { + "original_hash": "dd173fd30fc039a7a299898920680723", + "translation_date": "2025-12-19T13:24:32+00:00", + "source_file": "4-Data-Science-Lifecycle/README.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/17-Introduction/README.md": { + "original_hash": "5f8e7cdefa096664ae86f795be571580", + "translation_date": "2025-12-19T15:10:58+00:00", + "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/17-Introduction/assignment.md": { + "original_hash": "96f3696153d9ed54b19a1bb65438c104", + "translation_date": "2025-12-19T15:17:51+00:00", + "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/18-Low-Code/README.md": { + "original_hash": "bd4da10766c64fce4294a98f6479dfb0", + "translation_date": "2025-12-19T14:53:19+00:00", + "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": { + "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f", + "translation_date": "2025-12-19T15:03:50+00:00", + "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/19-Azure/README.md": { + "original_hash": "472d3fab1c5be50f387336e7a686dbe1", + "translation_date": "2025-12-19T14:43:18+00:00", + "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/19-Azure/assignment.md": { + "original_hash": "386efdbc19786951341f6956247ee990", + "translation_date": "2025-12-19T14:47:26+00:00", + "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md", + "language_code": "ml" + }, + "5-Data-Science-In-Cloud/README.md": { + "original_hash": "8dfe141a0f46f7d253e07f74913c7f44", + "translation_date": "2025-12-19T13:23:43+00:00", + "source_file": "5-Data-Science-In-Cloud/README.md", + "language_code": "ml" + }, + "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": { + "original_hash": "0f67a4139454816631526779a456b734", + "translation_date": "2025-12-19T16:51:57+00:00", + "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md", + "language_code": "ml" + }, + "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": { + "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0", + "translation_date": "2025-12-19T16:59:20+00:00", + "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md", + "language_code": "ml" + }, + "6-Data-Science-In-Wild/README.md": { + "original_hash": "07faf02ff163e609edf0b0308dc5d4e6", + "translation_date": "2025-12-19T13:36:40+00:00", + "source_file": "6-Data-Science-In-Wild/README.md", + "language_code": "ml" + }, + "AGENTS.md": { + "original_hash": "cc2e18ab65df63e75d3619c4752e9b22", + "translation_date": "2025-12-19T13:04:53+00:00", + "source_file": "AGENTS.md", + "language_code": "ml" + }, + "CODE_OF_CONDUCT.md": { + "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56", + "translation_date": "2025-12-19T13:09:06+00:00", + "source_file": "CODE_OF_CONDUCT.md", + "language_code": "ml" + }, + "CONTRIBUTING.md": { + "original_hash": "10f86fb29b5407088445ac803b3d0ed1", + "translation_date": "2025-12-19T12:49:34+00:00", + "source_file": "CONTRIBUTING.md", + "language_code": "ml" + }, + "INSTALLATION.md": { + "original_hash": "a64d8afa22ffcc2016bb239188d6acb1", + "translation_date": "2025-12-19T13:11:42+00:00", + "source_file": "INSTALLATION.md", + "language_code": "ml" + }, + "README.md": { + "original_hash": "8ec92ecfeb14923af733851239552146", + "translation_date": "2026-01-30T02:52:10+00:00", + "source_file": "README.md", + "language_code": "ml" + }, + "SECURITY.md": { + "original_hash": "0d575483100c332b2dbaefef915bb3c4", + "translation_date": "2025-12-19T13:13:57+00:00", + "source_file": "SECURITY.md", + "language_code": "ml" + }, + "SUPPORT.md": { + "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab", + "translation_date": "2025-12-19T12:48:32+00:00", + "source_file": "SUPPORT.md", + "language_code": "ml" + }, + "TROUBLESHOOTING.md": { + "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0", + "translation_date": "2025-12-19T12:55:49+00:00", + "source_file": "TROUBLESHOOTING.md", + "language_code": "ml" + }, + "USAGE.md": { + "original_hash": "f546349678757508d69ce9e1d2688446", + "translation_date": "2025-12-19T12:45:11+00:00", + "source_file": "USAGE.md", + "language_code": "ml" + }, + "docs/_sidebar.md": { + "original_hash": "3767555b3cc28a2865c79202f4374204", + "translation_date": "2025-12-19T13:30:42+00:00", + "source_file": "docs/_sidebar.md", + "language_code": "ml" + }, + "examples/README.md": { + "original_hash": "9bef7fd96c8f262339933117d9b3e342", + "translation_date": "2025-12-19T13:27:55+00:00", + "source_file": "examples/README.md", + "language_code": "ml" + }, + "for-teachers.md": { + "original_hash": "f7440be10c17a8a9262713af3d2818a9", + "translation_date": "2025-12-19T12:40:49+00:00", + "source_file": "for-teachers.md", + "language_code": "ml" + }, + "quiz-app/README.md": { + "original_hash": "e92c33ea498915a13c9aec162616db18", + "translation_date": "2025-12-19T13:25:40+00:00", + "source_file": "quiz-app/README.md", + "language_code": "ml" + }, + "sketchnotes/README.md": { + "original_hash": "3a848466cb63aff1a93411affb152c2a", + "translation_date": "2025-12-19T13:31:46+00:00", + "source_file": "sketchnotes/README.md", + "language_code": "ml" + } +} \ No newline at end of file diff --git a/translations/ml/1-Introduction/01-defining-data-science/README.md b/translations/ml/1-Introduction/01-defining-data-science/README.md index a320e071..b3564af7 100644 --- a/translations/ml/1-Introduction/01-defining-data-science/README.md +++ b/translations/ml/1-Introduction/01-defining-data-science/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റാ സയൻസ് നിർവചിക്കൽ | ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/01-Definitions.png) | diff --git a/translations/ml/1-Introduction/01-defining-data-science/assignment.md b/translations/ml/1-Introduction/01-defining-data-science/assignment.md index 9ec767d5..3c8fd908 100644 --- a/translations/ml/1-Introduction/01-defining-data-science/assignment.md +++ b/translations/ml/1-Introduction/01-defining-data-science/assignment.md @@ -1,12 +1,3 @@ - Translation for chunk 1 of 'assignment.md' skipped due to timeout. --- diff --git a/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md index 39811a11..1c737fe2 100644 --- a/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md +++ b/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md @@ -1,12 +1,3 @@ - Translation for chunk 1 of 'assignment.md' skipped due to timeout. --- diff --git a/translations/ml/1-Introduction/02-ethics/README.md b/translations/ml/1-Introduction/02-ethics/README.md index 3b33eaf5..66934595 100644 --- a/translations/ml/1-Introduction/02-ethics/README.md +++ b/translations/ml/1-Introduction/02-ethics/README.md @@ -1,12 +1,3 @@ - Translation for chunk 1 of 'README.md' skipped due to timeout. * വിവരങ്ങൾ യാഥാർത്ഥ്യത്തെ പ്രതിഫലിപ്പിക്കുന്നതിൽ _സത്യസന്ധമായി_ പിടിച്ചെടുത്തിട്ടുണ്ടോ? diff --git a/translations/ml/1-Introduction/02-ethics/assignment.md b/translations/ml/1-Introduction/02-ethics/assignment.md index 45ebd0c1..2ca56c14 100644 --- a/translations/ml/1-Introduction/02-ethics/assignment.md +++ b/translations/ml/1-Introduction/02-ethics/assignment.md @@ -1,12 +1,3 @@ - ## ഡാറ്റ എതിക്സ് കേസ് സ്റ്റഡി എഴുതുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/1-Introduction/03-defining-data/README.md b/translations/ml/1-Introduction/03-defining-data/README.md index 798b3563..38323ab8 100644 --- a/translations/ml/1-Introduction/03-defining-data/README.md +++ b/translations/ml/1-Introduction/03-defining-data/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റ നിർവചിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/03-DefiningData.png)| diff --git a/translations/ml/1-Introduction/03-defining-data/assignment.md b/translations/ml/1-Introduction/03-defining-data/assignment.md index fe9c9f54..e76871d2 100644 --- a/translations/ml/1-Introduction/03-defining-data/assignment.md +++ b/translations/ml/1-Introduction/03-defining-data/assignment.md @@ -1,12 +1,3 @@ - # ഡാറ്റാസെറ്റുകൾ വർഗ്ഗീകരിക്കൽ ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/1-Introduction/04-stats-and-probability/README.md b/translations/ml/1-Introduction/04-stats-and-probability/README.md index fefa095a..2d736692 100644 --- a/translations/ml/1-Introduction/04-stats-and-probability/README.md +++ b/translations/ml/1-Introduction/04-stats-and-probability/README.md @@ -1,12 +1,3 @@ - # സാംഖ്യശാസ്ത്രത്തെയും സാദ്ധ്യതയെയും കുറിച്ചുള്ള ഒരു സംക്ഷിപ്ത പരിചയം |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/04-Statistics-Probability.png)| diff --git a/translations/ml/1-Introduction/04-stats-and-probability/assignment.md b/translations/ml/1-Introduction/04-stats-and-probability/assignment.md index 5502edb7..aad2c000 100644 --- a/translations/ml/1-Introduction/04-stats-and-probability/assignment.md +++ b/translations/ml/1-Introduction/04-stats-and-probability/assignment.md @@ -1,12 +1,3 @@ - # ചെറിയ പ്രമേഹ പഠനം ഈ അസൈൻമെന്റിൽ, നാം [ഇവിടെ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) നിന്നെടുത്ത ചെറിയ പ്രമേഹ രോഗികളുടെ ഡാറ്റാസെറ്റുമായി പ്രവർത്തിക്കും. diff --git a/translations/ml/1-Introduction/README.md b/translations/ml/1-Introduction/README.md index bac643cf..085d3f76 100644 --- a/translations/ml/1-Introduction/README.md +++ b/translations/ml/1-Introduction/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റാ സയൻസിലേക്ക് പരിചയം ![data in action](../../../translated_images/ml/data.48e22bb7617d8d92188afbc4c48effb920ba79f5cebdc0652cd9f34bbbd90c18.jpg) diff --git a/translations/ml/2-Working-With-Data/05-relational-databases/README.md b/translations/ml/2-Working-With-Data/05-relational-databases/README.md index 25110d0c..a2139658 100644 --- a/translations/ml/2-Working-With-Data/05-relational-databases/README.md +++ b/translations/ml/2-Working-With-Data/05-relational-databases/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: ബന്ധപരമായ ഡാറ്റാബേസുകൾ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/05-RelationalData.png)| diff --git a/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md index 677222e0..56e235cb 100644 --- a/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md +++ b/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md @@ -1,12 +1,3 @@ - # വിമാനത്താവള ഡാറ്റ പ്രദർശിപ്പിക്കൽ നിങ്ങൾക്ക് [SQLite](https://sqlite.org/index.html) അടിസ്ഥാനമാക്കിയുള്ള [ഡാറ്റാബേസ്](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) ലഭിച്ചിട്ടുണ്ട്, ഇത് വിമാനത്താവളങ്ങളെക്കുറിച്ചുള്ള വിവരങ്ങൾ ഉൾക്കൊള്ളുന്നു. സ്കീമ താഴെ കാണിക്കുന്നു. വ്യത്യസ്ത നഗരങ്ങളിലെ വിമാനത്താവളങ്ങളുടെ വിവരങ്ങൾ പ്രദർശിപ്പിക്കാൻ നിങ്ങൾ [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) ൽ [SQLite വിപുലീകരണം](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ഉപയോഗിക്കും. diff --git a/translations/ml/2-Working-With-Data/06-non-relational/README.md b/translations/ml/2-Working-With-Data/06-non-relational/README.md index 4265e4d0..74221c3d 100644 --- a/translations/ml/2-Working-With-Data/06-non-relational/README.md +++ b/translations/ml/2-Working-With-Data/06-non-relational/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: നോൺ-റിലേഷണൽ ഡാറ്റ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/06-NoSQL.png)| diff --git a/translations/ml/2-Working-With-Data/06-non-relational/assignment.md b/translations/ml/2-Working-With-Data/06-non-relational/assignment.md index bed7432d..69633c4e 100644 --- a/translations/ml/2-Working-With-Data/06-non-relational/assignment.md +++ b/translations/ml/2-Working-With-Data/06-non-relational/assignment.md @@ -1,12 +1,3 @@ - # സോഡ ലാഭം ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/2-Working-With-Data/07-python/README.md b/translations/ml/2-Working-With-Data/07-python/README.md index 37bb4db5..9bd0c673 100644 --- a/translations/ml/2-Working-With-Data/07-python/README.md +++ b/translations/ml/2-Working-With-Data/07-python/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: പൈത്തൺയും പാൻഡാസ് ലൈബ്രറിയും | ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/07-WorkWithPython.png) | diff --git a/translations/ml/2-Working-With-Data/07-python/assignment.md b/translations/ml/2-Working-With-Data/07-python/assignment.md index 4f524c04..7d699105 100644 --- a/translations/ml/2-Working-With-Data/07-python/assignment.md +++ b/translations/ml/2-Working-With-Data/07-python/assignment.md @@ -1,12 +1,3 @@ - # പൈത്തണിൽ ഡാറ്റ പ്രോസസ്സിംഗിനുള്ള അസൈൻമെന്റ് ഈ അസൈൻമെന്റിൽ, ഞങ്ങൾ ഞങ്ങളുടെ ചലഞ്ചുകളിൽ വികസിപ്പിക്കാൻ തുടങ്ങിയ കോഡിനെക്കുറിച്ച് വിശദീകരിക്കാൻ നിങ്ങളോട് ആവശ്യപ്പെടും. അസൈൻമെന്റ് രണ്ട് ഭാഗങ്ങളായി വിഭജിച്ചിരിക്കുന്നു: diff --git a/translations/ml/2-Working-With-Data/08-data-preparation/README.md b/translations/ml/2-Working-With-Data/08-data-preparation/README.md index 7f4397ab..181a6bed 100644 --- a/translations/ml/2-Working-With-Data/08-data-preparation/README.md +++ b/translations/ml/2-Working-With-Data/08-data-preparation/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: ഡാറ്റ തയ്യാറാക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/08-DataPreparation.png)| diff --git a/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md index ca27fd6e..9d6e39fd 100644 --- a/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md +++ b/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md @@ -1,12 +1,3 @@ - # ഒരു ഫോമിൽ നിന്നുള്ള ഡാറ്റ വിലയിരുത്തൽ ഒരു ക്ലയന്റ് അവരുടെ ക്ലയന്റ്-ബേസ് സംബന്ധിച്ച ചില അടിസ്ഥാന ഡാറ്റ ശേഖരിക്കാൻ ഒരു [ചെറിയ ഫോം](../../../../2-Working-With-Data/08-data-preparation/index.html) പരീക്ഷിച്ചു വരുന്നു. അവർ ശേഖരിച്ച ഡാറ്റ ശരിയാണോ എന്ന് സ്ഥിരീകരിക്കാൻ അവർ അവരുടെ കണ്ടെത്തലുകൾ നിങ്ങളെ സമീപിച്ചു. ഫോം കാണാൻ ബ്രൗസറിൽ `index.html` പേജ് തുറക്കാം. diff --git a/translations/ml/2-Working-With-Data/README.md b/translations/ml/2-Working-With-Data/README.md index 39785444..79d48065 100644 --- a/translations/ml/2-Working-With-Data/README.md +++ b/translations/ml/2-Working-With-Data/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റയുമായി പ്രവർത്തിക്കൽ ![data love](../../../translated_images/ml/data-love.a22ef29e6742c852505ada062920956d3d7604870b281a8ca7c7ac6f37381d5a.jpg) diff --git a/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md index f5d42519..135a6075 100644 --- a/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md +++ b/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md @@ -1,12 +1,3 @@ - # അളവുകൾ ദൃശ്യവൽക്കരിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/09-Visualizing-Quantities.png)| diff --git a/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md index 93876db1..e614a60a 100644 --- a/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md +++ b/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md @@ -1,12 +1,3 @@ - # ലൈനുകൾ, സ്‌കാറ്ററുകൾ, ബാറുകൾ ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md index 04002b00..0186c375 100644 --- a/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md +++ b/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md @@ -1,12 +1,3 @@ - # വിതരണങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/10-Visualizing-Distributions.png)| diff --git a/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md index 9892748d..c5ffda7b 100644 --- a/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md +++ b/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md @@ -1,12 +1,3 @@ - # നിങ്ങളുടെ കഴിവുകൾ പ്രയോഗിക്കുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md index 414b3cf2..ac03ea5c 100644 --- a/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md +++ b/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md @@ -1,12 +1,3 @@ - # അനുപാതങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/11-Visualizing-Proportions.png)| diff --git a/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md index 8d795a19..354eddd7 100644 --- a/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md +++ b/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md @@ -1,12 +1,3 @@ - # Excel-ൽ പരീക്ഷിക്കുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md index ef7a9218..c25870e5 100644 --- a/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md +++ b/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md @@ -1,12 +1,3 @@ - # ബന്ധങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ: തേൻ സംബന്ധിച്ച എല്ലാം 🍯 |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/12-Visualizing-Relationships.png)| diff --git a/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md index 89ef0f38..ac02fe95 100644 --- a/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md +++ b/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md @@ -1,12 +1,3 @@ - # തേനീച്ചകളുടെ കുടിലിലേക്ക് ഡൈവ് ചെയ്യുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md index 6443048c..c95dd84b 100644 --- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md +++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md @@ -1,12 +1,3 @@ - # അർത്ഥവത്തായ ദൃശ്യവത്കരണങ്ങൾ നിർമ്മിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/13-MeaningfulViz.png)| diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md index c126c01d..ef6911d6 100644 --- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md +++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md @@ -1,12 +1,3 @@ - # നിങ്ങളുടെ സ്വന്തം കസ്റ്റം വിസ് നിർമ്മിക്കുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md index 2b8c244b..87b6273c 100644 --- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md +++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md @@ -1,12 +1,3 @@ - # ഡേഞ്ചറസ് ലിയാസൺസ് ഡാറ്റാ വിസ്വലൈസേഷൻ പ്രോജക്ട് ആരംഭിക്കാൻ, നിങ്ങളുടെ മെഷീനിൽ NPMയും Nodeയും പ്രവർത്തനക്ഷമമാണെന്ന് ഉറപ്പാക്കണം. ഡിപ്പൻഡൻസികൾ ഇൻസ്റ്റാൾ ചെയ്യുക (npm install) പിന്നെ പ്രോജക്ട് ലോക്കലായി റൺ ചെയ്യുക (npm run serve): diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md index 22855310..bde5a349 100644 --- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md +++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md @@ -1,12 +1,3 @@ - # ഡേഞ്ചറസ് ലിയാസൺസ് ഡാറ്റാ വിസ്വലൈസേഷൻ പ്രോജക്ട് ആരംഭിക്കാൻ, നിങ്ങളുടെ മെഷീനിൽ NPMയും Nodeയും പ്രവർത്തനക്ഷമമാണെന്ന് ഉറപ്പാക്കണം. ഡിപ്പൻഡൻസികൾ ഇൻസ്റ്റാൾ ചെയ്യുക (npm install) പിന്നെ പ്രോജക്ട് ലോക്കലായി റൺ ചെയ്യുക (npm run serve): diff --git a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md index 08747224..65f68301 100644 --- a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md +++ b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md @@ -1,12 +1,3 @@ - # അളവുകൾ ദൃശ്യവൽക്കരിക്കൽ |![ [(@sketchthedocs)](https://sketchthedocs.dev) എന്നവരുടെ സ്കെച്ച്നോട്ട് ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)| |:---:| diff --git a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md index d7f28361..8c1fa692 100644 --- a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md +++ b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md @@ -1,12 +1,3 @@ - # ലൈനുകൾ, സ്‌കാറ്ററുകൾ, ബാറുകൾ ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md index b0f89a79..99f862b0 100644 --- a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md +++ b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md @@ -1,12 +1,3 @@ - # വിതരണങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)| diff --git a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md index 18b4db41..efb7ef0c 100644 --- a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md +++ b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md @@ -1,12 +1,3 @@ - # നിങ്ങളുടെ കഴിവുകൾ പ്രയോഗിക്കുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md index b3ec0024..cfb8cf43 100644 --- a/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md +++ b/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md @@ -1,12 +1,3 @@ - # അനുപാതങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/11-Visualizing-Proportions.png)| diff --git a/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md index e3d926cd..242bf108 100644 --- a/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md +++ b/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md @@ -1,12 +1,3 @@ - # ബന്ധങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ: തേൻ 🍯 സംബന്ധിച്ച എല്ലാം |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/12-Visualizing-Relationships.png)| diff --git a/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md index f2a96fbb..2e074168 100644 --- a/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md +++ b/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md @@ -1,12 +1,3 @@ - # അർത്ഥവത്തായ ദൃശ്യവത്കരണങ്ങൾ നിർമ്മിക്കൽ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/13-MeaningfulViz.png)| diff --git a/translations/ml/3-Data-Visualization/README.md b/translations/ml/3-Data-Visualization/README.md index 2cc22a7e..605d4960 100644 --- a/translations/ml/3-Data-Visualization/README.md +++ b/translations/ml/3-Data-Visualization/README.md @@ -1,12 +1,3 @@ - # ദൃശ്യവത്കരണങ്ങൾ ![a bee on a lavender flower](../../../translated_images/ml/bee.0aa1d91132b12e3a8994b9ca12816d05ce1642010d9b8be37f8d37365ba845cf.jpg) diff --git a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md index 0b57cdfb..713e14a9 100644 --- a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md +++ b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റാ സയൻസ് ലൈഫ്‌സൈക്കിൾ പരിചയം |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/14-DataScience-Lifecycle.png)| diff --git a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md index b373336e..b746b0e1 100644 --- a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md +++ b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md @@ -1,12 +1,3 @@ - # ഒരു ഡാറ്റാസെറ്റ് വിലയിരുത്തൽ നിങ്ങളുടെ ടീമിന് ഒരു ക്ലയന്റ് ന്യൂയോർക്ക് സിറ്റിയിലെ ടാക്സി ഉപഭോക്താവിന്റെ സീസണൽ ചെലവഴിക്കൽ ശീലങ്ങൾ അന്വേഷിക്കുന്നതിന് സഹായം തേടിയിട്ടുണ്ട്. diff --git a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md index 9842c8cf..4eb54102 100644 --- a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md +++ b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റ സയൻസ് ലൈഫ്‌സൈക്കിൾ: വിശകലനം |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/15-Analyzing.png)| diff --git a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md index e9f9a9f8..e42a3e15 100644 --- a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md +++ b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md @@ -1,12 +1,3 @@ - # ഉത്തരം അന്വേഷിക്കൽ ഇത് മുൻപത്തെ പാഠത്തിന്റെ [അസൈൻമെന്റ്](../14-Introduction/assignment.md) തുടർച്ചയാണ്, അവിടെ നാം ഡാറ്റാ സെറ്റിനെ കുറിച്ച് സംക്ഷിപ്തമായി നോക്കിയിരുന്നു. ഇപ്പോൾ നാം ഡാറ്റയെ കൂടുതൽ ആഴത്തിൽ പരിശോധിക്കാനാണ് പോകുന്നത്. diff --git a/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md index 37e4295e..315ba87c 100644 --- a/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md +++ b/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റ സയൻസ് ലൈഫ്‌സൈക്കിൾ: കമ്മ്യൂണിക്കേഷൻ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev)](../../sketchnotes/16-Communicating.png)| diff --git a/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md index c15a34e8..af292f91 100644 --- a/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md +++ b/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md @@ -1,12 +1,3 @@ - # ഒരു കഥ പറയുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/4-Data-Science-Lifecycle/README.md b/translations/ml/4-Data-Science-Lifecycle/README.md index dfa27b09..d83e278f 100644 --- a/translations/ml/4-Data-Science-Lifecycle/README.md +++ b/translations/ml/4-Data-Science-Lifecycle/README.md @@ -1,12 +1,3 @@ - # ഡാറ്റ സയൻസ് ലൈഫ്‌സൈക്കിൾ ![communication](../../../translated_images/ml/communication.06d8e2a88d30d168d661ad9f9f0a4f947ebff3719719cfdaf9ed00a406a01ead.jpg) diff --git a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md index a11f0430..d90d1366 100644 --- a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md +++ b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md @@ -1,12 +1,3 @@ - Translation for chunk 1 of 'README.md' skipped due to timeout. --- diff --git a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md index 0f54a2e4..4adc6867 100644 --- a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md +++ b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md @@ -1,12 +1,3 @@ - # മാർക്കറ്റ് റിസർച്ച് ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md index 5be0ce4d..9ea25f2f 100644 --- a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md +++ b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md @@ -1,12 +1,3 @@ - # ക്ലൗഡിലെ ഡാറ്റാ സയൻസ്: "ലോ കോഡ്/നോ കോഡ്" വഴി |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/18-DataScience-Cloud.png)| diff --git a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md index 6ca270c1..2f1f9726 100644 --- a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md +++ b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md @@ -1,12 +1,3 @@ - # ലോ കോഡ്/നോ കോഡ് ഡാറ്റാ സയൻസ് പ്രോജക്ട് ആസ്യൂർ ML-ൽ ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md index 76ac415b..aabcf9b3 100644 --- a/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md +++ b/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md @@ -1,12 +1,3 @@ - # ക്ലൗഡിലെ ഡാറ്റാ സയൻസ്: "Azure ML SDK" വഴി |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/19-DataScience-Cloud.png)| diff --git a/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md index f94185fd..e09e9001 100644 --- a/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md +++ b/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md @@ -1,12 +1,3 @@ - # Azure ML SDK ഉപയോഗിച്ച് ഡാറ്റാ സയൻസ് പ്രോജക്ട് ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/5-Data-Science-In-Cloud/README.md b/translations/ml/5-Data-Science-In-Cloud/README.md index 98377029..c3f280c1 100644 --- a/translations/ml/5-Data-Science-In-Cloud/README.md +++ b/translations/ml/5-Data-Science-In-Cloud/README.md @@ -1,12 +1,3 @@ - # ക്ലൗഡിലെ ഡാറ്റാ സയൻസ് ![cloud-picture](../../../translated_images/ml/cloud-picture.f5526de3c6c6387b2d656ba94f019b3352e5e3854a78440e4fb00c93e2dea675.jpg) diff --git a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md index 196155db..e588391d 100644 --- a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md +++ b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md @@ -1,12 +1,3 @@ - # യഥാർത്ഥ ലോകത്തിലെ ഡാറ്റാ സയൻസ് | ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/20-DataScience-RealWorld.png) | diff --git a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md index e35dc9e9..6e923310 100644 --- a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md +++ b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md @@ -1,12 +1,3 @@ - # ഒരു പ്ലാനറ്ററി കമ്പ്യൂട്ടർ ഡാറ്റാസെറ്റ് അന്വേഷിക്കുക ## നിർദ്ദേശങ്ങൾ diff --git a/translations/ml/6-Data-Science-In-Wild/README.md b/translations/ml/6-Data-Science-In-Wild/README.md index eba3ea7a..8b1d3471 100644 --- a/translations/ml/6-Data-Science-In-Wild/README.md +++ b/translations/ml/6-Data-Science-In-Wild/README.md @@ -1,12 +1,3 @@ - # Data Science in the Wild വ്യവസായങ്ങളിലുടനീളം ഡാറ്റാ സയൻസിന്റെ യഥാർത്ഥ ലോക പ്രയോഗങ്ങൾ. diff --git a/translations/ml/AGENTS.md b/translations/ml/AGENTS.md index 64abd72a..97f1c9a8 100644 --- a/translations/ml/AGENTS.md +++ b/translations/ml/AGENTS.md @@ -1,12 +1,3 @@ - # AGENTS.md ## പ്രോജക്ട് അവലോകനം diff --git a/translations/ml/CODE_OF_CONDUCT.md b/translations/ml/CODE_OF_CONDUCT.md index 1c7588f7..d34b926e 100644 --- a/translations/ml/CODE_OF_CONDUCT.md +++ b/translations/ml/CODE_OF_CONDUCT.md @@ -1,12 +1,3 @@ - # Microsoft ഓപ്പൺ സോഴ്‌സ് കോഡ് ഓഫ് കണ്ടക്റ്റ് ഈ പ്രോജക്ട് [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/) സ്വീകരിച്ചിട്ടുണ്ട്. diff --git a/translations/ml/CONTRIBUTING.md b/translations/ml/CONTRIBUTING.md index 0ae9e832..515e78b5 100644 --- a/translations/ml/CONTRIBUTING.md +++ b/translations/ml/CONTRIBUTING.md @@ -1,12 +1,3 @@ - # Data Science for Beginners-ലേക്ക് സംഭാവന ചെയ്യുക Data Science for Beginners പാഠ്യപദ്ധതിയിലേക്ക് സംഭാവന ചെയ്യുന്നതിൽ താൽപര്യമുള്ളതിന് നന്ദി! സമൂഹത്തിൽ നിന്നുള്ള സംഭാവനകൾ ഞങ്ങൾ സ്വാഗതം ചെയ്യുന്നു. diff --git a/translations/ml/INSTALLATION.md b/translations/ml/INSTALLATION.md index 21d3c5d6..f33a6ee5 100644 --- a/translations/ml/INSTALLATION.md +++ b/translations/ml/INSTALLATION.md @@ -1,12 +1,3 @@ - # ഇൻസ്റ്റലേഷൻ ഗൈഡ് ഈ ഗൈഡ് ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് പാഠ്യപദ്ധതിയുമായി പ്രവർത്തിക്കാൻ നിങ്ങളുടെ പരിസ്ഥിതി സജ്ജമാക്കുന്നതിൽ സഹായിക്കും. diff --git a/translations/ml/README.md b/translations/ml/README.md index 6837b814..56cfa2f1 100644 --- a/translations/ml/README.md +++ b/translations/ml/README.md @@ -1,206 +1,197 @@ - -# നൂറ്റാണ്ടുകൾക്കുള്ള ഡാറ്റാ സയൻസ് - ഒരു പാഠ്യപദ്ധതി - -[![GitHub കോഡ്സ്പേസുകളിൽ തുറക്കുക](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198) +# ഡാറ്റാ സയൻസ് ഫോ ബെഗിനേഴ്സ് - ഒരു കോഴ്സ് പ്രോഗ്രാം + +[![GitHub കോഡ്സ്പേസിൽ തുറക്കുക](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198) [![GitHub ലൈസൻസ്](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE) -[![GitHub സംഭാവന ദാതാക്കൾ](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/) +[![GitHub സംഭാവനകർ](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/) [![GitHub പ്രശ്നങ്ങൾ](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/) [![GitHub പുൾ-റിക്വസ്റ്റുകൾ](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/) -[![പി.ആർ സ്വാഗതം](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) +[![പുൾ-റിക്വസ്റ്റുകൾ സ്വാഗതം](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) [![GitHub വാച്ചേഴ്സ്](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/) -[![GitHub ഫോർക്സ്](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/) +[![GitHub ഫോർക്‌സ്](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/) [![GitHub സ്റ്റാർസ്](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/) [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) +[![Microsoft Foundry ഡെവലപ്പർ ഫോറം](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) -മൈക്രോസോഫ്റ്റിലെ അസ്യൂർ ക്ലൗഡ് അഡ്വക്കേറ്റുകൾ ഡാറ്റാ സയൻസ് സംബന്ധിച്ച 10 ആഴ്ച, 20 പാഠങ്ങൾ ഉൾക്കൊള്ളുന്ന ഒരു പാഠ്യപദ്ധതി വാഗ്ദാനം ചെയ്യുന്നു. ഓരോ പാഠത്തിലും പ്രീ-ലസൺ, പോസ്റ്റ്-ലസൺ ക്വിസുകളും, പാഠം പൂര്‍ത്തിയാക്കുന്നതിനുള്ള എഴുത്ത് നിർദ്ദേശങ്ങളും, പരിഹാരവും, അസൈൻമെന്റും ഉൾപ്പെടുത്തിയിരിക്കുന്നു. നമ്മുടെ പ്രോജക്റ്റ്-അധിഷ്ഠിത പാഠാന്തര നിയന്ത്രണം പുതിയ കഴിവുകൾ ചെറുതായി മനസ്സിലാക്കുന്നതിൽ സഹായിക്കുന്ന ഒരു തെളിയിച്ച രീതി ആണ്. +മൈക്രോസോഫ്റ്റിലെ അസ്യൂർ ക്ലൗഡ് അഭിമുഖീകരിക്കുന്നവർ ഡാറ്റാ സയൻസിനെക്കുറിച്ച് 10 ആഴ്ച, 20 പാഠങ്ങൾ അടങ്ങിയ ഒരു കോഴ്‌സ് പ്രോഗ്രാം Bern കൊടുക്കാൻ സന്തോഷവാന്മാർ ആണ്. ഓരോ പാഠത്തിലേക്കും പൂർവ്വപാഠ ക്യൂഇസുകൾ, മുന്നറിയിപ്പ് മുതൽ പാഠം പൂർത്തിയാക്കാനുള്ള എഴുതിയ നിർദ്ദേശങ്ങൾ, ഒരു പരിഹാരം, ഏൽപ്പിക്കൽ എന്നിവ ഉൾപ്പെടുത്തുന്നുണ്ട്. ഞങ്ങളുടെ പ്രോജക്റ്റ് അധിഷ്ഠിത പഠന രീതി ഉള്ളതിനാൽ നിങ്ങൾ നിർമ്മിക്കുകയായി പഠിക്കാം, ഇത് പുതിയ കഴിവുകൾ 'ബാധകമായി' മാറാനുള്ള ഉറപ്പുള്ള മാർഗം ആണ്. -**ഞങ്ങളുടെ രചയിതാക്കളായ ഏതാണ്ട് എല്ലാവർക്കും ഹൃദയപൂർവ്വമായ നന്ദി:** [ജാസ്മിൻ ഗ്രീൻവേ](https://www.twitter.com/paladique), [ഡ്മിത്രി സോഷ്യ്നിക്കോവ്](http://soshnikov.com), [നിത്യ നരസിംഹൻ](https://twitter.com/nitya), [ജാലൻ മക്ഗീ](https://twitter.com/JalenMcG), [ജെൻ ലൂപ്പർ](https://twitter.com/jenlooper), [മോഡ് ലെവി](https://twitter.com/maudstweets), [ടിഫിനി സോട്ടെറെ](https://twitter.com/TiffanySouterre), [ക്രിസ്റ്റോഫർ ഹാരിസ്ൺ](https://www.twitter.com/geektrainer). +**ഞങ്ങളുടെ രചയിതാക്കൾക്ക് ആഴത്തിലുള്ള നന്ദി:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer). -**🙏 പ്രത്യേക നന്ദി 🙏 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ആയ രചയിതാക്കൾക്കും, റിവ്യൂവർക്കും, ഉള്ളടക്ക സംഭാവന ദാതാക്കളും,** പ്രത്യേകിച്ച് ആര്യൻ അരോറ, [അദിത്യ ഗാർഗ്](https://github.com/AdityaGarg00), [അലോൻഡ്ര സാഞ്ചൈസ്](https://www.linkedin.com/in/alondra-sanchez-molina/), [അങ്കിത സിങ്](https://www.linkedin.com/in/ankitasingh007), [അനുപം മിശ്ര](https://www.linkedin.com/in/anupam--mishra/), [അർപിത ദാസ്](https://www.linkedin.com/in/arpitadas01/), ചിത്രൽബിഹാരി ദുബെയി, [ദിബ്രിൻ nsofor](https://www.linkedin.com/in/dibrinsofor), [ദിഷิต ഭാസിൻ](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [മാജദ് സഫി](https://www.linkedin.com/in/majd-s/), [മാക്‌സ് ബ്ലം](https://www.linkedin.com/in/max-blum-6036a1186/), [മിഗെൽ കോരეა](https://www.linkedin.com/in/miguelmque/), [മോഹമ്മ ഇഫ്റ്റഖർ (ഇഫ്തു) ഇബ്‌നെ ജലാൽ](https://twitter.com/iftu119), [നാവ്സിൻ തടാസ്സും](https://www.linkedin.com/in/nawrin-tabassum), [റെമോണ്ട് വാങ്സ പുത്ത്ര](https://www.linkedin.com/in/raymond-wp/), [രോഹിത് യാദവ്](https://www.linkedin.com/in/rty2423), സമൃദ്ധി ശർമ, [സാന്യ സിഹ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), -[ഷീന നാരുല](https://www.linkedin.com/in/sheena-narua-n/), [തൗക്കീർ അഹ്മദ്](https://www.linkedin.com/in/tauqeerahmad5201/), യോഗേന്ദ്രസിങ് പവാർ , [വിദുഷി ഗുപ്ത](https://www.linkedin.com/in/vidushi-gupta07/), [ജസ്ലീൻ സോന്ധി](https://www.linkedin.com/in/jasleen-sondhi/) +**🙏 പ്രത്യേക നന്ദി 🙏 നമ്മുടെ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) രചയിതാക്കളും, അവലോകനക്കാരുമായും ഉള്ളടക്ക സംഭാവന്കാരുമായും,** പ്രധാനമായും Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), +[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/) -|![@sketchthedocs sketchnote https://sketchthedocs.dev](../../../../translated_images/ml/00-Title.8af36cd35da1ac55.webp)| +|![@sketchthedocs ഒരുക്കിയ സ്കെച്ച്നോട്ട് https://sketchthedocs.dev](../../translated_images/ml/00-Title.8af36cd35da1ac55.webp)| |:---:| -| ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് - _സ്കെച്ച് നോട്ട് [@nitya](https://twitter.com/nitya)_ | - +| ഡാറ്റാ സയൻസ് ഫോ ബെഗിനേഴ്സ് - _സ്കെച്ച്നോട്ട് [@nitya](https://twitter.com/nitya) ഒരുക്കിയത്_ | ### 🌐 ബഹുഭാഷാ പിന്തുണ -#### GitHub ആക്ഷൻ വഴി പിന്തുണ ലഭിക്കുന്നു (സ്വയം പ്രവർത്തി & എപ്പോഴും പുതുക്കുന്ന) +#### GitHub ആക്ഷൻ വഴി പിന്തുണയ്ക്കപ്പെടുന്നു (സ്വയം പ്രവർത്തിക്കുന്നതും എప్పഴും പുതുക്കപ്പെട്ടതും) -[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](./README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md) +[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](./README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md) -> **പ്രിയതമമായി ലോക്കലായി ക്ലോൺ ചെയ്യണമെന്ന് ആഗ്രഹിക്കുന്നുവോ?** +> **പ്രദേശീയമായി ക്ലോൺ ചെയ്യാൻ ഇഷ്ടപ്പെടുന്നുവോ?** -> ഈ റിപ്പോസിറ്ററിയിൽ 50+ ഭാഷാ വിവർത്തനങ്ങൾ ഉൾപ്പെടുന്നു, ഇത് ഡൗൺലോഡ് വലിപ്പം വളരെ വർദ്ധിപ്പിക്കുന്നു. വിവർത്തനങ്ങൾ കൂടാതെ ക്ലോൺ ചെയ്യാൻ sparse checkout ഉപയോഗിക്കുക: +> ഈ റിപോസിറ്ററിയിൽ 50-ലധികം ഭാഷാ വിവർത്തനങ്ങൾ ഉൾക്കൊള്ളുന്നുണ്ടു, ഇത് ഡൗൺലോഡ് വലിപ്പം വലിയതാക്കുന്നു. വിവർത്തനങ്ങൾ ഇല്ലാതെ ക്ലോൺ ചെയ്യാൻ sparse checkout ഉപയോഗിക്കുക: > ```bash > git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git > cd Data-Science-For-Beginners > git sparse-checkout set --no-cone '/*' '!translations' '!translated_images' > ``` -> ദ്രുത ഡൗൺലോഡിനായി നിങ്ങൾക്ക് പാഠം പൂർത്തിയാക്കുന്നതിന് എല്ലാം ഇതിലൂടെ ലഭിക്കും. +> ഇത് നിങ്ങൾക്ക് കോഴ്സ് പൂർത്തിയാക്കാൻ ആവശ്യമായ എല്ലാ കാര്യങ്ങളും വേഗത്തിൽ നൽകുന്നു. -**കൂടുതൽ സംവരണം ചെയ്യാൻ ആഗ്രഹിക്കുന്ന പുതിയ വിവർത്തന ഭാഷകൾ ഇവിടെ [വരെയുള്ളവ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) കാണുക** +**കൂടുതൽ വിവർത്തന ഭാഷകൾ പിന്തുണയ്ക്കണമെങ്കിൽ ഇവയും [ഇവിടെ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) പ്രദർശിപ്പിച്ചിരിക്കുന്നു** #### നമ്മുടെ കമ്മ്യൂണിറ്റിയിൽ ചേരുക [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -നമുക്കൊപ്പം ഒരു Discord ലേണിംഗ് സീരീസ് നടക്കുകയാണ്, കൂടുതൽ പഠിക്കാനും ചേരാനും [Learn with AI Series](https://aka.ms/learnwithai/discord) സന്ദർശിക്കുക 2025 സെപ്റ്റംബർ 18 - 30 വരെ. GitHub Copilot ഉപയോഗിച്ച് ഡാറ്റാ സയൻസിന് കുറിച്ച് ടിപ്പുകളും വഴികളുമാണ് നിങ്ങൾക്ക് ലഭിക്കുക. +നമ്മുടെ Discord-ൽ AI-യോടൊപ്പം പഠന പരമ്പര തുടരുകയാണ്, കൂടുതൽ അറിഞ്ഞ് [Learn with AI Series](https://aka.ms/learnwithai/discord) ലേക്ക് 2025 സെപ്റ്റംബർ 18 മുതൽ 30 വരെയുള്ള കാലയളവിൽ ചേരുക. GitHub Copilot ഉപയോഗിച്ച് ഡാറ്റാ സയൻസിനുള്ള ടിപ്പുകളും തന്ത്രങ്ങളും നിങ്ങൾക്ക് ലഭിക്കും. -![Learn with AI series](../../../../translated_images/ml/1.2b28cdc6205e26fe.webp) +![Learn with AI series](../../translated_images/ml/1.2b28cdc6205e26fe.webp) -# നിങ്ങൾ വിദ്യാർത്ഥിയോ? +# നിങ്ങൾ വിദ്യാർത്ഥിയാണോ? -തുടങ്ങുവാൻ താഴെ നൽകിയ റിസോഴ്‌സുകൾ ഉപയോഗിക്കുക: +തുടങ്ങാൻ താഴെ കൊടുത്ത റിസോഴ്‌സുകൾ ഉപയോഗിക്കുക: -- [വിദ്യാർത്ഥി ഹബ് പേജ്](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ഇവിടെ നിങ്ങൾക്ക് തുടക്കക്കാരുടെ റിസോഴ്‌സുകളും, വിദ്യാർത്ഥി പാക്കുകളും, സൗജന്യ സർട്ട് വൗച്ചർ നേടാനുള്ള വഴികളും ലഭിക്കും. എല്ലാ മാസവും ഉള്ളടക്കം പുതുക്കുന്നതുകൊണ്ട് ഈ പേജ് ബുക്ക്‌മാർക്ക് ചെയ്ത് സമയത്തിനൊപ്പം പരിശോധിക്കുന്നതാണ് നല്ലത്. -- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ഒരു ആഗോള വിദ്യാർത്ഥി അംബാസഡർ കമ്മ്യൂണിറ്റിയിലേക്ക് ചേരുക, ഇത് മൈക്രോസോഫ്റ്റിലേക്ക് നിങ്ങളുടെ വഴി ആകാം. +- [Student Hub പേജ്](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ഈ പേജിൽ നിങ്ങൾക്ക് ആരംഭകർക്കുള്ള റിസോഴ്‌സുകൾ, വിദ്യാർത്ഥി പാക്കുകൾ, സൗജന്യ സർട്ടിഫിക്കറ്റ് വൗച്ചറുകൾ എന്നിവ ലഭിക്കും. ഇതാണ് നിങ്ങൾക്ക് ബുക്ക് മാർക്ക് ചെയ്ത് സമയവും സമയം ചെക്ക് ചെയ്യേണ്ട ഒരു പേജ്, കാരണം ഞങ്ങൾ സ محتويات് പ്രതിമാസം മാറ്റുന്നു. +- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ആഗോള വിദ്യാർത്ഥി അംബാസിഡർ കമ്മ്യൂണിറ്റിയിൽ ചേർക്കുക, ഇതാണ് മൈക്രോസോഫ്റ്റിലേക്ക് എത്താനുള്ള ഒരു വഴി. -# ആരംഭിക്കൽ +# തുടങ്ങാം -## 📚 രേഖകളുകൾ +## 📚 ഡോക്യുമെന്റേഷൻ -- **[ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md)** - തുടക്കക്കാര്ക്ക് ഘട്ടം ഘട്ടമായി സെറ്റപ്പ് നിർദ്ദേശങ്ങൾ -- **[ഉപയോഗ മാർഗ്ഗം](USAGE.md)** - ഉദാഹരണങ്ങൾക്കും സാധാരണ പ്രവൃത്തി പ്രവാഹങ്ങൾക്കും -- **[പ്രശ്ന പരിഹാരം](TROUBLESHOOTING.md)** - സാധാരണ പ്രശ്നങ്ങൾക്ക് പരിഹാരങ്ങൾ -- **[സംഭാവന മാർഗ്ഗം](CONTRIBUTING.md)** - ഈ പ്രോജക്ടിൽ സംഭാവന ചെയ്യാനുള്ള രീതികൾ -- **[അധ്യാപകർക്ക്](for-teachers.md)** - പഠന മാർഗ്ഗനിർദ്ദേശങ്ങളും ക്ലാസ്സ് റൂം റിസോഴ്‌സുകളും +- **[ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md)** - ആരംഭകർക്കായി ഘട്ടം ഘട്ടമായിലാണ് സെറ്റപ്പ് നിർദ്ദേശങ്ങൾ +- **[ഉപയോഗ വേർപ്പ്](USAGE.md)** - ഉദാഹരണങ്ങളും പൊതു പ്രവൃത്തികളെഴുപ്പുകളും +- **[പ്രശ്നപരിഹാരം](TROUBLESHOOTING.md)** - പൊതു പ്രശ്നങ്ങളുടെ പരിഹാരങ്ങൾ +- **[സംഭാവന ഗൈഡ്](CONTRIBUTING.md)** - ഈ പദ്ധതിയിലേക്ക് സംഭാവന ചെയ്യാനുള്ള മാർഗങ്ങൾ +- **[അധ്യാപകർക്ക്](for-teachers.md)** - പഠന ദിശാനിർദ്ദേശങ്ങളും ക്ലാസ് മുറി റിസോഴ്‌സുകളും -## 👨‍🎓 വിദ്യാർത്ഥികൾക്കായി -> **സമ്പൂർണ്ണ തുടക്കക്കാർ**: ഡാറ്റാ സയൻസിലേക്ക് പുതിയവരാണോ? നമ്മുടെ [തുടക്കക്കാർക്കായി അനുയോജ്യമായ ഉദാഹരണങ്ങൾ](examples/README.md) ഉപയോഗിച്ച് തുടങ്ങൂ! ഈ ലളിതവും വിശദീകരണക്കൂടിയ ഉദാഹരണങ്ങൾ മുഖേന അടിസ്ഥാനങ്ങൾ മനസിലാക്കാനാകും. -> **[വിദ്യാർത്ഥികൾ](https://aka.ms/student-page)**: ഈ പാഠ്യപദ്ധതി സ്വയം പഠിക്കാൻ, മുഴുവൻ റിപ്പൊ ഡൗൺലോഡ് ചെയ്ത് പ്രീ-ലെക്ചർ ക്വിസ് മുതൽ ആരംഭിച്ച് പഠനം പൂർത്തിയാക്കൂ. പാഠം വായിച്ച് ശേഷമുള്ള പ്രവർത്തനങ്ങൾ തീരൂ. തീരുമാനം കോഡ് പകർപ്പി പ്രോജക്ടുകൾ സൃഷ്ടിക്കാനല്ല; പക്ഷേ, ആ കോഡ് ഓരോ പ്രോജക്റ്റ്-ഓറിയന്റഡ് പാഠത്തിലെ /solutions ഫോള്ഡറുകളിൽ ലഭ്യമാണ്. മറ്റൊരു ആശയമെന്നാൽ കൂട്ടുകാരോടൊപ്പം പഠന ഗ്രൂപ്പ് രൂപപ്പെടുത്തിയും ഉള്ളടക്കങ്ങൾ ഒന്നിച്ച് പഠിക്കാം. കൂടുതൽ പഠനത്തിനായി [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ശുപാർശ ചെയ്യുന്നു. +## 👨‍🎓 വിദ്യാർത്ഥികൾക്ക് +> **പൂർണ്ണമായി പുതിയവർക്കായി**: ഡാറ്റാ സയൻസില് പുതുമകാണുന്നുണ്ടോ? ഞങ്ങളുടെ [ആരംഭകർക്കുള്ള ഉദാഹരണങ്ങൾ](examples/README.md) ഉപയോഗിച്ച് തുടങ്ങുക! ഈ ലളിതവും നല്ല രീതിയിൽ ഓരോള സംഭവത്തെ വിശദീകരിച്ചിരിക്കുന്ന ഉദാഹരണങ്ങൾ, പൂർണ്ണ കോഴ്സിൽ പ്രവേശിക്കുന്നതിന് മുമ്പ് അടിസ്ഥാനങ്ങൾ മനസ്സിലാക്കാൻ സഹായിക്കും. +> **[വിദ്യാർത്ഥികൾ](https://aka.ms/student-page)**: ഈ കോഴ്‌സ് സ്വയം പഠിക്കാൻ, പൂർണ്ണ റിപൊ ഫോർക്ക് ചെയ്ത് മുൻ പാഠം ക്യൂഇസോടെ ആരംഭിച്ച്, തുടർചിന്തിച്ചും പാഠം വായിച്ച് ബാക്കിയുള്ള പ്രവർത്തനങ്ങൾ പൂർത്തിയാക്കുക. പരിഹാര കോഡ് എഴുതാതെ പാഠങ്ങൾ മനസ്സിലാക്കി പ്രോജക്റ്റുകൾ സൃഷ്ടിക്കുക; എന്നാൽ പരിഹാരകോഡുകൾ ഓരോ പ്രോജക്റ്റ് അധിഷ്ഠിത പാഠങ്ങളിൽ /solutions ഫോൾഡറുകളിൽ ലഭ്യമാണ്. മറ്റൊരു മാർഗം സുഹൃത്തുക്കളോടൊപ്പം പഠന ഗ്രൂപ്പ് രൂപീകരിച്ച് സംവദിക്കുക. കൂടുതൽ പഠനത്തിനായി, [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) പ്രോത്സാഹിപ്പിക്കുന്നു. -**വേഗത്തിൽ തുടങ്ങൽ:** -1. നിങ്ങളുടെ പരിസ്ഥിതി ക്രമീകരിക്കാൻ [ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md) പരിശോധിയ്ക്കുക -2. പാഠപദ്ധതിയുടെ ഉപയോഗം മനസിലാക്കാൻ [ഉപയോഗ മാർഗ്ഗം](USAGE.md) വായിക്കുക -3. ലെഷൻ 1 മുതൽ തുടക്കം വച്ചുകൊണ്ട് തുടർച്ചയായി പ്രവർത്തിക്കുക -4. പിന്തുണയ്ക്കായി [ഡിസ്‌കോർഡ് കമ്മ്യൂണിറ്റി](https://aka.ms/ds4beginners/discord) ജോയിൻ ചെയ്യൂ +**ത്വരിതാരംഭം:** +1. നിങ്ങളുടെ പരിസ്ഥിതി തയ്യാറാക്കാൻ [ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md) പരിശോധിക്കുക +2. കോഴ്‌സ് എങ്ങനെ പ്രവർത്തിക്കുമെന്ന് മനസ്സിലാക്കാൻ [ഉപയോഗ വേർപ്പ്](USAGE.md) വായിക്കുക +3. പാഠം 1 മുതൽ തുടക്കം കുറിച്ച് ക്രമത്തിലായി മുന്നോട്ട് പോവുക +4. പിന്തുണക്കായി ഞങ്ങളുടെ [Discord കമ്മ്യൂണിറ്റിയിൽ](https://aka.ms/ds4beginners/discord) ചേരുക ## 👩‍🏫 അധ്യാപകർക്ക് -> **അധ്യാപകർ**: ഈ പാഠ്യപദ്ധതി ഉപയോഗിക്കാൻ അനുയോജ്യമായ [കുറിപ്പുകൾ](for-teachers.md) ഉൾപ്പെടുത്തിയിട്ടുണ്ട്. നിങ്ങളുടെ അഭിപ്രായങ്ങൾ ഞങ്ങളുടെ [ചർച്ച ഫോറത്തിൽ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) പങ്കുവെയ്ക്കാൻ ഞങ്ങൾ ആഗ്രഹിക്കുന്നു! +> **അധ്യാപകർക്ക്**: ഈ കോഴ്സ് എങ്ങനെ ഉപയോഗിക്കാമെന്ന് കുറച്ച് [ശുപാർശകൾ](for-teachers.md) നൽകിയിട്ടുണ്ട്. നിങ്ങളുടെ അഭിപ്രായം ഞങ്ങളുടെ [ചർച്ച ഫോറത്തിൽ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) പങ്കുവെയ്ക്കുക! +## ടീം പരിചയപ്പെടുക -## സംഘത്തെ പരിചയപ്പെടുക [![പ്രമോ വീഡിയോ](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "പ്രമോ വീഡിയോ") -**ഗיף നിർമ്മിച്ചത്** [മോഹിത് ജൈസല്](https://www.linkedin.com/in/mohitjaisal) +**ഗിഫ്** [മോഹിത് ജയ്സാൽ](https://www.linkedin.com/in/mohitjaisal) -> 🎥 പദ്ധതിയെക്കുറിച്ചും അതിൻറെ സൃഷ്ടാക്കൾക്കുറിച്ചുമായുള്ള ഒരു വീഡിയോ കാണാൻ മുകളിൽ വരുന്ന ചിത്രം ക്ലിക്ക് ചെയ്യൂ! +> 🎥 പ്രോജക്ട് ആയും അതിനെ സൃഷ്ടിച്ചവരാണ് എന്നുള്ള ഒരു വീഡിയോക്കായി മുകളിൽ ചിത്രത്തിൽ ക്ലിക്കുചെയ്യൂ! -## പഠനരീതി +## പാഠശാസ്ത്രം -ഈ പാഠ്യപദ്ധതി രൂപകല്പന ചെയ്യുമ്പോൾ ഞങ്ങൾ രണ്ട് പഠനസിദ്ധാന്തങ്ങൾ തെരഞ്ഞെടുക്കുകയുണ്ടായി: ഇത് പ്രോജക്റ്റ്-അടിഷ്ഠിതമായിരിക്കണം എന്നുംതിൽ സ്ഥിരം ക്വിസുകളും ഉൾപ്പെടുത്തണം എന്നതു കൂടി. ഈ പരമ്പരയുടെ അവസാനം, വിദ്യാർത്ഥികൾ ഡാറ്റ സയൻസിന്റെ അടിസ്ഥാന സിദ്ധാന്തങ്ങൾ പഠിക്കും, ഇതിൽ നയതന്ത്ര സിദ്ധാന്തങ്ങൾ, ഡാറ്റ തയ്യാറാക്കൽ, ഡാറ്റയുമായി ജോലി ചെയ്യുന്നതിന്റെ വിവിധ രീതികൾ, ഡാറ്റ ദൃശ്യവത്കരണം, ഡാറ്റ വിശകലനം, ഡാറ്റ സയൻസിന്റെ യഥാർത്ഥ ലോക ഉപയോഗ കേസുകൾ തുടങ്ങിയവ ഉൾപ്പെടും. +ഈ പഠനക്രമം നിർമ്മിക്കുമ്പോൾ ഞങ്ങൾ രണ്ട് പാഠശാസ്ത്ര തത്വങ്ങൾ തിരഞ്ഞെടுக்கியിട്ടുണ്ട്: പ്രോജക്ട് അടിസ്ഥാനമായിരിക്കുക എന്നതും നിരന്തരം ക്വിസ് ഉൾപ്പെടുത്തുക എന്നതും. ഈ പരമ്പരയിലൂടെ വിദ്യാർത്ഥികൾ ഡാറ്റാ സയൻസിന്റെ അടിസ്ഥാന സിദ്ധാന്തങ്ങൾ, സഹജമായ ധാർമിക കാഴ്ചക്കാഴ്ചകൾ, ഡാറ്റാ തയ്യാറാക്കൽ, ഡാറ്റ ഉപയോഗിക്കുന്ന വ്യത്യസ്ത രീതി, ഡാറ്റാ ദൃശ്യീകരണം, ഡാറ്റാ വിശകലനം, ഡാറ്റാ സയൻസിന്റെ യഥാർത്ഥ ലോക ഉപയോഗക്കേസുകൾ എന്നിവ പഠിക്കും. -കൂടാതെ, ക്ലാസിനു മുമ്പുള്ള കുറഞ്ഞ ഭാരം വരുന്ന ഒരു ക്വിസ് വിദ്യാർത്ഥിയുടെ പഠന താത്പര്യം സജീവമാക്കുന്നു, ക്ലാസിനു ശേഷം മടങ്ങി പഠന ഉറപ്പാക്കുന്ന രണ്ടാം ക്വിസും ഇതിൽ ഉൾപ്പെടുത്തിയിട്ടുണ്ട്. ഈ പാഠ്യപദ്ധതി ലച്ചിതമായും രസകരമായും രൂപംകൊണ്ടതാണ്, പൂർണമോ ഭാഗികമായോ പഠിക്കാവുന്നതാണ്. 10 ആഴ്ചയായ ചക്രത്തിലെ അവസാനം പ്രോജക്റ്റുകൾ ചെറിയതായിരിക്കും തുടങ്ങികൊണ്ടു വേറിട്ടും സങ്കീർണ്ണമായും വളരുന്ന തരത്തിലാണ്. +അതുപോലെ, ക്ലാസിന് മുൻപുള്ള ഒരു കുറഞ്ഞ സമ്മർദ്ദം ഉള്ള ക്വിസ് വിദ്യാർത്ഥിയുടെ പഠന സാധ്യതയ്ക്ക് ഉദ്ദേശ്യം നിശ്ചയിക്കുന്നു, ക്ലാസിനു ശേഷം രണ്ടാമത്തെ ക്വിസ് കൂടുതൽ നിലനിർത്തൽ ഉറപ്പു വരുത്തുന്നു. ഈ പഠനക്രമം സുഖകരവും സുഖത്തോടെ പകർന്നെടുക്കാവുന്നതുമായ രീതിയിലുള്ളതാണ്. 10 ആഴ്ചകളുടെ ചക്രത്തിൽ പ്രോജക്ടുകൾ ചെറിയതിൽ ആരംഭിച്ച് ക്രമാതീതമായി ക്രമേണ പ്രയാസപരവും സങ്കീർണവുമായിരിക്കും. -> ഞങ്ങളുടെ [ചടവ് നയം](CODE_OF_CONDUCT.md), [സംരംഭകരെ സംബന്ധിച്ച നിർദ്ദേശങ്ങൾ](CONTRIBUTING.md), [പരിഭാഷ](TRANSLATIONS.md) മാർഗ്ഗനിർദ്ദേശങ്ങൾ കാണൂ. നിങ്ങളുടെ സൃഷ്ടിപരമായ പ്രതികരണം സ്വാഗതം! +> ഞങ്ങളുടെ [നിയമനിർദ്ദേശങ്ങൾ](CODE_OF_CONDUCT.md), [ഒപ്പം സംഭാവന](CONTRIBUTING.md), [പരിശോധന](TRANSLATIONS.md) മാർഗനിർദ്ദേശങ്ങൾ കാണുക. നിങ്ങളുടെ രചനാത്മക ഫീഡ്ബാക്ക് ഞങ്ങൾ സ്വാഗതം ചെയ്യുന്നു! -## ഓരോ പാഠവും ഉൾക്കൊള്ളുന്നത്: +## ഓരോ പാഠവും ഉൾപ്പെടുത്തുന്നു: -- ഐച്ഛിക സ്കെച്ച് നോട്ട് -- ഐച്ഛിക സഹായക വീഡിയോ -- പാഠത്തിനു മുൻപുള്ള ഒരുക്ക ക്വിസ് -- എഴുത്തുള്ള പാഠം -- പ്രോജക്റ്റ്-അടിഷ്ഠിത പാഠങ്ങൾക്കായി പ്രോജക്റ്റ് നിർമ്മിക്കുന്നതിനുള്ള ചുവടു ചുവടായി നിർദ്ദേശങ്ങൾ +- ഐച്ഛിക സ്കെട്നോട്ട് +- ഐച്ഛിക കൂട്ടിച്ചേർത്ത വീഡിയോ +- പാഠം മുമ്പുള്ള വാഴ്മപ്പ് ക്വിസ് +- എഴുതുന്ന പാഠം +- പ്രോജക്ട് അടിസ്ഥാനത്തിലുള്ള പാഠങ്ങൾക്ക്, പ്രോജക്ട് നിർമ്മിക്കാൻ ഘട്ടം ഘട്ടമായുള്ള മാർഗനിർദ്ദേശങ്ങൾ - അറിവ് പരിശോധനകൾ -- ഒരു ചലഞ്ച് -- സഹായക വായന --တာ [പഠനാനന്തര ക്വിസ്](https://ff-quizzes.netlify.app/en/) +- ഒരു ചാലഞ്ച് +- കൂട്ടിച്ചേർത്ത വായന +- അസൈൻമെന്റ് +- [പാഠം കഴിഞ്ഞുള്ള ക്വിസ്](https://ff-quizzes.netlify.app/en/) -> **ക്വിസുകളെക്കുറിച്ചുള്ള ഒരു കാഴ്ച**: എല്ലാ ക്വിസുകളും Quiz-App ഫോൾഡറിൽ ഉൾപ്പെടുത്തിയിട്ടുണ്ട്, ഓരോന്നിലും മൂന്ന് ചോദ്യങ്ങൾ ചേർന്ന 40 ക്വിസുകളാണ്. പാഠങ്ങളിൽ നിന്നു ലിങ്കുചെയ്തിരിക്കുന്നു, എന്നാൽ ക്വിസ് അപ്ലിക്കേഷൻ ലോക്കലായി ഓടിക്കുകയോ ആസ്യൂറില് നോക്കിക്കാണിക്കുകയോ കഴിയും; `quiz-app` ഫോൾഡറിലുളള നിർദ്ദേശങ്ങൾ പാലിക്കുക. ഇവ постепല്ലായി ഭാഷാനുപ്രേഷണം നടത്തപ്പെടുന്നു. +> **ക്വിസുകളെ കുറിച്ചുള്ള കുറിപ്പുകൾ**: എല്ലാ ക്വിസുകളും Quiz-App ഫോൾഡറിലാണ് സൂക്ഷിച്ചിരിക്കുന്നതും, ഓരോതിലും മൂന്ന് ചോദ്യങ്ങളുള്ള 40 മൊത്തം ക്വിസുകളാണ് ഉള്ളത്. അവ പാഠങ്ങളിൽ നിന്ന് ലിങ്ക് ചെയ്തിട്ടുള്ളതായിരിക്കുകയാണ്, എന്നാൽ ക്വിസ് ആപ്പ് പ്രാദേശികമോ ഡെപ്ലോയ്മെന്റിനോ ഉപയോഗിക്കാം; `quiz-app` ഫോൾഡറിലെ നിർദ്ദേശങ്ങൾ പിന്തുടരുക. അവ ക്രമമേറിയും പ്രാദേശികമാക്കപ്പെട്ടു വരുന്നു. -## 🎓 ആരംഭകരെ അനുകൂലിക്കുന്ന ഉദാഹരണങ്ങൾ +## 🎓 ആരംഭക്കാർക്കായി സൗഹൃദം ഉള്ള ഉദാഹരണങ്ങൾ -**ഡാറ്റ സയൻസിൽ പുതുതായി വന്നവരേ?** നിങ്ങളെ സഹായിക്കാൻ ലളിതവും നന്നായി കമന്റിട്ടും ഉള്ള ഒരു പ്രത്യേക [ഉദാഹരണ ഡയറക്ടറി](examples/README.md) ഞങ്ങൾ സൃഷ്ടിച്ചു: +**ഡാറ്റാ സയൻസിൽ പുതിയോ?** ചെറുതും വിശദമായി കമന്റ് ചെയ്ത കോഡും ഉൾപ്പെടുത്തിയ [ഉദാഹരണങ്ങൾ ഡയറക്ടറി](examples/README.md) ഞങ്ങൾ സൃഷ്ടിച്ചു, നിങ്ങളെ സഹായിക്കാൻ: -- 🌟 **ഹെലോ വേൾഡ്** - നിങ്ങളുടെ ആദ്യ ഡാറ്റ സയൻസ് പ്രോഗ്രാം -- 📂 **ഡാറ്റ ലോഡ് ചെയ്യൽ** - ഡാറ്റാ സെറ്റുകൾ വായിക്കുകയും പരിശോധിക്കുകയും പഠിക്കുക -- 📊 **സിമ്പിൾ അനാലിസിസ്** - കണക്കെടുപ്പുകൾ നടത്തി പാറ്റേണുകൾ കണ്ടെത്തുക -- 📈 **ബേസിക് ദൃശ്യവത്കരണം** - ചാർട്ടുകളും ഗ്രാഫുകളും ഉണ്ടാക്കുക -- 🔬 **യഥാർത്ഥ പ്രോജക്റ്റ്** - തുടക്കം മുതൽ അവസാനവരെയും Workflow പൂർത്തിയാക്കുക +- 🌟 **ഹലോ വേൾഡ്** - നിങ്ങളുടെ ആദ്യ ഡാറ്റാ സയൻസ് പ്രോഗ്രാം +- 📂 **ഡാറ്റാ ലോഡിംഗ്** - ഡാറ്റാസെറ്റുകൾ വായിക്കുകയും പരിശോധിക്കുകയും ചെയ്യുന്നത് പഠിക്കുക +- 📊 **സാധാരണ വിശകലനം** - സാ‌ഖ്യങ്ങൾ കണക്കുകൂട്ടുകയും മാതൃകകൾ കണ്ടെത്തുകയും ചെയ്യുക +- 📈 **അടിസ്ഥാന ദൃശ്യീകരണം** - ചാർട്ടുകളും ഗ്രാഫുകളും സൃഷ്ടിക്കുക +- 🔬 **യഥാർത്ഥ ലോക പ്രോജക്ട്** - തുടങ്ങിയിടത്തുനിന്നും പൂർത്തിയാക്കുന്നവരെപ്പം പൂർത്തിയാക്കുക -ഓരോ ഉദാഹരണവും ഓരോ ഘട്ടവും വിശദമായി വിശദീകരിക്കുന്ന കമന്റുകൾ ഉൾക്കൊള്ളുന്നു, ഇത് തൊട്ടുതുടങ്ങിയവർക്കായി ഉത്തമമായി അനുയോജ്യമാണ്! +ഓരോ ഉദാഹരണവും ഓരോ ഘട്ടവും വിശദമായി വിവരിക്കുന്ന കോമന്റുകളോടെയുള്ളതുകൊണ്ട്, പൂർണ്ണ սկսിച്ചവർക്കും അനുയോജ്യമാണ്! -👉 **[ഉദാഹരണങ്ങളിൽ ആരംഭിക്കുക](examples/README.md)** 👈 +👉 **[ഉദാഹരണങ്ങളോടൊപ്പം ആരംഭിക്കുക](examples/README.md)** 👈 ## പാഠങ്ങൾ -|![ @sketchthedocs വഴി സ്കെച്ച്നോട്ട് https://sketchthedocs.dev](../../../../translated_images/ml/00-Roadmap.4905d6567dff4753.webp)| +|![ @sketchthedocs നൽകിയ സ്കെട്നോട്ട് https://sketchthedocs.dev](../../translated_images/ml/00-Roadmap.4905d6567dff4753.webp)| |:---:| -| ഡാറ്റ സയൻസ് ഫോർ ബിഗിന്നേഴ്സ്: റോഡ് മാപ്പ് - _സ്കെച്ച്നോട്ട് @nitya യിലൂടെ_.([https://twitter.com/nitya](https://twitter.com/nitya)) | +| ഡാറ്റ സയൻസ് ഫോർ ബിഗിന്നേഴ്സ്: റോഡ്‌മാപ്പ് - _സ്കെട്നോട്ട് [@nitya](https://twitter.com/nitya)_ | -| പാഠ നമ്പർ | വിഷയഭാഗം | പാഠ ഗ്രൂപ്പിങ്ങ് | പഠനലക്ഷ്യങ്ങൾ | ലിങ്കുചെയ്ത പാഠം | എഴുത്തുകാരൻ | +| പാഠം നമ്പർ | വിഷയപരിധി | പാഠ വിഭാഗം | പഠന ലക്ഷ്യങ്ങൾ | ലിങ്കുചെയ്‌ത പാഠം | എഴുത്തുകാരന്‍ | | :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: | -| 01 | ഡാറ്റ സയൻസ് നിശ്ചയിക്കൽ | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ സയൻസിന്റെ അടിസ്ഥാന ആശയങ്ങൾ പഠിക്കുകയും അതിന്റെ ആധികാര്യബുദ്ധിയും, മെഷീൻ ലേണിങ്ങും, വലിയ ഡേറ്റയും തമ്മിലുള്ള ബന്ധം മനസ്സിലാക്കുക. | [പാഠം](1-Introduction/01-defining-data-science/README.md) [വീഡിയോ](https://youtu.be/beZ7Mb_oz9I) | [ദിമിത്രി](http://soshnikov.com) | -| 02 | ഡാറ്റ സയൻസ് നയശാസ്ത്രം | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ നയശാസ്ത്ര ആശയങ്ങൾ, വെല്ലുവിളികൾ & ഘടനകൾ. | [പാഠം](1-Introduction/02-ethics/README.md) | [നിത്യ](https://twitter.com/nitya) | -| 03 | ഡാറ്റ നിർവചനം | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ എങ്ങനെ വർഗ്ഗീകരിക്കുമെന്നതും സാധാരണ ഉറവിടങ്ങളും. | [പാഠം](1-Introduction/03-defining-data/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) | -| 04 | സ്ഥിതിവിവരശാസ്ത്രവും സാധ്യതാ സിദ്ധാന്തവും | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ മനസ്സിലാക്കാൻ സാധ്യതയും സ്ഥിതിവിവരശാസ്ത്രത്തിന്റെ ഗണിതരീതികൾ. | [പാഠം](1-Introduction/04-stats-and-probability/README.md) [വീഡിയോ](https://youtu.be/Z5Zy85g4Yjw) | [ദിമിത്രി](http://soshnikov.com) | -| 05 | ബന്ധ ഡാറ്റയിൽ പ്രവർത്തനങ്ങൾ | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | ബന്ധ ഡാറ്റ (Relational Data) പരിചയം, SQL എന്ന സ്‌ട്രക്ചേഡ് ക്വറി ലാങ്ങ്വേജ് ഉപയോഗിച്ച് ഡാറ്റ കണ്ടെത്തലും വിശകലനവും. | [പാഠം](2-Working-With-Data/05-relational-databases/README.md) | [ക്രിസ്റ്റഫർ](https://www.twitter.com/geektrainer) | | | -| 06 | നോൺ-എസ്‌ക്യൂ‌എൽ ഡാറ്റയുമായി പ്രവർത്തനം | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | നോൺ-ബന്ധ ഡാറ്റയുടെ പരിചയം, അതിന്റെ വിവിധ തരം, ഡോക്യുമെന്റ് ഡാറ്റാബേസുകൾ പരിശോധിക്കാനും വിശകലനം ചെയ്യാനും അടിസ്ഥാന ചിന്തകൾ. | [പാഠം](2-Working-With-Data/06-non-relational/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique)| -| 07 | പൈത്തണുമായി പ്രവർത്തനം | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | പാന്ഡാസ് പോലുള്ള ലൈബ്രറിയുകൾ ഉപയോഗിച്ച് ഡാറ്റാ സഹായിത പഠനങ്ങൾ ആരംഭിക്കാൻ പൈത്തൺ അടിസ്ഥാനങ്ങൾ. പൈത്തൺ പ്രോഗ്രാമിങിലെ ആമുഖ അറിവ് ആവശ്യമാണ്. | [പാഠം](2-Working-With-Data/07-python/README.md) [വീഡിയോ](https://youtu.be/dZjWOGbsN4Y) | [ദിമിത്രി](http://soshnikov.com) | -| 08 | ഡാറ്റ തയ്യാറാക്കൽ | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | മിസ്സിങ്, തെറ്റായ, അപൂർണ്ണമായ ഡാറ്റ കൈകാര്യം ചെയ്യാനുള്ള ഡാറ്റ ക്ലീനിംഗും ട്രാൻസ്ഫോർമേഷനും സംബന്ധിച്ച വിഷയങ്ങൾ. | [പാഠം](2-Working-With-Data/08-data-preparation/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) | -| 09 | അളക്കത്തിൻറെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | മാട്പ്ലോട്ട്‌ലിബ് ഉപയോഗിച്ച് പടവാട്ടിയ പക്ഷി ഡാറ്റ ദൃശ്യവത്ക്കരിക്കുന്നത് പഠിക്കുക 🦆 | [പാഠം](3-Data-Visualization/09-visualization-quantities/README.md) | [ജെൻ](https://twitter.com/jenlooper) | -| 10 | ഡാറ്റയുടെ വിതരണങ്ങൾ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | നിരത്തിലുളള നിരീക്ഷണങ്ങളും പ്രവണതകളും ദൃശ്യവത്കരിക്കൽ. | [പാഠം](3-Data-Visualization/10-visualization-distributions/README.md) | [ജെൻ](https://twitter.com/jenlooper) | -| 11 | അനുപാതങ്ങളുടെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | വ്യത്യസ്ത സാമൂഹ്യജീവിത ശതമാനങ്ങളുടെ ദൃശ്യവത്കരണം. | [പാഠം](3-Data-Visualization/11-visualization-proportions/README.md) | [ജെൻ](https://twitter.com/jenlooper) | -| 12 | ബന്ധങ്ങളുടെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | ഡാറ്റ സെറ്റുകളും പോവരിബന്ധങ്ങളുമാകെ ബന്ധങ്ങളുടെ ദൃശ്യവത്കരണം. | [പാഠം](3-Data-Visualization/12-visualization-relationships/README.md) | [ജെൻ](https://twitter.com/jenlooper) | -| 13 | മൂല്യമുള്ള ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | പ്രയോജനം നിറഞ്ഞ പ്രശ്ന പരിഹാരത്തിനും സൂക്ഷ്മ വിവേകത്തിനും വേണ്ടി നിങ്ങളുടെ ദൃശ്യവത്കരണം വിലപ്പെട്ടതാക്കാനുള്ള സാങ്കേതികങ്ങൾ. | [പാഠം](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ജെൻ](https://twitter.com/jenlooper) | -| 14 | ഡാറ്റ സയൻസ് ലൈഫ് സൈകിളിൻറെ പരിചയം | [ലൈഫ് സൈകിള്](4-Data-Science-Lifecycle/README.md) | ഡാറ്റ സയൻസ് ലൈഫ് സൈകിളിൻറെ പരിചയം, ആദ്യഘട്ടം ആയ ഡാറ്റ ഏറ്റെടുക്കലും എക്സ്ട്രാക്ഷനുമ്. | [പാഠം](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) | -| 15 | വിശകലനം | [ലൈഫ് സൈകിള്](4-Data-Science-Lifecycle/README.md) | ഡാറ്റ സയൻസ് ലൈഫ് സൈകിളിന്റെ സ്ഥലം ഡാറ്റ വിശകലനത്തിന് സാങ്കേതിക വിദ്യകൾ. | [പാഠം](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) | | | -| 16 | ആശയവിനിമയം | [ലൈഫ് സൈകിള്](4-Data-Science-Lifecycle/README.md) | ഡാറ്റയിൽനിന്ന് ലഭിച്ച അറിവുകൾ തീരുമാനമെടുക്കുന്നവർക്കു എളുപ്പത്തിൽ മനസ്സിലാകും വിധം പ്രദർശിപ്പിക്കാനുള്ള ഘട്ടം. | [പാഠം](4-Data-Science-Lifecycle/16-communication/README.md) | [ജാലൻ](https://twitter.com/JalenMcG) | | | -| 17 | ക്ലൗഡിലെ ഡാറ്റ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ക്ലൗഡിലെ ഡാറ്റ സയൻസിന്റെ പരിചയവും പ്രയോജനങ്ങളും. | [പാഠം](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ടിഫാൻ](https://twitter.com/TiffanySouterre) & [മാഉഡ്](https://twitter.com/maudstweets) | -| 18 | ക്ലൗഡിലെ ഡാറ്റ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ലോ കോഡ് ഉപകരണങ്ങൾ ഉപയോഗിച്ച് മോഡൽ പരിശീലനം. |[പാഠം](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ടിഫാൻ](https://twitter.com/TiffanySouterre) & [മാഉഡ്](https://twitter.com/maudstweets) | -| 19 | ക്ലൗഡിലെ ഡാറ്റ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | അജ്വർ മെഷീൻ ലേണിങ്ങ് സ്റ്റുഡിയോയിൽ മോഡലുകൾ വിന്യസിക്കൽ. | [പാഠം](5-Data-Science-In-Cloud/19-Azure/README.md)| [ടിഫാൻ](https://twitter.com/TiffanySouterre) & [മാഉഡ്](https://twitter.com/maudstweets) | -| 20 | വന്യമായിട്ടുള്ള ഡാറ്റ സയൻസ് | [വന്യത്തിലൂടെ](6-Data-Science-In-Wild/README.md) | യഥാർത്ഥ ലോകത്തെ ഡാറ്റ സയൻസ് നേതൃത്വത്തിലുള്ള പ്രോജക്റ്റുകൾ. | [പാഠം](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [നിത്യ](https://twitter.com/nitya) | - -## GitHub_CODESpaces - -ഈ ഉദാഹരണം ഒരു Codespace ൽ തുറക്കാൻ നിലനിൽക്കുന്ന ചുവടുകൾ ഉപയോഗിക്കുക: -1. Code ഡ്രോപ്-ഡൗൺ മെനു ക്ലിക്ക് ചെയ്ത് Open with Codespaces തിരഞ്ഞെടുക്കുക. -2. താഴെ ഇത്രയും അതിൻറെ പാനലിൽ + New codespace തിരഞ്ഞെടുക്കുക. -കൂടുതൽ വിവരങ്ങൾക്ക് GitHub രേഖ ചോദിക്കുയ്യാം: [GitHub ഡോക്യുമെന്റേഷൻ](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace). - -## VSCode_Remote_-_Containers -ഈ റിപ്പോസിറ്ററി ഒരു കണ്ടെയിനറിൽ തുറക്കാൻ ചുവടുള്ള മാർഗ്ഗനിർദ്ദേശങ്ങൾ പാലിക്കുക. നിങ്ങളുടെ ലൊക്കൽ മെഷീനും VSCode യും ഉപയോഗിച്ച് VS Code Remote - Containers എക്സ്റ്റൻഷൻ ഉപയോഗിക്കുക: - -1. ആദ്യമായി ഡെവലപ്പ്മെന്റ് കണ്ടെയ്‌നർ ഉപയോഗിക്കുന്നുവെങ്കിൽ, നിങ്ങളുടെ സംവിധാനം മുൻനിബന്ധനകൾ നിറവേറ്റുന്നുവെന്ന് ഉറപ്പാക്കുക (ഹെച്ച് ഡോക്കർ ഇൻസ്റ്റാൾ ചെയ്തിട്ടുണ്ടോ എന്നതുപോലുള്ളത്) [ആരംഭ ഡോക്യുമെന്റേഷൻ](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) പരിശോധിക്കുക. - -ഈ റിപ്പോസിറ്ററി ഇസൊലേറ്റഡ് ഡോക്കർ വോളിയത്തിലോ അല്ലെങ്കിൽ ലോക്കലായി ക്ലോൺ ചെയ്‌ത അല്ലെങ്കിൽ ഡൗൺലോഡ് ചെയ്‌ത പക്ഷേ തുറക്കാം: - -**കൂടുകുറിപ്പായി**: Remote-Containers: **Clone Repository in Container Volume...** കമാൻഡ് ഉപയോഗിച്ച് സോഴ്സ് കോഡ് ഡോക്കർ വോളിയത്തിലേക്ക് ക്ലോൺ ചെയ്യുന്നു, ലൊക്കൽ ഫയൽ സിസ്റ്റം അല്ല. [ഡോക്കർ വോളിയം](https://docs.docker.com/storage/volumes/) കണ്ടെയ്‌നർ ഡാറ്റ സംരക്ഷിക്കാൻ അഭിലഷണീയമാണ്. - -അല്ലെങ്കിൽ ലോക്കലായി ക്ലോൺ ചെയ്ത കോപ്പി തുറക്കുക: - -- ഈ റിപ്പോസിറ്ററി നിങ്ങളുടെ ലൊക്കൽ ഫയൽ സിസ്റ്റത്തിൽ ക്ലോൺ ചെയ്യുക. +| 01 | ഡാറ്റാ സയൻസ് നിർവചിക്കൽ | [പരിചയം](1-Introduction/README.md) | ഡാറ്റാ സയൻസിന്റെ അടിസ്ഥാന ആശയങ്ങൾ പഠിക്കുകയും, അതാണ് ആർട്ടിഫിഷ്യൽ ഇന്റലിജൻസ്, മെഷീൻ ലേണിങ്, വലിയ ഡാറ്റ എന്നിവയും എങ്ങനെ ബന്ധപ്പെട്ടു പ്രവർത്തിക്കുന്നുവെന്ന് മനസ്സിലാക്കുക. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [ഡിമിട്രി](http://soshnikov.com) | +| 02 | ഡാറ്റാ സയൻസ് ധാർമികത | [പരിചയം](1-Introduction/README.md) | ഡാറ്റാ ധാർമികതയുടെ ആശയങ്ങൾ, വെല്ലുവിളികൾ, നിബന്ധനകൾ. | [lesson](1-Introduction/02-ethics/README.md) | [നിത്യ](https://twitter.com/nitya) | +| 03 | ഡാറ്റ നിർവചിക്കൽ | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ എങ്ങിനെ വർഗീകരിക്കപ്പെടുന്നു, അതിന്റെ സാധാരണ ഉറവിടങ്ങൾ. | [lesson](1-Introduction/03-defining-data/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) | +| 04 | സ്റ്റാറ്റിസ്റ്റിക്സിനും പരസ്യങ്ങൾക്കും പരിചയം | [പരിചയം](1-Introduction/README.md) | ദിവസവുമുള്ള ഡാറ്റ മനസ്സിലാക്കാൻ പരസ്യവും സ്റ്റാറ്റിസ്റ്റിക്സും ഉപയോഗിച്ച ഗണിത സാങ്കേതിക വിദ്യകൾ. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [ഡിമിട്രി](http://soshnikov.com) | +| 05 | റിലേഷണൽ ഡാറ്റ ഉപയോഗപ്പെടുത്താം | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | റിലേഷണൽ ഡാറ്റയിലേക്കുള്ള പരിചയവും, ഘടിത ചോദ്യം ഭാഷയായി അറിയപ്പെടുന്ന SQL ഉപയോഗിച്ച് റിലേഷണൽ ഡാറ്റ പരിശോധിക്കുന്നതിന്റെ അടിസ്ഥാന കാര്യങ്ങൾ. | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [ക്രിസ്റ്റോഫർ](https://www.twitter.com/geektrainer) | | | +| 06 | നോൺ-SQL ഡാറ്റയുമായി പ്രവർത്തിക്കുക | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | നോൺ-രിലേഷണൽ ഡാറ്റയിലേക്കുള്ള പരിചയവും, അതിന്റെ പല തരങ്ങളും രേഖ ഡാറ്റാബേസുകൾ പരിശോധിക്കുകയും വിശകലനം ചെയ്യുകയും ചെയ്യുന്നതിന്റെ അടിസ്ഥാന കാര്യങ്ങൾ. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique)| +| 07 | പൈഥൺ ഉപയോഗിച്ച് പ്രവർത്തിക്കുക | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | Pandas പോലുള്ള ലൈബ്രറികൾ ഉപയോഗിച്ച് ഡാറ്റ പരിശോധിക്കാൻ പൈഥൺക്ക് അടിസ്ഥാനങ്ങൾ. പൈഥൺ പ്രോഗ്രാമിംഗിൽ അടിസ്ഥാന അറിവ് നിർബന്ധം. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [ഡിമിട്രി](http://soshnikov.com) | +| 08 | ഡാറ്റ ഒരുക്കൽ | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | മിസ്സിംഗ്, തെറ്റായ, അപൂർണ്ണമായ ഡാറ്റ കൈകാര്യം ചെയ്യുന്നതിന് ഡാറ്റ ശുചീകരണവും പരിവർത്തനവും സംബന്ധിച്ച സാങ്കേതിക വിശദാംശങ്ങൾ. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) | +| 09 | മാസ്പ്ളോട്ട്‌ലിബ് ഉപയോഗിച്ച് അളവുകൾ ദൃശ്യവത്കരിക്കൽ | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | പറവികളുടെ ഡാറ്റാ ദൃശ്യവത്കരിക്കാൻ Matplotlib ഉപയോഗിക്കുക 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [ജെൻ](https://twitter.com/jenlooper) | +| 10 | ഡാറ്റാ വിതരണങ്ങളുടെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | ഒരു ഇടവേളയിലുള്ള നിരീക്ഷണങ്ങളും പ്രവണതകളും ദൃശ്യവത്കരിക്കൽ. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [ജെൻ](https://twitter.com/jenlooper) | +| 11 | അനുപാതങ്ങൾ ദൃശ്യവത്കരിക്കൽ | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | വ്യത്യസ്തമായ ഗ്രൂപ്പ് ചെയ്ത ശതമാനങ്ങൾ ദൃശ്യമാക്കുക. | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [ജെൻ](https://twitter.com/jenlooper) | +| 12 | ബന്ധങ്ങൾ ദൃശ്യവത്കരിക്കൽ | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | ഡാറ്റയും അതിലെ ചാരിത്രങ്ങളുമുള്ള സെറ്റുകൾ തമ്മിലുള്ള ബന്ധങ്ങളും സാന്ദ്രതകളും ദൃശ്യമാക്കുക. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [ജെൻ](https://twitter.com/jenlooper) | +| 13 | പ്രധാനം ഉള്ള ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യമാക്കൽ](3-Data-Visualization/README.md) | സജീവ പ്രശ്നപരിഹാരത്തിനും തിരിച്ചറിവിനും‍റെ മൂല്യം വർദ്ധിപ്പിക്കാൻ ഉപകരിക്കുന്ന സാങ്കേതിക വിദ്യകളും മാർഗനിർദ്ദേശങ്ങളും. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ജെൻ](https://twitter.com/jenlooper) | +| 14 | ഡാറ്റാ സയൻസ് ജീവിത ചക്രത്തിനുള്ള പരിചയം | [ജീവിതചക്രം](4-Data-Science-Lifecycle/README.md) | ഡാറ്റാ സയൻസ് ജീവിത ചക്രം പരിചയപ്പെടുക, ആദ്യ ഘട്ടമായ ഡാറ്റാ സമാഹരണവും ഉൽപ്പാദനവുമാണ്. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) | +| 15 | വിശകലനം | [ജീവിതചക്രം](4-Data-Science-Lifecycle/README.md) | ഡാറ്റാ സയൻസ് ജീവിതചക്രത്തിൽ ഡാറ്റ വിശകലനം നടത്തുന്നതിനുള്ള സാങ്കേതികതകൾ സൂചിപ്പിക്കുന്നു. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) | | | +| 16 | സംവാദം | [ജീവിതചക്രം](4-Data-Science-Lifecycle/README.md) | ഡാറ്റയിലുള്ള തിരിച്ചറിവുകൾ സ്വീകാര്യമായ വിധത്തിൽ നയതന്ത്ര നിർണായകർക്കായി സമർപ്പിക്കുന്ന ഘട്ടം. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [ജാലൻ](https://twitter.com/JalenMcG) | | | +| 17 | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് പരിചയപ്പെടുക കൂടാതെ അതിന്റെ ഗുണങ്ങൾ. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [റ്റിഫാനി](https://twitter.com/TiffanySouterre) & [മോഡ്](https://twitter.com/maudstweets) | +| 18 | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ലോ കോഡ് ഉപകരണങ്ങൾ ഉപയോഗിച്ച് മാതൃകകൾ പരിശീലിപ്പിക്കൽ. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [റ്റിഫാനി](https://twitter.com/TiffanySouterre) & [മോഡ്](https://twitter.com/maudstweets) | +| 19 | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ഉപയോഗിച്ചു മാതൃകകൾ വിനിയോഗിക്കൽ. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [റ്റിഫാനി](https://twitter.com/TiffanySouterre) & [മോഡ്](https://twitter.com/maudstweets) | +| 20 | യഥാർത്ഥ ലോകത്തെ ഡാറ്റാ സയൻസ് | [വനം നിറത്തിൽ](6-Data-Science-In-Wild/README.md) | യഥാർത്ഥ ലോകം പ്രോജക്റ്റുകളിൽ ഡാറ്റാ സയൻസിന്റെ പ്രയോജനം. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [നിത്യ](https://twitter.com/nitya) | + +## GitHub കോഡ്‌സ്പേസസ് + +ഈ സാമ്പിൾ Codespace ൽ തുറക്കുന്നതിനുള്ള ചുവടു പിന്തുടരുക: +1. കോഡ് ഡ്രോപ്പ്-ഡൗൺ മെനുവിൽ നിന്ന് Open with Codespaces തിരഞ്ഞെടുക്കുക. +2. പാനൽ അടിവരിയിൽ + New codespace തിരഞ്ഞെടുക്കുക. +കൂടുതൽ വിവരങ്ങൾക്കായി [GitHub ഡോക്യുമെന്റേഷൻ](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) കാണുക. + +## VSCode റിമോട്ട് - കണ്ടെയ്‌നറുകൾ +നിങ്ങളുടെ ലൊക്കൽ മെഷീനിൽ VSCode ഉപയോഗിച്ച് ഈ റെപ്പോ ഒരു കണ്ടെയ്‌നറിൽ തുറക്കാൻ, VS Code Remote - Containers എക്സ്റ്റൻഷൻ ഉപയോഗിച്ച് ചുവടു പിന്തുടരുക: + +1. ഇത് നിങ്ങളുടെ ആദ്യ ഡെവലപ്പ്മെന്റ് കണ്ടെയ്‌നർ സംവിധാനം ആയിരിക്കുകയാണെങ്കിൽ, ദയവായി നിങ്ങളുടെ സിസ്റ്റം പ്രീ-റിക്വിസിറ്റുകൾ (ഉദാ: Docker ഇൻസ്റ്റാൾ ചെയ്തിട്ടുണ്ടെന്ന്) [Getting started ഡോക്യുമെന്റേഷൻ](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ൽ ഉറപ്പാക്കുക. + +ഈ റെപ്പോ സമ്പൂർണമായും ഡോക്കർ വോൾയത്തിൽ ക്ലോൺ ചെയ്യുക എന്ന് ഉപയോഗിക്കാം: + +**ഗమనിക്കുക**: ഇതിന്റെ പിന്നിൽ, Remote-Containers: **Clone Repository in Container Volume...** കമാൻഡ് ഉപയോഗിച്ച് കോഡ്ഡാറ്റയെ ലൊക്കൽ ഫയൽ സിസ്റ്റത്തിലെ പകരം ഡോക്കർ വോൾയത്തിൽ ക്ലോൺ ചെയ്യും. [Volumes](https://docs.docker.com/storage/volumes/) കണ്ടെയ്‌നർ ഡാറ്റ പിന്തുണയ്ക്കാൻ മുൻഗണനാ സംവിധാനമാണ്. + +അല്ലെങ്കിൽ ലൊക്കലായി ക്ലോൺ ചെയ്ത റെപ്പോ തുറക്കുക: + +- ഈ റെപ്പോ നിങ്ങളുടെ ലൊക്കൽ ഫയൽസിസ്റ്റത്തിലേക്ക് ക്ലോൺ ചെയ്യുക. - F1 അമർത്തി **Remote-Containers: Open Folder in Container...** കമാൻഡ് തിരഞ്ഞെടുക്കുക. -- ഈ ഫോൾഡർ ക്ലോൺ ചെയ്ത കോപ്പി തിരഞ്ഞെടുത്ത്, കണ്ടെയ്‌നർ ആരംഭിക്കുവോളം കാത്തിരിക്കുക, ശേഷം പരീക്ഷിക്കുക. +- ഫോളഡറിന്റെ ക്ലോൺ ചെയ്യുന്ന പകർപ്പ് തിരഞ്ഞെടുക്കുക, കണ്ടെയ്‌നർ ആരംഭിക്കാൻ കാത്തിരിക്കുക, തുടർന്ന് പരീക്ഷിച്ച് നോക്കുക. -## ഓഫീസ്ലൈൻ ആക്‌സസ് +## ഓഫ്ലൈൻ ആക്സസ് -[Docsify](https://docsify.js.org/#/) ഉപകരണം ഉപയോഗിച്ച് നിങ്ങളുടെ ഡോക്യുമെന്റേഷൻ ഓഫ്ലൈനിലും ഓടിക്കാം. ഈ റിപ്പോസിറ്ററി ഫോർക്ക് ചെയ്ത്, [Docsify ഇൻസ്റ്റാൾ ചെയ്ത്](https://docsify.js.org/#/quickstart) നിങ്ങളുടെ ലോക്കൽ മെഷീനിൽ, പിന്നെ ഈ റിപ്പോസിറ്ററിയുടെ റൂട്ട് ഫോൾഡറിൽ `docsify serve` ടൈപ്പ് ചെയ്യുക. വെബ്സൈറ്റ് `localhost:3000` എന്ന പോർട്ടിൽ ലഭ്യമാകും. +[Docsify](https://docsify.js.org/#/) ഉപയോഗിച്ച് ഈ ഡോക്യുമെന്റേഷൻ ഓഫ്‌ലൈൻ ചോന്ന് പ്രവർത്തിപ്പിക്കാൻ കഴിയും. ഈ റെപ്പോ ഫോർക്ക് ചെയ്യുക, [Docsify ഇൻസ്റ്റാൾ](https://docsify.js.org/#/quickstart) ചെയ്യുക നിങ്ങളുടെ ലൊക്കൽ മെഷീനിൽ, തുടർന്ന് ഈ റെപ്പോയുടെ റൂട്ടിൽ `docsify serve` ടൈപ് ചെയ്യുക. വെബ്സൈറ്റ് `localhost:3000` പോർട്ടിൽ ലഭ്യമാണ്. -> കുറിപ്പ്: നോട്ട് ബുകുകൾ Docsify വഴി പ്രകാശിപ്പിക്കണമെന്നില്ല, അതിനാൽ നോട്ട് ബുക് പ്രവർത്തിപ്പിക്കേണ്ടപ്പോൾ, പൈത്തൺ കർണൽ ഓടിക്കുന്ന VS Code ആണ് വേണം. +> കുറിപ്പ്: നോട്ട് ബുക്കുകൾ Docsify വഴിയില്ലാതെ, അതിനാൽ നിങ്ങൾക്ക് നോട്ട് ബുക്ക് ഓടിക്കേണ്ടത് വേണം എങ്കിൽ വേർപെടുത്തി VS കോഡിൽ പൈതൺ കൺറോളറോടെ നടത്തണം. -## മറ്റ് പാഠ്യപദ്ധതികൾ +## മറ്റൊരു പാഠ്യപദ്ധതി -ഞങ്ങളുടെ ടീം മറ്റ് പാഠ്യപദ്ധതികളും ഉണ്ടാക്കുന്നു! പരിശോധിക്കുക: +ഞങ്ങളുടെ ടീം മറ്റു പാഠ്യപധതികളും സൃഷ്ടിക്കുന്നു! നോക്കൂ: ### LangChain @@ -209,7 +200,7 @@ CO_OP_TRANSLATOR_METADATA: --- -### ആസ്യൂർ / എഡ്ജ് / എംസിപി / ഏജന്റ്‌സ് +### ആസ്യൂർ / എഡ്‌ജ് / MCP / ഏജന്റുകൾ [![AZD for Beginners](https://img.shields.io/badge/AZD%20for%20Beginners-0078D4?style=for-the-badge&labelColor=E5E7EB&color=0078D4)](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst) [![Edge AI for Beginners](https://img.shields.io/badge/Edge%20AI%20for%20Beginners-00B8E4?style=for-the-badge&labelColor=E5E7EB&color=00B8E4)](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst) [![MCP for Beginners](https://img.shields.io/badge/MCP%20for%20Beginners-009688?style=for-the-badge&labelColor=E5E7EB&color=009688)](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst) @@ -217,7 +208,7 @@ CO_OP_TRANSLATOR_METADATA: --- -### ജനറേറ്റീവ് എഐ സീരീസ് +### ജനറേറ്റീവ് AI പരമ്പര [![Generative AI for Beginners](https://img.shields.io/badge/Generative%20AI%20for%20Beginners-8B5CF6?style=for-the-badge&labelColor=E5E7EB&color=8B5CF6)](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst) [![Generative AI (.NET)](https://img.shields.io/badge/Generative%20AI%20(.NET)-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst) [![Generative AI (Java)](https://img.shields.io/badge/Generative%20AI%20(Java)-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst) @@ -225,7 +216,7 @@ CO_OP_TRANSLATOR_METADATA: --- -### കോർ ലേർണിംഗ് +### കോർ ലേണിംഗ് [![ML for Beginners](https://img.shields.io/badge/ML%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=22C55E)](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst) [![Data Science for Beginners](https://img.shields.io/badge/Data%20Science%20for%20Beginners-84CC16?style=for-the-badge&labelColor=E5E7EB&color=84CC16)](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst) [![AI for Beginners](https://img.shields.io/badge/AI%20for%20Beginners-A3E635?style=for-the-badge&labelColor=E5E7EB&color=A3E635)](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst) @@ -236,27 +227,27 @@ CO_OP_TRANSLATOR_METADATA: --- -### കോപ്പൈലറ്റ് സീരീസ് +### കോ‌പൈലട്ട് പരമ്പര [![Copilot for AI Paired Programming](https://img.shields.io/badge/Copilot%20for%20AI%20Paired%20Programming-FACC15?style=for-the-badge&labelColor=E5E7EB&color=FACC15)](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst) [![Copilot for C#/.NET](https://img.shields.io/badge/Copilot%20for%20C%23/.NET-FBBF24?style=for-the-badge&labelColor=E5E7EB&color=FBBF24)](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst) [![Copilot Adventure](https://img.shields.io/badge/Copilot%20Adventure-FDE68A?style=for-the-badge&labelColor=E5E7EB&color=FDE68A)](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst) -## സഹായം നേടാം +## സഹായം നേടുന്നതിന് -**പ്രശ്നങ്ങൾ നേരിടുന്നുണ്ടോ?** സാധാരണപ്പെട്ട പ്രശ്നങ്ങൾക്ക് പരിഹാരങ്ങൾ കാണാൻ ഞങ്ങളുടെ [Troubleshooting Guide](TROUBLESHOOTING.md) പരിശോധിക്കുക. +**പ്രശ്നങ്ങൾ നേരിടുകയാണോ?** സാധാരണ പ്രശ്നങ്ങൾക്ക് പരിഹാരങ്ങൾക്കായി നമ്മുടെ [Troubleshooting Guide](TROUBLESHOOTING.md) പരിശോധിക്കുക. -AI ആപ്പുകൾ നിർമ്മിക്കുന്നതിൽ തടസ്സമുണ്ടെങ്കിൽ അല്ലെങ്കിൽ ഏതെങ്കിലും ചോദ്യങ്ങൾ ഉണ്ടായാൽ, MCP സംബന്ധിച്ച ചർച്ചകളിൽ പങ്കുചേരാൻ അനുഭവസമ്പന്നരായ ഡെവലപ്പർമാരും പഠനാർത്ഥികളും ഉള്ള ഒരു കൂട്ടായ്മയിൽ ചേർക്കുക. ചോദ്യങ്ങൾ ഏറ്റെടുക്കുന്ന ഒരു പിന്തുണയുള്ള സമൂഹമാണ് ഇത്, അറിവ് സൗജന്യമായി പങ്കുവെക്കപ്പെടുന്നു. +AI ആപ്പുകൾ നിർമ്മിക്കുന്നതിൽ നിങ്ങൾക്ക് തടസ്സമുണ്ടെങ്കിൽ അല്ലെങ്കിൽ സംശയങ്ങളുണ്ടെങ്കിൽ MCP-യെക്കുറിച്ച് fellow learners ഉം പരിചയസമ്പന്നരും ആയ ഡെവലപ്പർമാരുമായുള്ള ചർച്ചകളിൽ ചേർത്ത് വെക്കുക. ചോദ്യങ്ങൾക്ക് സ്വാഗതം പറയുന്നു, അറിയിപ്പ് സ്വതന്ത്രമായി പങ്കുവെക്കപ്പെടുന്നു എന്നു ഈ സാമുദായികം ആണ്. [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -നിങ്ങൾക്ക് ഉൽപ്പന്ന പ്രതികരണം ഉണ്ടെങ്കിൽ അല്ലെങ്കിൽ ഉണ്ടാകുന്ന പിഴവുകൾ ഉണ്ടാകുമ്പോൾ സന്ദർശിക്കുക: +ഉൽപ്പന്ന പ്രതികരണങ്ങൾക്കോ തകരാറുകൾക്കോ വേണ്ടി നിർമ്മിക്കാന്‍ വരുമ്പോൾ സന്ദർശിക്കുക: [![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) --- -**അസ്വീകാര്യത**: -ഈ ദസ്താവേജ് AI വിവർത്തന സേവനമായ [Co-op Translator](https://github.com/Azure/co-op-translator) ഉപയോഗിച്ച് വിവർത്തനം ചെയ്തതാണ്. ഞങ്ങൾ സത്യസന്ധതയിൽ ശ്രമിച്ചാലും, ഓട്ടോമാറ്റഡ് വിവർത്തനങ്ങളിൽ പിശകുകൾ അല്ലെങ്കിൽ തെറ്റിദ്ധാരണകൾ ഉണ്ടാകാവുന്നതാണ്. ആഭിക്ഷമായ ഭാഷയിൽ ഉണ്ടായിരുന്നുള്ള ഒറിജിനൽ ദസ്താവേജിനെ അധികാരപ്രാപ്തമായ ഉറവിടമായി പരിഗണിക്കുക. പ്രധാന വിവരങ്ങൾക്ക്, പ്രൊഫഷണൽ മനുഷ്യ വിവർത്തനം ശുപാർശ ചെയ്യപ്പെടുന്നു. ഈ വിവർത്തനത്തിന്റെ ഉപയോഗത്തിൽ നുണർഭാഷകൾ അല്ലെങ്കിൽ തെറ്റിദ്ധാരണകൾ സംഭവിച്ചപ്പോഴും ഞങ്ങൾ ഉത്തരവാദിത്വം വഹിക്കുന്നില്ല. +**വിവരണക്കുറിപ്പ്**: +ഈ ഡോക്യുമെന്റ് AI പരിഭാഷാ സേവനം [Co-op Translator](https://github.com/Azure/co-op-translator) ഉപയോഗിച്ച് പരിഭാഷപ്പെടുത്തിയതാണ്. നമ്മൾ നിഷ്‌ക്കളങ്കതയ്ക്ക് ശ്രമിക്കുന്നുവെങ്കിലും, ഓട്ടോമേറ്റഡ് പരിഭാഷകളിൽ പിശകുകൾ അല്ലെങ്കിൽ തെറ്റുകൾ ഉണ്ടാകാമെന്ന് ദയവായി ശ്രദ്ധിക്കുക. മൂല ഭാഷയിൽ ഉള്ള അത്യന്താപേക്ഷിത ഡോക്യുമെന്റ് ആയാണ് വിശ്വസിക്കേണ്ടത്. പ്രധാനപ്പെട്ട വിവരങ്ങൾക്ക്, പ്രൊഫഷണൽ മനുഷ്യ പരിഭാഷ ശുപാർശ ചെയ്യപ്പെടുന്നു. ഈ പരിഭാഷയുടെ ഉപയോഗത്തിൽ നിന്നുണ്ടാകുന്ന എന്തെങ്കിലും തെറ്റിദ്ധാരണകൾക്കോ തെറ്റായി വ്യാഖ്യാനങ്ങൾക്കോ ഞങ്ങൾ ഉത്തരവാദികളല്ല. \ No newline at end of file diff --git a/translations/ml/SECURITY.md b/translations/ml/SECURITY.md index a1fe14c4..f201a6a9 100644 --- a/translations/ml/SECURITY.md +++ b/translations/ml/SECURITY.md @@ -1,12 +1,3 @@ - ## Security Microsoft നമ്മുടെ സോഫ്റ്റ്വെയർ ഉൽപ്പന്നങ്ങളും സേവനങ്ങളും സുരക്ഷിതമാക്കുന്നതിൽ ഗൗരവമുണ്ട്, ഇതിൽ നമ്മുടെ GitHub സംഘടനകൾ വഴി നിയന്ത്രിക്കുന്ന എല്ലാ സോഴ്‌സ് കോഡ് റിപോസിറ്ററികളും ഉൾപ്പെടുന്നു, അവയിൽ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), കൂടാതെ [നമ്മുടെ GitHub സംഘടനകൾ](https://opensource.microsoft.com/) ഉൾപ്പെടുന്നു. diff --git a/translations/ml/SUPPORT.md b/translations/ml/SUPPORT.md index a7e9d4a5..678d51e3 100644 --- a/translations/ml/SUPPORT.md +++ b/translations/ml/SUPPORT.md @@ -1,12 +1,3 @@ - # പിന്തുണ ## പ്രശ്നങ്ങൾ ഫയൽ ചെയ്യാനും സഹായം ലഭിക്കാനും diff --git a/translations/ml/TROUBLESHOOTING.md b/translations/ml/TROUBLESHOOTING.md index dc8bb101..2f721d6f 100644 --- a/translations/ml/TROUBLESHOOTING.md +++ b/translations/ml/TROUBLESHOOTING.md @@ -1,12 +1,3 @@ - # പ്രശ്നപരിഹാര ഗൈഡ് ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് പാഠ്യപദ്ധതിയുമായി പ്രവർത്തിക്കുമ്പോൾ നിങ്ങൾക്ക് നേരിടാവുന്ന സാധാരണ പ്രശ്നങ്ങൾക്ക് ഈ ഗൈഡ് പരിഹാരങ്ങൾ നൽകുന്നു. diff --git a/translations/ml/USAGE.md b/translations/ml/USAGE.md index b1b1310f..6db2941b 100644 --- a/translations/ml/USAGE.md +++ b/translations/ml/USAGE.md @@ -1,12 +1,3 @@ - # ഉപയോഗ മാർഗ്ഗനിർദ്ദേശം ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് പാഠ്യപദ്ധതിയുടെ ഉദാഹരണങ്ങളും സാധാരണ പ്രവൃത്തിപദ്ധതികളും ഈ മാർഗ്ഗനിർദ്ദേശം നൽകുന്നു. diff --git a/translations/ml/docs/_sidebar.md b/translations/ml/docs/_sidebar.md index d6fc7890..dcd3ebb0 100644 --- a/translations/ml/docs/_sidebar.md +++ b/translations/ml/docs/_sidebar.md @@ -1,12 +1,3 @@ - - പരിചയം - [ഡാറ്റാ സയൻസ് നിർവചനം](../1-Introduction/01-defining-data-science/README.md) - [ഡാറ്റാ സയൻസിന്റെ നൈതികത](../1-Introduction/02-ethics/README.md) diff --git a/translations/ml/examples/README.md b/translations/ml/examples/README.md index 81ba9d5f..d1e5832a 100644 --- a/translations/ml/examples/README.md +++ b/translations/ml/examples/README.md @@ -1,12 +1,3 @@ - # തുടക്കക്കാർക്ക് അനുയോജ്യമായ ഡാറ്റാ സയൻസ് ഉദാഹരണങ്ങൾ ഉദാഹരണങ്ങൾ ഡയറക്ടറിയിലേക്ക് സ്വാഗതം! ഈ ലളിതവും നന്നായി കമന്റ് ചെയ്ത ഉദാഹരണങ്ങളുടെ ശേഖരം, നിങ്ങൾ ഒരു പൂർണ്ണമായ തുടക്കക്കാരനാണെങ്കിലും, ഡാറ്റാ സയൻസിൽ തുടങ്ങാൻ സഹായിക്കുന്നതിനായി രൂപകൽപ്പന ചെയ്തതാണ്. diff --git a/translations/ml/for-teachers.md b/translations/ml/for-teachers.md index a610462b..a89f0b55 100644 --- a/translations/ml/for-teachers.md +++ b/translations/ml/for-teachers.md @@ -1,12 +1,3 @@ - ## അധ്യാപകര്‍ക്കായി ഈ പാഠ്യപദ്ധതി നിങ്ങളുടെ ക്ലാസ്സില്‍ ഉപയോഗിക്കണോ? ദയവായി സ്വതന്ത്രമായി ഉപയോഗിക്കൂ! diff --git a/translations/ml/quiz-app/README.md b/translations/ml/quiz-app/README.md index a6cdb082..6e7b6cd4 100644 --- a/translations/ml/quiz-app/README.md +++ b/translations/ml/quiz-app/README.md @@ -1,12 +1,3 @@ - # ക്വിസുകൾ ഈ ക്വിസുകൾ https://aka.ms/datascience-beginners എന്ന ഡാറ്റാ സയൻസ് പാഠ്യപദ്ധതിക്കുള്ള പ്രീ-ലക്ചർ, പോസ്റ്റ്-ലക്ചർ ക്വിസുകളാണ് diff --git a/translations/ml/sketchnotes/README.md b/translations/ml/sketchnotes/README.md index 0421633e..2763ffe2 100644 --- a/translations/ml/sketchnotes/README.md +++ b/translations/ml/sketchnotes/README.md @@ -1,12 +1,3 @@ - എല്ലാ സ്കെച്ച്നോട്ടുകളും ഇവിടെ കണ്ടെത്തുക! ## ക്രെഡിറ്റുകൾ diff --git a/translations/te/.co-op-translator.json b/translations/te/.co-op-translator.json new file mode 100644 index 00000000..f195ea40 --- /dev/null +++ b/translations/te/.co-op-translator.json @@ -0,0 +1,422 @@ +{ + "1-Introduction/01-defining-data-science/README.md": { + "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4", + "translation_date": "2025-12-19T13:36:58+00:00", + "source_file": "1-Introduction/01-defining-data-science/README.md", + "language_code": "te" + }, + "1-Introduction/01-defining-data-science/assignment.md": { + "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de", + "translation_date": "2025-12-19T13:40:49+00:00", + "source_file": "1-Introduction/01-defining-data-science/assignment.md", + "language_code": "te" + }, + "1-Introduction/01-defining-data-science/solution/assignment.md": { + "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56", + "translation_date": "2025-12-19T14:29:26+00:00", + "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md", + "language_code": "te" + }, + "1-Introduction/02-ethics/README.md": { + "original_hash": "58860ce9a4b8a564003d2752f7c72851", + "translation_date": "2025-12-19T14:02:12+00:00", + "source_file": "1-Introduction/02-ethics/README.md", + "language_code": "te" + }, + "1-Introduction/02-ethics/assignment.md": { + "original_hash": "b588c0fc73014f52520c666efc3e0cc3", + "translation_date": "2025-12-19T14:28:09+00:00", + "source_file": "1-Introduction/02-ethics/assignment.md", + "language_code": "te" + }, + "1-Introduction/03-defining-data/README.md": { + "original_hash": "12339119c0165da569a93ddba05f9339", + "translation_date": "2025-12-19T13:58:23+00:00", + "source_file": "1-Introduction/03-defining-data/README.md", + "language_code": "te" + }, + "1-Introduction/03-defining-data/assignment.md": { + "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4", + "translation_date": "2025-12-19T14:01:10+00:00", + "source_file": "1-Introduction/03-defining-data/assignment.md", + "language_code": "te" + }, + "1-Introduction/04-stats-and-probability/README.md": { + "original_hash": "ce95884566a74db72572cd51f0cb25ad", + "translation_date": "2025-12-19T13:48:12+00:00", + "source_file": "1-Introduction/04-stats-and-probability/README.md", + "language_code": "te" + }, + "1-Introduction/04-stats-and-probability/assignment.md": { + "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff", + "translation_date": "2025-12-19T13:56:42+00:00", + "source_file": "1-Introduction/04-stats-and-probability/assignment.md", + "language_code": "te" + }, + "1-Introduction/README.md": { + "original_hash": "696a8474a01054281704cbfb09148949", + "translation_date": "2025-12-19T13:22:49+00:00", + "source_file": "1-Introduction/README.md", + "language_code": "te" + }, + "2-Working-With-Data/05-relational-databases/README.md": { + "original_hash": "11739c7b40e7c6b16ad29e3df4e65862", + "translation_date": "2025-12-19T15:46:41+00:00", + "source_file": "2-Working-With-Data/05-relational-databases/README.md", + "language_code": "te" + }, + "2-Working-With-Data/05-relational-databases/assignment.md": { + "original_hash": "25b37acdfb2452917c1aa2e2ca44317a", + "translation_date": "2025-12-19T15:50:41+00:00", + "source_file": "2-Working-With-Data/05-relational-databases/assignment.md", + "language_code": "te" + }, + "2-Working-With-Data/06-non-relational/README.md": { + "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf", + "translation_date": "2025-12-19T15:37:55+00:00", + "source_file": "2-Working-With-Data/06-non-relational/README.md", + "language_code": "te" + }, + "2-Working-With-Data/06-non-relational/assignment.md": { + "original_hash": "f824bfdb8b12d33293913f76f5c787c5", + "translation_date": "2025-12-19T15:40:41+00:00", + "source_file": "2-Working-With-Data/06-non-relational/assignment.md", + "language_code": "te" + }, + "2-Working-With-Data/07-python/README.md": { + "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3", + "translation_date": "2025-12-19T15:29:16+00:00", + "source_file": "2-Working-With-Data/07-python/README.md", + "language_code": "te" + }, + "2-Working-With-Data/07-python/assignment.md": { + "original_hash": "dc8f035ce92e4eaa078ab19caa68267a", + "translation_date": "2025-12-19T15:36:44+00:00", + "source_file": "2-Working-With-Data/07-python/assignment.md", + "language_code": "te" + }, + "2-Working-With-Data/08-data-preparation/README.md": { + "original_hash": "1b560955ff39a2bcf2a049fce474a951", + "translation_date": "2025-12-19T15:41:26+00:00", + "source_file": "2-Working-With-Data/08-data-preparation/README.md", + "language_code": "te" + }, + "2-Working-With-Data/08-data-preparation/assignment.md": { + "original_hash": "f9d5a7275e046223fa6474477674b810", + "translation_date": "2025-12-19T15:45:14+00:00", + "source