diff --git a/.gitignore b/.gitignore
index 457413e..956d271 100644
--- a/.gitignore
+++ b/.gitignore
@@ -352,4 +352,5 @@ MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
4-Data-Science-Lifecycle/14-Introduction/README.md
-.vscode/settings.json
\ No newline at end of file
+.vscode/settings.json
+*.ipynb
diff --git a/1-Introduction/04-stats-and-probability/notebook.ipynb b/1-Introduction/04-stats-and-probability/notebook.ipynb
index 3739c52..208eee5 100644
--- a/1-Introduction/04-stats-and-probability/notebook.ipynb
+++ b/1-Introduction/04-stats-and-probability/notebook.ipynb
@@ -5,13 +5,12 @@
"metadata": {},
"source": [
"# Introduction to Probability and Statistics\n",
- "|\n",
"In this notebook, we will play around with some of the concepts we have previously discussed. Many concepts from probability and statistics are well-represented in major libraries for data processing in Python, such as `numpy` and `pandas`."
]
},
{
"cell_type": "code",
- "execution_count": 212,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -25,24 +24,22 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "\n",
"## Random Variables and Distributions\n",
- "\n",
- "Let's start with drawing a sample of 30 variables from a uniform distribution from 0 to 9. We will also compute mean and variance."
+ "Let's start with drawing a sample of 30 values from a uniform distribution from 0 to 9. We will also compute mean and variance."
]
},
{
"cell_type": "code",
- "execution_count": 213,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Sample: [1, 1, 0, 5, 6, 3, 7, 5, 1, 6, 5, 6, 7, 0, 3, 6, 2, 4, 2, 8, 1, 5, 7, 10, 8, 5, 7, 10, 6, 8]\n",
- "Mean = 4.833333333333333\n",
- "Variance = 7.938888888888889\n"
+ "Sample: [4, 8, 5, 10, 5, 1, 1, 1, 7, 9, 7, 0, 2, 7, 3, 5, 9, 8, 3, 10, 2, 9, 2, 9, 9, 8, 1, 8, 7, 3]\n",
+ "Mean = 5.433333333333334\n",
+ "Variance = 10.178888888888887\n"
]
}
],
@@ -62,18 +59,19 @@
},
{
"cell_type": "code",
- "execution_count": 