Merge branch 'main' of https://github.com/microsoft/Data-Science-For-Beginners
After Width: | Height: | Size: 236 KiB |
@ -0,0 +1,3 @@
|
||||
|
||||
## 2. Data Collection
|
||||
[Back To Introduction](README.md)
|
@ -0,0 +1,3 @@
|
||||
|
||||
## 3. Data Privacy
|
||||
[Back To Introduction](README.md)
|
@ -0,0 +1,3 @@
|
||||
|
||||
## 4. Algorithm Fairness
|
||||
[Back To Introduction](README.md)
|
@ -0,0 +1,3 @@
|
||||
|
||||
## 5. Societal Consequences
|
||||
[Back To Introduction](README.md)
|
@ -0,0 +1,3 @@
|
||||
|
||||
## 6. Summary & Resources
|
||||
[Back To Introduction](README.md)
|
@ -1,106 +1,61 @@
|
||||
# Data Ethics
|
||||
|
||||
> Summary Sketchnote from [Nitya Narasimhan](https://twitter.com/nitya) / [SketchTheDocs](https://twitter.com/sketchthedocs)
|
||||
## Pre-Lecture Quiz 🎯
|
||||
|
||||
<br/>
|
||||
[Pre-lecture quiz]()
|
||||
|
||||
## Pre-Lecture Quiz
|
||||
## Sketchnote 🖼
|
||||
|
||||
[Pre-lecture quiz]()
|
||||
| A Visual Guide to Data Ethics by [Nitya Narasimhan](https://twitter.com/nitya) / [(@sketchthedocs)](https://sketchthedocs.dev)|
|
||||
|---|
|
||||
| <br/><br/><br/><br/><br/><br/><br/><br/> |
|
||||
|
||||
## Introduction
|
||||
|
||||
This lesson dives into a critical topic for the modern data scientist: _data ethics_.
|
||||
## Introduction
|
||||
|
||||
In this lesson we'll cover:
|
||||
1. _[Fundamentals](#1-fundamentals)_ - Principles & History
|
||||
2. _[Data Collection](#2-data-collection)_ - Ownership & Consent
|
||||
3. _[Data Privacy](#3-data-privacy)_ - Protection & Anonymity
|
||||
4. _[Algorithms & Fairness](#4-algorithms-and-fairness)_ - Unfairness, Harms & Bias
|
||||
5. _[Tools & Frameworks](5-tools-and-frameworks)_ - Codes, Checklists & Frameworks
|
||||
6. _[Summary](6-summary)_ - Related Work
|
||||
What is ethics? What does data ethics mean, and how is it relevant to data scientists and developers in the context of big data, machine learning, and artificial intelligence? This lesson explores these ideas under the following sections:
|
||||
|
||||
<br/>
|
||||
* [**Fundamentals**](1-fundamentals) - Understand definitions, motivation and core concepts.
|
||||
* [**Data Collection**](2-collection) - Explore data ethics issues around data ownership, user consent and control.
|
||||
* [**Data Privacy**](3-privacy) - Understand degrees of privacy, challenges in anonymity and leakage, and user rights.
|
||||
* [**Algorithm Fairness**](4-fairness) - Explore consequences & harms of algorithm bias and data misrepresentation.
|
||||
* [**Societal Consequences**](5-consequences) - Explore socio-economic issues and case studies related to data ethics.
|
||||
* [**Summary & Resources**](6-summary) - Wrap-up with a review of current data ethics practices and resources.
