diff --git a/1-Introduction/02-ethics/README.md b/1-Introduction/02-ethics/README.md index 8ed16345..6646a676 100644 --- a/1-Introduction/02-ethics/README.md +++ b/1-Introduction/02-ethics/README.md @@ -60,7 +60,7 @@ Let's briefly explore these principles. _Transparency_ and _accountability_ are * [**Privacy & Security**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - is about understanding data lineage, and providing _data privacy and related protections_ to users. * [**Inclusiveness**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - is about designing AI solutions with intention, adapting them to meet a _broad range of human needs_ & capabilities. -> 🚨 Think about what your data ethics mission statement could be. Explore ethical AI frameworks from other organizations - here are examples from [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles) ,and [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/). What shared values do they have in common? How do these principles relate to the AI product or industry they operate in? +> 🚨 Think about what your data ethics mission statement could be. Explore ethical AI frameworks from other organizations - here are examples from [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles), and [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/). What shared values do they have in common? How do these principles relate to the AI product or industry they operate in? ### 2. Ethics Challenges