214,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAU30lEQVR4nO3df6yVBf3A8c8V84B27y0ohDsuikWhIGZghZpSKhsxpmv90NRY1h82NIhVgLYpLrlky9WisOuarRXBWqE0k0U/5OoaCXeSDJ0/JuktfzDL3YM0jxOe7x/Nu+4XUM/lc+7hHF+v7fzxPPc59/nsmfK895zn3KelKIoiAAASHFPvAQCA5iEsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0xw73Dg8cOBDPPPNMtLa2RktLy3DvHgAYgqIoYu/evdHR0RHHHHP46xLDHhbPPPNMdHZ2DvduAYAEfX19MWHChMP+fNjDorW1NSL+O1hbW9tw7x4AGIJyuRydnZ0D5/HDGfaweO3jj7a2NmEBAA3mjW5jcPMmAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaaoKixtvvDFaWloGvcaNG1er2QCABlP1s0KmTp0af/jDHwaWR4wYkToQANC4qg6LY4891lUKAOCQqr7H4vHHH4+Ojo6YNGlSXHrppfHkk0++7vaVSiXK5fKgFwDQnKq6YvHhD384fvazn8X73ve+eP755+Nb3/pWnH322bFr164YM2bMId/T1dUVK1asSBkWOPqdvOzueo/wlvD3VfPqPQIcUktRFMVQ37xv3754z3veE9/4xjdiyZIlh9ymUqlEpVIZWC6Xy9HZ2Rn9/f3R1tY21F0DRylhMTyEBcOtXC5He3v7G56/q77H4n+dcMIJcfrpp8fjjz9+2G1KpVKUSqUj2Q0A0CCO6O9YVCqVeOSRR2L8+PFZ8wAADayqsPja174WW7Zsid27d8df//rX+NSnPhXlcjkWLFhQq/kAgAZS1Uch//jHP+Kyyy6LF154Id797nfHRz7ykdi6dWucdNJJtZoPAGggVYXFunXrajUHANAEPCsEAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANMICAEgjLACANEcUFl1dXdHS0hKLFy9OGgcAaGRDDott27ZFd3d3TJ8+PXMeAKCBDSksXnrppbj88svj9ttvj3e+853ZMwEADWpIYbFw4cKYN29eXHjhhW+4baVSiXK5POgFADSnY6t9w7p166K3tze2b9/+prbv6uqKFStWVD3YW8XJy+6u9whV+/uqefUeAd7y/NvB0aqqKxZ9fX2xaNGi+MUvfhEjR458U+9Zvnx59Pf3D7z6+vqGNCgAcPSr6opFb29v7NmzJ2bMmDGwbv/+/dHT0xOrV6+OSqUSI0aMGPSeUqkUpVIpZ1oA4KhWVVhccMEFsXPnzkHrvvCFL8SUKVNi6dKlB0UFAPDWUlVYtLa2xrRp0watO+GEE2LMmDEHrQcA3nr85U0AIE3V3wr5/+69996EMQCAZuCKBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQpqqwWLNmTUyfPj3a2tqira0tZs2aFffcc0+tZgMAGkxVYTFhwoRYtWpVbN++PbZv3x4f//jH4+KLL45du3bVaj4AoIEcW83G8+fPH7R88803x5o1a2Lr1q0xderU1MEAgMZTVVj8r/3798evfvWr2LdvX8yaNeuw21UqlahUKgPL5XJ5qLsEAI5yVYfFzp07Y9asWfHyyy/H29/+9tiwYUOcdtpph92+q6srVqxYcURDAtD4Tl52d71HqNrfV82r9wgNp+pvhbz//e+PHTt2xNatW+PLX/5yLFiwIB5++OHDbr98+fLo7+8fePX19R3RwADA0avqKxbHHXdcvPe9742IiJkzZ8a2bdvi+9//fvz4xz8+5PalUilKpdKRTQkANIQj/jsWRVEMuocCAHjrquqKxXXXXRdz586Nzs7O2Lt3b6xbty7uvffe2LRpU63mAwAaSFVh8fzzz8eVV14Zzz77bLS3t8f06dNj06ZNcdFFF9VqPgCggVQVFj/5yU9qNQcA0AQ8KwQASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASCMsAIA0wgIASFNVWHR1dcVZZ50Vra2tMXbs2Ljkkkvi0UcfrdVsAECDqSostmzZEgsXLoytW7fG5s2b49VXX405c+bEvn37ajUfANBAjq1m402bNg1avuOOO2Ls2LHR29sb5513XupgAEDjqSos/r/+/v6IiBg9evRht6lUKlGpVAaWy+XykewSADiKtRRFUQzljUVRxMUXXxwvvvhi3HfffYfd7sYbb4wVK1YctL6/vz/a2tqGsuvDOnnZ3am/D+rt76vm1XuEqvn/EOqrVv9ulMvlaG9vf8Pz95C/FXLNNdfEQw89FL/85S9fd7vly5dHf3//wKuvr2+ouwQAjnJD+ijk2muvjY0bN0ZPT09MmDDhdbctlUpRKpWGNBwA0FiqCouiKOLaa6+NDRs2xL333huTJk2q1VwAQAOqKiwWLlwYa9eujbvuuitaW1vjueeei4iI9vb2GDVqVE0GBAAaR1X3WKxZsyb6+/tj9uzZMX78+IHX+vXrazUfANBAqv4oBADgcDwrBABIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDRVh0VPT0/Mnz8/Ojo6oqWlJe68884ajAUANKKqw2Lfvn1xxhlnxOrVq2sxDwDQwI6t9g1z586NuXPn1mIWAKDBVR0W1apUKlGpVAaWy+VyrXcJANRJzcOiq6srVqxYUevdQFM6ednd9R4BoCo1/1bI8uXLo7+/f+DV19dX610CAHVS8ysWpVIpSqVSrXcDABwF/B0LACBN1VcsXnrppXjiiScGlnfv3h07duyI0aNHx8SJE1OHAwAaS9VhsX379vjYxz42sLxkyZKIiFiwYEH89Kc/TRsMAGg8VYfF7NmzoyiKWswCADQ491gAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmGFBY/+tGPYtKkSTFy5MiYMWNG3HfffdlzAQANqOqwWL9+fSxevDiuv/76ePDBB+OjH/1ozJ07N55++ulazAcANJCqw+LWW2+NL37xi/GlL30pTj311Pje974XnZ2dsWbNmlrMBwA0kGOr2fiVV16J3t7eWLZs2aD1c+bMib/85S+HfE+lUolKpTKw3N/fHxER5XK52lnf0IHKf9J/JwA0klqcX//39xZF8brbVRUWL7zwQuzfvz9OPPHEQetPPPHEeO655w75nq6urlixYsVB6zs7O6vZNQDwJrR/r7a/f+/evdHe3n7Yn1cVFq9paWkZtFwUxUHrXrN8+fJYsmTJwPKBAwfi3//+d4wZM+aw7xmKcrkcnZ2d0dfXF21tbWm/l8Ec5+HjWA8Px3l4OM7Do5bHuSiK2Lt3b3R0dLzudlWFxbve9a4YMWLEQVcn9uzZc9BVjNeUSqUolUqD1r3jHe+oZrdVaWtr8x/tMHCch49jPTwc5+HhOA+PWh3n17tS8Zqqbt487rjjYsaMGbF58+ZB6zdv3hxnn312ddMBAE2n6o9ClixZEldeeWXMnDkzZs2aFd3d3fH000/H1VdfXYv5AIAGUnVYfPazn41//etfcdNNN8Wzzz4b06ZNi9/97ndx0kkn1WK+N61UKsUNN9xw0Mcu5HKch49jPTwc5+HhOA+Po+E4txRv9L0RAIA3ybNCAIA0wgIASCMsAIA0wgIASNM0YeFR7rXV1dUVZ511VrS2tsbYsWPjkksuiUcffbTeYzW9rq6uaGlpicWLF9d7lKbzz3/+M6644ooYM2ZMHH/88fGBD3wgent76z1WU3n11Vfjm9/8ZkyaNClGjRoVp5xyStx0001x4MCBeo/W8Hp6emL+/PnR0dERLS0tceeddw76eVEUceONN0ZHR0eMGjUqZs+eHbt27RqW2ZoiLDzKvfa2bNkSCxcujK1bt8bmzZvj1VdfjTlz5sS+ffvqPVrT2rZtW3R3d8f06dPrPUrTefHFF+Occ86Jt73tbXHPPffEww8/HN/97ndr+leB34q+/e1vx2233RarV6+ORx55JG655Zb4zne+Ez/4wQ/qPVrD27dvX5xxxhmxevXqQ/78lltuiVtvvTVWr14d27Zti3HjxsVFF10Ue/furf1wRRP40Ic+VFx99dWD1k2ZMqVYtmxZnSZqfnv27CkiotiyZUu9R2lKe/fuLSZPnlxs3ry5OP/884tFixbVe6SmsnTp0uLcc8+t9xhNb968ecVVV101aN0nP/nJ4oorrqjTRM0pIooNGzYMLB84cKAYN25csWrVqoF1L7/8ctHe3l7cdtttNZ+n4a9YvPYo9zlz5gxa/3qPcufI9ff3R0TE6NGj6zxJc1q4cGHMmzcvLrzwwnqP0pQ2btwYM2fOjE9/+tMxduzYOPPMM+P222+v91hN59xzz40//vGP8dhjj0VExN/+9re4//774xOf+ESdJ2tuu3fvjueee27QebFUKsX5558/LOfFIT3d9GgylEe5c2SKooglS5bEueeeG9OmTav3OE1n3bp10dvbG9u3b6/3KE3rySefjDVr1sSSJUviuuuuiwceeCC+8pWvRKlUis9//vP1Hq9pLF26NPr7+2PKlCkxYsSI2L9/f9x8881x2WWX1Xu0pvbaue9Q58Wnnnqq5vtv+LB4TTWPcufIXHPNNfHQQw/F/fffX+9Rmk5fX18sWrQofv/738fIkSPrPU7TOnDgQMycOTNWrlwZERFnnnlm7Nq1K9asWSMsEq1fvz5+/vOfx9q1a2Pq1KmxY8eOWLx4cXR0dMSCBQvqPV7Tq9d5seHDYiiPcmforr322ti4cWP09PTEhAkT6j1O0+nt7Y09e/bEjBkzBtbt378/enp6YvXq1VGpVGLEiBF1nLA5jB8/Pk477bRB60499dT49a9/XaeJmtPXv/71WLZsWVx66aUREXH66afHU089FV1dXcKihsaNGxcR/71yMX78+IH1w3VebPh7LDzKfXgURRHXXHNN/OY3v4k//elPMWnSpHqP1JQuuOCC2LlzZ+zYsWPgNXPmzLj88stjx44doiLJOeecc9DXpR977LG6P0yx2fznP/+JY44ZfJoZMWKEr5vW2KRJk2LcuHGDzouvvPJKbNmyZVjOiw1/xSLCo9yHw8KFC2Pt2rVx1113RWtr68AVovb29hg1alSdp2sera2tB923csIJJ8SYMWPcz5Loq1/9apx99tmxcuXK+MxnPhMPPPBAdHd3R3d3d71Hayrz58+Pm2++OSZOnBhTp06NBx98MG699da46qqr6j1aw3vppZfiiSeeGFjevXt37NixI0aPHh0TJ06MxYsXx8qVK2Py5MkxefLkWLlyZRx//PHxuc99rvbD1fx7J8Pkhz/8YXHSSScVxx13XPHBD37Q1yCTRcQhX3fccUe9R2t6vm5aG7/97W+LadOmFaVSqZgyZUrR3d1d75GaTrlcLhYtWlRMnDixGDlyZHHKKacU119/fVGpVOo9WsP785//fMh/kxcsWFAUxX+/cnrDDTcU48aNK0qlUnHeeecVO3fuHJbZPDYdAEjT8PdYAABHD2EBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKT5Pw1zelRjpGgFAAAAAElFTkSuQmCC",
- "image/svg+xml": "\r\n\r\n\r\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAL4UlEQVR4nO3db4xlBXnH8e/PXYiCGNpyayzLdDQ1tMZEIROqJSEt2AaKAV+0CSQaa0zmjbXQmJi1b5q+o0lj9IUx2SBKIsVYhNRASzUqMSbttrtAW2AhtXQrq+gOMRawSSn26Yu5C+ty1znL3nPvw8z3k0zm/jmc+xxm9svZc8/hpqqQJPX1qmUPIEn62Qy1JDVnqCWpOUMtSc0ZaklqbvcYKz3vvPNqdXV1jFVL0rZ08ODBp6pqMuu5UUK9urrKgQMHxli1JG1LSf7zZM956EOSmjPUktScoZak5gy1JDVnqCWpOUMtSc1tGeokFyZ58Livp5PcuIDZJEkMOI+6qh4D3g6QZBfwXeCucceSJB1zqoc+rgD+vapOemK2JGm+TvXKxOuA22c9kWQdWAdYWVk5zbEk6eVb3XvPUl738E1Xj7LewXvUSc4ErgH+atbzVbWvqtaqam0ymXm5uiTpZTiVQx9XAfdX1Q/GGkaS9FKnEurrOclhD0nSeAaFOslZwG8Dd447jiTpRIPeTKyq/wZ+YeRZJEkzeGWiJDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJam7op5Cfm+SOJI8mOZTknWMPJknaNOhTyIFPAvdW1e8lORM4a8SZJEnH2TLUSV4HXAb8AUBVPQc8N+5YkqRjhhz6eBOwAXw2yQNJbk5y9okLJVlPciDJgY2NjbkPKkk71ZBQ7wYuBj5dVRcBPwb2nrhQVe2rqrWqWptMJnMeU5J2riGhPgIcqar90/t3sBluSdICbBnqqvo+8ESSC6cPXQE8MupUkqQXDD3r48PAbdMzPh4HPjDeSJKk4w0KdVU9CKyNO4okaRavTJSk5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJam7Qp5AnOQw8A/wEeL6q/ERySVqQQaGe+q2qemq0SSRJM3noQ5KaGxrqAr6S5GCS9VkLJFlPciDJgY2NjflNKEk73NBQX1pVFwNXAR9KctmJC1TVvqpaq6q1yWQy1yElaScbFOqq+t70+1HgLuCSMYeSJL1oy1AnOTvJOcduA78DPDT2YJKkTUPO+ng9cFeSY8v/ZVXdO+pUkqQXbBnqqnoceNsCZpEkzeDpeZLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJam5waFOsivJA0nuHnMgSdJPO5U96huAQ2MNIkmabVCok+wBrgZuHnccSdKJdg9c7hPAR4FzTrZAknVgHWBlZeW0B1u01b33LO21D9909dJeW9vfMn+3NR9b7lEneTdwtKoO/qzlqmpfVa1V1dpkMpnbgJK00w059HEpcE2Sw8AXgMuTfH7UqSRJL9gy1FX1saraU1WrwHXA16vqvaNPJkkCPI9aktob+mYiAFV1H3DfKJNIkmZyj1qSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqbktQ53k1Un+Mck/J3k4yZ8tYjBJ0qbdA5b5H+Dyqno2yRnAt5L8bVX9w8izSZIYEOqqKuDZ6d0zpl815lCSpBcN2aMmyS7gIPArwKeqav+MZdaBdYCVlZV5zrjtre69Z9kjLNzhm65eyusu69/1srZX28OgNxOr6idV9XZgD3BJkrfOWGZfVa1V1dpkMpnzmJK0c53SWR9V9SPgPuDKMYaRJL3UkLM+JknOnd5+DfAu4NGR55IkTQ05Rv0G4NbpcepXAV+sqrvHHUuSdMyQsz7+BbhoAbNIkmbwykRJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLU3JahTnJBkm8kOZTk4SQ3LGIwSdKmLT+FHHge+EhV3Z/kHOBgkq9W1SMjzyZJYsAedVU9WVX3T28/AxwCzh97MEnSplM6Rp1kFbgI2D/KNJKklxgc6iSvBb4E3FhVT894fj3JgSQHNjY25jmjJO1og0Kd5Aw2I31bVd05a5mq2ldVa1W1NplM5jmjJO1oQ876CPAZ4FBVfXz8kSRJxxuyR30p8D7g8iQPTr9+d+S5JElTW56eV1XfArKAWSRJM3hloiQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc1uGOsktSY4meWgRA0mSftqQPerPAVeOPIck6SS2DHVVfRP44QJmkSTNsHteK0qyDqwDrKysvOz1rO69Z14jqTF/ztJwc3szsar2VdVaVa1NJpN5rVaSdjzP+pCk5gy1JDU35PS824G/By5MciTJB8cfS5J0zJZvJlbV9YsYRJI0m4c+JKk5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaGxTqJFcmeSzJt5PsHXsoSdKLtgx1kl3Ap4CrgLcA1yd5y9iDSZI2DdmjvgT4dlU9XlXPAV8Arh13LEnSMbsHLHM+8MRx948Av37iQknWgfXp3WeTPPYyZzoPeOpl/rOvVG7zNpc/31nbO7Xjtvk0f86/fLInhoQ6Mx6rlzxQtQ/YdwpDzX6x5EBVrZ3uel5J3Obtb6dtL7jN8zTk0McR4ILj7u8BvjfvQSRJsw0J9T8Bb07yxiRnAtcBXx53LEnSMVse+qiq55P8IfB3wC7glqp6eMSZTvvwySuQ27z97bTtBbd5blL1ksPNkqRGvDJRkpoz1JLUXJtQ77TL1JNckOQbSQ4leTjJDcueaVGS7EryQJK7lz3LIiQ5N8kdSR6d/rzfueyZxpbkj6e/1w8luT3Jq5c907wluSXJ0SQPHffYzyf5apJ/m37/uXm8VotQ79DL1J8HPlJVvwa8A/jQDtjmY24ADi17iAX6JHBvVf0q8Da2+bYnOR/4I2Ctqt7K5kkI1y13qlF8DrjyhMf2Al+rqjcDX5veP20tQs0OvEy9qp6sqvunt59h8w/v+cudanxJ9gBXAzcve5ZFSPI64DLgMwBV9VxV/WipQy3GbuA1SXYDZ7ENr72oqm8CPzzh4WuBW6e3bwXeM4/X6hLqWZepb/toHZNkFbgI2L/kURbhE8BHgf9b8hyL8iZgA/js9HDPzUnOXvZQY6qq7wJ/AXwHeBL4r6r6ynKnWpjXV9WTsLkzBvziPFbaJdSDLlPfjpK8FvgScGNVPb3secaU5N3A0ao6uOxZFmg3cDHw6aq6CPgxc/rrcFfT47LXAm8Efgk4O8l7lzvVK1uXUO/Iy9STnMFmpG+rqjuXPc8CXApck+Qwm4e3Lk/y+eWONLojwJGqOva3pTvYDPd29i7gP6pqo6r+F7gT+I0lz7QoP0jyBoDp96PzWGmXUO+4y9SThM3jloeq6uPLnmcRqupjVbWnqlbZ/Bl/vaq29Z5WVX0feCLJhdOHrgAeWeJIi/Ad4B1Jzpr+nl/BNn8D9ThfBt4/vf1+4K/nsdIh//e80S3hMvUOLgXeB/xrkgenj/1JVf3N8kbSSD4M3DbdCXkc+MCS5xlVVe1PcgdwP5tnNz3ANrycPMntwG8C5yU5AvwpcBPwxSQfZPM/WL8/l9fyEnJJ6q3LoQ9J0kkYaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNff/C2KbzOLSKWIAAAAASUVORK5CYII=\n",
"text/plain": [
- "