_file": "2-Working-With-Data/08-data-preparation/assignment.md", + "language_code": "te" + }, + "2-Working-With-Data/README.md": { + "original_hash": "abc3309ab41bc5a7846f70ee1a055838", + "translation_date": "2025-12-19T13:29:19+00:00", + "source_file": "2-Working-With-Data/README.md", + "language_code": "te" + }, + "3-Data-Visualization/09-visualization-quantities/README.md": { + "original_hash": "a49d78e32e280c410f04e5f2a2068e77", + "translation_date": "2025-12-19T16:12:50+00:00", + "source_file": "3-Data-Visualization/09-visualization-quantities/README.md", + "language_code": "te" + }, + "3-Data-Visualization/09-visualization-quantities/assignment.md": { + "original_hash": "ad163c4fda72c8278280b61cad317ff4", + "translation_date": "2025-12-19T16:17:01+00:00", + "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/10-visualization-distributions/README.md": { + "original_hash": "80a20467e046d312809d008395051fc7", + "translation_date": "2025-12-19T15:52:59+00:00", + "source_file": "3-Data-Visualization/10-visualization-distributions/README.md", + "language_code": "te" + }, + "3-Data-Visualization/10-visualization-distributions/assignment.md": { + "original_hash": "40eeb9b9f94009c537c7811f9f27f037", + "translation_date": "2025-12-19T15:56:44+00:00", + "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/11-visualization-proportions/README.md": { + "original_hash": "42119bcc97bee88254e381156d770f3c", + "translation_date": "2025-12-19T16:01:05+00:00", + "source_file": "3-Data-Visualization/11-visualization-proportions/README.md", + "language_code": "te" + }, + "3-Data-Visualization/11-visualization-proportions/assignment.md": { + "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f", + "translation_date": "2025-12-19T16:04:55+00:00", + "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/12-visualization-relationships/README.md": { + "original_hash": "0764fd4077f3f04a1d968ec371227744", + "translation_date": "2025-12-19T15:57:25+00:00", + "source_file": "3-Data-Visualization/12-visualization-relationships/README.md", + "language_code": "te" + }, + "3-Data-Visualization/12-visualization-relationships/assignment.md": { + "original_hash": "680419753c086eef51be86607c623945", + "translation_date": "2025-12-19T15:59:48+00:00", + "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/13-meaningful-visualizations/README.md": { + "original_hash": "cfb068050337a36e348debaa502a24fa", + "translation_date": "2025-12-19T16:06:38+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md", + "language_code": "te" + }, + "3-Data-Visualization/13-meaningful-visualizations/assignment.md": { + "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4", + "translation_date": "2025-12-19T16:11:11+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": { + "original_hash": "5c51a54dd89075a7a362890117b7ed9e", + "translation_date": "2025-12-19T16:18:38+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md", + "language_code": "te" + }, + "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": { + "original_hash": "5c51a54dd89075a7a362890117b7ed9e", + "translation_date": "2025-12-19T16:17:51+00:00", + "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md", + "language_code": "te" + }, + "3-Data-Visualization/R/09-visualization-quantities/README.md": { + "original_hash": "22acf28f518a4769ea14fa42f4734b9f", + "translation_date": "2025-12-19T16:30:58+00:00", + "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md", + "language_code": "te" + }, + "3-Data-Visualization/R/09-visualization-quantities/assignment.md": { + "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1", + "translation_date": "2025-12-19T16:34:28+00:00", + "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/R/10-visualization-distributions/README.md": { + "original_hash": "ea67c0c40808fd723594de6896c37ccf", + "translation_date": "2025-12-19T16:19:56+00:00", + "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md", + "language_code": "te" + }, + "3-Data-Visualization/R/10-visualization-distributions/assignment.md": { + "original_hash": "a233d542512136c4dd29aad38ca0175f", + "translation_date": "2025-12-19T16:23:22+00:00", + "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md", + "language_code": "te" + }, + "3-Data-Visualization/R/11-visualization-proportions/README.md": { + "original_hash": "47028abaaafa2bcb1079702d20569066", + "translation_date": "2025-12-19T16:27:02+00:00", + "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md", + "language_code": "te" + }, + "3-Data-Visualization/R/12-visualization-relationships/README.md": { + "original_hash": "a33c5d4b4156a2b41788d8720b6f724c", + "translation_date": "2025-12-19T16:24:03+00:00", + "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md", + "language_code": "te" + }, + "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": { + "original_hash": "b4039f1c76548d144a0aee0bf28304ec", + "translation_date": "2025-12-19T16:36:05+00:00", + "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md", + "language_code": "te" + }, + "3-Data-Visualization/README.md": { + "original_hash": "1441550a0d789796b2821e04f7f4cc94", + "translation_date": "2025-12-19T13:34:37+00:00", + "source_file": "3-Data-Visualization/README.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/14-Introduction/README.md": { + "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b", + "translation_date": "2025-12-19T15:26:27+00:00", + "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/14-Introduction/assignment.md": { + "original_hash": "564445c39ad29a491abcb9356fc4d47d", + "translation_date": "2025-12-19T15:28:32+00:00", + "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/15-analyzing/README.md": { + "original_hash": "661dad02c3ac239644d34c1eb51e76f8", + "translation_date": "2025-12-19T15:23:47+00:00", + "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/15-analyzing/assignment.md": { + "original_hash": "fcc7547171f4530f159676dd73ed772e", + "translation_date": "2025-12-19T15:25:51+00:00", + "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/16-communication/README.md": { + "original_hash": "215a3254ba5a222a57c5bb0192cea8e3", + "translation_date": "2025-12-19T15:18:17+00:00", + "source_file": "4-Data-Science-Lifecycle/16-communication/README.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/16-communication/assignment.md": { + "original_hash": "8980d7efd101c82d6d6ffc3458214120", + "translation_date": "2025-12-19T15:22:42+00:00", + "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md", + "language_code": "te" + }, + "4-Data-Science-Lifecycle/README.md": { + "original_hash": "dd173fd30fc039a7a299898920680723", + "translation_date": "2025-12-19T13:24:15+00:00", + "source_file": "4-Data-Science-Lifecycle/README.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/17-Introduction/README.md": { + "original_hash": "5f8e7cdefa096664ae86f795be571580", + "translation_date": "2025-12-19T15:05:13+00:00", + "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/17-Introduction/assignment.md": { + "original_hash": "96f3696153d9ed54b19a1bb65438c104", + "translation_date": "2025-12-19T15:17:36+00:00", + "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/18-Low-Code/README.md": { + "original_hash": "bd4da10766c64fce4294a98f6479dfb0", + "translation_date": "2025-12-19T14:49:50+00:00", + "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": { + "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f", + "translation_date": "2025-12-19T15:03:29+00:00", + "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/19-Azure/README.md": { + "original_hash": "472d3fab1c5be50f387336e7a686dbe1", + "translation_date": "2025-12-19T14:41:20+00:00", + "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/19-Azure/assignment.md": { + "original_hash": "386efdbc19786951341f6956247ee990", + "translation_date": "2025-12-19T14:47:04+00:00", + "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md", + "language_code": "te" + }, + "5-Data-Science-In-Cloud/README.md": { + "original_hash": "8dfe141a0f46f7d253e07f74913c7f44", + "translation_date": "2025-12-19T13:23:34+00:00", + "source_file": "5-Data-Science-In-Cloud/README.md", + "language_code": "te" + }, + "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": { + "original_hash": "0f67a4139454816631526779a456b734", + "translation_date": "2025-12-19T16:40:41+00:00", + "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md", + "language_code": "te" + }, + "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": { + "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0", + "translation_date": "2025-12-19T16:59:03+00:00", + "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md", + "language_code": "te" + }, + "6-Data-Science-In-Wild/README.md": { + "original_hash": "07faf02ff163e609edf0b0308dc5d4e6", + "translation_date": "2025-12-19T13:36:29+00:00", + "source_file": "6-Data-Science-In-Wild/README.md", + "language_code": "te" + }, + "AGENTS.md": { + "original_hash": "cc2e18ab65df63e75d3619c4752e9b22", + "translation_date": "2025-12-19T13:02:06+00:00", + "source_file": "AGENTS.md", + "language_code": "te" + }, + "CODE_OF_CONDUCT.md": { + "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56", + "translation_date": "2025-12-19T13:08:54+00:00", + "source_file": "CODE_OF_CONDUCT.md", + "language_code": "te" + }, + "CONTRIBUTING.md": { + "original_hash": "10f86fb29b5407088445ac803b3d0ed1", + "translation_date": "2025-12-19T12:48:46+00:00", + "source_file": "CONTRIBUTING.md", + "language_code": "te" + }, + "INSTALLATION.md": { + "original_hash": "a64d8afa22ffcc2016bb239188d6acb1", + "translation_date": "2025-12-19T13:10:17+00:00", + "source_file": "INSTALLATION.md", + "language_code": "te" + }, + "README.md": { + "original_hash": "8ec92ecfeb14923af733851239552146", + "translation_date": "2026-01-30T02:50:20+00:00", + "source_file": "README.md", + "language_code": "te" + }, + "SECURITY.md": { + "original_hash": "0d575483100c332b2dbaefef915bb3c4", + "translation_date": "2025-12-19T13:13:43+00:00", + "source_file": "SECURITY.md", + "language_code": "te" + }, + "SUPPORT.md": { + "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab", + "translation_date": "2025-12-19T12:48:23+00:00", + "source_file": "SUPPORT.md", + "language_code": "te" + }, + "TROUBLESHOOTING.md": { + "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0", + "translation_date": "2025-12-19T12:52:41+00:00", + "source_file": "TROUBLESHOOTING.md", + "language_code": "te" + }, + "USAGE.md": { + "original_hash": "f546349678757508d69ce9e1d2688446", + "translation_date": "2025-12-19T12:43:01+00:00", + "source_file": "USAGE.md", + "language_code": "te" + }, + "docs/_sidebar.md": { + "original_hash": "3767555b3cc28a2865c79202f4374204", + "translation_date": "2025-12-19T13:30:16+00:00", + "source_file": "docs/_sidebar.md", + "language_code": "te" + }, + "examples/README.md": { + "original_hash": "9bef7fd96c8f262339933117d9b3e342", + "translation_date": "2025-12-19T13:27:07+00:00", + "source_file": "examples/README.md", + "language_code": "te" + }, + "for-teachers.md": { + "original_hash": "f7440be10c17a8a9262713af3d2818a9", + "translation_date": "2025-12-19T12:40:05+00:00", + "source_file": "for-teachers.md", + "language_code": "te" + }, + "quiz-app/README.md": { + "original_hash": "e92c33ea498915a13c9aec162616db18", + "translation_date": "2025-12-19T13:24:56+00:00", + "source_file": "quiz-app/README.md", + "language_code": "te" + }, + "sketchnotes/README.md": { + "original_hash": "3a848466cb63aff1a93411affb152c2a", + "translation_date": "2025-12-19T13:31:32+00:00", + "source_file": "sketchnotes/README.md", + "language_code": "te" + } +} \ No newline at end of file diff --git a/translations/te/1-Introduction/01-defining-data-science/README.md b/translations/te/1-Introduction/01-defining-data-science/README.md index bb57e116..b89c48bc 100644 --- a/translations/te/1-Introduction/01-defining-data-science/README.md +++ b/translations/te/1-Introduction/01-defining-data-science/README.md @@ -1,12 +1,3 @@ - # డేటా సైన్స్ నిర్వచనం | ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/01-Definitions.png) | diff --git a/translations/te/1-Introduction/01-defining-data-science/assignment.md b/translations/te/1-Introduction/01-defining-data-science/assignment.md index 1f797fc5..09eb9724 100644 --- a/translations/te/1-Introduction/01-defining-data-science/assignment.md +++ b/translations/te/1-Introduction/01-defining-data-science/assignment.md @@ -1,12 +1,3 @@ - # అసైన్‌మెంట్: డేటా సైన్స్ సన్నివేశాలు ఈ మొదటి అసైన్‌మెంట్‌లో, మీరు వివిధ సమస్యా డొమైన్‌లలోని కొన్ని వాస్తవ జీవిత ప్రక్రియ లేదా సమస్య గురించి ఆలోచించి, డేటా సైన్స్ ప్రక్రియను ఉపయోగించి దాన్ని ఎలా మెరుగుపరచవచ్చో ఆలోచించమని కోరుతున్నాము. క్రింది విషయాల గురించి ఆలోచించండి: diff --git a/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md index 739903b7..d6416432 100644 --- a/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md +++ b/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md @@ -1,12 +1,3 @@ - # అసైన్‌మెంట్: డేటా సైన్స్ సన్నివేశాలు ఈ మొదటి అసైన్‌మెంట్‌లో, మేము మీరు వివిధ సమస్యా డొమైన్‌లలోని కొన్ని వాస్తవ జీవిత ప్రక్రియ లేదా సమస్య గురించి ఆలోచించాలని కోరుతున్నాము, మరియు మీరు డేటా సైన్స్ ప్రక్రియను ఉపయోగించి దాన్ని ఎలా మెరుగుపరచగలరో. క్రింది విషయాల గురించి ఆలోచించండి: diff --git a/translations/te/1-Introduction/02-ethics/README.md b/translations/te/1-Introduction/02-ethics/README.md index 8a2c51fd..9876de4e 100644 --- a/translations/te/1-Introduction/02-ethics/README.md +++ b/translations/te/1-Introduction/02-ethics/README.md @@ -1,12 +1,3 @@ - # డేటా నైతికతకు పరిచయం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/02-Ethics.png)| diff --git a/translations/te/1-Introduction/02-ethics/assignment.md b/translations/te/1-Introduction/02-ethics/assignment.md index c68abd1f..cefca2e9 100644 --- a/translations/te/1-Introduction/02-ethics/assignment.md +++ b/translations/te/1-Introduction/02-ethics/assignment.md @@ -1,12 +1,3 @@ - ## డేటా నైతికత కేసు అధ్యయనం రాయండి ## సూచనలు diff --git a/translations/te/1-Introduction/03-defining-data/README.md b/translations/te/1-Introduction/03-defining-data/README.md index 9beeead1..a33cbe8e 100644 --- a/translations/te/1-Introduction/03-defining-data/README.md +++ b/translations/te/1-Introduction/03-defining-data/README.md @@ -1,12 +1,3 @@ - # డేటా నిర్వచనం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/03-DefiningData.png)| diff --git a/translations/te/1-Introduction/03-defining-data/assignment.md b/translations/te/1-Introduction/03-defining-data/assignment.md index 5bd05827..dc929855 100644 --- a/translations/te/1-Introduction/03-defining-data/assignment.md +++ b/translations/te/1-Introduction/03-defining-data/assignment.md @@ -1,12 +1,3 @@ - # డేటాసెట్‌ల వర్గీకరణ ## సూచనలు diff --git a/translations/te/1-Introduction/04-stats-and-probability/README.md b/translations/te/1-Introduction/04-stats-and-probability/README.md index 67951283..fffa2846 100644 --- a/translations/te/1-Introduction/04-stats-and-probability/README.md +++ b/translations/te/1-Introduction/04-stats-and-probability/README.md @@ -1,12 +1,3 @@ - # గణాంకాలు మరియు సంభావ్యతకు సంక్షిప్త పరిచయం |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../sketchnotes/04-Statistics-Probability.png)| diff --git a/translations/te/1-Introduction/04-stats-and-probability/assignment.md b/translations/te/1-Introduction/04-stats-and-probability/assignment.md index 5244a671..50180aa6 100644 --- a/translations/te/1-Introduction/04-stats-and-probability/assignment.md +++ b/translations/te/1-Introduction/04-stats-and-probability/assignment.md @@ -1,12 +1,3 @@ - # చిన్న మధుమేహ అధ్యయనం ఈ అసైన్‌మెంట్‌లో, మేము [ఇక్కడ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) నుండి తీసుకున్న చిన్న మధుమేహ రోగుల డేటాసెట్‌తో పని చేస్తాము. diff --git a/translations/te/1-Introduction/README.md b/translations/te/1-Introduction/README.md index 9e6d2fc8..5d5e855c 100644 --- a/translations/te/1-Introduction/README.md +++ b/translations/te/1-Introduction/README.md @@ -1,12 +1,3 @@ - # డేటా సైన్స్ పరిచయం ![data in action](../../../translated_images/te/data.48e22bb7617d8d92188afbc4c48effb920ba79f5cebdc0652cd9f34bbbd90c18.jpg) diff --git a/translations/te/2-Working-With-Data/05-relational-databases/README.md b/translations/te/2-Working-With-Data/05-relational-databases/README.md index 39c06c00..00300942 100644 --- a/translations/te/2-Working-With-Data/05-relational-databases/README.md +++ b/translations/te/2-Working-With-Data/05-relational-databases/README.md @@ -1,12 +1,3 @@ - # Working with Data: Relational Databases |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/05-RelationalData.png)| diff --git a/translations/te/2-Working-With-Data/05-relational-databases/assignment.md b/translations/te/2-Working-With-Data/05-relational-databases/assignment.md index 64e00320..40beb50f 100644 --- a/translations/te/2-Working-With-Data/05-relational-databases/assignment.md +++ b/translations/te/2-Working-With-Data/05-relational-databases/assignment.md @@ -1,12 +1,3 @@ - # విమానాశ్రయ డేటా ప్రదర్శన మీకు విమానాశ్రయాల గురించి సమాచారం కలిగిన [డేటాబేస్](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) అందించబడింది, ఇది [SQLite](https://sqlite.org/index.html) పై నిర్మించబడింది. స్కీమా క్రింద చూపబడింది. మీరు [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum)లో [SQLite విస్తరణ](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ఉపయోగించి వివిధ నగరాల విమానాశ్రయాల గురించి సమాచారం ప్రదర్శించవచ్చు. diff --git a/translations/te/2-Working-With-Data/06-non-relational/README.md b/translations/te/2-Working-With-Data/06-non-relational/README.md index 103635db..b84e0ad2 100644 --- a/translations/te/2-Working-With-Data/06-non-relational/README.md +++ b/translations/te/2-Working-With-Data/06-non-relational/README.md @@ -1,12 +1,3 @@ - # డేటాతో పని చేయడం: నాన్-రిలేషనల్ డేటా |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../sketchnotes/06-NoSQL.png)| diff --git a/translations/te/2-Working-With-Data/06-non-relational/assignment.md b/translations/te/2-Working-With-Data/06-non-relational/assignment.md index a68b046f..8ad8b23f 100644 --- a/translations/te/2-Working-With-Data/06-non-relational/assignment.md +++ b/translations/te/2-Working-With-Data/06-non-relational/assignment.md @@ -1,12 +1,3 @@ - # సోడా లాభాలు ## సూచనలు diff --git a/translations/te/2-Working-With-Data/07-python/README.md b/translations/te/2-Working-With-Data/07-python/README.md index d90d3ddd..e02cf390 100644 --- a/translations/te/2-Working-With-Data/07-python/README.md +++ b/translations/te/2-Working-With-Data/07-python/README.md @@ -1,12 +1,3 @@ - # డేటాతో పని చేయడం: పైథాన్ మరియు పాండాస్ లైబ్రరీ | ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/07-WorkWithPython.png) | diff --git a/translations/te/2-Working-With-Data/07-python/assignment.md b/translations/te/2-Working-With-Data/07-python/assignment.md index 9387a865..4848b314 100644 --- a/translations/te/2-Working-With-Data/07-python/assignment.md +++ b/translations/te/2-Working-With-Data/07-python/assignment.md @@ -1,12 +1,3 @@ - # Pythonలో డేటా ప్రాసెసింగ్ కోసం అసైన్‌మెంట్ ఈ అసైన్‌మెంట్‌లో, మేము మా ఛాలెంజ్‌లలో అభివృద్ధి చేయడం ప్రారంభించిన కోడ్‌పై మీరు వివరించమని అడుగుతాము. అసైన్‌మెంట్ రెండు భాగాలుగా ఉంటుంది: diff --git a/translations/te/2-Working-With-Data/08-data-preparation/README.md b/translations/te/2-Working-With-Data/08-data-preparation/README.md index 63dbb38d..baa4c0fe 100644 --- a/translations/te/2-Working-With-Data/08-data-preparation/README.md +++ b/translations/te/2-Working-With-Data/08-data-preparation/README.md @@ -1,12 +1,3 @@ - # Working with Data: Data Preparation |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/08-DataPreparation.png)| diff --git a/translations/te/2-Working-With-Data/08-data-preparation/assignment.md b/translations/te/2-Working-With-Data/08-data-preparation/assignment.md index f6694eb9..330baf38 100644 --- a/translations/te/2-Working-With-Data/08-data-preparation/assignment.md +++ b/translations/te/2-Working-With-Data/08-data-preparation/assignment.md @@ -1,12 +1,3 @@ - # ఫారమ్ నుండి డేటాను మూల్యాంకనం చేయడం ఒక క్లయింట్ తమ క్లయింట్-బేస్ గురించి కొన్ని ప్రాథమిక డేటాను సేకరించడానికి [చిన్న ఫారమ్](../../../../2-Working-With-Data/08-data-preparation/index.html) ను పరీక్షిస్తున్నారు. వారు సేకరించిన డేటాను మీరు ధృవీకరించడానికి వారి కనుగొనుటలను మీకు తీసుకువచ్చారు. మీరు ఫారమ్‌ను చూడటానికి బ్రౌజర్‌లో `index.html` పేజీని తెరవవచ్చు. diff --git a/translations/te/2-Working-With-Data/README.md b/translations/te/2-Working-With-Data/README.md index 4450dac4..d3287487 100644 --- a/translations/te/2-Working-With-Data/README.md +++ b/translations/te/2-Working-With-Data/README.md @@ -1,12 +1,3 @@ - # డేటాతో పని చేయడం ![data love](../../../translated_images/te/data-love.a22ef29e6742c852505ada062920956d3d7604870b281a8ca7c7ac6f37381d5a.jpg) diff --git a/translations/te/3-Data-Visualization/09-visualization-quantities/README.md b/translations/te/3-Data-Visualization/09-visualization-quantities/README.md index b146f7f9..2348ad78 100644 --- a/translations/te/3-Data-Visualization/09-visualization-quantities/README.md +++ b/translations/te/3-Data-Visualization/09-visualization-quantities/README.md @@ -1,12 +1,3 @@ - # పరిమాణాలను దృశ్యీకరించడం |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../sketchnotes/09-Visualizing-Quantities.png)| diff --git a/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md index a3e4cc57..84bce3c7 100644 --- a/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md +++ b/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md @@ -1,12 +1,3 @@ - # లైన్లు, స్కాటర్స్ మరియు బార్లు ## సూచనలు diff --git a/translations/te/3-Data-Visualization/10-visualization-distributions/README.md b/translations/te/3-Data-Visualization/10-visualization-distributions/README.md index 99a0622c..bd2a38b4 100644 --- a/translations/te/3-Data-Visualization/10-visualization-distributions/README.md +++ b/translations/te/3-Data-Visualization/10-visualization-distributions/README.md @@ -1,12 +1,3 @@ - # పంపిణీలను దృశ్యీకరించడం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/10-Visualizing-Distributions.png)| diff --git a/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md index ccac8ef3..8bc3ec2d 100644 --- a/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md +++ b/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md @@ -1,12 +1,3 @@ - # మీ నైపుణ్యాలను వర్తింపజేయండి ## సూచనలు diff --git a/translations/te/3-Data-Visualization/11-visualization-proportions/README.md b/translations/te/3-Data-Visualization/11-visualization-proportions/README.md index 9bc8b5f9..b629534e 100644 --- a/translations/te/3-Data-Visualization/11-visualization-proportions/README.md +++ b/translations/te/3-Data-Visualization/11-visualization-proportions/README.md @@ -1,12 +1,3 @@ - # భాగాలను దృశ్యీకరించడం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/11-Visualizing-Proportions.png)| diff --git a/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md index dfa11eee..ffb77b5e 100644 --- a/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md +++ b/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md @@ -1,12 +1,3 @@ - # Excelలో ప్రయత్నించండి ## సూచనలు diff --git a/translations/te/3-Data-Visualization/12-visualization-relationships/README.md b/translations/te/3-Data-Visualization/12-visualization-relationships/README.md index 0267b75d..aeaf9de8 100644 --- a/translations/te/3-Data-Visualization/12-visualization-relationships/README.md +++ b/translations/te/3-Data-Visualization/12-visualization-relationships/README.md @@ -1,12 +1,3 @@ - # సంబంధాలను దృశ్యీకరించడం: తేనె గురించి అన్ని 🍯 |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../sketchnotes/12-Visualizing-Relationships.png)| diff --git a/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md index 81669108..cbf3aec6 100644 --- a/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md +++ b/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md @@ -1,12 +1,3 @@ - # తేనెతోటలోకి డైవ్ చేయండి ## సూచనలు diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md index e74a80af..d9dfbaed 100644 --- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md +++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md @@ -1,12 +1,3 @@ - # అర్థవంతమైన విజువలైజేషన్లు చేయడం |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../sketchnotes/13-MeaningfulViz.png)| diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md index 784a216b..27012e21 100644 --- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md +++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md @@ -1,12 +1,3 @@ - # మీ స్వంత కస్టమ్ విజ్ నిర్మించండి ## సూచనలు diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md index 3dc37651..bfc36102 100644 --- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md +++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md @@ -1,12 +1,3 @@ - # Dangerous Liaisons డేటా విజువలైజేషన్ ప్రాజెక్ట్ ప్రారంభించడానికి, మీ మెషీన్‌లో NPM మరియు Node నడుస్తున్నాయని నిర్ధారించుకోవాలి. డిపెండెన్సీలను ఇన్‌స్టాల్ చేయండి (npm install) మరియు ఆపై ప్రాజెక్ట్‌ను లోకల్‌గా నడపండి (npm run serve): diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md index 23d1a449..90fe4a3a 100644 --- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md +++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md @@ -1,12 +1,3 @@ - # Dangerous Liaisons డేటా విజువలైజేషన్ ప్రాజెక్ట్ ప్రారంభించడానికి, మీ మెషీన్‌లో NPM మరియు Node నడుస్తున్నాయని నిర్ధారించుకోవాలి. డిపెండెన్సీలను ఇన్‌స్టాల్ చేయండి (npm install) మరియు ఆపై ప్రాజెక్ట్‌ను లోకల్‌గా నడపండి (npm run serve): diff --git a/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md index 79375e59..6120bee8 100644 --- a/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md +++ b/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md @@ -1,12 +1,3 @@ - # పరిమాణాలను దృశ్యీకరించడం |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)| |:---:| diff --git a/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md index 7f758a9f..1561b976 100644 --- a/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md +++ b/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md @@ -1,12 +1,3 @@ - # లైన్లు, స్కాటర్స్ మరియు బార్లు ## సూచనలు diff --git a/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md index f0672c2a..46f6df5a 100644 --- a/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md +++ b/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md @@ -1,12 +1,3 @@ - # పంపిణీలను దృశ్యీకరించడం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)| diff --git a/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md index 82fcfdae..91a6a76c 100644 --- a/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md +++ b/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md @@ -1,12 +1,3 @@ - # మీ నైపుణ్యాలను వర్తింపజేయండి ## సూచనలు diff --git a/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md index 1d90cc10..f2b35aa7 100644 --- a/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md +++ b/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md @@ -1,12 +1,3 @@ - # Visualizing Proportions |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/11-Visualizing-Proportions.png)| diff --git a/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md index d36f5bf1..6f827c9f 100644 --- a/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md +++ b/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md @@ -1,12 +1,3 @@ - # సంబంధాలను దృశ్యీకరించడం: తేనె గురించి అన్ని విషయాలు 🍯 |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../../sketchnotes/12-Visualizing-Relationships.png)| diff --git a/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md index 0dc3b62d..c056cb39 100644 --- a/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md +++ b/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md @@ -1,12 +1,3 @@ - # అర్థవంతమైన విజువలైజేషన్లు చేయడం |![ స్కెచ్ నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../../sketchnotes/13-MeaningfulViz.png)| diff --git a/translations/te/3-Data-Visualization/README.md b/translations/te/3-Data-Visualization/README.md index 3bb6f573..ef2f0032 100644 --- a/translations/te/3-Data-Visualization/README.md +++ b/translations/te/3-Data-Visualization/README.md @@ -1,12 +1,3 @@ - # విజువలైజేషన్లు ![a bee on a lavender flower](../../../translated_images/te/bee.0aa1d91132b12e3a8994b9ca12816d05ce1642010d9b8be37f8d37365ba845cf.jpg) diff --git a/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md index a8413d44..4f17c254 100644 --- a/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md +++ b/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md @@ -1,12 +1,3 @@ - # డేటా సైన్స్ లైఫ్‌సైకిల్ పరిచయం |![ స్కెచ్‌నోట్ [(@sketchthedocs)](https://sketchthedocs.dev) ద్వారా ](../../sketchnotes/14-DataScience-Lifecycle.png)| diff --git a/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md index 4bba3ebf..17704a9d 100644 --- a/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md +++ b/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md @@ -1,12 +1,3 @@ - # డేటాసెట్‌ను అంచనా వేయడం ఒక క్లయింట్ మీ బృందాన్ని న్యూయార్క్ సిటీలో టాక్సీ ప్రయాణికుల సీజనల్ ఖర్చుల అలవాట్లను పరిశీలించడంలో సహాయం కోసం సంప్రదించారు. diff --git a/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md index c698e805..9df322cb 100644 --- a/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md +++ b/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md @@ -1,12 +1,3 @@ - # డేటా సైన్స్ లైఫ్‌సైకిల్: విశ్లేషణ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/15-Analyzing.png)| diff --git a/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md index 7ae01df3..a12fcec5 100644 --- a/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md +++ b/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md @@ -1,12 +1,3 @@ - # సమాధానాలను అన్వేషించడం ఇది గత పాఠం యొక్క [అసైన్‌మెంట్](../14-Introduction/assignment.md) యొక్క కొనసాగింపు, అక్కడ మేము డేటా సెట్‌ను సంక్షిప్తంగా పరిశీలించాము. ఇప్పుడు మేము డేటాను మరింత లోతుగా పరిశీలించబోతున్నాము. diff --git a/translations/te/4-Data-Science-Lifecycle/16-communication/README.md b/translations/te/4-Data-Science-Lifecycle/16-communication/README.md index ca90d68d..b1cd184b 100644 --- a/translations/te/4-Data-Science-Lifecycle/16-communication/README.md +++ b/translations/te/4-Data-Science-Lifecycle/16-communication/README.md @@ -1,12 +1,3 @@ - # డేటా సైన్స్ లైఫ్‌సైకిల్: కమ్యూనికేషన్ |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev)](../../sketchnotes/16-Communicating.png)| diff --git a/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md index b7e7aa93..23986b9b 100644 --- a/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md +++ b/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md @@ -1,12 +1,3 @@ - # కథ చెప్పండి ## సూచనలు diff --git a/translations/te/4-Data-Science-Lifecycle/README.md b/translations/te/4-Data-Science-Lifecycle/README.md index 6bc8c80d..6afc5f0a 100644 --- a/translations/te/4-Data-Science-Lifecycle/README.md +++ b/translations/te/4-Data-Science-Lifecycle/README.md @@ -1,12 +1,3 @@ - # డేటా సైన్స్ లైఫ్‌సైకిల్ ![communication](../../../translated_images/te/communication.06d8e2a88d30d168d661ad9f9f0a4f947ebff3719719cfdaf9ed00a406a01ead.jpg) diff --git a/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md index b4104ca5..36d2b7c7 100644 --- a/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md +++ b/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md @@ -1,12 +1,3 @@ - # క్లౌడ్‌లో డేటా సైన్స్ పరిచయం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/17-DataScience-Cloud.png)| diff --git a/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md index bf68bd2e..7d5f44f6 100644 --- a/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md +++ b/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md @@ -1,12 +1,3 @@ - # మార్కెట్ రీసెర్చ్ ## సూచనలు diff --git a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md index 2a09fd07..e8881a57 100644 --- a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md +++ b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md @@ -1,12 +1,3 @@ - # క్లౌడ్‌లో డేటా సైన్స్: "లో కోడ్/నో కోడ్" విధానం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/18-DataScience-Cloud.png)| diff --git a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md index d0db9285..a5a42baa 100644 --- a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md +++ b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md @@ -1,12 +1,3 @@ - # లో కోడ్/నో కోడ్ డేటా సైన్స్ ప్రాజెక్ట్ ఆన్ అజ్యూర్ ML ## సూచనలు diff --git a/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md index df233671..b90f317a 100644 --- a/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md +++ b/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md @@ -1,12 +1,3 @@ - # క్లౌడ్‌లో డేటా సైన్స్: "Azure ML SDK" విధానం |![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/19-DataScience-Cloud.png)| diff --git a/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md index e9ca89b9..17551328 100644 --- a/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md +++ b/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md @@ -1,12 +1,3 @@ - # Azure ML SDK ఉపయోగించి డేటా సైన్స్ ప్రాజెక్ట్ ## సూచనలు diff --git a/translations/te/5-Data-Science-In-Cloud/README.md b/translations/te/5-Data-Science-In-Cloud/README.md index 19d5eedd..9e94af36 100644 --- a/translations/te/5-Data-Science-In-Cloud/README.md +++ b/translations/te/5-Data-Science-In-Cloud/README.md @@ -1,12 +1,3 @@ - # క్లౌడ్‌లో డేటా సైన్స్ ![cloud-picture](../../../translated_images/te/cloud-picture.f5526de3c6c6387b2d656ba94f019b3352e5e3854a78440e4fb00c93e2dea675.jpg) diff --git a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md index 571c0f59..18b40abf 100644 --- a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md +++ b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md @@ -1,12 +1,3 @@ - # వాస్తవ ప్రపంచంలో డేటా సైన్స్ | ![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/20-DataScience-RealWorld.png) | diff --git a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md index 282666ec..575674b4 100644 --- a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md +++ b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md @@ -1,12 +1,3 @@ - # ఒక ప్లానెటరీ కంప్యూటర్ డేటాసెట్‌ను అన్వేషించండి ## సూచనలు diff --git a/translations/te/6-Data-Science-In-Wild/README.md b/translations/te/6-Data-Science-In-Wild/README.md index 41cfa29e..5adcab1c 100644 --- a/translations/te/6-Data-Science-In-Wild/README.md +++ b/translations/te/6-Data-Science-In-Wild/README.md @@ -1,12 +1,3 @@ - # Data Science in the Wild విభిన్న పరిశ్రమలలో డేటా సైన్స్ యొక్క వాస్తవ ప్రపంచ అనువర్తనాలు. diff --git a/translations/te/AGENTS.md b/translations/te/AGENTS.md index 0bb769f3..4cb7effa 100644 --- a/translations/te/AGENTS.md +++ b/translations/te/AGENTS.md @@ -1,12 +1,3 @@ - # AGENTS.md ## ప్రాజెక్ట్ అవలోకనం diff --git a/translations/te/CODE_OF_CONDUCT.md b/translations/te/CODE_OF_CONDUCT.md index c6045b55..5ec77919 100644 --- a/translations/te/CODE_OF_CONDUCT.md +++ b/translations/te/CODE_OF_CONDUCT.md @@ -1,12 +1,3 @@ - # Microsoft ఓపెన్ సోర్స్ కోడ్ ఆఫ్ కండక్ట్ ఈ ప్రాజెక్ట్ [Microsoft ఓపెన్ సోర్స్ కోడ్ ఆఫ్ కండక్ట్](https://opensource.microsoft.com/codeofconduct/)ని ఆమోదించింది. diff --git a/translations/te/CONTRIBUTING.md b/translations/te/CONTRIBUTING.md index b13f22bb..2daef1a8 100644 --- a/translations/te/CONTRIBUTING.md +++ b/translations/te/CONTRIBUTING.md @@ -1,12 +1,3 @@ - # Data Science for Beginners కు సహకరించడం Data Science for Beginners పాఠ్యాంశానికి సహకరించడానికి మీ ఆసక్తికి ధన్యవాదాలు! మేము సమాజం నుండి సహకారాలను స్వాగతిస్తున్నాము. diff --git a/translations/te/INSTALLATION.md b/translations/te/INSTALLATION.md index 2f2ed255..2d87ee66 100644 --- a/translations/te/INSTALLATION.md +++ b/translations/te/INSTALLATION.md @@ -1,12 +1,3 @@ - # ఇన్‌స్టాలేషన్ గైడ్ ఈ గైడ్ మీకు Data Science for Beginners పాఠ్యాంశంతో పని చేయడానికి మీ వాతావరణాన్ని సెట్ చేయడంలో సహాయపడుతుంది. diff --git a/translations/te/README.md b/translations/te/README.md index 0635dfed..fb640f29 100644 --- a/translations/te/README.md +++ b/translations/te/README.md @@ -1,215 +1,204 @@ - -# ప్రారంభికులకు డేటా సైన్స్ - ఒక పాఠ్యक्रमం - -[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198) - -[![GitHub license](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE) -[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/) -[![GitHub issues](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/) -[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/) -[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) - -[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/) -[![GitHub forks](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/) -[![GitHub stars](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/) +# డేటా సైన్స్ ఫర్ బేగిన్నర్స్ - ఒక పాఠ్యక్రమం + +[![GitHub Codespacesలో తెరవండి](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198) + +[![GitHub లైసెన్స్](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE) +[![GitHub కంట్రీబ్యూటర్లు](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/) +[![GitHub సమస్యలు](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/) +[![GitHub పుల్-రిక్వెస్టులు](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/) +[![PRs స్వాగతం](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub వీక్షకులు](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/) +[![GitHub