From 5b5c84f0ed087f0e3c290ba306133d3a204d10f8 Mon Sep 17 00:00:00 2001 From: Amber Wang Date: Wed, 31 Dec 2025 17:36:04 -0500 Subject: [PATCH 1/3] Use [3:] to drop the longitude label. Use [1:] to remove all non-date entries --- .../07-python/notebook-covidspread.ipynb | 2093 +---------------- 2-Working-With-Data/07-python/notebook.ipynb | 1191 +--------- 2 files changed, 86 insertions(+), 3198 deletions(-) diff --git a/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/2-Working-With-Data/07-python/notebook-covidspread.ipynb index 1118665c..06d1e69e 100644 --- a/2-Working-With-Data/07-python/notebook-covidspread.ipynb +++ b/2-Working-With-Data/07-python/notebook-covidspread.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -53,209 +53,9 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/20/218/21/218/22/218/23/218/24/218/25/218/26/218/27/218/28/218/29/21
0NaNAfghanistan33.9391167.709953000000...152448152448152448152583152660152722152822152960152960152960
1NaNAlbania41.1533020.168300000000...138132138790139324139721140521141365142253143174144079144847
2NaNAlgeria28.033901.659600000000...190656191171191583192089192626193171193674194186194671195162
3NaNAndorra42.506301.521800000000...14988149881498815002150031501415016150251502515025
4NaNAngola-11.2027017.873900000000...45583458174594546076463404653946726469294707947168
\n", - "

5 rows × 590 columns

\n", - "
" - ], - "text/plain": [ - " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", - "0 NaN Afghanistan 33.93911 67.709953 0 0 \n", - "1 NaN Albania 41.15330 20.168300 0 0 \n", - "2 NaN Algeria 28.03390 1.659600 0 0 \n", - "3 NaN Andorra 42.50630 1.521800 0 0 \n", - "4 NaN Angola -11.20270 17.873900 0 0 \n", - "\n", - " 1/24/20 1/25/20 1/26/20 1/27/20 ... 8/20/21 8/21/21 8/22/21 \\\n", - "0 0 0 0 0 ... 152448 152448 152448 \n", - "1 0 0 0 0 ... 138132 138790 139324 \n", - "2 0 0 0 0 ... 190656 191171 191583 \n", - "3 0 0 0 0 ... 14988 14988 14988 \n", - "4 0 0 0 0 ... 45583 45817 45945 \n", - "\n", - " 8/23/21 8/24/21 8/25/21 8/26/21 8/27/21 8/28/21 8/29/21 \n", - "0 152583 152660 152722 152822 152960 152960 152960 \n", - "1 139721 140521 141365 142253 143174 144079 144847 \n", - "2 192089 192626 193171 193674 194186 194671 195162 \n", - "3 15002 15003 15014 15016 15025 15025 15025 \n", - "4 46076 46340 46539 46726 46929 47079 47168 \n", - "\n", - "[5 rows x 590 columns]" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "infected = pd.read_csv(infected_dataset_url)\n", "infected.head()" @@ -270,7 +70,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -289,31 +89,9 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Australian Capital Territory 1\n", - "Xinjiang 1\n", - "Martinique 1\n", - "Guadeloupe 1\n", - "French Polynesia 1\n", - " ..\n", - "Fujian 1\n", - "Chongqing 1\n", - "Beijing 1\n", - "Anhui 1\n", - "Turks and Caicos Islands 1\n", - "Name: Province/State, Length: 87, dtype: int64" - ] - }, - "execution_count": 128, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "infected['Province/State'].value_counts()" ] @@ -327,992 +105,9 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/20/218/21/218/22/218/23/218/24/218/25/218/26/218/27/218/28/218/29/21
58AnhuiChina31.8257117.22641915396070...1008100810081008100810081008100810081008
59BeijingChina40.1824116.4142142236416880...1112111311151115111511151115111511151115
60ChongqingChina30.0572107.874069275775110...603603603603603603603603603603
61FujianChina26.0789117.98741510183559...780780780782782783783784785786
62GansuChina35.7518104.28610224714...199199199199199199199199199199
63GuangdongChina23.3417113.424426325378111151...3001300730123020302330323040304330463055
64GuangxiChina23.8298108.78812523233646...289289289289289289289289289289
65GuizhouChina26.8154106.8748133457...147147147147147147147147147147
66HainanChina19.1959109.7453458192233...190190190190190190190190190190
67HebeiChina39.5490116.130611281318...1317131713171317131713171317131713171317
68HeilongjiangChina47.8620127.761502491521...1614161416141614161416141615161516151615
69HenanChina37.8957114.90425593283128...1521152215231524152515251527152815281528
70Hong KongChina22.3000114.2000022588...12049120521205712062120691207412077120941210012107
71HubeiChina30.9756112.270744444454976110581423...68287682896828968289682896828968290682906829068290
72HunanChina27.6104111.708849244369100...1181118111811181118111811181118111811181
73Inner MongoliaChina44.0935113.94480017711...412412412412412412412412412412
74JiangsuChina32.9711119.4550159183347...1583158415841584158615861587158715891589
75JiangxiChina27.6140115.72212718183672...937937937937937937937937937937
76JilinChina43.6661126.1923013446...574574574574574574574574574574
77LiaoningChina41.2956122.6085234172127...443443443443443444445446446446
78MacauChina22.1667113.5500122256...63636363636363636363
79NingxiaChina37.2692106.1655112347...77777777777777777777
80QinghaiChina35.745295.9956000116...18181818181818181818
81ShaanxiChina35.1917108.8701035152235...668668668669669669669669669669
82ShandongChina36.3427118.14982615274675...923923923923923923923923923924
83ShanghaiChina31.2020121.449191620334053...2420243224362445245124542462246624712476
84ShanxiChina37.5777112.29221116913...255255256256256256256258258259
85SichuanChina30.6171102.71035815284469...1181118211831185118511851186118711881188
86TianjinChina39.3054117.3230448101423...458459462463464465466466470472
87TibetChina31.692788.0924000000...1111111111
88UnknownChinaNaNNaN000000...0000000000
89XinjiangChina41.112985.2401022345...980980980980980980980980980980
90YunnanChina24.9740101.4870125111626...1000100710101014102110311039104710641067
91ZhejiangChina29.1832120.093410274362104128...1420142014211428142814291429142914291430
\n", - "

34 rows × 590 columns

\n", - "
" - ], - "text/plain": [ - " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", - "58 Anhui China 31.8257 117.2264 1 9 \n", - "59 Beijing China 40.1824 116.4142 14 22 \n", - "60 Chongqing China 30.0572 107.8740 6 9 \n", - "61 Fujian China 26.0789 117.9874 1 5 \n", - "62 Gansu China 35.7518 104.2861 0 2 \n", - "63 Guangdong China 23.3417 113.4244 26 32 \n", - "64 Guangxi China 23.8298 108.7881 2 5 \n", - "65 Guizhou China 26.8154 106.8748 1 3 \n", - "66 Hainan China 19.1959 109.7453 4 5 \n", - "67 Hebei China 39.5490 116.1306 1 1 \n", - "68 Heilongjiang China 47.8620 127.7615 0 2 \n", - "69 Henan China 37.8957 114.9042 5 5 \n", - "70 Hong Kong China 22.3000 114.2000 0 2 \n", - "71 Hubei China 30.9756 112.2707 444 444 \n", - "72 Hunan China 27.6104 111.7088 4 9 \n", - "73 Inner Mongolia China 44.0935 113.9448 0 0 \n", - "74 Jiangsu China 32.9711 119.4550 1 5 \n", - "75 Jiangxi China 27.6140 115.7221 2 7 \n", - "76 Jilin China 43.6661 126.1923 0 1 \n", - "77 Liaoning China 41.2956 122.6085 2 3 \n", - "78 Macau China 22.1667 113.5500 1 2 \n", - "79 Ningxia China 37.2692 106.1655 1 1 \n", - "80 Qinghai China 35.7452 95.9956 0 0 \n", - "81 Shaanxi China 35.1917 108.8701 0 3 \n", - "82 Shandong China 36.3427 118.1498 2 6 \n", - "83 Shanghai China 31.2020 121.4491 9 16 \n", - "84 Shanxi China 37.5777 112.2922 1 1 \n", - "85 Sichuan China 30.6171 102.7103 5 8 \n", - "86 Tianjin China 39.3054 117.3230 4 4 \n", - "87 Tibet China 31.6927 88.0924 0 0 \n", - "88 Unknown China NaN NaN 0 0 \n", - "89 Xinjiang China 41.1129 85.2401 0 2 \n", - "90 Yunnan China 24.9740 101.4870 1 2 \n", - "91 Zhejiang China 29.1832 120.0934 10 27 \n", - "\n", - " 1/24/20 1/25/20 1/26/20 1/27/20 ... 8/20/21 8/21/21 8/22/21 \\\n", - "58 15 39 60 70 ... 1008 1008 1008 \n", - "59 36 41 68 80 ... 1112 1113 1115 \n", - "60 27 57 75 110 ... 603 603 603 \n", - "61 10 18 35 59 ... 780 780 780 \n", - "62 2 4 7 14 ... 199 199 199 \n", - "63 53 78 111 151 ... 3001 3007 3012 \n", - "64 23 23 36 46 ... 289 289 289 \n", - "65 3 4 5 7 ... 147 147 147 \n", - "66 8 19 22 33 ... 190 190 190 \n", - "67 2 8 13 18 ... 1317 1317 1317 \n", - "68 4 9 15 21 ... 1614 1614 1614 \n", - "69 9 32 83 128 ... 1521 1522 1523 \n", - "70 2 5 8 8 ... 12049 12052 12057 \n", - "71 549 761 1058 1423 ... 68287 68289 68289 \n", - "72 24 43 69 100 ... 1181 1181 1181 \n", - "73 1 7 7 11 ... 412 412 412 \n", - "74 9 18 33 47 ... 1583 1584 1584 \n", - "75 18 18 36 72 ... 937 937 937 \n", - "76 3 4 4 6 ... 574 574 574 \n", - "77 4 17 21 27 ... 443 443 443 \n", - "78 2 2 5 6 ... 63 63 63 \n", - "79 2 3 4 7 ... 77 77 77 \n", - "80 0 1 1 6 ... 18 18 18 \n", - "81 5 15 22 35 ... 668 668 668 \n", - "82 15 27 46 75 ... 923 923 923 \n", - "83 20 33 40 53 ... 2420 2432 2436 \n", - "84 1 6 9 13 ... 255 255 256 \n", - "85 15 28 44 69 ... 1181 1182 1183 \n", - "86 8 10 14 23 ... 458 459 462 \n", - "87 0 0 0 0 ... 1 1 1 \n", - "88 0 0 0 0 ... 0 0 0 \n", - "89 2 3 4 5 ... 980 980 980 \n", - "90 5 11 16 26 ... 1000 1007 1010 \n", - "91 43 62 104 128 ... 1420 1420 1421 \n", - "\n", - " 8/23/21 8/24/21 8/25/21 8/26/21 8/27/21 8/28/21 8/29/21 \n", - "58 1008 1008 1008 1008 1008 1008 1008 \n", - "59 1115 1115 1115 1115 1115 1115 1115 \n", - "60 603 603 603 603 603 603 603 \n", - "61 782 782 783 783 784 785 786 \n", - "62 199 199 199 199 199 199 199 \n", - "63 3020 3023 3032 3040 3043 3046 3055 \n", - "64 289 289 289 289 289 289 289 \n", - "65 147 147 147 147 147 147 147 \n", - "66 190 190 190 190 190 190 190 \n", - "67 1317 1317 1317 1317 1317 1317 1317 \n", - "68 1614 1614 1614 1615 1615 1615 1615 \n", - "69 1524 1525 1525 1527 1528 1528 1528 \n", - "70 12062 12069 12074 12077 12094 12100 12107 \n", - "71 68289 68289 68289 68290 68290 68290 68290 \n", - "72 1181 1181 1181 1181 1181 1181 1181 \n", - "73 412 412 412 412 412 412 412 \n", - "74 1584 1586 1586 1587 1587 1589 1589 \n", - "75 937 937 937 937 937 937 937 \n", - "76 574 574 574 574 574 574 574 \n", - "77 443 443 444 445 446 446 446 \n", - "78 63 63 63 63 63 63 63 \n", - "79 77 77 77 77 77 77 77 \n", - "80 18 18 18 18 18 18 18 \n", - "81 669 669 669 669 669 669 669 \n", - "82 923 923 923 923 923 923 924 \n", - "83 2445 2451 2454 2462 2466 2471 2476 \n", - "84 256 256 256 256 258 258 259 \n", - "85 1185 1185 1185 1186 1187 1188 1188 \n", - "86 463 464 465 466 466 470 472 \n", - "87 1 1 1 1 1 1 1 \n", - "88 0 0 0 0 0 0 0 \n", - "89 980 980 980 980 980 980 980 \n", - "90 1014 1021 1031 1039 1047 1064 1067 \n", - "91 1428 1428 1429 1429 1429 1429 1430 \n", - "\n", - "[34 rows x 590 columns]" - ] - }, - "execution_count": 129, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "infected[infected['Country/Region']=='China']" ] @@ -1328,244 +123,9 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
LatLong1/22/201/23/201/24/201/25/201/26/201/27/201/28/201/29/20...8/20/218/21/218/22/218/23/218/24/218/25/218/26/218/27/218/28/218/29/21
Country/Region
Afghanistan33.9391167.70995300000000...152448152448152448152583152660152722152822152960152960152960
Albania41.1533020.16830000000000...138132138790139324139721140521141365142253143174144079144847
Algeria28.033901.65960000000000...190656191171191583192089192626193171193674194186194671195162
Andorra42.506301.52180000000000...14988149881498815002150031501415016150251502515025
Angola-11.2027017.87390000000000...45583458174594546076463404653946726469294707947168
\n", - "

5 rows × 588 columns

\n", - "
" - ], - "text/plain": [ - " Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \\\n", - "Country/Region \n", - "Afghanistan 33.93911 67.709953 0 0 0 0 \n", - "Albania 41.15330 20.168300 0 0 0 0 \n", - "Algeria 28.03390 1.659600 0 0 0 0 \n", - "Andorra 42.50630 1.521800 0 0 0 0 \n", - "Angola -11.20270 17.873900 0 0 0 0 \n", - "\n", - " 1/26/20 1/27/20 1/28/20 1/29/20 ... 8/20/21 8/21/21 \\\n", - "Country/Region ... \n", - "Afghanistan 0 0 0 0 ... 152448 152448 \n", - "Albania 0 0 0 0 ... 138132 138790 \n", - "Algeria 0 0 0 0 ... 190656 191171 \n", - "Andorra 0 0 0 0 ... 14988 14988 \n", - "Angola 0 0 0 0 ... 45583 45817 \n", - "\n", - " 8/22/21 8/23/21 8/24/21 8/25/21 8/26/21 8/27/21 8/28/21 \\\n", - "Country/Region \n", - "Afghanistan 152448 152583 152660 152722 152822 152960 152960 \n", - "Albania 139324 139721 140521 141365 142253 143174 144079 \n", - "Algeria 191583 192089 192626 193171 193674 194186 194671 \n", - "Andorra 14988 15002 15003 15014 15016 15025 15025 \n", - "Angola 45945 46076 46340 46539 46726 46929 47079 \n", - "\n", - " 8/29/21 \n", - "Country/Region \n", - "Afghanistan 152960 \n", - "Albania 144847 \n", - "Algeria 195162 \n", - "Andorra 15025 \n", - "Angola 47168 \n", - "\n", - "[5 rows x 588 columns]" - ] - }, - "execution_count": 130, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "infected = infected.groupby('Country/Region').sum()\n", "recovered = recovered.groupby('Country/Region').sum()\n", @@ -1583,24 +143,12 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAEhCAYAAAByTU9UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFaUlEQVR4nO3dd3xb1cH/8a+85G3H244dZ5AdZ5CEDMKeSViF9gFKQoAuWkYpHYzSh9ERCi1P+zz8CmUGykjLCKQthAbIaAohy1nOTpzEifeUpyxL5/eHbMWKncR2Yku2P+/XSy9Z9557deRjXfmrc8+5FmOMEQAAAAD4qQBfVwAAAAAATobQAgAAAMCvEVoAAAAA+DVCCwAAAAC/RmgBAAAA4NcILQAAAAD8GqEFAAAAgF8jtAAAAADwa4QWAAAAAH6N0AIAAADAr/kstKxevVpXX3210tLSZLFY9MEHH3Rq+8cee0wWi6XNLSIionsqDAAAAMAnfBZaamtrNWHCBD377LNd2v4nP/mJCgoKvG5jxozRN77xjTNcUwAAAAC+5LPQMnv2bP3qV7/S9ddf3+76xsZG/exnP9PAgQMVERGhadOmaeXKlZ71kZGRSklJ8dyKioq0Y8cOfetb3+qhVwAAAACgJwT5ugIncvvtt+vgwYNavHix0tLStGTJEl155ZXatm2bhg8f3qb8Sy+9pBEjRui8887zQW0BAAAAdBe/HIi/f/9+vf3223rnnXd03nnnadiwYfrJT36iWbNm6dVXX21T3m63680336SXBQAAAOiD/LKnZdOmTTLGaMSIEV7L7Xa74uPj25R///33VV1drVtvvbWnqggAAACgh/hlaHG5XAoMDNTGjRsVGBjotS4yMrJN+ZdeeklXXXWVUlJSeqqKAAAAAHqIX4aWSZMmyel0qri4+JRjVHJzc7VixQotXbq0h2oHAAAAoCf5LLTU1NRo3759nse5ubnavHmz4uLiNGLECN1yyy269dZb9fvf/16TJk1SaWmpPv/8c2VlZWnOnDme7V555RWlpqZq9uzZvngZAAAAALqZxRhjfPHEK1eu1EUXXdRm+YIFC7Ro0SI5HA796le/0uuvv66jR48qPj5eM2bM0OOPP66srCxJ7tPIMjMzdeutt+rXv/51T78EAAAAAD3AZ6EFAAAAADrCL6c8BgAAAIAWPT6mxeVyKT8/X1FRUbJYLD399AAAAAD8hDFG1dXVSktLU0DAiftTejy05OfnKyMjo6efFgAAAICfysvLU3p6+gnXn1ZoWbhwoR5++GH98Ic/1B/+8IcObRMVFeWpWHR09Ok8PQAAAIBezGazKSMjw5MRTqTLoWX9+vV64YUXNH78+E5t13JKWHR0NKEFAAAAwCmHjXRpIH5NTY1uueUWvfjiixowYMBJy9rtdtlsNq8bAAAAAHRUl0LLXXfdpblz5+rSSy89ZdmFCxcqJibGc2M8CwAAAIDO6HRoWbx4sTZu3KiFCxd2qPxDDz2kqqoqzy0vL6/TlQQAAADQf3VqTEteXp5++MMf6l//+pdCQ0M7tI3VapXVau1S5QAAAADAYowxHS38wQcf6Gtf+5oCAwM9y5xOpywWiwICAmS3273WtcdmsykmJkZVVVUMxAcAAAD6sY5mg071tFxyySXatm2b17Lbb79do0aN0gMPPHDKwAIAAAAAndWp0BIVFaVx48Z5LYuIiFB8fHyb5QAAAAD8hzFGBVUN2na0ShMzYpUc3bHhHv7gtC4uCQAAAMC/OV1GT/w9R//cVqDSmkZJ0lNfH6//mtJ7ZvU97dCycuXKM1ANAAAAAN3hz6v367UvD0mSAgMsGpEcpZDALl35xGfoaQEAAAD6IGOM3tt0VP+zfI8k6bGrx+imcwYpNLj3jUMntAAAAAB9TGFVg37x4XYt31EkSbpqfKoWzBwsi8Xi45p1DaEFAAAA6EPe23hEjy3NUbW9SUEBFt136XB9/8Kzem1gkQgtAAAAQK9njNH+khr9a0eRnlq2W5I0MSNWT96QpVEpvf/aiIQWAAAAoBdbf7Bc9y3erKOV9Z5l35o1RA/PGa3AgN7bu9IaoQUAAADopSrrGnX3W5tUZLMrNDhAo1KiNXtcir57/tBefTrY8QgtAAAAQC+0Oa9SP1+yTUU2u4YmRmjp3bMUae2b/973zVcFAAAA9FGVdY367bLdWrz+sIyRokOD9McbJ/XZwCIRWgAAAIBeY8PBcn33LxtVXuu+sv31Zw/UQ7NHKzHK6uOadS9CCwAAAODH8srr9PH2Au0sqNay7YWqdzg1IjlSv7x2nKYNjfd19XoEoQUAAADwU4fKanXV/61RdUOTZ9kFIxL1/LzJCgvpfVe27ypCCwAAAOCHdhdW6963s1Xd0KSRyVG6anyqxg2M0XnDExQUGODr6vUoQgsAAADgR4ptDfrjZ3v19rrDchkpPiJEr91xjlJiQn1dNZ8htAAAAAB+wOUy+t/P9+pPK/erscklSbpybIoenjO6XwcWidACAAAA+Iy9yam/rc/TliNVysm3aWeBTZI0OXOAfnrFSE3vJwPtT4XQAgAAAPiAy2X0479t0T+2FniWhQQG6NdfG6evT07vU1e0P12EFgAAAKAHuVxGn+4s0p9XH9DGQxUKDrTozguGaWRKlM4eNEBpsWG+rqLfIbQAAAAAPcAYo09yCvX7f+3R3uIaSVJwoEVPf32Crps00Me182+EFgAAAKCbHC6r00fbC3S4vE7Zhys9Y1aiQoM0b3qmbps5WMnR/XuQfUcQWgAAAIAzzNl8CthP/rZF1fZjF4YMDwnUt2YN0XfOH6ro0GAf1rB3IbQAAAAAZ4DLZbTxcIU+3HxUy7YXqbTGLkkanx6jC0YkKiMuXBePSlJCpNXHNe19CC0AAABAFzQ4nFqSfVT7i2tUUmPXxkMVOlJR71kfHRqkGyan68HZo2QNCvRhTXs/QgsAAADQAcYY7S+p1aZDFdpwqFwrd5eouNruVSYiJFBXjkvV1RNSNXNYgkKCAnxU276F0AIAAAC0YoxRaU2jvthfqrUHymSrb1JlfaN25NtUUefwKjswNkxzslKUFBWqjLhwXTAiUWEh9KqcaYQWAAAA9AvGGDU4XKpucKiy3qGdBTYV2+xqcDhla3DocHmdDpXVKa+8TrWNznb3YQ0K0ISMWE3OHKApmQN07lkJCg0mpHQ3QgsAAAB6BXuTU9UNTc03h2z17vvqhibZGhyyNRx77Flvd3i2sdU71OQyHXoui0UakhChy8YkKy0mTJHWIA1NjNDYtBhO+fIBQgsAAAC6XYPDKVu9u4ejqt6hyjqHbPUO1TmcqrM3qa7RqVp7cyBpDhq2+pZA4g4h9ibXGalLgEWKtAZpWFKkMuPCFRocqAhrkDIGhCkzPkKD4sOVPiCMwfN+hNACAACADjHGqLLOoeJqu0pr7J5ejZawcXwgqaxvVFXzsgbHmQkckhRlDVJUaJCiQoOb74MUHRbstSz6+PtW6yNCAmWxWM5YfdD9CC0AAABQrb1JRyvrdbSiXkcq61Vsa1BpTaNKa+wqrrarxNagkhq7HM6OnV7VngCLFBMWrNjwEEWHBSs6NEgRIUEKDwlUWEigIq3HBRBr28ARaQ1SYACBo78htAAAAPQDxhiV1zbqYFmdDpXV6mBZnQ6W1upQWa0Ol9e1mRXrZAaEBysh0qqYsGBFhgYpwhqkKGuQYsKDFRsWopiw4OZwEuz5OSY8WJEhQQogcKALCC0AAAB9SGmNXXuKqnWkvF6Hy+t0sKxWh8rc99UNTSfdNjo0SAMHhGtgbKhSYkKVEGlVQqRViVFWJUVZlRQdqoTIEMZ6oMcRWgAAAHqpkmq7tuRVant+lbYftSknv0oFVQ0nLG+xSGkxYcqMD1dmfIQGx4drcEKEBsW5B55HhQb3YO2BjiO0AAAA9AL2Jqdy8m3KPlypzXmVyj5coSMV9W3KWSxSZpw7lGTEhWlwfIQnoGQ0z5QF9DaEFgAAAD/jchnlVdRpy5EqZR+uUPbhSu3It6nR6T0Dl8UiDU+KVNbAWI0bGK1xA2M0OjVakVb+xUPfwl80AACAjzU2ubThULlW7ynVutwy7S6sbveK7HERIZqUEatJg2I1adAAjU+P4ZQu9AuEFgAAgB5mjNHe4hp9sa9U/95bqi8PlKnuuJASEhigUalROnvQAHdIyRigjLgwri+CfonQAgAA0AMOlNToP/tKtfZAudYeKFNZbaPX+oTIEJ03PFGzzkpQVnqMhiREKDgwwEe1BfwLoQUAAKAbGGO0u6hay3OKtCynUDn5Nq/1ocEBmpw5QLPOStT5IxI0OiWaa5gAJ0BoAQAAOEOanC6tO1iu5TuK9OnOIuWVH5vdKyjAoqmD4zRjWLxmDIvX+PQYrncCdBChBQAA4DQ0OJxatadEy7YX6vNdxaqqP3ZleWtQgGadlaDLxiTr8rEpiosI8WFNgd6L0AIAANBJ9ian/r2nVP/cVqDlO4pUYz92pfm4iBBdPCpJl41J1nnDExQewr9bwOniXQQAAHAKxhjtKapR9uEKrT9YoX/tKFR1w7GgkhoTqjlZqbpibIomZw5QIGNTgDOK0AIAANCOlvEpn+4o1vKdhV7jUyQpOdqqOVmpump8qiZlDGAQPdCNOhVannvuOT333HM6ePCgJGns2LH67//+b82ePbs76gYAANCjqhscWr2nVJ/uLGp3fMrUwXEanRqly8akaEomQQXoKZ0KLenp6XryySd11llnSZJee+01XXvttcrOztbYsWO7pYIAAADdxeUyys6r0Cc57pCyv6RGxhxbz/gUwD9YjGn91uy8uLg4Pf300/rWt77V7nq73S673e55bLPZlJGRoaqqKkVHR5/OUwMAAHRak9OlrUer9PG2Av1ja4EKqhq81g9JiNBlY5J12ZhknT2I8SlAd7LZbIqJiTllNujy1wVOp1PvvPOOamtrNWPGjBOWW7hwoR5//PGuPg0AAMBpaXA4tTmvUutzy7XuYLk2HqpQXaPTsz7KGqSLR7t7U6YPjVdCpNWHtQXQnk73tGzbtk0zZsxQQ0ODIiMj9dZbb2nOnDknLE9PCwAA6EnVDQ5tPFSh9QfLtS63XFvyqtTodHmViQkL1qzhCbpmQpouHJnIRR4BH+m2npaRI0dq8+bNqqys1HvvvacFCxZo1apVGjNmTLvlrVarrFa+sQAAAN2jqt6h9bnl+iq3TF/llmv70Sq5jvtKNjHKqnOGxGnakDidMyROI5KiGEQP9CKnPabl0ksv1bBhw/TnP/+5Q+U7mqYAAADaU1HbqPUHy7X2gDuo7Ciw6fj/ZjLiwnTO4HhPSMmMD5fFQkgB/E23j2lpYYzxOv0LAADgTDHGaH9JjdbsLdXmvEpl51XqUFldm3JDEiI0bUicpg2N07Qh8UqLDfNBbQF0l06FlocfflizZ89WRkaGqqurtXjxYq1cuVLLli3rrvoBAIB+psHh1JcHyrRiV7E+31WsIxX1bcqclRTZHFLcvSnJ0aE+qCmAntKp0FJUVKT58+eroKBAMTExGj9+vJYtW6bLLrusu+oHAAD6OHuTU1vyqrT2QJm+yi3ThoMVsjcdGzgfEhSgaUPiNCUzTpMGxWpCeqxiwoN9WGMAPa1ToeXll1/urnoAAIB+pMHh1MrdJfp4e4E+21msGnuT1/rUmFBdNCpJF49M0syz4rmoI9DPcQQAAAA9orTGrhW7ivXZzmKt3lvida2UhMgQTRsar+lD4zV9SJzOSopk4DwAD0ILAADoFsYY7Sqs1ue7ivXpziJtzqv0muVrYGyYZo9L0ZzxqZqYHssUxABOiNACAADOGHuTU2sPlOuznUX6bGexjlZ6D6IfNzBaF49K1qWjk5Q1MIbeFAAdQmgBAACnpaTarhW7i/XZziL9e2+p12lf1qAAzTorQRePTtIlo5KVEsMsXwA6j9ACAAA6zeF06Z9bC/TWusNaf7Dc67SvpCirLmkOKeeelaCwkEDfVRRAn0BoAQAAHVbd4NBf1+fplTW5yq9q8CzPGhiji0cl6dLRyRqbFs34FABnFKEFAACc0t6iar3+5SG9v+mIaptP/0qItGr+9Ex9Y0o6V6AH0K0ILQAAoF0ul9Hnu4r1yn9y9cX+Ms/yYYkR+vZ5Q/W1SQMVGsypXwC6H6EFAAB4McZo6ZZ8/c/yPTpYVidJCrBIl45O1oKZgzVzWDyzfgHoUYQWAADgsfFQhX778S6tO1guSYoODdLN5wzS/BmZSh8Q7uPaAeivCC0AAED7S2r09LLdWpZTKMk9VfFdF52lb583ROEh/LsAwLc4CgEA0I+V1tj1h0/36O11eXK6jAIs0jcmZ+i+y4YrNYbB9QD8A6EFAIB+qMnp0iv/ydX/frZPNfYmSdKlo5P0sytHaURylI9rBwDeCC0AAPQzh8vqdM/bm7TlSJUkaXx6jB6eM1rTh8b7uGYA0D5CCwAA/ciy7QX66btbVd3QpOjQID0yd4y+Pjmdi0EC8GuEFgAA+oHqBod+/c+dWrw+T5J09qBYPfvNs7koJIBegdACAEAf98W+Uv303a06WlkvSfru+UP10ytGKjgwwMc1A4COIbQAANBHVdQ26jcf7dQ7G49IkjLiwvT01ycwdgVAr0NoAQCgD/rqQJnueitbpTV2WSzSvGmZemD2KEVa+egH0Ptw5AIAoI/5y9pDenxpjppcRsOTIvXkDVmanBnn62oBQJcRWgAA6CMcTpceW5qjN786LEm6ekKanrphvMJCAn1cMwA4PYQWAAD6gIraRn3/zY1ae6BcFov0sytG6c4LhspiYSpjAL0foQUAgF5ub1G1vvXaBh0ur1NESKD+9+ZJumR0sq+rBQBnDKEFAIBeyhijt9fl6Tcf7VSNvUkZcWF66dapGpkS5euqAcAZRWgBAKAXqrE36Sd/26JlOYWSpGlD4vTcvMmKiwjxcc0A4MwjtAAA0MtUNzg0/+V12pxXqZDAAP3sypG6/dwhCgxg/AqAvonQAgBAL1Jrb9Ltr67X5rxKxYYH6+UFUzU5c4CvqwUA3YrQAgBAL1Hf6NQdi9Zrw6EKRYcG6Y1vTdO4gTG+rhYAdLsAX1cAAACcWoPDqe+8vkFf5ZYr0hqk1wksAPoRQgsAAH7O3uTU9/6yUWv2lSo8JFCv3TFVEzNifV0tAOgxhBYAAPxYg8MdWFbtKVFocIBevW2qJmfG+bpaANCjGNMCAICfajkl7N97SxUaHKBXFkzVtKHxvq4WAPQ4QgsAAH6orrFJ335tg77YX6bwkEC9cttUTSewAOinCC0AAPiZBod7lrC1B8oVERKoRXeco6mDOSUMQP9FaAEAwI8YY/Szd7dq7YFyRVmDtOiOc7gOC4B+j4H4AAD4kRf/fUBLt+QrKMCiP8+fTGABABFaAADwG+sPluu3y3ZLkh69eoxmnpXg4xoBgH8gtAAA4Afyyut05182yukyunpCmuZNz/R1lQDAbxBaAADwsRp7k77z+gaV1TZqTGq0fntDliwWi6+rBQB+g9ACAIAPNTicuvutTdpVWK2ESKteWjBF4SHMkwMArXFUBADAR2qbe1i+2F8ma1CAXrx1stJiw3xdLQDwO4QWAAB8oLKuUbe9ul6b8yoVERKolxZM1aRBzBQGAO0htAAA0MNKa+ya99JX2lVYrdjwYC26/RxNzIj1dbUAwG91akzLwoULNXXqVEVFRSkpKUnXXXeddu/e3V11AwCgz3G6jGcMS2KUVX/97gwCCwCcQqdCy6pVq3TXXXdp7dq1Wr58uZqamnT55Zertra2u+oHAECf0eBw6pEPtmntgXKFhwTq7e9M08iUKF9XCwD8XqdOD1u2bJnX41dffVVJSUnauHGjzj///DNaMQAA+pKqeofmv/yVth6pkiT95mtZOiuJwAIAHXFaY1qqqtwH3ri4uBOWsdvtstvtnsc2m+10nhIAgF6nrrFJdyxar61HqjQgPFi/+8YEXTI62dfVAoBeo8vXaTHG6P7779esWbM0bty4E5ZbuHChYmJiPLeMjIyuPiUAAL1Og8Op77y+QRsPVSg6NEhvfns6gQUAOslijDFd2fCuu+7SP//5T61Zs0bp6eknLNdeT0tGRoaqqqoUHR3dlacGAKBXqKxr1Hde36D1BysUHhKoN749TWczrTEAeNhsNsXExJwyG3Tp9LB77rlHS5cu1erVq08aWCTJarXKarV25WkAAOi1Nh4q1z1vZSu/qkFRoUF6ecFUAgsAdFGnQosxRvfcc4+WLFmilStXasiQId1VLwAAeq2X/n1ACz/eJafLaHB8uJ6fP1mjUji7AAC6qlOh5a677tJbb72lDz/8UFFRUSosLJQkxcTEKCwsrFsqCABAb9HY5NKfVu7THz7dK0m6ekKafvO1cYoKDfZxzQCgd+vUmBaLxdLu8ldffVW33XZbh/bR0fPWAADoTdYfLNe9b2eroKpBkvTTK0bqBxcOO+FnJwCgm8a0dHHMPgAAfdryHUW6661NamxyKSHSqvsuHa550zN9XS0A6DNO6zotAAD0d5/tLNIP3twoh9PosjHJ+uNNExUewscrAJxJHFUBAOiit9cd1iMfbJfTZTR3fKr+eONEBQV2+RJoAIATILQAANBJxhj97l+79f9W7JckXT9poH779fEEFgDoJoQWAAA6wd7k1M/e3aoPN+dLku69ZLh+dOlwBtwDQDcitAAA0EFV9Q599/UN+iq3XEEBFv3m+iz915QMX1cLAPo8QgsAAB1Q19ik215dp+zDlYq0Bum5eWfrvOGJvq4WAPQLhBYAAE7B4XTp7reylX24UjFhwXrrO9M0Ni3G19UCgH6DEYMAAJyEMUYPvb9Nn+8qljUoQK/cNoXAAgA9jNACAMBJPPXJbr278YgCLNKz3zxbkzPjfF0lAOh3OD0MAIB2uFxGCz/eqRf/nStJWnh9li4bk+zjWgFA/0RoAQDgOA6nSz97d6uWZB+VJD0yd7RunDrIx7UCgP6L0AIAQCuNTS794M1N+nRnkQIDLPrtDeP19cnpvq4WAPRrhBYAAJrZm5z6wRub9NmuYoUEBej5eWfr4lGcEgYAvkZoAQBAUoPDqe+/sVErdpfIGhSgF2+dovNHcB0WAPAHhBYAQL/X4HDqzjc2auXuEoUGB+ilW6dq1vAEX1cLANCM0AIA6NcaHE599y8btXqPO7C8smCqZp5FYAEAf0JoAQD0Ww0Op77z+gb9e2+pwoID9cptUzVjWLyvqwUAOA6hBQDQL9U3ugPLmn3uwPLq7VM1fSiBBQD8EaEFANDvVNQ26ntvbNS63HKFhwTq1dumahqBBQD8FqEFANCvHCip0R2L1utgWZ0irUF65bapOmdInK+rBQA4CUILAKDf2HqkUvNfXqeqeocGxobpldumamRKlK+rBQA4BUILAKBf2HakSvNe+kq2hiZNzIjVi7dOUWKU1dfVAgB0AKEFANDnbTtSpVteWitbQ5OmZA7QojvOUaSVj0AA6C0CfF0BAAC608ZDFfpmc2CZTGABgF6JozYAoM/6Yn+pvv3aBtU1OnXO4Di9fNsUAgsA9EIcuQEAfY7LZfTymlw99ckuOZxG5w1P0AvzpygsJNDXVQMAdAGhBQDQpxRXN+jHf9uif+8tlSTNzUrV7/9rgkKDCSwA0FsRWgAAfcbK3cX6yTtbVFrTqNDgAP3iqjH65jmDZLFYfF01AMBpILQAAHo9Y4ye/mS3/rRyvyRpVEqU/u/mSRqezDVYAKAvILQAAHq14uoG/eafO/XB5nxJ0oIZmXpozmhOBwOAPoTQAgDotZZuydeD721VXaNTARbptzeM1zemZPi6WgCAM4zQAgDodZqcLj31yW69sPqAJGlCeowemjNa04fG+7hmAIDuQGgBAPQqFbWNuuftbK3Z554d7PsXDtNPLh+pwAAG2wNAX0VoAQD0Git2F+uh97ap0Nag8JBAPf31CZo7PtXX1QIAdDNCCwDA7xlj9KeV+/X0J7slSUMTIvTcvMkamcLsYADQHxBaAAB+rbHJpZ8v2aZ3Nh6RJM2fnqmH54zm6vYA0I8QWgAAfquyrlF3vrFRaw+UK8AiPX7NWM2fMdjX1QIA9DBCCwDAL23Oq9Tdb23SkYp6RVqD9Ow3J+nCkUm+rhYAwAcILQAAv2KM0av/OaiFH++Uw2mUERemF2+dolEp0b6uGgDARwgtAAC/UVJt18+XbNO/dhRJkmaPS9GTN4xXTFiwj2sGAPAlQgsAwC/8fUu+Hl6yTdUNTQoJDNAjV43W/OmZsli4/goA9HeEFgCATzmcLi38aJde+U+uJClrYIwWXp+lcQNjfFwzAIC/ILQAAHwmr7xOP/rrZm04VCFJ+sGFw3T/ZSMUFBjg45oBAPxJpz8VVq9erauvvlppaWmyWCz64IMPuqFaAIC+zBijdzce0ew//lsbDlUo0hqk5+dN1s+uHEVgAQC00emeltraWk2YMEG33367brjhhu6oEwCgD9tVaNNjS3O09kC5JGlK5gD9z40TlREX7uOaAQD8VadDy+zZszV79uzuqAsAoA8rq7HrD5/u1ZtfHZLLSNagAN17yXDdecEwBQYw2B4AcGLdPqbFbrfLbrd7Httstu5+SgCAH7E3OfXaFwf1f5/vU3VDkyT3VMYPzxlN7woAoEO6PbQsXLhQjz/+eHc/DQDAzxhj9PH2Qi38eKfyyuslSWNSo/XIVaM1c1iCj2sHAOhNuj20PPTQQ7r//vs9j202mzIyMrr7aQEAPtLY5NLft+TrxX8f0K7CaklScrRVP7l8pK4/O51TwQAAndbtocVqtcpqtXb30wAAfKy6waHF6/L08ppcFdoaJEnhIYH6znlD9b0Lhio8hFn2AQBdwycIAOC0FNka9Mp/cvXW2sOqtrvHrCRGWXXbzMGaNy1TMeHBPq4hAKC363Roqamp0b59+zyPc3NztXnzZsXFxWnQoEFntHIAAP9kb3Jq5e4SLd2Sr3/lFMrhNJKkYYkR+u75Q3XdpIGyBgX6uJYAgL6i06Flw4YNuuiiizyPW8arLFiwQIsWLTpjFQMA+Jcmp0tfHijT0s35WpZT6JkJTJKmDh6g754/TJeMSlIAY1YAAGdYp0PLhRdeKGNMd9QFAOBnXC6jTYcrtHRLvj7aVqDSmkbPupToUF01PlXXThyorPQYH9YSANDXMaYFAODF4XRp06EKfb67WP/YUqCjlfWedQPCgzUnK1XXTEjT1MFx9KoAAHoEoQUAoENltVq9p0Sr9pTqy/2lqm10etZFWoN0+ZhkXT0xTbPOSlBwYIAPawoA6I8ILQDQD9XYm/Tl/jKt3lOi1XtLdKiszmt9fESIZg1P0JVjU3TRqCSFBjOoHgDgO4QWAOgH8ivrteFQhbbkVWpzXqW25FWqyXVsfGJQgEWTMwfo/BGJumBEosakRnPqFwDAbxBaAKCPcThd2lVQrc15Fdp4qELrD1Z4jUtpMTg+XOcNT9T5IxI1Y1i8Iq18JAAA/BOfUADQixljlFder+y8Cm3Jq9LmvArl5Ntkb3J5lQsMsGhMarTOHhSrCRmxmpIZp0Hx4T6qNQAAnUNoAYBewuUyOlpZr12F1dqRb9PmvAptOVKl8trGNmWjQ4M0ISNWkwYN0DmD4zRxUCw9KQCAXotPMADwQ41NLu0trtb2o1XaftSm7flV2lNY7TWrV4vgQHcvysQMdy/KxIxYDUmIkMXCmBQAQN9AaAEAH7M3ObWnsEbbjlZpe36Vth+t0q6CajU6XW3KhgQGaFhSpEalRGlCeowmZMRqTFq0rEHM7gUA6LsILQDQg+oam7SnqDmgHHGHlD1F1XI4TZuy0aFBGjcwRlkDYzR2YIzGpEZpcHyEgrhOCgCgnyG0AEA3aHK6dLCsVrsKq7WnsFq7Cqu1u6hah8vrZNrmE8WGBytrYIzGDYzRuDR3UMmIC+MULwAARGgBgNNSbGvQ7qJq5ZXXK6+iTnnlddpfUqv9xTXtnt4lSQmRIRrbHEzGDYzWuIExGhhLQPEbxkglu6SaYilzphQY7OsaAUC/R2gBgA5o3XOSk29TTr5NO/JtKq2xn3Cb8JBAjUiO0sjkKI1MidKolCiNSIlSQqS1B2uOTtn1T+nzX0nFO9yPr/1/0qR5vq0TAIDQAgDHszU4tKNVMNlZYNO+kho1NrXtOQmwSIMTIjQ4PkIZA8KUPiBcmfHhGpUSrfQBYVxVvjcwRsrfJK35g7Rzqfe68lyfVAkA4I3QAqDfMsboSEW9dhS4g4n75h530p6WnpMxadEakxqtsWnRGpUSrbAQZu7qlew10vZ3pQ2vSAVb3MssgdLMe6T6CmnTa1JTg2/rCACQRGgB0E84nC7tLapRTn6VdhS4e1B2FNhU3dDUbvmBsWEa3RxMRqdGa3RqlDIGhNNz0ts5GqTt70kH/y3t/IfUWO1eHmiVxlwrzbxbSp0grfhNc/l639UVAOBBaAHQ5zicLm0/WqVtR6uUc9SmnIIq7Slsf2B8cKBFZyVFaXRqlMakugPKmNRoDYgI8UHN0W2KcqQti9232uJjy+OGSVNulyZ8U4qIP7Y8KNR9T08LAPgFQguAXq++0ansvAqtyy3X+oPl2nSoUvWOtleOjwoN0pjUaI1Ji9bYtBiNSY3WWUmRCgniuid9UnWhtO0dactfpaJtx5bHZEjjb5SGXihlnisFtNP+wWHue3paAMAvEFoA9DpV9Q5tPFSur3LLtT63XNuOVrW5OOOA8GBNzIjVuIExzeNPuO5Jn2eMdHSjtO9T6fBaKXeVZJp71wJDpBFXSONvct+fahpjeloAwK8QWgD4veLqBq3PrdC63DKtO1ihXYW2NhdoTIkO1TlD4jy3sxIjGX/SHzgd0rZ3paMbpL3/kioPe6/PmObuVRn7NSk8ruP7pacFAPwKoQWAX3G5jPaX1GjDoQptOFihDYfKdais7WxeQxMiNHXwsZCSPoBelH6lplja/r57hq+Wa6pIUnCEuycl4xxp+OVS/LCu7Z+eFgDwK4QWAD5X3+jUmn2l+ldOoT7bVazy2kav9RaLNColWtOaA8qUwQOUFBXqo9qixxkjFe+UDqx0z/pVWyIVbjsWKMLipInflNKnuoNKSPjpPyc9LQDgVwgtAHziYGmtVu0p0eo9JfrP/lI1OI7N7BUaHKCJGbGanDlAUwfH6ezMAYoOPcUYBPQtVUekA6vcQSV3lVRT1LZM2iT3aV8T53nP/HUm0NMCAH6F0AKgRzQ2ubT+YLk+31WsFbuKdaC01mv9wNgwXTYmWZePSdbUIXEKDmRGr37B5ZIqD7lP8crf7B5IX75fqjjoXS4oTMqcKQ29wD1NcVSKNHCyuxuuO9DTAgB+hdACoNsU2Rq0cnexVuwq0Zp9paqxH7uQY1CARVMHx+n8EYk6f0SCxqRGMyalr6stk4pzpKIdx+5LdkmNNW3LWgKktLPdIWXoRe4xKkHWnqsrPS0A4FcILQDOGJfLaPORSn2+s1grdhcrJ9/mtT4h0qqLRibq4lFJmjU8QVGc8tU32Wukkt3u3pOSXe4LOxbvaP8UL8k9HXHCSCllnHtcSsJwKSVLChvQs/VuzdPTQmgBAH9AaAFwWuxNTq3LLdcnOYVavqNIRTa7Z53FIo1Pj9VFIxN10cgkZQ2MYRrivqCpUarKkypy3adxeW6H3LN61RSeeNvYTCl5rJQ0RkoeIyWNdc/wdarrpvQ0T08Lp4cBgD8gtADotMNldVq1p1ir9pToi/1lqms8dvX5SGuQLhiZqEtGJen8EYlKiOzBU3pwZthrJFu+ZDt67L7y8LFgYjty7KKNJxKRJCWNbnUbKyWNkqxRPfISTltw8wxkzkbJ5ZQCAn1bHwDo5wgtAE6pvtGptQfKtGpPiVbtKVHucYPoE6OsunR0ki4fm6KZw+JlDeIfPL9kjGS3HQsiVUePCyfNN3vVqfcVFCYNGHzcLVOKTHb/3JkLOfqj4FZTajc1SCERvqsLAIDQAqAtl8toX0mNVjeHlK9yy9XYdOyb9aAAiyZnDtCFI5N0wYhEjU6NYhC9rxkj1Ve0CiGtg0irn9sb9N4ea7QUnXbsFpMhDRhyLKBEJnXfzF3+ICjs2M8OQgsA+BqhBejnjDEqtDVoS16lthyp0pa8Sm07UqXqVjN9Se4piS8YmagLRiRq5rB4BtH3lMZad49ITWHzeJEiqbpAshVI1YVSXZlUX+6+dzWden+Se4B79MBWoeS4n6NSpdDo7n1d/i4gwD1BgLORcS0A4AcILUA/U1Xv0LYjVdpypFKb8yq1Ja9SxdX2NuVCgwM0dXCcLhiRqAtHJmpYYiS9KWeSs8kdNGpLpLpSqbbUHUqq8tzjR6rypMo8dyDpjPCE9oOI5z6VXoOOCgpzhxZmEAMAnyO0AH2Uy+XuQcktrdWeomptbQ4qB0pq25QNDLBoRHKUJmbEaEJ6rCZkxGp4UqSCuMBj5xgj2auPzaBVU3Ssd6SmpPm+yN1DUlsiyXRsv9Zo98UUI5Pdp2VFprjDR1SqFJEghcVJ4fHuW+uxGDg9waHu8T30tACAzxFagF7M5TKqqGvUkYp6HSit0YGSWh0ordWBklodLK1VvcPZ7naD4sI1ISNWE9JjNDEjVmPTYhQWwuD5E3I2uUNGS+jwhI/jHtcUS466TuzY4h6wHpHYfEtw94bEDnKPIYnNcN+HxXbXK8PJtEx7TE8LAPgcoQXwQy6XUVlto4qrG1RcbVexrUHFNruKqlvu7SqxNaikxi6H88Tf1gcFWDQoPlxDEyI0bmBMc1CJVVxESA++Gj9ljHtQuid4tB4zclwYqS1Vh3tFJCkkSopKbtUzkuwOJS0/R6W4e0siEphK15+1XGCSnhYA8DlCC9CDGptcKq2xq7jarpLm27FgYldJdYOKbHaV1tjV5Or4P8mJUVYNTYjQ0MTI5nv3z+kDwhTcH0/xcjndYaPqqPuaIp6pfY94B5LO9IpYAtzXHolMag4dzadptQQTz7Jkxoz0FfS0AIDfILQAZ0CDw6mSaruKbMd6Roqag0hxc+9IcXWDKuocHd6nxSLFR1iVFGVVUrRVyVGhSoq2Kik6VElRViU33ydEWhUS1I+CicvlHpzumUGreRatqsPuCx9WHHQv6+hMWiGRrQJIO4GkpcckPJ5ekf6mpaelU6f8AQC6A6EFOIm6xqbmwNEqkLQKIcU293JbQwf/QZb7lK3EKHcYSYyyKjEq1PM4uVUgiY8M6Z+9JM4md+ioL3efrlW8090rUrClOZAUSq4OhD9LoHugenSaFDPQPVYkJv3YqVktvSLWyG5/SeilWnpamuhpAQBfI7SgX7I3OVVY5T4Vq8jW4AkkrX8usdnbXKvkZEKCApQcbVVS1LHg4RVGmtfFhgUrIKCfTh3suQDi0eZeknz3qVst0/xW5rnXmfYnEPASkegOIFGp7vvogc0XP8x0D16PTJYCOcThNHh6WhjTAgC+xic6+iR7k1P5lQ06UlGnIxX1nvujFfU6UlGvouoGmQ4OGQkLDvSEkcTWp2m16hlJigpVdFhQ/7yOSesB7a2vOVJXKtWWue+rC49dlb0j31oHBLtPxwqLlZLHuntGkkZJiaPdU/1GJElBTCaAbkZPCwD4DUILeqUGh1P5lfXNgaTeK5wcraxXka3txRKPFxocoJToUCVFhyo5OlTJLWNHmntIWgJJpLUfhRFj3OGivlJqqJIaWu7budWWHptxq7Pn/IcnNF9npPnih7EZUswg91S/sc29JIwfga/R0wIAfoPQAr/U2ORSfmW98irqlFfuDiN5rcJJSTtXcD9eWHCg0geENd/Cve4HDghTfERI/wkjLYxx/wPmqJMaa933DTb3eJHqfGnPv6TinK7tOyTy2LVGwhOkiHj3fXj8sbElLbcg65l9XUB3oKcFAPwGoQU+U1nXqINldTpUVquDpXU6VF6rvHJ3KCm0nfr0rfCQQGW0CiHHh5MB4cG9L5QY4/4HyVHvvrX+2VErNdZ5Bw7Pfd2J13uVqdMprzcSEOS+wnpozIlvYbHuMkzzi76MnhYA8BtdCi1/+tOf9PTTT6ugoEBjx47VH/7wB5133nlnum7o5YwxKqmx61BZnQ6W1upweV2rkFJ7yhm3WnpKMuLcQSRjQLgGNt+nDwhTrD+EEpfTPaOV3dYqXLSEjTr39R0cde7HDbbmCxUWuwOEVzipd5dtalCnLmJ4OoJCpeBwd9hIHCnFnyXFZkoTb5bCBvRMHQB/Rk8LAPiNToeWv/71r7rvvvv0pz/9Seeee67+/Oc/a/bs2dqxY4cGDRrUHXWEn3K6jCrqGj0XSTxaWa+DZbU6VFqng2XukFLXePJZoFKiQ5UZH67B8REaFB+uQXHhnpByWqdvOeqlurJjQaDJ3nzfIDkd7mt4tNwcdZK9xj2YvLHWvd5p996mye7ep7Ox+XHzfV2ZO7B0h4Agd6gICpWCQ6XgCCkk/FjQCA5vfhxx3H3zek+Z9sqGM2YEOJXglotL0tMCAL5mMaajcyi5TZs2TWeffbaee+45z7LRo0fruuuu08KFC0+5vc1mU0xMjKqqqhQdHd35Gp8htsoyHdq6pvmRkWQ8pyNZZDzfdXv9eo7/VRnjKWlptX17v9KWZSfat6V5qTFtn8d7fy5PuZZ/55u3PPH+vL65b738+Oc6ts7hdKqxySV7k0uOpmM/19ibVF3vULXdoRp7k4yr7XO6f26+t0gDIoKVGBGixIhAJYYHKiE8QHFhgRoQalGwxenurfAKEk73dThcTe5rdrgc7rDgdDTfGlvdt/rZ1by+ye6esaqnBIVJ4XHuU0mCwtz3waGtAke4+3FI5LGrp4dEupcFhbW6b74FhbrvA4N77jUAaOuLZ6V//Vwacr40635f1wYAzqyEEe7rmPlYR7NBp3paGhsbtXHjRj344INeyy+//HJ98cUX7W5jt9tltx8bNG2zddO30p2Uv2+zsj6/1dfV6N06+tfT2Hyr6Ma6tCcwxB0GgqzuINByHxjs7sUICHL3NgSHuy8wGBLp7pUIsrqn3A0ObbVdy35a9hHivrdGud/0XA8E6HtCwt33uavdNwDoS+b+Xpr6bV/XosM69Z9WaWmpnE6nkpOTvZYnJyersLCw3W0WLlyoxx9/vOs17CYhoZE6EDD42AKLZNT6VKRjP7debtFx/RYWi9dWpp3tjt/GvbD9ch3ah6XND8eVO/6UKounaLvrPPs4Vi2LJUCBFosCAqTAAIsCLAEKDLAoONCi4KBAhQQGKCQoQEGBAQqwtP970/HLvcJCUPPjwObHwcdCxPGhItDqXhYY7A4LgSHt/xwQfKxcZLJ71ipfj3kB0HuNuFIa8oF7em8A6Gt62fjVLn09fPw4A2PMCccePPTQQ7r//mPd6jabTRkZGV152jNq6Lhp0rgtvq4GAMBfRadJC5b6uhYAAHUytCQkJCgwMLBNr0pxcXGb3pcWVqtVVivXZAAAAADQNQGdKRwSEqLJkydr+fLlXsuXL1+umTNnntGKAQAAAIDUhdPD7r//fs2fP19TpkzRjBkz9MILL+jw4cO68847u6N+AAAAAPq5ToeWG2+8UWVlZXriiSdUUFCgcePG6aOPPlJmZmZ31A8AAABAP9fp67ScLn+5TgsAAAAA3+poNujUmBYAAAAA6GmEFgAAAAB+rccv491yNprNZuvppwYAAADgR1oywalGrPR4aKmurpYkv7jAJAAAAADfq66uVkxMzAnX9/hAfJfLpfz8fEVFRclisfTkU7dhs9mUkZGhvLw8JgXog2jfvo827tto376PNu7baN++7Uy1rzFG1dXVSktLU0DAiUeu9HhPS0BAgNLT03v6aU8qOjqaN1MfRvv2fbRx30b79n20cd9G+/ZtZ6J9T9bD0oKB+AAAAAD8GqEFAAAAgF/r16HFarXq0UcfldVq9XVV0A1o376PNu7baN++jzbu22jfvq2n27fHB+IDAAAAQGf0654WAAAAAP6P0AIAAADArxFaAAAAAPg1QgsAAAAAv0ZoAQAAAODX/Dq0rF69WldffbXS0tJksVj0wQcftFvuwgsv1PPPP68tW7bo5ptvVkZGhsLCwjR69Gj98Y9/9Cq7cuVKXXvttUpNTVVERIQmTpyoN998s939Llq0SNOnT5fD4dADDzygrKwsRUREKC0tTbfeeqvy8/O9ytvtdt1zzz1KSEhQRESErrnmGh05cuSM/C76g8cee0wWi8XrlpKS0qZcS3tL0g9/+ENNnjxZVqtVEydOPOG+V65cqdTUVBljtHDhQk2dOlVRUVFKSkrSddddp927d3uVN8boscceU1pamsLCwnThhRcqJyfnjL7e/qapqUmPPPKIhgwZorCwMA0dOlRPPPGEXC5Xm7Kt2/izzz7TzJkzFRUVpdTUVD3wwANqampqsw1t3L1OdTx+//33dcUVVyghIUEWi0WbN28+4b6GDBmiZcuWqaGhQbfddpuysrIUFBSk6667rk3Z2267rc1xwWKxaOzYsW3KPvbYY7rppptUXl6ue+65RyNHjlR4eLgGDRqke++9V1VVVV7lKyoqNH/+fMXExCgmJkbz589XZWVlF347fVNH3kctOvM5fPDgwXbbdNmyZW3229nP4RdeeEEXXnihoqOjZbFYaM8uOHr0qObNm6f4+HiFh4dr4sSJ2rhxY5tyrY/T7bVny7rWOnuc7sxxBX2fX4eW2tpaTZgwQc8+++wJy5SXl+uLL77Q1VdfrY0bNyoxMVFvvPGGcnJy9POf/1wPPfSQ1/ZffPGFxo8fr/fee09bt27VHXfcoVtvvVV///vf2+x76dKluvbaa1VXV6dNmzbpF7/4hTZt2qT3339fe/bs0TXXXONV/r777tOSJUu0ePFirVmzRjU1NbrqqqvkdDrP3C+ljxs7dqwKCgo8t23btnmtb93ekvsfzzvuuEM33njjSfe7dOlSXXPNNbJYLFq1apXuuusurV27VsuXL1dTU5Muv/xy1dbWeso/9dRTeuaZZ/Tss89q/fr1SklJ0WWXXabq6uoz/6L7id/+9rd6/vnn9eyzz2rnzp166qmn9PTTT+v//u//vMq1buOtW7dqzpw5uvLKK5Wdna3Fixdr6dKlevDBB9vsnzbuXqc6HtfW1urcc8/Vk08+edL9bN26VWVlZbrooovkdDoVFhame++9V5deemm75f/4xz96HRPy8vIUFxenb3zjG23Kthyz8/PzlZ+fr9/97nfatm2bFi1apGXLlulb3/qWV/lvfvOb2rx5s5YtW6Zly5Zp8+bNmj9/fgd/I31fR95HUuc/h1t8+umnXm178cUXtynT2c/huro6XXnllXr44YfP7C+jn6ioqNC5556r4OBgffzxx9qxY4d+//vfKzY21qvc8Z/FkvTqq696teeCBQva7L+zx+mOHlfQT5heQpJZsmRJm+Wvv/66mTJlygm3+8EPfmAuuuiik+57zpw55vbbb/daVl9fbyIiIsz27dvb3WbdunVGkjl06JAxxpjKykoTHBxsFi9e7Clz9OhRExAQYJYtW3bS54fbo48+aiZMmHDSMidq71NtO2zYMPOPf/yj3XXFxcVGklm1apUxxhiXy2VSUlLMk08+6SnT0NBgYmJizPPPP3/qF4J2zZ0719xxxx1ey66//nozb948r2Wt2/ihhx5q095LliwxoaGhxmazeS2njXvOiY7HxhiTm5trJJns7Ox21z/xxBPm61//epvlCxYsMNdee+0pn3vJkiXGYrGYgwcPei0/fPiwCQ4ONhUVFe1u97e//c2EhIQYh8NhjDFmx44dRpJZu3atp8yXX35pJJldu3adsh790fHvoxad/Rw+1d9Ii85+Dre2YsUKI+mEfw9o3wMPPGBmzZp1ynLHt/nJjgmtdeY43VpH/2bQt/l1T0tHtHwLcyJVVVWKi4s76T7aK/PZZ58pJSWl3VMQWraxWCyebx82btwoh8Ohyy+/3FMmLS1N48aN0xdffNHBV4O9e/cqLS1NQ4YM0U033aQDBw54rT9Ve7cnJydHhYWFuuSSS9pd33LKSMvfQG5urgoLC73a0mq16oILLqAtT8OsWbP02Wefac+ePZKkLVu2aM2aNZozZ45XudZtbLfbFRoa6rU+LCxMDQ0NXqcr0Ma9R1few629/PLLuvTSS5WZmdlmv+eff36bb4RbVFVVKTo6WkFBQZKkL7/8UjExMZo2bZqnzPTp0xUTE8PfwAkc/z5q0dXP4WuuuUZJSUk699xz9e6777ZZ39nPYZy+pUuXasqUKfrGN76hpKQkTZo0SS+++GK75Y5v87vvvlsJCQmaOnWqnn/++Tan/nb2OA0cr1eHFrvdrk8++eSEB8svv/xSf/vb3/S9733vhPt49913tX79et1+++1eyz/88MMT7rehoUEPPvigvvnNbyo6OlqSVFhYqJCQEA0YMMCrbHJysgoLCzvzsvqtadOm6fXXX9cnn3yiF198UYWFhZo5c6bKysoknbq9T+TDDz/UFVdc0eafX8l9etn999+vWbNmady4cZLkaa/k5GSvsrTl6XnggQd08803a9SoUQoODtakSZN033336eabb/aUOb6Nr7jiCn3xxRd6++235XQ6dfToUf3qV7+SJBUUFHi2o417h6NHj2rLli1tgmpHFRQU6OOPP9a3v/3tNutOdswuKyvTL3/5S6/PgsLCQiUlJbUpm5SUxN9AO9p7H0ld+xyOjIzUM888o3fffVcfffSRLrnkEt1444164403vLbt7OcwTt+BAwf03HPPafjw4frkk09055136t5779Xrr7/uKdNem//yl7/UO++8o08//VQ33XSTfvzjH+s3v/mN1747e5wGjhfk6wqcjs8//1zx8fHKyspqsy4nJ0fXXnut/vu//1uXXXZZu9uvXLlSt912m1588UWvb3KMMfr73/+uxYsXt9nG4XDopptuksvl0p/+9KdT1tEYI4vF0olX1X/Nnj3b83NWVpZmzJihYcOG6bXXXtP9999/0vY+mQ8//FA/+MEP2l139913a+vWrVqzZk2bdce3G215ev7617/qjTfe0FtvvaWxY8dq8+bNuu+++5SWluY59/n4Nr788sv19NNP684779T8+fNltVr1i1/8QmvWrFFgYKBn37Rx77B06VKde+65Xf4mddGiRYqNjW0zYN9ms2nVqlXtfiNss9k0d+5cjRkzRo8++qjXuvbamr+B9p3ofdSVz+GEhAT96Ec/8jyeMmWKKioq9NRTT2nevHmSzuznMDrO5XJpypQpnsAxadIk5eTk6LnnntOtt94qqf02f+SRRzw/t0yK88QTT3gt7+pxGmjRq3taTtQlvWPHDl188cX6zne+4/WGaW3VqlW6+uqr9cwzz3jeiC3WrVunxsZGzZo1y2u5w+HQf/3Xfyk3N1fLly/3+nYnJSVFjY2Nqqio8NqmuLi4zbe56JiIiAhlZWVp7969krp2WklhYaE2bdqkuXPntll3zz33aOnSpVqxYoXS09M9y1tmLDv+21ba8vT89Kc/1YMPPqibbrpJWVlZmj9/vn70ox9p4cKFnjLttfH999+vyspKHT58WKWlpZ71Q4YMkUQb9yanc2qYMUavvPKK5s+fr5CQEK91H3/8sUaPHt3mlLHq6mpdeeWVioyM1JIlSxQcHOxZl5KSoqKiojbPU1JSwt/AcU70PpJO73O4tenTp3uO9VLXPodx+lJTUzVmzBivZaNHj9bhw4c9jzvyPp4+fbpsNpvnPdaV4zRwvF4bWlq+hTl+5pCcnBxddNFFWrBggX7961+3u+3KlSs1d+5cPfnkk/rud7/bZv2HH36ouXPnen2T23Kg3Lt3rz799FPFx8d7bTN58mQFBwdr+fLlnmUFBQXavn27Zs6ceTovtd+y2+3auXOnZ3rE9tr7VJYuXaoZM2YoISHBs8wYo7vvvlvvv/++Pv/8c88/vy2GDBmilJQUr7ZsbGzUqlWraMvTUFdXp4AA70NOYGCg57znk7WxxWLxTE389ttvKyMjQ2effbYk2ri3qKmp0YoVKzr9Hm6xatUq7du3r80MYJL7mH38fm02my6//HKFhIRo6dKlbU5JmTFjhqqqqrRu3TrPsq+++kpVVVX8DTQ71fvodD6Hj5edna3U1FTP4658DuP0nXvuuW2mHd6zZ4/nC4GOfhZnZ2crNDTUM96oK8dpoI2eHfffOdXV1SY7O9tkZ2cbSeaZZ54x2dnZ5tChQ2b9+vUmNjbWMxOMMcZs377dJCYmmltuucUUFBR4bsXFxZ4yK1asMOHh4eahhx7yKlNWVuYpM3bsWPPuu+96HjscDnPNNdeY9PR0s3nzZq/t7Ha7p9ydd95p0tPTzaeffmo2bdpkLr74YjNhwgTT1NTUzb+pvuHHP/6xWblypTlw4IBZu3atueqqq0xUVJQ5ePBgu+1tjDF79+412dnZ5nvf+54ZMWKE5++lpV3mzp1rfve733lt8/3vf9/ExMSYlStXerVlXV2dp8yTTz5pYmJizPvvv2+2bdtmbr75ZpOamtpmxip03IIFC8zAgQPNP/7xD5Obm2vef/99k5CQYH72s58ZY8wJ2/ipp54yW7duNdu3bzdPPPGECQ4O9pqlhjbuGSc7HhtjTFlZmcnOzjb//Oc/jSSzePFik52dbQoKCowxxrzzzjtm3Lhxbfabk5NjsrOzzdVXX20uvPBCz3Mcb968eWbatGltljscDhMbG2s2bNjgWWaz2cy0adNMVlaW2bdvn9ffQOvj8ZVXXmnGjx9vvvzyS/Pll1+arKwsc9VVV53ur6rPONX7qKufw4sWLTJvvvmm2bFjh9m1a5d5+umnTXBwsHnmmWc8Zbr6OVxQUGCys7PNiy++aCSZ1atXm+zsbK/PeJzYunXrTFBQkPn1r39t9u7da958800THh5u3njjDWNM+22+dOlS88ILL5ht27aZffv2mRdffNFER0ebe++911Omq8fpUx1X0L/4dWhpmbLw+NuCBQvMI488Ym655Rav8o8++mi75TMzMz1lFixY0G6ZCy64wBhjzL59+4zVajXV1dWebVqm2mvvtmLFCk+5+vp6c/fdd5u4uDgTFhZmrrrqKnP48OHu/BX1KTfeeKNJTU01wcHBJi0tzVx//fUmJyfHGGPabW9jjLngggvabZfc3FxTU1NjQkNDzZ49e7y2OVFbvvrqq54yLpfLPProoyYlJcVYrVZz/vnnm23btnXr6+/rbDab+eEPf2gGDRpkQkNDzdChQ83Pf/5zzz8cJ2rjiy66yMTExJjQ0FAzbdo089FHH3nW0cY952THY2OMefXVV9td/+ijjxpj3KHj5z//eZv9ZmZmtrtda5WVlSYsLMy88MILbbb/9NNPTXp6eofq2nJsaFFWVmZuueUWExUVZaKioswtt9zCFLmtnOp91NXP4UWLFpnRo0eb8PBwExUVZSZPnmz+8pe/eNafzufwiZ6/9XsfJ/f3v//djBs3zlitVjNq1Civ9117bf7xxx+biRMnmsjISBMeHm7GjRtn/vCHP3iCzekcp091XEH/4teh5WSysrLMX//61zO+39///vdm9uzZZ3y/OD1dae/33nvPjB49uptqhDONNu67mpqaTFxcnPnqq6/O+L7vuece8/3vf/+M7xenxudw/8NxGr7UK2cPa2xs1A033OA129SZkp6eroceeuiM7xdd19X2joyM1G9/+9tuqhXOJNq4bysrK9OPfvQjTZ069Yzve9y4cZoxY8YZ3y9Ojs/h/ofjNHzNYowxvq4EAAAAAJxIr509DAAAAED/QGgBAAAA4NcILQAAAAD8GqEFAAAAgF8jtAAAAADwa4QWAAAAAH6N0AIAAADArxFaAAAAAPg1QgsAAAAAv/b/AfGTmwvAL9V/AAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:56.636352\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "infected.loc['US'][2:].plot()\n", - "recovered.loc['US'][2:].plot()\n", + "infected.loc['US'][3:].plot()\n", + "recovered.loc['US'][3:].plot()\n", "plt.show()" ] }, @@ -1608,12 +156,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "> **Note** how we use `[2:]` to remove first two elements of a sequence that contain geolocation of a country. We can also drop those two columns altogether:" + "> **Note** how we use `[3:]` to remove first two elements of a sequence that contain geolocation of a country. We can also drop those two columns altogether:" ] }, { "cell_type": "code", - "execution_count": 132, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1633,134 +181,14 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
infectedrecovereddeaths
2020-01-22100
2020-01-23100
2020-01-24200
2020-01-25200
2020-01-26500
............