|
||||
|
||||
## 1. Fundamentals
|
||||
---
|
||||
|
||||
| Topics|
|
||||
|--|
|
||||
| 1.1 What is Ethics and why do we care?|
|
||||
| 1.2 History and challenges |
|
||||
| 1.3 Concepts in Ethics|
|
||||
| 1.4 Ethical Principles and Responsible AI|
|
||||
[1. Ethics Fundamentals](1-fundamentals.md ':include')
|
||||
|
||||
<br/>
|
||||
[2. Data Collection](2-collection.md ':include')
|
||||
|
||||
## 2. Data Collection
|
||||
[3. Data Privacy](3-privacy.md ':include')
|
||||
|
||||
| Topics|
|
||||
|--|
|
||||
| 2.1 Data Ownership & Intellectual Property |
|
||||
| 2.2 Ethics & Human Consent |
|
||||
| 2.3 Data Quality & Representation |
|
||||
| 2.4 The 5Cs Framework |
|
||||
[4. Algorithm Fairness](4-fairness.md ':include')
|
||||
|
||||
[5. Societal Consequences](5-consequences.md ':include')
|
||||
|
||||
<br/>
|
||||
[6. Summary & Resources](6-summary.md ':include')
|
||||
|
||||
## 3. Data Privacy
|
||||
---
|
||||
|
||||
| Topics|
|
||||
|--|
|
||||
| 3.1 Data Privacy & Degrees of Privacy |
|
||||
| 3.2 Data Anonymity & De-Identification |
|
||||
| 3.3 Challenges & Frameworks |
|
||||
| 3.4 Case Studies |
|
||||
## Challenge 🚀
|
||||
|
||||
<br/>
|
||||
|
||||
## 4. Algorithms and Fairness
|
||||
## Post-Lecture Quiz 🎯
|
||||
|
||||
| Topics|
|
||||
|--|
|
||||
| 4.1 Fairness, Unfairness & Harms |
|
||||
| 4.2 Data Validity & Misrepresentation |
|
||||
| 4.3 Algorithm Bias & Mitigation |
|
||||
| 4.4 Case Studies |
|
||||
[Post-lecture quiz]()
|
||||
|
||||
<br/>
|
||||
|
||||
## 5. Tools and Frameworks
|
||||
## Review & Self Study
|
||||
|
||||
| Topics|
|
||||
|--|
|
||||
| 5.1 Data Ethics & Culture |
|
||||
| 5.2 Codes of Conduct & Checklists |
|
||||
| 5.3 Industry Frameworks (Google, IBM, Microsoft, Facebook) |
|
||||
| 5.4 Government Frameworks (UK, US, India) |
|
||||
|
||||
<br/>
|
||||
---
|
||||
# Assignment
|
||||
|
||||
## 6. Summary
|
||||
[Assignment Title](assignment.md ':include')
|
||||
|
||||
| Topics|
|
||||
|--|
|
||||
| 6.1 Understanding Ethics (History) |
|
||||
| 6.2 Applying Ethics (Principles) |
|
||||
| 6.3 Evolving Ethics (Research) |
|
||||
| 6.4 Further Reading (References) |
|
||||
---
|
||||
|
||||
# Resources
|
||||
|
||||
<br/>
|
||||
|
||||
## 🚀 Challenge
|
||||
|
||||
|
||||
## Post-Lecture Quiz
|
||||
|
||||
[Post-lecture quiz]()
|
||||
|
||||
|
||||
## Review & Self Study
|
||||
|
||||
|
||||
## Assignment
|
||||
|
||||
[Assignment Title](assignment.md)
|
||||
[Related Resources](resources.md ':include')
|
@ -0,0 +1,3 @@
|
||||
## Courses
|
||||
|
||||
## Articles
|
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 3.5 KiB |
After Width: | Height: | Size: 8.2 KiB |
After Width: | Height: | Size: 3.9 KiB |
@ -0,0 +1,14 @@
|
||||
# Introduction
|
||||
|
||||
[Brief description about the lessons in this section]
|
||||
|
||||
### Topics
|
||||
|
||||
1. [Defining Data Science](01-defining-data-science/README.md)
|
||||
2. [Data Science Ethics](02-ethics/README.md)
|
||||
3. [Defining Data](03-defining-data/README.md)
|
||||
4. [Introduction to Statistics and Probability](04-stats-and-probability/README.md)
|
||||
|
||||
### Credits
|
||||
|
||||
|
After Width: | Height: | Size: 15 KiB |
After Width: | Height: | Size: 59 KiB |