ఫోర్క్](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/) +[![GitHub స్టార్‌లు](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/) [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) [![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) -Microsoft లో Azure Cloud Advocates డేటా సైన్స్ గురించి 10 వారాల, 20 పాఠాల పాఠ్యక్రమాన్ని సంబరంగా అందిస్తున్నారు. ప్రతి పాఠంలో పాఠం ముందు మరియు తర్వాత ప్రశ్నార్థకాలు, పాఠం పూర్తి చేసేందుకు వ్రాత సూచనలు, పరిష్కారం మరియు అసైన్‌మెంట్ ఉన్నాయి. మా ప్రాజెక్ట్ ఆధారిత పాఠ్య విధానం మీరు నేర్చుకునే సమయంలో నిర్మించేందుకు అనుమతిస్తుంది, ఇది కొత్త నైపుణ్యాల "అడుగులు" పడేందుకు నిరూపితమైన మార్గం. +మైక్రోసాఫ్ట్ లో Azure క్లౌడ్ అడ్వకేట్స్ డేటా సైన్స్ పై 10 వారాలు, 20 పాఠాలను కలిగిన పూర్తి పాఠ్యక్రమాన్ని అందించడం ఆనందంగా ఉంది. ప్రతి పాఠం పూర్వ పాఠం మరియు పశ్చాత్పాఠం క్విజిలను, పాఠాన్ని పూర్తి చేయటానికి రాయబడిన సూచనలను, ఒక పరిష్కారాన్ని మరియు అసైన్‌మెంట్‌ను కలిగి ఉంటుంది. మా ప్రాజెక్ట్ ఆధారిత పాఠశాల పద్ధతి మీరు నేర్పుకునే సమయానికి నిర్మించడానికి అనుమతిస్తుంది, ఇది కొత్త నైపుణ్యాలు మగ్గించడానికి పరీక్షించిన మార్గం. -**మా రచయితలకు హృదయపూర్వక ధన్యవాదాలు:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer). +**మన రచయితలకు హృదయపూర్వక ధన్యవాదాలు:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer). -**🙏 ప్రత్యేక కృతజ్ఞతలు 🙏 మా [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) రచయితలు, సమీక్షకులు మరియు కంటెంట్ కలిసికొనేవారికి,** ముఖ్యంగా ఆర్యన్ అరూరా, [అదిత్య గార్గ్](https://github.com/AdityaGarg00), [అలొంద్రా సాంచేజ్](https://www.linkedin.com/in/alondra-sanchez-molina/), [అంకిత సింగ్](https://www.linkedin.com/in/ankitasingh007), [అనుపమ్ మిశ్రా](https://www.linkedin.com/in/anupam--mishra/), [అర్పిత దాస్](https://www.linkedin.com/in/arpitadas01/), ఛాయిల్‌భిహరి దుబే, [డిబ్రి న్సోఫోర్](https://www.linkedin.com/in/dibrinsofor), [దిశిత భాసిన్](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [మాజ్ద్ సఫీ](https://www.linkedin.com/in/majd-s/), [మ్యాక్స్ బ్లమ్](https://www.linkedin.com/in/max-blum-6036a1186/), [మిగేల్ కోరియా](https://www.linkedin.com/in/miguelmque/), [మొహమ్మ ఇఫ్తేఖర్ (ఇఫ్టూ) ఎబ్నే జలాల్](https://twitter.com/iftu119), [నావ్రిన్ టబాస్సుం](https://www.linkedin.com/in/nawrin-tabassum), [రేమండ్ వాంగ్సా పుత్ర](https://www.linkedin.com/in/raymond-wp/), [โรహిత్ యాదవ్](https://www.linkedin.com/in/rty2423), సమృధి శర్మ, [సన్యా సింహ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), -[షినా నరూలా](https://www.linkedin.com/in/sheena-narua-n/), [తౌకీర్ అహ్మద్](https://www.linkedin.com/in/tauqeerahmad5201/), యోగేంద్రసింగ్ పవార్ , [విదుషి గుప్తా](https://www.linkedin.com/in/vidushi-gupta07/), [జస్లీన్ సొంధి](https://www.linkedin.com/in/jasleen-sondhi/) +**🙏 ప్రత్యేక ధన్యవాదాలు 🙏 మా [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) రచయితలు, సమీక్షకులు మరియు కంటెంట్ కంట్రీబ్యూటర్లకు,** ముఖ్యంగా Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), +[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/) -|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../../../translated_images/te/00-Title.8af36cd35da1ac55.webp)| +|![@sketchthedocs https://sketchthedocs.dev ద్వారా స్కెచ్‌నోట్](../../translated_images/te/00-Title.8af36cd35da1ac55.webp)| |:---:| -| డేటా సైన్స్ ఫర్ ప్రారంభికులు - _స్కెచ్ నోట్ [@nitya](https://twitter.com/nitya) ద్వారా_ | +| డేటా సైన్స్ ఫర్ బేగిన్నర్స్ - _@nitya ద్వారా స్కెచ్‌నోట్_ | ### 🌐 బహుభాషా మద్దతు -#### GitHub యాక్షన్ ద్వారా మద్దతు (ఆటోమేటెడ్ & ఎల్లప్పుడూ అప్డేట్) +#### GitHub యాక్షన్ ద్వారా మద్దతు (ఆటోమేటెడ్ & ఎప్పుడూ తాజా) -[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](./README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md) +[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](./README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md) -> **స్థానికంగా క్లోన్ చేయడం ఇష్టమా?** +> **స్థానికంగా క్లోన్ చేయాలనుకుంటున్నారా?** -> ఈ రిపోజిటరీలో 50+ భాషా అనువాదాలు ఉన్నాయి, ఇవి డౌన్లోడ్ పరిమాణాన్ని గణనీయంగా పెంచుతాయి. అనువాదాలు లేకుండా క్లోన్ చేయడానికి sparse checkout ఉపయోగించండి: +> ఈ రిపాజిటరీ 50+ భాషా అనువాదాలను కలిగి ఉంటుంది, ఇది డౌన్‌లోడ్ పరిమాణాన్ని గణనీయంగా పెంచుతుంది. అనువాదాలు లేకుండా క్లోన్ చేయడానికి, స్పార్స్ చెకౌట్ ఉపయోగించండి: > ```bash > git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git > cd Data-Science-For-Beginners > git sparse-checkout set --no-cone '/*' '!translations' '!translated_images' > ``` -> ఇది కోర్సును పూర్తిచేయడానికి అవసరమైనది వేగంగా డౌన్లోడ్ అవుతుంది. +> ఇది మీరు కోర్సును పూర్తి చేయడానికి అవసరమైన అన్ని విషయాలను చాలా వేగంగా డౌన్‌లోడ్ చేస్తుంది. -**మరిన్ని భాషా మద్దతులు కావాలంటే అవి ఇక్కడ ఉన్నాయి [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)** +**అదనపు అనువాద భాషల మద్దతు కావాలంటే [ఇక్కడ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) జాబితా చేయబడ్డాయి** -#### మా సమాజంలో చేరండి +#### మన కమ్యూనిటీలో చేరండి [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -మేము Discord Learn with AI సిరీస్ నిర్వహిస్తున్నాము, 18 - 30 సెప్టెంబర్, 2025 నుండి [Learn with AI Series](https://aka.ms/learnwithai/discord) ద్వారా మరింత తెలుసుకోండి మరియు జాయిన్ అవ్వండి. మీరు GitHub Copilot ను డేటా సైన్స్ లో ఉపయోగించే చిట్కాలు మరియు టిప్స్ పొందుతారు. +మా వద్ద Discordలో AIతో నేర్చుకునే సిరీస్ ఉంటుంది, దీన్ని మరింత తెలుసుకోండి మరియు [Learn with AI Series](https://aka.ms/learnwithai/discord) లో 18 - 30 సెప్టెంబర్, 2025 సమయాల్లో చేరండి. మీరు GitHub Copilot ఉపయోగించడం కోసం చిట్కాలు మరియు మార్గదర్శకాలను పొందుతారు. -![Learn with AI series](../../../../translated_images/te/1.2b28cdc6205e26fe.webp) +![AIతో నేర్చుకోండి సిరీస్](../../translated_images/te/1.2b28cdc6205e26fe.webp) -# మీరు ఒక విద్యార్థి మాత్రమేనా? +# మీరు విద్యార్థి అయితే? -కింద చెప్పబడిన వనరులతో ప్రారంభించండి: +కింది వనరులతో మొదలవ్వండి: -- [విద్యార్థి హబ్ పేజి](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ఈ పేజీలో మీరు ప్రారంభిక వనరులు, విద్యార్థి ప్యాక్స్ మరియు ఉచిత సర్టిఫికేట్ వోచర్ పొందగల మార్గాలు కనుగొంటారు. ఇది మీరు సూచిక పెట్టుకొని తరచుగా చూడవలసిన ఒక పేజి, ఎందుకంటే మేము కనీసం నెలనెలలా కంటెంట్ ను మార్చుతాము. -- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ప్రపంచవ్యాప్తంగా ఉన్న విద్యార్థి రాయితీల సంఘంలో చేరండి, ఇది Microsoft లో ప్రవేశించే మీ మార్గం కావొచ్చు. +- [స్టూడెంట్ హబ్ పేజీ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ఈ పేజీలో మీరు ప్రారంభ దశలో ఉపయోగపడే వనరులు, స్టూడెంట్ ప్యాక్స్ మరియు ఉచిత సర్టిఫికెట్ వోచర్ అందుకునే మార్గాలు కనుగొంటారు. ఇది మీకు ఒక బుక్‌మార్క్ చేయదగిన పేజీ, మరియు కంటెంట్ మద్య మద్య మార్చుకుంటే, మీరు తరచూ తనిఖీ చేయాలి. +- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) గ్లోబల్ విద్యార్థి రూపొందింపబడ్డ కమ్యూనిటీలో చేరండి, ఇది మైక్రోసాఫ్ట్ లో చేరే మీ మార్గం కావచ్చు. -# ప్రారంభము +# ప్రారంభం ## 📚 డాక్యుమెంటేషన్ -- **[ఇన్స్టాలేషన్ గైడ్](INSTALLATION.md)** - ప్రారంభողների కోసం దశ దశ సూచనలు -- **[ఉపయోగ సూచిక](USAGE.md)** - ఉదాహరణలు మరియు సాధారణ పనితీరు -- **[పెద్ద సమస్యలు పరిష్కారం](TROUBLESHOOTING.md)** - సాధారణ సమస్యల పరిష్కారాలు -- **[కాబట్టి సహకరించండి](CONTRIBUTING.md)** - ఈ ప్రాజెక్ట్ కు సహకరించే విధానం -- **[ఉపాధ్యాయుల కోసం](for-teachers.md)** - బోధన మార్గదర్శకాలు మరియు తరగతి వనరులు +- **[ఇన్‌స్టాలేషన్ గైడ్](INSTALLATION.md)** - ప్రారంభదశల వారికి ఎలాంటి సౌకర్యాలతో స్థాపన సూచనలు +- **[ఉపయోగ గైడ్](USAGE.md)** - ఉదాహరణలు మరియు సాధారణ వర్క్‌ఫ్లోస్ +- **[ట్రబుల్‌షూటింగ్](TROUBLESHOOTING.md)** - సామాన్య సమస్యలకు పరిష్కారాలు +- **[కంట్రీబ్యూటింగ్ గైడ్](CONTRIBUTING.md)** - ప్రాజెక్టుకు ఎలా కంట్రీబ్యూట్ చేయాలి +- **[గురువులకు](for-teachers.md)** - బోధనా సూచనాలు మరియు తరగతి వనరులు ## 👨‍🎓 విద్యార్థులకు -> **సమగ్ర ప్రారంభికులు**: డేటా సైన్స్ కు కొత్తవారా? మా [ప్రారంభ స్నేహపూర్వక ఉదాహరణలు](examples/README.md) తో ప్రారంభించండి! ఈ సులభమైన, వ్యాఖ్యానించిన ఉదాహరణలు మీరు పాఠ్యక్రమాన్ని పూర్తిగా నేర్చుకునే ముందు ప్రాథమిక విషయాలను అర్థం చేసుకునేందుకు సహాయం చేస్తాయి. -> **[విద్యార్థులు](https://aka.ms/student-page)**: ఈ పాఠ్యక్రమాన్ని మీ స్వయంగా ఉపయోగించుకోవడానికి, మొత్తం రిపొని ఫోర్క్ చేసి, ముందుగా లెక్చర్ క్విజ్ తో ప్రారంభించి వ్యాయామాలు పూర్తి చేయండి. ఆపై లెక్చర్ చదవండి మరియు మిగతా కార్యాచరణలు పూర్తిచేయండి. పరిష్కారం కోడ్‌ను కాపీ చేయడం కంటే పాఠాలను అర్థం చేసుకుని ప్రాజెక్టులను సృష్టించేందుకు ప్రయత్నించండి; అయితే, ఆ కోడ్ ప్రతి ప్రాజెక్ట్-ఆధారిత పాఠంలో /solutions ఫోల్డర్లలో అందుబాటులో ఉంది. మరో ఆలోచనగా మీ స్నేహితులతో అధ్యయన సమూహం ఏర్పరచుకొని కంటెంట్ ను కలసి పరిశీలించండి. మరో స్థాయిలో అధ్యయనం కోసం, మేము [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ను సూచిస్తున్నాము. +> **పూర్తి కొత్తవారికి**: డేటా సైన్స్ కొత్తగా ఉంటే, మా [బేగిన్నర్-ఫ్రెండ్లీ ఉదాహరణలు](examples/README.md) తో ప్రారంభించండి! ఈ సరళమైన మరియు బాగా వ్యాఖ్యానించిన ఉదాహరణలు మిమ్మల్ని పాఠ్యక్రమం పూర్తి మునిగిపోవడానికి ముందు ప్రాథమికాలు అర్థం చేసుకోవచ్చు. +> **[విద్యార్థులు](https://aka.ms/student-page)**: ఈ పాఠ్యక్రమాన్ని మీ స్వంతంగా ఉపయోగించాలంటే, మొత్తం రీపోను ఫోర్క్ చేసి ముందుగా యుక్తి-పరీక్షతో మొదలుపెట్టి, తర్వాత పాఠం చదివి మరింత కార్యకలాపాలు పూర్తిచేయండి. పరిష్కార కోడ్ కాపీ చేయడం కాకుండా పాఠాలను అర్థం చేసుకుని ప్రాజెక్టులు రూపొందించడానికి ప్రయత్నించండి; అయినప్పటికీ, ఆ కోడ్ /solutions ఫోల్డర్‌లలో అందుబాటులో ఉంటుంది. మరో యోచన, మిత్రులతో ఒక అధ్యయన సమూహం ఏర్పాటు చేసి కలసి విషయం చదవడం. మరింత అధ్యయనానికి, మేము [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ని సూచిస్తాము. -**ద్రుత ప్రారంభం:** -1. మీ పరిసరాన్ని సెటప్ చేసేందుకు [ఇన్స్టాలేషన్ గైడ్](INSTALLATION.md) పరిశీలించండి -2. పాఠ్యక్రమంతో పనిచేయడం ఎలా అంటే తెలుసుకోవడానికి [ఉపయోగ సూచిక](USAGE.md) పరిశీలించండి -3. పాఠం 1 తో ప్రారంభించి వరుసగా కొనసాగండి -4. మద్దతు కోసం మా [Discord సమాజంలో](https://aka.ms/ds4beginners/discord) చేరండి +**త్వరిత ప్రారంభం:** +1. మీ పరిసరాలను సెటప్ చేసేందుకు [ఇన్‌స్టాలేషన్ గైడ్](INSTALLATION.md) ను తనిఖీ చేయండి +2. పాఠ్యక్రమంతో ఎలా పని చేయాలో తెలుసుకోడానికి [ఉపయోగ గైడ్](USAGE.md) ను సమీక్షించండి +3. పాఠం 1 నుండి ప్రారంభించి సీక్వెన్షియల్ గా పని చేయండి +4. మద్దతు కోసం మా [Discord కమ్యూనిటీ](https://aka.ms/ds4beginners/discord) లో చేరండి -## 👩‍🏫 ఉపాధ్యాయులకు +## 👩‍🏫 గురువులకు -> **ఉపాధ్యాయులు**: ఈ పాఠ్యక్రమాన్ని ఎలా ఉపయోగించాలో మేము కొన్ని సూచనలు [ఉపయోగించినాం](for-teachers.md). మీ అభిప్రాయాలు మాకు చాలా ఇష్టం [మా చర్చా ఫోరంలో](https://github.com/microsoft/Data-Science-For-Beginners/discussions)! +> **గురువులు**: ఈ పాఠ్యక్రమాన్ని ఎలా ఉపయోగించాలో [చిన్న సూచనలు](for-teachers.md) మేము చేర్చాము. మా [చర్చ ఫోరంలో](https://github.com/microsoft/Data-Science-For-Beginners/discussions) మీ అభిప్రాయాలు తెలపండి! +## బృందాన్ని కలవండి -## టీమ్‌ను కలవండి [![ప్రోమో వీడియో](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "ప్రోమో వీడియో") -**గిఫ్ అందించిన** [మోహిత్ జైసాల్](https://www.linkedin.com/in/mohitjaisal) +**గిఫ్** [మోహిత్ జాయిసల్](https://www.linkedin.com/in/mohitjaisal) -> 🎥 ప్రాజెక్ట్ గురించి వీడియో కోసం పై చిత్రం క్లిక్ చేయండి మరియు దాన్ని సృష్టించిన వారికి సంబంధించినది! +> 🎥 ప్రాజెక్ట్ గురించి మరియు దాన్ని సృష్టించిన వారిపై వీడియో కోసం పై చిత్రాన్ని క్లిక్ చేయండి! -## విద్యా విధానం +## పాఠశాస్త్రశాస్త్రం -మనం ఈ పాఠ్య పథకాన్ని నిర్మిస్తూ రెండు విద్యా సూత్రాలు ఎన్నుకున్నాము: ఇది ప్రాజెక్ట్-ఆధారితంగా ఉండటం మరియు తరచూ క్విజ్‌లు కలిగి ఉండటం. ఈ సిరీస్ చివరికి, విద్యార్థులు డేటా సైన్స్లో మౌలిక సూత్రాలు నేర్చుకుంటారు, వాటిలో నిబంధనలు, డేటా సన్నాహకత, డేటాతో పని చేసే విభిన్న మార్గాలు, డేటా విజువలైజేషన్, డేటా విశ్లేషణ, డేటా సైన్స్ యొక్క వాస్తవ ప్రపంచ వినియోగాలు మరియు మరిన్ని ఉన్నాయి. +ఈ పాఠ్యक्रमాన్ని రూపొందించే సమయంలో మేము రెండు పాఠశాస్త్ర ప్రిన్సిపళ్లు ఎంచుకున్నాం: ప్రాజెక్ట్ ఆధారితంగా ఉండటం మరియు తరచూ క్విజ్లు ఉండటం. ఈ సిరీస్ చివరికి, విద్యార్థులు డేటా సైన్స్ యొక్క ప్రాథమిక సూత్రాలు నేర్చుకుంటారు, ఇందులో నైతిక సూత్రాలు, డేటా సిద్ధత, డేటాతో పని చేసే వివిధ విధానాలు, డేటా విజువలైజేషన్, డేటా విశ్లేషణ, డేటా సైన్స్ యొక్క వాస్తవ ప్రపంచ ఉపయోగాల గురించి కూడా ఉంటుంది. -అదనంగా, తరగతికి ముందుగా ఒక తక్కువ అత్యవసర క్విజ్ విద్యార్థి ఒక విషయం నేర్చుకోవాలనుకునే ఉద్దేశ్యాన్ని కలిగి ఉంటుంది, మరియు తరగతి తర్వాత రెండవ క్విజ్ థప్పుగా గుర్తుంచుకోవడాన్ని నిర్ధారిస్తుంది. ఈ పాఠ్య పథకం సౌకర్యవంతంగా మరియు సంతోషకరంగా ఉండేందుకు రూపొందించబడింది మరియు మొత్తం లేదా భాగంగా తీసుకోవచ్చు. ప్రాజెక్టులు చిన్నగ నుండి మొదలుకొని 10 వారాల చక్రం చివరికి మరింత క్లిష్టంగా మారతాయి. +అంతేకాక, తరగతి ముందు ఒక తక్కువ-జోరు క్విజ్ విద్యార్థి ఒక విషయం నేర్చుకోవాలని ఉద్దేశ్యాన్ని సృష్టిస్తుంది, మరియు తరగతి తర్వాత రెండో క్విజ్ మరింత ఉండు సంపాదనను నిర్ధారిస్తుంది. ఈ పాఠ్యక్రమం సులభంగా మరియు సరదాగా ఉండేటట్లు రూపొందించబడింది మరియు మొత్తం గా లేదా భాగంగా తీసుకోవచ్చు. ప్రాజెక్టులు చిన్నగా మొదలవుతాయి మరియు 10 వారాల చక్రం చివరికి progressively క్లిష్టత ఎక్కువ అవుతుంది. -> మా [చర్య నియమావళి](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [అనువాదం](TRANSLATIONS.md) మార్గదర్శకాలను కనుకండి. మీరు మీ నిర్మాణాత్మక అభిప్రాయాలను స్వాగతిస్తున్నాము! +> మా [పని నిబంధనలు](CODE_OF_CONDUCT.md), [కాంట్రిబ్యూటింగ్](CONTRIBUTING.md), [భాషాంతరాలు](TRANSLATIONS.md) మార్గదర్శకాలను చూడండి. మీ సానుకూలమైన అభిప్రాయాన్ని స్వాగతిస్తున్నాము! -## ప్రతి పాఠం లో ఉంటాయి: +## ప్రతి పాఠం లో సగము: -- ఐచ్చిక స్కెచ్‌నోట్ -- ఐచ్చిక అదనపు వీడియో -- పాఠ్యానికి ముందున్న వార్మప్ క్విజ్ -- వ్రాత పాఠం -- ప్రాజెక్ట్-ఆధారిత పాఠాలకు, ప్రాజెక్ట్ నిర్మాణం పై విడివిడిగా గైడ్లు -- జ్ఞాన తనిఖీలు -- ఒక సవాలు -- అదనపు చదవడం -- అసైన్‌మెంట్ -- [పాఠం తర్వాత క్విజ్](https://ff-quizzes.netlify.app/en/) +- ఐచ్ఛిక స్కెట్ట్నోట్ +- ఐచ్ఛిక అనుబంధ వీడియో +- పాఠం ముందు వార్మప్ క్విజ్ +- రచించిన పాఠం +- ప్రాజెక్ట్ ఆధారిత పాఠాల కోసం ప్రాజెక్ట్ నిర్మాణం పై స్టెప్-బై-స్టెప్ గైడ్‌లు +- జ్ఞాన తనిఖీలు +- ఒక ఛాలెంజ్ +- అనుబంధ స్పందన +- అసైన్‌మెంట్ +- [పాఠం తరువాతి క్విజ్](https://ff-quizzes.netlify.app/en/) -> **క్విజీల గురించి ఒక గమనిక**: అన్ని క్విజీలు Quiz-App ఫోల్డర్‌లో ఉన్నాయి, ఇక్కడ మొత్తం 40 క్విజీలలో మూడు ప్రశ్నలతో ఉంటాయి. అవి పాఠాల నుండి లింకైన పరగతి, కానీ క్విజ్ యాప్‌ను స్థానికంగా లేదా Azureలో అమర్చవచ్చు; `quiz-app` ఫోల్డర్‌లో ఉన్న సూచనలను అనుసరించండి. అవి గడిచేకొద్దీ అనువదించబడుతున్నాయి. +> **క్విజ్ల గురించి ఒక గమనిక**: అన్ని క్విజ్లు Quiz-App ఫోల్డర్‌లో ఉంటాయి, మొత్తం 40 క్విజ్లు, ఒక్కో క్విజ్ మూడు ప్రశ్నలతో ఉంటాయి. ఇవి పాఠాల నుంచి లింక్ చేయబడ్డాయి, కానీ క్విజ్ యాప్ ని స్థానికంగా అమలు చేయవచ్చు లేదా Azureకి పంపవచ్చు; దీని కోసం `quiz-app` ఫోల్డర్‌లో ఉన్న సూచనలను అనుసరించండి. అవి క్రమంగా స్థానికీకరించబడుతున్నాయి. -## 🎓 ప్రారంభ దశకు అనుకూలమైన ఉదాహరణలు +## 🎓 ప్రారంభానికి అనుకూలమైన ఉదాహరణలు -**డేటా సైన్స్ కొత్తవారా?** మేము ప్రత్యేకమైన [ఉదాహరణల డైరెక్టరీ](examples/README.md) సృష్టించాము, ఇది సులభమైన, బాగా వ్యాఖ్యానించిన కోడ్‌తో మీకు ప్రారంభం కోసం సహాయం చేస్తుంది: +**డేటా సైన్స్ కొత్తవాడా?** మీకు సహాయం చేయడానికి, మేము ప్రత్యేక [ఉదాహరణల డైరెక్టరీ](examples/README.md) రూపొందించాము, సులభమైన, మెరుగ్గా వ్యాఖ్యానించబడిన కోడ్‌తో: -- 🌟 **హలో వరల్డ్** - మీ మొదటి డేటా సైన్స్ ప్రోగ్రామ్ -- 📂 **డేటాను లోడ్ చేయడం** - డేటాసెట్లను చదవడం మరియు అన్వేషించడం నేర్చుకోండి -- 📊 **సరళమైన విశ్లేషణ** - గణాంకాలు గణించడం మరియు నమూనాలను కనుగొనడం -- 📈 **మౌలిక విజువలైజేషన్** - చార్ట్లు మరియు గ్రాఫ్స్ సృష్టించడం -- 🔬 **వాస్తవ ప్రపంచ ప్రాజెక్ట్** - మొదలుకొని పూర్తి వర్క్‌ఫ్లో పూర్తి చేయడం +- 🌟 **హలో వరల్డ్** - మీ మొదటి డేటా సైన్స్ ప్రోగ్రామ్ +- 📂 **డేటా లోడ్ చేయడం** - డేటాసెట్‌లు చదవడం మరియు అన్వేషించడం నేర్చుకోండి +- 📊 **సులభ విశ్లేషణ** - గణాంకాలు లెక్కించడం మరియు నమూనాలను కనుగొనడం +- 📈 **ప్రాథమిక విజువలైజేషన్** - చార్ట్లు మరియు గ్రాఫ్‌లు సృష్టించండి +- 🔬 **వాస్తవ ప్రాజెక్ట్** - ప్రారంభం నుండి ముగింపు వరకు పూర్తి వర్క్‌ఫ్లో -ప్రతి ఉదాహరణలో ప్రతి దశను వివరించే వ్యాఖ్యలు ఉన్నాయి, ఇది ప్రారంభకులకి బాగా సరిపోతుంది! +ప్రతి ఉదాహరణలో ప్రతి దశను వివరిస్తూ సవివర వ్యాఖ్యలు ఉంటాయి, ఇది పూర్తిగా ప్రారంభకులు కోసం అనుకూలం! -👉 **[ఉదాహరణలతో మొదలెట్టండి](examples/README.md)** 👈 +👉 **[ఉదాహరణలతో మొదలుకోండి](examples/README.md)** 👈 ## పాఠాలు -|![ @sketchthedocs గీయించిన స్కెచ్‌నోట్ https://sketchthedocs.dev](../../../../translated_images/te/00-Roadmap.4905d6567dff4753.webp)| +|![ @sketchthedocs యొక్క స్కెట్ట్నోట్ https://sketchthedocs.dev](../../translated_images/te/00-Roadmap.4905d6567dff4753.webp)| |:---:| -| డేటా సైన్స్ ఫర్ బిగినర్స్: రోడ్‌మ్యాప్ - _స్కెచ్‌నోట్ [@nitya](https://twitter.com/nitya) చేత_ | +| డేటా సైన్స్ ఫర్ బిగినర్స్: రోడ్‌మాప్ - _స్కెట్ట్నోట్: [@nitya](https://twitter.com/nitya)_ | -| పాఠం సంఖ్య | విషయం | పాఠ గ్రూపింగ్ | నేర్చుకునే లక్ష్యాలు | లింక్ పాఠం | రచయిత | +| పాఠ సంఖ్య | విషయం | పాఠ గ్రూపింగ్ | నేర్చుకోవడం లక్ష్యాలు | లింక్ చేయబడిన పాఠం | రచయిత | | :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: | -| 01 | డేటా సైన్స్ నిర్వచనం | [పరిచయం](1-Introduction/README.md) | డేటా సైన్స్ యొక్క ప్రాథమిక సూత్రాలు మరియు దీని సంబంధం కృత్రిమ మేథ, యంత్ర అధ్యయనం మరియు బిగ్ డేటాతో తెలుసుకోండి. | [పాఠం](1-Introduction/01-defining-data-science/README.md) [వీడియో](https://youtu.be/beZ7Mb_oz9I) | [డ్మిత్రి](http://soshnikov.com) | -| 02 | డేటా సైన్స్ నైతికత | [పరిచయం](1-Introduction/README.md) | డేటా నైతికత సూత్రాలు, సవాళ్లు మరియు ఫ్రేమ్‌వర్క్లు. | [పాఠం](1-Introduction/02-ethics/README.md) | [నిత్య](https://twitter.com/nitya) | -| 03 | డేటా నిర్వచనం | [పరిచయం](1-Introduction/README.md) | డేటా ఎలా వర్గీకరించబడతుంది మరియు దాని సాధారణ మూలాలు. | [పాఠం](1-Introduction/03-defining-data/README.md) | [జాస్మిన్](https://www.twitter.com/paladique) | -| 04 | గణాంకాలు మరియు సంభావ్యతకు పరిచయం | [పరిచయం](1-Introduction/README.md) | డేటాను అర్థం చేసుకోవడానికి గణాంకాలు మరియు సంభావ్యత యొక్క గణిత సాంకేతికత. | [పాఠం](1-Introduction/04-stats-and-probability/README.md) [వీడియో](https://youtu.be/Z5Zy85g4Yjw) | [డ్మ Дмитి](http://soshnikov.com) | -| 05 | సంబంధిత డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | సంబంధిత డేటాకు పరిచయం మరియు SQL (ప్రతి “సీ-క్వెల్” అని తెలియజెయ్యబడుతుంది) తో సంబంధిత డేటాను అన్వేషించడం మరియు విశ్లేషణ ప్రాథమికాలు. | [పాఠం](2-Working-With-Data/05-relational-databases/README.md) | [క్రిస్టోఫర్](https://www.twitter.com/geektrainer) | | | -| 06 | NoSQL డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | అప్రమాణాత్మక డేటాకు పరిచయం, దాని వివిధ రకాలు మరియు డాక్యుమెంట్ డేటాబేస్‌లను అన్వేషించడం, విశ్లేషణ ప్రాథమికాలు. | [పాఠం](2-Working-With-Data/06-non-relational/README.md) | [జాస్మిన్](https://twitter.com/paladique)| -| 07 | పైథాన్‌తో పని | [డేటాతో పని](2-Working-With-Data/README.md) | Pandas లైబ్రరీలుతో డేటాను అన్వేషించడానికి పైథాన్ ఉపయోగించే ప్రాథమికాలు. పైథాన్ ప్రోగ్రామింగ్ యొక్క యొక్క ఆధారభూత అవగాహన సిఫార్సు చేయబడుతుంది. | [పాఠం](2-Working-With-Data/07-python/README.md) [వీడియో](https://youtu.be/dZjWOGbsN4Y) | [డ్మ Дмитి](http://soshnikov.com) | -| 08 | డేటా సన్నాహకం | [డేటాతో పని](2-Working-With-Data/README.md) | లేమి, తప్పు, లేదా సంపూర్ణంకాని డేటా సవాళ్లను పరిష్కరించడానికి శుభ్రపరచడం మరియు రూపాంతరం చేసే సాంకేతికతలు. | [పాఠం](2-Working-With-Data/08-data-preparation/README.md) | [జాస్మిన్](https://www.twitter.com/paladique) | -| 09 | పరిమాణాలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | Matplotlib ఉపయోగించి పక్షుల డేటాను విజువలైజ్ చేయడం 🦆 | [పాఠం](3-Data-Visualization/09-visualization-quantities/README.md) | [జెన్](https://twitter.com/jenlooper) | -| 10 | డేటా పంపిణీలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | ఒక అంతరములో గమనించిన అంశాలు మరియు ధోరణులను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/10-visualization-distributions/README.md) | [జెన్](https://twitter.com/jenlooper) | -| 11 | భాగాలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | విభిన్న శాతం మరియు గుంపు శాతాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/11-visualization-proportions/README.md) | [జెన్](https://twitter.com/jenlooper) | -| 12 | సంబంధాలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | డేటా మరియు దాని వ్యత్యాసాల మధ్య సంబంధం మరియు సహసంబంధాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/12-visualization-relationships/README.md) | [జెన్](https://twitter.com/jenlooper) | -| 13 | అర్థవంతమైన విజువలైజేషన్లు | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | మీ విజువలైజేషన్ల్ని విలువైనదిగా చేయడానికి సాంకేతికతలు మరియు మార్గదర్శకాలు, సమస్య పరిష్కారంలో మరియు అవగాహనలో సహాయం. | [పాఠం](3-Data-Visualization/13-meaningful-visualizations/README.md) | [జెన్](https://twitter.com/jenlooper) | -| 14 | డేటా సైన్స్ జీవన చక్రానికి పరిచయం | [జీవన చక్రం](4-Data-Science-Lifecycle/README.md) | డేటా సైన్స్ జీవన చక్రానికి పరిచయం మరియు డేటాను సేకరించటం, తీయడం మొదటి దశ. | [పాఠం](4-Data-Science-Lifecycle/14-Introduction/README.md) | [జాస్మిన్](https://twitter.com/paladique) | -| 15 | విశ్లేషణ | [జీవన చక్రం](4-Data-Science-Lifecycle/README.md) | డేటా ఆధారిత జీవన చక్రం యొక్క ఈ దశ విశ్లేషణ సాంకేతికతలకు కేంద్రీకరించబడింది. | [పాఠం](4-Data-Science-Lifecycle/15-analyzing/README.md) | [జాస్మిన్](https://twitter.com/paladique) | | | -| 16 | కమ్యూనికేషన్ | [జీవన చక్రం](4-Data-Science-Lifecycle/README.md) | డేటా ద్వారా పొందిన అవగాహనలను ఆదేశ నిర్వహకులు అర్థం చేసుకోవడానికి సులభంగా తీర్పు చెయ్యగలిగే విధానంలో ప్రదర్శించడం. | [పాఠం](4-Data-Science-Lifecycle/16-communication/README.md) | [జాలెన్](https://twitter.com/JalenMcG) | | | -| 17 | క్లౌడ్‌లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | క్లౌడ్‌లో డేటా సైన్స్ మరియు దాని లాభాల పరిచయం. | [పాఠం](5-Data-Science-In-Cloud/17-Introduction/README.md) | [టిక్కాని](https://twitter.com/TiffanySouterre) మరియు [మా](https://twitter.com/maudstweets) | -| 18 | క్లౌడ్‌లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | లో కోడ్ టూల్స్ ఉపయోగించి మోడల్స్ శిక్షణ. |[పాఠం](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [టిక్కాని](https://twitter.com/TiffanySouterre) మరియు [మా](https://twitter.com/maudstweets) | -| 19 | క్లౌడ్‌లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studioతో మోడల్స్ అమర్చడం. | [పాఠం](5-Data-Science-In-Cloud/19-Azure/README.md)| [టిక్కాని](https://twitter.com/TiffanySouterre) మరియు [మా](https://twitter.com/maudstweets) | -| 20 | వన్యప్రాంతాల్లో డేటా సైన్స్ | [వన్యంలో](6-Data-Science-In-Wild/README.md) | వాస్తవ ప్రపంచంలో డేటా సైన్స్ ఆధారిత ప్రాజెక్టులు. | [పాఠం](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [నిత్య](https://twitter.com/nitya) | - -## GitHub Codespaces - -ఈ నమూనాను Codespaceలో తెరవడానికి క్రింది దశలను అనుసరించండి: -1. కోడ్ డ్రాప్‌డౌన్ మెనుని క్లిక్ చేసి "Open with Codespaces" ఎంపికను ఎంచుకోండి. -2. ప్యాన్ దిగువన ఉన్న + New codespace ఎంపికను ఎంచుకోండి. -మరింత సమాచారం కోసం, [GitHub డాక్యుమెంటేషన్](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) చూడండి. - -## VSCode Remote - Containers -ఈ రిపోను లోకల్ మిషీను మరియు VSCode Remote - Containers విస్తరణ ఉపయోగించి కంటైనర్‌లో తెరవడానికి క్రింది దశలను అనుసరించండి: - -1. మీరు మెరుగైన అభివృద్ధి కంటైనర్‌ను మొదటిసారిగా ఉపయోగిస్తే, దయచేసి మీ సిస్టమ్ ప్రీ-రిక్విజిట్స్ (అంటే Docker ఇన్‌స్టాల్ చెయ్యడం) ని [ప్రారంభ డాక్యుమెంటేషన్](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)లో ఖచ్చితంగా నిర్ధారించండి. - -ఈ రిపోను ఉపయోగించడానికి, మీరు ఈ క్రింది రెండు మార్గాల్లో మొదలు పెట్టవచ్చు: - -**గమనిక**: Remote-Containers: **Clone Repository in Container Volume...** ఆదేశం ద్వారా సోర్స్ కోడ్‌ను స్థానిక ఫైల్సిస్టమ్ బదులుగా Docker వాల్యూమ్ లో క్లోన్ చేస్తుంది. [వాల్యూమ్లు](https://docs.docker.com/storage/volumes/) కంటైనర్ డేటాను నిలుపుకోవడానికి ప్రాధాన్యమైన వ్యవస్థ. - -లేదంటే స్థానికంగా క్లోన్ చేసిన లేదా డౌన్లోడ్ చేసిన రిపోను తెరవండి: - -- ఈ రిపోను మీ స్థానిక ఫైల్సిస్టమ్ లో క్లోన్ చేయండి. -- F1 నొక్కి **Remote-Containers: Open Folder in Container...** ఆదేశాన్ని ఎంచుకోండి. -- ఈ ఫోల్డర్ క్లోన్ చేసిన కాపీని ఎంచుకోండి, కంటైనర్ ప్రారంభాన్ని వేచి, పనులు ప్రారంభించండి. +| 01 | డేటా సైన్స్ నిర్వచనం | [పరిచయము](1-Introduction/README.md) | డేటా సైన్స్ వెనుక ప్రాథమిక సూత్రాలు మరియు ఇ౦టెలిజెన్స్, మెషీన్ లెర్నింగ్, బిగ్ డేటాతో సంబంధం నేర్చుకోండి. | [పాఠం](1-Introduction/01-defining-data-science/README.md) [వీడియో](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) | +| 02 | డేటా సైన్స్ నైతికత | [పరిచయము](1-Introduction/README.md) | డేటా నైతికత సూత్రాలు, సవాళ్లు & ఫ్రమ్రోక్స్ | [పాఠం](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) | +| 03 | డేటా నిర్వచనం | [పరిచయము](1-Introduction/README.md) | డేటా ఎలా వర్గీకరించబడుతుందో మరియు సాధారణ మూలాలు. | [పాఠం](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) | +| 04 | గణాంకాలు & ప్రాయిసంభావ్యత పరిచయం | [పరిచయము](1-Introduction/README.md) | డేటా అర్థం చేసుకోవడానికి ప్రాయిసంభావ్యత మరియు గణాంకాల గణిత శాస్త్ర పద్ధతులు. | [పాఠం](1-Introduction/04-stats-and-probability/README.md) [వీడియో](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) | +| 05 | రిలేషనల్ డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | రిలేషన్ డేటా పరిచయం మరియు Structured Query Language (SQL - “సీ-క్వెల్” గా ఉచ్చరిస్తారు) తో రిలేషన్ డేటాను అన్వేషించడం, విశ్లేషించడం. | [పాఠం](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | | +| 06 | నాన్-SQL డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | నాన్-రిలేషనల్ డేటా పరిచయం, దాని రకాలు మరియు డాక్యుమెంట్ డేటాబేస్లను అన్వేషించడం, విశ్లేషణ. | [పాఠం](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)| +| 07 | పైథాన్ తో పని | [డేటాతో పని](2-Working-With-Data/README.md) | Pandas లాంటి లైబ్రరీలతో డేటా అన్వేషణ కోసం పైథాన్ ఉపయోగించడం ప్రాథమికాలు. పైథాన్ ప్రోగ్రామింగ్ యొక్క ప్రాథమిక అవగాహన అవసరం. | [పాఠం](2-Working-With-Data/07-python/README.md) [వీడియో](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) | +| 08 | డేటా సిద్ధత | [డేటాతో పని](2-Working-With-Data/README.md) | మానుకున్న, తప్పైన, లేదా అసంపూర్ణ డేటా సవాళ్లను ఎదుర్కోవడానికి డేటాను శుభ్రపరచడం మరియు మార్చడం సాంకేతికతలు. | [పాఠం](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) | +| 09 | పరిమాణాలను విజువలైజ్ చేయడం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | Matplotlib ఉపయోగించి బర్డ్ డేటాను విజువలైజ్ చేయడం నేర్చుకోండి 🦆 | [పాఠం](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) | +| 10 | డేటా పంపిణీలను విజువలైజ్ చేయడం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | ఒక ఇంటర్వెల్‌లోని పరిశీలనల మరియు ధోరణులను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) | +| 11 | భాగాల విజువలైజేషన్ | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | విడివిడిగా మరియు సమూహాల శాతాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) | +| 12 | సంబంధాల విజువలైజేషన్ | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | డేటా మరియు వేరియబుల్స్ మధ్య సంబంధాలు, సహ సంబంధాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) | +| 13 | అర్థపూర్వక విజువలైజేషన్లు | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | మీ విజువలైజేషన్లను సమస్య పరిష్కారానికి మరియు అవగాహనలకు విలువైనదిగా చేయడానికి సాంకేతికతలు మరియు మార్గదర్శకాలు. | [పాఠం](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) | +| 14 | డేటా సైన్స్ లైఫ్‌సైకిల్ పరిచయం | [లైఫ్‌సైకిల్](4-Data-Science-Lifecycle/README.md) | డేటా సైన్స్ లైఫ్‌సైకల్ పరిచయం మరియు మొదటి దశ - డేటాను సంపాదించడం మరియు తొలగించడం. | [పాఠం](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) | +| 15 | విశ్లేషణ | [లైఫ్‌సైకిల్](4-Data-Science-Lifecycle/README.md) | డేటా సైన్స్ లైఫ్‌సైకిల్‌లో ఈ దశ డేటా విశ్లేషణ సాంకేతికతలపై కేంద్రీకృతమైంది. | [పాఠం](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | | +| 16 | కమ్యూనికేషన్ | [లైఫ్‌సైకిల్](4-Data-Science-Lifecycle/README.md) | డేటా నుండి పొందిన అవగాహనలను నిర్ణయదారులు సులభంగా అర్థం చేసుకునే విధంగా అందించడంపై ఈ దశ కేంద్రీకృతమైంది. | [పాఠం](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | | +| 17 | క్లౌడ్ లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | ఈ పాఠాల శ్రేణి క్లౌడ్ లో డేటా సైన్స్ మరియు దాని లాభాల పరిచయం చేస్తుంది. | [పాఠం](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) మరియు [Maud](https://twitter.com/maudstweets) | +| 18 | క్లౌడ్ లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | లో కోడ్ టూల్స్ ఉపయోగించి మోడల్స్ శిక్షణ. | [పాఠం](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) మరియు [Maud](https://twitter.com/maudstweets) | +| 19 | క్లౌడ్ లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio తో మోడల్స్ ను డిప్లాయ్ చేయడం. | [పాఠం](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) మరియు [Maud](https://twitter.com/maudstweets) | +| 20 | వనాలలో డేటా సైన్స్ | [వనంలో](6-Data-Science-In-Wild/README.md) | వాస్తవ ప్రపంచంలో డేటా సైన్స్ ఆధారిత ప్రాజెక్టులు. | [పాఠం](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) | + +## GitHub కోడ్స్పేస్లు + +ఈ నమూనాను ఒక కోడ్స్పేస్‌లో తెరవడానికి ఈ దశలను అనుసరించండి: +1. కోడ్ డ్రాప్-డౌన్ మెనూని క్లిక్ చేసి Open with Codespaces ఎంపికను ఎంచుకోండి. +2. పానెల్ దిగువన + New codespace ఎంచుకోండి. +మరింత సమాచారం కోసం [GitHub డాక్యుమెంటేషన్](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) చూడండి. + +## VSCode రిమోట్ - కంటైనర్లు +తొలి సారి డెవలప్మెంట్ కంటైనర్ ఉపయోగిస్తుంటే, మీ సిస్టమ్ ముందుగా అవసరాలు తీర్చుకున్నదని నిర్ధారించుకోండి (అంటే Docker ఇన్‌స్టాల్ చేయబడినది) [గెంటింగ్ స్టార్టెడ్ డాక్యుమెంటేషన్](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)లో. + +ఈ రిపోజిటరీను ఉపయోగించడానికి, మీరు రిపోజిటరీని డాకర్ వాల్యూమ్‌లో ఒంటరిగా ఓపెన్ చేయవచ్చు: + +**గమనిక**: ఈ విధానం Remote-Containers: **Clone Repository in Container Volume...** కమాండ్ ఉపయోగించి సోర్స్ కోడ్‌ని డాకర్ వాల్యూమ్‌లో క్లోన్ చేస్తుంది స్థానిక ఫైల్ సిస్టమ్ స్దలంలో కాకుండా. [వాల్యూమ్స్](https://docs.docker.com/storage/volumes/) కంటైనర్ డేటాను నిల్వ చేయడానికి ప్రాధాన్యమిస్తున్న యంత్రము. + +లేదా స్థానికంగా క్లోన్ చేసిన లేదా డౌన్లోడ్ చేసిన రిపోజిటరీను ఓపెన్ చేయండి: + +- ఈ రిపోజిటరీని మీ స్థానిక ఫైల్ సిస్టమ్‌కు క్లోన్ చేయండి. +- F1 నొక్కి **Remote-Containers: Open Folder in Container...** కమాండ్ ఎంచుకోండి. +- ఈ ఫోల్డర్ క్లోన్ చేసిన కాపీని ఎంచుకోండి, కంటైనర్ స్టార్ట్ అయ్యే వరకు వేచి చూడండి, మరియు ప్రయత్నించండి. ## ఆఫ్‌లైన్ యాక్సెస్ -[Docsify](https://docsify.js.org/#/) ఉపయోగించి మీరు ఈ డాక్యుమెంటేషన్‌ను ఆఫ్‌లైన్‌లో కూడా అమలు చేయవచ్చు. ఈ రిపోను ఫోర్క్ చేసి, మీ స్థానిక యంత్రంలో [Docsify ఇన్‌స్టాల్](https://docsify.js.org/#/quickstart) చేయండి, తరువాత ఈ రిపో యొక్క రూట్ ఫోల్డర్‌లో `docsify serve` టైప్ చేయండి. వెబ్‌సైట్ స్థానిక హోస్ట్‌లో 3000 పోర్ట్ లా అందుబాటులో ఉంటుంది: `localhost:3000`. +[Docsify](https://docsify.js.org/#/) ఉపయోగించి ఈ డాక్యుమెంటేషన్ ని ఆఫ్‌లైన్‌లో నడుపవచ్చు. ఈ రిపోను ఫోర్క్ చేసి, [Docsify ఇన్‌స్టాల్](https://docsify.js.org/#/quickstart) చేసి తో, ఈ రిపో యొక్క రూట్ ఫోల్డర్లో `docsify serve` టైప్ చేయండి. వెబ్‌సైట్ మీ లోకల్ హోస్ట్ లో 3000 పోర్ట్ పై సర్వ్ అవుతుంది: `localhost:3000`. -> గమనిక, నోట్బుకులు Docsify ద్వారా రెండర్ అవవు, కాబట్టి మీరు నోట్బుక్ চালించాల్సిన అవసరం ఉన్నప్పుడు, దాన్ని వేరే చోట VS Codeలో పైథాన్ కర్నెల్ నడుపుతూ చేయండి. +> గమనిక, నొట్బుక్‌లు Docsify ద్వారా రెండర్ కావు, కాబట్టి మీరు నొట్బుక్ నడపాలంటే, అది వేరేలా VS Code లో Python కర్నల్ నడుపుతూ చేయండి. -## ఇతర పాఠ్యాలు +## ఇతర పాఠ్యక్రమాలు -మన బృందం ఇతర పాఠ్యాలు కూడా రూపొందిస్తుంది! చూడండి: +మా బృందం ఇతర పాఠ్యక్రమాలు కూడా తయారు చేస్తుంది! చూడండి: ### LangChain -[![ప్రారంభ దశకు LangChain4j](https://img.shields.io/badge/LangChain4j%20for%20Beginners-22C55E?style=for-the-badge&&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchain4j-for-beginners) +[![LangChain4j for Beginners](https://img.shields.io/badge/LangChain4j%20for%20Beginners-22C55E?style=for-the-badge&&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchain4j-for-beginners) [![LangChain.js for Beginners](https://img.shields.io/badge/LangChain.js%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin) --- -### Azure / ఎజ్ / MCP / ఏజెంట్లు +### Azure / Edge / MCP / ఏజెంట్లు [![AZD for Beginners](https://img.shields.io/badge/AZD%20for%20Beginners-0078D4?style=for-the-badge&labelColor=E5E7EB&color=0078D4)](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst) [![Edge AI for Beginners](https://img.shields.io/badge/Edge%20AI%20for%20Beginners-00B8E4?style=for-the-badge&labelColor=E5E7EB&color=00B8E4)](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst) [![MCP for Beginners](https://img.shields.io/badge/MCP%20for%20Beginners-009688?style=for-the-badge&labelColor=E5E7EB&color=009688)](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst) @@ -225,7 +214,7 @@ Microsoft లో Azure Cloud Advocates డేటా సైన్స్ గుర --- -### మౌలిక అభ్యాసం +### కోర్ లెర్నింగ్ [![ML for Beginners](https://img.shields.io/badge/ML%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=22C55E)](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst) [![Data Science for Beginners](https://img.shields.io/badge/Data%20Science%20for%20Beginners-84CC16?style=for-the-badge&labelColor=E5E7EB&color=84CC16)](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst) [![AI for Beginners](https://img.shields.io/badge/AI%20for%20Beginners-A3E635?style=for-the-badge&labelColor=E5E7EB&color=A3E635)](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst) @@ -236,27 +225,27 @@ Microsoft లో Azure Cloud Advocates డేటా సైన్స్ గుర --- -### కాపిలాట్ సిరీస్ +### కాపిలట్ సిరీస్ [![Copilot for AI Paired Programming](https://img.shields.io/badge/Copilot%20for%20AI%20Paired%20Programming-FACC15?style=for-the-badge&labelColor=E5E7EB&color=FACC15)](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst) [![Copilot for C#/.NET](https://img.shields.io/badge/Copilot%20for%20C%23/.NET-FBBF24?style=for-the-badge&labelColor=E5E7EB&color=FBBF24)](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst) [![Copilot Adventure](https://img.shields.io/badge/Copilot%20Adventure-FDE68A?style=for-the-badge&labelColor=E5E7EB&color=FDE68A)](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst) -## సహాయం పొందడం +## సహాయం పొందటం -**సమస్యలతో ఎదురవుతున్నారా?** సాధారణ సమస్యల పరిష్కారాల కోసం మా [ట్రబుల్‌షూటింగ్ గైడ్](TROUBLESHOOTING.md)ని పరిశీలించండి. +**సమస్యలు ఎదుర్కోచ్చా?** సాధారణ సమస్యల పరిష్కారాల కోసం మా [ట్రబుల్షూటింగ్ గైడ్](TROUBLESHOOTING.md) ను పరిశీలించండి. -మీకు ఎక్కడైనా చిక్కులు వచ్చి AI అనువర్తనాలు సృష్టించే విషయంలో సందేహాలు ఉంటే, MCP గురించి చర్చలు జరగుతున్న ఇతర అభ్యాసకులు మరియు అనుభవజ్ఞులైన డెవలపర్లు ఉన్న కమ్యూనిటీలో చేరండి. ఇక్కడ ప్రశ్నలు అడగడం స్వాగతం మరియు జ్ఞానం స్వేచ్ఛగా పంచుకోబడుతుంది. +మీరు అడ్డకట్టబడితే లేదా AI యాప్‌ల నిర్మాణం గురించి మీకు ఎలాంటి ప్రశ్నలు ఉంటే. MCP గురించి చర్చల్లో ఇతర అభ్యసకులు మరియు అనుభవజ్ఞులైన డెవలపర్లతో 합류 చేయండి. ఇది ప్రశ్నలు స్వాగతం మరియు జ్ఞానం స్వేచ్ఛగా పంచుకునే సహాయక సమాజం. [![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) -మీకు ఉత్పత్తి పై అభిప్రాయాలు లేదా తప్పులు ఉన్నట్లయితే నిర్మాణ సమయంలో సందర్శించండి: +మీకు ఉత్పత్తి ప్రతిస్పందనలు లేదా లోపాలు ఉంటే: [![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) --- -**అస్పష్టత నోట్లు**: -ఈ పత్రం AI అనువాద సేవ అయిన [Co-op Translator](https://github.com/Azure/co-op-translator) ద్వారా అనువదించబడింది. మేము సరైన అనువాదానికోసం కృషి చేసినప్పటికీ, автомేటెడు అనువాదాలలో పొరపాట్లు లేదా లోపాలు ఉండవచ్చు. అసలు పత్రం native భాషలోనే అధికారిక మూలంగా పరిగణించాలి. ముఖ్యమైన సమాచారానికి, సర్వదృష్టి కలిగిన మానవ అనువాదాన్ని సూచిస్తాము. ఈ అనువాదం వాడుక వల్ల కలిగే ఏవైనా అపవ్యాఖ్యలు లేదా దోషాలకు మేము బాధ్యులు కాదు. +**అస్పృష్టం**: +ఈ పత్రం AI అనువాద సేవ [Co-op Translator](https://github.com/Azure/co-op-translator) ఉపయోగించి అనువదించబడింది. మేము సరైనతకు ప్రయత్నిస్తున్నప్పటికీ, స్వయంచాలిత అనువాదాల్లో తప్పులు లేదా అవాస్తవతలు ఉండవచ్చు. అసలు పత్రం తన స్వదేశీ భాషలో అధికారిక వనరుగా పరిగణించాలి. ముఖ్యమైన సమాచారానికి, ప్రొఫెషనల్ మానవ అనువాదాన్ని సిఫార్సు చేయబడాలి. ఈ అనువాదం వలన వచ్చే ఏ సందేహాలు లేదా తప్పుదృక్పథాలకు మేము బాధ్యత వహించము. \ No newline at end of file diff --git a/translations/te/SECURITY.md b/translations/te/SECURITY.md index c4fca885..7d0ee52d 100644 --- a/translations/te/SECURITY.md +++ b/translations/te/SECURITY.md @@ -1,12 +1,3 @@ - ## భద్రత మైక్రోసాఫ్ట్ మా సాఫ్ట్‌వేర్ ఉత్పత్తులు మరియు సేవల భద్రతను గంభీరంగా తీసుకుంటుంది, దీనిలో మా GitHub సంస్థల ద్వారా నిర్వహించబడే అన్ని సోర్స్ కోడ్ రిపాజిటరీలు ఉన్నాయి, వీటిలో [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), మరియు [మా GitHub సంస్థలు](https://opensource.microsoft.com/) ఉన్నాయి. diff --git a/translations/te/SUPPORT.md b/translations/te/SUPPORT.md index 8c71b0ad..e6e1414c 100644 --- a/translations/te/SUPPORT.md +++ b/translations/te/SUPPORT.md @@ -1,12 +1,3 @@ - # మద్దతు ## సమస్యలను ఎలా నమోదు చేయాలి మరియు సహాయం పొందాలి diff --git a/translations/te/TROUBLESHOOTING.md b/translations/te/TROUBLESHOOTING.md index 5ff3b602..beaabd94 100644 --- a/translations/te/TROUBLESHOOTING.md +++ b/translations/te/TROUBLESHOOTING.md @@ -1,12 +1,3 @@ - # సమస్య పరిష్కరణ గైడ్ ఈ గైడ్ Data Science for Beginners పాఠ్యాంశంతో పని చేస్తూ మీరు ఎదుర్కొనే సాధారణ సమస్యలకు పరిష్కారాలను అందిస్తుంది. diff --git a/translations/te/USAGE.md b/translations/te/USAGE.md index def3afe5..499d0113 100644 --- a/translations/te/USAGE.md +++ b/translations/te/USAGE.md @@ -1,12 +1,3 @@ - # ఉపయోగం గైడ్ ఈ గైడ్ డేటా సైన్స్ ఫర్ బిగినర్స్ పాఠ్యాంశం ఉపయోగించడానికి ఉదాహరణలు మరియు సాధారణ వర్క్‌ఫ్లోలను అందిస్తుంది. diff --git a/translations/te/docs/_sidebar.md b/translations/te/docs/_sidebar.md index 914528f8..8ba7150d 100644 --- a/translations/te/docs/_sidebar.md +++ b/translations/te/docs/_sidebar.md @@ -1,12 +1,3 @@ - - పరిచయం - [డేటా సైన్స్ నిర్వచనం](../1-Introduction/01-defining-data-science/README.md) - [డేటా సైన్స్ నైతికత](../1-Introduction/02-ethics/README.md) diff --git a/translations/te/examples/README.md b/translations/te/examples/README.md index 8e8156f5..92fa85d5 100644 --- a/translations/te/examples/README.md +++ b/translations/te/examples/README.md @@ -1,12 +1,3 @@ - # ప్రారంభికులకు అనుకూలమైన డేటా సైన్స్ ఉదాహరణలు ఉదాహరణల డైరెక్టరీకి స్వాగతం! ఈ సులభమైన, బాగా వ్యాఖ్యానించిన ఉదాహరణల సేకరణ డేటా సైన్స్ ప్రారంభించడానికి మీకు సహాయపడేందుకు రూపొందించబడింది, మీరు పూర్తిగా కొత్తవారైనా సరే. diff --git a/translations/te/for-teachers.md b/translations/te/for-teachers.md index d8a173fa..7b52eb6a 100644 --- a/translations/te/for-teachers.md +++ b/translations/te/for-teachers.md @@ -1,12 +1,3 @@ - ## For Educators మీ తరగతిలో ఈ పాఠ్యాంశాన్ని ఉపయోగించాలనుకుంటున్నారా? దయచేసి స్వేచ్ఛగా ఉపయోగించండి! diff --git a/translations/te/quiz-app/README.md b/translations/te/quiz-app/README.md index 6632b058..f650c80b 100644 --- a/translations/te/quiz-app/README.md +++ b/translations/te/quiz-app/README.md @@ -1,12 +1,3 @@ - # క్విజ్‌లు ఈ క్విజ్‌లు https://aka.ms/datascience-beginners వద్ద డేటా సైన్స్ పాఠ్యక్రమం కోసం ప్రీ- మరియు పోస్ట్-లెక్చర్ క్విజ్‌లు. diff --git a/translations/te/sketchnotes/README.md b/translations/te/sketchnotes/README.md index a8119974..bd36bf98 100644 --- a/translations/te/sketchnotes/README.md +++ b/translations/te/sketchnotes/README.md @@ -1,12 +1,3 @@ - ఇక్కడ అన్ని స్కెచ్‌నోట్లు కనుగొనండి! ## క్రెడిట్స్