2021-08-25382230290632272
2021-08-26383843600633564
2021-08-27387072940636720
2021-08-28387603630637254
2021-08-29387967460637531
\n", - "

586 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " infected recovered deaths\n", - "2020-01-22 1 0 0\n", - "2020-01-23 1 0 0\n", - "2020-01-24 2 0 0\n", - "2020-01-25 2 0 0\n", - "2020-01-26 5 0 0\n", - "... ... ... ...\n", - "2021-08-25 38223029 0 632272\n", - "2021-08-26 38384360 0 633564\n", - "2021-08-27 38707294 0 636720\n", - "2021-08-28 38760363 0 637254\n", - "2021-08-29 38796746 0 637531\n", - "\n", - "[586 rows x 3 columns]" - ] - }, - "execution_count": 133, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def mkframe(country):\n", - " df = pd.DataFrame({ 'infected' : infected.loc[country] ,\n", - " 'recovered' : recovered.loc[country],\n", - " 'deaths' : deaths.loc[country]})\n", + " df = pd.DataFrame({ 'infected' : infected.loc[country][1:] ,\n", + " 'recovered' : recovered.loc[country][1:],\n", + " 'deaths' : deaths.loc[country][1:]})\n", " df.index = pd.to_datetime(df.index)\n", " return df\n", "\n", @@ -1770,21 +198,9 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAEyCAYAAAD3Dz9hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3deWDT9f3H8WeSNm3T+z5oy33fIAIqAhMFPOY9pyh4bjp0MC+mblO82O/n8Nj86byGuuFQf4pzup+KKKAiiijIWa5y9j7TM22T7++PtKEntNA2aft6uCzJ93wnAZLX9/P5fL8mwzAMREREREREfJTZ2wWIiIiIiIgcj0KLiIiIiIj4NIUWERERERHxaQotIiIiIiLi0xRaRERERETEpym0iIiIiIiIT1NoERERERERn6bQIiIiIiIiPk2hRUREREREfJpCi4iIiIiI+DSvhZZ169Zx0UUXkZSUhMlk4r333mvT+g899BAmk6nJLTg4uGMKFhERERERr/BaaCkrK2P06NE8++yzJ7X+3XffTWZmZoPbsGHDuPLKK9u5UhERERER8SavhZbZs2fz6KOPctlllzU7v6qqinvvvZdevXoRHBzMxIkTWbNmjWd+SEgICQkJnlt2djY7duzgpptu6qRXICIiIiIincHP2wW05IYbbuDAgQOsWLGCpKQkVq5cyaxZs9i6dSsDBw5ssvzLL7/MoEGDmDJliheqFRERERGRjuKTA/H37dvHP//5T95++22mTJlC//79ufvuuznrrLNYtmxZk+UdDgfLly9XK4uIiIiISDfkky0t33//PYZhMGjQoAbTHQ4H0dHRTZZ/9913KSkpYe7cuZ1VooiIiIiIdBKfDC0ulwuLxcKmTZuwWCwN5oWEhDRZ/uWXX+bCCy8kISGhs0oUEREREZFO4pOhZezYsTidTnJyck44RiU9PZ3PP/+c999/v5OqExERERGRzuS10FJaWsrevXs9z9PT09m8eTNRUVEMGjSIOXPmMHfuXJYuXcrYsWPJy8vjs88+Y+TIkZx//vme9f72t7+RmJjI7NmzvfEyRERERESkg5kMwzC8seM1a9Ywffr0JtPnzZvHq6++SnV1NY8++iivv/46R48eJTo6msmTJ7N48WJGjhwJuLuR9e7dm7lz5/LYY4919ksQEREREZFO4LXQIiIiIiIi0ho+ecpjERERERGROgotIiIiIiLi0zp9IL7L5SIjI4PQ0FBMJlNn715ERERERHyEYRiUlJSQlJSE2dxye8ophZYlS5Zw//33s2DBAp5++ulWrZORkUFKSsqp7FZERERERLqRw4cPk5yc3OL8kw4tGzdu5MUXX2TUqFFtWi80NNRTWFhY2MnuXkREREREuji73U5KSoonI7TkpEJLaWkpc+bM4aWXXuLRRx9t07p1XcLCwsIUWkRERERE5ITDRk5qIP78+fO54IILmDFjxgmXdTgc2O32BjcREREREZHWanNLy4oVK9i0aRPfffddq5ZfsmQJixcvbnNhIiIiIiIi0MaWlsOHD7NgwQKWL19OYGBgq9a57777KC4u9twOHz58UoWKiIiIiEjPZDIMw2jtwu+99x6XXnopFovFM83pdGIymTCbzTgcjgbzmmO32wkPD6e4uLjFMS0ul4uqqqrWliVdgNVqPe5p7ERERESk52lNNoA2dg8755xz2Lp1a4NpN9xwA0OGDGHRokUnDCytUVVVRXp6Oi6X65S3Jb7DbDbTt29frFart0sRERERkS6mTaElNDSUESNGNJgWHBxMdHR0k+knwzAMMjMzsVgspKSk6Mh8N1F3QdHMzExSU1N1UVERERERaZNTurhke6upqaG8vJykpCRsNpu3y5F2FBsbS0ZGBjU1Nfj7+3u7HBERERHxEsMwyClxsCPTzg97M1q1zimHljVr1pzqJjycTieAuhB1Q3WfqdPpVGgRERER6aGKy6uZu+xbthwuAsDlKG/Vej7Z/0rdh7offaYiIiIiPZthGNz19ha2HC7CbIL+scHMGh7fqnV9qnuYiIiIiIh0P5nFFfxu5TZW78rBajHzzm1nMDI5HLvdzku3nHh9n2xp6WqmTZvGwoULW738rl27mDRpEoGBgYwZM6bD6jpZJpOJ9957z9tliIiIiEgXV1nt5C+r9/CTP631BJY/Xj6SkcnhbdqOWlrawbvvvtumcRoPPvggwcHBpKWlERIS0i41mEwmVq5cySWXXNIu2xMRERERORVbjxRz2/JNHCmsAGB870iWXDaSQfGhbd6WQks7iIqKatPy+/bt44ILLqB3794dVJGIiIiISOcrrqjm2/QCdmbaeXHdfkodNSSGB/Lb2UP46eikkx7nrO5h7aB+97A+ffrw+OOPc+ONNxIaGkpqaiovvviiZ1mTycSmTZt4+OGHMZlMPPTQQwAcPXqUq666isjISKKjo7n44os5cOBAg/387W9/Y/jw4QQEBJCYmMjtt9/u2SfApZdeislk8jwH+Pe//8348eMJDAykX79+LF68mJqaGs/8PXv2cPbZZxMYGMiwYcNYtWpVu78/IiIiItL9rdudy6THV3PL69/x5KrdlDpqmNg3ik9+czYXj+l1Sidm8umWFsMwqKh2emXfQf6Wk35jly5dyiOPPML999/P//7v/3Lbbbdx9tlnM2TIEDIzM5kxYwazZs3i7rvvJiQkhPLycqZPn86UKVNYt24dfn5+PProo8yaNYsff/wRq9XK888/z5133skf//hHZs+eTXFxMV999RUAGzduJC4ujmXLljFr1iwsFgsAH3/8Mddeey1//vOfmTJlCvv27eMXv/gF4O6i5nK5uOyyy4iJiWHDhg3Y7fY2jc0REREREQE4UljOghU/UFHtJDXKxml9IhmWGMa1k3oT6G855e37dGipqHYy7A8fe2XfOx6eic16cm/P+eefz69+9SsAFi1axFNPPcWaNWsYMmQICQkJ+Pn5ERISQkJCAuBuQTGbzbz88sueoLRs2TIiIiJYs2YN5513Ho8++ih33XUXCxYs8OxnwoQJgPvCjQARERGebQI89thj/Pa3v2XevHkA9OvXj0ceeYR7772XBx98kE8//ZSdO3dy4MABkpOTAXj88ceZPXv2Sb1uEREREelZKqudvLr+AP/z+V5KKmsYlRzO27dOJsDv1INKfT4dWrqqUaNGeR6bTCYSEhLIyclpcflNmzaxd+9eQkMbDkqqrKxk37595OTkkJGRwTnnnNOmOjZt2sTGjRt57LHHPNOcTieVlZWUl5ezc+dOUlNTPYEFYPLkyW3ah4iIiIj0PC6Xwb+2HOVPH+/maJF7oP2wxDCemzOu3QML+HhoCfK3sOPhmV7b98lqfCYxk8mEy+VqcXmXy8X48eNZvnx5k3mxsbGYzSc39MjlcrF48WIuu+yyJvMCAwMxDKPJdF0EUkRERESOp9RRwx1vfM/nabkAJIYHctd5g7l0bC8s5o75LenTocVkMp10F62uZNy4cbz55pvExcURFhbW7DJ9+vRh9erVTJ8+vdn5/v7+OJ0Nx/+MGzeOtLQ0BgwY0Ow6w4YN49ChQ2RkZJCUlATA119/fQqvRERERES6o4P5Zbz8RTppWSXsyrJjr6whwM/Mr88ZyE1n9W2XcSvH0/0TQRcwZ84cnnjiCS6++GIefvhhkpOTOXToEO+++y733HMPycnJPPTQQ9x6663ExcUxe/ZsSkpK+Oqrr7jjjjuAY6HmzDPPJCAggMjISP7whz9w4YUXkpKSwpVXXonZbObHH39k69atPProo8yYMYPBgwczd+5cli5dit1u54EHHvDyuyEiIiIiviTHXsnVL24go7jSMy0+LIAXrjuNMSkRnVKDTnnsA2w2G+vWrSM1NZXLLruMoUOHcuONN1JRUeFpeZk3bx5PP/00zz33HMOHD+fCCy9kz549nm0sXbqUVatWkZKSwtixYwGYOXMmH3zwAatWrWLChAlMmjSJJ5980nN9GLPZzMqVK3E4HJx++uncfPPNDca/iIiIiEjPZRgGn2zP4ucvuQNLv9hgnvn5GD789Vmsu3d6pwUWAJPR3MCGDmS32wkPD6e4uLhJV6jKykrS09Pp27cvgYGBnVmWdDB9tiIiIiJdg9NlsGpHNs+t2cuPR4oBiAmx8r+3nkGfmOB23dfxskF96h4mIiIiIiIA7MstZf7y79mVVQKAzWrhhjP7cMuUfkTYrF6rS6FFRERERKQHe3PjId77IYOD+WVk2isxDAgP8mfOxFRuPKsvMSEB3i5RoUVEREREpCcyDIMX1u3nj/+3q8H0KQNjWPqz0cSF+k6XfoUWEREREZEexF5ZzTubjvD3DQfZn1sGwC/O7sfM4Qn0jrb5RMtKYwotIiIiIiI9QF6pg1e+TOfvXx+k1FEDQLDVwh3nDOTWqf29XN3xKbSIiIiIiHRDldVO/rp2Hz8eKSajqIL9eWVU1bgAGBgXwtwz+nDp2F6EBPh+JPD9CkVEREREpNUqqpx8uTePP6/ew9ajxQ3mjU4OZ/70AcwYGo/ZbPJShW2n0CIiIiIi0sUVlVexakc2/7cti6/25uGobVGJCraycMZA+kQHkxwZRN+YYEymrhNW6ii0iIiIiIh0IYZh8MWePN7edISs4gryS6s4VFBOjevYNeN7RQQxY2gcv5zan6SIIC9W2z4UWqRd9OnTh4ULF7Jw4UJvlyIiIiLSrRSWVfHj0WK2HC7ixyNFbDlSTG6Jo8lyQxJCmT0ikZkj4hkcH9olW1RaotAiIiIiIuJFhmFQXFHNkcIKDheU88XePDYfKqLUUUOZo4b8sqom6wT6m7n69FQm9IkiOthKr8ggkiNtXqi+cyi0dICqqiqsVqu3y2izrlq3iIiIiK8wDANHjYtSRw2llTWUOmooqb0vrqhmd3YJ2fZKHNUuKqqdZNsrOVJY4TkFcUv6xgQzKjmcUckRjEkJZ1hiOEFWSye9Ku9TaGkH06ZNY8SIEVitVl5//XWGDx/O888/z9133826desIDg7mvPPO46mnniImJgYAl8vFE088wUsvvcThw4eJj4/nl7/8JQ888AAAW7duZcGCBXz99dfYbDYuv/xynnzySUJCQvj444+5+OKLycrKIiIiwlPHr3/9a7Zs2cLatWsBWL9+Pb/97W/ZuHEjMTExXHrppSxZsoTg4GDA3aXr5ptvZu/evaxcuZJLLrmE11577YTr5eTkcNNNN/Hpp5+SkJDAo48+2onvtoiIiEj7c7oMd9Cobd2oCxru4FFNSWUNZQ4npY7qBkGkwbK1y9cfW9IWMSEBJEcGMTQxjGmDY4kJsRIc4EdiWBDhNv92fsVdi2+HFsOA6nLv7NvfBm3oB/jaa69x22238dVXX1FQUMDUqVO55ZZbePLJJ6moqGDRokX87Gc/47PPPgPgvvvu46WXXuKpp57irLPOIjMzk127dgFQXl7OrFmzmDRpEhs3biQnJ4ebb76Z22+/nVdffZUZM2YQERHBO++8w0033QSA0+nkrbfe4uGHHwbcoWfmzJk88sgjvPLKK+Tm5nL77bdz++23s2zZMk/dTzzxBL///e/53e9+1+r1rr/+eg4fPsxnn32G1Wrl17/+NTk5Oaf+nouIiIi0UVWNC3tlNfaKauyVNbX37pBR97i0soaKaiflVU4qa+/rt4SUOmoor3K2a10mEwRb/QgJ8CMk0H0fGuhHn+hgekfbCPC3EOBnJi40gORIG70ignpUy0lbmQzDOLkoeJLsdjvh4eEUFxcTFhbWYF5lZSXp6en07duXwMBAqCqDx5M6s7xj7s8Aa3CrFp02bRrFxcX88MMPAPzhD3/gm2++4eOPP/Ysc+TIEVJSUkhLSyMxMZHY2FieffZZbr755ibbe+mll1i0aBGHDx/2tG785z//4aKLLiIjI4P4+HgWLFjAtm3bWL16NQCffPIJF110EVlZWURGRjJ37lyCgoJ44YUXPNv98ssvmTp1KmVlZQQGBtKnTx/Gjh3LypUrPcucaL1Dhw4xePBgNmzYwMSJEwHYtWsXQ4cO5amnnmpxIH6Tz1ZERESkVrXTRUFZFbklDvLLqsgrcZBf5qC0soayKidlDvd9STPhpLLa1a61WC1mT8ioCxyhAX4E13tcP4g0DiUhAf6EBPph87d0qeugeMvxskF9vt3S0oWcdtppnsebNm3i888/JyQkpMly+/bto6ioCIfDwTnnnNPstnbu3Mno0aM9gQXgzDPPxOVykZaWRnx8PHPmzGHy5MlkZGSQlJTE8uXLOf/884mMjPTUsHfvXpYvX+7ZhmEYuFwu0tPTGTp0aJO6W7Pe7t278fPza7DekCFDGnRTExEREQH3FdmziivJLK4ky17hvq+9FZZXUVBWRX5ZFUXl1ae8r9AAP8KC/AkNdN+HBfoTFuRHWKA/IQF+BFktBPlbsFktBFktjUKJO2gEB1gI8FNrhy/y7dDib3O3eHhr321QP2C4XC4uuugi/uu//qvJcomJiezfv/+42zIMo8VT1NVNP/300+nfvz8rVqzgtttuY+XKlQ26fblcLn75y1/y61//usk2UlNTm627NeulpaU1qENERER6rhqniyx7JYcLKjhcWM6RgnIO154B63BhOdn2pqflbYnFbCIq2EpMSAAxIVaig62EBfljs/oREmDBZvVrNpCEBblDiUWtGt2ab4cWk6nVXbR8ybhx43jnnXfo06cPfn5N3+KBAwcSFBTE6tWrm+0eNmzYMF577TXKyso8oeKrr77CbDYzaNAgz3LXXHMNy5cvJzk5GbPZzAUXXNCghu3btzNgwIA213689YYOHUpNTQ3fffcdp59+OgBpaWkUFRW1aT8iIiLSNThqnOzLKSMt287B/HKOFlZwtMgdUjKLKk846DzQ30xSeBAJ4YEkhAeSGB5IQlgg0SEBRNqsRIe4g0pEkL+6U0mLfDu0dFHz58/npZde4uqrr+aee+4hJiaGvXv3smLFCl566SUCAwNZtGgR9957L1arlTPPPJPc3Fy2b9/OTTfdxJw5c3jwwQeZN28eDz30ELm5udxxxx1cd911xMfHe/YzZ84cFi9ezGOPPcYVV1zRYKzIokWLmDRpEvPnz+eWW24hODiYnTt3smrVKv7yl7+0WPuJ1hs8eDCzZs3illtu4cUXX8TPz4+FCxcSFNT1r7QqIiLS0xWUVbH1aDHbjhazK6uEtCw7+3PLjhtM/C0mekUEkRJlIznSRkpUECmRNlKibKREBhEVbFUPDTllCi0dICkpia+++opFixYxc+ZMHA4HvXv3ZtasWZjNZgB+//vf4+fnxx/+8AcyMjJITEzk1ltvBcBms/Hxxx+zYMECJkyY0OCUx/UNHDiQCRMmsHHjRp5++ukG80aNGsXatWt54IEHmDJlCoZh0L9/f6666qrj1t6a9ZYtW8bNN9/M1KlTiY+P59FHH+X3v/99O7xzIiIi0llySxxsqw0odUElo7iy2WXDAv0YkhBG35hgekUG0SsiiORId1CJDwtU1yzpcL599jDpNvTZioiIeIfTZXCooJw92SXsyLSz7aidbUeLybI3H1D6xQQzvFc4wxLDGJIQyuCEUBLDA9VaIh1CZw8TERER6YEqq518f7CQDfvz+Xp/PluOFFNV0/S0wCaTO6CM7BXOiNrb8KQwQgN79kUMxTcptIiIiIh0YcUV1fxwqJBNBwv5Jr2AzYeKqHI2DCkBfmYGxIUwOD6UEb3CGZkcztDEMEIC9FNQugb9SRURERHpQorLq/ksLZtv0wvZdLCAPTmlNO7snxAWyKR+UUzuH82EPlH0jg7WuBPp0hRaRERERHyYYRjsyLSzbncea3fn8N2BwiZn8+oTbWN87yhO6xPJ5H7R9I62aQyKdCsKLSIiIiI+pqCsii/25LJudx7r9uSSW9LwIo1DEkI5e1As43tHMr53JDEhAV6qVKRzKLSIiIiIeJlhGOzMLOHTndms3pXDj0eKGnT5slktnNE/mrMHxXL2wFj6xHS9i2+LnAqFFhEREREvqHa6+Da9gFU7slm1I5ujRRUN5g9JCGXq4Fim1raoBPhZvFSpiPcptIiIiIh0gspqJxsPFPDN/gL25JSwfl8+JZU1nvmB/mbOGhDLucPimDY4jvgwXddMpE6bQsvzzz/P888/z4EDBwAYPnw4f/jDH5g9e3ZH1CYiIiLSZRmGwb7cMtbtzmXt7ly+Sc+nsrrhqYijg62cMzSOc4clcNaAGIKsak0RaU6bQktycjJ//OMfGTBgAACvvfYaF198MT/88APDhw/vkAK7smnTpjFmzBiefvrpDtvHmjVrmD59OoWFhURERHTYfkREROT4DMPgSGEF244Ws25PHut25zbp8pUQFshZA2MYmhjGmJRwxqRE6lTEIq3QptBy0UUXNXj+2GOP8fzzz7NhwwaFlk7QGSFIREREWq/MUcMXe3JZk+a+ZdkrG8y3Wsyc3jeKqYNiOXtQLIPiQ3QqYpGTcNJjWpxOJ2+//TZlZWVMnjy5xeUcDgcOx7HT9Nnt9pPdpYiIiIhXOV0Ge3JK+P5gEZ/tyuaLPXk4ao51+fK3mOgfG8KkftFMHRzLpL7R6vIl0g7MbV1h69athISEEBAQwK233srKlSsZNmxYi8svWbKE8PBwzy0lJeWUCvZVZWVlzJ07l5CQEBITE1m6dGmD+VVVVdx777306tWL4OBgJk6cyJo1azzz8/Pzufrqq0lOTsZmszFy5Ej++c9/euZff/31rF27lmeeeQaTyYTJZPKMLQLYtGkTp512GjabjTPOOIO0tDTPvC1btjB9+nRCQ0MJCwtj/PjxfPfddx32XoiIiHQX+aUOVu/M5k8fp3HNSxsY9dDHzHr6C+5fuZVPd+bgqHGRGmXjhjP78NqNp7P1oZl8tPBsHvrpcKYPjlNgEWknbW5pGTx4MJs3b6aoqIh33nmHefPmsXbt2haDy3333cedd97peW6321sdXAzDoKKm4sQLdoAgv6A2Nd/ec889fP7556xcuZKEhATuv/9+Nm3axJgxYwC44YYbOHDgACtWrCApKYmVK1cya9Ystm7dysCBA6msrGT8+PEsWrSIsLAwPvzwQ6677jr69evHxIkTeeaZZ9i9ezcjRozg4YcfBiA2NtYTXB544AGWLl1KbGwst956KzfeeCNfffUVAHPmzGHs2LE8//zzWCwWNm/ejL+/f7u+XyIiIl1dtdPFrswSfjhcyPcHC/nhcBEH88ubLBdstTA6JYKJfaOZOSKewfGh6vIl0sFMhlH/0kVtN2PGDPr3788LL7zQquXtdjvh4eEUFxcTFhbWYF5lZSXp6en07duXwMBAyqvLmfjGxFMp76R9c8032PxtrVq2tLSU6OhoXn/9da666ioACgoKSE5O5he/+AV33HEHAwcO5MiRIyQlJXnWmzFjBqeffjqPP/54s9u94IILGDp0KH/605+A5se01A3E//TTTznnnHMA+M9//sMFF1xARUUFgYGBhIWF8Ze//IV58+adzFvRLhp/tiIiIt6WX+rg+0NFbDpYyPeHCvnxSFGTs3sBDIgLYWxKBON6RzI2NYKBcaEaPC/STo6XDeo75eu0GIbRYMxKT7Rv3z6qqqoajO2Jiopi8ODBAHz//fcYhsGgQYMarOdwOIiOjgbcY4T++Mc/8uabb3L06FHPWKDg4NZd8XbUqFGex4mJiQDk5OSQmprKnXfeyc0338zf//53ZsyYwZVXXkn//v1P6TWLiIh0JZXVTnZnl7DlSDE/1IaUA820ooQF+jE21R1OxqVGMjolgvAg9U4Q8bY2hZb777+f2bNnk5KSQklJCStWrGDNmjV89NFHHVJckF8Q31zzTYdsuzX7bq0TNVa5XC4sFgubNm3CYmnYtzUkJASApUuX8tRTT/H0008zcuRIgoODWbhwIVVVVa2qoX53r7omapfLfbTooYce4pprruHDDz/k//7v/3jwwQdZsWIFl156aatfo4iISFeSWVzBV3vz+WZ/Ptsy7OzJLqHG1fT7emBcCONSIxnfO5JxvSPoFxOCWa0oIj6nTaElOzub6667jszMTMLDwxk1ahQfffQR5557bocUZzKZWt1Fy5sGDBiAv78/GzZsIDU1FYDCwkJ2797N1KlTGTt2LE6nk5ycHKZMmdLsNr744gsuvvhirr32WsAdOPbs2cPQoUM9y1itVpxO50nVOGjQIAYNGsRvfvMbrr76apYtW6bQIiIi3UZxeTXfpOfz1d48vtybx77csibLRNr8GdErnLGpkYxLjWBsSiThNrWiiHQFbQotr7zySkfV0aWFhIRw0003cc899xAdHU18fDwPPPAAZrP75GyDBg1izpw5zJ07l6VLlzJ27Fjy8vL47LPPGDlyJOeffz4DBgzgnXfeYf369URGRvLkk0+SlZXVILT06dOHb775hgMHDhASEkJUVNQJa6uoqOCee+7hiiuuoG/fvhw5coSNGzdy+eWXd9j7ISIi0tGOFJazfl8+3x8sZNPBQvbklDaYbzbByOQIzugfzZiUCEb0CicpPFAD5kW6qFMe0yJuTzzxBKWlpfz0pz8lNDSUu+66i+LiYs/8ZcuW8eijj3LXXXdx9OhRoqOjmTx5Mueffz4Av//970lPT2fmzJnYbDZ+8YtfcMkllzTYxt133828efMYNmwYFRUVpKenn7Aui8VCfn4+c+fOJTs7m5iYGC677DIWL17c/m+CiIhIB3G6DDYfLmT1zhxW78whLbukyTL9YoI5c0AMZw6IYXK/aLWiiHQjp3z2sLZqy9nDpPvQZysiIm11pLCcL/fk8cUed5ev4opqzzyL2cSYlAgm9Ilyj0dJjSA6JMCL1YrIyei0s4eJiIiItIdSRw0b9uXzxZ5cvtiTx/68huNSQgP9mDY4jhlD45g6KJYIm9VLlYpIZ1NoEREREa9wugx+PFLkaU35/lBhgzN81bWmTBkYw5SBsYxODsfPYvZixSLiLQotIiIi0mmOFJbzxZ48vtiTy1d78xt0+QLoE23jrNqQMrl/NGGBGpciIgotIiIi0sHKHDW8t/kob393hM2HixrMCw3048z+MUwZFMOUAbGkRvv+pQ5EpPP5ZGjp5HMDSCfQZyoi0vPsyrLz5sbD/O+mI5RU1gDuUxGPS41kysBYpgyKYVQvdfkSkRPzqdBSd7X4qqoqgoJaf0V68X1VVVXAsc9YRES6p6LyKt7fksHb3x1h69Fjp+3vE23j2km9uXhML2JDdZYvEWkbnwotfn5+2Gw2cnNz8ff391ycUbo2l8tFbm4uNpsNPz+f+iMnIiLt5LsDBSxbf4BV27OpcroA8DObOGdoHFefnsrZA2Mxm3VhRxE5OT71C9JkMpGYmEh6ejoHDx70djnSjsxmM6mpqboSsYhIN/PN/nyeWb2H9fvyPdOGJIRy5WkpXDImSddOEZF24VOhBcBqtTJw4EBPdyLpHqxWq1rORES6ka/35fPM6t1s2F8AuFtVLh+XzHWTezM8KUwHqUSkXflcaAH3UXldNV1ERMT3bNifz5OrdvNtujus+FtM/Oy0FG6b1p/kSJ35S0Q6hk+GFhEREfEdhmHwTXoBf/lsD1/tdXcDs1rM/Pz0FG6d2p+kCJ08R0Q6lkKLiIiItOjHI0U8/O8dfHewEHC3rFw1IYX50weQGK6wIiKdQ6FFREREmqisdvLkqt289MV+DAMC/MxcMT6ZW6f2JyVK3cBEpHMptIiIiEgD244Wc+dbm9mdXQrAxWOSuG/2UBLCNd5URLxDoUVEREQAKHXU8OQnu3l1fTouA2JCrCy5bBTnDov3dmki0sMptIiIiPRwhmHwwY+ZPPbhTrLslQBcMCqRh386XNdZERGfoNAiIiLSg207Wszif29n4wH3QPve0TYevngEUwfFerkyEZFjFFpERER6IKfL4H8+38vTn+7GZUCgv5nbpg7gl1P7Eehv8XZ5IiINKLSIiIj0MNn2Shau2MzX+93XXLlgVCIPnD9U11sREZ+l0CIiItKDrNudy2/e3Ex+WRU2q4VHLh7B5eOTvV2WiMhxKbSIiIj0AE6XwTOf7uYvn+/FMGBoYhjPXjOW/rEh3i5NROSEFFpERES6uZySShb881h3sKtPT+XBi4Zp7IqIdBkKLSIiIt2Uy2Xw9w0HWfpJGvbKGmxWC0suG8nFY3p5uzQRkTZRaBEREemG8ksdLHxzM1/syQNgeFIYz/x8LAPi1B1MRLoehRYREZFu5mhRBde9/A3788oI9Ddz//lDmTOxNxazyduliYicFIUWERGRbmRvTinXvfINmcWV9IoIYtkNExgUH+rtskRETolCi4iISDex9Ugx85Z9S0FZFf1jg/nHzRNJDNe1V0Sk61NoERER6Qa+3pfPLa9/R6mjhlHJ4bx6w+lEBVu9XZaISLtQaBEREeniPt2Rza/e+J6qGheT+kXx0tzTCA3093ZZIiLtRqFFRESkC1vx7SHuX7kVlwEzhsbz7DVjdf0VEel2FFpERES6IMMweGb1Hp7+dA8AV45PZsllI/GzmL1cmYhI+1NoERER6WJqnC5+9942Vmw8DMAdPxnAnecOwmTSKY1FpHtSaBEREelCapwubn/jBz7anoXZBA9fPIJrJ/X2dlkiIh1KoUVERKSLMAyDe9/5kY+2Z2H1M/OXq8cyc3iCt8sSEelwCi0iIiJdxJ9X7+Xd749iMZv4n2vGce6weG+XJCLSKTRaT0REpAt4f0sGT326G4DHLhmhwCIiPYpCi4iIiI9btzuXu97aDMCNZ/bl56enercgEZFOptAiIiLiw344VMit/9hEtdPgwlGJ/O6Cod4uSUSk0ym0iIiI+Khv9udz/bKNlFc5mTIwhid/NgazWac1FpGeRwPxRUREfNC73x9h0Ts/Uu00GJcawV+vHY/VT8caRaRnUmgRERHxIYZh8NSq3fz5s70AnD8ygSd/NoZAf4uXKxMR8Z42HbJZsmQJEyZMIDQ0lLi4OC655BLS0tI6qjYREZEexekyuPOtLZ7Actu0/jx79TgFFhHp8doUWtauXcv8+fPZsGEDq1atoqamhvPOO4+ysrKOqk9ERKTHeHJVGit/OIqf2cR/XT6SRbOGaAyLiAhgMgzDONmVc3NziYuLY+3atZx99tmtWsdutxMeHk5xcTFhYWEnu2sREZFuo9RRw58+TuPV9QcAeOqq0Vw6Ntm7RYmIdILWZoNTGtNSXFwMQFRUVIvLOBwOHA5Hg8JERETELa/UwXWvfMvOTPf34x0/GaDAIiLSyEmfhsQwDO68807OOussRowY0eJyS5YsITw83HNLSUk52V2KiIh0K9n2Sq564Wt2ZtqJCQng9RtP567zBnu7LBERn3PS3cPmz5/Phx9+yJdffklycstHhJpraUlJSVH3MBER6dEO5JUxb9m3HMwvJzE8kOU3T6RfbIi3yxIR6VQd2j3sjjvu4P3332fdunXHDSwAAQEBBAQEnMxuREREuqXPdmXzmze3UFxRTUpUEG/cPImUKJu3yxIR8VltCi2GYXDHHXewcuVK1qxZQ9++fTuqLhERkW6npLKaRz/YyZvfHQZgbGoEL1w7nriwQC9XJiLi29oUWubPn88bb7zBv/71L0JDQ8nKygIgPDycoKCgDilQRESkO9ieUcwvXt/E0aIKTCa48cy+3DNzsK7BIiLSCm0a02IyNX+u+GXLlnH99de3ahs65bGIiPQkldVOPvgxk8Xvb6fEUUPvaBtPXDGa0/u2fOZNEZGeokPGtJzCJV1ERER6nG1Hi7n1H5s4UlgBwOl9onj5+tMIC/T3cmUiIl3LKV2nRURERJq3akc2t7/xPY4aFwlhgVw7KZWbp/RTdzARkZOg0CIiItLO3tx4iPtXbsPpMpg2OJZnfj6W8CC1roiInCyFFhERkXZSVeNi8b+3s/ybQwBcNq4X/335KPwsJ30tZxERQaFFRESkXWTbK/nV8u/ZdLAQkwl+M2MQt08fgNnc/ElsRESk9RRaRERETtF3Bwq4bfn35JY4CA30488/H8v0IXHeLktEpNtQaBERETkF//z2EL9/bxs1LoPB8aG8cN14+sQEe7ssEZFuRaFFRETkJC37Kp3F/94BwAWjEvnvy0cRHKCvVhGR9qZ/WUVERE7Ca+sPeALLbdP6c+/MwS1ehFlERE6NTmciIiLSRq9/fYAH398OKLCIiHQGhRYREZE2eG39Af7wL3dguXWqAouISGdQ9zAREZFWqHG6eOSDHbz29UEAfnl2PxbNUmAREekMCi0iIiInUFxezfw3vufLvXkA3H3eIOZPH6DAIiLSSRRaREREjiOjqIJ5f/uWPTml2KwWnrpqDDOHJ3i7LBGRHkWhRUREpAW7s0uY97dvySyuJCEskGU3TGBoYpi3yxIR6XEUWkRERJrx3YECbnx1I/bKGgbEhfDajafTKyLI22WJiPRICi0iIiKNrNqRze1vfI+jxsW41Aj+dv0EImxWb5clItJjKbSIiIjUs+LbQ9y/cisuA84ZEsez14wjyGrxdlkiIj2aQouIiAhgGAZ/+WwvT67aDcDPTkvm8UtH4mfRJc1ERLxNoUVERHo8p8vgwfe38Y8NhwC44ycDuPPcQTqlsYiIj1BoERGRHi2/1MHCNzfzxZ48TCZY/NPhzJ3cx9tliYhIPQotIiLSY206WMjtb3xPZnElQf4Wlv5sNOePTPR2WSIi0ohCi4iI9Egf/JjBb97cTLXToF9sMM/PGc/ghFBvlyUiIs1QaBERkR7n718f4A/vb8cwYObweJb+bAwhAfpKFBHxVfoXWkREegzDMHj60z08s3oPANdOSmXxT0dgMWvAvYiIL1NoERGRHqGqxsX9K7fyv5uOALDgnIEsnDFQZwgTEekCFFpERKTbKyqvYv4b3/PV3nwsZhOPXDyCayamerssERFpJYUWERHp1j7alsnv3ttOXqkDm9XC/8wZx/TBcd4uS0RE2kChRUREuqW8UgcPvr+dD3/MBGBgXAhP/3wMw5PCvVyZiIi0lUKLiIh0K4Zh8P6WDB56fzuF5dVYzCZum9qfO84ZQICfxdvliYjISVBoERGRbqOy2smid37kX5szABiSEMqfrhzNiF5qXRER6coUWkREpMszDIPVO3N46tPdbM+w42c2cftPBvCraQOw+pm9XZ6IiJwihRYREenSCsuqWPTOj3yyIxuA8CB/nr92HGf0j/FyZSIi0l4UWkREpMvasD+f37y5mcziSvwtJm48qy83ndWXuNBAb5cmIiLtSKFFRES6nGqni798tpdnP9uDy4B+McH8+eqxGrsiItJNKbSIiEiXsulgIb9950f25JQC8LPTknnwouEEB+grTUSku9K/8CIi0iUYhsGyrw7w+H92UuMyiA628uBPh/PT0UneLk1ERDqYQouIiPi8UkcNi9750XOhyAtHJfLYJSMJt/l7uTIREekMCi0iIuLTdmeX8Kvl37M3pxQ/s4kHLhjK9Wf0wWQyebs0ERHpJAotIiLik5wug1e+3M+fPtlNVY2L+LAAnpszjvG9o7xdmoiIdDKFFhER8TkH88u4++0tbDxQCMC0wbE8ccVoYkMDvFyZiIh4g0KLiIj4DEeNk9fWH+DpT/dQXuUk2Grh9xcO46oJKeoOJiLSgym0iIiIT9hyuIjfvLmZ/XllAEzqF8UTV4wmJcrm5cpERMTbFFpERMSrnC6Dv67dx1OrdlPjMogLDeDu8wZzxfhkzGa1roiICJjbusK6deu46KKLSEpKwmQy8d5773VAWSIi0hOkZZVwxV/X88THadS4DM4fmcAnvzmbn01IUWARERGPNre0lJWVMXr0aG644QYuv/zyjqhJRES6uTJHDc+v2cdf1+6jxmUQbLXw4E+Hc+X4ZI1dERGRJtocWmbPns3s2bM7ohYREenmqmpcrNh4iD+v3kteqQOAGUPjeeSS4SSGB3m5OhER8VUdPqbF4XDgcDg8z+12e0fvUkREfEyN08XKH47y58/2cLigAoDe0Tbumz2EmcMT1LoiIiLH1eGhZcmSJSxevLijdyMiIj7I6TL495YMnlm9h/Tas4LFhASw4JwBXDUhFatfm4dWiohID9ThoeW+++7jzjvv9Dy32+2kpKR09G5FRMSLapwu/m9bFn9evYc9OaUARNr8uXVqf66b3BubVSevFBGR1uvwb42AgAACAnQFYxGRniDHXsmKjYd545tDZNkrAQgL9OMXZ/fj+jP7EhKgsCIiIm2nbw8RETklhmHwbXoBr284yMfbsqhxGQBEB1u5dlJvbprSl7BAfy9XKSIiXVmbQ0tpaSl79+71PE9PT2fz5s1ERUWRmprarsWJiIjvKnXUsPKHo/zj64OkZZd4po/vHcl1k3oze2QCAX4WL1YoIiLdRZtDy3fffcf06dM9z+vGq8ybN49XX3213QoTERHfU1xezepd2Xy8PYt1u/OoqHYCEORv4ZKxSVw7qTfDk8K9XKWIiHQ3bQ4t06ZNwzCMjqhFRER8UFZxJZ/syOLj7Vls2F+A03XsO6BfTDDXTurN5eOTCQ9SFzAREekYGtMiIiJN7M0p5ePtWXyyI5sth4sazBscH8rM4fGcNzyB4UlhusaKiIh0OIUWERGhuKKajekFfL0/nzVpOezLLfPMM5lgbEoEM4cnMHN4An1igr1YqYiI9EQKLSIiPZC9sprvDhTw9b58NuwvYHtGMfV6feFvMTG5fwwzh8dz7tB44sICvVesiIj0eAotIiI9QKmjho0HCtiwL58N+/PZerRhSAH3+JSJ/aKZ3D+aaYNjdZpiERHxGQotIiLdTEWVk20ZxWw+VMTWo8VszygmPa+sSUjpE21jcv9oJvWLZmLfaBLC1ZoiIiK+SaFFRKQLq6x2siurhG1Hi9meYWfL4SLSsksanOGrTu9oG5P6ultSJvaLIjE8yAsVi4iItJ1Ci4hIF1FSWc2ODDvbMuxszyhm+1E7e3NLmw0osaEBjEmJYHRyOMN7hTM8KYy4ULWkiIhI16TQIiLiYyqrnaTnlbEvt5S9OaXsyS5le0YxB/LLm10+OtjqCSYje4UzJiWCxPBAnYpYRES6DYUWEREvMQyDI4UV7MoqYVemnV1ZJezMsnOgmfEndXpFBDEsKYwRSe6QMqJXOPFhAQooIiLSrSm0iIh0gpLKanZnl7Azs4RdWXZ2ZZaQllVCiaOm2eXDAv0YEBdC/9gQBsSFMDwpnGFJYUQFWzu5chEREe9TaBERaUeV1U4O5JexN6eU3Vkl7Mxyh5TDBRXNLu9vMTEgLpShCaEMSQxlSEIYQxJCiQ1V64mIiEgdhRYRkZNQXFHN3pxS9uWUesae7M0t5XBBeYtduxLCAj3BZGjtfb/YYPwt5s4tXkREpItRaBERaYZhGOSWOEjLLmF3dilHCyvIKKogs7iCo0UV5JVWtbhuaG3XroFxIQxNDPO0nkSqa1fXZM+EfZ9BWQ6Mmwe2KG9XJCLS4yi0iEiPZhgGuaUOT6vJnpxS0rJKSMsuoai8+rjrJoYHesac9I8LoX9sMAPiQogNUdeubsGeCZ89Aj++Ca7asUcuJ5x9t3frEhHpgRRaRKTHKCqvYldWCbuz3YPg02of2yubHwxvNkGf6GAGxofQOzqYpPBAkiKCSIoIok9MMCEB+ie02zEMyNwCW1bAD/+AqpKG88vzvVOXiEgPp29cEel2isur2Z3jDiR7skvZk+Pu4pVb4mh2eZMJUqNsDKhtNRmcEMqg+FAGxIUQ6G/p5OrFK+yZsPUtd1jJ2XFseq/xMPu/3d3DPn8Mqpu/Vo6IiHQshRYR6bIqqpzszSklLbuEtCw7adnuM3Zl2StbXCc5MojB8aEMSghlcHwoA+PdpxVWOOmB8vbAd8vg0Hp364rhck+3BMCQ82H01TDgXDCb4dDX7nnVzZ8FTkREOpZCi4h0CQVlVWw+XMjmw8WkZdnZnV3KgfwyjBbO1JUUHsjA+FAGxYcwMD6UgXHue3Xp6uEKD8KOf8GO9+DopobzUifD6J/DsEsgKKLhPP8g971aWkREvELf3iLic6qdLnZm2vnhUBE/HCrkh8NFHMxv/sdipM2fwQnu0wcPjA9hSEIoA+NDCQv07+SqxWcVHoDt77mDSsYP9WaYYPBsGHkFJJ8OESktb8Pf5r5XS4uIiFcotIiI12UWVxwLKIeK2Hq0GEeNq8ly/WODGZMSybCkMAbHhzI4IZSYEKvO1CUNlRfAnk9g76eQtRVydx2bZzJD7zNh2MUw9KcQGt+6bXpaWhRaRES8QaFFRDpVRZWTbRnFnoDyw6GiZseghAf5MzY1grEpkYxJjWBMcgThNrWeSAuyd8CG59yD6DM2g+E8Ns9khj5nubt9Db0IQuLavn1PS4u6h4mIeINCi4h0GJfLIC27hC2Hi9hypIgth4tJyy7B2eiS8RaziSEJoZ6QMjY1gr4xwWpBkeOrtLvP9rX7I9j/+bGB9ABxw92D6ZNPh17jIDjm1PallhYREa9SaBGRdlVUXsW6PXmsTctl7e5c8kqbnmY4LjSAMSkRjOsdydiUCEYmh2Oz6p8jOY6SbPdZvg6uh4NfQ16a+4KP9YPK0ItgxBWQOBqi+rbv/tXSIiLiVfqVICKnpNRRwzf78/l6Xz5f789nR6a9wRm9bFYLY1IiGJUcwejkcMakRpAYHuS9gsX3GQYUHXKfZvjAl+6gUrCv+WVjBsG4uTBgBsQN7biaPC0tLZ9OW0REOo5Ci4i0SbXTxZbDRXy5N48v9+Sx+XARNY26ew2OD2Xq4FimDYrltD5RWP3MXqpWfJrLBUUHIW+3+5azCzK+h/y94KxqtLAJ4kdA7zPct6Qx7uuphCa4rw7a0dQ9TETEqxRaROS4DMM9LuWrvfms35vHN+kFlDpqGizTO9rGGf1jmNw/mkl9o4gLC/RSteKTahzuIJK3G3J3u7t25e6G/D1Q00LLhdkPksa6A0rqGZA6qem1UzpT/e5hhtE5QUlERDwUWkSkidwSB+t257JuTy5f7c1vMi4l0ubPGQNiOKv2lhJl81Kl4jNqqqA8331NlPw97qvN5+1xB5TCAw3HntRnCYDoARA7CGIGQ+Iod4tKaCL4WTvzFRyfX20QN5zgrPat2kREegCFFhGhqsbF5sNFfLknlzW7c/nxSHGD+YH+Zk7vG82Z/aM5c0AMwxLDMJt1pLlHqSyGosNQfLj2/lDD52U5x18/IMw9/iR2cMP7yD5gtnTKSzgl/vWCeXW5QouISCdTaBHpgWqcLrYeLWb9vnw27M9n44ECKqsbHgkf0SuMaYPiOGtgDGNTIwjw6wI/LKXtnDVQlgslmVCa7b4vyT72vPiIO5Q4ik+8LZMZwpIhZgBED4SYgccCSkh81+5SZfEHk8Xd0lJd4d2uaiIiPZBCi0gP4HIZ7Mi0s2F/Puv35fNtM+NSYkKsTOoXzbTBcZw9KIa4UI1L6dKcNe7Wj8YhpPHzstyWu241FhQFESkQngIRqbX3tc/Dk93zzd30pAsmk7u1papEpz0WEfEChRaRbqiiysnOLDtbjxTz9b58NqTnU1Re3WCZ8CB/JvWL8gygHxgXoos5+jqX091Nq6LQfWsuhNQ9L8sFjBNuEnC3IITEuc/EFZLgvq+7hfU6FkoCQjr05fk8/6Da0KIziImIdDaFFpEurqi8iu0ZdrZnFNfe29mfW0qjsxATbLVwet9jIWVoYhgWjUvxPsNwBxB7hvtWkgnleVCW5w4epdnuEFKaDZVFbdu2yeLullU/hDQOJSEJ7qvFd4VxJd6m0x6LiHiNQotIF2EYBpnFlQ0Cyo4MO0eLmv8BFRNiZXhSOKf3jWJy/2hG9grH39JNu+74GsNwt4iU5riDR3m++1ZRAOUF7ml1IcWeATVt/BFsDXWPqQiOdZ9lKzTefR8S3/C5LVphpD3VP+2xiIh0KoUWER9T7XRxpLCCg/llHCoo52B+OWlZJezItFNQ1viCe24pUUEMTwxneFIYw3uFMTwpnLjQAHX3ak/Vle6w0eSW1/Bxeb773uk48Tbrs0VDWJI7bATHuVs/gmNrg0m8O5DYYtxhxeLfIS9RTkAtLSIiXqPQItKJDMOgrMpJbomDvFIHuSUODheUc7CgnEP55RwsKONoYUWTrl11LGYTA2JDGJ4UxrAkdzgZlhRGeJB+xLaZy+XuluUJHDlNA0hZbm1rSZ57LENbBYS5w4ctxh1KbNFgi3TfhyZBeK/aoJIE/jrxgc9TS4uIiNcotIicIsMwKHHUkFfiIK+0irzSY4HEfX9sWl6po8mphZsT6G8mNcpGalQwvaNt9K8NKoMTQgn0V3efFlWVN9P60UwYKc1xt4gYzrZt32Ktbf2IqW0NqXtc2ypii4HgaPd9SNyxI/PSPailRUTEaxRaRJrhdBkUlLnDRn5pFfll7kCSXxs88kuryCurIq/EQW6pg6qaVp4ytpbNaiEmJICYECvJkTZ6R9tIjbLRO9odUtS1q5Gq8tqzYmVCSZb73t7oeVkuVJW2fdtBkce6YTUJI7XTQ2q7awWEde1rjcip8YQWtbSIiHQ2hRbpMWqcLvLLqjwtIJ5WkcbPSx0UlFW12EWrJSEBfsSEWGvDSAAxoVZiQwKJCT02LbZ2us2qv3qA+4h1aba75cNzX++x/aj7iuvl+a3fpiWgNmjENgojsU3HitiidWVzaT1P9zC1tIiIdDb9cpIurarG5W4Fqe2ClVvXDatRl6y80qoWB7G3xGSCSJvVE0SiQwKIDnY/9zwOrQ0iIQEEWdVtqwFnDZRmuc+OVXwEHHZ316zcNHcIydvtDiSt5R8MYYm1Z8eqO2Vvvech8e4gEhCq1hDpGOoeJiLiNQot4pNKKqvJLK4ko6iCnBJHg4Hr9VtKiiuqT7yxeswmiAp2d8uKDQ3wdNE61jpyrDUkymbFT6cIbsrlcp+6tyTLHUpKsupdSyQLio+6g0ppVuuutG4JcJ8dKzjOHTxC6t2HJhy76npghMKIeJcG4ouIeI1Ci3S6iionmcUVnlCSWVxJZnEFGUXu+8yiSkocNa3enp/ZRHT94OHpmtXweUxIAJE2qy6o2JizpvY0vY1O21t3TZG6+/J8931pNrhaGRbN/u7WkbBe7rEjAaEQO+RYGIkf7p6uMCJdgVpaRES8RqFF2pWjxkl2sYOM4oomQSSjNpwUlbfuB29YoB9JEUHEhQUSV9sqEhsaUNtCciyUhAf5Y1YQcTMMOLoJCg+4L27oKHF3y6q0N3pce6ssdp/292TYYo51ywpNPNZCUnca37Bkd3cts1qrpJuoCy1tvRioiIicMoUWaTWXyyCvzOEOIkUVHC06FkoyiirIKK4kt6R1F9SzWS0khgeSFBFEYnggieFBJEU0vA8O6OF/PF1O9xHd6vLaW0W9+3qPq0rd40QKD0DhQchLa/u+TGb3oPS6wem2aLBFQVBUo8dR7qASHKcB7NLzaCC+iIjXnNSvwueee44nnniCzMxMhg8fztNPP82UKVPauzbpZC6XQW6p+2KHRworjt0Xuu+ziiupcp54jILVz0xSbRBJjAgkqdF9YngQYYF+Xe+UvoYBzmqoqTx2q65s+Xl1BdQ4jh84jjetrVdUr+Nvg17jITDc3R0rIAwCwxo9Djv2ODjW3UXLrBMJiByXuoedNMMwcBpOXIar4b3r2PO6W7PL1d432I7LiYGBYRh4/qt97P5f7ePa/Td+XH+9uuWBFuc13o/ntdWfZzS/jQbLN1dvo7rqttGa5RsvU/+1N95me7y+lupqy/IN6m+m3uZeX/33pMHjemf6rP8Z1n+/T7RuW5dv077qvTdN1jWa7sNouJM21Xe8fZ3Uuieor6X9GYaBy3B5lq17bBgN/5y5ase9Vpe1rgdOm0PLm2++ycKFC3nuuec488wzeeGFF5g9ezY7duwgNTW1rZuTTmQYBvllVU3CyOGCco4WVnCkqOKE1xsxmyA+LNDTSpIUEURSvceJ4YFEBVt9J5AYBjir3OHBUQJZW93jNuqHipqK5sNHdVntWI88dzeqmsrWDSzvCP429w8mz329x35BEJEKcUPdQaXfVHcIEZEW1X2punCBAS5cDb5oG/+Adt+qcfpZcFUV4yw+cPwf1O34w7y55VrcTu3yLlzHXb/Fel3OZl97c4/rXptnX41ea/17EZGWOKta92+EyWguJh3HxIkTGTduHM8//7xn2tChQ7nkkktYsmTJCde32+2Eh4dTXFxMWFhYW3YtLTAMg7IqJwWlVeSVOSiovRhiflkVWcWVnpBypLCCiurj/8GwmE0khgeSHBlESqSN5EgbKVFBJEfa6BUZRFxoAP5tOaOWYYCrxt1C4aw69riqDIoPuYNETZU7EDgdtSHCUbus033FcleNe7B4dZn7IoNVZe7Hzuram+PYNmocDbfTzIBxo97N1Xi6CQxMnvk0uj+2DOAXiGEJBL8ADD8rhl8Qhl8Ahl9A7bS6x0EYfoEY/oHudfwD3c/9At3z/OuWqz8voHZ+IIbFWrt/o9kjVc3Oq3d05mSOhnnm15/XwpHIunXqb7/JEbzjzWvNazrOUcLWHMFsXGOz0xvVWH9e4+Vaei9OdDSzrZ9Jc7Uc731qqeYmyx3ns2zuvfLMa+4Ibu32jhcADMPwTGvwmEbL1D8ax7HgAMeO1LmMRuueYDvNbbP+axXfYMKE2WTGbDJjMVmO3ZuPPW9uvslkwvNf7cGyxtNMHDuI1uw8Eydevt56zS5fO63utZxo+foH9lpcvpnX1mT5evU2+140nnec5ev27dlHS8s3qrW55evvv7Wv44TLN3pNjV9f42kN/nw1t24z0056X/U2Uf/PQWu2d1LrNnNg+Hj1mRrupE31HW9fLa1rNpk980y4/27X/7PteV67TJm9jHF9xp0wG7SppaWqqopNmzbx29/+tsH08847j/Xr17dlUzz2xjwCgvyh0ZeH+3u44RdkY3VTTNRvsjMazDu2rFFv2aZLtLSW5/+baQpsXMexCa7jz2+2smM7avmVgsswam/ux+4jZAYuF9S4XJ4LIZoavaK6P0KJZoPEaPdzP4sZfz8T/hYzVosJqxn8am8Ws4GBy72PShf5GS7yjhpswoVhuGprqPvx4F624fTaxxju6RjUhQAX4DLVhYVjwcBlOva82WVMtdPrlql97p5nwuUPhn/dMmYMUxAugo5tH1PDbXZYI1BF7a1WTe1NRLo8i8mCCbA4qzGbTFgsVsyYsGB2P8eE2WTCjPtmqX1cN71uOTNgxnxsfoN1zO7HJtzLe9atd1+7nAk8y1uaXc6M2USzNdavyb0d9/LNb+fY6zre/kye12Ju5rU3fm/MTd4jn2md7yoaH1XrsJ0o4EvHs5dVtmq5NoWWvLw8nE4n8fHxDabHx8eTlZXV7DoOhwOH41jffLvdDsC/ScNCM33oTS08lo7nomHTQ2MmTvCZmGtv0uRolHtig6NHrT3aBq08glZvnQZHxxqt09yRs5b20dz0xkdYmsw7wZG6473WJnU1es/qb7e597O5fTS7TqPprTkqedz3qBXva5PljvM+tVTDcd+T4/y5ONHRzWY/k/rvZTPT6z+uO2pmqv3RajI1fOyZRu2yjY6+NV6+bl7d0bq65Zqs28x2mntcfzsn3Ga9desf1QfgyHfw8jmIiEg7crQuHJ/UQPzGR0QMw2jxKMmSJUtYvHhxk+mTHeFYzX600DDXqLms4TyTQQszTU0nNbuFhtOar7zuC9ndXail5VrcVtMHJ3zW3HtR99xsdn+RWky1R6zMtUfjzGb8zSYsFjN+dZ+Bqfl6m2zdVJtCTCYwmTHXfjmbzJbaxxZMZjMmkwWzuXaeyQ+z2eKZZjL7YTb5YbL4YTb7YTb7u6dZ3Pd1j93T3ffu9Rv+8DCbzMd+4DT6YVH/x4Vn+WZ+3NRNb/wjpPGPE88Pk3o/lpr9UUnDH46e+a344Sgi3VDSOJj+OyhM93YlIiLdR3kV8MoJF2vTmJaqqipsNhtvv/02l156qWf6ggUL2Lx5M2vXrm2yTnMtLSkpKRrTIiIiIiLSw7V2vHub+vJYrVbGjx/PqlWrGkxftWoVZ5xxRrPrBAQEEBYW1uAmIiIiIiLSWm3uHnbnnXdy3XXXcdpppzF58mRefPFFDh06xK233toR9YmIiIiISA/X5tBy1VVXkZ+fz8MPP0xmZiYjRozgP//5D7179+6I+kREREREpIdr83VaTpWu0yIiIiIiItBBY1pEREREREQ6m0KLiIiIiIj4NIUWERERERHxaSd1cclTUTeExm63d/auRURERETEh9RlghMNs+/00JKfnw9ASkpKZ+9aRERERER8UH5+PuHh4S3O7/TQEhUVBcChQ4eOW1hjEyZMYOPGjR1V1knz1brq2O12UlJSOHz4sM+erc3X30Pw7Rq7wmcMvv0e1vHlGvU5tw9fr0+f88nzxZrq6wqfra+/h+C7NXaFz7eOr72HxcXFpKamejJCSzo9tJjN7mE04eHhbfpQLRaLT/4h8NW6GgsLC/PZOrvCe9gVavTlzxi6xnvYFWrU53xqfL2+Ovqc284Xa2qOL3+2XeE99PUaffnzreOr72FdRmhxfifVccrmz5/v7RKa5at1dSVd4T3sCjX6uq7wHnaFGn2dr7+Hvl5fV+GL76Mv1tTVdIX3sCvU6Ou66nuoi0t2c3q/uz99xj2DPueeQZ9z96XPtnvT53vyfPbikgEBATz44IMEBAR09q57JL3f3Z8+455Bn3PPoM+5+9Jn273p8z15rX3vOr2lRUREREREpC26zJgWERERERHpmRRaRERERETEpym0iIiIiIiIT1NoEemmTCYT7733nrfLEBER6bH0Xdx+FFq6uPXr12OxWJg1a5a3S5EOdv3113PJJZd4uwzpIIcPH+amm24iKSkJq9VK7969WbBgAfn5+a1af82aNZhMJoqKijq2UDlp+jvcven7uGfQ32PvUWjp4v72t79xxx138OWXX3Lo0KFT2pbT6cTlcrVTZSLSWvv37+e0005j9+7d/POf/2Tv3r389a9/ZfXq1UyePJmCggJvlygiJ6DvY5GOpdDShZWVlfHWW29x2223ceGFF/Lqq6965tUddf3www8ZPXo0gYGBTJw4ka1bt3qWefXVV4mIiOCDDz5g2LBhBAQEcPDgQS+8EmmrPn368PTTTzeYNmbMGB566CGv1COnZv78+VitVj755BOmTp1Kamoqs2fP5tNPP+Xo0aM88MADADgcDu69915SUlIICAhg4MCBvPLKKxw4cIDp06cDEBkZiclk4vrrr/fiK5IT+eijjzjrrLOIiIggOjqaCy+8kH379nnmHzhwAJPJxLvvvsv06dOx2WyMHj2ar7/+2otVS0v0fdwz6bu4cym0dGFvvvkmgwcPZvDgwVx77bUsW7aMxpfdueeee/jTn/7Exo0biYuL46c//SnV1dWe+eXl5SxZsoSXX36Z7du3ExcX19kvQ6RHKygo4OOPP+ZXv/oVQUFBDeYlJCQwZ84c3nzzTQzDYO7cuaxYsYI///nP7Ny5k7/+9a+EhISQkpLCO++8A0BaWhqZmZk888wz3ng50kplZWXceeedbNy4kdWrV2M2m7n00kubHF1/4IEHuPvuu9m8eTODBg3i6quvpqamxktVS0v0fSzS8fy8XYCcvFdeeYVrr70WgFmzZlFaWsrq1auZMWOGZ5kHH3yQc889F4DXXnuN5ORkVq5cyc9+9jMAqquree655xg9enTnvwARYc+ePRiGwdChQ5udP3ToUAoLC9m4cSNvvfUWq1at8vwd79evn2e5qKgoAOLi4oiIiOjwuuXUXH755Q2ev/LKK8TFxbFjxw5GjBjhmX733XdzwQUXALB48WKGDx/O3r17GTJkSKfWK8en72ORjqeWli4qLS2Nb7/9lp///OcA+Pn5cdVVV/G3v/2twXKTJ0/2PI6KimLw4MHs3LnTM81qtTJq1KjOKVpE2qzuaG16ejoWi4WpU6d6uSJpD/v27eOaa66hX79+hIWF0bdvX4AmYyHq//ucmJgIQE5OTucVKiek72ORzqGWli7qlVdeoaamhl69enmmGYaBv78/hYWFx13XZDJ5HgcFBTV4Ll2D2Wxu0vWgfjcD6ToGDBiAyWRix44dzZ6RZteuXURGRmKz2Tq/OOkwF110ESkpKbz00kskJSXhcrkYMWIEVVVVDZbz9/f3PK77t1oDtH2Lvo97Ln0Xdy61tHRBNTU1vP766yxdupTNmzd7blu2bKF3794sX77cs+yGDRs8jwsLC9m9e7e6FXQDsbGxZGZmep7b7XbS09O9WJGcrOjoaM4991yee+45KioqGszLyspi+fLlXHXVVYwcORKXy8XatWub3Y7VagXcZx0S35afn8/OnTv53e9+xznnnOPpAihdj76PezZ9F3cuhZYu6IMPPqCwsJCbbrqJESNGNLhdccUVvPLKK55lH374YVavXs22bdu4/vrriYmJ0fnFu4Gf/OQn/P3vf+eLL75g27ZtzJs3D4vF4u2y5CQ9++yzOBwOZs6cybp16zh8+DAfffQR5557Lr169eKxxx6jT58+zJs3jxtvvJH33nuP9PR01qxZw1tvvQVA7969MZlMfPDBB+Tm5lJaWurlVyUtiYyMJDo6mhdffJG9e/fy2Wefceedd3q7LDkJ+j7u2fRd3LkUWrqgV155hRkzZhAeHt5k3uWXX87mzZv5/vvvAfjjH//IggULGD9+PJmZmbz//vueI7LStbhcLvz83D0677vvPs4++2wuvPBCzj//fC655BL69+/v5QrlZA0cOJDvvvuO/v37c9VVV9G/f39+8YtfMH36dL7++mvPIPvnn3+eK664gl/96lcMGTKEW265hbKyMgB69erF4sWL+e1vf0t8fDy33367N1+SNKPu77DZbGbFihVs2rSJESNG8Jvf/IYnnnjC2+XJSdD3cc+j72LvMRmNO+NJt7BmzRqmT59OYWGhziTUTcyaNYsBAwbw7LPPersUETkJ+jvcM+n7uHvR32PvUUuLiI8rLCzkww8/ZM2aNQ1OnykiXYP+Dot0ffp77H06e5iIj7vxxhvZuHEjd911FxdffLG3yxGRNtLfYZGuT3+PvU/dw0RERERExKepe5iIiIiIiPg0hRYREREREfFpCi0iIiLtZMmSJUyYMIHQ0FDi4uK45JJLSEtLa7CMYRg89NBDJCUlERQUxLRp09i+fbtnfkFBAXfccQeDBw/GZrORmprKr3/9a4qLixts57HHHuOMM87AZrPprFQi0u0ptIiIiLSTtWvXMn/+fDZs2MCqVauoqanhvPPO81xPB+C///u/efLJJ3n22WfZuHEjCQkJnHvuuZSUlACQkZFBRkYGf/rTn9i6dSuvvvoqH330ETfddFODfVVVVXHllVdy2223deprFBHxBg3EFxER6SC5ubnExcWxdu1azj77bAzDICkpiYULF7Jo0SIAHA4H8fHx/Nd//Re//OUvm93O22+/zbXXXktZWZnnwnZ1Xn31VRYuXEhRUVFHvxwREa9RS4uIiEgHqevSFRUVBUB6ejpZWVmcd955nmUCAgKYOnUq69evP+52wsLCmgQWEZGeQqFFRESkAxiGwZ133slZZ53FiBEjAMjKygIgPj6+wbLx8fGeeY3l5+fzyCOPtNgKIyLSE+iQjYiISAe4/fbb+fHHH/nyyy+bzDOZTA2eG4bRZBqA3W7nggsuYNiwYTz44IMdVquIiK9TS4uIiEg7u+OOO3j//ff5/PPPSU5O9kxPSEgAaNKqkpOT06T1paSkhFmzZhESEsLKlSvx9/fv+MJFRHyUQouIiEg7MQyD22+/nXfffZfPPvuMvn37Npjft29fEhISWLVqlWdaVVUVa9eu5YwzzvBMs9vtnHfeeVitVt5//30CAwM77TWIiPgidQ8TERFpJ/Pnz+eNN97gX//6F6GhoZ4WlfDwcIKCgjCZTCxcuJDHH3+cgQMHMnDgQB5//HFsNhvXXHMN4G5hOe+88ygvL+cf//gHdrsdu90OQGxsLBaLBYBDhw5RUFDAoUOHcDqdbN68GYABAwYQEhLS+S9eRKQD6ZTHIiIi7aS5cSkAy5Yt4/rrrwfcrTGLFy/mhRdeoLCwkIkTJ/I///M/nsH6a9asYfr06c1uJz09nT59+gBw/fXX89prrzVZ5vPPP2fatGmn/FpERHyJQouIiIiIiPg0jWkRERERERGfptAiIiIiIiI+TaFFRERERER8mkKLiIiIiIj4NIUWERERERHxaQotIiIiIiLi0xRaRERERETEpym0iIiIiIiIT1NoERERERERn6bQIiIiIiIiPk2hRUREREREfJpCi4iIiIiI+LT/BxliHxrh+PCVAAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:57.262306\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df.plot()\n", "plt.show()" @@ -1799,21 +215,9 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAEiCAYAAAALexgYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkiklEQVR4nOydeXxU9bn/P2f2rJONbJCwE5YEVFA2ZVEIUIFS22JLTaW1aBW1FKyt19tb6q+C1yr2XqzWq1ZUUGxVbAWNQWQRISyBCGGHJGTfk5lkMvuc3x9nzplzzpyZTCA7z/v14mVmznfOnJmYmfM5n+f5PAzLsiwIgiAIgiAIgiCILkHV2wdAEARBEARBEAQxkCCRRRAEQRAEQRAE0YWQyCIIgiAIgiAIguhCSGQRBEEQBEEQBEF0ISSyCIIgCIIgCIIguhASWQRBEARBEARBEF0IiSyCIAiCIAiCIIguRNPbB9DX8Xg8qKqqQlRUFBiG6e3DIQiCIAiCIAiil2BZFq2trUhNTYVKFdivIpHVAVVVVUhLS+vtwyAIgiAIgiAIoo9QXl6OIUOGBNxOIqsDoqKiAHBvZHR0dC8fDUEQBEEQBEEQvYXZbEZaWpqgEQJBIqsD+BLB6OhoElkEQRAEQRAEQXTYRkTBFwRBEARBEARBEF0IiSyCIAiCIAiCIIguhEQWQRAEQRAEQRBEF0IiiyAIgiAIgiAIogshkUUQBEEQBEEQBNGFkMgiCIIgCIIgCILoQkhkEQRBEARBEARBBKDaZMW/CivhcntCfgzNySIIgiAIgiAIggjAs7vOYeepakTqNbh1cFhIjyEniyAIgiAIgiCIG5J2hwsmqzPomuZ2BwCgpT34OjEksgiCIAiCIAiCuCFZsvkg7nxhH+wud8A1bg8LAPCwbMj7JZFFEARBEARBEMQNB8uyuFJvQaPFEdTN8nj49aHvm0QWQRAEQRAEQRA3HLxDBQQXUC6vyiIniyAIgiAIgiAIIghukWgKJqDcLL8m9H2TyCIIgiAIgiAI4obDI0pkDyagPNSTRRAEQRAEQRAE0TFi0eQJorL4skKWRBZBEARBEARBEERgxOWCwfQTL8aoXJAgCIIgCIIgCCIIYvcqWCmgi8oFCYIgCIIgCIIgOsYdosjy9WSFvm8SWQRBEARBEARB3HBI0wU7XtdtPVmvvvoqJk6ciOjoaERHR2P69On4/PPPhe0sy2L9+vVITU1FWFgY5syZgzNnzkj2Ybfb8dhjjyEhIQERERFYunQpKioqJGuam5uRk5MDo9EIo9GInJwctLS0SNaUlZVhyZIliIiIQEJCAh5//HE4HA7JmtOnT2P27NkICwvD4MGD8cwzz3TqzSEIgiAIgiAIYmAiThcMphHc3V0uOGTIEDz33HM4fvw4jh8/jjvvvBPf/e53BSH1/PPPY9OmTXj55Zdx7NgxJCcnY/78+WhtbRX2sWbNGuzYsQPbt2/HwYMH0dbWhsWLF8PtdgtrVqxYgcLCQuTm5iI3NxeFhYXIycnxvVC3G3fffTcsFgsOHjyI7du346OPPsK6deuENWazGfPnz0dqaiqOHTuGzZs344UXXsCmTZs685IJgiAIgiAIghiAhOxkXUO5INjrJDY2ln3jjTdYj8fDJicns88995ywzWazsUajkf3b3/7GsizLtrS0sFqtlt2+fbuwprKyklWpVGxubi7Lsix79uxZFgCbn58vrDl8+DALgD1//jzLsiz72WefsSqViq2srBTWvP/++6xer2dNJhPLsiz7yiuvsEajkbXZbMKajRs3sqmpqazH4wn4emw2G2symYR/5eXlLABhvwRBEARB+PiiqJr90WuH2crm9t4+FIIgiE5R1mhhh/52Jzv0tzvZs1WBz/Vv/dNuduhvd7Kv7L3MmkymkLTBNfdkud1ubN++HRaLBdOnT0dJSQlqamqQnZ0trNHr9Zg9ezYOHToEACgoKIDT6ZSsSU1NRWZmprDm8OHDMBqNmDp1qrBm2rRpMBqNkjWZmZlITU0V1ixYsAB2ux0FBQXCmtmzZ0Ov10vWVFVVobS0NODr2rhxo1CmaDQakZaWdq1vEUEQBEEMeP5xvAKHixux/2J9bx8KQRBEp5DMyQoWfMH2QLrg6dOnERkZCb1ej1/+8pfYsWMHxo8fj5qaGgBAUlKSZH1SUpKwraamBjqdDrGxsUHXJCYm+j1vYmKiZI38eWJjY6HT6YKu4W/za5R46qmnYDKZhH/l5eXB3xCCIAiCuIFxeZsanG5PBysJgiD6FuJ0wWD66VqGEWs6ezAZGRkoLCxES0sLPvroI9x///3Yv3+/sJ1hGMl6lmX97pMjX6O0vivW8G9MsOPR6/US94sgCIIgiMDwJx8Ol7LIqmhux/HSZiyZlAq1Kvj5AEEQRE8SqpPl6okId51Oh1GjRmHKlCnYuHEjJk2ahP/5n/9BcnIyAH+XqK6uTnCQkpOT4XA40NzcHHRNbW2t3/PW19dL1sifp7m5GU6nM+iauro6AP5uG0EQBEEQ14bLzZ11ON3KZx93vbgfaz4oxEcnKhS3EwRB9BZiAz6YgPL0xjBilmVht9sxfPhwJCcnY/fu3cI2h8OB/fv3Y8aMGQCAyZMnQ6vVStZUV1ejqKhIWDN9+nSYTCYcPXpUWHPkyBGYTCbJmqKiIlRXVwtr8vLyoNfrMXnyZGHNgQMHJLHueXl5SE1NxbBhw673ZRMEQRAEAV86lytAuaDd63AdKW7qsWMiCIIIhVCHEbvZbnay/uM//gNff/01SktLcfr0aTz99NPYt28ffvKTn4BhGKxZswYbNmzAjh07UFRUhJUrVyI8PBwrVqwAABiNRjzwwANYt24d9uzZg5MnT+K+++5DVlYW5s2bBwAYN24cFi5ciFWrViE/Px/5+flYtWoVFi9ejIyMDABAdnY2xo8fj5ycHJw8eRJ79uzBE088gVWrViE6OhoAFwOv1+uxcuVKFBUVYceOHdiwYQPWrl3bYfkiQRAEQRChwZ+kKPVkiU9gogyd7lAgCIK4ZtweFn/bfwUFV5sDrhELq2D9Vvw8rW7ryaqtrUVOTg6qq6thNBoxceJE5ObmYv78+QCAJ598ElarFY888giam5sxdepU5OXlISoqStjHSy+9BI1Gg+XLl8NqteKuu+7Cli1boFarhTXbtm3D448/LqQQLl26FC+//LKwXa1WY9euXXjkkUcwc+ZMhIWFYcWKFXjhhReENUajEbt378bq1asxZcoUxMbGYu3atVi7dm1nXjJBEARBEEEQerIUygXrWm3Cz2E6td92giCI7uJkWTOe+/w8bk6PwY5HZiqukTpZgfflvoZ0wU6JrDfffDPodoZhsH79eqxfvz7gGoPBgM2bN2Pz5s0B18TFxWHr1q1Bnys9PR07d+4MuiYrKwsHDhwIuoYgCIIgiGuHP0lRKhesarEKP7fbXT12TARBEG3ez5x2uzvgGskw4gAqi2XZaxpGfN09WQRBEARB3LgEKxesaPaJrFYbiSyCIHqOUGZbeUJwssT392jwBUEQBEEQNy7BygUrRU6WmUQWQRA9CH/dJ/iQYfHPyutCnaUlh0QWQRAEQRDXDD+MWKlcsFLiZDl77JgIgiB8A4Q7XgMEFlmeEEoKlSCRRRAEQRDENcOfcyiVC5KTRRBEbxFSuSDbcbmgK8RwDDkksgiCIAiCuGZ4J0tpGLE4+IKcLIIgepJQwipCcbJCnaUlh0QWQRAEQRDXDD8/xiFzsliWlZULkpNFEETPEYqT5Q5hTpbH0/EaJUhkEQRBEARxzQTqyTJbXbA4fNHJrTZnp05QCIIgrgfByQpiZUnSBf0rnrn9iIVYJ56fRBZBEARBENcMr63k5YL1bdwgYp2aO9XwsJCILoIgiO6EygUJgiAIgui3uL2Xf+XlgvWtDgDAkLgwaFQMAOrLIgii5+iq4As3BV8QBEEQBNHT8Mlb8nLBhjY7ACAhUo8ogwYA9WURBNFz+OZkBV4j3haonNlNPVkEQRAEQfQ0fE+DvFyQF1mDIvWIMmgBkJNFEETPwfdSBRNGobhU0jlZoT8/iSyCIAiCIK4ZlyCyAjlZOsHJMlvJySIIomfweDpbLkg9WQRBEARB9BH4kw4/keXtyUqI1CPa62SZyckiCKKH6J7gi9Cfn0QWQRAEQRDXjKuDcsGEKOrJIgii5wlpTpak3yrAmhBmaSlBIosgCIIgiGvC42GFE5PA5YLiniwSWQRB9Ay8gAqmi6hckCAIgiCIPof4Cq+/k8WXC4p6sqhckCCIHsIdkpPl+zlg8EUIa5QgkUUQBEEQxDUhvsIrdrJYlkW9yMmKFsoFSWQRBNEz8MEX7iDKyB2Ck+USqSxysgiCIAiC6HYCiaxWuwsOF3c7IVKP6DAqFyQIomfhP5KClguGMAPLw3bct6UEiSyCIAiCIK4JVwCR1dDKuVgROjXCdGqE6zgny2J39+wBEgRxwxJKuaC0JyvAfiTlguRkEQRBEATRzXg80p4s/kqw0I8VpQcAhOvUAACrk5wsgiB6hlDmZHU+wp1EFkEQBEEQ3YxLdumXvy1OFgSAMK/IaneQk0UQxPXj8bC4UNMqudAjx+dkBdlPCE5Wj5QLbty4EbfeeiuioqKQmJiIZcuW4cKFC5I1K1euBMMwkn/Tpk2TrLHb7XjssceQkJCAiIgILF26FBUVFZI1zc3NyMnJgdFohNFoRE5ODlpaWiRrysrKsGTJEkRERCAhIQGPP/44HA6HZM3p06cxe/ZshIWFYfDgwXjmmWc6lXFPEARBEIQy8qu6fMkgL7IGRcqcLBJZBEF0AVuPXMWCvxzAu/lXA64Jpd9KXAoYaI2rJ4YR79+/H6tXr0Z+fj52794Nl8uF7OxsWCwWybqFCxeiurpa+PfZZ59Jtq9ZswY7duzA9u3bcfDgQbS1tWHx4sVwu30fvitWrEBhYSFyc3ORm5uLwsJC5OTkCNvdbjfuvvtuWCwWHDx4ENu3b8dHH32EdevWCWvMZjPmz5+P1NRUHDt2DJs3b8YLL7yATZs2deZlEwRBEMSAweNhcbXR0iUXHOVOFh/jXmu2AQASo6Uii5wsgiC6grLGdgBAeVN7wDXuEMSRxMkKsCgUsaaEJuSVAHJzcyW333rrLSQmJqKgoACzZs0S7tfr9UhOTlbch8lkwptvvol3330X8+bNAwBs3boVaWlp+PLLL7FgwQKcO3cOubm5yM/Px9SpUwEAr7/+OqZPn44LFy4gIyMDeXl5OHv2LMrLy5GamgoAePHFF7Fy5Uo8++yziI6OxrZt22Cz2bBlyxbo9XpkZmbi4sWL2LRpE9auXQuGYTrz8gmCIAii37Np90W8vPcyNnwvCyumpl/XvuQnJbyTVWfmnKxEb09WmJY73SCRRRBEV+DydFwKKI9nV8P/vD8UIdYrPVkmkwkAEBcXJ7l/3759SExMxJgxY7Bq1SrU1dUJ2woKCuB0OpGdnS3cl5qaiszMTBw6dAgAcPjwYRiNRkFgAcC0adNgNBolazIzMwWBBQALFiyA3W5HQUGBsGb27NnQ6/WSNVVVVSgtLVV8TXa7HWazWfKPIAiCIAYKL++9DAD4066z170vfyfLK7K86YKJ0QYA4nJBCr4gCOL6cYcQauHpolALdwh9W0pcs8hiWRZr167F7bffjszMTOH+RYsWYdu2bfjqq6/w4osv4tixY7jzzjtht3MfuDU1NdDpdIiNjZXsLykpCTU1NcKaxMREv+dMTEyUrElKSpJsj42NhU6nC7qGv82vkbNx40ahD8xoNCItLS3k94QgCIIg+gvpceHXvQ+3aEgnALjk5YKydMF2p5v6ogmCuG5CiWd3hxBYEUqoxbU6WZ0qFxTz6KOP4tSpUzh48KDk/nvvvVf4OTMzE1OmTMHQoUOxa9cu3HPPPQH3x7KspHxPqZSvK9bwH+6BSgWfeuoprF27VrhtNptJaBEEQRD9GqfbgzXbCzEuJUq4r2tElvS2w3tHPe9kRXFOFp8uyLKA3eWBQau+7ucmCOLGxe0OJZ5d/HPHg4ZDcbu6fRjxY489hn//+9/Yu3cvhgwZEnRtSkoKhg4dikuXLgEAkpOT4XA40NzcLFlXV1cnuEzJycmora3121d9fb1kjdyNam5uhtPpDLqGL12UO1w8er0e0dHRkn8EQRAE0Z/55nIDdp2uxgt5F4X7eHfpenDJnCyn2wOn24NGC5f06wu+8F3Tpb4sgiCuF96lkl/oERNauaBofSjhGN3Vk8WyLB599FF8/PHH+OqrrzB8+PAOH9PY2Ijy8nKkpKQAACZPngytVovdu3cLa6qrq1FUVIQZM2YAAKZPnw6TyYSjR48Ka44cOQKTySRZU1RUhOrqamFNXl4e9Ho9Jk+eLKw5cOCAJNY9Ly8PqampGDZsWGdeOkEQBEH0W5RODGzOIGcnoe5XtgunixVcLI2KQVy4DgCgVjHQabhTjnaFviy3h8WhKw2wOUmAEQTRMby7FKz8OJReqs46Wd0mslavXo2tW7fivffeQ1RUFGpqalBTUwOr1QoAaGtrwxNPPIHDhw+jtLQU+/btw5IlS5CQkIDvfe97AACj0YgHHngA69atw549e3Dy5Encd999yMrKEtIGx40bh4ULF2LVqlXIz89Hfn4+Vq1ahcWLFyMjIwMAkJ2djfHjxyMnJwcnT57Enj178MQTT2DVqlWC+7RixQro9XqsXLkSRUVF2LFjBzZs2EDJggRBEMQNRZvdX7zYXNcvaPycLI9HCL0YFKWHSuX7rg02K+vFvAtY8foRvPDFBb9tBEEQcvjQnUBlgECoc7I6XtMjc7JeffVVmEwmzJkzBykpKcK/Dz74AACgVqtx+vRpfPe738WYMWNw//33Y8yYMTh8+DCionx14C+99BKWLVuG5cuXY+bMmQgPD8enn34KtdpXurBt2zZkZWUhOzsb2dnZmDhxIt59911hu1qtxq5du2AwGDBz5kwsX74cy5YtwwsvvCCsMRqN2L17NyoqKjBlyhQ88sgjWLt2raTniiAIgiAGCkdLmvDa/it+0eptNn/3qCtcI79hxC4P6mShFzzh2sCzsl7ZdwUA8MbBkus+JoIgBj6eTke4B1gTyiytnpiT1dGOw8LC8MUXX3S4H4PBgM2bN2Pz5s0B18TFxWHr1q1B95Oeno6dO3cGXZOVlYUDBw50eEwEQRAE0d9Z+49CVDRbccvQWNw6zDdepc3u9Ftrd11/uSCfJsjjdLOolcW384QFGEhstvmObXRi5HUfE0EQAx/eRQ8efNFxmV9I5YI9HeFOEARBEETfobLFiopmrny/qsUq2cY7WSMGRWD+eC74qSt6suSlOk6PB/WBnCxv+IXVKXXVDl5qEH6Oi9Bd9zERBDHw4QMrgs7J6nS/VYD99HSEO0EQBEEQfYfjpU3Czw1tDsm2VjsnbBZMSMbcjETsPlsL+3WUC9a32vHqviuIMkhPI5wuX08WH9/OE8jJ+up8nfCzhYYVEwQRAvyMvmA9WaFEr0uEWIB9hSLElCCRRRAEQRADgOOlvtEoDW12yTaLV2RF6jXQe1P+rrUnq6rFihnPfaW4zelmfSIrWu5k+Yssu8uN3Wd9I1ssCgEdBEEQclxCumDgNdJ49gDlgiGscV1jTxaVCxIEQRBEH4dlWTy76yze+Lo44JpjIieLj1HnafOKrCiDRhgEfK09Wf+751LAbS6PR/JcYpTSBfecq4PJ6uvJ4sUgQRBEMHhBFDRdUCSIAq3rbMx7tw8jJgiCIAii5zhR1oLXvy7Bn3adg1Nh+qbJ6sSF2lbhttzJarX5nCyD9vqcrEpZv5cYh8sj7Fc+7DhMy4kusZP1YUEFAGDxRG6WJoksgiBCgQ/dCTX4ImC5YEgx76L15GQRBEEQxMDhbLVZ+LnGZPPbfrKsWXISIRdZbXaxyOLEj03ByXrj62L8x47TQUtizApx8DxONyuIKP55eHxOFvf40gYL9l+sBwD8dPowAIDF4Q7YF0EQBMHDi53rDr5QWLP2H4V4ZFuB8DnooXRBgiAIghiYnCzz9VspOUl8P1ZGEjeT0q9c0Obfk+X2sH6u2KbdF/HekTIUN1gCHkur1T8Onsfl8QjlgGEBRFa7ww2WZfFf/z4Dt4fF7DGDkDXYKKxr74L5XQRBDGxcoczJCiGwQr7G5nTj4xOV+Ox0jZDWKh5VQT1ZBEEQBDGAKCxrEX6ubPYXWXw/1sLMZABAY5tD4ggJTpaoJwuQ9mXZXW7BhTJ7hdT2o2V+PVjiuVZyxOWCYfJyQV5kOd3Yd6EeBy7WQ6dR4Y9LJ8CgVUHFcOvaqWSQIIgO4D/fQk0XDHVOlngZL+SU3K5QIJFFEARBEH2YZotD4iyJnayK5nbkFlXjZHkLAC6iHeBODsSBEm0K6YKAtC/LbPWJG76H63cfn8am3RdxvsZXrthRuaCV78nSBg6+OHSFm431g8lDMCwhAgzDIEKvkRwrQRBEIHxOVmjlgoH7raR9W0phGR6KcCcIgiCIgcfJ8mbJbbGTte4f3+JICediRek1GJcSBWOYFiarE/VtdsRG6MCyrMTJYhgGeo0KdpHrBEBRlPE0W7htNqcbjiCphE63RxBZBp30Om4YP4zY4calujYAQGaqr0wwUq9Bq81FMe4EQXSIOwSRFVq5IERrWEXXipwsgiAIghiAXKhpk9wWO1m8wAKAW4fHgWEYDIri5lM1ePuyuB4obk2UXgsAollZvjMMcRlgq80pufLLn1gEKxUEOHHGP0zek8Xfbne6camWe02jkyKF7bzTRU4WQRAd4XOZgqwR6aGQywVF+3MrlCRShDtBEARBDBBqzVya4KS0GABSkRXhFSYpRgMenDUCAJAQqQMA1HsTBnnRolYxQny7kDAYwMlqtbkkJxb8z61BSgUBXy8XEDj4oqHVLryG0Yk+kRWp5yPeSWQRBBGcUJwsSZlfADEmTw50K5QLhtLbpQSJLIIgCILow/BJgbekxwDgRJbHmwxo8QZV7Hr8DkwbEQ8ASIjUSx4nnpHFMFy6hNJAYrNMZLkURBa/RtzXJYZ3unRqFTRqebkg95x8HP2gKD1iwnXCdurJIggiVHgxFHq5YCg9WazixSUSWQRBEAQxABGcrCExYBguwa/BYpeIomiDr8WaLxeUO1m8UwRAcLTskuCLEESWV7DxQk4OL+j4/YsJlzlbYhcL8Iks6skiCKIjfMOIA68JZU6WZI1HGpDh8tpf8jWhQiKLIAiCIPowdV5HanBsGJKiDAC48IsWryiK0mskrlGc1x1q8YZVWBREll7DDyQOVC7ohNstPtlghfsBID7S50CJ4YWaPL4dAMJ10qwtP5HlfYyFnCyCIDpAyWUKtAYIdU6WNPjC6VbqySIniyAIgiD6PSzLCk5WUpQByUZOZNW12gVRFB2mlTwmJpy7zW8XygUN/k6WNPjCJ27a7C7hKi4gCr7wxrzHRwQQWd59yPuxAH/hNdo7OJlHcLKoJ4sgiA7gxVAw0RNKKqBHki4oFVT8sPZQxJoSFOFOEARBEH0Us80l9E0lRusFQdVqc0Hn7YsyykQWv6bF6gAQqFyQ78kSOVntgYMv+JMNvucqNpDI8go7g4LIEj9/lF6DuWMTFbeTk0UQREcITlaIwRcB52TJZmlJhhErOFmd6ckikUUQBEEQfZT6Vs7FijZoYNCqEeV1o1ptTmhUXIgF71zx8GESJq/r1OYVRmInSygXDBLhLu7JsnvX8eWC0QYtdBqV38wsfh/hCuWCSdF63HPLYIAFnliQgdSYMMl2X/AF9WQRBBGc0CLc/R2oVptTEgLkVy4ouu3gnSyF/YQCiSyCIAiC6KPUmrl+rMRorkyQD7gwW11QeU8S5E4Wf9vULnWyosQ9WUK5YGgR7nbeyfIKt+gwLXRqn8jSqhk43azQw6DUk8UwDDYtvyngaw2nniyCIEIktAh38c8sLtW2Yv5LBzBvXBLeuH+K3+PlEe5CuIZEWVFPFkEQBEH0C0xWJ9b/+wwKy1v8ttV5naykaC7NL8rAlws6BVHk52SFSXuyzDaFckEFJ0sisuzSdEFeTJkFJ0sDrZrx2x+PUk9WR9CcLIIgQkUp+U+OvJfq7cOlAIAvz9WK7pcNI5YEX3i8z3VtThaJLIIgCILoRf479zy2HCrFsr9+47etjneyvKmCvBvVanOhpV05+IJ3siwON5xuDyqa2wEAKaLyPCHCXdSTJS8XdIsuA/Pr+BANvlyQJyZCegxKPVkdQXOyCIIIFf7jKWi6oKzfSqPylz1ukdvFstLbvMgKJQpeCRJZBEEQBNGLXKptDbjNVy7IO1lekWX3OVmBgi8Azp262siJrKFx4cL9vAiSOFmi4Aub0yPZJjhZfGy8QQOtKDaeF4E8Sj1ZHRGh58sFqSeLIIjg8E5WMM3jkTlQfIl14DWsLPBHIfiiE1ZWp0TWxo0bceuttyIqKgqJiYlYtmwZLly4IFnDsizWr1+P1NRUhIWFYc6cOThz5oxkjd1ux2OPPYaEhARERERg6dKlqKiokKxpbm5GTk4OjEYjjEYjcnJy0NLSIllTVlaGJUuWICIiAgkJCXj88cfhcDgka06fPo3Zs2cjLCwMgwcPxjPPPNOpjHuCIAiC6E7UKv8vfh6+XFBwsgy+dEGhXDBMmvSnVjGCGGtp94msYQk+kaXXSHuyPB4WrTIHqUUkuuzycsEwqZM1SDac+FrKBSN0lC5IEETHsCwrlO0FSxeUR7hr1P6ftfI1YqeKF3JytytUOiWy9u/fj9WrVyM/Px+7d++Gy+VCdnY2LBaLsOb555/Hpk2b8PLLL+PYsWNITk7G/Pnz0drqu1K3Zs0a7NixA9u3b8fBgwfR1taGxYsXw+32Xb1asWIFCgsLkZubi9zcXBQWFiInJ0fY7na7cffdd8NiseDgwYPYvn07PvroI6xbt05YYzabMX/+fKSmpuLYsWPYvHkzXnjhBWzatKkzL5sgCIIgug2xIySHn5GVGCV1ssw2F0zeiHa5kwX4+rRKGixos7vAMMCQWH8nSygDtLuEkwe+16q53XfRkneyJOWCYicrWiqyDNfkZNGcLIIgOibUSHXxOjfLhuBkSffHf+5da7lgp9IFc3NzJbffeustJCYmoqCgALNmzQLLsvjLX/6Cp59+Gvfccw8A4O2330ZSUhLee+89PPTQQzCZTHjzzTfx7rvvYt68eQCArVu3Ii0tDV9++SUWLFiAc+fOITc3F/n5+Zg6dSoA4PXXX8f06dNx4cIFZGRkIC8vD2fPnkV5eTlSU1MBAC+++CJWrlyJZ599FtHR0di2bRtsNhu2bNkCvV6PzMxMXLx4EZs2bcLatWuF+EaCIAiC6C2COVllTZwLle4t9fPNyfJFuCuJLGOYFuWw4ltvmEZKtEHSJyX0ZDmlZYB6jQrGMC3qWu1oURBZgcoFY8J1UKsY4aTmWpysaK9LxycYEgRBKCEJoggS4S6fk6VR+KyV922JhRn/PL0SfGEymQAAcXFxAICSkhLU1NQgOztbWKPX6zF79mwcOnQIAFBQUACn0ylZk5qaiszMTGHN4cOHYTQaBYEFANOmTYPRaJSsyczMFAQWACxYsAB2ux0FBQXCmtmzZ0Ov10vWVFVVobS0VPE12e12mM1myT+CIAiCuBZMVidyi6qDNmcrNWMDXMoe35M1LD4CgKgnS1wuGK7gZHlLCE9Vct/T6fHhku1CT5bLjeL6Njz6/kkAnIgTlxry2F1ciIbF4RbWicsFdWoGseG+ssVrEVlxkdzjrU43JQwSBBGQUJ0lSSmgB1ApiSw/J8u3zck7Wdc4jPiaRRbLsli7di1uv/12ZGZmAgBqamoAAElJSZK1SUlJwraamhrodDrExsYGXZOYKJ0EDwCJiYmSNfLniY2NhU6nC7qGv82vkbNx40ahD8xoNCItLa2Dd4IgCIIglPnR/+Xjl1tP4INj5QHXaBX6BACfi2UM08LoFVLRogh3XgQFcrIA4FRFCwCfSOPx9WR58PJXlwXHKzZci0jvczSLRJbD5RHKB1UMt3/xcatUDOIjfCLrmoIvdGrhuBrbHB2sJgjiRkXsLAW7gCWZkxXAyZILKLGIcnr8gy+6rSdLzKOPPopTp07h/fff99smL8NjWbbD0jz5GqX1XbGGD70IdDxPPfUUTCaT8K+8PPAXI0EQBEEEwu5y41w1Vw3xeVF1wHWBygVLG7yBFSIXineZbE6PEEYhj3AHIIgyXogFdLKcbpz2ul1qFYNH7xwtDDwWlwvaXR40W3jnjCsN1IlmY2lUDOJEIutaItwZxifUGi0ksgjiRiZYSJ28jyoQ0lAL6WctL5zka6Tpgh6FNd3sZD322GP497//jb1792LIkCHC/cnJyQD8XaK6ujrBQUpOTobD4UBzc3PQNbW1tZBTX18vWSN/nubmZjidzqBr6urqAPi7bTx6vR7R0dGSfwRBEATRWY4UNwk/i10eOeLeJpcoxqqsiQuVGipyocQDhQHOVYrS+7dXy90tfyeLE0Et7U5cqW8DABz63Z1YOilVEHLy4Ismr/CJ9Qo4ndjJYhih3A8Awq7ByQKAeG9KYZPFLrnfZHXirW9KhGMgCGLg8nzuecx87is0ttkVt7uuIfiClQVf+GZgQbJGki7Ii6yeKBdkWRaPPvooPv74Y3z11VcYPny4ZPvw4cORnJyM3bt3C/c5HA7s378fM2bMAABMnjwZWq1Wsqa6uhpFRUXCmunTp8NkMuHo0aPCmiNHjsBkMknWFBUVobrad3UwLy8Per0ekydPFtYcOHBAEuuel5eH1NRUDBs2rDMvnSAIgiA6xZ5zvouFfG+VEuKrqzaXT2SVNvo7WRq1SlKKFx+pV+wziJGJrNGJkZLbfPDF2WozPCyQEKkTEgzDvVHqfM8XADjcHsHZ4nuvxOJQIysXvJaeLO71cPtokJULvn6gGH/89CyWvnywU3NqCILof+w5V4cqkw1FVcq5CKGIHvnnhIeFpFzQ4Vbut/JIhhErzMnqrnLB1atXY+vWrXjvvfcQFRWFmpoa1NTUwGq1AuCs/jVr1mDDhg3YsWMHioqKsHLlSoSHh2PFihUAAKPRiAceeADr1q3Dnj17cPLkSdx3333IysoS0gbHjRuHhQsXYtWqVcjPz0d+fj5WrVqFxYsXIyMjAwCQnZ2N8ePHIycnBydPnsSePXvwxBNPYNWqVYL7tGLFCuj1eqxcuRJFRUXYsWMHNmzYQMmCBEEQRLfz1YU64Wc+il0Jtej7yOrwjTK52sg5WekyF4p3mgBgRIJ0G4/YyRoWH45RMpHFCymecSnRwvciL57Ew4jtTg+aeJHlFVPi4Au1rFzwmp2sCE7oyXuy+HLLimYrth65ek37Jgiif8DPpwp0QSWU4cDy+VkelpVckOJDLeThGOLbPrdLuq9Q5+12SmS9+uqrMJlMmDNnDlJSUoR/H3zwgbDmySefxJo1a/DII49gypQpqKysRF5eHqKiooQ1L730EpYtW4bly5dj5syZCA8Px6effgq12vehvG3bNmRlZSE7OxvZ2dmYOHEi3n33XWG7Wq3Grl27YDAYMHPmTCxfvhzLli3DCy+8IKwxGo3YvXs3KioqMGXKFDzyyCNYu3Yt1q5d25mXTRAEQRCdwmJ3obzJKtyuNtkCfjE7RZdO+eHAgHJPFuAbSAwAI2XiiUecOLggM9nvwmLWYCMSROV9E1KNws98GaD4WOxuD5q9pXpxCk6WWqXqUidLXCbEsqykR+v1r4uvad8EQfQPXAqBE2JCcZbkj/WwrOQz2BGgFNCjILL899XRK+Do1JysUJQbwzBYv3491q9fH3CNwWDA5s2bsXnz5oBr4uLisHXr1qDPlZ6ejp07dwZdk5WVhQMHDgRdQxAEQRBdSbWJc660agZONwur0w2z1SUEUohxuX3frVavsLG73KgycSJt6DU4WeLgiYUTkv22h+nU+OXskfjTrnMAgPGpvv5jjVc8WUUii+vJ4soHeSdLKrIAY5hvXMq1O1n+wReVLVZJnHxViw0eD6tYJkkQRP+H/0yUu1E8IZULKjhZklALF/ezdJaW9LZLoVww2HPKua45WQRBEARB+FPjFVnD4iMEV6kmQMmgUxR2wZcL1rfawbKATq2SOE5AaE6WuDxw0pAYxTU/mTrUO1SYweShvrEqvnJBkZPlcgtBGHER3PPrNVInK65LnCxvuaBIZJ3x9mWMSYoEw3AnPJQ+SBADl47KBUOJcPcTRrJSQIeb+3yTJweKH6fkdgGhx7h3yskiCIIgCKJjeBcqJSYMahWDlnYnqk1WZCRH+a11KjhZvHMTE671K/WL1PsEzKhByiJrSGw4Pn30dsRH6gI6PmE6NfJ+PQst7U4MjgkT7ufnX/k7WfLgC99+NSpGKPUDurZckBdZE4fEoLndifpWO2rNNgyK0ivugyCI/g0valwhCChe8NicbhwpacK0EXHQa9SSAAuAD7UQCSjByRLtl2UlpYCBHLVQnSwSWQRBEATRxVS3cK5VSrQBKgY4X9PqF37xyr7L8HhYqZMlE1m8oBFjtrqEn1NF4khO1hBjwG08KcYwpBil+9CoFIIvRMOI4xSCL1QqRlLGqNdcm8hKUAi+OFvFzfGakBqN8zVm1LfaUddqA9Dx6yMIov/BX3gKJGbEIosXQE/881vsPFWNH9+Wjo33ZPkJI5YF3JLkQKUZWFDsyZI7aqE6WVQuSBAEQRBdTI2Zd7IMSDEaAPj6tAAuOfD53At4Ie+iJCrd5i0X5AWNUg8XJzA4Ag0yvh60Gv99SpwshZ4sjYpBcrQB88YlYt64JESHXds1XH7WVqPFzs2s8bA4UdYCAMgcbERSFPdeBovEJwiif+PuVPAF9/POU1wC6ftHyxQf62FZWbmgf3IgK+/bUhhYLH9MMMjJIgiCIIhr4M2DJbhS34Y/fTfTrySvineyvAIL8PVpAUB+caPwc5vd50z5nCzp4F8xabHhuFjb1gWvQBmtyv/6q8Pl8XPXxCJLxTBgGAZv3H/rdT03H3zhdLMw21woabCgyeJApF6Dm9JikBjNi6zAkfgEQfRvAqX68bglwkg5mM8/+AJwi2oDnS4PWJaVuFJ+6YJ8zLubRBZBEARB9AgeD4vnc8/D7vLgx7em+5Xm8YJKXIpXLRFZTcLPFkWRFbhc8I/fnYBwvQYP3D68C16JP+JeK/lxAb4Id3HwhaaLHDWDVo1IvQZtdheaLA7sPc/NGrtjdAK0ahWSorlyQnKyCGLgwourwOWC0oYrJS2m6GSJHmZ3exTDMcTPyQdw+DtZwY+fh0QWQRAEQXSSulY77N6rnJfqWv1EFh98kRpjgMO7jnenWJbFN5cbhLUSJ0soF+REllK54JDYcGz+8c1d9VL80KgDdxKoRb1X0gj3ritbjI/Uoc3uQkObHfu8A53nZiQCAJK8TlYdOVkEMSBhWVYIvAgcfCG/7b/OPxHQ36VSKgMU6zeHEOHuf4yhQD1ZBEEQBNFJyprahZ8v1UlL99rsLrTaOOGUbAxDdBgnlMze+87XtKKu1efEtDt8LhEfm95ilSb59SS6ICIrNlwrlEZ2l8iK8b5fJQ0WfFvBhV7MzhgEAD4nq5VEFkEMRCT9VgEj3OVOVqjlguJQC9YvgZBlpa6VS6Fvi99XKJDIIgiCIIhOUi4WWbL+qBqvixVl0CBSrxFCIMxWJ74tb8FP3jgiWS/+4vcvF/R3srobjUK5II9Y9Ok03SOy+DlgZ73R7SlGg+BgJVLwBUEMaK5pBpaCyFIuF5TOyVJ2svzTBV0yK4ucLIIgCILoJsqbfSLrcl2rZFulLPQi2sA7WU68su8ymiwOjEuJBqOgS6wO7stcSBcM63knK1i5oHjgsLh3q2tFFidKK5o5sWoM8wlNXmw1tNn9TnwIguj/SERWAC3jL6D818jvc3vk5YKsohBTmpMl31eowRcksgiCIAiik4jLBcua2oUyP8DnwIz0DgrmywWdbhZXG7nH/equ0YqDhHkny9SLTpYuiJMlTkvsjuALwCeyKls4kRUtElnxETpoVAxYFqhvIzeLIAYa4osn8oAL3/1s0NuAvxBiZeWCdrdHcf6VUsy7f39XsFfgg0QWQRAEQXSSiiar8LOH5fqHeE6WNQMAbkmPBQBE6NTgNQgvzmLDtZJyOx5erPFOVkwv9GRpFCLceZJFaYmSCPduKBes9LqFvBPIP8+gKK4vq06hZLCqxSoRvARB9C+k5YLKa5RCLTpaoxTP3lG5IO9kXeucLBJZBEEQBNFJ+HLBMK0agC/8gmVZnCxvAQDcnB4DAGAYRnBj+JCL2AidxAnisTrc8HhYYUBxbzhZWoXj4kmN8TlZ8mHEXQXvZPFBIfLBxvx2cSojAJQ2WHDH83vxnf/9Gg3kchFEv8QlqhEMHOHesZOlVFIo7cnyKAZaSIQYH3wRQnmiEiSyCIIgCKIT2F1u1HgjxKePjAcAXPU6WZUtVtS32qFRMcgc7It1F7sxABcgoeRkWZ1utNpcwpe4UoR7d6MNIpiSo30iS3z8KqUGs2tE/l7Jb0folUVWYXkL3B4WxfUW/HzLsYBN8wRB9F3EyYGB/obl0e4eFpB/bPkLKOmcLKfL45cuKA/HEIIv/OZpkZNFEARBEF1OZbMVLMu5WKMSub4q3nk6UdYCABifGg2D1+UC/N2YmHAtdBo15FidbiG+PVynhl5hTXcTLPgiNUa5XDBYImFn4Z0qHnFPFgBEekWWRSay+H43ADhVYcKFGmkgCUEQfR+xkxVoTpaSgJKH73Q4J8vtXy7I+jlZrKKgCvXyDYksgiAIgugEfOpdWlyYkHxntjlRY7Lh3cOlAICb02IkjxG7MVF6DbRqlWK5oM3pFgYR98aMLECaGignOUDwhboLnawoPydLKroidIFElkVyu9FCJYME0d8QC6uAc7Lc/iJL7qZ3NCdLKfjCL13Q4y/EAIANUWZpOl5CEARBEARPtXcOVmqMb9CwyerEqneO43SlCVo1g2U3D5Y8RiyyYiK4nxXLBR1uUehFz5cKAlKHSk68JMK9e+ZkyUWVn5Ml9GRJAy6uihIfAaCxzdFlx0QQRM8gKRcM1JOlIKA0Kgbiyyry0AwPy0oeFyjCXT6wWHxbxfB9W6G9FnKyCIIgCKITVAlzsMIEQdBkceB0pQkA8NHDM3CzN1mQR1wuGOd1qPQKYsbqdAvx7X1RZDGiq8XdNycreE9WpNCT5ZTcz5cLDk+IAAA0WkhkEUR/QxJ8EeowYk/H5YIeVro/5WHE/s/JhxUBvs9GShckCIIgiG5AcLKMBqFckD/BVzHAhFSj32PEA3X5WHa9VrlckBcHvVUuGGp/ldiJ61InK0zuZMnKBfVcn5pF5GRZ7C4hUZAv1WykhEGC6HdII9xDDb7wF1l+5YIemUvl8u+3YmXlggBQXM8lx8aGaxGuUwvrQoFEFkEQBEF0gmqT18kSlQvWtXIn9DHhOkXBIXZj+Fh2nZKT5XCjzptcmCRK8utJlI6ro3U96WQppQvy88diwrUY5nWymsjJIoh+h3gAccDgC4UI946drI6DLzysfynieW+AzshBkULfFw0jJgiCIIhuoKrF38niCTTXKlrByQoU4V4jiCx9lxxvZwnkZPFlejzBygqvB3m6oPw9VkoX5J3EoXHhiI/k3t8G6skiiH6HM4Q5WUoR7n4iK6TgC8jW+Ltb52vMADiRxZdLd1u54IEDB7BkyRKkpqaCYRh88sknku0rV64EwzCSf9OmTZOssdvteOyxx5CQkICIiAgsXboUFRUVkjXNzc3IycmB0WiE0WhETk4OWlpaJGvKysqwZMkSREREICEhAY8//jgcDumH6unTpzF79myEhYVh8ODBeOaZZ0K2+QiCIAhCDMuygpOVbDQozr9SQlzyxq9Rimf3sEBxPZeS11tOlkYlPTXg27B+uzBDuk4kxrpyJpVWrYJBVErp52TplJws7j1Lj49AfAQnTpsoXZAg+h3uEMoFlVIBxZ9bLoXkQJZlIQ4ldLoUhhF7WL/7+FEQIxMjhFlccnEWiE6nC1osFkyaNAk/+9nP8P3vf19xzcKFC/HWW28Jt3U66ZfOmjVr8Omnn2L79u2Ij4/HunXrsHjxYhQUFECt5r50VqxYgYqKCuTm5gIAHnzwQeTk5ODTTz8FALjdbtx9990YNGgQDh48iMbGRtx///1gWRabN28GAJjNZsyfPx9z587FsWPHcPHiRaxcuRIRERFYt25dZ186QRAEcYNjtrqERugUYxhkegSxEQFElkgoxCmkC0bqNdBpVGiyOHC2mrtymhjVN8oF//ueiZiYZkRGUpTkfrFIlLtc10uUQQubkxNJkTJny5cu6BJOpM5Uce/Z8Hifk0XBFwTR/3CKYgFDd7JYyWexPBWQXyMNvvAozNJSKBes9i8XDNXJ6vSn4qJFi7Bo0aKga/R6PZKTkxW3mUwmvPnmm3j33Xcxb948AMDWrVuRlpaGL7/8EgsWLMC5c+eQm5uL/Px8TJ06FQDw+uuvY/r06bhw4QIyMjKQl5eHs2fPory8HKmpqQCAF198EStXrsSzzz6L6OhobNu2DTabDVu2bIFer0dmZiYuXryITZs2Ye3atZKUJIIgCILoiCpv6EVsuBZh3iZog1YFm5M7MYgL6GQFLxfUqBmkxYWjyeIQvvj7SrmgXqvC2ORov3U6jQpbfnYrnG5WeE1dRbRBg/pWOyL1Gr8yIF7QlTdZMeXZL3FLeiyOFDcCAGZnDBKcQopwJ4j+h1j4yOdh+dZ4ZLdZyaw+h5JLJSsXVO7J8i8XbPU65pzI4u7r1Z6sffv2ITExEWPGjMGqVatQV1cnbCsoKIDT6UR2drZwX2pqKjIzM3Ho0CEAwOHDh2E0GgWBBQDTpk2D0WiUrMnMzBQEFgAsWLAAdrsdBQUFwprZs2dDr9dL1lRVVaG0tFTx2O12O8xms+QfQRAEQQC+ZMEUY5hwn7hnKBQny1cu6PsK1qpVSI8LlzwmsZfKBeW9VsFCLeZkJGL++KQuPwY+/EI+MwvwBV80tNnRZHHgy3O1aLW7MChKj5vTYoVywTa7Czan2+/xBEH0XSTpgoHmZMnK9VgWkmHEdrc7pDlZvKDSqHiHSnkGlk6twpDYsO7vyeqIRYsWYdu2bfjqq6/w4osv4tixY7jzzjtht3O2f01NDXQ6HWJjpTNEkpKSUFNTI6xJTEz023diYqJkTVKS9IM9NjYWOp0u6Br+Nr9GzsaNG4U+MKPRiLS0tM6+BQRBEMQAhZ+RlRrjE0BKpYByxD1Z/PwrsZOlVTFIj/MJt0i9pstL8EJFK3OyNF2YHBgqfPiFfBAxAETq/XvZAGDBhCSoVAyiwzTCMVPCIEH0L0Kbk+XvZEkElJv1E2isbAaWXVQuyLv38mHEPMMSwqFRq4SSxF4TWffeey/uvvtuZGZmYsmSJfj8889x8eJF7Nq1K+jjWJaVlO8plfJ1xRo+9CJQqeBTTz0Fk8kk/CsvLw963ARBEMSNQ4dOVqByQYkQ85YLihwjrUbqZCX2UqkgwH0/it0rtbzxrAeIFpwsf5EVEUB8LspMAcAdP/8ek8giiP6FSySgAlQLKpb5icWZw+UffOHvZPnKBbXezziWVRZQIwdFAoCoJyu019Ltn5wpKSkYOnQoLl26BABITk6Gw+FAc3OzZF1dXZ3gMiUnJ6O2ttZvX/X19ZI1cjequbkZTqcz6Bq+dFHucPHo9XpER0dL/hEEQRAEABwr5b67Rg6KEO4Tuy1xAcoFw3Vq3DosFmOTo5AYxQkovdbnyGhUXE8WT1IvhV7wiN2s3nWy/AWV3OHLHByN3y8ejxkj44X74iO597iBBhITRL8iFCdLKfhCLI4cLv9QC6XgC17PiZ2sUERWnxlG3NjYiPLycqSkcFeYJk+eDK1Wi927dwtrqqurUVRUhBkzZgAApk+fDpPJhKNHjwprjhw5ApPJJFlTVFSE6upqYU1eXh70ej0mT54srDlw4IAk1j0vLw+pqakYNmxYt71mgiAIYuBR32rHsdImAMD8Cb5wJ6NCqIUchmHwj4em47PH74DG62BJnCxZT1ZvhV7waFXdM2g4VHjhquhk6aQi695b0/HA7cMlFSoJkeRkEUR/RBJ8ESAr3e2WCyjp4xwu/1ALtweykkLfGv4zmSsX9H++kYncRTX+I6bbnKy2tjYUFhaisLAQAFBSUoLCwkKUlZWhra0NTzzxBA4fPozS0lLs27cPS5YsQUJCAr73ve8BAIxGIx544AGsW7cOe/bswcmTJ3HfffchKytLSBscN24cFi5ciFWrViE/Px/5+flYtWoVFi9ejIwMbk5HdnY2xo8fj5ycHJw8eRJ79uzBE088gVWrVgnu04oVK6DX67Fy5UoUFRVhx44d2LBhAyULEgRBEJ3mizM1YFlg0hAjBsf4ygXF4QyBnCyAE1oqkWDRa6UiK8UYJrhGvTUjSzgecfJhL4isMd64+DHJUX7bVCoG4TqfC8g7g2L43wMlDBJE/8IpLhcMMI/KX0DJnKxAc7JE+xMnEEqCLxQUlNzJQogiq9NdtcePH8fcuXOF22vXrgUA3H///Xj11Vdx+vRpvPPOO2hpaUFKSgrmzp2LDz74AFFRvg/Kl156CRqNBsuXL4fVasVdd92FLVu2CDOyAGDbtm14/PHHhRTCpUuX4uWXXxa2q9Vq7Nq1C4888ghmzpyJsLAwrFixAi+88IKwxmg0Yvfu3Vi9ejWmTJmC2NhYrF27VjhmgiAIggiV3CKu/HxRVorkfrGTFSjCXQm9xMni+qCGxIahtLG915IFeTSSnqyeF1nfv2UwpgyN9Utc5InQa4R5ZUqClO+Na24nkUUQ/QmxIxUoYEKpFNDVgZMlLxd0ioSYZLC6wnOOEEQWv69QXsk1iKw5c+YErUX84osvOtyHwWDA5s2bhaHBSsTFxWHr1q1B95Oeno6dO3cGXZOVlYUDBw50eEwEQRAEEYzC8hYAwJyMQZL7+dI2tYoReolCQToni/t5QqoRpY3tGJ0YeZ1He32IY9zlc7N6AoZhMCwhIuD2CJ0a9d6flZwsXviarM7uODyCILoJp6gUUCnpT+l+j0dWLqjgZHlkg4YdLo/Qsykuj3bJ7LPkaIPQB8qgcz1ZvZMPSxAEQRD9iDa7C23eoZRDYqXuCi+yYsO1knLAjtBrfNUbfNDEn5Zl4idT0zFdFOLQG4iDL3ojXbAjxCdiCZEksghioOCWlAuG7mR55E6WUrqg6D6zzYXffnQagDSx1Cl7HN+PBYh6skJ5IeiB4AuCIAiC6O/Umbn5WBE6tV+6HR/OECj0IhA62TBigBtmPGNUQq/3DWvUvduT1REWh0v4Wfw+8ohFVqvNibpWW48dG0EQ1861OFluWTx7SUMbTnorD3hYVnl/00bE4alFY4XbcieL78cCxBHufSRdkCAIgiD6O7VmrqxEqf/ntuFxyEiKwvdvGdKpfUrKBfuYWyQuF+yNnqyOsNhdQbeLRdYPXj2MuX/eJ3G18s7UYNlfv8GV+rZuPU6CIDqHWAgp9UfJ1wB8qIXvvg2fnce/CqskawINGt60/CZMSosRbrtkyYXi0u3ODiOmckGCIAiC6ADeCVEaEhwXocMXv57V6X3qRSJLp+lbQqa352R1hDPQlFIvxnBOZDW02lFl4n53JQ0W3OQ9mXrw3QIAwHOfn8frP53SfQdKEESnEDtJIc/J8gR2vYQ1CoOGY8O1SI0Jg9UboiPe9/dvGYIogwbfvXmwsM03JyuEFwISWQRBEATRIbXecsGujFYnJ6v7iPE6WbzAAny/Q1bW/E4QRN/BFYqTJY9wZ9kOE/+UnKyJQ2IA+HqtuOfnPhNuSo9BzrShkvUMlQsSBEEQxLVRZ7Zh0+6LuFDTKrs/cLngtaLUk9VXELtXfU0AAsBDs0dw/501QnG7OFafhxdZFc1W4b7eHvpMEIQUicgK1JMlc7LlJX5KsCzrJ44mDjECEM2/gs8lVyv0xXZ7hDtBEARBDDRMVifCdWq8c/gqXt57Gf+75xJ+fFsavpOVgjtGD0JtKyeylOLCrxW9Rjonqy/R2xHuHfGb7AzcnZWC8SnRitujg4isokqTcJ9FVCZEEETv41IIvthzrhb5xY343aJxUKsYPyfLGWhqsQi3x9/JmjIsDoBPPImfU+m6V2eDL0hkEQRBEDc0jW12TP7TlxibHIUJqUbh/vePluP9o+X4cu3s7ikXVPddJ6uv92Rp1Cqh1EcJg1YNvUYFu6gcsMbECeWiKp/IMlPEO0H0KVwKEe4PvH0cADcU+Me3pfuJJUcQkaVVM3C6uXJC/nHfu3kwwnVq3DEqAYDUyeJ7wpQSXvmPQpqTRRAEQRAh8M2VRgDA+ZpWpBg5EXX3xBScrTKjpMGCM1UmIcK9K0UWwzDQqVVwuD19zi3S9POeLACICdcKqZCAL7ykqNIs3EdztAiibyEuF5Q7RueqzX5rgODlghqVCk6321suyN33+F2jMTzBf/4VELxckOlk8EXfunRGEARBED1MmNY3FLisqR0A8N1JqcJA4Iu1raII967t4eFLBnV9zMnSqftuKEeoyPuyakw2NLbZUSian0MiiyD6FuJ0QbmYam7n/l7lqYPBygV5V17sZMkFFMMwgtDylQsG68mi4AuCIAiC6BDxF2ZpIyey4iN1wnyUE1dbYHVyvTuJUV3nZAG+8Iu+52T5jkfdx44tVOQiq6ypHQ+8fVwirFraSWQRRF9C4mTJxFRLu8O7Riqqgoksfhce0cBipetGfMmg08OXCwZeE2rwBYksgiAI4oam3eEbbMtfxYyP0GN0YhQA4HAxV04YbdAgTKf238F1wDtZfa8nS+xkDQyRZXd5UFjeAmOYFtsfnAYAMNucAWfxEATR80iCL2SOUZOFE1kyjRW0J6vNO7jcw/pEWzCXin9+5TV8uSA5WQRBEATRIW12/4S5uEgdRidFSu4bGh/ht+560fVZkSVysvqpyFJKGASAn80chpvTYwBwvRWtdpfiOoIguhaPh8VP/34Uv/6gMOAat8TJkm7jnWe5kxVqhDsv2oL1WwUqKeTW8Pvq8OkAkMgiCIIgbnDaZSfZWjWDKL0GiVF6RBt8+VDfvSm1y5/bJ7L6lpAR92EpnWz0B2LCdIr3L5iQDL1GDYOWe40mKhkkiB6hvs2OAxfrseNkZUAH2SnpyZKKKd7J4oUQ77KHGuHOiyNVECfLGSRdkIYREwRBEEQnsMhEVlyEztsIzUiuqn7v5sFd/tx6DVd+2NfCJXhnTcUon5D0B5QGEgPA2OQoyXYKvyCInsHm9FUNOOU2lRfxZ65cO/G9sbwjxX9OBSsX5BG7XUoXjvj7XCEFX3T4dNz60JYRBEEQxMBEPpA2LsKXIMjPYkqM0iM+smuTBQGRk6XpW1/HvLPW18RfZzCGcS4kwwCZg7mhxTNGxgtXo3mni0QWQfQM4rl1zgAlfk5ZhLu8/8nucguCif+ccrr89/WbBRm4fVQC1swb7d2v77mVnSyvyPIKNhpGTBAEQRDXidzJio/wlZltuCcLf917Gb+6a3S3PDcfla7tY24Rf4W4v/ZjAYAxnHOq4sJ1ePnHt+CfBeV4aPZI33ZysgiiRxE7Wa4A7pNbNoxYLsYa2hyCyOEvUsnLCgHgrnGJWD13FD4/XQ1AWlKo9LnGm1u8k0XDiAmCIAjiOvF3snwia3hCBF744aRue+5BUZw71h0u2fWgEZys/iuy4r2OZGK0AcMSIvCbBWMl2/lgjBaro8ePjSBuRMROVqASP7Go8nhYPwFV32oXhBB/MUipJys2nPscZwSHKni5IO9uuUIYRhxquSCJLIIgCOKGRh58IRZZ3c1/3j0OCyYkY27GoB57zlAQnKw+FsjRGaaNiMfPZw7HrDEJittjwsnJIoiexO7suFxQ3JPl8rB+pYB1ZpuwRujJUigX5J1qeaAFEHxOFi/qgvZkgZwsgiAIguiQtiDlgt1NYrQBd09M6bHnCxXtAHCydBoV/mvJ+IDbqVyQIHqWUMoFxfe7WdYvIKO+zY42G/eZHaHnZIySk2XQcqFCKlmgBRDAyZKFWgQbRkwR7gRBEAQRAu3ycsHInhNZfRU+8KI/92R1BC+yzAoiy+5yo6K5vacPiSAGNNLgiwAiyyMrF5Q5XmVN7Wj0RrmnxYZ5HxM4XVCtUigXVOzJkt6nLMRoGDFBEARBdMhX52vx7K6zfk5GTzpZfRU+7bA/pwt2BC+yWhTmZG387Dxu/++92HehrqcPiyAGLHaX74KWUokfIItwZ1k/MXa8tBkAEKnXCH1X/L548TRjZLywnpGVCzJM8FALnmDhGIFmfPntM6RVIg4cOIAlS5YgNTUVDMPgk08+kWxnWRbr169HamoqwsLCMGfOHJw5c0ayxm6347HHHkNCQgIiIiKwdOlSVFRUSNY0NzcjJycHRqMRRqMROTk5aGlpkawpKyvDkiVLEBERgYSEBDz++ONwOKQNrKdPn8bs2bMRFhaGwYMH45lnnglZgRIEQRADl/+38xxe/7oEZU1SxyIx2tBLR9R34NMOB7KTxfdkKYmsvV5x9cGx8h49JoIYyNicHTtZ4vtZ1n/dt+UtAIDUGIMQVsGvGRIbhlPrs7H1ganCenm5YKDh6irZ/cpCrHPBF50WWRaLBZMmTcLLL7+suP3555/Hpk2b8PLLL+PYsWNITk7G/Pnz0draKqxZs2YNduzYge3bt+PgwYNoa2vD4sWL4Xb7FO6KFStQWFiI3Nxc5ObmorCwEDk5OcJ2t9uNu+++GxaLBQcPHsT27dvx0UcfYd26dcIas9mM+fPnIzU1FceOHcPmzZvxwgsvYNOmTZ192QRBEMQAwuX2oFwmrp757gT8et4Y3OSdjXUjwzeU9+eerI5I9orpKpNVcr/Z5sTVRu7/jb0X6vwi/gmCuDbETlagEj+3TMGISwy5x3HbB8eECe6TOKwi2qCVzMHihREvxAINV5eLrODDiLsp+GLRokVYtGiR4jaWZfGXv/wFTz/9NO655x4AwNtvv42kpCS89957eOihh2AymfDmm2/i3Xffxbx58wAAW7duRVpaGr788kssWLAA586dQ25uLvLz8zF1KqdGX3/9dUyfPh0XLlxARkYG8vLycPbsWZSXlyM1NRUA8OKLL2LlypV49tlnER0djW3btsFms2HLli3Q6/XIzMzExYsXsWnTJqxdu1ZRpRIEQRADn2qTTVL7DwALJySTi+VFiHDvx+mCHTEsIQIAUNFshdPtEYTl2SqzsMbm9OCr83VYMim1V46RIAYSYicrULmgPHWQF1kGrUry+NSYMEEI8QmEwQItgkWzA/5BF8F7shR34b8+tGWhUVJSgpqaGmRnZwv36fV6zJ49G4cOHQIAFBQUwOl0StakpqYiMzNTWHP48GEYjUZBYAHAtGnTYDQaJWsyMzMFgQUACxYsgN1uR0FBgbBm9uzZ0Ov1kjVVVVUoLS1VfA12ux1ms1nyjyAIghgYHC9twpQ/fYlX9l3x28YnVRHiYcQDtycrMUoPg1YFt4dFRbPPzSqqNEnWfXGmpqcPjSAGJGInK1C5oJ+T5U0kjA3XIUEUSjQ4NkwQPfzMrWCBFsGi2QGlckH/Nb45Wb0QfFFTw30QJSUlSe5PSkoSttXU1ECn0yE2NjbomsTERL/9JyYmStbInyc2NhY6nS7oGv42v0bOxo0bhT4wo9GItLS0jl84QRAE0S9470gZGtrseP9omd+2MG/kLyEWWb18IN0IwzAYFs+5WaWNFuF+3smaMpQ7TzlXTRdbCaIrEJf+BSoXlN9v8z5Go2Yw3Os+A1y5oDzUQi6UuPv4NazkdqB1PEGDL3ozwl1ehseybIelefI1Suu7Yg0fehHoeJ566imYTCbhX3k5Nb0SBEEMFI6UNCneH65TB6zVvxG5OT0GIwdF4O6sgV0mNzQ+HABwtcECj4fFzlNV+PhkJQBg2c2DuW2N7XC4AkdEEwQRGuI5WYHKBeVl3LyTpVWp/EQWX9LHlwIqlTfLP9dDdbKCCTY2xGHEXSqykpOTAfi7RHV1dYKDlJycDIfDgebm5qBramtr/fZfX18vWSN/nubmZjidzqBr6uq4xCC5w8Wj1+sRHR0t+UcQBEH0f8qb2lHZYlXcRqWCUhIi9dizbg4enjOytw+lW/E5We348EQFHn3vpLBt3rgkROo1cHlYXBU5XQRBXBshzckK0JOlUTNCHyXA9WTJ0wWDCSOeQCLLrydLQSH1ak/W8OHDkZycjN27dwv3ORwO7N+/HzNmzAAATJ48GVqtVrKmuroaRUVFwprp06fDZDLh6NGjwpojR47AZDJJ1hQVFaG6ulpYk5eXB71ej8mTJwtrDhw4IIl1z8vLQ2pqKoYNG9aVL50gCILo4wRysQCuqZq48RgqKhd865tSAJyL9593j0Oy0YBRiZEAgEt1bb11iAQxYLCHEOEuLxfkRZZWrcIIr8hSqxgkRRs61ZPFcz1OltCTFaKx3elvlba2NhQWFqKwsBAAF3ZRWFiIsrIyMAyDNWvWYMOGDdixYweKioqwcuVKhIeHY8WKFQAAo9GIBx54AOvWrcOePXtw8uRJ3HfffcjKyhLSBseNG4eFCxdi1apVyM/PR35+PlatWoXFixcjIyMDAJCdnY3x48cjJycHJ0+exJ49e/DEE09g1apVgvu0YsUK6PV6rFy5EkVFRdixYwc2bNhAyYIEQRA3IEeKGwEAWoWSEquDysFuRIZ5ywX3XajHuWozDFoV3lp5K35xxwgAwGheZNWSyCKI68UmjnB3BygXlN3Plxhq1CpMSDVCxQAZSVFQqxhRv5VXZCmc28vvC3VOVtBywRCdrE7XRxw/fhxz584Vbq9duxYAcP/992PLli148sknYbVa8cgjj6C5uRlTp05FXl4eoqKihMe89NJL0Gg0WL58OaxWK+666y5s2bIFarWv6Xjbtm14/PHHhRTCpUuXSmZzqdVq7Nq1C4888ghmzpyJsLAwrFixAi+88IKwxmg0Yvfu3Vi9ejWmTJmC2NhYrF27VjhmgiAI4sbhRBlXpr500mB8dKJCsq3N7j+Qlhj4DBWVHwHAspsGIybcl2A2Ool3slpBEMT1IXayePfpw4IKxEfoMHdsIliW9evJsgk9WQzS4sKx87E7kBDF/Y3yrpQQz64420omnkIuFww2jLib5mTNmTNHCI9QgmEYrF+/HuvXrw+4xmAwYPPmzdi8eXPANXFxcdi6dWvQY0lPT8fOnTuDrsnKysKBAweCriEIgiAGNjanGyUNXF/Nz2YOQ97ZGowYFIlvy1u828nJuhFJiTYgPS4cZU3tyBpsxON3jZZsH53IXSC+TOWCBHHdyCPcK5rb8cQ/vwUAFG/4jqJ4EfdkAcD4VF9WAhNSuaD0dsjlgkGGEQfTQWKo05cgCIIY8Fyua4OHBWLCtZiQGo0962bDoFVj4vq83j40ohdRqRj8a/VMtNldSIsL99vO92QV11vg9rABT9D6C5dqW3Hfm0eweu4o/HT6sN4+HOIGQ+xkudwsrA6f6Gq0OBBl8MkShuHK8sQ9WXL40j8h+CIEJytguaBs90p/6r45WYq78N9naMsIgiAIov9yvoYr98pIigLDMEiMMiDaoO3loyL6ArEROkWBBXgTzBjuSnmjxd7DR9b1HC5uRK3Zjl2nqjteTBBdjNjJcrg9ErFSY7JJSgV1XlHFP0YTxFniZ2AptNv6i6cQnSwlMdbZckESWQRBEMSAwen24HyNWfJlDgAXariBsmOToyT3/3HpBADAbxZk9MwBEv0KtYpBXIQeAFDf2v9FltnK9R7Wmm1dut9qkxVtdleX7pMYeNhk6YLi+XPVJivcotALvcYrspx8uaC/ZOEFk9vD92QprAnRyZIH4gUrFwy1uJzKBQmCIIgBwd7zdVj3z2/RZHFg9dyR+M2CscI2wclKls4+/On0ociekITkaEOPHivRf0iI1KGhzY6GNkfHi/s4rTZOCNWYbWBZtkuSlvOLG/HTN48ia4gRHz0847r3Rwxc7LJ0QYfbd7vGbINTlI2u06gBuITHKKXC+gkoxdlWstsBnazg+xY/NtSeLHKyCIIgiH6P28PiqY9Po8nCnQgXegMteC54RdbYFKmTxTAMUoxhNNaDCMigqAHkZNk4J8vm9MBsvX7nydTuxI9fz4fD7UHB1Wa4Asw+AoCTZc34/DSVKQ5kOhIfcifLLnGybCJHihHKAwUnS8Glkouq0OZkKR9bKI4XfxeVCxIEQRA3DEeKG1EjKoGqM/tOiK/Ut6HOe4I8JinK77EEEQxeZDW0+Yssu8uN7796CL94+3jIV7d7E7GwqumgZPDdw6VY/tphNFsCO3ibv7okmRkk3qfT7RGJOje+98ohPLztBEq9KZ/EwOJyXRtu/n+78bf9VwKukfdkOUXlgTUmmxBgoVExgmCSpwuK8Xeyrr1c0N/xUlpDwRcEQRDEDcbHJysBALcNiwMAQVS1O1x4ZOsJAMDMUfGI1FOVPNE5BkUGdrJOVZhQcLUZX56rRWlju9/2VpsT9//9KBa8dACPvX9SmPnTW/CiBwD+cbwcv/6gMGAv1f99XYyjJU34rMjnPl2ua8PPtxzDibJmWB1u/ON4ueQxFc1W4eefvnkU0zfswcmyZuw5Vyfc35G4I/onJ642o6XdiQMX6wOuETtXSj1ZgqBSMYLI8c3JCkVA+T9nqOWCfj1ZQYYRk5NFEMQNwd8PluA3//y2109eiN7D7nIjt6gGAPDQ7BEAAJPVCZvTjfePluNCbSsGRemxaflNvXiURH8lWLlgYVmL8PPBS9KTS5Zl8fSOIuy/WI8Lta349NsqHLzU0K3H2hFmm09QvXmwBDtOVmLXqSq/de0OlyCYTope47p/fouvztfhnlcO4V+FlTDbXEiPC8eMkfEAgPImTmjWt9pxuLgRFocbP/37UWz+6pKwj5Z2Gvw9ELF6v4PFQkoMy7KS72mXm5WIrBqTTSjrHpYQIThOwZ0s2e3riXAPYZ4WA35QluIu/PcZ2jKCIIi+h9XhxjM7z+KfBRV4Ze/lDte3O1zwhOrzE/2G4noL2uwuRBs0mJuRKKRS1bfacby0CQDw85nDkUThFsQ1kBAZuFzwZHmz8PPXMgG17UgZ/v1tFdQqBmOSuHlbV+p7d6hxq9Vf4Cg5cMX1FqEM8ESZ7zVWt/icqn8WVAAA7puWjqHxXAQ+L8wOFzf6ntPmEoJnAKClvf8HiBD+tHtnXjkCiCyXh5WU2TncHknwRbXJhpPe/9duSosRlQvywRdKPVkhxK7L1gRysuT7IieLIIgbmmPeE2gA+Ps3pUEb04sqTbjl/+3G058U+W1zuT1dHmlM9Bz8ieuoxEioVAwSo7mT4rpWG771BmDcnB7TS0dH9HeCOVlil+fwlUYh+CG/uBHr/30GADce4DtZKQB6X2SJywV5rjb690hdqvOJouJ6iyCMYsN1wv3nqrmxCHeOTcKQWKnIOnSZE5wLJyQLLhdPMzlZAxKfk6VcVSJ3uJwyJ8vu8mDvBc4Nvjk91q8nSyldUF7iF4rbFdjJkoss/zX884XafkkiiyCIfss3V3xXjtvsLrx3pMxvzdVGC4oqTfi/A8WwOT3Y+W2VkGDE86dd5zBt4x7sPlvb7cdMdD1X6riTxJGDOLcgKYpzrE5XmFBlskHFAFmDjb12fET/RhBZMifraqMF1d7/v6L0GrTaXThVaQIAPJ97Hi4PiyWTUvHQrBHC/5uX63pbZPn3X5U2+DtZF2ulx3nSe7EiJtw3wLvd4YaKAdLjwjEkNgwAUN7M7evQFc7JuvfWNGz7xVTs/vUs/HDyEADkZA1UbB2UC8pL+l2ynizA9/dxU1qMIHr4xynNyQrNfZKHY4TWk6W0joYREwRxw/CN92rpLV6XQly6A3BlC99/9TCWvHwQu7zRwa12l3AFFuDE2QfHysGywEu7L8LmdMPqoP6uvkZRpQmnKloUt/HuwMhE7kSWd7LyvKJ5TFIUIijwgrhG+HLBlnancFK44bNzmP3nfQC42Ws3D40FAFyq5Rwg/mTx0bmjwDCMILKu1Ft6LYXQ5nQrlnJdbeSO6XJdG7YduQqPh8Ulr8ji3YOTV7nP1nCdWvLYwbFh0GlUgpNV2WxFZYsVZU3tUKsY3Do8DgzDYHRSlFBS2Ewia0DCf2/ancoiy9/J8sDh9v9bCNepMSIhwt/JCjIcmEc5wl32mBDmZDGMv+gSr6F0QYIgBgS7TlXj2V1nJfNXLtW24qF3j+NMFSeWHp4zCgDwbXmL5ATm4OV6NLTZwbKQuFdHSnxlhp+frhbKHM5WmzH297mY/9J+IUqW6H2qWqxYvPkgfvDqYSEJ7fCVRhz1/h4FkeU9kU30Oln81fSb0mJ6+IiJgURMmFaY2dNoscPjYfFPUape9vgkDPMKiNLGdpisTsEx4h2eEYMiwDBcIEujLBK9ssWK/849j6c+Ph00Lv16USoVBACLw42GNgd+8kY+nt5RhDcPluCyt1xwYSZX5njA229mlbkRw+IjAABpcdzrrDZZBaE5IiFCkuYZ4y015MsFPzhWhudzzwt9sq02Z7e+fqJ74XuyApULyp0sh6hcMCHSV4Y6ITUaKtGcrGBOln+JXyjBF8rHL16ntB+AhhETBDGAaHe48JsPv8XrX5cItdoA8NqBYnxxphYsy5WBzRqTAK2aQXO7E+VNvsbsXadqhJ8ZBpg2gov3Plria8r+0Nu8HR/h+5CvaLYq9ikQvcP/HSgGwDVKX6ptRZvdhR+/no/lrx1GrdmG4nq+XJA74eOdLJ5JJLKI60ClYhDvPQlsaHXgfE0rmtudYBjg6yfnYs280RjqFRtXGy2o9PYlxUXoBAfVoFULguuKqGSw2mTFXS/uw6v7ruD9o2VY+teDQkJfV9PqFX7iq/3RBo1w3LXe2XJvHixBmfcYHprFpXUWlregzmwTTqR5eHdqUKQeeo0KHpYr0wV8ZZY8fD8XXy74249O45V9V5B3thZ2lxtLX/4Gc1/cNyCGPt+IdFQuKHe4nC5fueD88cl462e3YkJqNB6aNRKAT9B0Zk6WJkiJH0+gckHx3YH6tmgYMUEQA4YvztQIX+qHr/iE0Qlv6crjd43GmyunQK9RY3xKNACg0FtS5nB5sPssJ7I+eHAazv5xIX6zYCwA4GhJE1iWhandKbha7zxwm9AzAEAol7lWCq42Yfaf91Kf13XS0GbH9mO+XrtLdW2oEiWcvX6gGFanG1o1g7Q47oSPd7IA7ktx1phBPXfAxIDE15dlwyFvL+jsMYOQFhcOhmF8TlZDu9CXxIsqHqEvSxR+caS4CTanB6lGA9LjwlHeZMVrBwIPc70ezN5kweRoA55aNBbrl4xH1hCuV1GcMFhjtsHDAknRekxIjRYuUuw5X+c3U4t3shiGweAY7vV+6xVZ8ZFykcX1czW3OyUl2YeuNOBfJ6tQ0mBBS7sT24/699YSfZ+OItzlDpfL40sX1GtUmJuRiF2P34F545MA+IQOL86U5mT5pQuGUFIYyKUSlwcqDSIWP5bKBQmC6Pd8fKJS+JmPBG62OFDcwDkXP585TDih5k8ETnkbtP+2/wrMNhcGRekxZVgcwnRqZA02Qq9RobndieIGC05VcmuHxodjQqoRf/7hJNxzy2AA19+gvvNUNa42tuPTb/1n0BChs/1oGWyiK6CXZSLrjYMlAICh8RFCxG+i6Ar6nDGDhJM/grhWkqO5/4euNrYj3/tZJE7NEztZvBOV5u1T4hH6sup8LvkpryDJnpCMp+8eBwDIL25CIK5nBAVfwhgdpsVDs0di5czhwnGXNPh/3n3v5iFgGAbZ3pPe3Wdr0W5XLhcEIIxI4HtexdUBgK9csKXdgUaLz606WtIkEZbvHS2TlIcT/QNeOLs9rOLvzyZzssTlgjqNQikgXy7o4ssFr63fKpRAC0AqxgKWC5KTRRDEQKCo0oSDl33pgeeqzWi2OIRwixGDIoQvbQCYNCQGAPDV+Tq88XUxNu2+CABYN3+M8KGq06gwPjVa2D8f780/FgBGJ0YB4ByT66HUKwRrTBQNf614PCzeP8r1vkwWBQsovafi9EBxueCPb0vv5qMkbgTGp3CfC6crTTjiFUHTRyQI29PiwsAwXH8T7+QEcrLEMe5F3jTCzMFGTB0eB4bhLiQolcy9fagUI/7jMzyw5Zjw+aKEy+3Bvwor/Vz0Vm9PFl8iCEBw4HixJ+aHUzhnf25GIgBODFkcMicrwSckk7x/d5XeiyDiPhsAiI3gnKyWdieaRL1X52tacaXegiiDBnEROlSbbNhzvi7g6yP6Ju2iniuHgsiSO1nickGdUnKgLC49lJ4sxTlZIQdf+O7vKOadItwJguiXvH6gGAteOoD7/34ULAvMH5+E0d7UuCMljThxtQUAcEt6rORxszMGITZci+IGC/606xwA4MFZI/Aj2Un2RO/J+OkKEwrLuRMLcc8O/1yBnCyPh4XF7vKLgZfDl99Um61B1xGB+fpyAypbrIg2aPCru0YD4KKlq2Uia9qIOPxu0Vjh9rD4CCRHGzA2OQp3jk3s0WMmBib8xZncohq0egdf8/cBgF6jRqqRE1UHL3H9o0PipE7WqESpyHJ7WBRVcZ9BE4cYEROuQ0YSJ+aOlkjdLJvTjb98yV042nO+Dms+KFQ8zsNXGrF480H8anshHnz3uKS31GzlBFKUwRfDnup1efkQIZ7JQ2MFUcg7wW12l6RckGEgpAoCQKJs2Ld/uSAnulweVuj5EvP0d8Zh6aRUAMBB2WBnou9jE5WAKiUMyssIuXLBwE6W3LlSShcMpVwwlIHFABCu8118CCTEGKFckJwsgiD6IW99U4ILta1otDgwOjESLy6fJJTl/P5fZ/Bvb/kd72zwJETq8e4DUxFt0IBhuAGgT4lOvHkyvSLrVKUJhV4n66Y0nwsiPhHihdTx0ib8aedZ1LfaMW/Tfkz4wxe4+Zk8IYFLjsvtEUqGaky26yrxGciUN7Xjr3svS65qi+FDSe65ZYjgVFW2WIWT1F/OHol/rZ6J934xTShVAriQgf1PzsEnq2cqXv0kiM4yPoX7/4/vEZ02It7v5I13dfj0PH8niyutq2yxoqHNjoOXG9DucCNMqxYEzbQR3GcdX5LI82FBhWSI77cVLTBZpWmBb31Tgh+/no/zNdznEssCn532hf/w6YLRYb6TSf7vhv8bjA3XYuWMYdjwvSxhTZRBI7gB/LmligGmDI2FQeuLdE+UBV3IywUNWjUMWu7vsaTeJ/6SovV48YeT8KPb0nHbcC6cqOCqdByH+DXsOVeLi7WtvRaFTygjTp5U6svigzF414obRsz9DhXLBf0GDSutkd4ONtsq2BpAOgMuwBK/v4OOoMEhBEH0OCzL4kyVGWOSoiQfri63BzVmzqVYOWMYHp4zEtEGLR6ZOwr5xU244I0GZhhg+oh4v/1mDjZiz7o5MFmdgliSM9FbGshfKdaoGExI9YmstLhw6DQq2F0eVDS3Y2h8BH659QQa2uzYcqgULq9gMttceOubUjwrOhnhqWi2CuucbhaNFodf0hYBPPf5eew6XY1t+VeR++tZiBZdYXd7WHztdQQWT0xBbIQOCZE6NLQ5hDLSkYMiAiYH6jVqxfsJ4loYEhsmDBwGpP1YPOlxEfgGPnEk78mKi9AhJlyLlnYn7npxvyCSMgdHCyd+00bEY8uhUhwr5T6fGtvsuOfVQ7jqdcb/8+5x2HakDCUNFpy42oy5YxNR2WJFfIQOf93L9TX9cPIQDB8UgedzL+Cz09V4eA6X1sYHX4j/zpJl7tOwhAisXzpBcp9KxcAYppWIvJP/le03MyupAycLAGLCdKhx2oS+2sUTU/DyiluE7fzFs/M1ZrTZXZIIeLeHxQNbjuFYKSfAHpw1Av/xnXF+z0H0DlKR5R/jzguvSIMGTRYHHC6fk6UNYdCwNoR0wZDmZAVwsmLCfH8Xgfu2yMkiCKKP8/7RcizefBAbPjsnub+21Q4Py32Y/tfi8cKXdlK0ATtWz8DvFo3Fr+eNwaeP3o5hCRFKu8agKH1AgQVwJ+bi+u+xKVGSq7FqlW9wKJ8w2NDG9UfwwokvQftXYRXaRT0KDpcHv3j7OFa+dVTynDdqXxbLsqgzK792t4cVBkRXmWy497V8Yb4OAJypMqGl3YlIvUYQUvzvtcV7spdKgRZED6FSMRiX4isPnD4ywW/NmCTp547cyRIPJRa7UFOGxfnto6ypHSzL4psrjYLAGpschXtvTcOtwzghcqSkCWerzJj53Fe44/m9aGizIyFShw33ZOHeKWlQqxicrjShzPt4PsJd3JMlv/gTFy51n3hiRfeHadUwhmn9TozlIkvekwX43IJirxsdJ3O7kqINGBIbBg8LFJa1SLa9c7hUEFgAsF801oPofcSJkUpOVq33e5D//8/p9sDhFWOhOFlKQuya5mQFUD5SJyt48EWvzclav349GIaR/EtOTha2syyL9evXIzU1FWFhYZgzZw7OnDkj2Yfdbsdjjz2GhIQEREREYOnSpaioqJCsaW5uRk5ODoxGI4xGI3JyctDS0iJZU1ZWhiVLliAiIgIJCQl4/PHH4XDQoDuC6E1YlsXfv+ES4T4qqJB8MFd7G6aTjQa/muhwnQa/nD0Sv5o3Wij5uxY0ahXS431XmB+/c7Tfmgzvic75GrNfKZteo8KLP5yEofHhaLO7sPNUtbDtaEkTvjxXK4lDBoAq043Zl/XO4au4bcMeoexPzClv1D4AGMO0OFdtxvLXDgvN+V97ezKmj4wXvlynDI2T7CPZKD2pI4juhO/Bio/Q+QkqgAtZeWTOSETo1LhtWJzk4g3PqEG+x6UYDXj++xPx6NxRwn38hYN2hxsmq1PoDf3h5CHIXTMLUQYtbhvOuWhHSxqFkmc+KON7Nw+GVq1CfKReEGO88+srF/SdTBq0aiFaHQBiI5RFllG0JkKvXASVJJtPp+Rk8WKNn20XqyDqpnjdrONXfX1pzRYH/vzFBQDAQ7O52V3FDW2UQthHYFlW6mTJerLcHhYfeAd43zWOS6t0eXzpgnoF5SOfeaU0A0vuOF3PnCyj6P/FQCILgpOlvNnvuUNb1jkmTJiA6upq4d/p06eFbc8//zw2bdqEl19+GceOHUNycjLmz5+P1lbfFcw1a9Zgx44d2L59Ow4ePIi2tjYsXrwYbrfvF7hixQoUFhYiNzcXubm5KCwsRE5OjrDd7Xbj7rvvhsViwcGDB7F9+3Z89NFHWLduXXe8ZIIgQuT41WbhxKHV7kLeWV/PAJ9KxTeQdxcPzhqBwTFh+Nt9k5E9IdlvO38ydabKLEkCA4CfTB2K2Agdlk9JAwB8ftonsg4XKzdr93cnq9nikIjhUPm8iHtv3leYe8M3ti+ckIzdv56FFKMBze1OoReD337HaJ9jIJ93lUIii+hBZo7i/l/MnpDsFwsNcILlyYVjUfiHbLy3aqriPkYm+hz4n88cjuW3pklEi0GrFhygyharMLh4tEjU3eZ1vk5XmlAqG5p+761pws8jvIKurtWGxja78LdlFIksQOpAyZ0lHrEYitArl+KK59MZtCpE6PzX8QmDfNml0vPxJYMnRE7WW4dK0e5wY0JqNJ5cMBZhWjWcbuUADaLncbpZSRiUw+2Gx8Miv7gRZpsTe8/XoaLZiphwLX7gnUfpdAUPvvAvF/RfE0qEe6hzskIrF+T+G2q5YLf0ZGk0Gol7xcOyLP7yl7/g6aefxj333AMAePvtt5GUlIT33nsPDz30EEwmE9588028++67mDdvHgBg69atSEtLw5dffokFCxbg3LlzyM3NRX5+PqZO5T7IXn/9dUyfPh0XLlxARkYG8vLycPbsWZSXlyM1lUurefHFF7Fy5Uo8++yziI6O9js+giC6n/ePcCfc4To12h1ufFhQgUWZKdh5qkqITe/uMrDlU9IEkaQE36N1psoslLXcMToBf/7BJKG8ZvaYQfjzFxdwvLQZbg8LtYqRDEwGuLJHp5v1S8PrDvh+tiGyPpDrxdTuxB3P78WwhHDsfOyOTh0PHwtdcLUZdWabJH3sa+/V9dtHJyAx2oAZIxPw0YkKnLjajOkj44UTwttH+UTWzekxkucQp0ERRHczf3wSPn309qDlyIDyySDP4Bjf3yc/dFVOakwYGtocqGy2ChekxM+ZFheGuAgdmiwO4WLEzFHxeOD24RjlHUEBAIO8TlJdqx0Pbz2BimYrBseEYd446fMmRRuEsAwlZwmQllIF+rsL06kRbdDAbHMhPkKvKEQT5ImDCiJrpPe18vPw2uwuvH2oFADwyJxRXEl3YgSKKs24VNeG4Qncz6MSIxGmIOyI7kfsYgGck/VZUTUefe8kJg4xCgL83lvTEOUtF3S4PSHNyeJRmpPlnxzof2yhzskSX3wINIyY7xHkkzo7olucrEuXLiE1NRXDhw/Hj370IxQXFwMASkpKUFNTg+zsbGGtXq/H7NmzcejQIQBAQUEBnE6nZE1qaioyMzOFNYcPH4bRaBQEFgBMmzYNRqNRsiYzM1MQWACwYMEC2O12FBQUBDx2u90Os9ks+UcQRNfQ0u7ATq/zs/EeLjDi4OUG/O7jU1j7j2/x6j6ucTs1pncdigleJ6usqV0oxxk5KBLJRoPwAT0uJRqR3kb4c9VmWOwuQVRkJEVBo2Lw/Vu4K3bVQcoF68w2SV/XtfLc5+dx+3/vxVfnazte3AG7z9biuLfxvqjKhDa7C0WVZr80s2BcrG0TktgA4AvRzJ4miwMnvCJq1mjOneKvXheUNeNSbRscbg9iwrUYLuq906pV0Ct8GRNET5E1xHhdJ/LTRsTBGKbF9BHxkv+3xfCR6eXNVpR4AyJGDfKJJ4ZhMNRb8nyuhjtH+d7NQ3DnWKl44i8IXahpxdHSJjAM8PbPb/MTNuIyv7gIqcvFExPme0xkACcL8MW4K/VjAcDYZOkFbqUeMD6lkO/nfHXfZZisTgxPiMDCTO4CPj/P8HJdG744U4slLx/EY++fCHhcRPcir3Swuzz4zPtdf6rCJJR+ficzReiJdnlYONzedEHFOVnS2xoF5eNXChjgAodYV4WWLqi8hv/bDLUFoMu/raZOnYp33nkHX3zxBV5//XXU1NRgxowZaGxsRE0NVxaUlCS7ipKUJGyrqamBTqdDbGxs0DWJif6zTxITEyVr5M8TGxsLnU4nrFFi48aNQp+X0WhEWlrgq90EQXSOHScr4XB5MC4lGksnpeK2YXFgWeDjE5WSdb0daBATrhM+THd+y31RjBgkPSFSqxhM8fY8fFhQgec+Pw+Xh8WQ2DB8snomDjw5FzO8LozcyXK4PKhrteFSbStm/XkvVv792HUdr8PlwT+89e6fnKwKuM7l9mBr/lXhCrESx0ubsOqd47j/70dhc7oFJw+AEExRa7bhdx+dwsq3jqI5QPw6PzSaJ++M73P3s9PVcHlYZA6OFvrjeJFVWNYiCNvMVKPfVcgHZ3H9GONTqBqB6H/ER+px+Kk78dbPbg24hv/8O1LcCIfbA71GhcGyEI2h3hlcfNVSqkLpLC+y+IHHiQFCgcQJg4GcrNgQnCzAJ9iU+rEALklRsl8FUTcokjses82F0xUmvLafu1D/24VjhRPkUaJ5hu/mlwIAvjzHDTB2e1j883g5Hn3vBN74ujjgsRKh883lBvzkjXxB9Mvxc7JcbslFhJZ2J/QaFcalRAtR7G4PC7szSPDFtaQLdjBEONga8YUEl1u5HJD/O6w1+w8LV6LLay0WLVok/JyVlYXp06dj5MiRePvttzFt2jQA/tYdy7KKtnKwNUrrr2WNnKeeegpr164VbpvNZhJaBNFJWJbF15cacHN6jDD4kmVZoTdnxW1pYBgGP5g8BEdLm/we3909WaEwITUalS1WoXdgRIL/ycnU4fHYd6EeW7ylLADXNxSmUyNMF4ZUr5gRO1n1rXYsf+0wqk1WZA02wub04GhpEy7UtCIjOUr+FKg12/DMp2dhcbjwyk9uUTzB+eZKA8ze5LCvL9UL5YtyPj5Zif/8pAizxgzCOz+/TfF1/+9XlwEAFocb+cWNQtQyAFyobcWoxEjc/b8HhcTF/9lzyS/yGQBOevsp7hqbiD3n63CqwiR8/vKzzvjBowA3BJqPyP74BBeUMWGwv5D69bwxSIsLV4zQJoj+QEdlrvwFngPeEQYjBkX6/T0PjZde9FEKgeFFFp/0lhLgczXJ2HFPVowk+CKwk5XkLQuTz8jiGZMUBbWKEfp34iP8xVh0mAY6jQoOlwf/b9dZuDws5o1LElwsQCqyRouEY2ObHa/uu4I3DnLhSrtOV+O+aUMVQ0iI0Hn/aBm+udyI3KIaYSSAGCUnS55JkjnYCJ1GBa3L9/8yP9xaqcTWL/gipDlZysfPiSzWu0ZZA0SJUjf5ACY5iVEGaNUM7PY+EuEeERGBrKwsXLp0SejTkjtJdXV1guuUnJwMh8OB5ubmoGtqa/1LYurr6yVr5M/T3NwMp9Pp53CJ0ev1iI6OlvwjCKJz/PN4BX7696NY949vhftOlDXjYm0bDFoVvnvzYADAoqxkYTilmN52sgBIZmcB0oZ1Hn5wJgBMGmLEH5aMx28X+gYg81fyypusaGyzw+n24IG3j6GkwQKb0yOJI/5XodTNO3ipAfM27ccdz+/FrtPV2HehHtvy/QMkAOAzUcJhc7sTp71XruWc9pYzHrrcICSNiSksb8GBi75Y5H0X6oUUMICLtN9/sR4NbXahfv3d/KtC34gYvhzw+5OHgGG4yOpGiwNVLVZhBtDiiT6RpVIxuFnW8C7/HfDrlk9J6/LeM4LoK/CffzZvQpuS+zQ0Xvr/v5KAGiRzkwYH+FxNEgVWBEoXjBEHXwQRiaO8AR3DBymXQhq0aklgjVi88TAMIxz7yTLuc4QPS+AZLRJZ4rLkv+71CSyAc/ooHOP64cdmtNmVxYdST5bFLi2Dv9k7ikMsqPjfXSjBF6GkCwaMXleJfw60xl/8KT1foIsVivsMeeU1Yrfbce7cOaSkpGD48OFITk7G7t27he0OhwP79+/HjBkzAACTJ0+GVquVrKmurkZRUZGwZvr06TCZTDh61DeL5siRIzCZTJI1RUVFqK72nXzk5eVBr9dj8uTJ3fqaCeJGh49qzTtbK5QXvHeEu2/JxFRhGGaUQYt18zNw27A4/EiUitXbPVkAsDAzWbiqe9vwOL+hnQBwU1oMlkxKxb1T0vDBQ9Pxs5nDJc2z8ZF6jPW6U4euNOLwlUacqjAh2qARTi74HqN/FVYJszdYlsWGz87hcl0bHC6PUILz2oErfv1bTRYHcr2lePxJ1L4LdYqv6YK3ud3lYRVnzPAlh/x+9l6oQ3FDm+Tx+cVcuMcPJw/BvHGJcHtYvOWN5K9qseLZXWdx8FIDihss0KoZzByVIMwLulLXhp2nqsCy3HsqF9NiZwsAMlPpIhdx4yEXQ2MVHG6xyIoJ1yr2iclnYAX6XBW7YIHmZMWEEOEOcImJb//8Nvx85vCAa8R/94EcpkTvZ57TW7YlF5XpceFQqxhYnW6crfb1zvPjQXKmDUWWd9RHaYASNyJ0mtu5snCLXTll1qZQLugnstK5i2hikcWLGaVe21DmZMkr05TCMeT7ClQuKCZYRHugixWKzxvyyhB54oknsH//fpSUlODIkSP4wQ9+ALPZjPvvvx8Mw2DNmjXYsGEDduzYgaKiIqxcuRLh4eFYsWIFAMBoNOKBBx7AunXrsGfPHpw8eRL33XcfsrKyhLTBcePGYeHChVi1ahXy8/ORn5+PVatWYfHixcjIyAAAZGdnY/z48cjJycHJkyexZ88ePPHEE1i1ahW5UwTRjZQ1tgvJcADw2v4rqDZZsfMUVyL246npkvWrZo3AP345Hd+9abBwH19i2JtkJEfhxO/n49Kzi/DBg9MUy4zVKgabf3wz/vsHEwOeLPCxz4euNOBoCefgzBuXhOfuyUJStB4v3XsTInRqVLZYUVTJnSwUXG3G2Woz9BoV8n49C18/eSfS48LR0OYQ+tcu1LTiPz85jV9/UIhWmwtjk6PwyFyujEOecghwwu2CaNjvl+ek1QAutwe5RZxY+/3i8dCqGVxtbEd5k6/U8VJdq7Dv6SPj8ZOpQwFwjhfLsnju8/N4/esS3PfmEeG1G8O0wmygy/VtiqWCPN+9SXrfsHjlq+EEMZAR919p1Ywklp1HXC4Y6Mq6QauWlEAFWjc4JgxqFYMInVoyQ0uMuFcrPEjwh0Grxuwxg4KW54Vykip34dLipCJLo1YJjpjcqYqP0OF3i8YKA+uvNgZ2sl7afRFLXz4IU3vooT43Ij4nS9nhaVcoF5Sv5dNh1SpGKPMLli7o52QpCCjxYG0gsJMlFlaBnKxQkQ8ZD0aXi6yKigr8+Mc/RkZGBu655x7odDrk5+dj6FDuy/jJJ5/EmjVr8Mgjj2DKlCmorKxEXl4eoqJ8V2peeuklLFu2DMuXL8fMmTMRHh6OTz/9FGq1749227ZtyMrKQnZ2NrKzszFx4kS8++67wna1Wo1du3bBYDBg5syZWL58OZYtW4YXXnihq18yQRAiPvGWvfHuy/Zj5Zi+8SvYXR6MTY4SSgbkTB8Zjxd/OAnv/UJ5vkxvoVWrOuwZDcbMUVzv0MHLPpE1dUQcFmam4Mh/zMN3slKEskO+P43v8Vp202CMSYqCTqMSTrS+8UafP7PzDLbml2H/xXowDLDhnixMGhIDALhY2+o3kb7WbJekA+49Xwent2je5nRjz/k6NFkciA3XYt64REl0erhODYYBGtocKG1sh4oBbh0eh2kj4qHTqFDZwkVN8z0kPN/JTAHgK3fKO1OLokozNCoG38lK8XuvtGoV/uM7XLnl7aMSrvvLkCD6I+KQiR9MTvOLPQc4IcHPoVIKveARu1mByrBjI3T4232T8fpPp4QUbx3MyQqFX9zBuVzzxvkHmPGIjzs+QidEZ4tJC1Ay/PCckYjQazDM637JZ4nxFNe34X/2XMKpChP2dEEq60CmxetktdmURZZ/8IVPZMWGa7HqjuGSMlG5K6WYLigPvlBIF0yUVZgE+v/3lqG+ML1QnKxgyENogtHlwRfbt28Pup1hGKxfvx7r168PuMZgMGDz5s3YvHlzwDVxcXHYunVr0OdKT0/Hzp07g64hCKLrcLo92O4Nt/jNgrEoaWjD1vwymKxOjE6MxMZ7soIKlu/L6u4HArcNj4dGxaC8ySq4QrcNl4Y2TBkWh70X6lFwtQmzxwwSom9zpg8V1kzlhVhJE5otDuQXc4KMYbgwiFvSY2FzusEwXF9WfZtdMhyUd7FGJESgxepEk8WB46XNGJ8ajeyX9gtpSQszk6FRq7Bm3hjs9ZYUujws0mLDhSvGWYONQsnntBHxOHCxHnlnayXlIWoVg/neOUAjvU7Wfm+/1+2jEwI22K+6YwTS4yKQNcS/H4sgbgQYhsFjd47CqQqTcNFBaU16fATOVZsVQy94BkXqhb7KYA7S/AAzu3jEvVpKQ4Y7w4RUI7753Z0BY94B6WBjuYvFI3cUBkXpYQzT4r5p3Ocm7/YFcrL+uveK8HNFc2iR3DciDpcHFq9TZQkwbsSm4GTx3wd//sEkv5lwOrVKCGQBAjhZIZQCRhs0CNOqBZEXSECtnjtK+P7hQ5uUiNCphdcaiM6UC9IkR4IgrhuHy4N3DpfiSn0bqkw2JETqsXhiCgxaNX49bwza7C5J4/SNRKReg1ljBuGr83XC7WGy/gI+vvx4aTM27b4AD8uVFGYO9gmNiUNioNeo0Ghx4PWvi+H2sBibHIXcNbOENQatGsPiI1DSYMHFmjapyPLO0xmXEo0wnRofFlTgy3O1uFjbKggshuGunAPApLQYZCRF4UJtK+7MSMSSSanY8Nk5VLZYsURU6jdnzCAcuFiPv+2/IvRPjE+JxoyR8cKJmbxx/94gg6AZhpGkiBHEjci67IwO1wxPCMe5anPQoCCxI5RyHb2uETo1NCoGLg+L8Ot0soCOT1TFx50eQGSJxVekXoPDv7sTbpaFXsOJQP5zlu8LPlXRgigDN3vvm8sNQtUFAMmoCkJKi9U3piNQuaBShDu/Vsn5lAumUMoFA/VkJUXrUeoV0oGcLHFIVbCLElEGbcciqzedLILoKT47XY1/HC/HY3eOFk5SuxuWZWG2umBUSES6kXn962L8+YsLwu2fzRwm1ORr1KobVmDxbLwnC1M37AHAOVJyN2/SkBhoVAzqWu347HQNGAb4zQLpSZZOo8It6bE4XNyIV7xDm7MVrj6PSYrkRFZtK24fzZX8sSyL494kw4zkKIxJisKHBRXYfbYWYd7f0+q5I3HvlHRhbhUAbH9wGt76pgQ/mJyG9PhwLMpMRpXJKonYnzcuCc/sPItWbxnJHaMT8O4D0pJP3skCuCZ+ElEEcf08NGskDFq1MPRcCV6s6DSqgLHqocAwDGLCdWhosyuW7nU1iSKRlRanfFIrdrISo/TQqFWSk1reyaoyWVFtsuIHrx6Gw+3Bqz+5BU/881u4PSwMWhVsTo9kVAUhRdyvxpcLuj0sypraMSw+HAzD+PdkOT1CSIbS/y9+5YLXOCcL4EoGOxJZAHD4qTvxUUGF4HQqEWXQoMYccDOAwGWqSnR7uiBBdAdWhxtPfXwa+y7U4/uvHhLKq66Vy3VtwnT5YLx5sASTnsm77ucbSLg9LN474osWj4vQ4b6pgT/EbkSSog349NHbMW9cEn49f4zf9jCdWiJucqYNVZyZNXVEnOR29gR/sTImiXvcRVHIxQt5F5B3lus5mDEyHneMToBOrUJZUzsu1LbCoFXhwVkjJccAcCVCa7MzhPtVKgZDYsMlX37p8eFYKDqOiQplfrEROiHOfv3SCdfV40YQBMektBhsWn5T8HJBr1gZHBN23X93vEjrCZHVWSdLnqQIAAmRXN8aywJfna+Dw9uD+vC2E7A43Jg5Kh4f/pJLpC6pt/j1sRIczSKRxZcAPv/Fecx9YZ8QZKTUk2URnCz/8tKQerL8ygWVJYs4+TdYH2+KMQyP3jla0l8oJ1Dwi+T5jIagYk4MiSyiT+HxsPjH8XK8su8y/rr3MjbvuYT/3XMJZbKa6k8KKyVN/M/nng/4AdnS7sCyv36DX39QqLj9bJUZi/7nAO54fi9e2XcZngDZnR4Pi7e+KQUAfFRQ0fkXN4CoMdnw8YkK1Jhs2Hu+DpUtVsSGa7H3iTn4/Fd3kNOnQNYQI964f4qkBFDMYm8QxJ1jE/Ffi8crrpk/PgkaFYNIvQZPLRqruC9eZPE9WFUtVqH34I9LJ2DKsDhE6DWSHowfTB4S9IunI1bPHSX8PD5F+fW98/Pb8Omjt2PaCBoiTBA9Be86dyYRLRCr7xyF796UKim96i4GSZysACJL5CjIAxAAzn3j3Szx/D+Am2v4Ws4UjE6KhIoBWu0u1Afp1bmR4ePbAV+54Gv7iwEAaz4ohNXhFvqceF1kd7qF/i1lJ0tWLhhC8IXSnCzAF7IFXH+ohXxUgBJatQpHn74rpP1RuSDRp/j3t1V48sNTfve/c/gqfjB5CPKLGzEuJRr7vXOA1s4fg9f2X0FpYzuOlTYrfvg/8+lZFJa3oLC8BQ/cPtzvxPTv35R4e0lYPJ97ASX1Fjz3/Yl+f+DHrzajsoVrjs0vboTT7VGsER7ovH6gGM9+dg4AVxrG178vn5ImuBVE53lk7ihMGxGPW4fHBbxiNyHViANPzkWUQRMw5p53wC7VtoFlWezx9oJNGRqL+2cME9a98MNJyJk+FDqNSpgnc61kDTHi/ulDUVjeglljEhTXpMWFI637z80IghCRPSEJj84d1SUluksnpSqOXugOEiL1UKsYuD2sJK5eTGKUHjq1Cg63xy/ynWdkYiTOVptx8BKXypocbcD88VxFAX/yP8Qb6lNcb5H0sQLcxVWH2xM0kn6gIy4XtDjckgvaLAss+p8DQrmeMUyLlnYnTFanMGtKqSdLfO6kUTGKDpTcVQp0vpUkEtiBhFioPP2dcahvteNHt6YHXcef93QEiSyiT/EvbyPq5KGxGDkoAmoVgyMlTSiut+Bv+7mr8YXlLQC42tn7ZwxDZbMVHxwvxwfHygWRZbG7wDDAsdJmfHzS19y6/VgZnh40Hr/+oBAjEyPws5nD8e9Czu6+d0oaPjxRgX8WVGBwbBjWzJOWde0Q7cficONkWUuPXNHrSxSWt+C53PPC7cNXGoUGVvGcK6LzGLRqzBilLFDEBGtyB4DhCRHQaVRos7twua4NX3nnYd0pi0sO06m71FX643czu2xfBEF0DeE6DZ5Y0HGIRl9Dp1HhvxaPh8nqDBiSoVIxGBwbhpIGizC8WM4Yb+gOH2awcuYw/HL2SMmaEYMiBJHFfya63B689U0p3jxYAovDhbd/fhtuSe+Z3u+e5vnc8/i2ogVvrbxNsTdK7GS5PSxsTg/iInRosnD3l4oqjXiR1ejdxjDKc9XEgknpOQFfoi5PoBK9pBDLBUMhPlLv11N8PZDIIvoMzRYHvvZebXr+BxOFZvnypnZ8/9VDsDrdePzO0ahrtSHZGIY7xybCGKbF8luH4IPj5fhXYSWmjYhDTLgOj79/EslGg1ACdUt6DE6UteBfJ6sQqdci90wNcAY4XWmGw+3BpLQY/PcPJmLKsFj85sNT+L8Dxbhv2lBhPsnlujZ84hVZg2PCUNlixcFL9X4iy+5y49tyE8anRvdI3XpPcqbKhMfePwG3h8WSSakoqjShpMECl4dFcrQB41L8e4iInkerVuG2YXE4eLkBu8/V4hvv8OB544JHNBMEQfQlxM57IEYO4oJ+AvVtjU6Sfi8prRuREIl9F+pxpb4NT318Cp+crEJKjEGIvgeAn285hk8emSkMOBbjcnvwbUULbk6L7Xez/ViWxd+/KYHN6cG5ajMmKcyxbLFKBzW32V3wBGjP4IcB8wIsQqdR7AXUajoWWeNTokN6DWKRFWqvVE9x49U6EX2WL87UwOVhMS4lWpJGlhYXjr1PzMHR/5iHVbNG4Om7x+OB24cLpWm3pMfiezcPhsvD4jcfnsKqd47D6nSjpMGCwvIWaFQM/vqTWzAsPhytdpfgiAG+Ou0180YD4HpTsgYb0e5w4697LwMAWm1OPPreCVidXKPsY3dy/Se7TlcL08oB7sPq4a0nsPy1w7j5mTz88dMzwrBXMWWN7fjO/3wtOQ4lWtodsHYQJdpTnCxrxvdeOYTyJisGx4ThmaUTMHvMIGH73LGDKMygDzHT64g9n3sBDpcHQ2LDMFoWo04QBNHf+cOS8XjunqyAc75GJ0k/95REFj9i4mJtKz4qqITV6UZxvQVReg2e/V4mJqXFoKXdide/5vqQ3B4WxfVtQtnc7z4+je+/elgYIt+fqG+1w+bkzlN4YSSnpV16f6vNKemJB7iLeCoGuGtsomRfSqEXAKAXi6wAZYAqFaMYpCRH3JOl6mPnISSyiD4By7J4zzvEdsmkFL/tEXoNwgIMQGQYBi/+cBJWzx2JKL0GDANME6WwLZ6YghRjGP7yo5sR4w1kGDkoQvjDvndKGuZmJAr74qOz3z5Uik9OVmLF60dwvqYVCZE6vHTvTVgwIRmx4Vpcqbfg+dzzOFtlxocFFfivf50RZiE53VxIxs+3HINbFqSx9chVnK0247nPz+OZT88KMzzElDZYMPvP+3D7f38lSYlTwu5yI+9MTdB0xFqzDdkv7cfvPykKuIZlWfzzeDl+9tZRfPev3wjP6/aw+M9PiuBweXDH6AR8+tjtiI3QYU6GSGRlJAbaLdEL3DFaWnZ4zy1DSAQTBDHgSIsLx49uSw/YrzM0LlxyEq8UopGRzImsIyVNQgLhr+4ajV2P34GfTB2K1XO48sL8Yq4q4M2Dxbjzxf3YtPsiCq424UNvENb7R8u6JKGwuL4Nbx8qlVzE7S74AfMAhBI/gDsfKGtsB8uyaGmXCqpqkw3ilzllaCxe/+lkFP1xAaZ6yy2DzcgCgCGiEtBAThbgXzKohNjJag8wLLm3GFj1TES/5etLDThVYUKYVh10UGkgVCoGv1kwFk9kZ8Dm9CBMp8aa7SeRd7YWD8/hnKeb0mLw0cMz8N6RMtw3bSiOlTbhaEkT/nPxOMm+Zo0ZhO/fMgQfnajAGm8iYVyEDm+tvE1oiv1/yzLx6Hsn8cbBErxxsETy+D8unYDUmDA89v4JfH2pASfKmnHrsDhcqm2Fw+3BF2dqhLV//6YEbx0qwbZfTMWMkdyJscfD4skPTwlXin7yxhF8/PAMxS8Hu8uNVe8U4MDFemhUDB67czR+5XXlxGzKu4iLtW24WNuGH92Whgmp0qtDTrcHT+84jX8c96UmvvF1MZ7/wSS8d7QMZ6rMiDZo8Jd7b0KcN8Z32oh4JEcb4PKwgnNC9A3kZRYPzRrRS0dCEATRe2jUKowYFIHzNa0whmkVU1RHJXIlhbyoGZcSLRm1cdvwODAMcKXegrpWG7YfKwcAbP7qMj4+4evVvlTXhjNVZkm4VmmDBTaXG2OTQyt9A4A//PsMvr7UgIRIPe6e6H/ROVRsTjdWvXMcN6fFYG2A4dZikdUsEll/3XsZL+RdxIyR8ZI1AFDZzAWAhWnV+N8f34xJQ4xgGAbhOo3EoQICx/2Lw0wCOVkA8JOpQ/H61yXISArcjiAOJekJYdoZSGQRvQ7Lsnj5K64078e3pSM+QEpQKDAMIzhem5bfBDfLSq5wjRwUid9747GHJ0RgeQBB98x3J+B0ZQsu1rZh9phB+MOS8RghKmFcPDEVJfUWfHiiAs0WB8amRCMp2oDJ6TH46fShYBgG38lMwccnK5FbVIPUmDAsffkbYZaETqPCM0sn4O3DV3Gu2owt35Ti+dwLcLo9GJ4QgaOlTQjXqTEkNgwXa9vw0LsF+OjhGX5u3tM7inDgYj3UKgYuD4u/7LmIpTelChPtB0XpwbLAPwvKhce8su8K/rriFuG20+3B4++fxOdFNVAxXOjIsdJm7D5bC5PVib/svggAWJedIfndGLRq7Hz8drBs4KtVRO+gUjH4ydR0bDtShhd/OIl+PwRB3LCMTorC+ZrWgH1bxjAtUowGVJu4apCxshmFMeE6jEuOxtlqM44UN0mqUypbrEgxGjByUCQOXm7ARycqBJHFsiyWbD6IVrsL+38zJ2BKohiPh8XJshYAnKN1PRwvbcbXlxpQcLUZv54/RrGaobzJKvwsdrL4Yzjk7ekVU+FNWY4N1/qVacpFVoRO+btnWILvdxHMyRqWEIGvvYm6wfjtwrE4XtqEWaI2hr4AffMSvYbd5UZFsxUny1pwtLQJOo0Kq2YN77L9q1QMVLi2EqkIvQb/Wn07Wu1Ov0hXnsfuGo3H7vJ3jXgWZCYLIquhzS4Z1jdjZDx+dFs6xqZEY9lfvxEGxQLAmSozVAyw4XtZuG14HJZsPoiz1Wbc/b9f4zcLMpA9IRnnqs2wOt34sKACDAO8tfJWvPVNCfZeqMfbh0px59hE/PTvR6FRMYgO08LDckNiT1WY8NnpapypMglu1h/+fQafF9VAp1bh1ftuwewxg3Dbhj1osjjwi7ePodHiwLD4cKyY6h9pmnAdgpjoXn6/eDx+fvtwSX8jQRDEjcbY5Ch8+m3wGUijk6IEkTVGwTWZNiIeZ6vN2H+xHuVeZ+fm9Bjckh6Lx+8ajaMlTTh4uQFfna/DH5ZMAMCJllZv2dzOU9WSeYKBKG20CKV2Fc3WgOvKm9rx249O4bE7R2P6SOWU2LPVJgBAu8ONlnYnYr1VKGLELlWTxTcnrK7Vf2ZYlF6DVrsLFc3euPZw//3pZVH3gS7wiQVvMJEFBJ6TJubhOSMBjOxwXU9DIovocepb7dh25Cq25pcJA+wArgY6xXj9AxO7ijCdOmAfWCjMGj0IYVo1KlusqCy0gmE496y43oLv3zIEADcQcWh8OK56I1AnDTGioc2BPy3LxFxvA+nfcibjwXeOo7jBgoe3ncCgKD3qW+3C0L97bh6CWWMGQcUw2HuhHv84Xo5jpU0AAJeHRZPFgbHJUXjjp1Pwx51nsetUNf7j49P45y9n4MOCCrx3pAwMA7zyk1twlzeBLnt8ErYfK8ex0mYAwNrsjBtyJlh/xqBVk8AiCOKGZ/mUNFS2WPEThQuFPBlJkUIQltzJArg+779/UyL0X0UZNPj44RmCO3TrMC7e/WpjO1raHYgJ16GqxSeS/rr3Mr6+VI9545Lwizv8y7dtTjfe+LpYCKEAIMzlVGJr/lUcutKIcJ06sMiqMgs/VzRbFUVWuURk+XqveMH5x6UT8Id/nwHARd1/W2ESygVjFEov/csFlc+hholcvUBJhQMBEllEj1LaYMHSlw/CbOOu1DAMN8xufEo0HhxgfSNhOjWyJyThX945XL+4fTh+PX8MiirNwgcywzD47k2D8b97LmFofDg+fHiGn5i5dVgcvv7tnXht/xW8su8K6r1XmFiWuwK0NpurHZ85Kh4TUqNxpsqMM1Vm6DUqrJk3BrVmG9Zmj0G0QYs/LB6PAxfr8W2FCWN//7kwLPDRuaMwT2T733MLF4uvUTH4ydShWJx17XXhBEEQBNFbDIrSY8P3soKuEbtXY5RE1sh4aLxl+QDXeiAuv4sJ1wkXTE9VmDBrzCBBjACcm5Rf3IT84iaoVQx+NlNatbPlUCleyLsouY93jJQ4Xcm5VBdrA5cUnq0Wi6x2ZCkk9Sk5WQ6XR7gAvmRSKtLjwtFideDAxQZOZHnFHx8kJkbuSgVyssSPrTH5u2YDBRJZRI/y/rEymG0ujEiIwJr5YzBvXCJOVZgwNjlqQDolzyzNxKLMZIxJihJ6uuSztVbdMRytNifuuXlIwPcgUq/BuuwMLJiQjFMVJswbl4i8s7UYkRAhDGpkGAZv3n8rHn3vBI5fbcbPZg73Wug+EqMNeP77E/GbD0+hze5ClEGDH9+Wjl/Jyh5vGx6HL9bMQmy4DoOiqCSQIAiCGLiM84YFGcO0SDX6twhEG7S4dVgcDnsTBkcpjMSYOCTGK7JaOJElc6LUKgZuD4tndp7FhFQjbhseh73n62B3ufHxiQq//VW12ODxsH6zt1iWFURWeXM72h0uhMt6n2xON66I5nzxpYflTe0whmsRbdDC5nSjRpRKzMeu13rv02lUiA3XClU1BVe5ypZgIivU4AuxQBVXNA00SGQRPYbHw+JTr6vz5MIMLMzk3BF+wvpAxBiuFV5nIKIMWqGGuyMyBxuFptr7pg31255sNGD7g9NwsbYt4HDgRVkpyJ6QjBqzDfEROkkyjxilunSCIAiCGGhkDjbiD0vGY1h8RMBxF3eOTRREllIp9qQhRnz6bRW+reAEUFWLTXjc2OQo/GzmcGz8/Bw+PlGJtf8oxD9/OR2r3jkuuGNyHG4P6tvskohygCtJbPVWA7EscLmuDROHxEjWXKpt8wvoKG9qx10v7kd6fDg+/9Udwmvh4YMveOGVYjRI3otIvVZ4TgAwhin0ZGlC68m6UbixXz3RoxwrbUKVyYYovQZzaK5St6FRqzA+NXhcrFrFCA4YQRAEQdzoyEv45Nw5LhHPfnYOADA41v/7kxc6p70iq7KFK8WbPWYQ7p8xDADX43SkuAkVzVY88+lZicDi49K1ahWsDs5lqmhuR1GlCf8qrMKDs0bgdKUJR2Ti6GJtG0YOisQnhZWYk5GI0gYL/rb/imRNRXM7jnrngF2ua8PKt44KyYG3pMfgRFkLWm0uON0eoR9LLu7k/VWxSk6WNrRyQYAbjRNoAPJAgUQW0a00WRz4r38VIVKvwZESLoxhYWZyQPeEIAiCIAiirzEiIQKZg6NRUm/BNIUhuRNSo6FiOCeovKldcLJSRRc0owxarJiajj9/cQG5opmZDAM8euco3JwWC5UK+OmbR70iy4rNX13G5bo2/PvbKsXjulTbihqT1a+nC+BGshRcbUZFsxUXaluF+7+5zAmse24ZjN/fPR6T/7QbHpablVVj4soBU2Rlk3LBpFQuGKHTIDnaILhhwaLX37h/Cn6+5RieWjQ24Jr+DoksotuwOd148J3jOO6t4wW4P9pHQogxJQiCIAiC6CswDIP3Vk2DzeFGYrR/31aEXoPbhschv7gJO05WCr1L8qqRW4dxAo0vu/vNggysuC1dkv43JDYcR0qacLKsBZfrfOEWUQaNUCrIj2W5WNsqSSUEgHunpGFBZhIGx4RjwV8OoKLZinOiIAwVw7lqOdOHAQBiw3VotDjQaHEITlayUe5kSSWDUrmgWsXg08duxzuHS3G+phVzMgLPrbolPRYnfz8/YHnmQIBEFtFt/PHTszh+tRlRBg2W3TQYEXoNfjl7BGIUZisQBEEQBEH0ZaINXGhEIO69NQ35xU1453CpUAonF1kThxihU6vgcHuE2/J4db4c8R/HywEAmYOj8dw9EzFyUCT+/k0Jvr5Uj5/PHI4H3y3AmSozzDYufv3hOSNx+6gEzByVAIC72A0AbXYXjhRz1UTvrZqKMUlRkjmXcRGcyGqyOFDjFVkpMiEZJXvdSk4WwKU5rsvOCPgeiRnIAgsgkUV0MTanG1vzr6K00YL3j/rmL90xum9N4SYIgiAIguhKFmWm4L/+dQYNbZzA0mtUiA6TnmobtGpMSjMKcyizBvtHq/OzutodnEiaMTJBCL1aPXcUVs8dhTa7C2FatTA4OC5ChycXZEiEi0GrRkKkHg1tdjjcHjAMcFNajF8aYZxX5DVZHEKpX7Jsbun0kfHCnE4gsMgifAy8zGyi1zDbnLj/70fxp13nsDW/DADw4KwRJLAIgiAIghjwGLRqrBANPU6PC1d0a/iSwbS4MMXqngUTkoVYeQCKA4cj9Rr8YPIQ0T5jFZ/rzrG+c7ChceF+AgsA4iO5YyiqNKHYG/0u78kyhmnxwg8nCbfFThihzA0hsl555RUMHz4cBoMBkydPxtdff93bhzTgqDPbcO9r+ThS0oQovQb33DwYK2cMw7r5oVnGBEEQBEEQ/Z3fZGfguXuycHN6jJAqKGfJpFToNCosnZSquF2tYvDHpdxoF42KEUSZnJUzffsPtOY3C3zBEoHS/hKjOEH12oFimKxOpBoNyFAYyjx7zCC8vOJmPP/9iSSyQoBhWVY5oH+A8MEHHyAnJwevvPIKZs6ciddeew1vvPEGzp49i/T09A4fbzabYTQaYTKZEB0dPBb7RsPU7sSOkxUoLG/BF2dqYXW6kRCpx9s/vxUTUv3tb4IgCIIgCAKKg4blfHW+FmFajaKTxfPbD0/hs6JqfPb4HUiLC1dc81FBBZ7+5DRe/OFNuHui/+zOGpMNv/9XEXafrcXwhAi88/PbAu6LCF0bDHiRNXXqVNxyyy149dVXhfvGjRuHZcuWYePGjR0+nn8jX9x5EoYIbvic/B3j30L+fla4n7+tvB0sG/Ja+Xb4be/cMfgde4D1bg/QanPCZHWipd2JFqsDpnYnko0GNLQ5JDMOxqVE42/33YKh8REgCIIgCIIguhf+PK6jEIlQRF1FczsSIvU0ZqcDQhVZAzr4wuFwoKCgAL/73e8k92dnZ+PQoUOKj7Hb7bDb7cJts5mLvPzLl5eg0pOq5zHbuEjR0YmR+E5WCmaOSghYD0wQBEEQBEF0PaGed3UksAAuOp7oOga0yGpoaIDb7UZSUpLk/qSkJNTU1Cg+ZuPGjfjjH//od/+ym1KhD48E//8yA+4H4bbw/67sfkB2O9B23//8Ha+VPkb21B0/LsB2yPbHMNzaKIMGMeFaxIRrYQzTIdqgweW6NnhYIHtCErTqG6K1jyAIgiAIgiBCYkCLLB65ymdZNqDyf+qpp7B27VrhttlsRlpaGv70vSzqyRIxOsm/IZIgCIIgCIIgiAEushISEqBWq/1cq7q6Oj93i0ev10Ovp8QUgiAIgiAIgiCujQFd56XT6TB58mTs3r1bcv/u3bsxY8aMXjoqgiAIgiAIgiAGMgPayQKAtWvXIicnB1OmTMH06dPxf//3fygrK8Mvf/nL3j40giAIgiAIgiAGIANeZN17771obGzEM888g+rqamRmZuKzzz7D0KFDe/vQCIIgCIIgCIIYgAz4OVnXCw0jJgiCIAiCIAgCCF0bDOieLIIgCIIgCIIgiJ6GRBZBEARBEARBEEQXMuB7sq4XvprSbDb38pEQBEEQBEEQBNGb8Jqgo44rElkd0NjYCABIS0vr5SMhCIIgCIIgCKIv0NjYCKPRGHA7iawOiIuLAwCUlZUFfSPl3HrrrTh27Fh3HdZ10ZePDeCuEKSlpaG8vLxPho309fePp68eZ1///fL01fdPTF8+Rvo9dw19/fjo93zt9MVjEtMffrd9/T0E+vYx9offMdD33kOTyYT09HRBIwSCRFYHqFRc25rRaOzU/4BqtbrP/g/bl49NTHR0dJ88zv7y/vX14+yrv1+evv7+Af3jGOn3fH309ePjod9z5+mLx6REX/7d9of3sD8cY1/+HQN99z3kNULA7T10HDccq1ev7u1DCEhfPrb+QH95//rLcfZV+sP71x+Osa/T19/Dvn58/YW++D72xWPqb/SH97A/HGNfp7++hzQnqwNoTlbPQ+/5wIZ+vzcG9Hu+MaDf88CFfrcDH/odXxs0J6uL0Ov1+MMf/gC9Xt/bh3LDQO/5wIZ+vzcG9Hu+MaDf88CFfrcDH/odXxuhvm/kZBEEQRAEQRAEQXQh5GQRBEEQBEEQBEF0ISSyCIIgCIIgCIIguhASWQRBEARBEARBEF0IiSyCIAiCIAiCIIguhEQWQRB9AoZh8Mknn/T2YRAEQRDEDQ19H3cNJLKIHufQoUNQq9VYuHBhbx8K0Y2sXLkSy5Yt6+3DILqJ8vJyPPDAA0hNTYVOp8PQoUPxq1/9Co2NjSE9ft++fWAYBi0tLd17oMR1QX/HAxf6Lr5xoL/j3oFEFtHj/P3vf8djjz2GgwcPoqys7Lr25Xa74fF4uujICIIIheLiYkyZMgUXL17E+++/j8uXL+Nvf/sb9uzZg+nTp6Opqam3D5EgiA6g72KC6F5IZBE9isViwT/+8Q88/PDDWLx4MbZs2SJs469s79q1C5MmTYLBYMDUqVNx+vRpYc2WLVsQExODnTt3Yvz48dDr9bh69WovvBKiMwwbNgx/+ctfJPfddNNNWL9+fa8cD3F9rF69GjqdDnl5eZg9ezbS09OxaNEifPnll6isrMTTTz8NALDb7XjyySeRlpYGvV6P0aNH4/+3d6cxUV1vHMe/A0JlggugA4JWERC10/qiMY3GqNMKJWpbjQsupBJN21SxRarRpk0sbdQuatKGunbqVhuXuBFNMAQFbdQ42lA3SqsZYxMhGhkdRSNS7v+F8aZTqPlrhxno/D7JJPfec7g858WZk+eeM+c6nU4uX76Mw+EAICYmBovFQm5ubhBbJP+PkpIShg0bRteuXYmLi2Ps2LFcunTJLL98+TIWi4Xdu3fjcDiwWq0MGjSI48ePBzFqaYnG4tCl8ThwlGRJQG3fvp309HTS09PJyclhw4YN/P192AsWLGD58uW4XC5sNhuvv/46Dx48MMvv3r3LsmXL+O677zh//jw2my3QzRAJWXV1dRw8eJDZs2cTFRXlU5aQkMD06dPZvn07hmHw5ptvsm3bNr755huqqqpYs2YN0dHR9OrVi127dgFQXV1NTU0NX3/9dTCaI0+gvr6egoICXC4XZWVlhIWFMX78+GYzGB999BHz58+nsrKSfv36MXXqVBobG4MUtbREY7FI6+sQ7AAktDidTnJycgDIysrizp07lJWVMWrUKLPO4sWLycjIAGDTpk307NmTPXv2MHnyZAAePHjAqlWrGDRoUOAbIBLifv/9dwzDYMCAAS2WDxgwAI/Hg8vlYseOHZSWlpr9u2/fvma92NhYAGw2G127dm31uOXfmzBhgs+50+nEZrNx4cIF7Ha7eX3+/PmMGTMGgMLCQp577jkuXrxI//79Axqv/DONxSKtTzNZEjDV1dWcPHmSKVOmANChQweys7P5/vvvfeoNGTLEPI6NjSU9PZ2qqirzWmRkJC+88EJgghaRJ/Loabjb7SY8PJwRI0YEOSLxl0uXLjFt2jT69u1L586dSU5OBmj2e56/fj/36NEDgGvXrgUuUHksjcUigaGZLAkYp9NJY2MjSUlJ5jXDMIiIiMDj8Tz2by0Wi3kcFRXlcy5tX1hYWLOlKH9ddiLtR2pqKhaLhQsXLrS4W9Wvv/5KTEwMVqs18MFJq3rttdfo1asX69evJzExkaamJux2Ow0NDT71IiIizONH39XaFKHt0Fgc2jQeB45msiQgGhsb2bx5MytWrKCystL8/PLLL/Tu3ZutW7eadU+cOGEeezwefvvtNy0zaee6d+9OTU2Nee71enG73UGMSJ5WXFwcGRkZrFq1inv37vmU1dbWsnXrVrKzs3n++edpamqioqKixftERkYCD3clk7bvxo0bVFVV8fHHH/PKK6+Yy0KlfdFYLBqPA0dJlgTE/v378Xg8zJo1C7vd7vOZOHEiTqfTrPvpp59SVlbGuXPnyM3NpVu3bnq/Qzv38ssvs2XLFo4ePcq5c+eYMWMG4eHhwQ5LnlJRURH379/n1Vdf5ciRI/zxxx+UlJSQkZFBUlISS5YsoU+fPsyYMYOZM2eyd+9e3G435eXl7NixA4DevXtjsVjYv38/169f586dO0FulTxOTEwMcXFxrFu3josXL3Lo0CEKCgqCHZY8IY3FovE4cJRkSUA4nU5GjRpFly5dmpVNmDCByspKfv75ZwA+//xz3n//fV588UVqamooLi42n3pL+9HU1ESHDg9XJH/44YcMHz6csWPHMnr0aMaNG0dKSkqQI5SnlZaWxqlTp0hJSSE7O5uUlBTefvttHA4Hx48fNze1WL16NRMnTmT27Nn079+ft956i/r6egCSkpIoLCxk0aJFxMfHk5eXF8wmyT941I/DwsLYtm0bp0+fxm63M2/ePL766qtghydPSGNxaNJ4HBwW4+8LM0WCpLy8HIfDgcfj0W5j/wFZWVmkpqZSVFQU7FBE5CmpH4cejcX/PerHwaGZLBHxK4/Hw4EDBygvL/fZDlhE2g/1Y5H2T/04uLS7oIj41cyZM3G5XHzwwQe88cYbwQ5HRJ6C+rFI+6d+HFxaLigiIiIiIuJHWi4oIiIiIiLiR0qyRERERERE/EhJloiISIhatmwZgwcPplOnTthsNsaNG0d1dbVPHcMw+OSTT0hMTCQqKoqRI0dy/vx5s7yuro65c+eSnp6O1Wrl2Wef5b333uPWrVs+91myZAlDhw7FarVq1zoR+c9TkiUiIhKiKioqmDNnDidOnKC0tJTGxkYyMzPN95kBfPnll6xcuZKioiJcLhcJCQlkZGRw+/ZtAK5evcrVq1dZvnw5Z8+eZePGjZSUlDBr1iyf/9XQ0MCkSZN49913A9pGEZFg0MYXIiIiAsD169ex2WxUVFQwfPhwDMMgMTGR/Px8Fi5cCMD9+/eJj4/niy++4J133mnxPjt37iQnJ4f6+nrzJaiPbNy4kfz8fG7evNnazRERCRrNZImIiAiAucQvNjYWALfbTW1tLZmZmWadZ555hhEjRnDs2LHH3qdz587NEiwRkVChJEtEREQwDIOCggKGDRuG3W4HoLa2FoD4+HifuvHx8WbZ3924cYPPPvvsH2e5RERCgR4xiYiICHl5eZw5c4affvqpWZnFYvE5Nwyj2TUAr9fLmDFjGDhwIIsXL261WEVE2jrNZImIiIS4uXPnUlxczOHDh+nZs6d5PSEhAaDZrNW1a9eazW7dvn2brKwsoqOj2bNnDxEREa0fuIhIG6UkS0REJEQZhkFeXh67d+/m0KFDJCcn+5QnJyeTkJBAaWmpea2hoYGKigqGDh1qXvN6vWRmZhIZGUlxcTEdO3YMWBtERNoiLRcUEREJUXPmzOHHH39k3759dOrUyZyx6tKlC1FRUVgsFvLz81m6dClpaWmkpaWxdOlSrFYr06ZNAx7OYGVmZnL37l1++OEHvF4vXq8XgO7duxMeHg7AlStXqKur48qVK/z5559UVlYCkJqaSnR0dOAbLyLSirSFu4iISIhq6XdVABs2bCA3Nxd4ONtVWFjI2rVr8Xg8vPTSS3z77bfm5hjl5eU4HI4W7+N2u+nTpw8Aubm5bNq0qVmdw4cPM3LkyH/dFhGRtkRJloiIiIiIiB/pN1kiIiIiIiJ+pCRLRERERETEj5RkiYiIiIiI+JGSLBERERERET9SkiUiIiIiIuJHSrJERERERET8SEmWiIiIiIiIHynJEhERERER8SMlWSIiIiIiIn6kJEtERERERMSPlGSJiIiIiIj40f8Ans40WKItuBgAAAAASUVORK5CYII=", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:57.765311\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df['ninfected'] = df['infected'].diff()\n", "df['ninfected'].plot()\n", @@ -1829,21 +233,9 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAFDCAYAAADbBIQTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7M0lEQVR4nO3deVzU5fr/8dcw7AgDiIAo7oIirrhbuaRouWSLpibpyaxOpcfS6nTO9/xOZ8vTYnXKVo+nxbXFrMwyt7RMcUFRcd8BWUUYNllnfn+gU7ijwLC8n4/HPLL53PP5XIMIc32u+75ug9VqtSIiIiIiIiLXxcHeAYiIiIiIiNQmSqJEREREREQqQEmUiIiIiIhIBSiJEhERERERqQAlUSIiIiIiIhWgJEpERERERKQClESJiIiIiIhUgJIoERERERGRCnC0dwD2ZLFYSEpKwtPTE4PBYO9wRERERETETqxWKzk5OQQFBeHgcPVaU71OopKSkggODrZ3GCIiIiIiUkMkJCTQtGnTq46p10mUp6cnUPaF8vLysnM0IiIiIiJiL9nZ2QQHB9tyhKup10nUhSl8Xl5eSqJEREREROS6lvmosYSIiIiIiEgFKIkSERERERGpACVRIiIiIiIiFaAkSkREREREpAKURImIiIiIiFSAkigREREREZEKUBIlIiL12pHUHCbMi+bT7fH2DkVERGqJer1PlIiI1G9Wq5W/fB1H9PGzbD6WQWLmOZ4eEnJde4SIiEj9pUqUiIjUW78czSD6+FkczudMb60/yh+X7aWk1GLfwEREpEarUBLVokULDAbDJY8nnngCgMmTJ19yrHfv3uXOUVhYyLRp0/Dz88PDw4NRo0aRmJhYbkxmZiZRUVGYTCZMJhNRUVFkZWWVGxMfH8/IkSPx8PDAz8+P6dOnU1RUdANfAhERqY+sViuvrj4EwIN9WvDi3R1xMMCnOxJ4bGEM54pK7RyhiIjUVBVKorZv305ycrLtsWbNGgDGjBljGzNs2LByY7777rty55gxYwbLly9n6dKlbNq0idzcXEaMGEFp6a+/rCZMmEBsbCyrVq1i1apVxMbGEhUVZTteWlrK8OHDycvLY9OmTSxdupRly5Yxc+bMG/oiiIhI/bPuQBqxCVm4Ojnw+MDWTOjVjHcnRuDi6MDaA2k88N9oMvN0c05ERC5lsFqt1ht98YwZM/j22285cuQIBoOByZMnk5WVxVdffXXZ8WazmUaNGrFgwQLuv/9+AJKSkggODua7775j6NChHDhwgLCwMKKjo+nVqxcA0dHR9OnTh4MHDxIaGsr333/PiBEjSEhIICgoCIClS5cyefJk0tLS8PLyuq74s7OzMZlMmM3m636NiIjUfhaLlTvf/JmDKTk81r81f7yjne3Y9pNnmfLRdrILSmjj34CPH+pJE283O0YrIiLVoSK5wQ2viSoqKmLhwoU89NBD5RbgbtiwAX9/f0JCQpg6dSppaWm2YzExMRQXFxMZGWl7LigoiPDwcDZv3gzAli1bMJlMtgQKoHfv3phMpnJjwsPDbQkUwNChQyksLCQmJuaKMRcWFpKdnV3uISIi9c93cckcTMnB08WRx/q3KnesRwtfvvh9XxqbXDmalss97/zCwRT9vhARkV/dcBL11VdfkZWVxeTJk23P3XHHHSxatIj169czZ84ctm/fzqBBgygsLAQgJSUFZ2dnfHx8yp0rICCAlJQU2xh/f/9Lrufv719uTEBAQLnjPj4+ODs728ZczuzZs23rrEwmE8HBwTf03kVEpPYqKbXw2prDAEy5tSXe7s6XjAkJ8GTZ7/vS1r8BqdmFjHlvC1uPZ1R3qCIiUkPdcBI1f/587rjjjnLVoPvvv5/hw4cTHh7OyJEj+f777zl8+DArV6686rmsVmu5atblWsveyJiLPf/885jNZtsjISHhqnGJiEjds3zXaY6n5+Hj7sSUW1pecVyQtxufP9aH7s19yCkoIep/21gVd+UbdSIiUn/cUBJ16tQp1q5dy8MPP3zVcY0bN6Z58+YcOXIEgMDAQIqKisjMzCw3Li0tzVZZCgwMJDU19ZJzpaenlxtzccUpMzOT4uLiSypUv+Xi4oKXl1e5h4iI1B9FJRb+s67sd9Jj/Vvj6ep01fHe7s4sfLgXg9sHUFRi4fFFMSyMPlUdoYqISA12Q0nUhx9+iL+/P8OHD7/quIyMDBISEmjcuDEAERERODk52br6ASQnJxMXF0ffvn0B6NOnD2azmW3bttnGbN26FbPZXG5MXFwcycnJtjGrV6/GxcWFiIiIG3lLIiJSD3y6I4HEzHM08nThwT4trus1rk5G3pvYjfE9g7FY4f++iuO1NYe5ib5MIiJSy1U4ibJYLHz44YdMmjQJR0dH2/O5ubnMmjWLLVu2cPLkSTZs2MDIkSPx8/Pj7rvvBsBkMjFlyhRmzpzJunXr2LVrFxMnTqRjx44MHjwYgPbt2zNs2DCmTp1KdHQ00dHRTJ06lREjRhAaGgpAZGQkYWFhREVFsWvXLtatW8esWbOYOnWqqksiInJZBcWlzF1fVoV6cmAb3JyN1/1aR6MDL97dkT/c3haAN9cd4U/LtSmviEh9VeEkau3atcTHx/PQQw+Ve95oNLJ3717uuusuQkJCmDRpEiEhIWzZsgVPT0/buNdff53Ro0czduxY+vXrh7u7OytWrMBo/PWX2aJFi+jYsSORkZFERkbSqVMnFixYUO5aK1euxNXVlX79+jF27FhGjx7Nq6++eiNfAxERqQcWRp8iNbuQJt5ujOtZ8cZCBoOBp4aE8M/R4TgYYMm2BB5buJOCYm3KKyJS39zUPlG1nfaJEhGpH3ILS7jt5R85m1fEy/d2YmyPm+vOuiouhelLd1FUYiGiuQ/zJ3W/bJc/ERGpPaplnygREZHa4sNNJzibV0RLPw/u6dbkps83LDyQhVN64eXqSMypTMa8t4WkrHOVEKmIiNQGSqJERKROM+cX88HPxwGYMbgtjsbK+dXXs6Uvnz/Wl0AvV46k5XLPO5s5nJpTKecWEZGaTUmUiIjUaR/8fIycghJCAzwZ2Sno2i+ogNBAT5Y93pc2/g1IyS7gvnc3s/3k2Uq9hkhNtS/JzEe/nKDUUm9Xhkg9piRKRETqrDO5hXz4y0kAno4MwcHhyhuy36gm3m588VgfujXzJrughIn/3coP+7Qpr9Rtx9JzGfdBNC+s2K+906ReUhIlIiJ11rsbjpFfVErnpiYiw668GfvN8nZ3ZtHDvRnc3p/CEgu/XxjDoq36YCl1kzm/mIc/3kFOQQkA7288RlGJ2v1L/aIkSkRE6qRk8zkWnL9DPjMyFIOh8qtQv+XmbOS9iRGM61G2Ke+fl8fxujbllTqmpNTCE4t3cuJMHk283Wjk6UKSuYCvdp22d2gi1UpJlIiI1ElvrT9KUYmFni18ubWtX7Vc09HowOx7OjJ9UBsA/rPuCH9aHqc1I1Jn/HPlATYdPYObk5F5D3Zn6q0tAXh34zF9n0u9oiRKRETqnPiMfD7bngDArKFVX4X6LYPBwNORofxjdDgGAyzZFs/vF8ZoU16p9RZvjeejzScBeP3+LoQFefFAr+Z4uztx4kweK/cm2zdAkWqkJEpEROqcN9YdpsRi5baQRvRs6WuXGKJ6N+fdB7rh7OjA6v2pTPzvVrLyi+wSi8jNij6ewf/7Og6AmUNCGBYeCICHiyMP9SurRr29/igWVaOknlASJSIidcrRtBzb+oyZQ0LsGsuw8MYseKgnnq6O7Di/KW96TqFdYxKpqISz+fx+YQwlFisjOwfx5PnpqhdM6tOCBi6OHErNYe2BVDtFKVK9lESJiEid8vqaI1isEBkWQOdgb3uHQ69WDfn8sT4EeLlwJC2Xt9YfsXdIItctp6CYKR9vJzO/mI5NTLx8b6dLpsea3J2I6tMcgLd/PKpmKlIvKIkSEZE6I+60mZV7kzEYyvaFqinaBXoxZ0wXAL7ceZrcwhL7BiRyHUotVp76NJbDqbn4e7ow78HuuDkbLzt2yi0tcXVyYHeimZ+PnKnmSMVerFYrx9Jz62XirCRKRETqjNfWHAZgZKcg2gV62Tma8vq1aUirRh7kFpawXO2gpRZ4dfUh1h5Iw9nRgQ8e7E6gyfWKY/0auDC+ZzMA5v54tLpCFDuyWq38YWkst8/ZyP99FVfvEiklUSIiUifEnMpk/cE0jA4GnrLzWqjLMRgMRPUum/K0cMupeveBQ2qX5bsSeXfDMQBeua8TXa5jauwjt7XCyWhg24mzbDtxtoojFHtbvC2eb3YnAbBoazyvr61fU5WVRImISJ0wZ/UhAO7r1pSWfh52juby7unWFDcnI4dSc9h+MtPe4Yhc1q74TJ5btheAxwe05q4uTa7rdY1NbtwXEQyoGlXXHUzJ5u8r9gPQP6QRAG+uO8LH51vg1wdKokREpNbbfPQMm49l4Gx0YPrgtvYO54pMbk6M7hoEwCdbTto3GJHLSDaf45EFMRSVWBgSFsCsyNAKvf73/VtjdDDw0+F09iRmVU2QYlf5RSU8sWgnhSUWBoY24sPJPXj6fPX/hRX7bNWpuk5JlIiI1GpWq5VXz1ehxvcMpom3m50jurqJ56f0rYpLIS2nwM7RiPzqXFEpUz/ZQXpOIaEBnrx+fxccHCq2UXWzhu6M6lx2o+BtVaPqpL9+vY9j6XkEeLkwZ2zZ98i0QW2Y1Kc5VivM/CyWnw6n2zvMKqckSkREarUfD6WxMz4LVycHnrho/5qaqEOQiYjmPpRYrHy6LcHe4YgAZTcjZn2xm7jT2fh6OPPfSd1p4OJ4Q+d6fEBrDAb4YV8qh1NzKjlSsaevdp3m85hEHAzwn3Fd8fVwBsrWfP51ZAdGdg6iuNTKYwtj2BVft6csK4kSEZFay2Kx8uoPZR35JvVtgb/nlbuH1SQXGkws3hZPSanFztGIwFvrj7JyTzJORgPvPtCNYF/3Gz5X2wBPhnUIBFSNqktOnMnjz8vL1spNv70tvVs1LHfcwcHAnDGdubWtH/lFpTz00XaOptXdJFpJlIiI1Fqr9qWwPzmbBi6OPHZba3uHc93u6BhIQw9nks0FrD2QZu9wpJ77fm+ybXuAf9wVTq+LPhzfiCcGllWFV+xO4uSZvJs+n9hXYUkpTy7eSV5RKb1b+TJt0OXXnjo7OvDexAg6B3uTmV/Mg/O3kZR1rpqjrR5KokREpFYqtVhtH/ym3NISn/PTSmoDF0cj9/co62K2MPqUnaOR6rLlWAb9/r2epz+NJeFsvr3DAWBfkpmnP9sNwO/6tWDc+b2eblZ4ExMDQxthscJ7G49VyjnFfmZ/d5B9SWVTPf8zrivGq6yV83Bx5MPJPWjVyIMkcwEP/m8bmXlF1Rht9ahQEtWiRQsMBsMljyeeeAIom0/7wgsvEBQUhJubGwMGDGDfvn3lzlFYWMi0adPw8/PDw8ODUaNGkZiYWG5MZmYmUVFRmEwmTCYTUVFRZGVllRsTHx/PyJEj8fDwwM/Pj+nTp1NUVPf+gkRE5PK+2nWao2m5eLs7MeXWlvYOp8Im9GqGgwE2HT3DsfRce4cjVSynoJinP4vldNY5vtx1mkFzNvDXr+NIzym0W0zpOYVM/XgH54pLubWtH3++s32lnv/J82sUl+1MrLPViPpg9b4UPjrfunzOmM4EeF172rSvhzMLpvQi0MuVo2m5/O6j7eQXlVRxpNWrQknU9u3bSU5Otj3WrFkDwJgxYwB4+eWXee2115g7dy7bt28nMDCQIUOGkJPz63zIGTNmsHz5cpYuXcqmTZvIzc1lxIgRlJaW2sZMmDCB2NhYVq1axapVq4iNjSUqKsp2vLS0lOHDh5OXl8emTZtYunQpy5YtY+bMmTf1xRARkdqhuNTCG+vKqlCP3tYaL1cnO0dUcU193BnULgBQNao+ePG7gySbCwj2dePWtn4Ul1r5eMspbnv5R1794RDZBcXVGk9hSSmPLthBkrmAVn4ezJ3QDUdj5U5QimjuS+9WvhSXWvngp+OVem6pHqezzvHMF3sAmHprSwa287/u1zbxdmPBlJ6Y3JyITcjisYU7KSqpO2tADdab2DJ9xowZfPvttxw5UrZDcVBQEDNmzOC5554DyqpOAQEBvPTSSzz66KOYzWYaNWrEggULuP/++wFISkoiODiY7777jqFDh3LgwAHCwsKIjo6mV69eAERHR9OnTx8OHjxIaGgo33//PSNGjCAhIYGgoLI2mkuXLmXy5MmkpaXh5eV1XfFnZ2djMpkwm83X/RoREbG/RVtP8eflcfg1cOGnZwfg7nxjXcTsbePhdCb9bxuero5s/dPttfZ9yNX9cvQMD/x3KwBLpvamT+uGbD56hpd+OMTuhCygbA+xxwe0ZlLfFrg6Gas0HqvVyszPd/PlztN4uTry1RP9aNWoQZVc68J7d3F0YNNzg2jk6VIl15HKV1JqYdwH0ew4lUnnYG8+f7QPzo4VT7R3xmfywLytnCsu5a4uQbw+tuKt86tLRXKDG77lUFRUxMKFC3nooYcwGAycOHGClJQUIiMjbWNcXFzo378/mzdvBiAmJobi4uJyY4KCgggPD7eN2bJlCyaTyZZAAfTu3RuTyVRuTHh4uC2BAhg6dCiFhYXExMRcMebCwkKys7PLPUREpHYpKC7lrXVlHb+eHNi6Vicet7bxo0VDd3IKSvg6tn5sUFnf5BWW8Nyysjv5Ub2b06d1WdOGvm38+Orxvrw3MYI2/g0wnytm9vcH6f/KjyzeGk9xFXZtnPfzcb7ceRqjg4G3H+hWZQkUQN/WDekS7E1hiYX/blI1qjZ5fe1hdpzKxNPFkbfGdb2hBAqgWzMf3p3YDUcHA1/HJvH3b/dzEzWcGuOGk6ivvvqKrKwsJk+eDEBKSgoAAQEB5cYFBATYjqWkpODs7IyPj89Vx/j7X1oq9Pf3Lzfm4uv4+Pjg7OxsG3M5s2fPtq2zMplMBAcHV+Adi4hITbBoazwp2QUEmVwZ36tyFsHbi4ODwbb57oItp+rEBwsp7+VVB0nMPEcTbzeeu6NduWMGg4Fh4YH8MOM2XrmvE0283UjNLuRPy/cS+fpPrNidhMVSud8TPx5MY/b3BwH4y/D23Nq2UaWe/2IGg4Enz3fqW7jlFFn5Wr9eG2w6coZ3NpQ1BPn3vZ1o1vDGW94DDAj1Z87YzgB8tPmk7dy12Q0nUfPnz+eOO+4oVw2Csn8sv2W1Wi957mIXj7nc+BsZc7Hnn38es9lseyQkaJNDEZHaJK+whHfO7zsz/fa2uDhW7bSn6nBfRFNcHB3Yn5zNzjq+OWV9s+3EWT7eUrbe7d/3drzi5rVGBwNjugezflZ//t+IMHw9nDlxJo9pS3Yxcu4mNhxKq5QE+0hqDtOW7MJqhfE9g5nUt8VNn/N63N7en/aNvcgrKrU1KJCaKz2nkBmfxmK1ljXAGd6pcaWc964uTfjryDAAXvnhEIu3xlfKee3lhpKoU6dOsXbtWh5++GHbc4GBZZuqXVwJSktLs1WNAgMDKSoqIjMz86pjUlNTL7lmenp6uTEXXyczM5Pi4uJLKlS/5eLigpeXV7mHiIjUHh9tPklGXhEtGrpzb0RTe4dTKbzdnRnVueyG5IItajBRV5wrKuXZL8pah4/rEXxdFR8XRyMP3dKSn54dyFODQ2jg4si+pGwmf7idcR9EE3PqxpPszLwipny8g9zCEnq29OVvo8KveZO7shgMBp4YWLaP24e/nCS3sG51aatLLBYrT38Wy5ncQtoFevL/RoRV6vl/16+lrTL5f1/t5fu9yZV6/up0Q0nUhx9+iL+/P8OHD7c917JlSwIDA20d+6Bs3dTGjRvp27cvABERETg5OZUbk5ycTFxcnG1Mnz59MJvNbNu2zTZm69atmM3mcmPi4uJITv71C7969WpcXFyIiIi4kbckIiI1nPlcMe+f329mxuAQnCq5k5g9PdinBQDf7U3hTK79Wl5L5XltzSFOZuQT6OXKn4ZXrHV4AxdH/jC4LT89O5CHb2mJs6MDW0+c5d53N/Pwxzs4lJJz7ZP8RnGphccX7ST+bD5Nfdx4b2LEDa9vuVF3hDemVSMPzOeK1Y2yBnt34zF+PnIGNycjcyd0rZImJzMjQxjfMxiLFf6wNJbNx85U+jWqQ4X/BVksFj788EMmTZqEo+OvZWmDwcCMGTN48cUXWb58OXFxcUyePBl3d3cmTJgAgMlkYsqUKcycOZN169axa9cuJk6cSMeOHRk8eDAA7du3Z9iwYUydOpXo6Giio6OZOnUqI0aMIDQ0FIDIyEjCwsKIiopi165drFu3jlmzZjF16lRVl0RE6qj//nyc7IISQgIaMLJz0LVfUIt0bGqic7A3RaUWPt2uqea13c74TOZvOgHAi/eE33ALfl8PZ/5vRBgbZg3g/u7BOBhg7YFUhv3npwpt2Pu3FfvYcjwDD2cj8yf1wNcOG1MbHQw8PqCsAvHfn09QUFx6jVdIddtx8qxtA/O/3dWBNv6eVXIdg8HAP0d3ZFiHQIpKLTzySQxxp81Vcq2qVOEkau3atcTHx/PQQw9dcuzZZ59lxowZPP7443Tv3p3Tp0+zevVqPD1//Ut4/fXXGT16NGPHjqVfv364u7uzYsUKjMZfM91FixbRsWNHIiMjiYyMpFOnTixYsMB23Gg0snLlSlxdXenXrx9jx45l9OjRvPrqqxV9OyIiUgtk5Bbyv/MfSp8eEoqxhrbHvRkPnm8wsXhrPKWV3ExAqk9BcSnPfL4bixXu6drEthfYzQjyduOl+zqx+qn+3NkxEKuV696wd8GWkyyMjsdggDfGdSU0sGo+GF+Pu7oE0dTHjTO5hbpZUMNk5RcxfckuSi1WRncJYkwVT5c2Ohh4Y1wXerfyJbewhEn/28aJM3lVes3KdlP7RNV22idKRKR2+NfK/cz7+QQdm5j45sl+1baWozoVFJfSe/Y6svKL+e+D3RkcdvMfvqX6vbzqIO9sOEYjTxfWPHUb3u6VX/XZnZDFKz8cYtPRsmlQ7s5GHurXkkf6typX9dp89AxR/9tGqcXKc8Pa8fsBrSs9lopaEH2Kv3wVR2OTKxufGVjt0wrlUlarlUcXxLB6fyot/TxYMe2WKzZBqWw5BcWM+yCafUnZNPVxY9nv+xLg5Vot174cs9mMt7d31e4TJSIiUh1Sswv45HzDhZmRIXUygQJwdTJyf/eyrTc+0ZqRWmlvopn3fyrbC+mfo8OrJIEC6BzszcKHe7H44V50DvYmv6iUuT8e5baXf+T9jccoKC7l5Jk8fr9oJ6UWK3d3bcJj/VtVSSwVNSaiKf6eLiSbC1i+K9He4Qjw8eaTrN6firPRgbfGd622BArA09WJj37XkxYN3UnMPMek/23DfK642q4PZZsKbz52hr+t2MfQN3667tcpiRIRkRrtrfVHKCyx0KOFD/1DqnZPG3t7oFdzDAb46XA6J2vZ1Jb6rqjEwjNf7KbUYmVEp8YM7RBY5de8eMPerPyyDXsHvLKBB89/GO0c7M3sezrWmJsPrk5GHrmtLKF7d8MxSqpwU2G5trjTZl78rmzfsD/d2Y7wJqZqj6GRpwsLpvSikacLB1NyePjj7VW+Zi63sITv9ibz1KexRPxzLRPmbeXDX06SlFVw3edQEiUiIjVWwtl829qJWZGhNeaDYFVp1tCdAecTxUVbVY2qTd7+8SgHU3Jo6OHM30Z1qLbrXm7D3pTsAuLPlnUGnBcVUSUd1m7GhF7N8HF34mRGPitrcYvr2i63sIQnF++kqNTCkLCAats37HKCfd355KGeeLo6sv1kJk8u3lnpCXZadgGLtp5i8ofb6Pb3NTy+aCfLd53GfK4YXw9n7otoyhvjulz3+aqvXiciInKdrFYrViv8Z90Rikut3NrWj16tGto7rGoR1ac5Px5K57MdiTw9JBQ355r1AVgutT8pm7fPbwL9t7s60LCBS7XHcGHD3lFdglgUHc8vR88wMzIUfzuuL7kSd2dHptzSkldXH+btH48yslMQDnWwWUxNZrVa+b/lezmZkU+QyZVX7utk95tU7Rt7MX9SD6Lmb2XtgTT++OXem4rLarVyNC2X1ftTWbM/ldiErHLHWzR0Z0hYAEPCAolo7oPRwUB2dvZ1n19JlIjUSIdTc/jnygNMvbXldW1SKdWn1GLlr9/EsS8pG4vFisVa9pzlfOJTai3782+PWa3W889z/nnr+ecp+/NFxy5uTjczMtQ+b9YO+of4E+zrRsLZc6zYk8TY8+ukpGYqLi2bxldisTK0QwDDOza2azwXNux96JaWdo3jWqL6tOD9jcc5nJrLmgOp1TL9UX71eUwiX8UmYXQw8Ob4rlW2fq+ierb05e0J3Xh0YQxfxCTS0MOZ5++8/n3WSi1WYk5lsmZ/Cmv2p3Iyo/w2AJ2DvYkMCyAyLIA2/g1uKnFUEiUiNU5+UQmPLYzheHoex9NzWT9zgDo41SBrD6SyMDq+2q53T7cmdAn2rrbr2ZvRwcADvZrz7+8PsmDLKcZENLX7HWK5sg9+Os6+pGy83Z34x+hw/V1dJ5ObEw/2bc7bPx5j7vqjRIYF6GtXTY6m5fDXr/cB8PSQELq38LVzROUNDgvg3/d05Jkv9vD+T8fx9XDm0f5X7ix5rqiUn4+ks2Z/KusPppGRV2Q75mx0oG+bhgwJC2Bw+4BK7fynJEpEapy/fbOf4+lli+oTM8+xbGci43s2s3NUcsGFTUTv6daEO8MbY3QwYDCUffh3MFx4cP55w/nn+fWYAxgNlznmYMB4/rUO589ldDBgcruxjUprs7Hdg3ltzWH2njazO9Fcr5LI2uRwag7/WXsEgL+ODMPfs+ZNnavJHurXkv9tOsne02Z+OnKmzjeOqQkKikt5YtEuzhWXcksbP35/leTEnsZ0D+ZsXhGzvz/I7O8P4uvhzJjfVOUzcgtZdyCN1ftT2XQ0nYLiX9dPebk6cnv7AIaEBXBbSKMq6zaoJEpEapQVu5P4dEcCBgOM6BTEit1JzF1/lHu7NVU1qgbYm2hm24mzODoYeHZoOwJN+tBYFXw9nBnRqTFf7jzNgi2nlETVQKUWK898sYeiUguD2vkzuksTe4dU6zRs4MKEXs2Yv+kEb68/qiSqGvz92/0cSs3Br4Ezr93fuUavRXu0f2sy8or44Kfj/PHLvVitkHWuiDX7U9lxKpPf7nTbxNuNIeen6fVo6YuTseo/LyiJEpEaI+FsPn/6ci8ATw5swxMD2xB9PIPTWapG1RTzN5XtgTO8U2MlUFUsqndzvtx5mhV7kvjz8Pb4etSMNQtSZv6m4+xOyMLTxZEX7645LcRrm0dua8WCLafYdvIsW49n1JsGMvawck8yi7fGYzDA6/d3qRWV0z8Oa0dGbhHLdiby7LI95Y51CPIiMiyQIWEBtG/sWe3/BnVbV0RqhOJSC9OX7iKnsIRuzbz5w+1tcXUy2qYazF1/lKIS7SdiTynmAr7dU9aOeEoNX7ReF3QJ9ia8iRdFJRY+35Fg73DkN46n5zJn9WEA/m9Ee91QuAkBXq6M6d4UgLnnOxxK5Us4m88fzychv+/futY0bHJwMPDveztyR3ggjg4Gbmnjx99GdeCXPw5i5fRb+cPgtoQFednlJoaSKBGpEf6z9gi74rPwdHXkP+O64ni+FD+hVzP8PV04nXWOL2K0u709fbLlJCUWKz1a+NCpqbe9w6nzDAYDD/ZuAcDCraewXNyyUOzCYrHy7Bd7KCyxcGtbP3VPrASP9W+N0cHAz0fOsPuiNtRy84pKLDy5pOwmZURzH54eEmLvkCrEyejAOw904+A/hrHw4V5M6tuCJt5u9g5LSZSI2N/mY2d4e0PZHch/39OJYF932zFXJyO/H1BWjXr7R1Wj7OVcUSmLt5V15FMVqvqM7ByEl6sjCWfPsfFwur3DEeDjLSfZcSoTD2cjs+/RNL7KEOzrzl1dggBs+21J5Xl19SF2J2RhcnPizfG/3qSsTQwGQ42Lu2ZFIyL1ztm8Ip76NBarFcb1CGZ4p0v3WBnf89dq1OcxmtZkD8t2JpKVX0ywrxtDwrSfS3VxczbaOlItiD5l52gkPiOfl1cdAuCPd7anqY/7NV4h1+vxAW0wGGD1/lQOplz/hqdydT8eSuODn8rWsr58X6caUcGpK5REiYjdWK1Wnv1iN6nZhbRu5MH/Gxl22XHlqlFaG1XtLBYr//ulrK355L4tMdbgbk510cTezYGyD0MJZ/OvMVqqisVi5bllezhXXErvVr48oEY3laqNfwPuDC+7ifbOj8fsHE3dkGIuYOZnuwGY3LeFNjSuZEqiRMRuPtlyirUH0nA2OvDW+G64O1+5YeiFalSSuUDVqGq28XA6x9Pz8HRxZOz5BeBSfVr6eXBrWz+s1rK1UWIfi7fFs+V4Bm5ORl66t1ONbg1dWz0+sOxm2bd7kjhxJs/O0dRupRYrMz7dxdm8IjoEefH8ne3sHVKdoyRKROxif1I2//ruAAB/urMdYUFeVx3v6mTk8d9UowpLSqs8RilzYXPd+3sE4+la/za+rQmizlejPtueQEGxvver2+msc8w+//PqmaGhNG/oYeeI6qYOQSZub+ePxQrvbtDaqJuxZFs80cfP4u5s5K3xXXFxNNo7pDpHSZSIVLv8ohKmLdlJUYmF29v5M6lvi+t63biezQjwOl+N2qFOfdXhYEo2m46ewcHAdf89SeW7vX0ATbzdyMwvZuX5NvNSPaxWK39ctoe8olK6N/dhsv4dVKknBrUB4Mudpzmddc7O0dROVquVjzafBGBmZCitGjWwb0B1lJIoEal2//h2P8fS8/D3dOGVMZ2vu7tVWTWq7BfsOz+qGlUd5v9cVoUaFh5YrmuiVC+jg4EJvcrW4KjBRPX6fEciPx85g4ujAy/fp2l8Va1bMx/6tm5IicXKBxu1NupGbDmewdG0XDycjZqCXYWURIlItVq5J5kl2xIwGOCN+7vg6+Fcodff3yPYVo36TNWoKpWeU8jXsUmA2prXBPf3CMbJaCA2IYu9iWZ7h1MvpJgL+MfK/QA8PSREd/SryZPnq1FLtieQllNg52hqnwVbym603N2tiaZgVyElUSJSbRIz8/njl2U7pj8+oDV92/hV+ByqRlWfhdGnKCq10DnYm27NfOwdTr3n18CFOzuWdS9bEH3SvsHUA1arlT8v30tOQQmdg715+NZW9g6p3ujTqiHdmnlTVGKxVcPl+iSbz7F6fyoAD/ZpYd9g6jglUSJSLUpKLfxhaSw5BSV0bebNjME3vmP6/T2CCfRyJVnVqCpTUFzKwvPTxqbc0lIbitYQFxpMfB2bhDm/2M7R1G1fxyax7mBZ99BX7uuk1v7VyGAw2KpRC6NPkZVfZOeIao/FW+MptVjp1dKXkABPe4dTp1U4iTp9+jQTJ06kYcOGuLu706VLF2JiYmzHJ0+ejMFgKPfo3bt3uXMUFhYybdo0/Pz88PDwYNSoUSQmlv8glJmZSVRUFCaTCZPJRFRUFFlZWeXGxMfHM3LkSDw8PPDz82P69OkUFekfmkhN9Oa6I8ScysTTxZE3x3XF6SZ2Hnd1Mtpa4aoaVTW+iU0iI6+IxiZX7gjX3iI1RURzH9o39qKwxKJW/1UoLaeAF1bsA2D67W30YdQOBob6E9bYi7yiUj785aS9w6kVikosLNlW9nNBVaiqV6FPMZmZmfTr1w8nJye+//579u/fz5w5c/D29i43btiwYSQnJ9se3333XbnjM2bMYPny5SxdupRNmzaRm5vLiBEjKC399YPQhAkTiI2NZdWqVaxatYrY2FiioqJsx0tLSxk+fDh5eXls2rSJpUuXsmzZMmbOnHkDXwYRqUpbjmXw1o9l7WpfvKdjpTQoGNv9N9Wo7fowWZms1l83153Ut8VNJbxSuQwGg60atTD6FBaL1c4R1T1Wq5X/99U+svKL6RDkxaP9W9s7pHrpt9WoD385QU6BKq/X8n1cMmdyCwnwciGyQ4C9w6nzrryz5WW89NJLBAcH8+GHH9qea9GixSXjXFxcCAy8/J1Ls9nM/PnzWbBgAYMHDwZg4cKFBAcHs3btWoYOHcqBAwdYtWoV0dHR9OrVC4B58+bRp08fDh06RGhoKKtXr2b//v0kJCQQFBQEwJw5c5g8eTL/+te/8PK6+p4zIlI9MvOKeOrTWKxWGNu9KSM7B1XKeV2djDwxsDV/+Xofb/94jLE9grUPRiX55WgGB1NycHc2Mr5HM3uHIxe5q0sQs787wMmMfDYdPcNtIY3sHVKd8t3eFFbtS8HRwcAr93XWTQQ7GtYhkNaNPDiWnsfC6Hh+P0AJ7dVcaCgxoWdzfd9Wgwp9hb/55hu6d+/OmDFj8Pf3p2vXrsybN++ScRs2bMDf35+QkBCmTp1KWlqa7VhMTAzFxcVERkbangsKCiI8PJzNmzcDsGXLFkwmky2BAujduzcmk6ncmPDwcFsCBTB06FAKCwvLTS/8rcLCQrKzs8s9RKTqWK1Wnl22h5TsAlo18uCFUR0q9fxjz6+NSsku4FNVoyrN/E3HARgT0RSTuzo71TQeLo7cG1HWtljtzitXRm4h/+/rOAAeH9jmmpuAS9VycDDwxMCyatT8Tce10fRV7E/KZsepTBwdDIzvGWzvcOqFCiVRx48f591336Vt27b88MMPPPbYY0yfPp1PPvnENuaOO+5g0aJFrF+/njlz5rB9+3YGDRpEYWEhACkpKTg7O+PjU77TU0BAACkpKbYx/v7+l1zf39+/3JiAgPKlSh8fH5ydnW1jLjZ79mzbGiuTyURwsL7JRKrSwuhTrNmfirPRgTfHdcXduULF72tycSyrRgG88+Mx/YKtBEfTcvnxUDoGA/yun9qa11QTz0/pW3cgVRuSVqIXVuwnI6+I0ABPnjz/4V3sa1TnIJp4u3Emt4jv9mqj6Su50LFzWHgg/l6u9g2mnqhQEmWxWOjWrRsvvvgiXbt25dFHH2Xq1Km8++67tjH3338/w4cPJzw8nJEjR/L9999z+PBhVq5cedVzW63Wct2fLtcJ6kbG/Nbzzz+P2Wy2PRISdOdapKocTMnmHysPAPDHO9oR3sRUJdcZ2yOYxqayatRnO/Rv+mZ9eH4t1O3tAmjh52HnaORK2vg3oG/rhlissHirqlGV4Yd9KazYnYTRwcArYzrh7KjpUDWBo9HBVllZuk0/4y/HnF/M8l2nATWUqE4V+gnRuHFjwsLCyj3Xvn174uPjr/qa5s2bc+TIEQACAwMpKioiMzOz3Li0tDRbZSkwMJDU1NRLzpWenl5uzMUVp8zMTIqLiy+pUF3g4uKCl5dXuYeIVL5zRaVMW7yLohILA0Mb8bt+LarsWi6ORh4feGHfKFWjbkZmXhHLdpZ1StXmujXfg33KqlGfbk9Qh8qbFHfazP99VTaN75HbWtGpqbd9A5JyxnQPxuhgYNvJsxxNy7F3ODXO5zEJFBRbaBfoSY8W2tOvulQoierXrx+HDh0q99zhw4dp3rz5FV+TkZFBQkICjRuXbRAYERGBk5MTa9assY1JTk4mLi6Ovn37AtCnTx/MZjPbtm2zjdm6dStms7ncmLi4OJKTfy3trl69GhcXFyIiIirytkSkkv1j5X6OpOXSyNOFV8Z0rvI9hsZ2b2qrRmlt1I1bvC2egmILYY296N3K197hyDUMbh9AgJcLZ3KLWBV3+WnscnUZuYU8/+UeRs7dRHpOIW38G/CH29vaOyy5SICXK4PalS3zWKJqVDkWi9W2p19Un+ba068aVSiJeuqpp4iOjubFF1/k6NGjLF68mA8++IAnnngCgNzcXGbNmsWWLVs4efIkGzZsYOTIkfj5+XH33XcDYDKZmDJlCjNnzmTdunXs2rWLiRMn0rFjR1u3vvbt2zNs2DCmTp1KdHQ00dHRTJ06lREjRhAaGgpAZGQkYWFhREVFsWvXLtatW8esWbOYOnWqKkwidvT93mQWb43HYIDXx3bBr4FLlV+zXDVqw1FVo25AUYmFjzefBLS5bm3haHRgQs+ym5gXunLJ9SkutfC/TScY8OoGlmxLwGotW3uz+OFeuDqpy2dNNKFnWafQZTsT9TP+N34+eoaTGfl4ujgyuksTe4dTr1QoierRowfLly9nyZIlhIeH849//IM33niDBx54AACj0cjevXu56667CAkJYdKkSYSEhLBlyxY8PX/dqO71119n9OjRjB07ln79+uHu7s6KFSswGn/9wbVo0SI6duxIZGQkkZGRdOrUiQULFtiOG41GVq5ciaurK/369WPs2LGMHj2aV1999Wa/JiJyg05nneO5ZXsAePS21tzS1q/arj22e1OCTK6kZheqGnUDVu5NIi2nkEaeLpXWhl6q3viewTg6GNhxKpP9Seo4ez02HTnDnf/5mb9/u5+cghI6BHnx+WN9eHN8Vy3Ir8FuC2lEkMmVrPxiftinyusFC7acBOC+7k3xcKnc5k1ydQar1Vpvd+rLzs7GZDJhNptVvRK5SSWlFsbPi2b7yUw6B3vzxWN9qn2fioXRp/i/r+II8HJh4zMDdUf5OlmtVkbO3UTc6WxmDglhmqYz1SpPLN7Jyj3JjO/ZjNn3dLR3ODVWwtl8/rlyPz/sK1tz7ePuxDND23F/j7L1NlLz/WftEV5fe5jerXxZ+kgfe4djdwln87ntlR+xWmH9zP60atTA3iHVehXJDdR6RkQqxVvrj7L9ZCYNXBx5c1wXu2z0N+Y31ail267c8EbK23biLHGns3FxdOCB3lde4yo1U9T5v7Ovdp0mu6DYztHUPPlFJcxZfYjbX9vID/tSMToYmNy3BRtmDWRCr2ZKoGqRsT2a4mCA6ONnOZ6ea+9w7G7R1nisVri1rZ8SKDtQEiUiN23bibO8tb6sA+e/7g6neUP7tMZ2cTTyxKALa6PUqe96zd9U1tb8nm5N8fVwtnM0UlG9WvoSEtCAc8WlLItJtHc4NYbVauWb3UncPmcjb60/SlGJhX5tGvLd9Ft5YVQHbSRdCzU2uTEwtKzBxNJ6Pm27oLiUT7eX3SyM0s0vu1ASJSI3JSu/iBlLd2Gxwr3dmnKXnRe2jokIJsjkSlpOIUtUjbqmUxl5rDlQNr1pyi0t7BuM3BCDwWD7ELUg+hT1eJa+zb4kM/e/H830JbtINhfQ1MeN9yZ2Y+GUXoQGel77BFJjjT/fYOKLmMR63dr/2z3JZOYX08TbjdvbX35rH6laSqJE5IZZrVb+uGwvSeYCWvp58Le7Otg7JJwdHWzVqHdVjbqmD385idUK/UMa0cZfHy5rq9Fdm+DhbOR4eh5bjmXYOxy7OZtXxJ+X72XkW5vYdvIsrk4OPD0khLVP92dYeGN1nawDBoQ2ItDLlbN5RazZf+meovXFhYYSmpJqP0qiROSGLd4Wz6p9KTgZDbw5risNakhnoDERwTTxdlM16hrM54r5fEfZlBhtrlu7ebo6cU+3pgB8Ug/bnZeUlrXoH/DKjyzaGo/FCiM6NWbdzAFMv72tmszUIY5GB8b2CAaotz/fdydksTvRjLPRgXHnvxZS/ZREicgNOZyaw99X7AfguWHt6NjUZOeIfuXs6MATA7U26lo+3R5PXlEpIQENuLUa29FL1YjqUzalb82BVJLN5+wcTfXZfPQMw9/cxF+/2Ud2QQntG3ux9JHezJ3QjSbebvYOT6rA2O5NMRjgl6MZnDyTZ+9wqt2FGyXDOzWmYTXsxSiXpyRKRCqsoLiUaYt3UVhioX9IIx7qV/OqGPdFNKWJtxvpOYUs3lo/71ZeTdmd+7JfxA/10+a6dUFIgCe9WvpSarGyZFvdX3SfmJnP44timPDfrRxKzcHb3Yl/jg7n22m30LtVQ3uHJ1WoqY87/UMaAfWvwcTZvCJW7EkC4ME+aihhT0qiRKTC/rXyAIdSc/Br4MKrYzrjUAPnYzs7OvDkhbVRG1WNutiqfSmczjqHr4czo7tql/u64kI1asm2+Dr7PX+uqJTX1hzm9jkb+W5vCg6Gsg+TG2YNYGLv5lofUk/82mAigaISi52jqT6f7Sh7vx2bmOgS7G3vcOo1JVEict1OZ53j8UUxLIguq2C8NrYzjTxr7lSCe7v9Wo1apGpUORfamk/s1UzrReqQyLBAGnm6kJ5TyKBXN7BkWzzFpXXjA6bVamXlnmRun7OBN9cdobDEQu9Wvqycfit/vyscb3e1569PBrXzx9/ThTO5Raw7UD8aTJRarCw4P5Uvqk9zzSCwMyVRInJNBcWlzF1/hNvnbLDd+X1uWDtuOz+doqb6bTXqPVWjbHbGZ7IrPgtnowMTNR2kTnF2dGDOmM4EermSZC7g+S/3Mvi1jSzflUippfa2Pj+QnM24D6J5YvFOkswFNPF2450HurFkam/aN/ayd3hiB05GB8Z0L2umsrieNJj48WAap7PO4e3uxKjOQfYOp95TEiUiV7X+YCpD3/iJV1cfpqDYQs8Wvnw77VZ+P6C1vUO7Lvd2a0pTH1WjfutCFWpUlyD8PV3tHI1UtttCGrHhmQH8ZUQYfg2cOZWRz1Of7mboGz/x3d5kLLUomTqcmsPzX+5l+Js/s/XEWVwcHfjD7W1Z+3R/7uyoluX13bgeZVP6fj5yhoSz+XaOpup9cn4WyNjuwZpBUAPUjH7EIlLjnDyTx9+/3c/6g2kA+Hu68Ofh7RnVOahWfXBxdnTgyYFt+OOXe3l3wzEm9GyGm3P9/eVzOuscq+JSAGpkQxCpHK5ORqbc0pJxPYL5eMtJ3t94nKNpuTy+aCdhjb2YGRnCoHb+NfLfcmFJKaviUlgUHc+2k2dtzw/v2Jjn72xHUx93O0YnNUmwrzu3tvXj5yNnWLo9nmeGtrN3SFXmxJk8fjqcjsEAE3tpBkFNoCRKRMrJLyrhnR+P8cFPxykqteDoYGDKLS2ZdnvbGrMPVEXdG9GUuT8eJTHzHIu2nuLhW1vZOyS7+XjzSUotVvq2bkhYkKZB1XUeLo48PqANE3s3Z/7PJ5i/6QT7k7OZ8vEOugR7MysylH5tGtaIZCrhbD6Lt8Xz2fYEMvKKADA6GBjSPoCHbmlJz5a+do5QaqIJPZvx85EzfL4jkRmDQ3Ay1s1JVgvPV6EGhDSiWUPdSKgJaucnIhGpdFarle/jUvjnt/tJMhcAcGtbP/46sgNt/BvYObqb42R0YNqgNjy3bC/vbTzOA72a18tqVF5hiW1zSm2uW794uTrx1JAQJvdtwfs/HeejzSeITchi4vyt9Grpy6yhofRoUf1JSqnFyo8H01i49RQbD6djPT/TMNDLlXE9gxnXoxmBJk05lSu7vX0Afg2cScspZP3BNIZ2CLR3SJUuv6jEtjH6g31a2DcYsVESJSIcSc3hhRX7+OVoBgBNvN34y4gwhnYIqBF3qCvDPd2a8tb6+l2N+nxHAjkFJbTy82BgqL+9wxE78PFw5o93tOOhW1rwzo/HWLw1nq0nzjLmvS30D2nEzMgQOjX1rvI40nIK+Gx7Aku2JXA669eNgW9t68cDvZozuL0/jnW0oiCVy9nRgfsignlv4zGWbIuvk0nU17FJZBeU0Mz31/2xxP6URInUYzkFxfxn7RE+2nySEosVZ0cHft+/NY/1b13nKjXlq1HH6l01qtRi5X+/nATgd/1a1Mi9vaT6+Hu68sKoDjxyWyveWn+Uz3cksPFwOhsPpxMZFsDTkSG0C6zc6Z5Wq5Xo42dZuPUUP8SlUHK+wYW3uxNjuwczoWczWvh5VOo1pX4Y16Msidp4OJ3EzPw6tW7OarXyyYW25r2b62d3DaIkSqQeslqtLN91mtnfHyQ9pxCAIWEB/GV4WJ2ea31Pt7K1UQln6181au2BVOLP5mNyc+LeiKb2DkdqiCBvN2bf05HH+rfiP+uO8NWu06zen8qaA6mM6BTEjMFtad3o5qbzms8VsywmkUVbT3EsPc/2fLdm3kzs3Zw7OzZWpzG5KS38POjXpiG/HM3gs+0JPB0Zau+QKk3MqUwOJGfj4vhrS3epGZREidQzcafNvPDNPnacygSgpZ8H/29kWL2Y3uVkdGDawLY8u2wP7208xoRezXB3rh8/Bi+0NR/fs/68Z7l+zRt68NrYLjw+oDWvrz3Cyj3JrNidxMo9SdzbrSnTb29LsG/FbrDsScxiYfQpvtmdREFx2Ya/Hs5GRndtwgO9mquxiVSqcT2alSVROxKZfnvbOjMd9EIV6q4uQdpQuobRb1KReiIrv4hXVx9i8dZ4LFZwczIy7fY2TLmlJS6O9ecu8N3dmjD3x6PEn81nUXQ8U2+r+9WouNNmtp04i6ODgUl91RpXrqyNvydvT+jG4wPMvL7mMGsPpPF5TCJfxZ7m/h7BPDmw7VUbPZwrKmXF7iQWbj3FnkSz7fl2gZ480Ls5o7sE4enqVB1vReqZyA4B+Ho4k5JdwIZD6QwOC7B3SDctPaeQ7+OSATWUqImURIlUg2PpuexLyqapjxvNfN1p6OFcbQ0bSi1WPt2ewCs/HCQzvxiAkZ2D+NOd7WhscquWGGoSJ6MDTw5qw7Nf7OH9n47xQO+6X5m5UIUa3qlxvfw7l4rrEGTiv5N6sCs+k9fWHObnI2dYGB3PZzsSierdnN8PaI1fAxfb+KNpOSyMjmfZzkRyCkoAcDY6cGfHQCb2bk5Ec58606RGaiYXRyP3RTTlg5+Os2RbfJ1IopZui6e41ErXZt6ENzHZOxy5SN3+5CBSA1gsVibMiyY1u9D2nIezkWBfd5o3dKeZ7/lHQw+a+brTxNsNZ8fKmYawMz6Tv369j72ny+4IhwZ48sKoDvRp3bBSzl9b3d21CXPXl1WjFkaf4pHbWts7pCqTml3Ait1JgNqaS8V1bebDgim9iD6ewZzVh9h+MpP5m06wZFs8k/u2oF1jLxZvPUX08V83xW3m686EXs0YE9GUhr9JtESq2rgewXzw03F+PJRGsvlcrb5pVFJqYdHWsi0pHuyjGQQ1UYU/qZ0+fZqJEyfSsGFD3N3d6dKlCzExMbbjVquVF154gaCgINzc3BgwYAD79u0rd47CwkKmTZuGn58fHh4ejBo1isTExHJjMjMziYqKwmQyYTKZiIqKIisrq9yY+Ph4Ro4ciYeHB35+fkyfPp2ioqKKviWRKnUkLZfU7EKcjAYam1wxGCCvqJSDKTn8sC+VeT+f4C9f72PS/7Yx8NUNtPvL9/T793omzIvmj8v28PaPR/l2TxJ7ErMwn68kXUt6TiHPfL6be97ZzN7TZjxdHPnryDBWTr+l3idQ8Gs1CuD9jcfJLyqxc0RV55MtZZ0Xe7TwqZbW1VI39W7VkM8e7cMnD/Wkc1MT+UWlvLPhGNOX7CL6+FkcDGXNaT76XQ82zBrAY/1bK4GSateqUQN6tfTFYoXPtide+wU12Jr9qaRkF9DQw5k7Oza2dzhyGRWqRGVmZtKvXz8GDhzI999/j7+/P8eOHcPb29s25uWXX+a1117jo48+IiQkhH/+858MGTKEQ4cO4enpCcCMGTNYsWIFS5cupWHDhsycOZMRI0YQExOD0Vi2NmPChAkkJiayatUqAB555BGioqJYsWIFAKWlpQwfPpxGjRqxadMmMjIymDRpElarlbfeeqsyvjYilSLmfAOHHi18WTy1NwXFpZzOOkd8Rj7xZ/M5df6/CWfzOXU2j4JiC6ezznE66xybj2Vccj4vV0ean69aXVzNauTpwuKt8by+5jA5hWWJwZiIpjw7rB2NPPWB5rfqQzXqXFGp7U6mqlByswwGA7eFNOLWtn6sPZDG3PVHyMwvZnSXIMb1bEaQd+296y91x4Rezdh64iyfbo/nyUFtMNbSluAXGkqM6xlcr9Yt1yYGq/XC/uDX9sc//pFffvmFn3/++bLHrVYrQUFBzJgxg+eeew4oqzoFBATw0ksv8eijj2I2m2nUqBELFizg/vvvByApKYng4GC+++47hg4dyoEDBwgLCyM6OppevXoBEB0dTZ8+fTh48CChoaF8//33jBgxgoSEBIKCggBYunQpkydPJi0tDS+va3f9yc7OxmQyYTabr2u8yI14+rNYvtx5mumD2lyz7arVaiU9t7BcgpVw9vyfz+bb2pFfj45NTPztrg50a+Zzs2+hzvp8RwLPfLGHhh7O/PTsQDxc6tYM50VbT/Hn5XEE+7qxYdbAWvthQkTkehUUl9J79jqy8ov5cHIPBrarfZ1nj6TmMOT1n3AwwM/PDaKJblBUm4rkBhX6xPDNN98wdOhQxowZw8aNG2nSpAmPP/44U6dOBeDEiROkpKQQGRlpe42Liwv9+/dn8+bNPProo8TExFBcXFxuTFBQEOHh4WzevJmhQ4eyZcsWTCaTLYEC6N27NyaTic2bNxMaGsqWLVsIDw+3JVAAQ4cOpbCwkJiYGAYOHHhJ/IWFhRQW/vohNDs7uyJvX+SGXKhERbTwveZYg8GAv6cr/p6udL/M+PyiEhLOnjufYOWVS7ASz56jqNSCj7sTzwxtx/09gvWh+Rru7lrWqe9URj79X9nAfRFNGdcjuE5s+GmxWG0NJSb3banvBRGpF1ydjNzbrSnzN51g8bb4WplELYguq0INbh+gBKoGq1ASdfz4cd59912efvpp/vSnP7Ft2zamT5+Oi4sLDz74ICkpKQAEBJTviBIQEMCpU2XfECkpKTg7O+Pj43PJmAuvT0lJwd//0m96f3//cmMuvo6Pjw/Ozs62MRebPXs2f/vb3yrylkVuSnpOIacy8jEYoGsz75s+n7uzI6GBnoQGel5yzGKxkpZTiLe7kzauvE6ORgdm39OR6UtiOZNbyHsbj/HexmP0bd2QcT2bMbRDQK2dRrHxcDrH0/No4OLIWG3QKCL1yPiewczfdIL1B9NIzS4gwOvKbflrmtzCEr7ceRpQW/OarkKNJSwWC926dePFF1+ka9euPProo0ydOpV333233LiL25hardZrtja9eMzlxt/ImN96/vnnMZvNtkdCQsJVYxK5WTGnyjpWhQZ44lXFe6M4OBgINLkqgaqgvq392PL8IN6bGMGA0EYYDLD5WAbTl+yi94vr+Me3+zmalmPvMCvsQhXq/h7B2pdHROqVNv6e9GjhQ6nFyuc7atdnveU7E8ktLKFVIw/6tVEjqJqsQklU48aNCQsLK/dc+/btiY8vW7gcGBgIcEklKC0tzVY1CgwMpKioiMzMzKuOSU1NveT66enp5cZcfJ3MzEyKi4svqVBd4OLigpeXV7mHSFWyTeVrrnVJNZmT0YFh4YF89Lue/PzsQKbf3pbGJlcy84uZv+kEg1/7iTHvbWZZTCLnikrtHe41HUzJZtPRMzgYYHLfFvYOR0Sk2o3v2QyAJdsSsFiue/m/XVmtVltDiajezbW3Wg1XoSSqX79+HDp0qNxzhw8fpnnzsv71LVu2JDAwkDVr1tiOFxUVsXHjRvr27QtAREQETk5O5cYkJycTFxdnG9OnTx/MZjPbtm2zjdm6dStms7ncmLi4OJKTk21jVq9ejYuLCxERERV5WyJVZsf5JKp7CyVRtUVTH3eeHhLCpucG8b/J3RkSFoDRwcD2k5nM/Hw3PV9cy//7Oo79STV3TeX/zlehhoUHEuzrbudoRESq350dG+Pl6sjprHP8fPSMvcO5LluOZ3AkLRd3ZyP3Rmgadk1XoTVRTz31FH379uXFF19k7NixbNu2jQ8++IAPPvgAKJteN2PGDF588UXatm1L27ZtefHFF3F3d2fChAkAmEwmpkyZwsyZM2nYsCG+vr7MmjWLjh07MnjwYKCsujVs2DCmTp3K+++/D5S1OB8xYgShoWXdzSIjIwkLCyMqKopXXnmFs2fPMmvWLKZOnaoKk9QIBcWlxJ3f5Dai2bWbSkjNYnQwMKhdAIPaBZCaXcDnOxJYuj2BxMxzfLLlFJ9sOUXnpibG92zGyM5BNaaz35ncQr6K1ea6IlK/uToZuadbUz7afJIlW+PpH9LI3iFd04LzVai7uzap8iUAcvMq9Fu/R48eLF++nOeff56///3vtGzZkjfeeIMHHnjANubZZ5/l3LlzPP7442RmZtKrVy9Wr15t2yMK4PXXX8fR0ZGxY8dy7tw5br/9dj766CPbHlEAixYtYvr06bYufqNGjWLu3Lm240ajkZUrV/L444/Tr18/3NzcmDBhAq+++uoNfzFEKtOeRDPFpVYaeboQ7KvuOrVZgJcrTw5qy+MD2vDLsTMs3ZbA6v0p7E40sztxL//4dj+jugQxrkczOjU12WUKRqnFSlpOAfN+OkFRiYXOwd5qby8i9dq4nsF8tPkkaw+kkpZTgL9nzW0wkWw+x+r9ZUtZ1FCidqjQPlF1jfaJkqr07oZjvLTqIHeEB/LuRE0xrWvO5Bby5c5Elm5L4PiZPNvz7Rt7MaFnMHdV8p3EC90XEzPzScw8R8LZsv8mZpX9NynrHMWlv/44f3N8V0Z1DrrKGUVE6r573vmFnfFZPDsslMcHtLF3OFf02upDvLn+KD1b+vLZo33sHU69VWX7RInI9bvQmU9NJeomvwYuPHJba6be2oqtJ86ydFs838WlcCA5m798vY9/fXeA4R2DGN8zmIjmPtesTlksZRstX0iSyiVKmfkkZRVQVGq56jmMDgaCvF3p0cKXO8IDK/PtiojUSuN7NmNnfBZLtyXw2G2tcaiBe+YVlVhYvK2si+CDfZrbORq5XkqiRKqA1WpVZ756wmAw0LtVQ3q3asgL+UUs33WaJdviOZyay7KdiSzbmUhb/wbc3yOYwe0DyMgrKpcoXfjz6cxz15UkNTa50tTHjaY+7jT1cSP4/H+b+roT4OmCo7FC/YJEROq04Z0a8/cV+4k/m8/mYxnc0tbP3iFdYtW+FM7kFuLv6cLQDroBVlsoiRKpAsfS88jML8bF0YEOQSZ7hyPVxNvdmd/1a8nkvi3O3/mM59s9yRxJy+WfKw/wz5UHrvp6BwM0NrmVT5J8zydJPm4EerkqSRIRqQB3Z0dGd23CguhTLNkWXyOTqAVbTgJlVTMn/YyvNZREiVSBC1P5Ogd74+yoH4j1jcFgIKK5DxHNffjLyDC+iU1i6fZ4DiTnEOjlShOfXxOl4N8kTIEmV/0CFRGpZON7NmNB9ClW7y+r+Pg1cLF3SDb7k7LZfjITRwcDE3o1s3c4UgFKokSqwIWpfN01la/e83J1YmLv5kzs3Ryr1arNE0VEqllYkBedg73ZnZDFsphEHu3f2t4h2SyIPgnA0A6BBHjV3O6Bcind8hSpAtpkVy5HCZSIiH2M7xEMwJJt8dSUxtTmc8V8tatsXz81lKh9lESJVLKzeUUcTy9rea19ekREROxvZOcgPJyNnMzIZ8vxDHuHA8AXMYmcKy4lNMCTni197R2OVJCSKJFKdmEqXxv/Bni7O9s5GhEREfFwceSurk0AWHK+nbg9WSxWFkafAiCqT3PNVKiFlESJVDKthxIREal5JvQsa9zwQ1wKZ/OK7BrLpqNnOHEmD08XR+4+n9xJ7aIkSqSSaZNdERGRmie8iYmOTUwUlVr4cmeiXWP55Hxb83sjmuLhoj5vtZGSKJFKVFhSyu5EM6AkSkREpKYZ17OswcRiOzaYSDibz7qDaQBM7K2GErWVkiiRShR3OpuiEgsNPZxp6edh73BERETkN0Z1DsLd2cjx9Dy2nThrlxgWbY3HaoV+bRrSxr+BXWKQm6ckSqQS7Ty/Hqpbcx8tEhUREalhPF2dGNU5CChrd17dzuQW8tmOssYWUb1bVPv1pfIoiapiVquVz7YnsHZ/qr1DkWqw4/x6KDWVEBERqZnGn28w8V1cCln51dNgIi27gH98u59bXlrP2bwigkyuDG7vXy3XlqqhlWxV7J0Nx3jlh0MAfPi7HgwM1T+Yuspqtdo682k9lIiISM3UqamJ9o29OJCczZc7T/PQLS2r7FpJWed4b+Mxlm5PoKjEYrv+P0eH42hULaM2099eFVoVl2xLoACe+jSW01nn7BiRVKVTGfmcyS3C2ehAeBOTvcMRERGRyzAYDEw432BiSRU1mEg4m8/zX+6h/ys/8smWUxSVWIho7sNHv+vB10/0o1NT70q/plQvJVFVJO60mac+3Q3AA72a0bmpiaz8Yp5YtNN2J0Lqlh3nq1Adm5pwdTLaORoRERG5kru6NsHVyYEjabm2WSSV4Xh6LjM/282AVzewZFsCxaVWerfyZfHDvfjisT4MCPXXmuk6QtP5qkBadgEPf7yDc8Wl3NrWj7+N6kCyuYARb20iNiGLF787wAujOtg7TKlk2mRXRESkdvBydWJkpyA+j0lkybYEurfwvanzHU7NYe76o3y7JwnL+cLWrW39mH57W3rc5LmlZlIlqpIVFJcy9ZMdpGQX0LqRB3MndMPR6ECwrzuvje0MwEebT7JyT7KdI5XKpk12RUREao9x5xtMfLsnCXN+8Q2dY1+Smd8vjCHy9Z/4ZndZAjW4vT9fPdGPBVN6KYGqw1SJqkRWq5VZn+9md6IZb3cn5k/qgcnNyXb89vYB/H5Aa97dcIznlu2hfWNPWjXS/gB1gTm/mMOpuUBZe3MRERGp2bo18yY0wJNDqTl8FXuaSX1bXPdrYxOymLv+CGsPpNmeuyM8kCcHtaFDkNZF1weqRFWi/6w7wrd7knF0MPDuAxG0uMxmqzOHhNCrpS+5hSU8vmgn54pK7RCpVLad8WVT+Vr6eeDXwMXO0YiIiMi1GAwGxlewwcT2k2eJmr+V0W//wtoDaTgYyjbwXf3Ubbw7MUIJVD1SoSTqhRdewGAwlHsEBgbajk+ePPmS47179y53jsLCQqZNm4afnx8eHh6MGjWKxMTEcmMyMzOJiorCZDJhMpmIiooiKyur3Jj4+HhGjhyJh4cHfn5+TJ8+naKi6un1fzkrdifxxtojAPzr7nD6tG542XGORgfeGt8VvwYuHEzJ4f99HVedYUoVUWtzERGR2ufurk1xcXTgYEoOuxKyLjvGarWy+egZxn2whTHvbeHnI2cwOhi4t1tT1j7dnzfHdyUkwLN6Axe7q3AlqkOHDiQnJ9see/fuLXd82LBh5Y5/99135Y7PmDGD5cuXs3TpUjZt2kRubi4jRoygtPTXisyECROIjY1l1apVrFq1itjYWKKiomzHS0tLGT58OHl5eWzatImlS5eybNkyZs6cWdG3Uyl2J2Qx6/OyTnwP39KS+3s0u+p4fy9X3hzfBQcDfB6TaNu5WmovbbIrIiJS+5jcnRjesTEAS7fFlztmtVrZcCiN+97bwoT/biX6+FmcjGXVqx9nDmDO2M5allGPVXhNlKOjY7nq08VcXFyueNxsNjN//nwWLFjA4MGDAVi4cCHBwcGsXbuWoUOHcuDAAVatWkV0dDS9evUCYN68efTp04dDhw4RGhrK6tWr2b9/PwkJCQQFBQEwZ84cJk+ezL/+9S+8vLwq+rZuWLL5HFM/2UFhiYWBoY14/s721/W6vq39eHpICK+uPsxfvoojPMhEWFD1xS2Vp7jUQuz5u1eqRImIiNQu43s148tdp1mxO5n/GxGGp4sjaw+kMXf9EXYnmgFwdnRgXI9gHu3fmibebnaOWGqCCleijhw5QlBQEC1btmTcuHEcP3683PENGzbg7+9PSEgIU6dOJS3t1wV3MTExFBcXExkZaXsuKCiI8PBwNm/eDMCWLVswmUy2BAqgd+/emEymcmPCw8NtCRTA0KFDKSwsJCYm5oqxFxYWkp2dXe5xM/KLSnj44x2k5RQSGuDJm+O7YnS4/t7/jw9ow4DQRhSWWHhi8U5yCm6sM4zY1/6kbAqKLZjcnGitO1IiIiK1SvfmPrTxb8C54lL+vmI/d765iamf7GB3ohlXJwem3NKSn58dyN/vClcCJTYVSqJ69erFJ598wg8//MC8efNISUmhb9++ZGRkAHDHHXewaNEi1q9fz5w5c9i+fTuDBg2isLAQgJSUFJydnfHxKX+3PiAggJSUFNsYf3//S67t7+9fbkxAQEC54z4+Pjg7O9vGXM7s2bNt66xMJhPBwcEVefvlWCxWnv50N/uSsmno4cx/J3XH09Xp2i/8DQcHA6+P7UITbzdOnMnjuWV7qmTXbKlaO36zHsqhAkm0iIiI2F9Zg4mypRhfxCRyIDkbD2cjj/VvzabnBvGXEWEEeLnaOUqpaSqURN1xxx3ce++9dOzYkcGDB7Ny5UoAPv74YwDuv/9+hg8fTnh4OCNHjuT777/n8OHDtnFXYrVay+3efLmdnG9kzMWef/55zGaz7ZGQcONrkV5bc5hV+1JwNjrwXlQEwb7uN3QeHw9n5k7oipPRwHd7U/ho88kbjknsY6eaSoiIiNRq93ZrQoCXC56ujkwf1IZNzw3ij3e0U8dduaKb2ifKw8ODjh07cuTIkcseb9y4Mc2bN7cdDwwMpKioiMzMzHLVqLS0NPr27Wsbk5qaesm50tPTbdWnwMBAtm7dWu54ZmYmxcXFl1SofsvFxQUXl5v/x/DVrtPM/fEoALPv6XjTG6l1bebDn+5sz99W7OfF7w7QJdibrs30gbw2sFqttqYSSqJERERqJ293ZzbMGoiDA7g4Gu0djtQCN7VPVGFhIQcOHKBx48aXPZ6RkUFCQoLteEREBE5OTqxZs8Y2Jjk5mbi4OFsS1adPH8xmM9u2bbON2bp1K2azudyYuLg4kpOTbWNWr16Ni4sLERERN/OWrinmVCbPLtsDwO8HtObeiKaVct7JfVswvGNjikutPLFoJ5l59mvXLtcvMfMcqdmFODoY6NzU297hiIiIyA1yczYqgZLrVqEkatasWWzcuJETJ06wdetW7rvvPrKzs5k0aRK5ubnMmjWLLVu2cPLkSTZs2MDIkSPx8/Pj7rvvBsBkMjFlyhRmzpzJunXr2LVrFxMnTrRNDwRo3749w4YNY+rUqURHRxMdHc3UqVMZMWIEoaGhAERGRhIWFkZUVBS7du1i3bp1zJo1i6lTp1ZpZ77EzHweXbCDohILkWEBPBMZWmnnNhgM/PvejrT08yDJXMBTn8VisWh9VE13YX+oDk1MuDnrB6+IiIhIfVChJCoxMZHx48cTGhrKPffcg7OzM9HR0TRv3hyj0cjevXu56667CAkJYdKkSYSEhLBlyxY8PX/dgOz1119n9OjRjB07ln79+uHu7s6KFSswGn/9ALpo0SI6duxIZGQkkZGRdOrUiQULFtiOG41GVq5ciaurK/369WPs2LGMHj2aV199tRK+JJeXW1jWie9MbhHtG3vx+v1dKr2JgKerE+880A0XRwc2HErnnQ1HK/X8UvkuJFHaH0pERESk/jBY63E7uOzsbEwmE2az+aoVrFKLlUcXxLD2QCp+DVz4+sl+Vdri8rMdCTz7xR4cDLDw4V70be1XZdeSm3PHf37mQHI27z7QjTs6Xn5aq4iIiIjUfNebG8BNromqL17+4SBrD6Ti7OjAvAcjqnyPgLHdgxkT0RSLFaYviSUtu6BKryc3JqegmEMpZXuNqamEiIiISP2hJOoaPt+RwPsbyzYUfuW+TtXWNe/vd4XTLtCTM7mFPLlkFyWllmq5rly/XfFZWKwQ7OuGv/aPEBEREak3lERdxbYTZ/nT8r0ATB/Uhru6NKm2a7s5G3l3YgQNXBzZduIsr64+XG3Xluvz63qom2txLyIiIiK1i5KoK4jPKOvEV1xq5c6OgcwYHFLtMbT08+Dl+zoB8N7GY6w7cOn+WWI/MdpkV0RERKReUhJ1GTkFxUz5eDuZ+cV0bGJizpjK78R3ve7s2JjJfVsA8PRnu0k4m2+XOKS8klILu+KVRImIiIjUR0qiLlJqsTJtyS6OpOUS4OXCvAe7233/nz/d2Z4uwd6YzxXzxOKdFJaU2jUegYMpOeQVleLp4khIgOe1XyAiIiIidYaSqIv8a+UBNhxKx9XJgXkPdifQZP+GAc6ODrz9QDe83Z3Yk2jmn98esHdI9d6FqXxdm/tgtFOVUkRERETsQ0nUbyzeGs//fjkBwGtju9Cpqbd9A/qNJt5uvH5/FwAWRJ/im91J9g2ontMmuyIiIiL1l5Ko8zYfO8P/+zoOgJlDQrizBm6cOjDUnycHtgHgj8v2cDQt184R1V9qKiEiIiJSfymJAk5m5PH7hTspsVgZ1TmIJwe1sXdIV/TUkBD6tGpIflEpjy+KIb+oxN4h1TvJ5nOczjqH0cFAl2Bve4cjIiIiItVMSRTw5OKdmM8V0yXYm5fv64TBUHPXuBgdDPxnfBf8PV04nJrL/y2Pw2q12jusemXHybIqVPvGnni4ONo5GhERERGpbkqigJNn8gkyufLBgxG4Otm3E9/18Pd05a3xXTE6GPhy12mWbk+wd0j1ijbZFREREanflEQBbs4O/HdSD/w97d+J73r1atWQWZGhAPz1m33EnTbbOaL6Q+uhREREROo3JVHA7Hs6ERbkZe8wKuzR21pxezt/ikosPLF4J9kFxfYOqc7LKyxhf3I2oCRKREREpL5SEgUMbh9g7xBuiIODgTljO9PE241TGfk88/lurY+qYrsTsii1WAkyuRLk7WbvcERERETEDpRE1XLe7s68O7EbzkYHftiXyvxNJ+wdUp1mm8rXQuuhREREROorJVF1QKem3vxlRHsAXlp1UOujqtAObbIrIiIiUu8piaojJvZuztAOARSXWvnD0l2cKyq1d0h1jsViZWe8mkqIiIiI1HdKouoIg8HAv+/pRICXC8fS8/jnyv32DqnOOZyWQ05BCe7ORtoFeto7HBERERGxEyVRdYiPhzOvje0CwKKt8azZn2rfgG7Cmv2p3PvuZvYnZds7FJsLm+x2beaNo1H/dERERETqK30SrGP6tfHjkdtaAfDcsj2kZRfYOaKK25dkZtqSncScyuQvX8fVmI6DO237Q6mphIiIiEh9VqEk6oUXXsBgMJR7BAYG2o5brVZeeOEFgoKCcHNzY8CAAezbt6/cOQoLC5k2bRp+fn54eHgwatQoEhMTy43JzMwkKioKk8mEyWQiKiqKrKyscmPi4+MZOXIkHh4e+Pn5MX36dIqKiir49uummZEhdAjy4mxeETM/343FUjOSkOuRmVfEowtiKCi2AGXd8NYfTLNzVGV2aJNdEREREeEGKlEdOnQgOTnZ9ti7d6/t2Msvv8xrr73G3Llz2b59O4GBgQwZMoScnBzbmBkzZrB8+XKWLl3Kpk2byM3NZcSIEZSW/toIYcKECcTGxrJq1SpWrVpFbGwsUVFRtuOlpaUMHz6cvLw8Nm3axNKlS1m2bBkzZ8680a9DneLiaOQ/47rg6uTAz0fO8OHmk/YO6bqUlFqYtmQXiZnnaObrzoRezQB45YdDdk8E03IKiD+bj8FQNp1PREREROqvCidRjo6OBAYG2h6NGjUCyqpQb7zxBn/+85+55557CA8P5+OPPyY/P5/FixcDYDabmT9/PnPmzGHw4MF07dqVhQsXsnfvXtauXQvAgQMHWLVqFf/973/p06cPffr0Yd68eXz77bccOnQIgNWrV7N//34WLlxI165dGTx4MHPmzGHevHlkZ9ecNTT21Mbfk/8bHgbAS98frFFri67klR8OsenoGdycjHzwYATPDg3F09WRgyk5rNiTZNfYYs6vhwoN8MTL1cmusYiIiIiIfVU4iTpy5AhBQUG0bNmScePGcfz4cQBOnDhBSkoKkZGRtrEuLi7079+fzZs3AxATE0NxcXG5MUFBQYSHh9vGbNmyBZPJRK9evWxjevfujclkKjcmPDycoKAg25ihQ4dSWFhITEzMFWMvLCwkOzu73KMue6BXMwa3D6Co1MIflu6ioLjmtj1fsTuJ938q+156ZUwn2gV64e3uzKPn13e9tuYwxaUWu8V3YZPd7i00lU9ERESkvqtQEtWrVy8++eQTfvjhB+bNm0dKSgp9+/YlIyODlJQUAAICAsq9JiAgwHYsJSUFZ2dnfHx8rjrG39//kmv7+/uXG3PxdXx8fHB2draNuZzZs2fb1lmZTCaCg4Mr8vZrHYPBwEv3dqSRpwtH0nKZ/d0Be4d0WQeSs3n2iz0APNa/NSM6/Zoc/65fS/waOHMqI59PtyfYK8TfbLKrphIiIiIi9V2Fkqg77riDe++9l44dOzJ48GBWrlwJwMcff2wbYzAYyr3GarVe8tzFLh5zufE3MuZizz//PGaz2fZISLDfh/Lq0rCBC3PGdAbg4y2nWH+wZrU9z8ovayRxrriUW9v68czQ0HLHPVwceXJgGwDeXHfELpsIFxSXsi/JDKiphIiIiIjcZItzDw8POnbsyJEjR2xd+i6uBKWlpdmqRoGBgRQVFZGZmXnVMampl37QT09PLzfm4utkZmZSXFx8SYXqt1xcXPDy8ir3qA9uC2nElFtaAvDM53tIzym0c0RlSi1Wpi+NJf5sPsG+brw1vitGh0uT4PG9mtHE2420nEI+3nKy2uPcnZBFcakVf08Xmvq4Vfv1RURERKRmuakkqrCwkAMHDtC4cWNatmxJYGAga9assR0vKipi48aN9O3bF4CIiAicnJzKjUlOTiYuLs42pk+fPpjNZrZt22Ybs3XrVsxmc7kxcXFxJCcn28asXr0aFxcXIiIibuYt1VnPDA2lXaAnGXlFPPPF7hqx99Kc1Yf46XA6rk4OvD+xO97uzpcd5+Jo5KkhIQC8u+EY5nPF1Rnmr1P5Wvhcs6oqIiIiInVfhZKoWbNmsXHjRk6cOMHWrVu57777yM7OZtKkSRgMBmbMmMGLL77I8uXLiYuLY/Lkybi7uzNhwgQATCYTU6ZMYebMmaxbt45du3YxceJE2/RAgPbt2zNs2DCmTp1KdHQ00dHRTJ06lREjRhAaWjbVKzIykrCwMKKioti1axfr1q1j1qxZTJ06td5UlyrK1cnIm+O74uLowIZD6Xxs57bn3+1N5p0NxwB46d5OhAVd/e/t7q5NaOvfAPO5Yuadb0BRXbTJroiIiIj8VoWSqMTERMaPH09oaCj33HMPzs7OREdH07x5cwCeffZZZsyYweOPP0737t05ffo0q1evxtPT03aO119/ndGjRzN27Fj69euHu7s7K1aswGg02sYsWrSIjh07EhkZSWRkJJ06dWLBggW240ajkZUrV+Lq6kq/fv0YO3Yso0eP5tVXX73Zr0edFhLgyZ+Htwfgxe8Pcigl5xqvqBqHUnKY9fluAKbe2pK7ujS55muMDgZmRpYl0f/75US1TUm0WKzExGuTXRERERH5lcFaE+Z12Ul2djYmkwmz2VxvKlhWq5WHPtrOj4fSCQ3w5Osn++HqZLz2CyuJOb+YUW9v4lRGPv3aNOTj3/XE0Xh9ubzVamX0O5vZnZDF5L4teGFUhyqOFo6m5TD4tZ9wdXJg7wtDcbrOWEVERESkdqlIbqBPhPWMwWDglTGd8WvgzKHUHF5adbDarl1qsfKHT3dxKiOfJt5uvDW+23UnUFAW+7Pnu/ct2nqKhLP5VRWqzY7zm+x2buqtBEpEREREACVR9ZJfAxdeOd/2/MNfTrLhUFq1XPeNtYfZcCgdF0cH3o+KwNfj8o0krqZfGz/6tWlIcamVN9YeqYIoy9MmuyIiIiJyMSVR9dTAUH8m920BwKzP93Amt2rXGK2KS+Gt9UcB+Pe9HQlvYrrhcz07tB0Ay3clciS1atd1xZzSeigRERERKU9JVD32xzvaERrgyZncQp77Yk+VtT0/mpbDzM9iAXioX0vu7tr0ps7XOdibYR0CsVjh1dWHKiHCy8vILeT4mTwAujVTEiUiIiIiZZRE1WOuTkb+M74Lzo4OrDuYxsKt8ZV+jeyCYh75JIa8olJ6t/Ll+TvbVcp5Zw0NwcEAP+xLJTYhq1LOebELVai2/g2uuIeViIiIiNQ/SqLquXaBXvxxWFli889v91fq9DiLxcpTS2M5fiaPIJMrb0/oVmnNGdr4e3JPt7KK1is/VE1zjAutzbUeSkRERER+S0mUMLlvC24LaURhiYXpS2MpLCmtlPP+Z90R1h1Mw9nRgfejutOwgUulnPeCGYPb4mx04JejGfxy9Eylnhsg5qQ22RURERGRSymJEhwcDLw6phO+Hs4cSM7mlVU3v85ozf5U/rOurHve7Ls70rHpjTeSuJKmPu5M6NUMgJd/OFSpa7oKS0rZc9oMqKmEiIiIiJSnJEoA8Pd05eV7OwHw300n+PlI+g2f62haLk99GguUVbnujbi5RhJX8+SgNrg7G9mdkMUP+1Ir7bxxp80UlVho6OFMi4bulXZeEREREan9lESJzeCwACb2LqvszPxsN2fziip8jpyCYh5dsIPcwhJ6tvDlz8PbV3aY5fg1cGHKLS0BmLP6EKWWyqlG7Tj5a2tzg8FQKecUERERkbpBSZSU8+c7w2jj34C0nEKeW1axtucWi5WZn+3mWHoegV6uvP1A5TWSuJqpt7XC292JI2m5LN91ulLOqU12RURERORKlERJOW7ORv4zrgtORgNr9qeyZFvCdb/27R+Psnp/Ks6ODrwXFUEjz8ptJHElXq5O/L5/awBeX3P4phtjWK1WbbIrIiIiIlekJEou0SHIxLNDy9qe//3bfRxNy73ma9YfTOW1tYcB+OfocLoEe1dliJeY1LcFAV4unM46x5Kb3O/qZEY+GXlFODs6EN6k8htiiIiIiEjtpiRKLmvKLS25pY0fBcUWZny6i6ISyxXHHk/P5Q9LYrFaIap3c8Z2D67GSMu4OhmZfntbAOb+eJS8wpIbPteOk2cB6NTEhIujsVLiExEREZG6Q0mUXJaDg4E5Yzvj7e5E3Ols5qy5fNvz3MISHl0QQ05hCd2b+/CXEWHVHOmvxnYPpkVDd87kFvHhLydu+Dw7z2+yG6H1UCIiIiJyGUqi5IoCvFx56Xzb8w9+Os7miza0tVqtzPpsN0fScgnwcuGdid1wdrTft5ST0YGnhoQA8P5Px8nKr3h3QfhNZ75mSqJERERE5FJKouSqhnYIZHzPZlit8PRnu8n8TdvzdzYcY9W+FJyMBt6dGIG/p6sdIy0zslMQ7Rt7kVNQwrsbj1X49Vn5RRw5vwZMTSVERERE5HKURMk1/WVEe1r5eZCSXcCflu/FarWy4VAar64um+L397vC6VZDqjYODgaeGVpWjfrol5OkZhdU6PUXpvK18vOgYYPq6S4oIiIiIrWLkii5JndnR/4zritORgPfx6Xw+prDTF+yC6sVJvRqxviezewdYjkDQ/3p3tyHwhILb647UqHX/naTXRERERGRy1ESJdelY1MTMyNDAXhz/VGyC0ro1sybv460XyOJKzEYDDw7rKxF+6fbEziVkXfdr9UmuyIiIiJyLUqi5Lo9cmsr+rRqCEAjTxfenRhRY1uA92zpy4DQRpRYrLy25vB1vaa41MLuxCxAlSgRERERubKbSqJmz56NwWBgxowZtucmT56MwWAo9+jdu3e51xUWFjJt2jT8/Pzw8PBg1KhRJCYmlhuTmZlJVFQUJpMJk8lEVFQUWVlZ5cbEx8czcuRIPDw88PPzY/r06RQV3VhHNrk2BwcDcyd0ZfqgNix+uBcBXvZvJHE1s85Xzr7ZncSB5Oxrjt+XlE1BsQVvdyda+TWo6vBEREREpJa64SRq+/btfPDBB3Tq1OmSY8OGDSM5Odn2+O6778odnzFjBsuXL2fp0qVs2rSJ3NxcRowYQWlpqW3MhAkTiI2NZdWqVaxatYrY2FiioqJsx0tLSxk+fDh5eXls2rSJpUuXsmzZMmbOnHmjb0muQ8MGLjwdGUrbAE97h3JN4U1MjOjUGKsVXv3h8vtc/daFTXYjmvng4GCo6vBEREREpJZyvJEX5ebm8sADDzBv3jz++c9/XnLcxcWFwMDAy77WbDYzf/58FixYwODBgwFYuHAhwcHBrF27lqFDh3LgwAFWrVpFdHQ0vXr1AmDevHn06dOHQ4cOERoayurVq9m/fz8JCQkEBQUBMGfOHCZPnsy//vUvvLy8buStSR0zMzKU7+NSWHcwjR0nz9K9he8Vx2qTXRERERG5HjdUiXriiScYPny4LQm62IYNG/D39yckJISpU6eSlpZmOxYTE0NxcTGRkZG254KCgggPD2fz5s0AbNmyBZPJZEugAHr37o3JZCo3Jjw83JZAAQwdOpTCwkJiYmIuG1dhYSHZ2dnlHlK3tfTzYGz3pgC8/MMhrFbrZcdZrVZtsisiIiIi16XCSdTSpUuJiYlh9uzZlz1+xx13sGjRItavX8+cOXPYvn07gwYNorCwEICUlBScnZ3x8Sn/QTUgIICUlBTbGH9//0vO7e/vX25MQEBAueM+Pj44Ozvbxlxs9uzZtjVWJpOJ4ODgir15qZWm394WZ0cHtp04y8bD6Zcdk5h5jrScQpyMBjoHe1dvgCIiIiJSq1QoiUpISOAPf/gDixYtwtX18k0F7r//foYPH054eDgjR47k+++/5/Dhw6xcufKq57ZarRgMv65D+e2fb2bMbz3//POYzWbbIyEh4aoxSd3Q2OTGpD7NAXjlh0NYLJdWo3acKlsP1SHIhKtTzew4KCIiIiI1Q4WSqJiYGNLS0oiIiMDR0RFHR0c2btzIm2++iaOjY7nGEBc0btyY5s2bc+RI2aangYGBFBUVkZmZWW5cWlqarbIUGBhIamrqJedKT08vN+biilNmZibFxcWXVKgucHFxwcvLq9xD6offD2hDAxdH9iVl811c8iXHbftDqbW5iIiIiFxDhZKo22+/nb179xIbG2t7dO/enQceeIDY2FiMxkvv4GdkZJCQkEDjxo0BiIiIwMnJiTVr1tjGJCcnExcXR9++fQHo06cPZrOZbdu22cZs3boVs9lcbkxcXBzJyb9+IF69ejUuLi5ERERU5G1JPeDr4czUW1sB8Nrqw5SUWsodt62HUhIlIiIiItdQoe58np6ehIeHl3vOw8ODhg0bEh4eTm5uLi+88AL33nsvjRs35uTJk/zpT3/Cz8+Pu+++GwCTycSUKVOYOXMmDRs2xNfXl1mzZtGxY0dbo4r27dszbNgwpk6dyvvvvw/AI488wogRIwgNLdv7JzIykrCwMKKionjllVc4e/Yss2bNYurUqaowyWVNubUln2w5yfEzeXwRk8i4ns0AyC4o5lBqDqDOfCIiIiJybTe12e7FjEYje/fu5a677iIkJIRJkyYREhLCli1b8PT8dV+h119/ndGjRzN27Fj69euHu7s7K1asKFfJWrRoER07diQyMpLIyEg6derEggULyl1r5cqVuLq60q9fP8aOHcvo0aN59dVXK/MtSR3SwMWRxwe2AeA/645QUFw2/XRXfBZWKzTzdcffs2ZvICwiIiIi9mewXqnncz2QnZ2NyWTCbDarelVPFBSXMujVDSSZC/i/4e15+NZWvLb6EG+uP8o9XZvw2v1d7B2iiIiIiNhBRXKDSq1EidR0rk5GZgwOAeDtH4+SU1BMjDbZFREREZEKUBIl9c493ZrQupEHmfnFfPDTcXbFZwFqKiEiIiIi10dJlNQ7jkYHZkaWNSh5Z8Mx8otK8XR1JMTf8xqvFBERERFREiX11B3hgXRsYqL0/Ma73Zr54OBw+U2aRURERER+S0mU1EsGg4Fnhoba/l+b7IqIiIjI9VISJfXWrW39GNTOH6ODgUHt/e0djoiIiIjUEhXabFekLjEYDLw7sRtZ+cUEeGl/KBERERG5PkqipF5zcTQS4GW89kARERERkfM0nU9ERERERKQClESJiIiIiIhUgJIoERERERGRClASJSIiIiIiUgFKokRERERERCpASZSIiIiIiEgFKIkSERERERGpgHq9T5TVagUgOzvbzpGIiIiIiIg9XcgJLuQIV1Ovk6iMjAwAgoOD7RyJiIiIiIjUBBkZGZhMpquOqddJlK+vLwDx8fHX/ELdrB49erB9+/YqvUZdu05dei+6Ts2+Tl16L7pOzb5OXXovuk7Nvk5dei+6Ts2+Tl16L2azmWbNmtlyhKup10mUg0PZkjCTyYSXl1eVXstoNFb5NeraderSe9F1avZ16tJ70XVq9nXq0nvRdWr2derSe9F1avZ16tJ7ueBCjnDVMdUQhwBPPPGErlMDr6Hr6DrVdQ1dR9eprmvoOrpOdV1D19F1qusa1Xmd62WwXs/KqToqOzsbk8mE2WyutsxWRERERERqnorkBvW6EuXi4sJf//pXXFxc7B2KiIiIiIjYUUVyg3pdiRIREREREamoel2JEhERERERqSglUSIiIiIiIhWgJErqjXfeeYeWLVvi6upKREQEP//8c7njBw4cYNSoUZhMJjw9Penduzfx8fF2ilbk6n766SdGjhxJUFAQBoOBr776qtzxF154gXbt2uHh4YGPjw+DBw9m69at9glW5Bpmz55Njx498PT0xN/fn9GjR3Po0KFyY6xWKy+88AJBQUG4ubkxYMAA9u3bZ6eIRa7uer6nDQbDZR+vvPKKnaKWilASJfXCp59+yowZM/jzn//Mrl27uPXWW7njjjtsSdKxY8e45ZZbaNeuHRs2bGD37t385S9/wdXV1c6Ri1xeXl4enTt3Zu7cuZc9HhISwty5c9m7dy+bNm2iRYsWREZGkp6eXs2Rilzbxo0beeKJJ4iOjmbNmjWUlJQQGRlJXl6ebczLL7/Ma6+9xty5c9m+fTuBgYEMGTKEnJwcO0YucnnX8z2dnJxc7vG///0Pg8HAvffea8fI5XqpsYTUC7169aJbt268++67tufat2/P6NGjmT17NuPGjcPJyYkFCxbYMUqRG2MwGFi+fDmjR4++4pgLbVvXrl3L7bffXn3BidyA9PR0/P392bhxI7fddhtWq5WgoCBmzJjBc889B0BhYSEBAQG89NJLPProo3aOWOTqLv6evpzRo0eTk5PDunXrqjk6uRGqREmdV1RURExMDJGRkeWej4yMZPPmzVgsFlauXElISAhDhw7F39+fXr16XTI9SqS2Kioq4oMPPsBkMtG5c2d7hyNyTWazGQBfX18ATpw4QUpKSrmf4y4uLvTv35/NmzfbJUaRirj4e/piqamprFy5kilTplRnWHITlERJnXfmzBlKS0sJCAgo93xAQAApKSmkpaWRm5vLv//9b4YNG8bq1au5++67ueeee9i4caOdoha5ed9++y0NGjTA1dWV119/nTVr1uDn52fvsESuymq18vTTT3PLLbcQHh4OQEpKCsAVf46L1GSX+56+2Mcff4ynpyf33HNPNUcnN8rR3gGIVBeDwVDu/61WKwaDAYvFAsBdd93FU089BUCXLl3YvHkz7733Hv3796/2WEUqw8CBA4mNjeXMmTPMmzePsWPHsnXrVvz9/e0dmsgVPfnkk+zZs4dNmzZdcuxKP8dFarKrfU9f8L///Y8HHnhAa7FrEVWipM7z8/PDaDRecrcyLS2NgIAA/Pz8cHR0JCwsrNzx9u3bqzuf1GoeHh60adOG3r17M3/+fBwdHZk/f769wxK5omnTpvHNN9/w448/0rRpU9vzgYGBAFf8OS5SU13pe/q3fv75Zw4dOsTDDz9czdHJzVASJXWes7MzERERrFmzptzza9asoW/fvjg7O9OjR49LWo8ePnyY5s2bV2eoIlXKarVSWFho7zBELmG1WnnyySf58ssvWb9+PS1btix3vGXLlgQGBpb7OV5UVMTGjRvp27dvdYcrck3X+p7+rfnz5xMREaE1q7WMpvNJvfD0008TFRVF9+7d6dOnDx988AHx8fE89thjADzzzDPcf//93HbbbQwcOJBVq1axYsUKNmzYYN/ARa4gNzeXo0eP2v7/xIkTxMbG4uvrS8OGDfnXv/7FqFGjaNy4MRkZGbzzzjskJiYyZswYO0YtcnlPPPEEixcv5uuvv8bT09NWcTKZTLi5uWEwGJgxYwYvvvgibdu2pW3btrz44ou4u7szYcIEO0cvcqlrfU9fkJ2dzeeff86cOXPsFarcKKtIPfH2229bmzdvbnV2drZ269bNunHjxnLH58+fb23Tpo3V1dXV2rlzZ+tXX31lp0hFru3HH3+0Apc8Jk2aZD137pz17rvvtgYFBVmdnZ2tjRs3to4aNcq6bds2e4ctclmX+14GrB9++KFtjMVisf71r3+1BgYGWl1cXKy33Xabde/evfYLWuQqrud72mq1Wt9//32rm5ubNSsryz6Byg3TPlEiIiIiIiIVoDVRIiIiIiIiFaAkSkREREREpAKURImIiIiIiFSAkigREREREZEKUBIlIiIiIiJSAUqiREREREREKkBJlIiIiIiISAUoiRIREREREakAJVEiIiIiIiIVoCRKRERERESkApREiYiIiIiIVICSKBERERERkQpQEiUiIiIiIlIBSqJEREREREQqQEmUiIiIiIhIBSiJEhERERERqQAlUSIiIiIiIhWgJEpERERERKQClESJiIiIiIhUgJIoERERERGRClASJSIiIiIiUgFKokRERERERCpASdRlGAwGvvrqK3uHISIiIiIiNVC9SKImT57M6NGj7R2GiIiIiIjUAfUiiRIREREREaks9S6JatGiBW+88Ua557p06cILL7xgl3hERERERKR2qXdJlIiIiIiIyM1QEiUiIiIiIlIBSqJEREREREQqoN4lUQ4ODlit1nLPFRcX2ykaERERERGpbepdEtWoUSOSk5Nt/5+dnc2JEyfsGJGIiIiIiNQm9S6JGjRoEAsWLODnn38mLi6OSZMmYTQa7R2WiIiIiIjUEo72DqA6WCwWHB3L3urzzz/P8ePHGTFiBCaTiX/84x+qRImIiIiIyHUzWC9eIFQHDRs2jDZt2jB37lx7hyIiIiIiIrVcnZ7Ol5mZycqVK9mwYQODBw+2dzgiIiIiIlIH1OnpfA899BDbt29n5syZ3HXXXfYOR0RERERE6oB6MZ1PRERERESkstTp6XwiIiIiIiKVTUmUiIiIiIhIBdTqJGr27Nn06NEDT09P/P39GT16NIcOHSo3xmq18sILLxAUFISbmxsDBgxg3759tuNnz55l2rRphIaG4u7uTrNmzZg+fTpms7nceTIzM4mKisJkMmEymYiKiiIrK6s63qaIiIiIiNQgtTqJ2rhxI0888QTR0dGsWbOGkpISIiMjycvLs415+eWXee2115g7dy7bt28nMDCQIUOGkJOTA0BSUhJJSUm8+uqr7N27l48++ohVq1YxZcqUcteaMGECsbGxrFq1ilWrVhEbG0tUVFS1vl8REREREbG/OtVYIj09HX9/fzZu3Mhtt92G1WolKCiIGTNm8NxzzwFQWFhIQEAAL730Eo8++uhlz/P5558zceJE8vLycHR05MCBA4SFhREdHU2vXr0AiI6Opk+fPhw8eJDQ0NBqe48iIiIiImJftboSdbELU/B8fX0BOHHiBCkpKURGRtrGuLi40L9/fzZv3nzV83h5eeHoWNYBfsuWLZhMJlsCBdC7d29MJtNVzyMiIiIiInVPnUmirFYrTz/9NLfccgvh4eEApKSkABAQEFBubEBAgO3YxTIyMvjHP/5RrkqVkpKCv7//JWP9/f2veB4REREREamb6sxmu08++SR79uxh06ZNlxwzGAzl/t9qtV7yHEB2djbDhw8nLCyMv/71r1c9x9XOIyIiIiIidVedqERNmzaNb775hh9//JGmTZvang8MDAS4pFqUlpZ2SXUqJyeHYcOG0aBBA5YvX46Tk1O586Smpl5y3fT09EvOIyIiIiIidVutTqKsVitPPvkkX375JevXr6dly5bljrds2ZLAwEDWrFlje66oqIiNGzfSt29f23PZ2dlERkbi7OzMN998g6ura7nz9OnTB7PZzLZt22zPbd26FbPZXO48IiIiIiJS99Xq7nyPP/44ixcv5uuvvy7XIc9kMuHm5gbASy+9xOzZs/nwww9p27YtL774Ihs2bODQoUN4enqSk5PDkCFDyM/PZ/ny5Xh4eNjO06hRI4xGIwB33HEHSUlJvP/++wA88sgjNG/enBUrVlTjOxYREREREXur1UnUldYjffjhh0yePBkoq1b97W9/4/333yczM5NevXrx9ttv25pPbNiwgYEDB172PCdOnKBFixZA2aa806dP55tvvgFg1KhRzJ07F29v70p9TyIiIiIiUrPV6iRKRERERESkutXqNVEiIiIiIiLVTUmUiIiIiIhIBSiJEhERERERqQAlUSIiIiIiIhWgJEpERERERKQClESJiIiIiIhUgJIoERERERGRClASJSIiIiIiUgFKokRERERERCpASZSIiIiIiEgFKIkSERERERGpACVRIiIiIiIiFfD/AVb9C2SxoTDTAAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:58.275352\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df[(df.index.year==2020) & (df.index.month==7)]['ninfected'].plot()\n", "plt.show()" @@ -1858,21 +250,9 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAEiCAYAAAALexgYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpp0lEQVR4nO3deXiU5fn28e9kkkwWkiEhGwkh7GvYZF8UUAlYQFErVipKa6mtiqVobW1/b6tWxbaobbXuKC4orriBCKKASMISiRD2PQlJSMgy2SfJzPP+ETIa2RKYZLKcn+PIIZnnnplrJiYz59z3c90mwzAMRERERERExC28PF2AiIiIiIhIa6KQJSIiIiIi4kYKWSIiIiIiIm6kkCUiIiIiIuJGClkiIiIiIiJupJAlIiIiIiLiRgpZIiIiIiIibuTt6QKaO6fTSWZmJkFBQZhMJk+XIyIiIiIiHmIYBsXFxURHR+Pldfb5KoWs88jMzCQ2NtbTZYiIiIiISDORnp5Op06dznpcIes8goKCgJonMjg42MPViIiIiIiIpxQVFREbG+vKCGejkHUetUsEg4ODFbJEREREROS8pxGp8YWIiIiIiIgbKWSJiIiIiIi4kUKWiIiIiIiIGylkiYiIiIiIuJFCloiIiIiIiBs1KGQtXLiQ4cOHExQUREREBDNmzGDfvn11xsyZMweTyVTna9SoUXXG2O125s2bR1hYGIGBgVx99dVkZGTUGVNQUMDs2bOxWq1YrVZmz55NYWFhnTFpaWlMnz6dwMBAwsLCuPvuu6msrKwzZufOnYwfPx5/f39iYmJ46KGHMAyjIQ9bRERERESk3hoUstavX8+dd95JUlISa9asobq6moSEBEpLS+uMmzJlCllZWa6vlStX1jk+f/58li9fzrJly9i4cSMlJSVMmzYNh8PhGjNr1ixSUlJYtWoVq1atIiUlhdmzZ7uOOxwOpk6dSmlpKRs3bmTZsmW8//773HPPPa4xRUVFTJo0iejoaLZu3cpTTz3FokWLeOKJJxr0JImIiMiFySwsZ1Vqtj7gFJE2xWRcxF+93NxcIiIiWL9+PZdddhlQM5NVWFjIhx9+eMbr2Gw2wsPDef3117nxxhsByMzMJDY2lpUrVzJ58mT27NlDv379SEpKYuTIkQAkJSUxevRo9u7dS+/evfnss8+YNm0a6enpREdHA7Bs2TLmzJlDTk4OwcHBPPvss9x///2cOHECi8UCwGOPPcZTTz1FRkbGGfvb2+127Ha76/vaDcdsNpv2yRIREWmgqf/9ml2ZRfx1Wj9+Oa4rL319mPeSM1gwqRcJ/aM8XZ6ISIMUFRVhtVrPmw0u6pwsm80GQGhoaJ3L161bR0REBL169WLu3Lnk5OS4jiUnJ1NVVUVCQoLrsujoaOLj49m0aRMAiYmJWK1WV8ACGDVqFFartc6Y+Ph4V8ACmDx5Mna7neTkZNeY8ePHuwJW7ZjMzEyOHj16xse0cOFC1xJFq9VKbGzshTw1IiIiAuzKLALgmXWHKK908OjKPezNLubXryfzetIxD1cnItI4LjhkGYbBggULGDduHPHx8a7Lr7rqKpYuXcqXX37J448/ztatW7n88stds0PZ2dn4+voSEhJS5/YiIyPJzs52jYmIiDjtPiMiIuqMiYyMrHM8JCQEX1/fc46p/b52zI/df//92Gw211d6enq9nxMRERE5s5Mldj7flY3zB+tn/rv2APZqx9mvJCLSQnlf6BXvuusuduzYwcaNG+tcXrsEECA+Pp5hw4YRFxfHihUruO666856e4Zh1Fm+d6alfO4YU7s68kzXBbBYLHVmvkREROTC/PiMhIdX7Abgjgndef/bDE4U2VmxI4vrLunkifJERBrNBc1kzZs3j48//pivvvqKTp3O/YexY8eOxMXFceDAAQCioqKorKykoKCgzricnBzXLFNUVBQnTpw47bZyc3PrjPnxbFRBQQFVVVXnHFO7dPHHM1wiIiLiXsX26jrfnyyp6QB8w7BYbhndBYBXvjnaxFWJiDS+BoUswzC46667+OCDD/jyyy/p2rXrea+Tl5dHeno6HTt2BGDo0KH4+PiwZs0a15isrCxSU1MZM2YMAKNHj8Zms7FlyxbXmM2bN2Oz2eqMSU1NJSsryzVm9erVWCwWhg4d6hqzYcOGOm3dV69eTXR0NF26dGnIQxcREZEGKiitu62Kj9nEvMt70DUskJtGdMbLBDuP28iylXuoQhGRxtGgkHXnnXfyxhtv8OabbxIUFER2djbZ2dmUl9f8cSwpKeHee+8lMTGRo0ePsm7dOqZPn05YWBjXXnstAFarldtuu4177rmHtWvXsn37dm6++WYGDBjAlVdeCUDfvn2ZMmUKc+fOJSkpiaSkJObOncu0adPo3bs3AAkJCfTr14/Zs2ezfft21q5dy7333svcuXNdnT5mzZqFxWJhzpw5pKamsnz5ch599FEWLFhw1uWCIiIi4h75p0JWTHt/3vvNaDb96QruSah5HQ8N9GVAjBWATQfzPFajiEhjaFDIevbZZ7HZbEyYMIGOHTu6vt5++20AzGYzO3fu5JprrqFXr17ceuut9OrVi8TERIKCgly38+STTzJjxgxmzpzJ2LFjCQgI4JNPPsFsNrvGLF26lAEDBpCQkEBCQgIDBw7k9ddfdx03m82sWLECPz8/xo4dy8yZM5kxYwaLFi1yjbFaraxZs4aMjAyGDRvGHXfcwYIFC1iwYMEFP2EiIiJSPwVlNSErNNCXYV1CCQ+qe87zmB5hAHxz6GST1yYi0pguap+stqC+vfBFRESkrveSM7j33e+4rFc4r/1yxGnHvz6Qy+zFW4gK9iPx/su1ykREmr0m2SdLRERE5Gxqz8kKDfA54/FhcaH4mr3ILqrg8MnSpixNRKRRKWSJiIhIo8g/tVwwJND3jMf9fc0Mjm0PQPKxgjOOERFpiRSyREREpFF8P5N15pAFMKRzewC+Sy9sgopERJqGQpaIiIg0itrugmebyQIYdGomK0UhS0RaEYUsERERaRQ/7C54NrUha292MRVVjqYoS0Sk0SlkiYiISKNwzWSdY7lgtNWPsHYWHE6DXZm2pipNRKRRKWSJiIhIo6gNWeeayTKZTK7mFynpClki0jooZImIiIjbOZwGheVVAIQEnrmFe61BnawA7MgobOyyRESahEKWiIiIuF2WrRzDALOX6ZzLBQHiY2pC1p6soqYoTUSk0SlkiYiIiNslHsoDYGAnKz7mc7/d6BcdDMCh3FI1vxCRVkEhS0RERNyuNmSN6d7hvGMjgix0CPTF4TTYf6K4sUsTEWl0ClkiIiLiVoZh8M2hkwCM6R523vEmk4m+HWtms3ZnasmgiLR8ClkiIiLiVodPlnKiyI6vtxdD40LqdZ3aJYO7dV6WiLQCClkiIiLiVp9+lwXA0M4h+PmY63WdfprJEpFWRCFLRERE3MZWXsXijYcB+NmI2Hpfr/+pmazUTJuaX4hIi6eQJSIi0oZUVDlYvz+XKoezUW5/yTdHKaqopmdEO6YNjK739XpEtCPa6kdFlZNvDp5slNpERJqKQpaIiEgbUVHl4NaXt3Dry1v4zxcH3H77hmHwbnI6AHdd3gOzl6ne1zWZTCT0jwJg9a4Tbq9NRKQpKWSJiIi0AfmllfxyyVY2H8kH4I3NxyivdO+yvF2ZRWQUlOPn40VCv6gGX39Sv0gAvthzAofTcGttIiJNydvTBYiIiEjjyi+tZPpTGzleWI6/j5l2ft7kFtv575cH8DJB8rECFkzqzYiuoRd1P5/vygZgQq8I/H3r1/Dih0Z0DSXYz5u80kq+yyjkks7160woItLcKGSJiIi0Ik6nwVf7cvjX5/vIslXQKcSfgZ3ac7ywnE4h/rx06zA2HjjJwyv28Oy6Q67r3fLyZl6eM7xe+1qdSZXDycqdNV0Fp8Q3fBYLwMfsxeDOIWzYn8v+7GKFLBFpsRSyREREWoGiiioe+XQPH3+XSfkPuvPZyqvYdaot+p9/0pc+UcHEhgSw9Wg+WbYKIoIslNodJB7O486l3/LFgvF0aGdp0H3bqx3MfS2ZQ7ml+PuYmdgn4oIfR/fwQDbsz+VQbskF34aIiKcpZImIiLRwiYfyuPfd7zheWA6Av4+Z2aPjmNA7nF8u2UpFlZMuHQKYfKqxRKDFm+dnD3Nd317t4Jqnv2FvdjEPfLKbp24a0qD7/yglkw37c/H3MfO/nw/B6u9zwY+le3g7AA7lll7wbYiIeJoaX4iIiLRgK3dmMeulJI4XltM5NIA3544k9cHJ/PknfRnTPYyF1w3A6u/DH6f0OWu3P4u3mX/+dCBeJvjku0wON3AWaXtaAQC3junC5X0iL+rxfB+yNJMlIi2XZrJERERaqPJKBw99shvDgBmDo3nk2gEEWuq+tF87pBPXDul03tsa2Kk9I7qGknQ4n6TD+XQ7FXbqIyXdBsDgWGvDHsAZdI8IBCA9v4yKKgd+Pg1voCEi4mmayRIREWmhXvz6MNlFFcS09+ex6weeFrAaakTXDgBsOZJX7+uUVzrYf6IYgEGx7S/q/gHC21kI8vPGacCxvLKLvj0REU9QyBIREWmBHE6D1xKPAXDflN5umfEZeaqF++Yj+RhG/fap2pVpw+E0CA+yEBXsd9E1mEwmLRkUkRZPIUtERKQF2p5WwMkSO0F+3lwV39Ettzmkc3u8vUxk2SrIKCiv13W+y6hZKjioU3tMpjOf89VQrpCVo5AlIi2TQpaIiEgLVLvx7+V9IvD1ds/LeYCvNwM61ZxXteVIfr2uszOjEIBBnS7+fKxaPSNrQlZt63kRkZZGIUtERKSFMQyDz3edAHC1ZXeXvh2DATiWX7/zoQ6cmm3qc+p67lC7CXFyWkG9ly2KiDQnClkiIiItzL4TxaTll+Hr7cX4XuFuve2QgJo9rmxllecdaxgGR07W7GfVLTzQbTUM7GTF28tEbrG93ssWRUSaE4UsERGRFubz1JpZrMt6hl10R8EfCwnwBaCgrOq8Y08U2SmrdGD2MhEbEuC2Gvx8zPSPqVl+mHyswG23KyLSVBoUshYuXMjw4cMJCgoiIiKCGTNmsG/fvjpjDMPggQceIDo6Gn9/fyZMmMCuXbvqjLHb7cybN4+wsDACAwO5+uqrycjIqDOmoKCA2bNnY7VasVqtzJ49m8LCwjpj0tLSmD59OoGBgYSFhXH33XdTWVn3k7edO3cyfvx4/P39iYmJ4aGHHtLSAxERadFqz8dKcPNSQQCrf81MVmH5+UPW4ZM1SwVjQ/zddl5YraG1SwYVskSkBWrQX8T169dz5513kpSUxJo1a6iuriYhIYHS0lLXmH/+85888cQTPP3002zdupWoqCgmTZpEcXGxa8z8+fNZvnw5y5YtY+PGjZSUlDBt2jQcDodrzKxZs0hJSWHVqlWsWrWKlJQUZs+e7TrucDiYOnUqpaWlbNy4kWXLlvH+++9zzz33uMYUFRUxadIkoqOj2bp1K0899RSLFi3iiSeeuKAnS0RExNPS88vYnVWElwmu6BPh9tuvnckqrMdywcO5tUsF679xcX0NjVPIEpGWq0FrDFatWlXn+1deeYWIiAiSk5O57LLLMAyDf//73/zlL3/huuuuA+DVV18lMjKSN998k9tvvx2bzcbixYt5/fXXufLKKwF44403iI2N5YsvvmDy5Mns2bOHVatWkZSUxMiRIwF48cUXGT16NPv27aN3796sXr2a3bt3k56eTnR0NACPP/44c+bM4ZFHHiE4OJilS5dSUVHBkiVLsFgsxMfHs3//fp544gkWLFhwxlazdrsdu93u+r6oSJ2NRESk+Vizu2ap4PAuoXRoZ3H77bc/dU5WYT2WC9aej9U1zH3nY9W6JK49AHuziyixV9POzcsiRUQa00XN7dtsNXtjhIbWbF545MgRsrOzSUhIcI2xWCyMHz+eTZs2AZCcnExVVVWdMdHR0cTHx7vGJCYmYrVaXQELYNSoUVit1jpj4uPjXQELYPLkydjtdpKTk11jxo8fj8ViqTMmMzOTo0ePnvExLVy40LVE0Wq1Ehsbe8HPj4iIiLttOJALwBV93T+LBdC+ATNZjdH0olZHqz8x7f1xGvBdeqHbb19EpDFdcMgyDIMFCxYwbtw44uPjAcjOrlkjHhkZWWdsZGSk61h2dja+vr6EhIScc0xExOkvHhEREXXG/Ph+QkJC8PX1PeeY2u9rx/zY/fffj81mc32lp6ef55kQERFpGvZqB5sP1+xfdWlP93YVrFU7k1VUUU21w3nOsYdza87JaoyZLNCSQRFpuS547v2uu+5ix44dbNy48bRjP16GZxjGeXeB//GYM413x5japhdnq8disdSZ+RIREWkuvj1WSHmVg7B2FvpEBTXKfbQ/1fgCaoJWaKDvGcfZqx2kn2qv3i3M/edkQU3I+vi7TIUsEWlxLmgma968eXz88cd89dVXdOrUyXV5VFRNl6MfzxLl5OS4ZpCioqKorKykoKDgnGNOnDhx2v3m5ubWGfPj+ykoKKCqquqcY3JycoDTZ9tERESau40Ha5YKXtoz7LwfXl4ob7MXQafOfyo4x5LBfdnFOJwG7QN8iAxunA8na2eyvk0rwOlUZ2ARaTkaFLIMw+Cuu+7igw8+4Msvv6Rr1651jnft2pWoqCjWrFnjuqyyspL169czZswYAIYOHYqPj0+dMVlZWaSmprrGjB49GpvNxpYtW1xjNm/ejM1mqzMmNTWVrKws15jVq1djsVgYOnSoa8yGDRvqtHVfvXo10dHRdOnSpSEPXURExOM2HcoDYFyPsEa9n/aB529+kXq8pjHUgBhrowW+PlFB+PuYKa6o5kBOSaPch4hIY2hQyLrzzjt54403ePPNNwkKCiI7O5vs7GzKy2uWC5hMJubPn8+jjz7K8uXLSU1NZc6cOQQEBDBr1iwArFYrt912G/fccw9r165l+/bt3HzzzQwYMMDVbbBv375MmTKFuXPnkpSURFJSEnPnzmXatGn07t0bgISEBPr168fs2bPZvn07a9eu5d5772Xu3LkEBwcDNW3gLRYLc+bMITU1leXLl/Poo4+etbOgiIhIc+VwGuzJqgk2gzu3b9T7au9//uYXO4/XNL/qH21ttDq8zV6u2azEQycb7X5ERNytQSHr2WefxWazMWHCBDp27Oj6evvtt11j7rvvPubPn88dd9zBsGHDOH78OKtXryYo6Pu1408++SQzZsxg5syZjB07loCAAD755BPMZrNrzNKlSxkwYAAJCQkkJCQwcOBAXn/9dddxs9nMihUr8PPzY+zYscycOZMZM2awaNEi1xir1cqaNWvIyMhg2LBh3HHHHSxYsIAFCxZc0JMlIiLiKUfzSqmocuLn40WXDo3TaKJWfdq4p54KWQNiGi9kAYw9NWu38WBeo96PiIg7mYzaThByRkVFRVitVmw2m2uGTEREpKl9uiOTu97czqDY9nx059hGva95b23nk+8y6R4eyPRB0fzuip51VoBUVjuJ/9vnVDqcbPjDRDp3CGi0WnZkFHL1098QZPFm+18n4W2+qN1nREQuSn2zgf5SiYiItAC1SwX7dWz8D/xqOwweyi3l318cYNuPuvvtP1FMpcNJsJ83saH+jVpL/2grVn8fiu3V7Dg1eyYi0twpZImIiLQAe7KKAejXsXFat/9QSIBPne8/Tsms8/32tJrQNaBT4zW9qGX2MjG6WwcAvjmg87JEpGVQyBIREWkBamey+jbBTJY1oO7eWCt3ZtXZmHjjwZqwUxt+GtvIbqFATSt3EZGWQCFLRESkmcu2VZBlqwCgTxOErB/OTQX4mskrrXS1j692OL9vJd8zvNFrARgc2x6A7zJs6FRyEWkJFLJERESaudeTjgIwvEsI7U5tFNyY+vxgSeJPh3YC4LXEY0BN6/biimqC/bwbvbNgrX7RwfiYTeSXVpKeX94k9ykicjEa/y+1iIiIXLCyymreSEoD4LZx3ZrkPsd0D+OF2UPpFx2MvdrJa4nH+GLPCTYeOMl7yemuMWavptlz0uJtpl/HYL7LsJGSUdio3QxFRNxBM1kiIiLN2Mqd2djKq4jrEMCkfpFNdr8J/aPoFBJA9/B2XNm35n5vXryZD081wZjYp2mWCtaqXTKYklbYpPcrInIhFLJERESasSMnSwC4rGd4k80c/dhdl/fAx2zCx2xiRJdQHrtuANdf0qlJaxjcuT0AKelqfiEizZ+WC4qIiDRjJ4rsAERZ/TxWw+DY9iT/v0lYvL2weJs9UsOwuJoOgynpheQUVxAR5LnnQ0TkfDSTJSIi0sSqHE4eX72P/3118Lxjc4prQlZ4kKWxyzqnYD8fjwUsgNjQAAbHtsdpwKffZXmsDhGR+lDIEhERaUIVVQ5+/do2nvryIP/6fB95JfZzjs8pqmndHhmsmZtrh8QA8FHKcQ9XIiJybgpZIiIiTaSiysHc17bx1b5c12VH88rOeZ3amawID89kNQdTB3bE7GXiuwwbR0+WerocEZGzUsgSERFpAvZqB7e/nszXB04S4GvGx1zTxOJY3tnDQmW1k/zSSkAzWQBh7SwMjQsBIPFwnoerERE5O4UsERGRRlZZ7eSON75l/f5c/Hy8eHnOcH46NBY490xW7qmlhD5mEyEBPk1Sa3M3oktNA4ytR/M9XImIyNkpZImIiDSiKoeTu978lrV7c7B4e/HyrcMZ1a0DXU5tqHuumawTp87Higjyw2TyTPv25mZ4V4UsEWn+FLJEREQaSbXDye+WbWf17hP4envx4i3DGNMjDIC4DoHAuWeyck61b48I1vlYtS7p3B4vE6Tnl/Ovz/eSkl7o6ZJERE6jkCUiItJIHl6xh5U7s/E1e/H87KFc1ivcdaxL2PlnsnKKa2eyFLJqBfn50DsqGID/fXWIX7yyBXu1w8NViYjUpZAlIiLSCFLSC3k18SgAT80awsTeEXWOdw6tCVmFZVW8sy0dW3nVabdxQu3bz+jSnmGufxeUVbF2T44HqxEROZ1CloiIiJsZhsH/fbgTw4DrhsQwuX/UaWMCfL2xeNe8DN/33g5+/dq208bULhdUyKrrzgk9WHjdAG4cVtM85J1t6R6uSESkLoUsERERN0s8nEfq8SICfM38eWrfs46Lj7G6/r35SD7JxwrqHD9eWA5AuJYL1mEN8OGmEZ35zYTuAGzYn0uWrdzDVYmIfE8hS0RExM1eTzwGwLVDYghrd/aAdOfE7lzZN5Lxp87V+s/aA1RWOwHYmWFj06GavaAGdrKe9Tbasq5hgYzoEorTgA++Pe7pckREXBSyRERE3CjbVsHq3ScAuGV0l3OOvbxPJC/dOoz/N60fJlPNjMxV/9nAsbxSHvp0F1AT1PqcavQgp5s5/Pslg4ZheLgaEZEaClkiIiJu9OaWNBxOgxFdQ+kdFVSv6/SIaMfTN11CWDtfDuWWMvW/G9l6tAA/Hy/um9K7kStu2X4yIIpAXzPH8srYfER7Z4lI86CQJSIi4iZVDidvbUkDYPaouAZdd+rAjnwybxxh7XwpsVcD8M+fDqKj1d/tdbYmAb7eTB8UDcDrScc8XI2ISA2FLBERETf5fFc2ucV2woMsZ+woeD4drf48P3sYA2Ks/H1GPFefCg9ybreO6QLAZzuzSM8/++bOIiJNRSFLRETEDQzD4KWvjwBw04jO+Hpf2Evs0LgQPpk3rsEzYW1Z347BXNozDKcBL39zxNPliIgoZImIiLhD4uE8UtILsXh7KSB5wNxLuwHwztYzb+wsItKUFLJERETc4Nl1hwCYOSxW+1p5wKU9w+gTFURppcN1XpyIiDtUO5wUllU26DoKWSIiIhcpv7SSrw+cBL6fUZGmZTKZuG1cVwBe+eaIa78xEZELZRgG/117gOGPfMElf1/Dc+sPsbWeXUwVskRERC5S4qlNg3tFtqNzhwAPV9N2XT04mvAgCyeK7Hyx54SnyxGRFi7pcD5PrNlPQVkVTgMe+2wvv1iytV7XVcgSERG5SN8cqpnFGtsjzMOVtG0WbzM3DO0EwLKt6R6uRkRauqe/OgDAjcNi+b+pffH2MtEh0Lde121wyNqwYQPTp08nOjoak8nEhx9+WOf4nDlzMJlMdb5GjRpVZ4zdbmfevHmEhYURGBjI1VdfTUZGRp0xBQUFzJ49G6vVitVqZfbs2RQWFtYZk5aWxvTp0wkMDCQsLIy7776bysq66yV37tzJ+PHj8ff3JyYmhoceekg7wouIiFttOngqZHVXyPK0G4fHAvD1gVwyCtTOXUQuzKrULL45mIe3l4m7r+zJry7txo4HElj3hwn1un6DQ1ZpaSmDBg3i6aefPuuYKVOmkJWV5fpauXJlnePz589n+fLlLFu2jI0bN1JSUsK0adNwOByuMbNmzSIlJYVVq1axatUqUlJSmD17tuu4w+Fg6tSplJaWsnHjRpYtW8b777/PPffc4xpTVFTEpEmTiI6OZuvWrTz11FMsWrSIJ554oqEPW0RE5IwyCso4mleG2cvEyG6hni6nzYvrEMiY7h0wDFwt9UVE6qvK4eTFDYe5883tAPx8ZGdi2tdsCh/g643JZKrX7Xg39I6vuuoqrrrqqnOOsVgsREWdeRNGm83G4sWLef3117nyyisBeOONN4iNjeWLL75g8uTJ7Nmzh1WrVpGUlMTIkSMBePHFFxk9ejT79u2jd+/erF69mt27d5Oenk50dM1mjY8//jhz5szhkUceITg4mKVLl1JRUcGSJUuwWCzEx8ezf/9+nnjiCRYsWHDGJ8lut2O3213fFxUVNfQpEhGRNuT1xGMADO0cQpCfj4erEYA7JvRg06E8Xk86xs9HdqZnZJCnSxKRFqCy2snM5xNJSS8E4PpLOvH/pvW7oNtqlHOy1q1bR0REBL169WLu3Lnk5OS4jiUnJ1NVVUVCQoLrsujoaOLj49m0aRMAiYmJWK1WV8ACGDVqFFartc6Y+Ph4V8ACmDx5Mna7neTkZNeY8ePHY7FY6ozJzMzk6NGjZ6x94cKFriWKVquV2NjYi39CRESkVTpRVMGSTUcB+O2E7p4tRlzG9QxjUr9IHE6Dv360S6cJiMg5VTmc7D9RzGuJR0lJLyTIz5uF1w3gXz8diLf5wuKS20PWVVddxdKlS/nyyy95/PHH2bp1K5dffrlrdig7OxtfX19CQkLqXC8yMpLs7GzXmIiIiNNuOyIios6YyMjIOsdDQkLw9fU955ja72vH/Nj999+PzWZzfaWn68RZERE5s8Ubj2CvdjI0LoQJvcM9XY78wP+b2g8/Hy8SD+fx1ha9lovI2f3xvR0kPLmBh1fsAeDPP+nLTSM64+VVv6WBZ9Lg5YLnc+ONN7r+HR8fz7Bhw4iLi2PFihVcd911Z72eYRh1lu+daSmfO8bUfpp1tvWUFoulzsyXiIjI2aw91Sb8tnFd671OX5pG5w4B/GFyH/7+6W4eWbGbnwyIon1A/bqCiUjbkXysgA+2H3d93ycqiJnDLn4lW6O3cO/YsSNxcXEcOFDTAjEqKorKykoKCgrqjMvJyXHNMkVFRXHixOn7W+Tm5tYZ8+PZqIKCAqqqqs45pnbp4o9nuERERBrieGE5h3JL8TKpdXtzNWdMF3pFtqO00sGq1DOvYBGRtu2xz2pmr64ZHM3/Zl3Ca78cgfkiZrBqNXrIysvLIz09nY4dOwIwdOhQfHx8WLNmjWtMVlYWqampjBkzBoDRo0djs9nYsmWLa8zmzZux2Wx1xqSmppKVleUas3r1aiwWC0OHDnWN2bBhQ5227qtXryY6OpouXbo02mMWEZHWb+OBXAAGx7bH6q+GF82R2cvEjCExAHyyI9PD1YhIc5N63MbWowX4mr24/6q+TB3YkYhgP7fcdoNDVklJCSkpKaSkpABw5MgRUlJSSEtLo6SkhHvvvZfExESOHj3KunXrmD59OmFhYVx77bUAWK1WbrvtNu655x7Wrl3L9u3bufnmmxkwYICr22Dfvn2ZMmUKc+fOJSkpiaSkJObOncu0adPo3bs3AAkJCfTr14/Zs2ezfft21q5dy7333svcuXMJDg4GatrAWywW5syZQ2pqKsuXL+fRRx89a2dBERGR+tpwoGZvrEt76lys5mz6wJoGWYmH8sgprvBwNSLSnLx9atPyhP6RRFndE65qNThkbdu2jSFDhjBkyBAAFixYwJAhQ/jrX/+K2Wxm586dXHPNNfTq1Ytbb72VXr16kZiYSFDQ9+1Tn3zySWbMmMHMmTMZO3YsAQEBfPLJJ5jNZteYpUuXMmDAABISEkhISGDgwIG8/vrrruNms5kVK1bg5+fH2LFjmTlzJjNmzGDRokWuMVarlTVr1pCRkcGwYcO44447WLBgAQsWLLigJ0tERARqzu+t3YD4sl5aKticxYYGMDi2PU4DPtupJYMiUqOiysGHKTXnYtVuYu5OJkN9Tc+pqKgIq9WKzWZzzZCJiEjbdvRkKRMWrcPX24vUBybj693oq+/lIizeeIS/f7qbYXEhvPfbMZ4uR0SagTc3p/Hn5TuJae/P1/dNrHcnwfpmA70qiIiINFDtRpX9o4MVsFqAqQM6YjLBtmMFZBaWe7ocEfGwymon//vqIAC/HNf1olq1n41eGURERBqoNmQN6tTeo3VI/URZ/RjeJRSAFTuyzjNaRFqzbUfz+c0byRwvLCciyMLPR3ZulPtRyBIREWmg7zIKgZrOgtIyTB9U0wBjZapClkhblWUrZ9ZLm/lyb82WTgsm9cLPx3yea10Yt29GLCIi0ppVVjvZlVkEKGS1JBN713SB3JFho9ReTaBFb4FE2ppn1x2istrJgBgrf53ezzXD3Rg0kyUiItIAu7OKqKx2YvX3Ia5DgKfLkXrqFBJATHt/HE6D5GMFni5HRJpYlq2cZVtqWrbf/5M+jRqwQCFLRESkQWqXmYzsGqo9F1uYUd06AJB0OM/DlYhIU3st8RiVDicjuoQypnvjb72hkCUiItIAq3fV7LU0uX+UhyuRhhrZreaT681H8j1ciYg0pYoqB29tSQPgtku7Nsl9KmSJiIjUU1peGXuzizF7mbi8T4Sny5EGGtW1ZiZrR0YhpfZqD1cjIk3l/W8zKCyrIqa9P1f2jWyS+1TIEhERqafVu2tmsUZ0CSUk0NfD1UhDxYb6E9chgCqH4Vr2KSKt17G8UjYdPMnClXsB+MXYLpgbYU+sM1HIEhERqaf1+3MBuKKvZrFaIpPJxPSBNa3cP/4u08PViEhj2pVpY+Kidcx6aTMl9mpGdAnl1jFdmuz+FbJERETqwV7tYOvRmnN5Lu0Z7uFq5ELV7pe1fl8utvIqD1cjIo3l4+8ycRo1/+4WHsjTs4bgY2666KOQJSIiUg/b0wqpqHIS1s5Cr8h2ni5HLlDvqCB6Rbaj0uFkze4Tni5HRBpJ7e/307OG8OU9E4gI9mvS+1fIEhERqYdNB08CMKZ7B7Vub+GmxHcE4CudlyXSKh3KLeFwbik+ZhPje3lm5YFCloiIyHk4nQZf7as5H2tcj8bfX0UaV21nyA37c6lyOD1cjYi4U1FFFf/+4gAAo7uHEeTn45E6FLJERETO499f7GfncRu+Zi8u89CnouI+A2OsdAj0pdheTfKxAk+XIyJudNuSrXxyqrHNTcNjPVaHQpaIiMg57Mq08d8vDwLwyLXxRFmbdl2/uJ+X1/dLiL7apyWDIq3F8cJyth4twMsEr982gqsGdPRYLQpZIiIi57ByZxYACf0iuWGY5z4VFfeaeGrJ4Ifbj1NR5fBwNSLiDrXnzg7s1N7jXWAVskRERM7h8101HaqmDvTcJ6Lifgn9I+lo9eNEkZ13t6V7uhwRcYNNh/IAGNujg4crUcgSERE5q0O5JRzMKcHHbHLNfEjrYPE2c8eE7gA8s+4Q1WqAIdKilVc62HSoZiZrbHfPNyhSyBIRETkDp9PghfWHARjVrQPBHupQJY1n5vBYrP4+ZNkq2Hnc5ulyROQCfZRynPgHPudEkR2LtxeXxIV4uiSFLBERkTN5ZOUe3j61jOzmUXEerkYag8XbzMiuoQAkHc73cDUicqE++S4Lh9MA4KYRnfHzMXu4IoUsERGR05TYq3kt8SgA//zpQCb3j/JsQdJoRnWrOXcj6XCehysRkQu1K7NmJnrZr0fxwNX9PVxNDYUsERGRH9l44CRVDoO4DgHcMLSTp8uRRlQbsrYdzdd5WSIt0MkSO1m2CgDiY6weruZ7ClkiIiI/8tXemr2TJvaOwGQyebgaaUx9ooKw+vtQWukgNbPI0+WISAPtOvV72y0skHYWbw9X8z2FLBERkR8wDMO1Qe3l6ijY6nl5mRjVrea8rLc2p3m4GhFpqNRTTWv6N6NZLFDIEhERqSMlvZCcYjsBvmZGnnrzLa3bry/rBsC7yensyy72cDUiUh+GYfDNwZP86/N9AMRHB3u4oroUskRERH7g3eQMACb1i8Ti7fkOVdL4hsaFclV8FE4DFq3e5+lyROQ8DMNg0ep9/Pylza7LBmgmS0REpHkqr3TwSUomADcOi/VwNdKU7knoBcAXe06Qnl/m4WpE5Fw+TDnO/746BMDIrqHcOCyWEV2b18oDhSwREZFTPkvNotheTWyov6vrnLQNPSKCGNcjDMOApTo3S6RZ+2JPzXmzt43rytu3j+YfPx2It7l5xZrmVY2IiIgHfb4rG4DrhnTCy0tdBdua2aNrNp1+e2saxRVVHq5GRM5mT1ZNR8FLe4Z5uJKza3DI2rBhA9OnTyc6OhqTycSHH35Y57hhGDzwwANER0fj7+/PhAkT2LVrV50xdrudefPmERYWRmBgIFdffTUZGRl1xhQUFDB79mysVitWq5XZs2dTWFhYZ0xaWhrTp08nMDCQsLAw7r77biorK+uM2blzJ+PHj8ff35+YmBgeeughDMNo6MMWEZFWzl7tYOOBkwBc2TfSw9WIJ1zRJ4JuYYEUlFXx5JoDni5HRM6gvNLB0ZOlAPTr2LyaXfxQg0NWaWkpgwYN4umnnz7j8X/+85888cQTPP3002zdupWoqCgmTZpEcfH33Xrmz5/P8uXLWbZsGRs3bqSkpIRp06bhcDhcY2bNmkVKSgqrVq1i1apVpKSkMHv2bNdxh8PB1KlTKS0tZePGjSxbtoz333+fe+65xzWmqKiISZMmER0dzdatW3nqqadYtGgRTzzxREMftoiItHLbjhZQWukgrJ2F/s2sS5U0DW+zFw9c3R+AJZuOqNOgSDO070QxTgM6BPoSHmTxdDlnZ1wEwFi+fLnre6fTaURFRRmPPfaY67KKigrDarUazz33nGEYhlFYWGj4+PgYy5Ytc405fvy44eXlZaxatcowDMPYvXu3ARhJSUmuMYmJiQZg7N271zAMw1i5cqXh5eVlHD9+3DXmrbfeMiwWi2Gz2QzDMIxnnnnGsFqtRkVFhWvMwoULjejoaMPpdNbrMdpsNgNw3aaIiLROf/9klxH3x0+Ne95J8XQp4mG/enWrEffHT42HP93l6VJE5Efe3HzMiPvjp8bPX0w6/+BGUN9s4NZzso4cOUJ2djYJCQmuyywWC+PHj2fTpk0AJCcnU1VVVWdMdHQ08fHxrjGJiYlYrVZGjhzpGjNq1CisVmudMfHx8URHR7vGTJ48GbvdTnJysmvM+PHjsVgsdcZkZmZy9OjRMz4Gu91OUVFRnS8REWndnE6D1btPADCxtzYgbuuuvyQGgM93ndApBiLNTO35WH07Bnm4knNza8jKzq45YTgysu5a9sjISNex7OxsfH19CQkJOeeYiIjTX+QiIiLqjPnx/YSEhODr63vOMbXf1475sYULF7rOA7NarcTGqoWviEhrt3ZvDmn5ZQT5eTOhd7inyxEPu6xXOBZvL9Lyy9iTpSWDIs3J9yGreS/rbpTugiZT3Y5MhmGcdtmP/XjMmca7Y0ztJ1Jnq+f+++/HZrO5vtLT089Zt4iItHyLNx4GYNaIzgRavD1cjXhagK8343vVhO1VqVkerkZEahWWVZKSXgjAoNj2Hq3lfNwasqKiooDTZ4lycnJcM0hRUVFUVlZSUFBwzjEnTpw47fZzc3PrjPnx/RQUFFBVVXXOMTk5NX31fzzDVctisRAcHFznS0REWq8jJ0tJOpyP2cvErWO6eLocaSamDuwIwCvfHCXbVuHhakQEYFVqNlUOgz5RQXQPb+fpcs7JrSGra9euREVFsWbNGtdllZWVrF+/njFjxgAwdOhQfHx86ozJysoiNTXVNWb06NHYbDa2bNniGrN582ZsNludMampqWRlff8J0+rVq7FYLAwdOtQ1ZsOGDXXauq9evZro6Gi6dOnizocuIiIt1Naj+QAM7RxCdHt/D1cjzcW0gdEMim1Psb2a//sw1dPliAjwUUomANcMjvFwJefX4JBVUlJCSkoKKSkpQE2zi5SUFNLS0jCZTMyfP59HH32U5cuXk5qaypw5cwgICGDWrFkAWK1WbrvtNu655x7Wrl3L9u3bufnmmxkwYABXXnklAH379mXKlCnMnTuXpKQkkpKSmDt3LtOmTaN3794AJCQk0K9fP2bPns327dtZu3Yt9957L3PnznXNPs2aNQuLxcKcOXNITU1l+fLlPProoyxYsOC8yxdFRKRt2J5Ws7JiSFx7zxYizYrZy8S/fjoQH7OJL/accP1/IiKekVlYTtKRPACmD+ro4WrOr8Eha9u2bQwZMoQhQ4YAsGDBAoYMGcJf//pXAO677z7mz5/PHXfcwbBhwzh+/DirV68mKOj7DiBPPvkkM2bMYObMmYwdO5aAgAA++eQTzGaza8zSpUsZMGAACQkJJCQkMHDgQF5//XXXcbPZzIoVK/Dz82Ps2LHMnDmTGTNmsGjRItcYq9XKmjVryMjIYNiwYdxxxx0sWLCABQsWNPyZEhGRVml7WiEAl3QOOfdAaXN6RQZx9aCaT8xf+vqIh6sRadte+eYIhgGju3WgU0iAp8s5L5Oh3qTnVFRUhNVqxWaz6fwsEZFWpsRezYAHPscwYMufryAi2M/TJUkzsyeriKv+8zVeJlj/h4nEhjb/N3cirY2trIoxj62ltNLBK78Y7tGtNuqbDRqlu6CIiEhL8F16IYYBMe39FbDkjPp2DGZsjw44Dfj4u0xPlyPSJr2zLZ3SSgd9ooKY0KtlbLOhkCUiIm3WmlMbEA/p3N6zhUizNnVANPD9/y8i0rRW767pFj5rZOcW01dBIUtERNqk3ZlFvJ50DIAbhmnjeTm7K/rWLE1KSS8kp0jt3EWaUkFpJcnHahrPXNH3zFswNUcKWSIi0iY9unIPDqfB1AEdXRvPipxJZLCfa+PTtXtzPFuMSBuzbn8OTgP6RAUR04K22VDIEhGRNqfEXk3S4ZpWwH+Y3NvD1UhLkNCv5hP0z3dle7gSkbZl7Z6aDzaubEGzWKCQJSIibdCWI3lUOw06hwbQJSzQ0+VICzAlPgqAjQdOUlhW6eFqRNqGKoeT9ftzAbi8r+c6Cl4IhSwREWlzNh2smcUa072DhyuRlqJ7eDv6dgym2mloNkukiWw9mk9xRTUdAn0Z1Km9p8tpEIUsERFpc745dCpk9QjzcCXSkkwb2BGAT3dkebgSkbbhy1NLBSf2icDs1TK6CtZSyBIRkTbDMAze3prGnqwiAEZ300yW1F9tyPrm4EkyCso8XI1I6/flqUYzV/RpWUsFQSFLRETakGfXH+KP7+8EYHL/SMKDLB6uSFqSuA6Bro2JX9101NPliLRqy7dncPhkKT5mE+N6trxVBwpZIiLSJhzMKeHfaw4A8Psre/G/WZd4uCJpiW4b1xWAZVvSKbFXe7gakdYnr8TOY5/t5d53dwDwy7FdCfLz8XBVDaeQJSIirV61w8kf399BpcPJ+F7h3H1FD7zNegmUhpvQK4Ju4YEU26tZqXOzRNxu3lvbeW79IRxOg+uGxPDHKX08XdIF0SuMiIi0ev/98iDJxwoIsnjzyLXxmEwt6wRqaT68vExcMygGgNW7T3i4GpHWxTAMdh63AfCvnw5k0Q2D8GphDS9qKWSJiEirlnQ4j6e/rFkm+PC18XQKCfBwRdLSTTq1MfHGg7mUVzo8XI1I65FXWklxRTUmE0wfFN1iAxYoZImISCtWUFrJ/GUpOA24YWgnrhkc4+mSpBXo2zGImPb+VFQ5+fpArqfLEWk1jp4sBSDa6o+fj9nD1VwchSwREWmVDMPgvvd3kF1UQbfwQB68pr+nS5JWwmQyuWazPkrJ9HA1zZNhGOSV2MkvrfR0KdKCHD4VsrqFB3q4kovn7ekCRERE3Kmy2snja/ax9Ug+36YV4mv24r8/G0KAr17yxH1mDotlyaajrNiZxW8ybAzoZPV0Sc2Gw2kwe/FmNp3a9PvSnmH8fGQco7t3wOrf8rrESdM5cipkdQ1TyBIREWk2DMPgz8t38l5yhuuyP13Vh/gYvQEW9+oXHcyMwdF8mJLJIyt389bcUac1VNmXXczCz/ZgK69iSGwId0zsTli71rs32+pd2Tz91UGirf6ugAXw9YGTfH3gJFZ/H965fTS9o4I8WKU0Z7XLBbt0UMgSERFpNpZvP857yRmYvUz8aUofukcEMrF3hKfLklbqnoTerEzNJulwPq8lHuPWMV2Amk/jn1t3iOXbj1PpcAKwPa2QD7ZnMP+KnvSLtuJjNjGkc4gHq3cfW1kVH393nAc/2U2102BHRk13uL/PiGdCr3AWbzzCF3tOkFFQzm/eSOb120aoAY2ckWsmqxUsFzQZhmF4uojmrKioCKvVis1mIzg42NPliMg5GIbB8cJyth0t4FheGcO6hFBW6SDYz5sRXUPVtruVMwyDqf/dyO6sIn5/ZS9+d2VPT5ckbcAr3xzhwU924+vtxRMzB+Hnbeb3b6dQfGqj4iv6RHD14GieX3+Y3VlFda77v1mXMHVgR0+UfUYl9mq+2H2Cib0jsAbUb1nfzgwbP38piaKKmsc7smsoe7KKGN4llBdvGebqDpdfWsn0pzZyvLAckwn6RgVzZb9IfndFT8wtuIOcuI/TadD3r6uwVztZd+8EujTTJYP1zQaayRKRFs1e7WDtnhxW7sxi29ECsosqzjhufK9wrP4+pGbaCPT15leXdmXawGjXi7vTabToVrEC244VsDurCD8fL24dE+fpcqSNmDOmC98cPMkXe3K4683trsuHxoXwp6v6MCwuBJPJxE8GdOTtreks3niEwrJKCsqq+NMHO+jbMYhu4e08+Ahq7Mgo5M43vyU9v5xR3UJZdMMgUo/buLJv5Bk37t6RUcgXu0/w1tZ0iiqq6dIhgBuGxXL7Zd3wOvWB1g//poYG+vLKL4bzt492kXg4j91ZRezOKqK9vw+/HNe1yR6nNF/7c4qxVzvx9jLRKcTf0+VcNM1knYdmskSarxJ7NTc+n8iuzO8/Hfb2MtE/xkqnEH+2HsknyM+bY3llVDtP/1PXNSyQsHa+HDlZxskSOyEBPozrGc6vxnVlUGz7JnwkcrGqHU5ufWUL3xzM42fDY3ns+oGeLknakCqHkyfW7GfxxiME+Jq5Kr4jf5ve76wtqKscTmY+n8j2tEICfc08dE081w/t1MRVf6+4ooorn1jPiSK767IAXzNllQ4GdrJySecQLokLYUhse97ckkZBaSXvJmfgOPV3tU9UEO/+ZjRBfvWb/cosLOftren8Z+0B/H3MfPa7S5vtrIU0nTvf/JYVO7KY1C+SF28Z5ulyzqq+2UAh6zwUskSaJ3u1gzuXfssXe3JoH+DDTSM6c1nPcAbHtsfft+4bmz1ZRazcmUU7ize9IoPYlWnjpY1HKCyrOuNte5ngzz/py23jumqJYQtgGAb/76NU3khKw8/Hi0/njaNHhE6sl6ZX7XBi9jLV6+/GiaIK5r25nS1H8wH4zfju/HFKb4/8zXng410s2XSUuA4BjO8VzmuJx844zsdsosrx/dvGK/tGMKRzCD8bHkuHBjb0cDoNZr2URNLhfLqHB/L+b8fQPsD3oh6HtFypx21Me2ojJhOsvPtS+nZsvu+5FbLcRCFLpPnZk1XE799OYW92Mb7eXrz961ENPoG8xF7NqtRsfMwmuoW1IzLYQnpBOS9vPMKKnVkAXHdJDI9eO6DFb4jYmjmdBv/8fB/PrT+EyQTP/nwoU+KjPF2WSL04nAb/WXuA/649AMDPR3bm79fEN9nSZcOouf9/f1Fz/6/fNoKBndpz7f++Icjfh39cP4DPU09wssTOW1vSqHYaDOncnks6hzAsLoQp8VEXFQqzbRVc+8w3ZNlq9rL75/UDGdYl1F0PT1qIaoeT657dxI4MG9MHRfPUTUM8XdI5KWS5iUKWSPOydPMxHvh4F1UOgw6Bvjw+cxAT3Ng9zjAMXvnmKI+s3IPDaTCqWyivzBlx2uyYeN7Szcf4zxcHyCmuWeL08Ix4bh6lc7Gk5XlnWzp/fH8HhgHD4kJ46Jp4+kU37nuO44Xl/OHd71yt1u+c2J0/TO4D1PwdBOoEqL3ZRezNKmbawI5nPEfrQu3LLubmxZvJLbbjYzbx8V3jmvUshrjfc+sP8dhnewn282bNgvFEBvt5uqRzUshyE4UskeYj+Vg+NzyXiNOAK/tG8tj1Axptz5mNB07ymzeSKbFXM6JrKP/92RCirM37D39b8o9Ve3l23SEAgize/PGqPgpY0qJ9lHKcP72/k/IqBwG+Zl68ZRhje4Q1yn2VVzqY9tTXHMotxc/Hiwev7s+Nwzs3yn3Vh62sirve+pavD5xkUGx77pnUi0viQmhnUX+21s5e7WDUo2spKKvin9cPZObwWE+XdF71zQbu+yhCRKQRHTlZyvy3U3AacN2QGF68ZWijbuo5rmcYr/5yOIG+ZrYcyWfyvzew/0Rxo92f1N+uTJsrYN2b0Ivk/zdJAUtavGsGx/DlveMZ26MDZZUOfvHKVradOl/LnZxOg4c+3c2h3FIigiys+t1lHg1YANYAH/7100G0s3jzXXoht7y8hclPbuBgTolH65LG9/muExSUVREV7Md1l8R4uhy3UsgSkWbvq305/OQ/X5OeX06nEH8euKZ/k5wcPjQulI/uGkv/6GBs5VX84b0drm5a4jmvbjoKwNSBHbnr8p74euulTFqHjlZ/Xp4znCv7RlDpcPLr15O5881v+SjluFtu31ZWxc9eSOKtLWkALLphULPp6hdl9eORa+PpGhZIh0BfjheW87MXEiksq/R0adKIlp36f3Hm8Fi3LkNtDlrXoxGRVudYXil3v7Wd8ioHY7p34J3bRxNczzbB7tAjIoiX5wwn6NQnrP/6fJ+ClodUVjvZejSfj1IyAfjl2C6eLUikEVi8zfz3piHExwSTX1rJih1Z/G5ZCv/34U4KSi8ucLzw9SG2HM0nwNfMY9cN4LJe4W6q2j2uGRzDV/dOYPXvL6N7eCAnSyp55tSstbQ+mYXlbDqUh8kEM4d5bguDxqLFriLSbFU5nNz15naKK6oZGhfCkl+M8MisRWSwH3+e2pf7P9jJc+sPsSvTxtM3XYI1oOnCXltWXung7mXb+XJvjivgDoip2btHpDUK8PVm6a9G8emOTA7llPLyN0d4IymND749zk0jOjP30m5EWf3IKarg4RV7CA+y0CuyHcUV1XQLDyTQ15tj+WXkFtuZEh9F9/B2VDmcvLMtA4B//XQQUwd29PCjPLsO7Sz837R+/OKVrSzZdJRZIzo3mxk3cZ+1e3OAmmYvnUICPFyN+ylkiUiz9fz6Q+w8bqN9gA//m3WJR5eF/Wx4LGYvE3/7aBdfHzjJ9Kc3cnmfCHy9vUjLK6PS4eSha/q3yhcKT6qsdvK7ZdtZs/sEAFZ/Hy7rFc59kz2zn5BIU7H6+/DzkTXnGl7aK4xFn+9jV2YRizce4bXEo1wV35HdWUXnPW/pX5/vY3yvcHpGtCO32E5YOwsJ/SOb4iFclAm9whndrQOJh/P42QtJvPKL4eo62Mp8uafm7/rlfZr//48Xwu3vWB544AFMJlOdr6io7/csMQyDBx54gOjoaPz9/ZkwYQK7du2qcxt2u5158+YRFhZGYGAgV199NRkZGXXGFBQUMHv2bKxWK1arldmzZ1NYWFhnTFpaGtOnTycwMJCwsDDuvvtuKiu1tlekuSsoreQvy3fy5Km9Wx6Y3t/jnf1MJhMzh8Xy/m/H0NHqR1p+GUs2HeWFDYdZtSubL/fmcOPzScxftp0XNxzmRFEFy7akkW2r8GjdLVnioTwm/3sDq3efwNfsxZu/GknKXyfx1E1DiA1VmJW2Y2LvCD6dN44lvxjOiK6hVDkMPv4uk4M5JUQF+3HtkBgu6xXOTwZE0ScqiG5hgYzoEsplvcIxmWD9/lxe2ngEqFmW5dMCzn0xmUw8eeNgeka0I7uogmv+9w0vbzyCmmK3DmWV1XxzavuAK/u6bxuW5sTtLdwfeOAB3nvvPb744gvXZWazmfDwmnW///jHP3jkkUdYsmQJvXr14uGHH2bDhg3s27ePoKAgAH7729/yySefsGTJEjp06MA999xDfn4+ycnJmM01e9VcddVVZGRk8MILLwDw61//mi5duvDJJ58A4HA4GDx4MOHh4Tz++OPk5eVx6623ct111/HUU0/V+/GohbtI09qeVsCdS78l81Q4uXFYLI9dP6BZzVoUllWyevcJDuWU4DQMwoMsLNuSzuGTpa4xJhMYBgT6mlmQ0JtbR8e1upN6G0u1w8nzGw7z+Op9OA0Ia+fLY9cN5Mp+rfPTTpGG2p5WwOrdJ0jPL2PBpF50C2931rHH8kpZujmNQzklBFq8eeDq/oQG+jZhtRensKyS+W+nsG5fLgAzBkfz55/0JaKZ76UkZ/fh9uP898sDHM4tJTbUnw1/mNisXuPPx2P7ZD3wwAN8+OGHpKSknHbMMAyio6OZP38+f/zjH4GaWavIyEj+8Y9/cPvtt2Oz2QgPD+f111/nxhtvBCAzM5PY2FhWrlzJ5MmT2bNnD/369SMpKYmRI0cCkJSUxOjRo9m7dy+9e/fms88+Y9q0aaSnpxMdHQ3AsmXLmDNnDjk5OfUOTApZIk0nLa+MaU99TVFFNd3CAll43QBGduvg6bLq5WSJnbe3plNe6eDVTUcptlfTPsCHwrIqoOYcohdvGebxGbnmLLOwnDeSjvHFnhPsP1GzBOr6SzrxwNX9CGrCZici0rwYhsGSTUd5eEXNJvHeXiZmj47jj1P64OejjeJbkq1H8/nZC0mu82t/d0VPfj+pl4erapj6ZoNGOSfrwIEDREdHY7FYGDlyJI8++ijdunXjyJEjZGdnk5CQ4BprsVgYP348mzZt4vbbbyc5OZmqqqo6Y6Kjo4mPj2fTpk1MnjyZxMRErFarK2ABjBo1CqvVyqZNm+jduzeJiYnEx8e7AhbA5MmTsdvtJCcnM3HixDPWbrfbsdvtru+Liorc+dSIyBnkFFfw0tdHWJWaTVFFNYNj2/PGr0a2qI0ow9pZuHNiDwBmj47jcG4pI7qG8s62dBau3MPO4zZ+9kIif7u6P6O7ddAbgx/Zk1XELS9vIbe45u+v1d+Hv0ztyw1DO7WoTzhFxP1MJhO/GNuVfh2D+dfn+9h2rIBXvjnKqtRsuoYFsieriBuGxfKnKX3w8tLfi+bKXu3gd29tx+E0mDawI7+f1IturbihidvfwYwcOZLXXnuNXr16ceLECR5++GHGjBnDrl27yM7OBiAysu6Sj8jISI4dOwZAdnY2vr6+hISEnDam9vrZ2dlERJy+fjMiIqLOmB/fT0hICL6+vq4xZ7Jw4UIefPDBBj5qEblQe7OL+NWr28goKAdqloY9e/MlLSpg/VhksB+Rp5ay3DSiM+N6hHHTi0kczSvjF69spXNoAM/dPJR+0W17dtxe7WDtnhy+PVbAa0nHqKx20jsyiF+M7cKkfpF0aMTNpkWk5RnZrQPv/XYMX+3N4d53vyPLVkHWqaXlL2w4TG6xnX/+dGCLOOesLdp2tIBMW0XNEvDrB7bo1/n6cPuju+qqq1z/HjBgAKNHj6Z79+68+uqrjBo1CuC0TyUNwzjvJ5U/HnOm8Rcy5sfuv/9+FixY4Pq+qKiI2NjYc9YmIg33zcGTLN54hC9PtXDt0iGAOyb0YGKfCMKDWteb69jQAN79zWj+u/Yga3afIC2/jGuf+YZ7E3rzy3FdMbfBT14rqhzcsngLW47muy67tGeYWuOLyHlN7BPB13+cyOYj+WQWllNV7eTvK/awfPtxisqr+N/PL9FqgWZo/f6a8+om9I5o9QELmqCFe2BgIAMGDODAgQPMmDEDqJll6tjx+/0ZcnJyXLNOUVFRVFZWUlBQUGc2KycnhzFjxrjGnDhx4rT7ys3NrXM7mzdvrnO8oKCAqqqq02a4fshisWCxtK43eCLNzSvfHOHBT3YDNQ0iJvWN5NHrBhDWimcuOlr9WXjdAP44pbfrJO5HVu7hRFEF/zetn6fLa1IOp8Hdb21ny9F8gizeTOofyZT+UUzqF6mlgSJSLwG+3kzs/f2qptjQAO5Y+i1r9+Zwy+ItvDRnWJNuXC/nt+FUyGpum2A3lkafT7Xb7ezZs4eOHTvStWtXoqKiWLNmjet4ZWUl69evdwWooUOH4uPjU2dMVlYWqamprjGjR4/GZrOxZcsW15jNmzdjs9nqjElNTSUrK8s1ZvXq1VgsFoYOHdqoj1lEzm7/iWIWfrYXqGkl/OU9E3jhlmGtOmD9UPsAX16ZM5y/X9MfgMXfHCHxVBvblqCiykHqcRupx20kH8vnrS1pfJRynBNF529VbxgGe7OL+OP7O2rasnt78eKtw3hi5mAS+kcpYInIBbuibySv/XIEQRZvthzN52fPJ7nO8RTPO1FUwd7sYkwmuLRHmKfLaRJu7y547733Mn36dDp37kxOTg4PP/ww69evZ+fOncTFxfGPf/yDhQsX8sorr9CzZ08effRR1q1bd1oL908//ZQlS5YQGhrKvffeS15e3mkt3DMzM3n++eeBmhbucXFxp7Vwj4yM5F//+hf5+fnMmTOHGTNmqIW7iIdUVju59plv2JVZxMTe4bw8Z3ibfmN933vf8c62DEwmGNW1A7eMjiM2NIBu4YEE+DaPpRS2sipuejGJAznFVDsNzvaKEdPeny8WjMff9/slOoZhkHQ4n9W7s/Exe7HlSD4p6YUAeJngmZ9fwpT4jme+QRGRC7Ar08atL2/hZEkl3cICefv20a1uCXpL9NaWNO7/YCeDYtvz0Z1jPV3ORfFYd8GMjAxuuukmTp48SXh4OKNGjSIpKYm4uJpdy++77z7Ky8u54447KCgoYOTIkaxevdoVsACefPJJvL29mTlzJuXl5VxxxRUsWbLEFbAAli5dyt133+3qQnj11Vfz9NNPu46bzWZWrFjBHXfcwdixY/H392fWrFksWrTI3Q9ZROrp6S8PsCuziPYBPvzj+oFtOmAB/N+0fuQU21m3L5fEw3kkHq6Z0QqyeDN1YEd6RwVRUFpJSKAvXToE4u9rxt/HjJ+PmbLKaoorqhneJRR/XzOGYZBlq6C8ykGnEH8s3u45H+HRlXvYnVW3y2pIgI/rxPK+HYNJPW7jeGE5f/0olZgQf8oqHVj9ffhqbw7bjhXUua6fjxcDY9ozZ2wXBSwRcbv+0Vbe/c0Ybn5pM4dPljJ78WaW/GKEts/wsHe3pQMwuX/b2e/Q7TNZrY1mskQunmEYPLv+EP/6fB+GAf+bdQlTB+oNdq2MgjLeSErj813Z2MqryC+trPd121m86dcxmPSCMleXrQBfM1cPiubBa/o3OGzZyqtIzy8js7CcxMN5vPLNUQBe+cVw+kcHYzGbCfb3rhOQV6Vm85s3ks94e/4+ZqYP6kiArzeBFjO3julCRJDe7IhI4zp6spQbnk8kt9hO+wAfnvn5JYzp3jaWqTU3+08Uk/DkBsxeJhLvv7zFvwZ4bDPi1kYhS+TiVFQ5+PMHO/lg+3EAfjWua5tr9NAQTqfBN4dOsvHASY7mldKhnYWcIjtZtnIqqhxUVDmpqHLgY/bCZMIVrAC8vUz4mL0or3IAcFV8FE/dNATverQzNgyDp788yH/WHqDaWfdlYc6YLjxwdf9zXvfed3fw9YFcxnTvQHiQhfzSKtpZzPxmQnc6Wv0v8NkQEblwR0+WMu+t7ew8biPIz5uP7hxLt/B2ni6rzXnok928/M0RJvWL5MVbhnm6nIumkOUmClkiF84wDOa+to0v9uRg9jLxwNX9mT0qztNltRpOp0Fqpo2jeWUE+XkzulsHfM1erN2bw51Lv6XS4eT28d24/6q+57ydjQdO8p+1+9l6tGZpX1g7X2La+9M1LJBpA6O5vE+ENvgUkRbJXu1g1oubST5WQEz7mi6vbaW7XXOQbatgwqKvqKhy8sovhtfpCNlSKWS5iUKWyIV7LfEof/1oF77eXrx863DG9dRSjabyyXeZzHtrOwD/vnEwM4bEnHXc3cu2Yxjga/bioWv687MRnZuyVBGRRpVTXMENzyVyLK8MgHmX9+D3V/bSh0dNoLbB07C4EN79zehWcS52fbOBtsQWkUaxbEsaf/+0Zi+sP1/VRwGriU0fFM2cMV0AmP92CncsTcZWVlVnzLp9OSx4JwXDgGuHxLD+vgkKWCLS6kQE+bHy7ku5dXTNSoqnvjzIHUu/payy2sOVtW7Jx/J5NzkDgD9P7dsqAlZDaCbrPDSTJdJwbyQd4/8+TAXgmsHR/PvGwW3uj2tzUOVw8vjq/bz49WEcToPIYAuX94lkcKyVkyWV/OeLA1Q6nEwd2JH//mwIZn2qKyKt3PvJGdz/wU4qHU46hwZwx4TuXHdJJ3y9Ne/gThVVDn7yn685fLKUnw7txKIbBnm6JLfRckE3UcgSaZjv0gu54blEKh1O7pzYnXsTeitgedjODBt3vfWta6nMD00d0JF//2ywqyW7iEhrl3ysgN++kUzOqc2KO1r9uGV0F342PJaQQF8PV9c6PLpyDy9sOExksIXV88djDfDxdEluo5DlJgpZzVepvZptxwo4nFtC9/B2jOgaip+Pe/YGkgtzOLeEmc8ncbLEzuT+kTx381AFrGaivNLB+v05pKTb2JFRiJ+PmSv6RnDjsNh6dR8UEWlNyiqreXNzGi9sOOwKW6GBvjx+wyAm9mn5zRk8KfFQHj9/KQmnAS/PGcblfVrX3lgKWW6ikNV85BbbWbLpCJ+lZmM2mUjLL8Ne7XQd9/PxYmTXDlzWK5zxvcLpHh6oN/hNaEdGIb9+LZnsogr6dgzm7dtHEezXej65EhGR1qeiysHH32Xy4obDHMgpAWBK/yj+dFUfuoQFeri6luXrA7m8tSWNz1KzMQy47pIYnpg52NNluZ1ClpsoZDUPqcdt3PbqVk4U2etc3inEn96RQaRm2k471icqiD9M7s3lfSLqHbYqqhwczCmhvMpBr4igVjW93Zg27M/lV69to7LaSY+Idiz79SjC2lk8XZaIiEi9VFQ5eOyzvbyWeBSnAT5mE7+6tBvzr+zZ4E3d26K1e05w26vbXN9PG9iRR68b0Co/bFXIchOFLM/bciSfOa9soazSQffwQH4/qRdWfx/C2lnoExWEyWTCMAz2nyhh/f4cNuw/yZaj+VSemuUaGhfCZT3D6Wj1o2N7P4L8fNh53Eagr5kgPx9W78rmy705lFU6qHY6qXLU/Eq0s3jz85Gd6R0VxIAYK93D26nd6xnszS7ip88mUmKvZmLvcP5z05BW+UdVRERav33ZxTyycg8b9ucCEB8TzNLbRulD1/O4bclW1u7N4fI+Edyb0Jt+0a33PbNClpsoZHnWt2kF3PzSZsoqHYzp3oHnZg+t1xt4W1kVz204xCvfHKGiynne8T8UEuCDr7fXaTNjsaH+9O9oJS2/jN5RQQzrEkKP8HY4DXAaBpHBfsR1CGhTDQRyiiqY8b9vyLRVMKJrKK/fNkKf+ImISIu3KjWb+z/YQUFZFZf3ieClW4bpg9azyC+tZMQjX1DtNFjz+8voGRnk6ZIalUKWmyhkeU5aXhnXPvMNeaWVXNozjBdvGdbgxhYniip4LzmDjIIyMgsryLZVkFdaSZ+oIIoqqrCVVzGhVziT+0cRE+KP2ctETHt/DANWpmaxYX8uR0+WseN4Yb3Cmo/ZRK/ImmWKE1rBrubn8l16IX947zv2nyihW3ggH/x2DO0D1JVJRERah12ZNq57ZhP2aiczh3Xi4RkD1Or9DF755ggPfrKb/tHBrLj7Uk+X0+gUstxEIcszSu3VzPjfNxzIKSE+Jpi3fz2aQIu3x+opr3TwWWoWJ4rsdA0LYHdmEVuPFnCiqAIvLxMm4HhhOWWVDtd1xnTvwOhuHfj5qDhCW1FL2PzSSv71+V6WbU3HMCCsnS/v/3YMcR10grCIiLQuH3ybwT3vfodhQOfQAK4ZHM24HmEM7xLa5me2DMPgtcRj/P3T3VQ7Df5val9+dWk3T5fV6BSy3EQhq+kZhsGdb37Lyp3ZRARZ+GTeOCKD/Txd1nk5nQbHC8t56evDvJp4zHW5n48XNw6L5cp+kfTrGEyHFtoQorLaydtb03h8zX4Ky6qAms5Bf7qqDxFBzf/nIyIiciG+2pfD/GUp2MqrXJd1Dw/k9vHdmTE4ps3NbtmrHXy9/yTLU46zYkcWULPn4hM3DmoTpwwoZLmJQlbTe279IR77bC8+ZhPLfj2aoXEhni6pwfafKGbr0XyWbUln53Gb63Kzl4lR3UKJCvana1gAcR0Csfr7YPH2IiW9kCqHk/YBvhzMKcHf10xEkIVOIQEMiwuhxF5NsL8PVv+mPfm2strJu8npPPPVIY4XlgM1nRsfuiaeEV1Dm7QWERERTyi1V7N6dzZf7c3lq305FFdUAzXncY/pHsYvx3VhaFzbeE28/4MdvLUlHah5X3P/VX24bVzXNrNtjkKWmyhkNa3kYwXc8NwmnAY8PCOem0fFebqki2IYBomH8li6OY092UUczi29qNvz9jIxvEsoXcMDGdcjjMv7RLjOU7NXOzBhcn2iZhgGJ0sqKaqowt/HTHFFNeFBlvMuXXQ4DfZlF5NdVM6u40W8tSWNTFsFABFBFu6c2IOfj+ysDWxFRKRNKq6o4q0tabz09RHXRsYA1w6J4YGr+zf5h6FNqcRezfCHv6C8ysH0QdHMGdOlRX4YfjEUstxEIavpGIbB9c9u4tu0QmYMjubJGwe3uk9FDuWWsPlwPgVllRw4UUymrYKi8ipK7NX0iQom2M+b/LJKeka0o8phkFtsZ292EYdyS/Exm1zt5WsF+pq5JC6EgrJK9mYVU+00CGvnS/sAX7JtFZTYq0+rIdrq51qy2C08kG5h7cgsLCfTVjNLtS+7uM6LBtSEqzsmdOdnIzo3uPmIiIhIa1TlcLIjo5C3t6bzXnIGTgOigv24b0pvrh0S0+rewwC8sy2d+97bQbfwQNYuGN8qH+P51DcbeK6TgMiPfJaazbdphfj7mPnzT/q2yl/c7uHt6B7ersHXK6qoItDXm6N5pSQfK2B/djGfpWZzvLCcrw+crDP2ZEklJ0sqATCZoJ2vN+VVDoL8vCkoqyLTVuGamfrhUsYfCrJ40yk0gB4R7RjdrQPXXRKjcCUiIvIDPmYvhsaFMjQulBuHd2bBOykcyytjwTvfUVBWxW3junq6RLcpLKtkxc4sFn99BICfDu3UKt+nuZNmss5DM1lNI6/EzpT/fE1usZ27L+/BgoTeni6p2TMMg2/TCjmYU0z7AF/6dQwmwNdMdlEFBaVVRFlrzuf6YTgqLKvk8MlSCkorcRqQkl7AyeJKYkL8iW7vj5cJQgJ8GdsjrM2dyCsiInIxKqocPPnFfp5ff5hgP2823DexVWxt8sG3Gfzpg51UVtdsZeNr9mL9fRPoaPX3cGWeoeWCbqKQ1fiqHE5ufz2ZL/fm0COiHZ/OG6dZExEREWlxHE6Dqf/9mr3ZxYQE+NC3YzB/mdqX/tFWT5d2QU4UVXDF4+spsVfTt2MwCf0iuaJvBAM7tfd0aR5T32ygj6rFoyqqHPz2jZqA5Wv24t83DlbAEhERkRbJ7GXi/03rh8kEBWVVbDqUx9VPf8P/vjqI0/n9vIbDafD8+kP876uDVDucrssNw6CiynGmm25yJ4oquO+9HZTYqxkc254V88bx+0m92nTAagjNZJ2HZrIaT6m9mrmvbWPToTws3l48e/MlXN4n0tNliYiIiFyUY3mlnCypZPHGw6zcmQ1AfEwwI7t2ILfYTk5xBUmH8wEY2TWUiGA/BsQEs25fLpuP5HPtkBhGdetA59AABsVam3z/qVWp2fz+7RTKqxyYvUx8dOdY4mNa5mycu2m5oJsoZDWOKoeTX7yylY0HTxLoa2bxnOGM6tbB02WJiIiIuI1hGLy7LYO/fbyL8h/NUNWe+1x7rtPZ+JhNdOkQyPVDOzFnTBe3rfjJKCjjf18d5HBuKf2ig7H6+3Bl30j2Zhfzh/e+wzBgSOf2/GlKH0bqPZqLQpabKGS5n2EY/OXDVN7cnEaAr5k3545icGx7T5clIiIi0ijySuy8vS2dnCI7Ha1+FFdUMyU+CsOAlalZBPiYWbPnBIG+3swZ24XVu06QU1zBnqxiTpZ8v61KWDtfrhkcw7VDYghrZ8HHbCLIz6dOs6pSezXJxwrYdjQfh2EQEuBLWaWDlPRCThRVUGqvxlZeRUFZ1Wl1+pq9cBoG1U6Dm0Z05u/X9Ne+mD+ikOUmClnu99LXh3l4xR5MJnhx9jCu7KclgiIiIiI/ZhgGmbYKvjl4kifX7Cfr1BYsP+br7YWv2Quzl4lSezXVzvq9vR/VLZSrB8Vw5GQJu7OK+OZgHkCr3a/UHbRPljRLX+w+wSMr9wDwl5/0VcASEREROQuTyURMe39mDovl2iExbNify3vJGazdm4PDaeA4FaYqq511lh3GtPdnZLdQ2lm8KSyrwttsIj7aStfwQNpZvGln8SY2NIB2lu+jgNNp8NLGw+QU2fnDlN4KWBdJM1nnoZks99mZYePGFxIpq3Rw04hYHr12gH6BRURERBrIMAxMJhMOp0FJRTXF9iqqHTXL/AJ8zUS3b5t7WDUFzWRJs/LZziwWvPMd5VUOxnTvwEPXxCtgiYiIiFyA2vdQZi8T1gAfrAE+Hq5IfkwhSxqV02nw3y8P8O8vDgBwac8wnp51CT46iVJEREREWimFLGk05ZUO7n33O1bszALgl2O78uef9FGXGhERERFp1RSypFFk2cqZ+9o2Uo8X4WM28fCMeG4c3tnTZYmIiIiINLo2MaXwzDPP0LVrV/z8/Bg6dChff/21p0tqtfJK7Cz8bA9XPL6e1ONFhAb6svRXoxSwRERERKTNaPUzWW+//Tbz58/nmWeeYezYsTz//PNcddVV7N69m86d9cb/YjmdBllFFaQet/HF7hN8uiPLtaP5oE5Wnp51CbGhAR6uUkRERESk6bT6Fu4jR47kkksu4dlnn3Vd1rdvX2bMmMHChQvPe/36tGl8LzmD3GI7Bt8/lWd6Vmuf6h8eM84wvvZ2zjTuhxc29LpnGseZ7uMHtToNsFc7qKhyUlFV89+a7x3kl1aSXlBeZ18GgIGdrNx9eU+u6BuhDoIiIiIi0mqohTtQWVlJcnIyf/rTn+pcnpCQwKZNm854Hbvdjt1ud31fVFR03vt5ddNRdh63XVyxLZi3l4keEe0YGhfCNYNjGN4lROFKRERERNqsVh2yTp48icPhIDIyss7lkZGRZGdnn/E6Cxcu5MEHH2zQ/VzZN5I+UUEA/DBbmDCdfpnp+6M/vuyHseT7y8437vQwU//rnn47dW7t1Dd+3mb8fMz4+Xh9/19vM8H+PnQODaCj1U8dA0VERERETmnVIavWj4NI7S7ZZ3L//fezYMEC1/dFRUXExsae8/Z/d2XPiy9SRERERERahVYdssLCwjCbzafNWuXk5Jw2u1XLYrFgsViaojwREREREWmFWvUaL19fX4YOHcqaNWvqXL5mzRrGjBnjoapERERERKQ1a9UzWQALFixg9uzZDBs2jNGjR/PCCy+QlpbGb37zG0+XJiIiIiIirVCrD1k33ngjeXl5PPTQQ2RlZREfH8/KlSuJi4vzdGkiIiIiItIKtfp9si5WfXvhi4iIiIhI61bfbNCqz8kSERERERFpagpZIiIiIiIibtTqz8m6WLWrKYuKijxciYiIiIiIeFJtJjjfGVcKWeeRl5cHcN4NiUVEREREpG3Iy8vDarWe9bhC1nmEhoYCkJaWds4n8seGDx/O1q1bG6usi9Kca4OaTwhiY2NJT09vls1GmvvzV6u51tncf761muvz90PNuUb9nN2judenn/OFa441/VBL+Nk29+cQmneNLeFnDM3vObTZbHTu3NmVEc5GIes8vLxqTluzWq0N+h/QbDY32/9hm3NtPxQcHNws62wpz19zr7O5/nxrNffnD1pGjfo5X5zmXl8t/ZwbrjnWdCbN+WfbEp7DllBjc/4ZQ/N9DmszwlmPN1Edbc6dd97p6RLOqjnX1hK0lOevpdTZXLWE568l1NjcNffnsLnX11I0x+exOdbU0rSE57Al1NjctdTnUPtknYf2yWp6es5bN/182wb9nNsG/ZxbL/1sWz/9jC+M9slyE4vFwt/+9jcsFounS2kz9Jy3bvr5tg36ObcN+jm3XvrZtn76GV+Y+j5vmskSERERERFxI81kiYiIiIiIuJFCloiIiIiIiBspZImIiIiIiLiRQpaIiIiIiIgbKWSJSLNgMpn48MMPPV2GiIhIm6bXY/dQyJImt2nTJsxmM1OmTPF0KdKI5syZw4wZMzxdhjSS9PR0brvtNqKjo/H19SUuLo7f/e535OXl1ev669atw2QyUVhY2LiFykXR73HrpdfitkO/x56hkCVN7uWXX2bevHls3LiRtLS0i7oth8OB0+l0U2UiUh+HDx9m2LBh7N+/n7feeouDBw/y3HPPsXbtWkaPHk1+fr6nSxSR89BrsUjjUsiSJlVaWso777zDb3/7W6ZNm8aSJUtcx2o/2V6xYgWDBg3Cz8+PkSNHsnPnTteYJUuW0L59ez799FP69euHxWLh2LFjHngk0hBdunTh3//+d53LBg8ezAMPPOCReuTi3Hnnnfj6+rJ69WrGjx9P586dueqqq/jiiy84fvw4f/nLXwCw2+3cd999xMbGYrFY6NmzJ4sXL+bo0aNMnDgRgJCQEEwmE3PmzPHgI5L6WLVqFePGjaN9+/Z06NCBadOmcejQIdfxo0ePYjKZ+OCDD5g4cSIBAQEMGjSIxMRED1YtZ6LX4rZLr8dNRyFLmtTbb79N79696d27NzfffDOvvPIKP94P+w9/+AOLFi1i69atREREcPXVV1NVVeU6XlZWxsKFC3nppZfYtWsXERERTf0wRNqs/Px8Pv/8c+644w78/f3rHIuKiuLnP/85b7/9NoZhcMstt7Bs2TL++9//smfPHp577jnatWtHbGws77//PgD79u0jKyuL//znP554ONIApaWlLFiwgK1bt7J27Vq8vLy49tprT5vB+Mtf/sK9995LSkoKvXr14qabbqK6utpDVcuZ6LVYpPF5e7oAaVsWL17MzTffDMCUKVMoKSlh7dq1XHnlla4xf/vb35g0aRIAr776Kp06dWL58uXMnDkTgKqqKp555hkGDRrU9A9ApI07cOAAhmHQt2/fMx7v27cvBQUFbN26lXfeeYc1a9a4fr+7devmGhcaGgpAREQE7du3b/S65eJdf/31db5fvHgxERER7N69m/j4eNfl9957L1OnTgXgwQcfpH///hw8eJA+ffo0ab1ydnotFml8msmSJrNv3z62bNnCz372MwC8vb258cYbefnll+uMGz16tOvfoaGh9O7dmz179rgu8/X1ZeDAgU1TtIg0SO2n4UeOHMFsNjN+/HgPVyTucujQIWbNmkW3bt0IDg6ma9euAKedz/PDv88dO3YEICcnp+kKlXPSa7FI09BMljSZxYsXU11dTUxMjOsywzDw8fGhoKDgnNc1mUyuf/v7+9f5Xpo/Ly+v05ai/HDZibQcPXr0wGQysXv37jN2q9q7dy8hISEEBAQ0fXHSqKZPn05sbCwvvvgi0dHROJ1O4uPjqaysrDPOx8fH9e/av9VqitB86LW4bdPrcdPRTJY0ierqal577TUef/xxUlJSXF/fffcdcXFxLF261DU2KSnJ9e+CggL279+vZSYtXHh4OFlZWa7vi4qKOHLkiAcrkgvVoUMHJk2axDPPPEN5eXmdY9nZ2SxdupQbb7yRAQMG4HQ6Wb9+/Rlvx9fXF6jpSibNX15eHnv27OH//u//uOKKK1zLQqVl0Wux6PW46ShkSZP49NNPKSgo4LbbbiM+Pr7O109/+lMWL17sGvvQQw+xdu1aUlNTmTNnDmFhYdrfoYW7/PLLef311/n6669JTU3l1ltvxWw2e7osuUBPP/00drudyZMns2HDBtLT01m1ahWTJk0iJiaGRx55hC5dunDrrbfyy1/+kg8//JAjR46wbt063nnnHQDi4uIwmUx8+umn5ObmUlJS4uFHJecSEhJChw4deOGFFzh48CBffvklCxYs8HRZ0kB6LRa9HjcdhSxpEosXL+bKK6/EarWeduz6668nJSWFb7/9FoDHHnuM3/3udwwdOpSsrCw+/vhj16fe0nI4nU68vWtWJN9///1cdtllTJs2jZ/85CfMmDGD7t27e7hCuVA9e/Zk27ZtdO/enRtvvJHu3bvz61//mokTJ5KYmOhqavHss8/y05/+lDvuuIM+ffowd+5cSktLAYiJieHBBx/kT3/6E5GRkdx1112efEhyFrW/x15eXixbtozk5GTi4+P5/e9/z7/+9S9PlycNpNfitkmvx55hMn68MFPEQ9atW8fEiRMpKChQt7FWYMqUKfTo0YOnn37a06WIyAXS73Hbo9fi1ke/x56hmSwRcauCggJWrFjBunXr6rQDFpGWQ7/HIi2ffo89S90FRcStfvnLX7J161buuecerrnmGk+XIyIXQL/HIi2ffo89S8sFRURERERE3EjLBUVERERERNxIIUtERERERMSNFLJERETaqIULFzJ8+HCCgoKIiIhgxowZ7Nu3r84YwzB44IEHiI6Oxt/fnwkTJrBr1y7X8fz8fObNm0fv3r0JCAigc+fO3H333dhstjq388gjjzBmzBgCAgLUtU5EWj2FLBERkTZq/fr13HnnnSQlJbFmzRqqq6tJSEhw7WcG8M9//pMnnniCp59+mq1btxIVFcWkSZMoLi4GIDMzk8zMTBYtWsTOnTtZsmQJq1at4rbbbqtzX5WVldxwww389re/bdLHKCLiCWp8ISIiIgDk5uYSERHB+vXrueyyyzAMg+joaObPn88f//hHAOx2O5GRkfzjH//g9ttvP+PtvPvuu9x8882Ulpa6NkGttWTJEubPn09hYWFjPxwREY/RTJaIiIgAuJb4hYaGAnDkyBGys7NJSEhwjbFYLIwfP55Nmzad83aCg4NPC1giIm2FQpaIiIhgGAYLFixg3LhxxMfHA5CdnQ1AZGRknbGRkZGuYz+Wl5fH3//+97POcomItAX6iElERES466672LFjBxs3bjztmMlkqvO9YRinXQZQVFTE1KlT6devH3/7298arVYRkeZOM1kiIiJt3Lx58/j444/56quv6NSpk+vyqKgogNNmrXJyck6b3SouLmbKlCm0a9eO5cuX4+Pj0/iFi4g0UwpZIiIibZRhGNx111188MEHfPnll3Tt2rXO8a5duxIVFcWaNWtcl1VWVrJ+/XrGjBnjuqyoqIiEhAR8fX35+OOP8fPza7LHICLSHGm5oIiISBt155138uabb/LRRx8RFBTkmrGyWq34+/tjMpmYP38+jz76KD179qRnz548+uijBAQEMGvWLKBmBishIYGysjLeeOMNioqKKCoqAiA8PByz2QxAWloa+fn5pKWl4XA4SElJAaBHjx60a9eu6R+8iEgjUgt3ERGRNupM51UBvPLKK8yZMweome168MEHef755ykoKGDkyJH873//czXHWLduHRMnTjzj7Rw5coQuXboAMGfOHF599dXTxnz11VdMmDDhoh+LiEhzopAlIiIiIiLiRjonS0RERERExI0UskRERERERNxIIUtERERERMSNFLJERERERETcSCFLRERERETEjRSyRERERERE3EghS0RERERExI0UskRERERERNxIIUtERERERMSNFLJERERERETcSCFLRERERETEjf4/9IyvOKKGpGcAAAAASUVORK5CYII=", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:58.738817\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df['ninfav'] = df['ninfected'].rolling(window=7).mean()\n", "df['ninfav'].plot()\n", @@ -1888,263 +268,9 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
UIDiso2iso3code3FIPSAdmin2Province_StateCountry_RegionLatLong_Combined_KeyPopulation
04AFAFG4.0NaNNaNNaNAfghanistan33.93911067.709953Afghanistan38928341.0
18ALALB8.0NaNNaNNaNAlbania41.15330020.168300Albania2877800.0
212DZDZA12.0NaNNaNNaNAlgeria28.0339001.659600Algeria43851043.0
320ADAND20.0NaNNaNNaNAndorra42.5063001.521800Andorra77265.0
424AOAGO24.0NaNNaNNaNAngola-11.20270017.873900Angola32866268.0
.......................................
419184056037USUSA840.056037.0SweetwaterWyomingUS41.659439-108.882788Sweetwater, Wyoming, US42343.0
419284056039USUSA840.056039.0TetonWyomingUS43.935225-110.589080Teton, Wyoming, US23464.0
419384056041USUSA840.056041.0UintaWyomingUS41.287818-110.547578Uinta, Wyoming, US20226.0
419484056043USUSA840.056043.0WashakieWyomingUS43.904516-107.680187Washakie, Wyoming, US7805.0
419584056045USUSA840.056045.0WestonWyomingUS43.839612-104.567488Weston, Wyoming, US6927.0
\n", - "

4196 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " UID iso2 iso3 code3 FIPS Admin2 Province_State \\\n", - "0 4 AF AFG 4.0 NaN NaN NaN \n", - "1 8 AL ALB 8.0 NaN NaN NaN \n", - "2 12 DZ DZA 12.0 NaN NaN NaN \n", - "3 20 AD AND 20.0 NaN NaN NaN \n", - "4 24 AO AGO 24.0 NaN NaN NaN \n", - "... ... ... ... ... ... ... ... \n", - "4191 84056037 US USA 840.0 56037.0 Sweetwater Wyoming \n", - "4192 84056039 US USA 840.0 56039.0 Teton Wyoming \n", - "4193 84056041 US USA 840.0 56041.0 Uinta Wyoming \n", - "4194 84056043 US USA 840.0 56043.0 Washakie Wyoming \n", - "4195 84056045 US USA 840.0 56045.0 Weston Wyoming \n", - "\n", - " Country_Region Lat Long_ Combined_Key \\\n", - "0 Afghanistan 33.939110 67.709953 Afghanistan \n", - "1 Albania 41.153300 20.168300 Albania \n", - "2 Algeria 28.033900 1.659600 Algeria \n", - "3 Andorra 42.506300 1.521800 Andorra \n", - "4 Angola -11.202700 17.873900 Angola \n", - "... ... ... ... ... \n", - "4191 US 41.659439 -108.882788 Sweetwater, Wyoming, US \n", - "4192 US 43.935225 -110.589080 Teton, Wyoming, US \n", - "4193 US 41.287818 -110.547578 Uinta, Wyoming, US \n", - "4194 US 43.904516 -107.680187 Washakie, Wyoming, US \n", - "4195 US 43.839612 -104.567488 Weston, Wyoming, US \n", - "\n", - " Population \n", - "0 38928341.0 \n", - "1 2877800.0 \n", - "2 43851043.0 \n", - "3 77265.0 \n", - "4 32866268.0 \n", - "... ... \n", - "4191 42343.0 \n", - "4192 23464.0 \n", - "4193 20226.0 \n", - "4194 7805.0 \n", - "4195 6927.0 \n", - "\n", - "[4196 rows x 12 columns]" - ] - }, - "execution_count": 138, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "countries = pd.read_csv(countries_dataset_url)\n", "countries" @@ -2159,98 +285,18 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
UIDiso2iso3code3FIPSAdmin2Province_StateCountry_RegionLatLong_Combined_KeyPopulation
790840USUSA840.0NaNNaNNaNUS40.0-100.0US329466283.0
\n", - "
" - ], - "text/plain": [ - " UID iso2 iso3 code3 FIPS Admin2 Province_State Country_Region Lat \\\n", - "790 840 US USA 840.0 NaN NaN NaN US 40.0 \n", - "\n", - " Long_ Combined_Key Population \n", - "790 -100.0 US 329466283.0 " - ] - }, - "execution_count": 139, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "countries[(countries['Country_Region']=='US') & countries['Province_State'].isna()]" ] }, { "cell_type": "code", - "execution_count": 140, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEiCAYAAAArl0flAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA68ElEQVR4nO3deXxU9b3/8fdkmclkmcm+kYUtEAiriAKiSBWqVSted6WCenut4oK0t8rPeituVG2t9bqVuraKS2/FWm1VXACpoOyyhz2B7NtM1klm5vz+CEQiYQlMMjPJ6/l45DGZc75zzmdmHId3vssxGYZhCAAAAACCWIi/CwAAAACAU0WwAQAAABD0CDYAAAAAgh7BBgAAAEDQI9gAAAAACHoEGwAAAABBj2ADAAAAIOiF+buA7/N6vSoqKlJMTIxMJpO/ywEAAADgJ4ZhqLa2Vunp6QoJOXafTMAFm6KiImVmZvq7DAAAAAABorCwUBkZGcdsE3DBJiYmRlJr8Tabzc/VAAAAAPAXp9OpzMzMtoxwLAEXbA4NP7PZbAQbAAAAACc0RaXTiwcsW7ZMl1xyidLT02UymfTee++17WtpadE999yj4cOHKyoqSunp6brhhhtUVFTU2dMAAAAAwAnrdLCpr6/XyJEj9cwzzxyxr6GhQWvXrtX999+vtWvX6t1331V+fr5+/OMf+6RYAAAAAOiIyTAM46QfbDJp0aJFmjZt2lHbrFq1SmeccYb27dunrKys4x7T6XTKbrfL4XAwFA0AAADoxTqTDbp8jo3D4ZDJZFJsbGyH+10ul1wuV9t9p9PZ1SUBAAAA6GG69AKdTU1Nuvfee3XdddcdNWHNnz9fdru97YelngEAAAB0VpcFm5aWFl1zzTXyer167rnnjtpu7ty5cjgcbT+FhYVdVRIAAACAHqpLhqK1tLToqquu0p49e/T5558fczycxWKRxWLpijIAAAAABCHDMLS/ulFrdpad8GN8HmwOhZodO3boiy++UEJCgq9PAQAAAKCHKqxq0A0vf6M9FfXyuhpO+HGdDjZ1dXXauXNn2/09e/Zo/fr1io+PV3p6uq644gqtXbtWH3zwgTwej0pKSiRJ8fHxMpvNnT0dAAAAgF7C5fZo1sK12lNRr/BQk7JTonWiE1U6vdzzkiVLNHny5CO2z5gxQw888ID69evX4eO++OILnXvuucc9Pss9AwAAAL3PzrJa/fL/vtXaghrFRobrwzvPVkxIS9ct93zuuefqWFnoFC6LAwAAAKCXcTS26OnPdui1r/bK7TUUbQnT/147Wn1irXI6W074OF1+HRsAAAAA6MjS/HLd/fZ6VdU3S5LOH5KsBy8dpvRYa6ePRbABAAAA0G0q6lz6eneVNh5w6KXlu9XiMTQwOVr3XzxUkwYlnfRxCTYAAAAAusX/rdmve//2rdze76avXDwiTU9eNUrmsFO7xCbBBgAAAECX27jfof+3aKPcXkODU2I0KjNWo7JiddXpmQoNMZ3y8Qk2AAAAALqMs6lFz32xSy//e4+a3V6dPyRFC34yRiE+CDOHI9gAAAAA8Llmt1cLv96nP3y2Q9UNraubTRiQoN9dOdLnoUYi2AAAAADwsbLaJv30tdXasN8hSRqQFKW5Fw7ReUOSZTL5PtRIBBsAAAAAPrDpgEN/XrFX+aV1yi+tVUOzR7GR4frF1MG6ZmymwkJPbXGA4yHYAAAAADglO0prde2Clap1udu2DUiK0oszxqpfYlS31ECwAQAAAHBS3B6v3ltfpCc+3qZal1unZcXq5on9lZMSrf6JUV3eS3M4gg0AAACATnG5PfrHhmI998VO7a6olyT1T2ztoYmPMvulJoINAAAAgBO2tqBadyxcpwM1jZKkuMhw3XruAP1kXF9ZzaF+q4tgAwAAAOCovF5Df1y2W59vK9W+ygaV1bokSSk2i2ZO6KefjM9WtMX/scL/FQAAAAAISG6PVw99sEWvrdjXbvuPR6brkcuGKSYi3E+VHYlgAwAAAKCd8lqX3vqmQAu/KVCxo0kmk/TLH+ZqwoAE9U2Ikj0ycALNIQQbAAAAAJKkwqoG/XHZLr2zer+a3V5JUnyUWff9aIguH5Ph5+qOjWADAAAA9FI1Dc16bskubSupVVFNo/ZU1MvjNSRJozJjNXNCX104PFWWMP8tCnCiCDYAAABAL+NobNHS/HL99uPtKqhqaLfv7JxE3XbuQI3rHy+TyeSnCjuPYAMAAAD0AmXOJn28uUT/2lSib/ZUyX2wZyYz3qrbJw9URlyksuIjlRkf6edKTw7BBgAAAOhhPF5DH20q0T82FKmstklV9c3aV9Ugw/iuzcDkaE0ZmqJbzumv2Ej/XFTTlwg2AAAAQJArczZpw36Hvt1fo/WFNdp4wKGahpYj2o3OitWPhqVpal6KshOi/FBp1yHYAAAAAAHOMAxV1jdrf3Wj9lXWa2l+ubYUOVXncqvO5e4wxNit4bphfLby0u1KiDYrOz5SybYIP1TfPQg2AAAAQDcyDENNLV7VulpU19QaTA7dVjc0a2txrarqm+Vye9TQ7FGxo0n7qxvU1OI96jFDTFJOcoxGZNg1IjNWIzPsyk21yRwW0o3PzL8INgAAAMAJcHu8bT0kh8JI7cHb+oPbar8XVA5v27q/RfXNnrYllTvDZJJSYiLUJ86qkRmxOjsnUfbIcEVbwtQn1qooS+/+p33vfvYAAADo8ZpaPHI2tcjZ6D5426LaJne7bXVNbjW2eNTY4lFTs0f1zW7VuzyHhZWWY/aYnAyTSYq2hCnGEqboiDBFW8IUHRGugUnRSo+NUER4qCLCQ5Vqi1BGnFVpsRFBcT0Zf+l0sFm2bJmeeOIJrVmzRsXFxVq0aJGmTZvWtt8wDM2bN08LFixQdXW1zjzzTD377LPKy8vzZd0AAADoRVxujyrrmlVR51JlXbPK61yqqm9u7S1pdqvB5VFdc2sIcTa2tAstzW7fBhJLWIhi2oJImKLMYe3uR1vC2+5HWVpvD98fc3B7pDk0qK4TE+g6HWzq6+s1cuRI3Xjjjbr88suP2P/444/rySef1KuvvqpBgwbp4Ycf1pQpU7R9+3bFxMT4pGgAAAD0DI3NHhU5GlXiaFKxo0kljkYVO5pU6nSpqt6l6oYWVdS5VNvkPqXzmExSjCVMNmu4bBHhslnDDt62hpAYS5is5jBZw0NkNbf2lNgiwr/rSbF8F1R607yVYNLpYHPhhRfqwgsv7HCfYRh66qmndN999+k//uM/JEmvvfaaUlJStHDhQt1yyy1HPMblcsnlcrXddzqdnS0JAAAAAarZ7VVRTaMKqxu0v7pRhVUNKjx4u7+6QRV1zSd8rPBQkxKiLEqINisxuvXWFhGuSHNoWw/IobBiizgYYg7+HmUOU0gIvSM9mU/n2OzZs0clJSWaOnVq2zaLxaJJkybpq6++6jDYzJ8/X/PmzfNlGQAAAOhGjc0e5ZfWantprQqrGnSgulH7axq1v6pBJc4mHW+efLQlTGn2CKXaIw7eWpVisyghyqz4KIvio8xKirbIZg1j6BaOyqfBpqSkRJKUkpLSbntKSor27dvX4WPmzp2rOXPmtN13Op3KzMz0ZVkAAADwAcMwVOp0adMBhzYXObWtxKltJbXaW1nf7or232cJC1FGnFWZ8ZHKjItUZrz14G3rfXtkePc9CfRYXbIq2veTtGEYR03XFotFFoulK8oAAADASTIMQ8WOJm084NCmgz8bDzhVUefqsH1ClFm5aTHqmxCl9Fir+sRa2wJMUoyFnhZ0OZ8Gm9TUVEmtPTdpaWlt28vKyo7oxQEAAEBgaHZ7ta+yXjvK6rS5qDXAbD7gUGX9kfNfDl0IMq+PTUPTbMpNtWlwaoySYvhDNfzLp8GmX79+Sk1N1eLFizV69GhJUnNzs5YuXarHHnvMl6cCAADASaptatHqvdVaubtSK3ZXakuRU+4OJsKEhpiUkxyt4X3sGp5h17A+dg1Jtclq5loqCDydDjZ1dXXauXNn2/09e/Zo/fr1io+PV1ZWlmbPnq1HH31UOTk5ysnJ0aOPPqrIyEhdd911Pi0cAAAAJ6aizqU1+6q1dl+1Vu6p0qYDjiOufB9lDtXAlBjlpsRoWIZdw/vYlZsao4hwQgyCQ6eDzerVqzV58uS2+4cm/s+YMUOvvvqqfvnLX6qxsVG33XZb2wU6P/nkE65hAwAA0E3Kapv0+dYyrdpbrTX7qrS3suGINtkJkRrXL0HjByRoTHacMuKszINBUDMZxrHWsOh+TqdTdrtdDodDNpvN3+UAAAAEPI/X0PrCGi3LL9fS/HJt2F/TbpUyk0kalByj07LjNLZvnMb1T1B6rNV/BQMnqDPZoEtWRQMAAEDXKnE0tQaZHeVavqNCjsaWdvtHZcbq7JxEjcmO0+isONmtLKmMno1gAwAAEAS8XkPr99do8ZZSfbGtTNtKatvtt1vDNTEnUZNyknTOoCSl2iP8VCngHwQbAACAANXU4tHyHRX6dGupPt1a1u4aMiaTNDIjVpMGJWnS4CSNzIhVaAhzZNB7EWwAAAACRJ3LrRW7KrV6b5XyS2u1Ynelmlq8bftjLGE6NzdZ5w9J1jk5SYqLMvuxWiCwEGwAAAD8xOs1tKXYqWU7yrV0e7nWFlSrxdN+Xac+sVadPyRZU4am6ox+8TKHhfipWiCwEWwAAAC6iddraG9lvb7d79Cy/HIt21HRbniZ1LoM88SBiRqUEqPT+8ZpaJqNZZiBE0CwAQAA6EI1Dc1asr1cX2wv07L8clU3tF+9LNIcqgkDEjRpUOuk/+yEKD9VCgQ3gg0AAIAPtXi82lrs1Oq91fpsW6lW7q6Sx/vd8DJLWIhyU2M0fkCizhmUqNOzGV4G+ALBBgAA4BSUOJq0rqBa6wprtHZftTYecMjl9rZrMzglRj8YkqxzByXptOw4hYcSZABfI9gAAACcoKYWjzYXObR2X43WFVZrXUGNih1NR7SzW8M1OitWEwYkaOrQVPVNZHgZ0NUINgAAAEdR7GjU2n01WrOvWmsLqrW5yHHEqmUhJik31abRWbE6LStOo7Ni1S8xign/QDcj2AAAAEhqaHZra7FTGwodWlNQrXX7qlXUQW9MYrRZow8GmNOy4jS8j11RFv5JBfgbn0IAANDrGIahfZUNWr6zQqv3VmlTkVO7yutktO+MUWiISbmpMTotK05jsuN0WlacMuOt9MYAAYhgAwAAeoXyWpdW7K7Uv3dUaPnOCh2oaTyiTXKMRcP72HVadmuPzMiMWHpjgCDBJxUAAPQ4hmFoV3m9Vu6u1Np91VpTUK19lQ3t2oSHmnRaVpzGD0jQyIxY5aXblGyL8FPFAE4VwQYAAPQIzW6vVu2t0qdbS/X5trIjgozp4CT/iQMTdNbARJ3RL16RZv4pBPQUfJoBAEBQMgxDuyvq9WV+ub7cUaGVuytV3+xp228ODdHYfnEakx2vMdlxGpUZK7s13I8VA+hKBBsAABA0quub9e9dFfoyv0Jf7ig/YtWyxGizfpCbrB/kpujsnETmxwC9CJ92AAAQsJrdXq0tqNaXO1p7ZTYecLRbuexQr8zZOUmaODBRQ9NsCglhxTKgNyLYAACAgHFo0v+hILNyd6UaDhteJkmDU2J0dk6izh6UpDP6xstqDvVTtQACCcEGAAD4XU1Ds/66er/+uqZQ+aV17fYlRps1cWBia69MTqJSWLkMQAcINgAAwC8Mw9Daghq99U2B3t9QJJfbK6l1eNkZ/eJbe2VykpSbGsPwMgDHRbABAADdqtTZpHfXHtD/rSnUrvL6tu1D02yaPi5bF41IY/UyAJ1GsAEAAF3OMAwt2V6uP6/Yq6X55fIeXAAgIjxEPxqWpuvHZem0rDiZTPTMADg5Pg82brdbDzzwgN544w2VlJQoLS1NM2fO1K9+9SuFhIT4+nQAACCAGYahT7eW6enPdmjjAUfb9jHZcbpyTIYuGpGmmAh6ZwCcOp8Hm8cee0wvvPCCXnvtNeXl5Wn16tW68cYbZbfbddddd/n6dAAAIAAZhqFPtpTq6c92aHORU5JkDQ/V9Wdm6dozszQgKdrPFQLoaXwebFasWKFLL71UF110kSSpb9++evPNN7V69WpfnwoAAAQYwzC0eEupfv/pDm0tbg00UeZQ3TChr/5zYj8lRFv8XCGAnsrnwWbixIl64YUXlJ+fr0GDBmnDhg1avny5nnrqqQ7bu1wuuVyutvtOp9PXJQEAgC7m9Rr6fFuZnv58h77d3zrkLNoSppkT+urmif0UF2X2c4UAejqfB5t77rlHDodDubm5Cg0Nlcfj0SOPPKJrr722w/bz58/XvHnzfF0GAADoJst3VOihD7Zoe2mtJCnSHKqZE/rqv87pr9hIAg2A7uHzYPP222/r9ddf18KFC5WXl6f169dr9uzZSk9P14wZM45oP3fuXM2ZM6ftvtPpVGZmpq/LAgAAPuZobNG8f2zWu2sPSJJiLGG6blyW/uvs/gw5A9DtTIZhGL48YGZmpu69917NmjWrbdvDDz+s119/Xdu2bTvu451Op+x2uxwOh2w2my9LAwAAPrJ8R4V++X8bVORoUohJumF8X919/iDZI1nhDIDvdCYb+LzHpqGh4YhlnUNDQ+X1en19KgAA0M3Ka1169J9btWhday9NdkKkfnflSJ3eN97PlQHo7XwebC655BI98sgjysrKUl5entatW6cnn3xSN910k69PBQAAuonb49Wb3xToiY+3y9nklskk/WRctu65IFdRFq73DcD/fD4Urba2Vvfff78WLVqksrIypaen69prr9X//M//yGw+/gRChqIBABBYvtpZoXn/+G5xgLx0mx65bLhGZcb6tzAAPV5nsoHPg82pItgAABAYmlo8euTDrfrLyn2SJLs1XD+fOkjXnZGlsNCQ4zwaAE6dX+fYAACA4LezrE63L1yrbSWtvTQ/GZetOVMGcT0aAAGLYAMAANpZtG6/7lu0SQ3NHiVEmfW7q0bq3MHJ/i4LAI6JYAMAACS1Dj2b94/NevObQknS+P4J+sM1o5Rsi/BzZQBwfAQbAACg3eV1mrVwnbYWO2UySXf8IEd3nZej0BCTv0sDgBNCsAEAoBdrdnv17Bc79cLSXXK5vUqIMuupa0bp7Jwkf5cGAJ1CsAEAoJcqqGzQbQvXaNMBpyTprIEJevKqUUph6BmAIESwAQCgF9pS5NQNL3+jijqXYiPD9dClw3TxiDSZTAw9AxCcCDYAAPQyq/dW6cZXV6m2ya2haTa9NPN0pdmt/i4LAE4JwQYAgF5kyfYy/ez1NWpq8Wps3zi9OGOs7NZwf5cFAKeMYAMAQC/xjw1Fuvvt9XJ7DZ07OEnPXz9GVnOov8sCAJ8g2AAA0Au88fU+/eq9TTIM6ZKR6frdlSNlDgvxd1kA4DMEGwAAejDDMPT7T3fo6c92SJKmj8vSvB8P4/o0AHocgg0AAD2U2+PVfYs26e3VhZKkO38wUHdPGcTKZwB6JIINAAA9UEOzW7cvXKfPt5UpxCQ9NG2Yrj8z299lAUCXIdgAANDD1LvcuuHlb7RmX7UsYSH632tHa2peqr/LAoAuRbABAKAHcbk9uuUva7RmX7Xs1nC9PHOsxmTH+bssAOhyBBsAAHoIwzD0q0WbtHxnhaLMoXrtpjM0KjPW32UBQLdgnUcAAHqIF5bu1l/X7FeISXr2+tMINQB6FYINAAA9wDurC/XYR9skSb+6aKjOHZzs54oAoHsRbAAACHKLt5Tq3r99K0m65Zz+umliPz9XBADdj2ADAEAQ++fGYs1auFZeQ7pyTIbuvTDX3yUBgF+weAAAAEHIMAw9v3SXHv9ouyTpgrxUzf+P4Vx8E0CvRbABACDINLu9uv+9TXp7daEkaeaEvrr/4qEKDSHUAOi9CDYAAASRphaPbn5tlf69s1IhJunXl+RpxoS+/i4LAPyOYAMAQJAwDEP3/O1b/XtnpaLMofrf60brB7kp/i4LAAJClywecODAAU2fPl0JCQmKjIzUqFGjtGbNmq44FQAAvUJFnUt3vrVef19fpLAQk16cMZZQAwCH8XmPTXV1tc466yxNnjxZ//rXv5ScnKxdu3YpNjbW16cCAKBX2FtRr+tf/FoHahoVYpIevHSYxg9I8HdZABBQfB5sHnvsMWVmZuqVV15p29a3b19fnwYAgF5hR2mtrn/xa5XVutQvMUp/uGaURmTE+rssAAg4Ph+K9v777+v000/XlVdeqeTkZI0ePVp/+tOfjtre5XLJ6XS2+wEAANKGwhpdvWClympdyk2N0Tu3jCfUAMBR+DzY7N69W88//7xycnL08ccf62c/+5nuvPNO/fnPf+6w/fz582W329t+MjMzfV0SAABBxTAMvbO6UFf+cYWq6ps1IsOuN386TkkxFn+XBgABy2QYhuHLA5rNZp1++un66quv2rbdeeedWrVqlVasWHFEe5fLJZfL1Xbf6XQqMzNTDodDNpvNl6UBABDwymqb9P/e3ahPt5ZJks4fkqzfXz1KMRHhfq4MALqf0+mU3W4/oWzg8zk2aWlpGjp0aLttQ4YM0d/+9rcO21ssFlks/AUKAIDlOyp0+5trVdPQInNoiGZPydHPzhmgEC68CQDH5fNgc9ZZZ2n79u3ttuXn5ys7O9vXpwIAoEeobWrRO6v36zf/2qoWj6FhfWz63ZWjNDg1xt+lAUDQ8HmwufvuuzVhwgQ9+uijuuqqq/TNN99owYIFWrBgga9PBQBA0PtyR7nufHOdqhtaJEkXDU/Tk1ePlCUs1M+VAUBw8fkcG0n64IMPNHfuXO3YsUP9+vXTnDlz9NOf/vSEHtuZcXQAAASz11fu0//8fZO8htQvMUozJ/TV9HHZCmXoGQBI6lw26JJgcyoINgCAns7rNfS/n+/U7z/NlyRdOSZDD00bpohwemkA4HB+XTwAAAAcXW1Ti37+zgZ9sqVUknT75IH6+dRBMpnopQGAU0GwAQCgm+wsq9Mtf1mtXeX1MoeG6MFL83TNGVn+LgsAegSCDQAA3eDjzSX6+TsbVOdyK9UWoeenn6bRWXH+LgsAegyCDQAAXcgwDP3+0x16+rMdkqQz+sXr2etOU1IM13ADAF8i2AAA0EUMw9AjH27Vi8v3SJJuPKuv/t+Phig8NMTPlQFAz0OwAQCgCxiGoUf/+V2oeXjaME0fx8WqAaCr8CcjAAB8zDAM/eZf2/SnLwk1ANBd6LEBAMCHvF5Dj320TX9ctluS9BChBgC6BcEGAAAfaWh26+fvbNC/NpVIkh68NE8/IdQAQLcg2AAA4AMHahr109dWa0uxU+GhJj1y2XBddXqmv8sCgF6DYAMAwCnaVuLUjJe/UanTpcRos16YPkan9433d1kA0KsQbAAAOAVf767Uf/55tWqb3BqUEq1XbjxDfWKt/i4LAHodgg0AACfpo03FuvOt9Wp2ezW2b5xevGGs7JHh/i4LAHolgg0AACfh9ZX79D9/3ySvIU0dmqKnrx2tiPBQf5cFAL0WwQYAgE4wDEO//3SHnv5shyTp2jOy9PC0YQoNMfm5MgDo3Qg2AACcILfHq/v/vllvflMgSbrrvBzNPj9HJhOhBgD8jWADAMAJaGrx6I4312nxllKFmKQHL+XCmwAQSAg2AAAcR2FVg259Y402HXDKHBaip68ZrQuGpfq7LADAYQg2AAAcw6dbSjXnnfVyNrkVFxmuF6aP0Zn9E/xdFgDgewg2AAAcxYtf7tbDH26VJI3OitWz152mdK5RAwABiWADAMD3GIahxz/erueX7JIk/WRctu6/eKjMYSF+rgwAcDQEGwAADtPi8epXizbp7dWFkqRfXjBYt04awMpnABDgCDYAABxU53LrtjfWall+uUJM0qOXDdc1Z2T5uywAwAkg2AAAIOlATaP+87XV2lrslDU8VE9fO1pThqb4uywAwAki2AAAejXDMLTwmwLN/+c21bncSow26+WZYzUiI9bfpQEAOqHLZ0HOnz9fJpNJs2fP7upTAQDQKQWVDbr+xa9136JNqnO5NSY7TotuO4tQAwBBqEt7bFatWqUFCxZoxIgRXXkaAAA6xes19NqKvXr8o+1qbPEoIjxEv/xhrmZM6KvQEBYJAIBg1GXBpq6uTtdff73+9Kc/6eGHHz5qO5fLJZfL1Xbf6XR2VUkAAMjR0KLbFq7Rv3dWSpLO7Bevx68YoeyEKD9XBgA4FV02FG3WrFm66KKLdP755x+z3fz582W329t+MjMzu6okAEAv5vZ4tWjdfv342eX6985KRZpD9dCleXrzp+MINQDQA3RJj81bb72lNWvWaPXq1cdtO3fuXM2ZM6ftvtPpJNwAAHxqf3WDZr+1Xqv3VUuS0u0RemnmWA1Js/m5MgCAr/g82BQWFuquu+7SJ598ooiIiOO2t1gsslgsvi4DAABJ0r82Fuuev30rZ5Nb0ZYw3XruAE0fly27NdzfpQEAfMhkGIbhywO+9957uuyyyxQaGtq2zePxyGQyKSQkRC6Xq92+73M6nbLb7XI4HLLZ+EsaAODkNDS79dAHW/XmNwWSpFGZsXr6mtHKSoj0c2UAgBPVmWzg8x6b8847Txs3bmy37cYbb1Rubq7uueeeY4YaAAB84bOtpbr/vU0qcjTJZJJunTRAd08ZpPDQLr/KAQDAT3webGJiYjRs2LB226KiopSQkHDEdgAAfMnt8eq3n+TrhaW7JEkZcVY9dvkInTUw0c+VAQC6WpdexwYAgO5SXuvSnW+u04rdrcs433hWX91zQa4iwhkpAAC9QbcEmyVLlnTHaQAAvdSqvVW6feFalTpdijSH6vErRujiEen+LgsA0I3osQEABK2mFo9+/2m+FizbLcOQBiZH64Xpp2lgcoy/SwMAdDOCDQAgKG064NCcd9Yrv7ROknT5aRl68NI8RVn4agOA3oj/+wMAgkptU4ueX7JLC5btlttrKDHarEcvG66pean+Lg0A4EcEGwBA0FiaX65f/HWDymtdkqQfDU/Vw9OGKz7K7OfKAAD+RrABAAS8phaPHv9ou17+9x5JUr/EKM29MFdThqbIZDL5uToAQCAg2AAAAtqqvVWa++5G7SxrnUszY3y25v5oCMs4AwDaIdgAAAJSVX2zfvvJdi38ukCSlBht1uNXjNAPclP8XBkAIBARbAAAAaXe5dbLy/dowbLdqnW5JUnXjM3UvRfmKjaSuTQAgI4RbAAAAaGpxaPXV+7TC0t3qaKuWZI0NM2m+y8eqvEDEvxcHQAg0BFsAAB+5XJ79PaqQj37xU6VOltXO8uKj9TPpw7SJSPSFRLC4gAAgOMj2AAA/KKpxaN31x7QM5/vUJGjSZKUbo/QHefl6IoxGQoPDfFzhQCAYEKwAQB0q4LKBr3+9T69s7pQNQ0tkqQUm0W3Tx6oq8ZmyhLGamcAgM4j2AAAupzHa2hpfpn+vGKfluaXyzBat/eJteqmif10/ZlZLN8MADglBBsAQJepqm/WO6sL9cbX+1RY1di2/ZxBSbphXLYm5yYrlDk0AAAfINgAAHyqzNmkxVtL9fHmUq3YVaEWT2v3jN0arivHZGj6uGz1TYzyc5UAgJ6GYAMAOGV7K+r18eYSfby5ROsKa9qGmknSsD423TCury4ZmS6rmeFmAICuQbABAHSaYRjaXOTUx5tL9MnmUm0vrW23f2RmrH6Yl6KpQ1M1MDnaT1UCAHoTgg0A4IRU1Ln09e4qrdhdoS+2letAzXdzZsJCTBrXP0FT81I0ZWiK0uxWP1YKAOiNCDYAgA5V1Tfr692VWrG7Uit3Vyq/tK7d/ojwEE0alKQf5qXqvNwU2SPD/VQpAAAEGwDAQdX1zfp6T5VWHgwy20pqj2iTmxqjcf0TNGFAgs7OSWLODAAgYBBsAKAXqm1q0bf7HVpfWKNNBxzaXORUQVXDEe0Gp8RoXP94jR+QoDP6JSg+yuyHagEAOD6CDQD0cHUut7YWO7XpgEObDjj17f4a7Syva7dy2SE5ydEa1z/hYJCJV2K0pfsLBgDgJBBsAKAHqa5v1uYipzYVObTpgENbipzaU1nfYYjpE2vVqKxYjcywKy/drqFpNsXRIwMACFIEGwAIQg3Nbu0qq9eu8jrtLKvT9tJabSlytlup7HCptggN62PT0HS7RvSxa2RmrJJi6I0BAPQcPg828+fP17vvvqtt27bJarVqwoQJeuyxxzR48GBfnwoAejyP19C+ynptK6nVtmKntpbUaluJU4VVHQcYSeqbEKm8dLvy+thab9NtDCkDAPR4Pg82S5cu1axZszR27Fi53W7dd999mjp1qrZs2aKoqChfnw4Aeozq+ubWAFPi1Lbi1tvtpbVqavF22D4hyqwBydEamBytgUnRyku3aUi6TbYIll0GAPQ+JsPoaOS175SXlys5OVlLly7VOeecc9z2TqdTdrtdDodDNputK0sDAL9oaHZrd3m9dpbVtQsyJc6mDttHhIdocEqMclNtyk1rvR2cGsMKZQCAHq8z2aDL59g4HA5JUnx8fIf7XS6XXC5X232n09nVJQFAlzMMQ1X1zdpZVqedB+fB7Cqv166yuqPOg5GkzHirclNtGpIao9w0m3JTY5SdEKXQEFM3Vg8AQPDp0mBjGIbmzJmjiRMnatiwYR22mT9/vubNm9eVZQBAlzAMQwdqGpVfWqudZXU6UN2oIkeTimoadaCmUTUNLUd9bEKUWQOSojUoNbo1yKTFaFBKjGIYRgYAwEnp0qFos2bN0ocffqjly5crIyOjwzYd9dhkZmYyFA1AwDAMQ8WOptbel7I67Sir0/YSp/JL61Tnch/1cSaTlBFn1YCk1jkwA5OjW+fEJEWzrDIAACcgIIai3XHHHXr//fe1bNmyo4YaSbJYLLJYWK0HgP8ZhqHyOpfyS1qXT95e4tT20jrtLK1VfbOnw8eEhZhag0tKtLLiI5Uea1W6PULpsVb1TYiS1Rzazc8CAIDeyefBxjAM3XHHHVq0aJGWLFmifv36+foUAHDKKutc2l5aqx2ldcovrdWOsjrtKK1V9VGGj4WFmJSdEKmBydHKSY7RoNQYDU6JUb/EKJnDQrq5egAA8H0+DzazZs3SwoUL9fe//10xMTEqKSmRJNntdlmtVl+fDgCOqc7l1vaSWuWX1rbd5pfWqqKuucP2JpPUNyFKg1KiNTjVpsEpMRqUEq3sBAIMAACBzOdzbEymjlfueeWVVzRz5szjPp7lngGcrBJHk9YXVmvDfofyS2q1raT2qCuQmUxSVnxka+9LSrRyUlp7YgYkRTN8DACAAOHXOTZdfFkcAJAkNbV4tOmAQ+sKarSusFrrCmpU7Oj4OjDJMRYNPjh0bFBqjHJTYzQwOVqR5i5f8R4AAHQTvtUBBDzDMFRQ1dAaYgqqta6wRluKnHJ72/8hJcQkDU61aVSmXUPSDg0ji2EFMgAAegGCDYCA42xq0cb9jtYQU1CjdYU1qqo/ck5MYrRFp2XFanRWnEZlxmpEhl1RFv63BgBAb8S/AAD4ldvj1eYipzbsr9GGQoc27K/RrvI6fX9Uqzk0RHl9bBqdGafRWbEanRWrPrHWo87rAwAAvQvBBkC3K3M2aUl+uZbml+vL/HI5m468yGVmvFUjM2J1WlZrkBmabpMljEn9AACgYwQbAF2uur5ZK3ZXasWuSq3YXamdZXXt9tut4RqdFasRGbEamWHXyMxYJUZz4V4AAHDiCDYAfK6pxaPVe6u1fGeF/r2zQpuKHO2GlplM0og+dk0anKxJg5I0KjNWoSEMKQMAACePYAPglHm8hjYdcOjfu1qDzOq91XK5ve3aDEqJ1oQBiRo/IEFn9I1npTIAAOBTBBsAJ+VATaOWbC/TsvxyrdhVecQ8mRSbRWcNTNTZOYk6a0Cikm0RfqoUAAD0BgQbACekodndNrxsyfYy5Ze2nycTExGmcf0TdNaABJ01MFEDk6NZsQwAAHQbgg2ADrncHq0rqNFXuyq1clel1hVWq8Xz3USZEJM0JjtOkwYl6ayBiRrex66w0BA/VgwAAHozgg0ASVKLx6tv9zu0cnelvtrV8TyZPrFWjR+QoHMHJ+nsgUmyR4b7qVoAAID2CDZAL1Xb1KItBy+M+dWuSq3aU6X6Zk+7NkkxFo3vn6AJAxI0YUCiMuO5ICYAAAhMBBugFyirbdLmIqe2FDm1ucihzUVO7atsOKJdbGS4xvdP0PgBrWFmQBLzZAAAQHAg2AA9iGEYKqhq0ObDAszmIqfKa10dtk+zRygv3a5x/eM1fkCChqTaFML1ZAAAQBAi2ABBqKnFo/3VDdpXeeinXltLarW1yKlal/uI9iaT1C8xSnnpduWl2w7+2BXPtWQAAEAPQbABAoxhGHI2uVVe61JFnUtltS4VVrWGl32VDSqoalCJs0mG0fHjzaEhGpQarbw0u/L6tIaY3FSboix83AEAQM/Fv3SAbmAYhhyNLaqoc6m8tlkVda62n9YAc3Dbwd+bPd7jHjPKHKqshChlx0cqOyFSA5OjlZduV05KtMJZdhkAAPQyBBvgJLk9XlXWHwopzaqsc6myrlkV9a23lXWHBZY6V7trwJyIGEuYEmMsSoq2KCPeqqyDASYrPkrZCZFKiDIzsR8AAOAggg1wmGa3V5X1LlUc7FUp/36vSu13PS3VDS2dPr4tojWsJEa3BpbEaHPr7we3te5r3RYRHtoFzxAAAKBnItigx2tq8bT1qhweTCrqmluDS+139x2NnQsrISYpPuq7MJIYbVZCtEUJ0WYlRh28PRhYEqLMhBUAAIAuQrBBUDo0Z6WopkklzkaVOV1tk+1bw8p3oaWjVcKOJSzE9F0gOfQTYz7Yw/Ld/cRoi+IizQpleWQAAAC/I9ggINW53CquaVSRo6ndbbGjSUWORpU4mtTQ7Dnh45lDQ1p7VQ4N+To8uBwc/nUouNit4VzLBQAAIMgQbNDtmlo8Kv5eYClyNKnY0ajimtbgUtt0Yr0s8VFmpdoilGKzKDkmoq1nJSkmol2QsUWEMdEeAACgByPYwKc8XkNltU0qqmlSUU2jig72shw47Peq+uYTOlZMRJjS7ValxUYozW5Vuj1CabHf3abZI5izAgAAAEkEG3SSx2uoxNmkwqoG7a9u/O62ukEHqhtV4mySx3v8ZY0jzaFKs0coPdaqVFv7wHLoNpoLSgIAAOAEddm/HJ977jk98cQTKi4uVl5enp566imdffbZXXU6+IjXa6i8ztVhcNlf3drr4j5OcAkLMSnFFqE+sValxx4MK4cCi92qPrFW2awMDQMAAIDvdEmwefvttzV79mw999xzOuuss/THP/5RF154obZs2aKsrKyuOCWOwzAM1brcqqxrVlV969LGVfWtF5EscrT2wByobtT+mkY1u4991fvwUJP6xFqVERepzPjW24y41ts+sVYlxVhYKQwAAADdymQYRucuh34CzjzzTJ122ml6/vnn27YNGTJE06ZN0/z584/5WKfTKbvdrt9+sFYRkTEdtjm85EO/Gu32H/a7jt328MYdHaOjx59I26P82lb78Y51rHN//1iS5DEMNTZ71dTiUWOLR43NHjW0eNTU7JGjsUWV9Sd+5fvQEJPS7BHKiLMqMy6yXYDJjLcqOSaC4AIAAIAudygbOBwO2Wy2Y7b1eY9Nc3Oz1qxZo3vvvbfd9qlTp+qrr746or3L5ZLL5Wq773Q6JUl/+HSnQiyRvi6v14syhyo+2qyEqNYLRsZHmQ+GmEhlxLcGmVR7hMJDQ/xdKgAAAHDCfB5sKioq5PF4lJKS0m57SkqKSkpKjmg/f/58zZs374jt00alyxIZrcOnYZj03Z12203ftehwv45se9RjtWt7ZK/E8erp6FzfP1YH5Z5gPcc4r8kka3ioIs2hsoaHKuLgrTU8VDZrmBKiW4MMq4gBAACgJ+qyxQO+HwoMw+gwKMydO1dz5sxpu+90OpWZmamHLxt+3O4mAAAAAJC6INgkJiYqNDT0iN6ZsrKyI3pxJMlischisfi6DAAAAAC9iM8nUpjNZo0ZM0aLFy9ut33x4sWaMGGCr08HAAAAAF0zFG3OnDn6yU9+otNPP13jx4/XggULVFBQoJ/97GddcToAAAAAvVyXBJurr75alZWVevDBB1VcXKxhw4bpn//8p7Kzs7vidAAAAAB6uS65js2p6Mxa1QAAAAB6rs5kAy5WAgAAACDoEWwAAAAABL0uu47NyTo0Ms7pdPq5EgAAAAD+dCgTnMjsmYALNpWVlZKkzMxMP1cCAAAAIBBUVlbKbrcfs03ABZv4+HhJUkFBwXGL/76xY8dq1apVXVHWKQnUug5xOp3KzMxUYWFhwC7YEOivoRTYNQbDeywF9mt4SCDXyPt86gK5tkN4n09eINZ0uEB/bwP99TskUOsM9Pf3kEB7/RwOh7KystoywrEEXLAJCWmd9mO32zv9poeGhgbkfyiBWtf32Wy2gK0zGF7DYKgxkN9jKThew2Cokff55AVybd/H+9x5gVhTRwL1vQ2W1y/Q6wzU9/eQQH39DmWEY7bphjq6zaxZs/xdQocCta5gEgyvYTDUGOiC4TUMhhoDXSC/hoFcW7AJxNcyEGsKJsHy+gVLnYEqmF8/rmMDXvNegPe4d+B97h14n3su3tuejff35AT1dWwsFot+/etfy2Kx+LuUXoPXvOfjPe4deJ97B97nnov3tmfj/T05nXndAq7HBgAAAAA6K+B6bAAAAACgswg2AAAAAIIewQYAAABA0CPYAAAAAAh6BBugFzOZTHrvvff8XQYAAL0W38W+Q7DpBb766iuFhobqggsu8Hcp6GIzZ87UtGnT/F0GukBhYaFuvvlmpaeny2w2Kzs7W3fddZcqKytP6PFLliyRyWRSTU1N1xaKU8JnuGfj+7h34HPsPwSbXuDll1/WHXfcoeXLl6ugoOCUjuXxeOT1en1UGYATsXv3bp1++unKz8/Xm2++qZ07d+qFF17QZ599pvHjx6uqqsrfJQI4AXwfA12LYNPD1dfX65133tGtt96qiy++WK+++mrbvkN/wf3www81cuRIRURE6Mwzz9TGjRvb2rz66quKjY3VBx98oKFDh8pisWjfvn1+eCborL59++qpp55qt23UqFF64IEH/FIPTt6sWbNkNpv1ySefaNKkScrKytKFF16oTz/9VAcOHNB9990nSXK5XPrlL3+pzMxMWSwW5eTk6KWXXtLevXs1efJkSVJcXJxMJpNmzpzpx2eEE/HRRx9p4sSJio2NVUJCgi6++GLt2rWrbf/evXtlMpn07rvvavLkyYqMjNTIkSO1YsUKP1aNo+H7uHfiu7h7EWx6uLfffluDBw/W4MGDNX36dL3yyiv6/jVZ//u//1u//e1vtWrVKiUnJ+vHP/6xWlpa2vY3NDRo/vz5evHFF7V582YlJyd399MAeq2qqip9/PHHuu2222S1WtvtS01N1fXXX6+3335bhmHohhtu0FtvvaWnn35aW7du1QsvvKDo6GhlZmbqb3/7myRp+/btKi4u1h/+8Ad/PB10Qn19vebMmaNVq1bps88+U0hIiC677LIj/kp/33336Re/+IXWr1+vQYMG6dprr5Xb7fZT1Tgavo+Brhfm7wLQtV566SVNnz5dknTBBReorq5On332mc4///y2Nr/+9a81ZcoUSdJrr72mjIwMLVq0SFdddZUkqaWlRc8995xGjhzZ/U8A6OV27NghwzA0ZMiQDvcPGTJE1dXVWrVqld555x0tXry47fPdv3//tnbx8fGSpOTkZMXGxnZ53Th1l19+ebv7L730kpKTk7VlyxYNGzasbfsvfvELXXTRRZKkefPmKS8vTzt37lRubm631otj4/sY6Hr02PRg27dv1zfffKNrrrlGkhQWFqarr75aL7/8crt248ePb/s9Pj5egwcP1tatW9u2mc1mjRgxonuKBtAph/7iu2fPHoWGhmrSpEl+rgi+smvXLl133XXq37+/bDab+vXrJ0lHzM04/P/PaWlpkqSysrLuKxTHxfcx0D3osenBXnrpJbndbvXp06dtm2EYCg8PV3V19TEfazKZ2n63Wq3t7iM4hISEHDHM4fAhDQgOAwcOlMlk0pYtWzpcZWfbtm2Ki4tTZGRk9xeHLnXJJZcoMzNTf/rTn5Seni6v16thw4apubm5Xbvw8PC23w/9v5pJ5YGF7+Pei+/i7kWPTQ/ldrv15z//Wb/73e+0fv36tp8NGzYoOztbb7zxRlvblStXtv1eXV2t/Px8hjD0AElJSSouLm6773Q6tWfPHj9WhJORkJCgKVOm6LnnnlNjY2O7fSUlJXrjjTd09dVXa/jw4fJ6vVq6dGmHxzGbzZJaV1JC4KusrNTWrVv1q1/9Suedd17bkEMEH76Peze+i7sXwaaH+uCDD1RdXa2bb75Zw4YNa/dzxRVX6KWXXmpr++CDD+qzzz7Tpk2bNHPmTCUmJrL+eg/wgx/8QH/5y1/05ZdfatOmTZoxY4ZCQ0P9XRZOwjPPPCOXy6Uf/vCHWrZsmQoLC/XRRx9pypQp6tOnjx555BH17dtXM2bM0E033aT33ntPe/bs0ZIlS/TOO+9IkrKzs2UymfTBBx+ovLxcdXV1fn5WOJa4uDglJCRowYIF2rlzpz7//HPNmTPH32XhJPB93LvxXdy9CDY91EsvvaTzzz9fdrv9iH2XX3651q9fr7Vr10qSfvOb3+iuu+7SmDFjVFxcrPfff7/tr7sILl6vV2FhrSNM586dq3POOUcXX3yxfvSjH2natGkaMGCAnyvEycjJydHq1as1YMAAXX311RowYID+67/+S5MnT9aKFSvaFgZ4/vnndcUVV+i2225Tbm6ufvrTn6q+vl6S1KdPH82bN0/33nuvUlJSdPvtt/vzKeEoDn2GQ0JC9NZbb2nNmjUaNmyY7r77bj3xxBP+Lg8nge/j3ofvYv8xGd8f+IdeY8mSJZo8ebKqq6tZJamHuOCCCzRw4EA988wz/i4FwEngM9w78X3cs/A59h96bIAeoLq6Wh9++KGWLFnSbulQAMGBzzAQ/Pgc+x+rogE9wE033aRVq1bp5z//uS699FJ/lwOgk/gMA8GPz7H/MRQNAAAAQNBjKBoAAACAoEewAQAAABD0CDYAAHSj+fPna+zYsYqJiVFycrKmTZum7du3t2tjGIYeeOABpaeny2q16txzz9XmzZvb9ldVVemOO+7Q4MGDFRkZqaysLN15551yOBztjvPII49owoQJioyMZLUtAD0ewQYAgG60dOlSzZo1SytXrtTixYvldrs1derUtmsOSdLjjz+uJ598Us8884xWrVql1NRUTZkyRbW1tZKkoqIiFRUV6be//a02btyoV199VR999JFuvvnmdudqbm7WlVdeqVtvvbVbnyMA+AOLBwAA4Efl5eVKTk7W0qVLdc4558gwDKWnp2v27Nm65557JEkul0spKSl67LHHdMstt3R4nL/+9a+aPn266uvr2y4OeMirr76q2bNnq6ampqufDgD4DT02AAD40aHhY/Hx8ZKkPXv2qKSkRFOnTm1rY7FYNGnSJH311VfHPI7NZjsi1ABAb0GwAQDATwzD0Jw5czRx4kQNGzZMklRSUiJJSklJadc2JSWlbd/3VVZW6qGHHjpqbw4A9Ab8WQcAAD+5/fbb9e2332r58uVH7DOZTO3uG4ZxxDZJcjqduuiiizR06FD9+te/7rJaASDQ0WMDAIAf3HHHHXr//ff1xRdfKCMjo217amqqJB3RO1NWVnZEL05tba0uuOACRUdHa9GiRQoPD+/6wgEgQBFsAADoRoZh6Pbbb9e7776rzz//XP369Wu3v1+/fkpNTdXixYvbtjU3N2vp0qWaMGFC2zan06mpU6fKbDbr/fffV0RERLc9BwAIRAxFAwCgG82aNUsLFy7U3//+d8XExLT1zNjtdlmtVplMJs2ePVuPPvqocnJylJOTo0cffVSRkZG67rrrJLX21EydOlUNDQ16/fXX5XQ65XQ6JUlJSUkKDQ2VJBUUFKiqqkoFBQXyeDxav369JGngwIGKjo7u/icPAF2I5Z4BAOhGHc2TkaRXXnlFM2fOlNTaqzNv3jz98Y9/VHV1tc4880w9++yzbQsMLFmyRJMnT+7wOHv27FHfvn0lSTNnztRrr712RJsvvvhC55577ik/FwAIJAQbAAAAAEGPOTYAAAAAgh7BBgAAAEDQI9gAAAAACHoEGwAAAABBj2ADAAAAIOgRbAAAAAAEPYINAAAAgKBHsAEAAAAQ9Ag2AAAAAIIewQYAAABA0CPYAAAAAAh6/x+yGap45etoPAAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:00.226979\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pop = countries[(countries['Country_Region']=='US') & countries['Province_State'].isna()]['Population'].iloc[0]\n", "df['pinfected'] = df['infected']*100 / pop\n", @@ -2275,21 +321,9 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEiCAYAAAArl0flAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGg0lEQVR4nO3deXxU9b3/8fdMlkkm+76QEAKEfXFBEUQBBdyrYqsVtVptq4JW6vXSWnt/ovcKrW292Eu1al2wda9rXRBcCCoiAWTfIUAC2bfJOpOZOb8/QgaGCWggM8mE1/PxmMcjOedk8pk5s5z3+S7HZBiGIQAAAAAIYubuLgAAAAAAThbBBgAAAEDQI9gAAAAACHoEGwAAAABBj2ADAAAAIOgRbAAAAAAEPYINAAAAgKAX2t0FHM3tduvgwYOKiYmRyWTq7nIAAAAAdBPDMFRfX6/MzEyZzcdvk+lxwebgwYPKzs7u7jIAAAAA9BBFRUXKyso67jY9LtjExMRIais+Nja2m6sBAAAA0F1sNpuys7M9GeF4elywae9+FhsbS7ABAAAA8L2GqDB5AAAAAICgR7ABAAAAEPQINgAAAACCHsEGAAAAQNAj2AAAAAAIegQbAAAAAEGPYBMghmHow40l2lPR0N2lAAAAAL1Oj7uOTW/12bZyzXxprSRp7+8v6+ZqAAAAgN6FFpsAWbOvprtLAAAAAHotgk2AuAyju0sAAAAAei2CTYC43QQbAAAAwF8INgHicnd3BQAAAEDvRbAJEDdd0QAAAAC/IdgEiIuuaAAAAIDfEGwChMkDAAAAAP8h2ASIQbABAAAA/IZgEyB0RQMAAAD8h2ATIMyKBgAAAPgPwSZAmBUNAAAA8B+CTYA46YoGAAAA+A3BJkDcBBsAAADAbwg2AUJXNAAAAMB/CDYBwqxoAAAAgP8QbAKEFhsAAADAfwg2AUKLDQAAAOA/BJsAcZFrAAAAAL8h2AQIs6IBAAAA/kOwCRDG2AAAAAD+Q7AJEMbYAAAAAP5DsAkQWmwAAAAA/+lUsJk7d65MJpPXLT093bPeMAzNnTtXmZmZioyM1KRJk7R58+YuLzoYHdliYxByAAAAgC7V6Rab4cOHq6SkxHPbuHGjZ92jjz6qxx57TAsXLlRBQYHS09M1depU1dfXd2nRwejIYEOvNAAAAKBrhXb6D0JDvVpp2hmGoQULFuiBBx7Q9OnTJUmLFi1SWlqaXn75Zd1+++0d3p/dbpfdbvf8brPZOltSUHAZR7fYmLqvGAAAAKCX6XSLzc6dO5WZmanc3Fz9+Mc/1p49eyRJhYWFKi0t1bRp0zzbWiwWTZw4UStWrDjm/c2fP19xcXGeW3Z29gk8jJ7P5T78My02AAAAQNfqVLAZO3asXnzxRX388cd65plnVFpaqvHjx6uqqkqlpaWSpLS0NK+/SUtL86zryP3336+6ujrPraio6AQeRs935LgaJhIAAAAAulanuqJdcsklnp9HjhypcePGacCAAVq0aJHOOeccSZLJ5N3FyjAMn2VHslgsslgsnSkjKHlPHtCNhQAAAAC90ElN9xwVFaWRI0dq586dnnE3R7fOlJeX+7TinIpctNgAAAAAfnNSwcZut2vr1q3KyMhQbm6u0tPTtXTpUs96h8Oh/Px8jR8//qQLDXZuN8EGAAAA8JdOdUW77777dMUVV6hv374qLy/X//zP/8hms+nmm2+WyWTS7NmzNW/ePOXl5SkvL0/z5s2T1WrVjBkz/FV/0PBusenGQgAAAIBeqFPBpri4WNdff70qKyuVkpKic845RytXrlROTo4kac6cOWpubtbMmTNVU1OjsWPHasmSJYqJifFL8cHEfcSsaFygEwAAAOhaJqOHHWXbbDbFxcWprq5OsbGx3V1Olxk3/1OV1LVIktb+11QlRoV3c0UAAABAz9aZbHBSY2zw/bkYYwMAAAD4DcEmQJwEGwAAAMBvCDYB0uo6PMiGXAMAAAB0LYJNgDhdXKATAAAA8BeCTYA4j5gWja5oAAAAQNci2AQIY2wAAAAA/yHYBIDLbXh1PyPXAAAAAF2LYBMAR04cINFiAwAAAHQ1gk0AHNkNTZLc5BoAAACgSxFsAsBJiw0AAADgVwSbAGh1eQcZg2ADAAAAdCmCTQAcOdWzRFc0AAAAoKsRbALA6Tp6jA3JBgAAAOhKBJsA8Jk8wH2MDQEAAACcEIJNADB5AAAAAOBfBJsA8J08oJsKAQAAAHopgk0AHD15gCGSDQAAANCVCDYBcHSLDbOiAQAAAF2LYBMArqMnD6AvGgAAANClCDYBcPTkAVygEwAAAOhaBJsAaPVpsemmQgAAAIBeimATAD7TPZNsAAAAgC5FsAkAJg8AAAAA/ItgEwA+0z0zxgYAAADoUgSbAPCdFa2bCgEAAAB6KYJNAPh2RSPZAAAAAF3ppILN/PnzZTKZNHv2bM8ywzA0d+5cZWZmKjIyUpMmTdLmzZtPts6g5jN5AMEGAAAA6FInHGwKCgr09NNPa9SoUV7LH330UT322GNauHChCgoKlJ6erqlTp6q+vv6kiw1WR0/3TK4BAAAAutYJBZuGhgbdcMMNeuaZZ5SQkOBZbhiGFixYoAceeEDTp0/XiBEjtGjRIjU1Nenll1/u8L7sdrtsNpvXrbehxQYAAADwrxMKNrNmzdJll12mKVOmeC0vLCxUaWmppk2b5llmsVg0ceJErVixosP7mj9/vuLi4jy37OzsEympR3O6aLEBAAAA/KnTwebVV1/VmjVrNH/+fJ91paWlkqS0tDSv5WlpaZ51R7v//vtVV1fnuRUVFXW2pB6v1U2LDQAAAOBPoZ3ZuKioSPfcc4+WLFmiiIiIY25nMpm8fjcMw2dZO4vFIovF0pkygo6LC3QCAAAAftWpFps1a9aovLxcZ555pkJDQxUaGqr8/Hz95S9/UWhoqKel5ujWmfLycp9WnFOJ7+QBJBsAAACgK3Uq2Fx44YXauHGj1q1b57mNGTNGN9xwg9atW6f+/fsrPT1dS5cu9fyNw+FQfn6+xo8f3+XFBwvfyQO6qRAAAACgl+pUV7SYmBiNGDHCa1lUVJSSkpI8y2fPnq158+YpLy9PeXl5mjdvnqxWq2bMmNF1VQcZp5sLdAIAAAD+1Klg833MmTNHzc3NmjlzpmpqajR27FgtWbJEMTExXf2vgkYr0z0DAAAAfnXSwWbZsmVev5tMJs2dO1dz58492bvuNZjuGQAAAPCvE7qODTrnjJx4/fDMLM/vtNgAAAAAXavLu6LB19WnZ+nq07NUUW9X/o4KJg8AAAAAuhgtNgFkPnQpH1psAAAAgK5FsAmg9ouUch0bAAAAoGsRbALocItN99YBAAAA9DYEmwA63GLTzYUAAAAAvQzBJoAYYwMAAAD4B8EmgMyMsQEAAAD8gmATQO3BhjE2AAAAQNci2ASQia5oAAAAgF8QbAKIFhsAAADAPwg2AdQ+eQBjbAAAAICuRbAJoMMtNgQbAAAAoCsRbALIRFc0AAAAwC8INgHEdWwAAAAA/yDYBNDh69h0cyEAAABAL0OwCSDPdM/0RQMAAAC6FMEmgNrH2BBrAAAAgK5FsAkgxtgAAAAA/kGwCSAu0AkAAAD4B8EmgLhAJwAAAOAfBJsAMnGBTgAAAMAvCDYBRFc0AAAAwD8INgHE5AEAAACAfxBsAshs5gKdAAAAgD90Ktg8+eSTGjVqlGJjYxUbG6tx48bpo48+8qw3DENz585VZmamIiMjNWnSJG3evLnLiw5WXKATAAAA8I9OBZusrCz9/ve/1+rVq7V69WpdcMEFuvLKKz3h5dFHH9Vjjz2mhQsXqqCgQOnp6Zo6darq6+v9UnywYYwNAAAA4B+dCjZXXHGFLr30Ug0aNEiDBg3SI488oujoaK1cuVKGYWjBggV64IEHNH36dI0YMUKLFi1SU1OTXn75ZX/VH1QYYwMAAAD4xwmPsXG5XHr11VfV2NiocePGqbCwUKWlpZo2bZpnG4vFookTJ2rFihXHvB+73S6bzeZ1663aW2y4jg0AAADQtTodbDZu3Kjo6GhZLBbdcccdevvttzVs2DCVlpZKktLS0ry2T0tL86zryPz58xUXF+e5ZWdnd7akoHGowYauaAAAAEAX63SwGTx4sNatW6eVK1fqzjvv1M0336wtW7Z41rdfhLKdYRg+y450//33q66uznMrKirqbElBo/15MESyAQAAALpSaGf/IDw8XAMHDpQkjRkzRgUFBXr88cf161//WpJUWlqqjIwMz/bl5eU+rThHslgsslgsnS0jKDF5AAAAAOAfJ30dG8MwZLfblZubq/T0dC1dutSzzuFwKD8/X+PHjz/Zf9MrtE8ewBgbAAAAoGt1qsXmt7/9rS655BJlZ2ervr5er776qpYtW6bFixfLZDJp9uzZmjdvnvLy8pSXl6d58+bJarVqxowZ/qo/qLRfoNPt7uZCAAAAgF6mU8GmrKxMN910k0pKShQXF6dRo0Zp8eLFmjp1qiRpzpw5am5u1syZM1VTU6OxY8dqyZIliomJ8UvxwcbEdM8AAACAX3Qq2Dz77LPHXW8ymTR37lzNnTv3ZGrqtRhjAwAAAPjHSY+xwffHGBsAAADAPwg2AXS4xYZgAwAAAHQlgk0AmeiKBgAAAPgFwSaAzEweAAAAAPgFwSaA2ruikWsAAACArkWwCSCmewYAAAD8g2ATQCYmDwAAAAD8gmATQIene+7eOgAAAIDehmATQFygEwAAAPAPgk0AcYFOAAAAwD8INgHEGBsAAADAPwg2AURXNAAAAMA/CDYBxAU6AQAAAP8g2AQQF+gEAAAA/INgE0BcoBMAAADwD4JNAJmZPAAAAADwC4JNADF5AAAAAOAfBJsA4jo2AAAAgH8QbALo8Bib7q0DAAAA6G0INgHEBToBAAAA/yDYBBDTPQMAAAD+QbAJIMbYAAAAAP5BsAkgZkUDAAAA/INgE0BcoBMAAADwD4JNANFiAwAAAPgHwSaADk8eQLIBAAAAulKngs38+fN11llnKSYmRqmpqbrqqqu0fft2r20Mw9DcuXOVmZmpyMhITZo0SZs3b+7SooOVma5oAAAAgF90Ktjk5+dr1qxZWrlypZYuXSqn06lp06apsbHRs82jjz6qxx57TAsXLlRBQYHS09M1depU1dfXd3nxwcZEVzQAAADAL0I7s/HixYu9fn/++eeVmpqqNWvW6Pzzz5dhGFqwYIEeeOABTZ8+XZK0aNEipaWl6eWXX9btt9/edZUHIVpsAAAAAP84qTE2dXV1kqTExERJUmFhoUpLSzVt2jTPNhaLRRMnTtSKFSs6vA+73S6bzeZ1663MZi7QCQAAAPjDCQcbwzB07733asKECRoxYoQkqbS0VJKUlpbmtW1aWppn3dHmz5+vuLg4zy07O/tES+rxaLEBAAAA/OOEg81dd92lDRs26JVXXvFZ1z6WpJ1hGD7L2t1///2qq6vz3IqKik60pCDQPsaGYAMAAAB0pU6NsWl3991367333tPy5cuVlZXlWZ6eni6preUmIyPDs7y8vNynFaedxWKRxWI5kTKCTnuLDbkGAAAA6FqdarExDEN33XWX3nrrLX322WfKzc31Wp+bm6v09HQtXbrUs8zhcCg/P1/jx4/vmoqD2OHr2HRzIQAAAEAv06kWm1mzZunll1/Wu+++q5iYGM+4mbi4OEVGRspkMmn27NmaN2+e8vLylJeXp3nz5slqtWrGjBl+eQDBxGyiKxoAAADgD50KNk8++aQkadKkSV7Ln3/+ed1yyy2SpDlz5qi5uVkzZ85UTU2Nxo4dqyVLligmJqZLCg5mJiYPAAAAAPyiU8HG+B4H5CaTSXPnztXcuXNPtKZey8wFOgEAAAC/OKnr2KBzzIee7e8TEAEAAAB8fwSbAKLFBgAAAPAPgk0AcYFOAAAAwD8INgHUfpFSN002AAAAQJci2AQQ17EBAAAA/INgE0B0RQMAAAD8g2ATQEweAAAAAPgHwaYb0GIDAAAAdC2CTQCZD/VFI9YAAAAAXYtgE0DtY2y4QCcAAADQtQg2AcQYGwAAAMA/CDYBZGJWNAAAAMAvCDYBdOR1bOiOBgAAAHQdgk0AtQcbiYt0AgAAAF2JYBNA5sO5hu5oAAAAQBci2ASQ6YgWGyYQAAAAALoOwSaAaLEBAAAA/INgE0CMsQEAAAD8g2ATQGavrmgkGwAAAKCrEGwCyERXNAAAAMAvCDYB5B1suq8OAAAAoLch2ATQkV3RRLABAAAAugzBJoAYYwMAAAD4B8EmgJjuGQAAAPAPgk0AcYFOAAAAwD8INgHW3mpj0GIDAAAAdJlOB5vly5friiuuUGZmpkwmk9555x2v9YZhaO7cucrMzFRkZKQmTZqkzZs3d1W9Qa99nA0tNgAAAEDX6XSwaWxs1OjRo7Vw4cIO1z/66KN67LHHtHDhQhUUFCg9PV1Tp05VfX39SRfbGxwONiQbAAAAoKuEdvYPLrnkEl1yySUdrjMMQwsWLNADDzyg6dOnS5IWLVqktLQ0vfzyy7r99ttPrtpeoH2YDcEGAAAA6DpdOsamsLBQpaWlmjZtmmeZxWLRxIkTtWLFig7/xm63y2azed16s/YWG3INAAAA0HW6NNiUlpZKktLS0ryWp6WledYdbf78+YqLi/PcsrOzu7KkHqd98oB/rSlWs8PVvcUAAAAAvYRfZkU7clpjqa2L2tHL2t1///2qq6vz3IqKivxRUo/ReCjMPP7pTr1WsL+bqwEAAAB6h06PsTme9PR0SW0tNxkZGZ7l5eXlPq047SwWiywWS1eWETR2VzR2dwkAAABAr9ClLTa5ublKT0/X0qVLPcscDofy8/M1fvz4rvxXQeuyUYcDX6PD2Y2VAAAAAL1Hp1tsGhoatGvXLs/vhYWFWrdunRITE9W3b1/Nnj1b8+bNU15envLy8jRv3jxZrVbNmDGjSwsPVn+dcYYmDNyv+9/aqNqm1u4uBwAAAOgVOh1sVq9ercmTJ3t+v/feeyVJN998s1544QXNmTNHzc3NmjlzpmpqajR27FgtWbJEMTExXVd1kEuMCpckVTc6urkSAAAAoHcwGUbPmnjYZrMpLi5OdXV1io2N7e5y/KJgb7V+9Lev1S/JqmX/Ofm7/wAAAAA4BXUmG/hlVjQcX4I1TBItNgAAAEBXIdh0gwRrW1c0W4tTTpe7m6sBAAAAgh/BphvERYZ5fq5tZgIBAAAA4GQRbLpBaIjZE25q6I4GAAAAnDSCTTdpnxmthimfAQAAgJNGsOkm8UwgAAAAAHQZgk03STw0gUBtE8EGAAAAOFkEm24SfyjY/N9nu/To4m1yuXvU5YQAAACAoEKw6SaJUW1d0Q7UNuuJZbv10aaSbq4IAAAACF4Em27S3mLT7q+f75ZhdL7Vxu02ZHe6uqosAAAAICj1umCzeFOJrvzrV9pb2djdpRxXwlHBZmuJTct2VHTqPlpdbl20YLlGPrhEP31+lUrqmruyRAAAACBo9Lpg8/rqYq0vqtUnW8u6u5TjCjnimb9sZIYk6Zs91Z26j72VjdpZ3iCHy63Pt1fo5udWqY4LfgIAAOAU1OuCTdWh6ZMrGuzdXMnxXTQ8XUMzYvWrKYN0dm6iJGl3RUOn7mNXedv2llCz0mIt2lHWoF+8uFotrXRNAwAAwKml1wWbmkPBprK+Z0+jHG8N10f3nKd7puSpf0qUJGlPB8HG6XJre2m91uyr8RmD0x5sLh+VqRd+erZiLKH6prBav35zg/8fAAAAANCD9Lpg037By8oe3mJzpAEp0ZKkfVVNanW5PcvdbkNXP7FCFy1YrmueXKEPN5Z6/d2uQ0FoYGq0hmbE6qmbzlSI2aR31x3s8WOMAAAAgK7Uq4KN3elSg90pKbiCTXpshCLDQuR0GyqqbvIs31Zar40H6jy/f7jRe0ro9habgaltwWj8wGSdOzBZkvT+hoP+LhsAAADoMXpVsKlpPDxwPpiCjdls8nRH211xuKVlxe5KSVJcZNs1b5bvrJDzUIuO2214xuS0BxtJunxU20QE/17PdXEAAABw6uhVwaa9G5okVTU45HZ3/row3aX/oe5or67ary92tk37/NWutmBz56QBSrCGqb7FqS93VarJ4dSB2ma1tLoVHmJWdkKk534uGp6usBCTtpfVa1upLfAPBAAAAOgGvTbYON1GUE19POBQi82n28p107OrtGZfjVYVtk3/PGFgss4flCJJuuX5Ao3//Wf6v892SpJyk6MUesTc0XGRYbpwSJok6an8PYF8CAAAAOgC9S2t2lXeoLqm4DmW7Ql6V7Bp8p4JLZi6ox3ZnUySZr/2rRodLiVYwzQsI1YXD0/3rKttatXrq4slSWfkJPjc16zJAyVJ76474BmHAwAAgJ6vtsmhCX/4XFMey9dZ8z7hWK4TelWwqWn0Djbf91o2brchh9P93Rv60ZShabplfD/97rKhMpmkoupmSdIPRmfKbDbp4hHpWnTr2frglxN01+SBGpoRqwevGKYHrxjmc18js+I0ZWia3Ib046dXatGKvd3++AAAAPDdPt9e7ul15HC69e66Ayd9n+uLalUVRCf8T1SvCjZVjUe32Di0dEuZbn5ulcrrW475d6v31WjsvE/0+4+2+bvEY4oIC9HcHwzXz87rrx+dmSVJuvr0Pvrd5W3BxWQyaeKgFA3PjNN9Fw3WR/ecp5+em6uIsJAO7+93lw1V30SrKhvsevC9zbrgz8v0ekGR8ndUaGuJzeeaOAAAAOh+y7a3jbXOiIuQJC3ZXHbMbfN3VOgXL67W5oN1x9zm+a8KdeVfv9JNz6467vjzouomFQb55UJ6VbDxabGpt+uhf29W/o4Kvbnm2Gn37W8PqKaptcck2fnTR2npr87XY9eOVljIie2ifslR+uTeifrvq0YoJcai4ppmzXlzg25+bpUuefwLnf/Hz/XhxhKvF7jd6VJhZWNQdeEDACCYGIbBycUAaWl16fWCIh2obQ7Y/zQMQ9tKbWppdR1zG7fb0JtrirV0i29gcbkNLd/RFmwevnKEQs1tE0IdfX1Cl9vQU/m79dPnV2nJljLd+9p6uY4KLS2tLi38bKcefn+LJGlLiU2fby/3+Z+Ndqce+WCLJv1pmS763+XaUFzbYd1Ol1vPfVmomS+tOe5z2uxw6d11B75zfFBlg11NDudxt+ms0C69t27WPnlAWIhJrS5DH28uVXFN2xO/6UDHSdbudOmDQ9d8ufr0PoEp9DuEmE3KS4s56fsJDzXrpnNy9MMzsrTo6716fXWRwsxm7a9uUlF1s2a+tFZR4SFKibGopdWtsvoWtX/W9kuy6j8vGqJLR6bLZDKddC04PofTLYfLrajwkA6f72aHS/k7KlRc06S+iVaNzo5XWmyEZ32ry61tJfUqs7XIEmaWJTREg9KiFW8N73QtbrehdcW1irGEakBKtMxm9v/JMgxDmw/a9PXuKkWGh+ic/okamHry7/GT0dLq0obiOsVbw9T/qElIjtymuKZJiVEWJUYd+7VU3ehQma1FmfGRnunpO1JU3aQ1+2o0MDVaI/rEea1rdrh0oLZJ/ZI6rkVqP2CoV2WDXXGRYRqUFnPMVuuT5XIbKqlrVkW9XVtKbMpJjNI5/ROPWVsgGIahmqZWudyGEqxhx63F6XLLZDIphPdvj1FY2ainl+/RJ1vLZJL08s/HntTngMPp1oHaZvWJj1R4aK86T91lHnx3s15bXSRreIj+6/Jhuv7svj7bOJxuvba6SEXVTeqfHKVrx2Qf83tv04E6vb+hRDePz1FGXKTP+upGhx54e6M+2lSqoRmxeuXnY32+h8ttLfrV6+v01a4qSdLjPz5NV552+PhzQ3GtappaFRMRqsmDU3RO/yR9uatSv3tnk+6/dIiGZ8aprrlVNz+3SuuKaiW1HTduL6vX/322UzPG9lVqTIRaWl364d9WaNOBthlyM+MidLCuRf/32S6NyUlUnLXts3rNvhr98pVvPUHFJUO/fOVbPfOTMZ5jUcMw9N76g3py2W5tK62XJB2sbdEbd4zzOgHf6nLrQE2z7ntjvVbvq9Ho7Hi9ecc4n8+q6kaHPtlapt++tVF9EiL13qwJnnqOZGtp1e/e3qTCgxUd7o+OmIwedtrAZrMpLi5OdXV1io2N/d5/12B36meLCrRyT7UGp8Voe1m91/rsxEh9MecCr2VNDqfe+fagfvv2RqXHRuir31ygUluL7K0uhYWYlZUQ2SsP6psdLj25bJee+aJQzUedUYgMC1GL0+UJOEPSY3TdWdk6Ly9ZmfGR2lfVpNK6FjW3umQJNSsiLESD02OUHG3xuh+321BhVaMO1DSrpK5ZDpehtBiLzhmQpNiIMNU1taqopknl9S36cmeVapsdyoqP1FWn9/FMfd3uQG2zPt1apk0H6tTocGlAcpSmDEvTqKx4r+3qW1q18UCdIsNCNDA1WjER3m+S2iaH8ndUaE9Fo/ZVNSosxKwfjcnWmJwEz4dYVYNduysataeiQfUtTsVFhmnqsDQlHHVQV17fos+3lWvtvlqV2lqUmxylCQOTNbZ/ouf/lte3aFVhtSrr7apqdCguMkzn9E/yOqCrbnTopZX79PTyPaq3OxUbEapJg1N10fB0ndM/UU0Ol15ZtV//+Hqf6u3eZzX6Jlp1et94RYaF6IONJapv8V4fYjbp7H6JmpCXrJpGh/ZVN2lvZaNK61pkNpvUL8mq8QOTdf1ZfRUfFaY9FY3afLBOr68u1vpDH5YxllCNzo7XadnxGj8wSX0Trdpf3aSNxXXaeKBOTQ6XkqLCNTg9RucPStGgIwJ5k8OpNftqtPmgTbVNrcpLjdbZuYle76uWVpdWFVZrXVGtTJKG94nVeXkpPi2VTQ6nlm4p0/6qJrkMQ+mxEZqQl6ysBKvXa25lYZXW7qtRdWOrzsiJ17kDkn32nSTtLKvXV7sqlREfqbP6JXodtBuGoa0l9fpka5k2FNfKEhqisf0TdcmIDKXEHH6dl9ta9MaaYm0taTszl3voC/HokxL1La369Zsb9OHGUs8yk0n61ZRB+vl5/WXI0Lf7a/X17ioV7K1WbVOrQkNMyk6w6srTMjVuQJIcLreqGx3KiI3Uvuq2fRgWatY5uUmKDD98YN/S6tI/V+7Tl7sqta+qSfZWl4ZmxOrSkRm68rRMhZhNWru/Vm+uLdb76w/Kdug1k50Yqf++coTOz0uR2WxSXVOrHlu6XS99s1/OQ2cAB6VFa2xukq46vY9GZ8Xpq91VWrypRLvKG7RmX43aTxROHpyiH5yWqdOyE5QRF6GVe6r0rzXF+qawWhX1h1uDU2Msio4IlTU8RJFhIdpaUq8Gu1PWQydbMuIidFp2gkZlxcnudLXtky1l2nPEWcvwULMmD07R5aMyNbZ/oprsLn1TWKWdZQ3aXdGgBrtTfROjdF5esiYOSvF6LRiGoUaHS2aTZA0PVZmtRVUNDvVJiNSy7eV6dPF2nzOSabEW3TYhV5eOzFBWglXVjQ4V7K3Wt/tr1eRwKsoSqv7JURqbm6TsxLbXudPl1rdFtVq2vVz7qppkMpk0YWCSLhiS5vV6Oha706WVe6rV7HBq4ee7PAcpIWaT0mIsGpQeo6tO66Nd5Q3qk9D2ev7XmmI9/1WhQs0m9U2KUqjZpMtGZej6s/v6BM+WVpeqGx2KiQj1+cxsV1LXrI3FdYqOCFVeakyHddc2ObTpgE1Ot1v9kqKUk2Q94e/PJodTeyoalR4X4fPd0q7B7tSHG0t0sLZZEWEhGpUVpzE5iQoPNaul1aVl28v1ydZyNbQ4lRJj0cRBKTp/UIpPANhT0aD8HRUqtbVoYl6KxvZP8gqDDqdbb64t1vIdFWqwOzU0I1aTB6dqbG6i53tje2m9lm0vV2Flo/ZXNyknKUozzu6rkVltn/Uut6EFn+zQE8t2e51R7xMfqcd/fJrOzEmQyWRSS6tLrxUUqaLeroN1zTpY26wLh6TpmjOzPJ9R9S2tevjfW7Rid5Uq6u1yuNzKjIvQ7CmDNP2MPp4DyJ1l9Xpv/UFtL61XZnykzh+UrEmDUr0O2J0ut1btrVZ9i1Nltha53YauOr2Pz4F4bZNDr68u0qrCatmanTovL1nXnpXtdXJNaju2KK9v0d6qtoCQnWjV0WoaHfpqd6W+2lWpULNZ15/dV8MyfY/1Wlpd2lFWr/oWp87ql+i13wzD0L83lGjzgbpDJ4KjNXVYuqIt3ufqd1c0aOpj+TqyEePXFw/RHRP7e16b+6oaNfOltdp88PDlMW4el6O5Pxju9fo1DEMfbCzRfW+sV0urW1kJkfrL9adrdFa85/Xy0jf79IePtnk+VyUpLzVav7lkiC4c2jZb7Zc7K/XLV79VdaNDJpNkGG2fY6/8fKzOzEmUy23oludX6YudlbpsZIb+esMZWrypRHf8c60kKSYiVMv/c7LmvLlBS7eUKSYiVL+9dKgaWpx65MOtkqSo8BC9dvs4vVZQpH+s3KcEa5h+d9kwTchL1nl/+FwOl1uRYSH66w2na1hGnC77yxeqanQoKyFSv754iH7/0TbPZ9+t5+bqvy4fqoff36Lnv9rrqUGS6lucykqI1A/PzNI9F+ZpV3mDbnm+wOdz89oxWbp4RLomD05Vc6tLt/9jjb7YWem1zaTBKbpxbI4mDU5RaIhZ73x7QH/8eLtsza2qtzvltjepaMG13ysbBH2wcTjd+t9Pduip/N2eF+/lozL0/gbfC1Su+39TPW/YRrtTF/x5mcpsbV+0t5/fX/dfOlTTn/hKa/fXSpJmT8nT7CmDuuaB9UCtLrf2VTWqrrlVIea26+EkRoWrwe7U378o1NPL9/gEn46YTdLo7HgNSY9RTESYKuvtWrG7SqU233FNoWaTLKFmNTqOfb95qdEamRWnnMQo7Siv10cbS9RRl9DzB6UoLzVapbYWFVY0amd5vVpdbRuGhZh0Zk6CBqfFqG9SlNbsq9YnW8rlcPlOopAUFa4BqdGqbLBrT4Vv39LIsBCdkROvzLi2s9G7Kxq0fGelT5Ov1HawMTorTqFms9bur/EcFB7pzJwE5aVGa09lo77dX+Op+btkJURqZJ847a1q0rZSm45+58ZFhiknySqH060Gu9PTWnkiIg+dBf8++/9IfeIjlRkfoeKaZpXUdTyuLSXGooEp0bI7Xdp00OYzsUVydLiuGJ2pc/onyRJq1vIdlXpjTZFPcJOk4ZmxGp4Zq8oGh7YctPm85kwm6ax+ibphbF9FhoVofXGtlmwu086jZpjJS43WmH4JMptM+np3ldfBc7sQs0kjMmM1ICVaFQ12fb27ymf/mk3Sj8/uq9lT8pQaE6FtpTbN/Oda7alsVKi5bZxco8OplXvapnIPDzGr1e322ZffV1R4iNLjIpR0qEVlfXHtMZ/35GiLwkJMXuuTosLV0uryvB8TrGFKibFoT0Wj57FZw0PUdJz3a7t4a5hqj+p20P7F3S7EbNLQjBjtKG3o8L0YHmLucPmRIsNC1DfRqooGu9cU/99HemyEoiwhsoSGqKimyfOaSomxeIWudmEhJsVbwzU4LUabD9ap5ojHFx5qPu6kLH3iI5UeF6GdZfVeBzrtTCbp9Ox4jcqK196qRu0qb1BEWIhiI0K1rbRep2XH69yByfpgQ4m2lHTNNcmiwkN06cgMZcRHan9Vo9bur9X+6ibP+v7JUZo6LE3n5aXIEmbWrvIG/WtNsdbsq/G6n9zkKE0Zmqq+SVHafKBOX+2u9Ex40y4nyaoLh6RpdHacDEPaVlqv7aU2bSutV0W9XfHWcI3oE6uz+iVqSHqMWlrd+nZ/jQr2VmvTQZvn83VEn1j94vwBmjI0VdbwUDU5nHruy0I9tXyPz2dCTESo+iVFqbCyUQ123+c8MSpcV53WR2fkxGtHWYMWbyrRjjLvz4KcJKuuOq2P+qdEqbrRob9/Udhhl5u0WIvG5iaputGhL3dV+qxvr310VrxW763xnGy9YEiqZpzdV498uNUzlmFgarSmDkvTV7sqtaHYt3dJeIhZ4wYkKcEapm+LarWv6vA+CzGbPM9VVkKkBqREy+F065vCKp/vzezESF04JE0TBiar0eH0OvveLio8RDeek6NLR2YoIixEX+6q1GNLtvt8Z4eYTbpgSKquOSNLhmHoyfzdXrWbTG2XqrjurGyd3S9RLa1u/d9nO/Xm2mKfusb1T9KtE3J1/qBkfbKlXP/32U7tKKv3bJcSY9GMs/vqslEZMptMenLZbr25ttjrPrISIrXgutM0pl+ipLYTAj9btFpf7KzUhUNSNbxPnP7yadtlMi4flaEHrxiu4pom/fzFNapssCvBGqaLhqfrtdVFMoy2mu6/dEjb+7OyUXP+tUGr9h7+3G7/nOqbaNUTN5yhpVvK9Pih+x+SHqM7Jw3Qw//e4hn7fd+0QRqcHqtZL62Vw+XWsIxYPf7j0/Tox9u1dEuZEqPC9ead4/XmmmIt/HyXIsLMenfWBA1ObztRtrG4Tve+vk47yxvUPyVKeyoaFR5i1r/uHKdRWfFyON3689Lt+nBjiYqqm5UcHa7Khrb/vejWszXx0CVDPtlSpj9+vF3by+oVGxGqzPhIbSut19CMWL155zhZw0O1s6xef1i8XZ9uK5NhtIWO9jE/v7xgoH56bq5W76vRXS+vlf3QZ+Dt5/fXv9YUq6rRofAQs/qnROn8QSl6evnhy478bEKutpbaPC1V4SFmXXlapt5Zd8BzHDR5cIouG5WpOf9a79n/6bERamqwaeP86d0bbJ544gn98Y9/VElJiYYPH64FCxbovPPO+86/60ywMQxDd7/yrU+IeeYnYzT/o62qrLfrjJwE7Sxr0IHaZv3ztrGakJcsSXr722L96rX1CjWblJ1o1Yu3nq3sRKtuevYbfbu/Vg32trM8X//mgk51PSivb9H6orY3d78ka5d0KesudU2t+tfaYi3ZXKoNxXVqbnUpJiJUfROtsoaHyO50q77FecyBZhFhZvVNtCojLlKWULN2VTR4BYeUGIsSreEanR2nfslRWr23Rp9vL+/wIO/sfokaNyBJ0ZZQrSuuPWbY6RMfKafb7QmsRxuSHqPTsuOVkxSlfVWN+vf6g14f2CZT2330T4lWUlS4tpXWa+sxDipGZ8XpvLwUZcZHavPBOn21q1J7j/jCkdoOvHOSrEqMCldJbYu+2Fnpc+A2sk+cfnZerqYMTdO2UpuWbC7T0kNnps0madyAJN08rp+mDE3znG2ztbRq7b4abSmxqarBoUmDU3TugGSvs3H7q5q0ZEup1hXVKi02QjlJVuUkRalPfKTchqGtJTa9VlCkFbvbPmSSo8M1LDNOo7PidNM5OUqMCtf2snqtK6rVmr01Wr6zQrZmp9LiLBqRGaeRWXFKtIar1Nai9UW1+mpXlc9jS4+N0Fm5iYqPDNOmg3XaWFznEwYy4iJ0Tv8kmU0m5e8o93wYH61volXj+ifJbDZpd3mDVu+r9nkNxFhCdcHQVMVHhmnlnmqfltt2YSEmjc1NUnl9i8+BjdR20DppUIrGDUhSo92pT7aWe5r8jzQmJ0EXDU9XRHiIlu+o8PSXNpmkBGu458A7My5CC284Q2f0bZue/V9rivW/S3d4DpjSYyM0bkCSxvVPUp+ESNmdLq3ZV6M31xxQqa1FZpMUExGmuuZWxUWGKTc5ShX19g4PuNJjI/SL8/trWGasQs0mfbWrSou+3uupJTIsRJeMSNf0M7I0bkCSmltd+tPH2/XG6iKv98KQ9Bj97rJhOndg0qGWiRot3VKmf284KIfTrWhLqK45o49GZcXrzJwE9UtuO6B8ddV+z8Gpw+lWaoxFF49I1w9GZ2poRqyiLKGqa2rVvupGNTtcamp1qdnhUlpshE7LjldhZaNqmxzaXdGgdUW12nLQpihLqPolR2lMToKmDW87M9vesvb+hoP6aFOp9lY1KsRk0hl9EzS8T6yn1XZbiU2fbC3rcD8fLcYSqnp721nIH52ZrV+c39/TIuZwuvXOtwf02uoifbv/cAtVWyhOVEp0uGqbW7XloE3rimq9Xufx1jBNHJSiUVnxqm9p1Wfbyjs8gD2WuMgwZcRFaFRWnOZcPEQJ1nBVNrTt/w82lGjZ9nINyYjVt/tqVF5v15h+CfrZhP7KSoxUaV2LSuta9NxXhcd8Do48OO6I2SQNTo9VS6tLe6sajxnEc5KsigwL0Z6Kxu8MqN8l3tr2em//X6FmkxKjwlXV6PDU2j85SucMSFJdU6u+Kaz2Gh+aGRehy0ZlqG9SlHaU1mvx5tJjhtexuUlKi43Q0i2lHYbQlBiLbh6Xo5QYiwr21ujjzaU+oar94DkrPlIrdlfqw42lXs9BVHiI5k0f6elyVFLXrD8v2aH3NxxUS+vh7eKtYfrB6EzFW8OVYA3Tm2uLPa107dJiLZo/faSn9ewfX+/TE8t2eQVvSZoyNFXjBiRrb2Wj3l13oMPHFhcZpv4pUUqKCteB2pZjft8NSY/RtWOyFRkeorfWFqtgb02H21lCzeoTH9nhyaF2g9NiNCEvWaW2Fi3eVHrM115iVLjMJnX4nRBiNunaMdkKMUufb6vQgdpmhYeY9fCVwxUdEapFK/aqYG+NwkPM+vfdbQHh71/s0fyPtsnlNjxDFiRpWEasnv/pWUqLjdBL3+zT3Pc2q9VlKDzErKtP76MPN5ao3u6UJdSs2ybk6oZzcvTwvzfrq11VPgH63qmDNGvyQIWYTapssOuvn+/ytHS0u3h4uh6//jRZQkPU5HDq2qe+1qYDNllCzZ6g8OcfjdY1hyaSavfJljL97MXVnt//cM1IXXeWd9e68voWTflzvmdf3zdtkO66IM9rG4fTrWuf+trznRZvDdM7M89Vv+Qor+3+5/0t+vuXhZ7fH75yuH4yrp/n95pGh/7+5R799fPdnmXDM2P10s/aut8ZhqGnl+/R2v01+viIyQ+s4SH6x21jdVp2W2vX59vL9eqq/Vq2vcLz+KW2lp4bz8lRXmqMvtpSpKmn53ZfsHnttdd000036YknntC5556rp556Sn//+9+1ZcsW9e3r27/xSJ0JNq8XFGnOmxsUajZp+hl9PNd2+ea3F3o1kc56aa0+2NgWfqYMTVNKTLjW7qvV9rL6DltlWl1unf3IJ6ppatWLt57tuTjmd6ltcujSx7/QwUNnRO+YOEC/uWTI9/rbns7tNmRraTuoOrp7QVF1k9bur9GeikY12p1KiArX0IwYjR+Q7NP/vbimSS63ocSo8A67PVTU27WhuFYbiutUUtes1JgIXTwi3ac//q7yBn2+rVzl9S1Ki41QbnKUBqXFeJq+d1c0aM3eGu2ubNDeykZlJVh1zRlZPk3eDqdbGw/U6mBtiyLDQnR2/0TFHlGXYRhaX1yn3eUNKqlrVm1TqzLiI3VeXrJXt6sjn4s1+2pkNps0JD3GZ5syW4v+vf6g50BuTL8En6537ZodLrW63V71+IPd6ZLb3RZEj9d1pP2j4ljbtHcFrKi3KzvRqn5JUUqwer9emh0ubSmxaV9VoyLDQpSXFq0BKdGebVpdbn2xs0IfbyrT5pI6udxSTqJV152drYmHukm1q2qw69Nt5Sqra1FCVLgGpETrtOx4r65ZB2ub9eLX+/TlrgqZ1NZlYcLAZF04NM3TJae60aHVe6u1obhOZrNJA1KidMGQVJ/XZ3FN274trWtRWIhZEwenaMBR++6bPVWa99E2T1c+qe2A548/Gu0zRsUwDO2vbpI1PPS4XZLsTpdMMik81NzWVSssRGazyXNgX9fcqvL6FlU3OtQ30arxA5K9ngOprWvP1hKbHE5DI7PifLpsSG3vhW2lNtU1tyorwarco77k2rW0utTS6lKUJfS4k5s4nG5VNtiVERcRkC69TpdbLsOQJbTjMTc1jQ7tr25SS6tLza0upcRY1D+57ez2rooG9YmPVGqMRbXNrT6v26M1OZyqanAo2hLaYVfHJodTq/fWqOFQSBqeGecz1qWkrlmfbC3XvspG9Tv0+dVgb1VtU6sGpkbri52V2lPRqGhLiGZNHqjUo7r9dMQwjLYDsg7GWxiGoS93VbZ1j21o63Yyok+cRvWJU7w1TLYWp77Y2RbO1xfVylDbSZ72Fs/2/1/X3KoVuyqVv6NC1Y0OpcVG6MKhqTo9O8HTR77B7tSXOyv02bZyFVU3y2UYGpQWrcHpsRqaHqOM+EhV1tsPtdDUaH91k0LMJg3LjNXZ/RJ1Vm6i+sRHqrrRoRdW7NU73x7walnqm2jVf0wbpCtGZXo+E1xuQ5sPtn3+JESF67SseJ9uV8t3VujNtQdUbmv73rhgSKrXZ0F79/TV+6p1sLZZJpl04dBU3XhOjtd3WUurSwV7q7W+qFZx1nCdk5vocxKzqsGuT7eWa29V2/fPpSPTOxzzaGtp1fvrS7SttO3A9ifj+vl04dp0oE4biutU39KqlBiLJg9O9Xnd1be0avXeGlU22GU2mTQkI0bDMw9/bzY5nFq+o0Jf7KzU17urFB5q1oVDU/WzCf0992UYhj7fXq5nvyzU7vJG2Z0upcZE6MZxObrh7L5ez+fOsnq9sqpI+TvKFRZi1vgBybpjYn+lxFhkMpm0v6pJr63er8WbSrWnsu2kw8isOP3usmE684jr7x2obdaLX+/VK9/sl62lrSvqz8/rf2iciEVOt6HFm0r10jf7tPmgTfZWt87IidfdF+Tp3IHJnsc+518b9NGmw919pbYD6KdvGuM5oS1J64pqNfe9zVpXVKsQs0mXjczQ/1w9wut79kBtsx56b7OWHDGw/6x+CXr8x6crM/7wuJraJod+8Y81WlVYraSocN0zJc/rwL/dHxZv05PLdis8xKxrz8rSg1cM9/rsLLe16PZ/rtG3h3oL3X/JEN0+cYDP/RiGoZ++UKAVu6o0b/pI/fCo4NNu8aZSPbp4m3526HnsSHFNk/7j9fXqnxKl2VMG+XQrlNpe5zc/t0p1za36f5cP0/iByT7buNyGrn9mpVYVVusHozP1yNUjOjy2e3TxNj2xbLeGpMfoTz8a7XNM1173zJfWKDzUrJ9N6K9fTR3k+dzsTDbwS7AZO3aszjjjDD355JOeZUOHDtVVV12l+fPnH/dvv2/x+6oadfGCL9Tc6vL0mfzfpTvkcBk+YeLJZbv1h8UdT+W87L5JPilVkv7fu5v04tf7dFa/BF0wJM2zPPxQYj/Syj1V+nZ/rb7YWaEVu6uUGBWunCSrpp/eRzd18CIH0HsZhqGqRodK61qUnWg97mB6AN/NMAyV1LWossGulBiL0mMDE5bRNVoOjVs+3kQW7V2o4yLDjrudYRgd7nuX29Cji7fpg40lireGafyAtm5wR598ar+PXeUNio0M6/CAXmo7mfvcV4XaWdag8wYl66Lh6R2eyHG63Npb1ajc5Ohj1m0YhtYV1SonKeqYk7A4XW69WlCkpKhwXTIy45iP3+lyy+50K6qDk1Pdxe50aX9VkwamRh/3fbmvqlF94iOP2wtqb2WjYiJClXTU2LpuDTYOh0NWq1VvvPGGrr76as/ye+65R+vWrVN+fr7X9na7XXb74eZhm82m7Ozs7yy+fWzNxuI6vXjr2ceduanM1qK7Xl6rzPhInZ2bqP9dulOVDXad3jdeb888t8O/Wbu/RtOfWOGzPDYiVBvmXuS1rD2NS23N2m/dea5n0CAAAACAE9OZYNPlka+yslIul0tpaWley9PS0lRaWuqz/fz58/XQQw91+v+Eh5r164uHyOlyf+d0tGmxEXrjjvGe3y8anq7nvizU5aMyj/k3p2fH678uH+bT3zSyg6lFR/aJ8zQJTh2WRqgBAAAAAsxvbVlHN0cdq/nw/vvv17333uv5vb3F5vs6kWsKJEdbNOfi4499MZlMPl3OjuXSkRm69DhNhwAAAAD8q8uDTXJyskJCQnxaZ8rLy31acSTJYrHIYvnuufwBAAAA4Fi6/FK14eHhOvPMM7V06VKv5UuXLtX48eOP8VcAAAAAcOL80hXt3nvv1U033aQxY8Zo3Lhxevrpp7V//37dcccd/vh3AAAAAE5xfgk21113naqqqvTwww+rpKREI0aM0IcffqicnBx//DsAAAAApzi/XMfmZHRmSjcAAAAAvVdnskGXj7EBAAAAgEAj2AAAAAAIen67js2Jau8ZZ7PZvmNLAAAAAL1Zeyb4PqNnelywqaqqkqROXaQTAAAAQO9VVVWluLi4427T44JNYmKiJGn//v3fWfzRzjrrLBUUFPijrJPSU+tqZ7PZlJ2draKioh47YUNPfw6lnl1jMOxjqWc/h+16co3s55PXk2trx34+cT2xpiP19H3b05+/dj21zp6+f9v1tOevrq5Offv29WSE4+lxwcZsbhv2ExcX1+mdHhIS0iNfKD21rqPFxsb22DqD4TkMhhp78j6WguM5DIYa2c8nrifXdjT2c+f1xJo60lP3bbA8fz29zp66f9v11OevPSMcd5sA1BEws2bN6u4SOtRT6womwfAcBkONPV0wPIfBUGNP15Ofw55cW7Dpic9lT6wpmATL8xcsdfZUwfz8cR0b8JyfAtjHpwb286mB/dx7sW97N/bviQnq69hYLBY9+OCDslgs3V3KKYPnvPdjH58a2M+nBvZz78W+7d3YvyemM89bj2uxAQAAAIDO6nEtNgAAAADQWQQbAAAAAEGPYAMAAAAg6BFsAAAAAAQ9gg1wCjOZTHrnnXe6uwwAAE5ZfBd3HYLNKWDFihUKCQnRxRdf3N2lwM9uueUWXXXVVd1dBvygqKhIt912mzIzMxUeHq6cnBzdc889qqqq+l5/v2zZMplMJtXW1vq3UJwU3sO9G9/Hpwbex92HYHMKeO6553T33Xfryy+/1P79+0/qvlwul9xudxdVBuD72LNnj8aMGaMdO3bolVde0a5du/S3v/1Nn376qcaNG6fq6uruLhHA98D3MeBfBJterrGxUa+//rruvPNOXX755XrhhRc869rP4H7wwQcaPXq0IiIiNHbsWG3cuNGzzQsvvKD4+Hi9//77GjZsmCwWi/bt29cNjwSd1a9fPy1YsMBr2Wmnnaa5c+d2Sz04cbNmzVJ4eLiWLFmiiRMnqm/fvrrkkkv0ySef6MCBA3rggQckSXa7XXPmzFF2drYsFovy8vL07LPPau/evZo8ebIkKSEhQSaTSbfccks3PiJ8H4sXL9aECRMUHx+vpKQkXX755dq9e7dn/d69e2UymfTWW29p8uTJslqtGj16tL7++uturBrHwvfxqYnv4sAi2PRyr732mgYPHqzBgwfrxhtv1PPPP6+jr8n6n//5n/rTn/6kgoICpaam6gc/+IFaW1s965uamjR//nz9/e9/1+bNm5WamhrohwGcsqqrq/Xxxx9r5syZioyM9FqXnp6uG264Qa+99poMw9BPfvITvfrqq/rLX/6irVu36m9/+5uio6OVnZ2tN998U5K0fft2lZSU6PHHH++Oh4NOaGxs1L333quCggJ9+umnMpvNuvrqq33O0j/wwAO67777tG7dOg0aNEjXX3+9nE5nN1WNY+H7GPC/0O4uAP717LPP6sYbb5QkXXzxxWpoaNCnn36qKVOmeLZ58MEHNXXqVEnSokWLlJWVpbffflvXXnutJKm1tVVPPPGERo8eHfgHAJzidu7cKcMwNHTo0A7XDx06VDU1NSooKNDrr7+upUuXet7f/fv392yXmJgoSUpNTVV8fLzf68bJu+aaa7x+f/bZZ5WamqotW7ZoxIgRnuX33XefLrvsMknSQw89pOHDh2vXrl0aMmRIQOvF8fF9DPgfLTa92Pbt27Vq1Sr9+Mc/liSFhobquuuu03PPPee13bhx4zw/JyYmavDgwdq6datnWXh4uEaNGhWYogF0SvsZ38LCQoWEhGjixIndXBG6yu7duzVjxgz1799fsbGxys3NlSSfsRlHfj5nZGRIksrLywNXKL4T38dAYNBi04s9++yzcjqd6tOnj2eZYRgKCwtTTU3Ncf/WZDJ5fo6MjPT6HcHBbDb7dHM4sksDgsPAgQNlMpm0ZcuWDmfZ2bZtmxISEmS1WgNfHPzqiiuuUHZ2tp555hllZmbK7XZrxIgRcjgcXtuFhYV5fm7/rGZQec/C9/Gpi+/iwKLFppdyOp168cUX9ec//1nr1q3z3NavX6+cnBy99NJLnm1Xrlzp+bmmpkY7duygC0MvkJKSopKSEs/vNptNhYWF3VgRTkRSUpKmTp2qJ554Qs3NzV7rSktL9dJLL+m6667TyJEj5Xa7lZ+f3+H9hIeHS2qbSQk9X1VVlbZu3arf/e53uvDCCz1dDhF8+D4+tfFdHFgEm17q/fffV01NjW677TaNGDHC6/bDH/5Qzz77rGfbhx9+WJ9++qk2bdqkW265RcnJycy/3gtccMEF+sc//qEvvvhCmzZt0s0336yQkJDuLgsnYOHChbLb7brooou0fPlyFRUVafHixZo6dar69OmjRx55RP369dPNN9+sW2+9Ve+8844KCwu1bNkyvf7665KknJwcmUwmvf/++6qoqFBDQ0M3PyocT0JCgpKSkvT0009r165d+uyzz3Tvvfd2d1k4AXwfn9r4Lg4sgk0v9eyzz2rKlCmKi4vzWXfNNddo3bp1Wrt2rSTp97//ve655x6deeaZKikp0Xvvvec5u4vg4na7FRra1sP0/vvv1/nnn6/LL79cl156qa666ioNGDCgmyvEicjLy9Pq1as1YMAAXXfddRowYIB+8YtfaPLkyfr66689EwM8+eST+uEPf6iZM2dqyJAh+vnPf67GxkZJUp8+ffTQQw/pN7/5jdLS0nTXXXd150PCMbS/h81ms1599VWtWbNGI0aM0K9+9Sv98Y9/7O7ycAL4Pj718F3cfUzG0R3/cMpYtmyZJk+erJqaGmZJ6iUuvvhiDRw4UAsXLuzuUgCcAN7Dpya+j3sX3sfdhxYboBeoqanRBx98oGXLlnlNHQogOPAeBoIf7+Pux6xoQC9w6623qqCgQP/xH/+hK6+8srvLAdBJvIeB4Mf7uPvRFQ0AAABA0KMrGgAAAICgR7ABAAAAEPQINgAABND8+fN11llnKSYmRqmpqbrqqqu0fft2r20Mw9DcuXOVmZmpyMhITZo0SZs3b/asr66u1t13363BgwfLarWqb9+++uUvf6m6ujqv+3nkkUc0fvx4Wa1WZtsC0OsRbAAACKD8/HzNmjVLK1eu1NKlS+V0OjVt2jTPNYck6dFHH9Vjjz2mhQsXqqCgQOnp6Zo6darq6+slSQcPHtTBgwf1pz/9SRs3btQLL7ygxYsX67bbbvP6Xw6HQz/60Y905513BvQxAkB3YPIAAAC6UUVFhVJTU5Wfn6/zzz9fhmEoMzNTs2fP1q9//WtJkt1uV1pamv7whz/o9ttv7/B+3njjDd14441qbGz0XByw3QsvvKDZs2ertrbW3w8HALoNLTYAAHSj9u5jiYmJkqTCwkKVlpZq2rRpnm0sFosmTpyoFStWHPd+YmNjfUINAJwqCDYAAHQTwzB07733asKECRoxYoQkqbS0VJKUlpbmtW1aWppn3dGqqqr03//938dszQGAUwGndQAA6CZ33XWXNmzYoC+//NJnnclk8vrdMAyfZZJks9l02WWXadiwYXrwwQf9VisA9HS02AAA0A3uvvtuvffee/r888+VlZXlWZ6eni5JPq0z5eXlPq049fX1uvjiixUdHa23335bYWFh/i8cAHoogg0AAAFkGIbuuusuvfXWW/rss8+Um5vrtT43N1fp6elaunSpZ5nD4VB+fr7Gjx/vWWaz2TRt2jSFh4frvffeU0RERMAeAwD0RHRFAwAggGbNmqWXX35Z7777rmJiYjwtM3FxcYqMjJTJZNLs2bM1b9485eXlKS8vT/PmzZPVatWMGTMktbXUTJs2TU1NTfrnP/8pm80mm80mSUpJSVFISIgkaf/+/aqurtb+/fvlcrm0bt06SdLAgQMVHR0d+AcPAH7EdM8AAARQR+NkJOn555/XLbfcIqmtVeehhx7SU089pZqaGo0dO1Z//etfPRMMLFu2TJMnT+7wfgoLC9WvXz9J0i233KJFixb5bPP5559r0qRJJ/1YAKAnIdgAAAAACHqMsQEAAAAQ9Ag2AAAAAIIewQYAAABA0CPYAAAAAAh6BBsAAAAAQY9gAwAAACDoEWwAAAAABD2CDQAAAICgR7ABAAAAEPQINgAAAACCHsEGAAAAQND7/x0Ugwfc8wVYAAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:00.882137\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df['Rt'] = df['ninfected'].rolling(8).apply(lambda x: x[4:].sum()/x[:4].sum())\n", "df['Rt'].plot()\n", @@ -2307,21 +341,9 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAEoCAYAAABVQh6cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh5UlEQVR4nO3dd3hb5fk38K+2bNmW9x5xEmc6DmQSCBAKBMIupIMmlNmyR2l7AV2UrkAHpb9SIKywCfACLQ1NaFKSQAiZkMTZy4njvWVbtjXP+4d0juR4StY4Ov5+rssX2H4kP3Js+dy6x6MSBEEAERERERGRTKmjvQEiIiIiIqLBMGghIiIiIiJZY9BCRERERESyxqCFiIiIiIhkjUELERERERHJGoMWIiIiIiKSNQYtREREREQkawxaiIiIiIhI1hi0EBERERGRrDFoISIiIiIiWQs4aKmursbSpUuRlpaG+Ph4nHHGGdi5c2c49kZERERERARtIItbW1txzjnn4IILLsDq1auRmZmJY8eOITk5OUzbIyIiIiKi0U4lCIIw3MUPP/wwvvjiC3z++efh3BMREREREZEkoKBlypQpuOSSS1BVVYWNGzciLy8Pd911F37wgx8MeBubzQabzSa973a70dLSgrS0NKhUqpHtnoiIiIiIYpYgCOjo6EBubi7U6kE6V4QAGAwGwWAwCI888ojw1VdfCc8995xgNBqFV199dcDbPProowIAvvGNb3zjG9/4xje+8Y1vfOv37dSpU4PGIQFlWvR6PWbNmoXNmzdLH7vvvvuwfft2fPnll/3e5vRMi8ViQWFhIU6dOoWkpKThfmkiIlkQBAHTfv1fAMBnP12A1ARDlHcEzP79WnTb3fjP/fNRmGqK9naIiIiGrb29HQUFBWhra4PZbB5wXUCN+Dk5OZgyZUqvj02ePBnvv//+gLcxGAwwGPr+UU9KSmLQQkQxx+0WoDbEAwDMZjOSTPoo7whITEyCrdMOjcHE51UiIopJQ7WNBDTy+JxzzsGhQ4d6fezw4cMoKioKfGdERDHI7ZeclktbXpxeAwDosruivBMiIqLwCCho+dGPfoQtW7bgD3/4A44ePYq33noLzz//PO6+++5w7Y+ISFb862lVkEfUEq/zJM27GbQQEZFCBRS0zJ49Gx9++CHefvttlJaW4re//S2eeuopLFmyJFz7IyKSFf8uQFXAx/OGhy/T4ozyToiIiMIjoJ4WALjiiitwxRVXhGMvRESy16s8LIr78BfvDVq6Hcy0EBGRMsnkdUIiotijlklTS/wwe1o6bU70MLAhIqIYxKCFiCgA8mzE9yTNBwtamjttmP/Ep7jx5W2R2hYREVHIMGghIgpAr54WmRSIxeu85WGD9LRsrWhBW5cDWytacKqlK1JbIyIiCgkGLUREAeg1PUweMcuwRh7vrmqT/n/T0aZwb4mIiCikGLQQEQVAjuVhw+lp2XPKIv3/50caw74nIiKiUGLQQkQUAP/yMLk14g90TovbLWBvtS9o+eJoM1xuod+1REREcsSghYgoAIIMRx5LjfgDTAY73mRFh80Jo06NRKMWlm4Hyv2CGCIiIrlj0EJEFIBejfiyy7T034i/x9vPUpprxjnj0gEAm1giRkREMYRBCxFRAPyLqtTyiFmG7GnZU+XJqpTlJ2N+iSdo+ewIm/GJiCh2aKO9ASKiWNK7EV8eUUucbvCgRZwcNr3AjDMLUgAAX51sRafNiQQD/wwQEZH8MdNCRBQAQYb96/Henpb+GvEdLjf217QD8GRaCtPiUZQWD6dbwNbjzRHdJxERUbAYtBARBUBsxJdLaRjgd06Lo29Py6G6DticbiQZtRiTFg8AmD/eUyL2OUvEiIgoRjBoISIKgJhokUtpGODX02Lrm2nx72cR93xuSQYA4DM24xMRUYxg0EJEFACxPExOmZbBGvHFyWFl+WbpY/PGpUGtAo43WlHd1h2RPRIREY0EgxYiogCIjfgq2ZzS4isP63a44D7t0MjdfpkWkTlOhzMKPO9z9DEREcUCBi1ERAGQQgL5xCxSIz4A9Dh92ZZuuwuH6zsAeCaH+fOViLGvhYiI5I9BCxFRAGTZiO8deQz0LhHbX2uByy0gI9GA7CRjr9uc6z2v5YujTXC5ZTgSjYiIyA+DFiKiAIg9LXIqD9OoVTDqPE/n/mOPd5/ylIZNzzf3GRwwvSAZiQYt2roc2FdjidxmiYiIgsCghYgoAHJsxAd8JWL+mRZfE35yn/U6jRrzxqUB4OhjIiKSPwYtREQBkBrxZTTyGPCViHXZfWe1+MYdm/u9jVgi9jmb8YmISOYYtBARBUA6pyWqu+hLHHsslodZuh043mQF0H+mBfA14+882Qqrre/BlERERHLBoIWIKACClGmJ8kZOc/pZLXurPVmWgtQ4pJr0/d6mKC0e+SlxcLgEbKtoicxGiYiIgsCghYgoAOKgLdmVh4lBi8MTtOwepJ9FpFKp/EYfs0SMiIjki0ELEVFA5DfyGPA14nd7e1r2eCeHleX1388iOk/qa2EzPhERyReDFiKiAMg+0+ItDxtscpi/s8elQ60CjjZ0otbSHc4tEhERBY1BCxFRAHzntMhLvM4XtDR22FBj6YFKBUwbYHKYyByvkwIbZluIiEiuGLQQEQVAgDxHHvtPDxOzLOMyEpBg0A55W7FEbBODFiIikikGLUREAXC7Pf+VWcyCOL/DJXcPcT7L6eZ7m/E3HW2CW6x/IyIikpGAgpZf//rXUKlUvd6ys7PDtTciItmRMi1R3sfppEyLwyllWqYP0c8iOrMwGSa9Bi1WO/bXtodph6NTj8OF21/fgV/8sxyVzV3R3g4RUcwaum7gNFOnTsW6deuk9zUaTUg3REQkZ2JPi1pmqRYxaLHaXNgTYKZFp1Fj3rg0rDvQgM+PNKF0iIljNHw7T7bik331AIC3t53CVdNzcdeCcSjJSozyzoiIYkvA5WFarRbZ2dnSW0ZGRjj2RSFktTnx/s4qWLoc0d4KUcyTGvHlFbNI08OONHSixWqHVq3C5JykYd9+/nhPX8vWiuaw7G+0auywAQD0WjVcbgEffl2NhU99hjvf2CkdAEpEREMLOGg5cuQIcnNzUVxcjO9+97s4fvz4oOttNhva29t7vVFkvbW1Ej9+bzeWf3Ys2lshinmCdE6LvKIWMdNysM7zHDspJxFG3fAz4WMzEgAAdZae0G9uFGvq9AQtl07Nxkf3nIOFU7IgCMDqvXW44u+bcNOKbdh5siXKuyQikr+Agpa5c+fitddewyeffIIXXngBdXV1OPvss9HcPPArc8uWLYPZbJbeCgoKRrxpCkx9u+cipK6dFyNEIyXXPvU4nafaV8wEDXU+y+nSEvQAgGarPZTbGvUavUFLeoIBZfnJeP77s/DJA+fh6jNyoVYBGw414rpnv8TTnx6J8k6JiOQtoKBl0aJFuO666zBt2jRcdNFF+PjjjwEAr7766oC3eeSRR2CxWKS3U6dOjWzHFLAuh+ewOavNGeWdEMU+QRBHHkd5I6cRMy2i6cPsZxGlJxgAAC1WOyeIhVBThycITE/USx+bmJ2Iv333THz64wVYPDMfAPD0+qNo9gY4RETU14hGHptMJkybNg1Hjgz8CpHBYEBSUlKvN4qsLm+wYrW5orwTotgnXs7LtTxMFGimJdXkuah2uQW0dbP/LVTETEuGNyj0NybdhD8tLkNZvhk9Djde3FQR6e0REcWMEQUtNpsNBw4cQE5OTqj2Q2FgtXuClU5mWohGTK6Zlji/oMWoU6MkMyGg2+s0aiTH6wD4+jBo5Jq8jfjpiX2DFsBzSOm93ygBALy2+QTaulieR0TUn4CClp/85CfYuHEjKioqsHXrVixevBjt7e248cYbw7U/CoFuO8vDiEJFviOPfRPsS3PN0GoCf00qzZttYdASOk2DZFpEF03OxKTsRFjtLqz44kSEdkZEFFsC+qtWVVWF66+/HhMnTsS1114LvV6PLVu2oKioKFz7oxCw2sXyMAYtRCMltnvIK2TpXR4WaGmYSOxrae7kq/2h4HYL0mCD9EGCFv9sy4ovKtDRw/I8IqLTBXS45MqVK8O1DwqjbpaHEYWMIMgzavEvD5teENzhkOKFNTMtodHW7YDLG+WK09kGsqg0G+MzE3C0oROvfXkSd18wPhJbJCKKGSPqaaHYIGVa7C7fBRcRBUW2jfg6DTRqz56CzbRIY4+ZaQkJ8WDJlHgddEOU66nVKtx9wTgAwEubKtBl54tMRET+GLSMAmKmxeUWYHO6o7wbotjmFhvxo7yP02k1ajyyaBJ+dNEEFKebgroPqTzMykxLKDT5ndEyHFeW5aIoLR4tVjve2loZzq0REcUcBi2jgP+oY5aIEY2QTBvxAeC2c8fi/otKgr69mGlp7GCmJRQCDVq0GjXuWuDJtiz/7Dh6HBxTT0QkYtCicG63gG6/P3xsxicaGakRX34xy4gx0xJajUOMO+7PN8/MR15yHBo7bHh3Bw9jJiISMWhRuO7TXqljpoVoZAQoty8sPYEjj0OpUcq0DN6E70+vVeOO88cCAJ7bcAx2lvQSEQFg0KJ41tOaOf1LxYgocHI9pyUU0kwceRxKTd4yu4wAMi0A8K1ZBchMNKDG0oMPvqoKx9aIiGIOgxaFE5vwRSwPIxoZqRFfeTGLVMbUZXdxelUIBNrTIjLqNLj9fE9vyzMbjsHpYraFiIhBi8KdnllheRjRyIjFYUoMWkx6DQxaz58FZltGTgxaMgIMWgDge3MKkWbSo7KlC//aVRPqrRERxRwGLQrX7Ti9PIxBC9FIiGcdKbE8TKVS8YDJEAo20wJ4Dgu97VxPb8s/NhyVDqkkIhqtGLQoHDMtRKEl9rQoL2TxSOcBkyHhdgto6gyup0V0w7wimON0ON5oxcfltaHcHhFRzGHQonCn16WzEZ9oZKSgRYGZFgBIY6YlJNq6HVJ2JC2A6WH+Egxa3Dq/GADw1LrD7G0holGNQYvCdZ3eiM/mWqIRUXIjPuCXabEy0zISYtCXHK+DThP8n9qbzxmDlHhPtuWDr6tDtT0iopjDoEXhrHaWhxGFktSIH9VdhI+YaREPRqTgNHUE38/iL9Gow10LxgMA/rbuCGxOZsuJaHRi0KJw3X3Kwxi0EI2EkhvxASDNxExLKARzsORAbphXhKwkA6rburFy26kR3x8RUSxi0KJwYg+LTqPyvs+ghWgkfD0t0d1HuIhN483saRkRMVOVkWgc8X0ZdRrc+40SAMDfPz3KM3SIaFRi0KJw3Q5P0CKeE8DyMKKR8Z3TosyoJc3ERvxQECeHhSLTAgDfnlWAwtR4NHXa8MrmEyG5TyKiWMKgReHEzIr46imnhxGNjNSIH+V9hEsaRx6HxEjOaOmPXqvGAxd5si3LNx6HpdsRkvslIooVDFoUTpweJpYosDyMaGSUXh4mXmS3dNl5oOEISOVhIQpaAODqM/JQkpkAS7cDL35+PGT3S0QUCxi0KJxY+yxmWlgeRjQy4mW8UhvxU+J1UKk8wVkLm/GDJmZagj1Ysj8atQo/XjgRAPDSpgqW8BHRqMKgReHETEumVB7GoIVoJASFn9Oi1aiREi9OEONFcbBCXR4mumRqFsryzeiyu/DM+mMhvW8iIjlj0KJwvvIwb9Bid8HNkg+ioEnlYYrtavE1jzd1MNMSDLdbkHqC0hND04gvUqlU+Ik32/LG1pOoaesO6f0TEckVgxaFEzMrmX4lCl0ONuMTBcut8EwL4JsgxkxLcCzdDji9Lw6J38tQOrckHXOLU2F3uvH3T4+E/P6JiOSIQYvCiSOP0xL0UHsvslgiRhQ8XyO+cqOW9ERx7DEzLcEQD5Y0x+mg14b+z6xKpcJPL/FkW97dUYWKJmvIvwYRkdwwaFE4ccRxvF4Lk0ELgM34RCPha8SP6jbCKs3kLQ9jo3dQmjpC34R/ulljUnHBxAy43AKeWnc4bF+HiEguGLQoXLd3eli8XoMEb9DCTAtR8JR+Tgvg62lpZtASlEapCT+0/SynEyeJfbS7BkfqO8L6tYiIoo1Bi4K53YLUv8JMC1GIjIbyMO/EKx4wGRyxrC7Uk8NOV5pnxnkTMiAIwGdHmsL6tYiIoo1Bi4L1OF1S/X28XiMFLWLJGBEFTsy0KLo8LEHsaWGmJRjiwZLhDloAYGZhCgBgX40l7F+LiCiaRhS0LFu2DCqVCg888ECItkOhJI47BoA4nQYJBg0AlocRjYRvYLhyo5Y0ceQxMy1BCcfBkgOZmpsEANhX3R72r0VEFE1BBy3bt2/H888/j7KyslDuh0KoS2rC10CtVsGkZ3kY0UiJ2UslZ1oy/DIt4mGacueS0flTUtASgUxLaZ4ZAHC0sRM9HGdPRAoWVNDS2dmJJUuW4IUXXkBKSkqo90Qh0uXwNeEDYCM+UQiMinNavJkWm9MNq12+F8KnWrrwwmfHce0zX2D8z/+D//ufPM4sEYOWUB8s2Z+sJAPSE/RwuQUcrGMzPhEpV1BBy913343LL78cF1100ZBrbTYb2tvbe71RZPiPOwbg19PCoIUoWOLr+SoFl4fF67XSix1ymyB2rLET/1h/FFf8/XOc+8f1+P1/DuCryjYIArB6b120twcAaOqITCM+4BkIMSXXk23ZW82+FiJSLm2gN1i5ciV27tyJHTt2DGv9smXL8NhjjwW8MRq5bruvPAyA3/Qw+b5ySiR3YrmUWuFjTNIS9Ohq6UZTpw1Faaao7kUQBLzw+XG8v7Mah/xG+6pVwJziVMwpTsP//e8Ijjd2wuUWoIli7Z7bLfgyLREIWgCgNDcJnx1uxL4avihIRMoVUNBy6tQp3H///fjvf/8Lo9E4rNs88sgjePDBB6X329vbUVBQENguKShW++nlYWzEJxopscVDyZkWAEgzGXCqpVsWzfjl1Rb84T8HAQBatQpnj0/HotJsXDwlC+kJBrjcApZvPAab042q1q6oBlmWbgec3v6atDCf0yKa6s20cIIYESlZQEHLzp070dDQgJkzZ0ofc7lc+Oyzz/D000/DZrNBo9H0uo3BYIDBEJlXm6i3Lilo6V0e1mln0EIULGEU9LQAviyBHMYeH6nvBACU5Zvx+i1zYY7X9fq8Rq3C2IwEHKhtx9GGzqgGLeL3yxyng0GrGWJ1aJTmeSaIHaztgMPlhk6j8DQgEY1KAT2zXXjhhSgvL8euXbukt1mzZmHJkiXYtWtXn4CFoqtrgPIwZlqIguceBYdLAr7T3OVwwGRFkxWAZ1LW6QGLqCQzAQBwpKEzYvvqT6NUGhaZLAsAFKbGI9Gohd3lxtEoP34ionAJKNOSmJiI0tLSXh8zmUxIS0vr83GKPv+RxwCnhxGFgq8RX9nSpKAl+pkWMWgZmz5wBmW8N2iJ9kV7JA+WFKlUKkzJScLWihbsrbZgck5SxL42EVGkMIesYFKmxXBaeRgb8YmCJjXiKzxq8ZWHySfTUjxI0CKXTIv4/UqPwMGS/sTzWtiMT0RKFfD0sNNt2LAhBNugcBB7WkxsxCcKGWGUlIelyaSnRRAEKWgZM4xMy7GGTgiCELV/n0geLOlP7GthMz4RKRUzLQomZlrieE4LUcgI3gIxZYcsQLrJWx5mjW6mpb7dhm6HCxq1CgUp8QOuK0ozQatWodPmRF17TwR32FuTtzwsI8KZFnGC2P6adrjFxisiIgVh0KJg1tMyLSa9WB7GoIUoWKOmET9RHpmW402ecq+ClDjotQP/ydJr1ShK8wQ10exraYpCIz7g6fcx6tSw2l040WyN6NcmIooEBi0KNlAjvs3phtPljtq+iGKZrzwsuvsItzRvpqWtywFHFJ8vhtPPIirJTATgG5EcDY0RPlhSpNWopQb8vexrISIFYtCiYF0OMWjpXR4GAFY24xMFRSwPU3ojfkq8XnqMLVEsEatoFIOWhCHXShPEGqOYaenwNuJHOGgBgKm53r6Wava1EJHyMGhRsC6beLikJ9Oi16qh9x46xgMmiYIjZVoU3tWiVquQaop+iZiUackYRqYlyxu0RCnTIggCmq3R6WkBgNJcThAjIuVi0KJgp488BgATJ4gRjYg48ljp5WGAPA6YHM4ZLaJxGdHNtFi6HXC4PD8faRHuaQF8Y4/31likn1MiIqVg0KJgp488BvzPamHQQhSM0dKID/if1RKdTIvD5UZlSxeA4fW0jMtIgErlKWeLxqGY4sGSSUYtDFrNEKtDryQrAVq1Cm1dDlS3dUf86xMRhRODFgXzjTz2/fFM4NhjohEZLY34gC9bEK1MS1VrN5xuAUadGtlJxiHXx+k1yE+JAxCdCWJSE34USsMAwKDVYEKWZxgBS8SISGkYtCiYGLSIo44BntVCNFKjpREfANLEnhZrdDItJ8RDJdNMUA/zGy5NEItC0NLkDe4ifbCkPzbjE5FSMWhRKEEQpHNa4vstD+P0MKJguEdJIz4ApCd6Mi3iRKxIOx7AuGORNEEsGkFLR3QzLYB/XwszLUSkLAxaFMrmdEtlLP6N+AlsxCcamdHUiO/NtDRHKdNS4T1YMlaCFrE8LJqZltI8b6alhpkWIlIWBi0K5R+UxOn8Mi16NuITjYSYaVGPgqhFyrREqRE/kIMlRWLQcqShIyx7GoyUaYnC5DDRpOwkqFRAfbtNGgxARKQEDFoUSuxnMerU0PjVgrOnhWhkxJ6W0UDsaYlWI754sOTYYZzRIhKDlvp2G9p7HGHZ10DE4C4aB0uKTAatNB6a2RYiUhIGLQrVXxM+wOlhRCMljKJMi//0sEif+9Ftd6HG0gMAKE5PGPbtkow6ZCV5goZIl4hJjfhR7GkBfH0tnCBGRErCoEWhxDNa/McdA2zEJxop9ygaeSxmDOwuN9p7IvtCx4lmT5bFHKdDSrwuoNuKE8QiH7REP9MC+CaI7eUEMSJSEAYtCjVwpoWN+EQjIZaHjYKYBUadRsrORvqwRv9+lkAP8oxGM74gCL6gJdqZllxmWohIeRi0KFR/B0sCfj0tdgYtRMGQysNGw0Et8CsRs0a2r0UMWsYG0IQvikbQYul2wOHy/HCkmaLXiA8AU71BS2VLFyxdke3rISIKFwYtCiWWh5kMA5WHMWghCobY2zE6QhZfqVNThCdRHW8MfHKYKBoTxMQsS6JRC6NOM8Tq8DLH65CfEgcA2FfLEjEiUgYGLQpl9fasxOnYiE8USlI/+iiJWsSsQVOEMy1iT0txAJPDRCXeoKWqtRvd9sj07zV2yKMJXySWiO1niRgRKQSDFoUaKtNiZSM+UVBG0zktAJAWpUyLWB42Ji3woCUtwYCUeB0EATjWGJkSsUaZNOGLxEMm2YxPRErBoEWhxJ6W+NN6WsRGfJaHEQVnNDXiA0CG1NMSuaClrcuOFm9mJ5jyMMA3QSxSQYsY1GXIJGgR+1r2MtNCRArBoEWhfEFL7/Iw/8MlI33uApESjKZzWgBfpiWSB0yKWZasJIP0nBWocWJfS32EghYp0xLdJnzRVG+m5Xhjp5R5JyKKZQxaFEoqDxtgepjTLcDmdEd8X0SxTmrEHx0xi68RP4Ijj/3HHQerJMITxMTvj1x6WjITjchINMAtAAdqIzeQgIgoXBi0KJRv5PFpmRa/91kiRhS4UdaH7xt5HIVMS3F6QtD3EekJYk3e749celoAoNR7yOT+Gva1EFHsY9CiUAM14mvUKsTpeMAkUbDcUqZldIQtYrlTJDMtx0dwRouoJMsTtJxs7oI9Alnlxg55NeIDQGmet6+lmn0tRBT7GLQolG/kcd/zAnhWC1HwxJ6WURKzSBfh7T1O2JyRmTpYMYIzWkTZSUYkGLRwugWc9I5PDiepp0Um5WEAMNWbadnLTAsRKQCDFoUSzybor4lVnCDGscdEgRPLw0ZLI36SUQet2vNYWyJwVosgCCM6o0WkUqmkZvxw97UIgiCVz8mlER/wTRA7XN8RkWwTEVE4BRS0PPvssygrK0NSUhKSkpIwb948rF69Olx7oxGwesvD4vQDZ1pYHkYUOKkRP8r7iBS1WoVU8YDJjvAHLQ0dNnTZXdCoVShIiR/RfY3PEPtawhu0tHc7YXd5ggI5lYflp8QhOV4Hh0tAOc9rIaIYF1DQkp+fj8cffxw7duzAjh078I1vfANXX3019u3bF679UZCkTIu+b6aF5WFEwRtt5WGA3wSxCJzVctxbGlaQEge9dmTFAGJfS7gzLY2dPQCARKMWxn5KcqNFpVLhnHHpAICNhxujvBsiopEJ6C/ClVdeicsuuwwTJkzAhAkT8Pvf/x4JCQnYsmVLuPZHQRIzLacfLgkACcy0EAVttDXiA5GdICZODhszgn4WUaQyLY3eDJRcDpb0d/7EDADAxkMNUd4JEdHIBP0ylsvlwsqVK2G1WjFv3rxQ7olCwHe4JBvxiUJpNGZaMoZxVovT5Q5JRqOiyXMfI2nCF4mZluONnXC5w3eYru9gSRkGLRM8QcueaguaIzgBjogo1AIOWsrLy5GQkACDwYA77rgDH374IaZMmTLgepvNhvb29l5vFF6CIEhBCxvxiULLd07L6IlafJmW/i96BUHAHW/sxEVPbsSnB+tH9LUqQjDuWJSfEg+9Vg2b042q1q4R399A5HawpL+sJCMm5yRBEIDPjzRFeztEREELOGiZOHEidu3ahS1btuDOO+/EjTfeiP379w+4ftmyZTCbzdJbQUHBiDZMQ7M53dKriv024nv7XMQSMiIaPrE8TD16YhakSZmW/svD3t52CusOeMqPVu2uHdHXOh6CgyVFGrUK4zLC39fiO6NFPpPD/C3wlohtYIkYEcWwgIMWvV6P8ePHY9asWVi2bBmmT5+Ov/3tbwOuf+SRR2CxWKS3U6dOjWjDNDSxCR8A4nlOC1FojcLysPRBysMqm7vwu499L1x9dqQJ7iBLsZwuNyqbPRmRkYw79jc+M/x9LXIuDwOABd4SsZH82xARRduIz2kRBAE228B1sgaDQRqRLL5ReIkZFL1WDa2m7z8xG/GJgufLtIyeqGWgRnyXW8BP3tuNLrsLs8ekIF6vQVOnDQfqgisDrmrthtMtwKBVIyfJOOJ9A0CJGLTUDxy0bD3ejOUbj6EryOyzmIGS08GS/mYUpSDRoEWL1Y49HH1MRDEqoKDlZz/7GT7//HOcOHEC5eXl+PnPf44NGzZgyZIl4dofBcE37rj/0Zs8p4UoeKPxdep0U/+Zlpc3VWDbiRaY9Bo8+e0zcNbYNADAZ4eD652okErDTFCHqP5OzLQcbewbtDS09+D+lV/jO89vwbLVB/GT93ZL5/AEQu6ZFp1GjXPGe0cfH+LoYyKKTQEFLfX19bjhhhswceJEXHjhhdi6dSvWrFmDiy++OFz7oyBYpclhfZvwAcDkbcRneRhR4HzTw0ZPpiU90ZNpabHapfKiw/Ud+NN/DwEAfnHFFBSkxuO8Es+F8WdBngly3C9oCRUx03KsoVMKSJwuN17eVIEL/7IR/9pVA5UK0KpV+E95HZ7beDzgr9HUId9GfJHU13KYfS1EFJv6v6odwEsvvRSufVAIdQ1yRgvgXx7G6WFEgRqNjfipJk/Q4nQLaO9xwGTQ4sF3d8HudOOCiRn47mzPgJXzvL0TO062wGpz9ju9cDAnwhC0FKWZoFGr0Glzoq69BzVtPfjFP/fiQK2nhG16vhm/vaYUe6os+MU/9+JPnxxEaV4Szi3JGNb9C4LgKw+TaSM+4DuvZdepNrRa7UgxyXevRET9GXFPC8lPlzcYiR/ggoHlYUTB8408Hj0MWg0SjZ7njaZOG/7+6VHsrW5HcrwOT1xXJmWditNNyE+Jg8MlYMvx5oC/TigPlhTptWqMSYsHANz/9i5c9+xmHKhthzlOh99/sxQf3HUOyvKTsWRuIb49Kx9uAbj37a9xqmXoEckut4DfrjoAu8sNvUYt2/IwAMgxx2FSdiIEAfjsCEvEiCj2MGhRILERv7/JYYAv08LyMKIgeKOWUPVcxArxgMlPDzbgH+uPAgB+e3UpMv0a5lUqlZRtCaZELJRntPgT+1q2nWgBAHx7Vj4+/fH5WDK3CBrvv6NKpcJvri5FWb4ZbV0O3PHGTvQ4Bs5G9zhcuPvNr/DyFxUAgIcXTYJxgOdcuRCzLexrIaJYxKBFgaRGfAMb8YlCTSwPG10hi2+C2B/XHILLLeCKshxcOT23z7rzSnzjdQPR43Chuq0bQGjLwwBg9phUAMCk7ES8f+c8/HHxdOnsGX9GnQbPLp2JVJMe+2ra8bMPyvttzG/utOH6F7Zgzb466DVq/N/1Z+KW+cUh3XM4nC+NPm7k6GMiijkMWhRIbMSPG6IR32p38Q8XUYCka9hR1IgP+CZjOd0CMhIN+O3Vpf2uO3t8GjRqFSqarMMqsRKdaPZkWZKMWqmHJlRuOacYq+8/F6vunY+ZRamDrs1LjsPT3zsTahXwwdfVeO3Lk70+f7yxE9c+uxlfV7bBHKfD67fOwVX9BG9yNKsoFSa9Bk2dduyrCW4sNRFRtDBoUaBub3nYQCOPE/x6XboGKX8gor5GYyM+4Mu0AMAfrysbsJE7yajDzMIUAMDGAErEKhq9TfgZCSGfzKZWqzA5J6nfc6v6c/a4dDyyaDIA4Ler9mNbhaesbOfJFlz37GacbO5CQWoc3r/zbMz1jnmOBXqtb/TxhkOcIkZEsYVBiwL5Mi39By1xOo10wcUSMaLA+BrxR1fUMjXXDABYMrcQF0zKHHTteRMCH318PEz9LMG67dxiXDk9F063gLve/Aqvf3kC17+wFa1dDkzPN+ODO8+RemViyYKJnn+7DUGOpSYiipbA5lFSTPAdLtn/P69KpYJJr0WHzYlOmxNZkdwcUYwTy8NGW6blO7MKMKsoZVgX6udNyMCf/3sYm481w+FyQzeMDEdFGMYdj4RKpcIT103D4boOHKrvwC//tQ8AcNHkLPzf9WcMeA6W3InntXxd2Yq2LjuS4zn6mIhiAzMtCiRmT+IHaMQHgAQjm/GJgiE2Zo+ylhao1SqUZCUOq3SrNNeMVJMenTYnvq5sG9b9yy1oATwH9C6/YSaSvM+XN509BstvmBmzAQsA5CbHYUJWAtwCsOloYMMSiIiiiUGLAol9KgONPAZ8E8Q49pgoMKO1PCwQarUK88cHViIWjoMlQ2FMugkf33cu3vrBXDx65RRpRHIsE6eIbeDoYyKKIQxaFKhLyrQM/Gqgb+wxG/GJAuEepZmWQJ3nN153KP87UI9mqx06jUp2QQsAFKTG4+xx6SEfEBAtYl/LxsMcfUxEsYNBiwKJjfjxAzTiA0CCOPaYmRaigIg9LUq5gA2X80o8mZbyagtarPYB13XZnfiVt1/klvnF0gsqFD6zxqQgXq9BY4cN+2s5+piIYgODFgUaqhHf/3MsDyMKjK88jAaTmWTEpOxECALw+SDZlr/97wiq27qRlxyH+y8sieAORy+DVoOzx3mCykDGUhMRRRODFgWyes9pGWjkMeA7q4WZFqLAiI34aj57Dkk6gf1w/w3fB+va8dLnFQCAx66aGtMN7rFGnCK2kX0tRBQj+GdXgYaVaWHQQhQUqTyMuZYhiX0tnx9plII9kdst4Ocf7oXTLeCSqVm4aAqHr0eSGFDurGyFpdsR5d0QEQ2NQYsCDWfksW96GBvxiQLBRvzhmzUmBXE6DRo6bDhY19Hrc+/sOIWdJ1th0mvw6JVTo7TD0asgNR7jMkxwuQV8wdHHRBQDGLQoULeDjfhE4cJG/OEzaDU4a2wqgN6jj5s6bXh89UEAwI8unoDc5Lio7G+0E6eIbTjUEOWdEBENjUGLwtidbjhcnquqwerDpUyLnUELUSAEbys+Q5bh6W/08R8+PgBLtwNTcpJw09ljorQzEvta1h1oQK2lO8q7ISIaHIMWhenyC0IGy7Swp4UoOOKxFmpmWoZFDFq2V7Siy+7E5mNN+ODraqhUwO+/WQqthn+GomVOcSrGpMWjxWrHd5ZvQVVrV7S3REQ0IP61UJgubxO+XqOGbpCLAU4PIwqSVB4W3W3EirHpJuQlx8HucuOzw034xYd7AQBL5hbizMKUKO9udDNoNXjjtrkoTI1HZUsXvrN8CyqbGbgQkTwxaFGYrmGMOwbYiE8ULLE8TM2gZVhUKpWUbfn5h+U43mRFeoIBP71kUpR3RgCQnxKPd2+fh7HpJlS3dePby79ERZM12tsiIuqDQYvCdEnjjgcPWtiITxQctzS5l1HLcJ0/wXOQYbPVDgD45RWTYY7TRXNL5CfbbMTKH56FkswE1LX34NvLv8TRho6hb0hEFEEMWhTG6s2cxBsGP6SNPS1EwRE48jhgZ49Ph8abmjq3JB1XTc+N8o7odJlJRrz9w7MwKTsRjR02fGf5Fhysa4/2toiIJAxaFKbb4T2jZajyML1YHsaghSgQbMQPXJJRh2+emYesJAN+e3Upx0XLVHqCAW//4CxMzU1Cs9WO65/fgr3Vlmhvi4gIAIMWxZEyLUOWh3mCFpvTDafLHfZ9ESmFWB3Gy+7A/Plb07HlkQsxJt0U7a3QIFJMerx121mYXpCM1i4HvvfCFuw+1RbtbRERMWhRGrERf7AzWgBfeRjgC3SIaBi85WFqPnsGjBmW2GCO1+H1W+dgZlEK2nuc+N4LW7DR73BQIqJo4J9dhREb8YfKtOi1aui9I5F5wCTR8InlYSrmWkjBkow6vHrLHJwzPg1Wuwu3vrId/29nVbS3RUSjGIMWhRlu0AIAJk4QIwqYIB3UEt19EIVbgkGLFTfNwTVn5MLpFvCT93bjH+uPSsMoiIgiiUGLwgy3PAzwP6uFQQvRcLm9LWBsxKfRQK9V48lvn4Hbzx8LAPjTJ4fwi3/uhcvNwIWIIiugoGXZsmWYPXs2EhMTkZmZiWuuuQaHDh0K194oCMNtxAd8zfjMtBANHxvxabRRq1V4ZNFk/PrKKVCpgDe3VuKON3ai285+SCKKnICClo0bN+Luu+/Gli1bsHbtWjidTixcuBBWK0/PlQvxj4hpiHNa/NcwaCEaPp7TQqPVTecU45nvzYBeq8ba/fVY8uIWtHoPDCUiCrehr2z9rFmzptf7K1asQGZmJnbu3InzzjsvpBuj4FjtwzunBfAvD+OrZUTDJfCcFhrFFk3LQVqCAbe9uh1fVbbhumc349Vb5qAgNT7aWyMihQsoaDmdxeI5dCo1NXXANTabDTabTXq/vZ0n7IZTII34CSFoxBcEAT94bSdsThdevXkO1GrlXMhZuh1Y/OxmVLZ0DbhGp1HjkcsmYcncogjujKJJbMRXzk86UWDmFKfi/TvPxo0vb8PxJisWP7cZr986FxOyEqO9NSJSsKAb8QVBwIMPPoj58+ejtLR0wHXLli2D2WyW3goKCoL9kjQMATXi60feiF/V2o11B+rx+ZEm1Lb3BH0/crTpSBOONHTC5nQP+NZpc+Kd7aeivVWKIGnkMTMtNIqVZCXig7vOwYSsBNS32/Dt5V/i68rWaG+LiBQs6EzLPffcgz179mDTpk2DrnvkkUfw4IMPSu+3t7czcAmjwEYej7ynZU+VRfr/Oks38pLjgr4vudlT3QYAuPbMPDy4cEKfz9e323Dds5txoLYdNqcLBu3Q33OKfexpIfLINhvx7u3zcPMr2/F1ZRuWvLgVz98wC/NL0qO9NSJSoKAyLffeey8++ugjrF+/Hvn5+YOuNRgMSEpK6vVG4eMLWoaOR0MxPUy8sAeAmjZlZVrKvQHZnOJU5KfE93mbUZiM5HgdHC4Bh+s6o7xbihRODyPySY7X441b5+LcknR02V245ZXtWF1eG+1tEZECBRS0CIKAe+65Bx988AE+/fRTFBcXh2tfFKQuW2Qb8cv9Mi21lu6g70du3G4B5dWexzYt39zvGpVKhWl5ns/5B2+kbFIjvoL6t4hGwmTQ4sUbZ+Gyadmwu9y4+62v8M72ymhvi4gUJqCg5e6778Ybb7yBt956C4mJiairq0NdXR26u5VzsRrruhziyOPwN+L7X9gDysq0nGzpQkePE3qtetDm0jJvQLPnlGXANaQsUnlYlPdBJCcGrQZ/v34Gvju7AG4BeOj9cizfeKzftS1WO7Ycb8brX57Ay5sqODaZiIYloJ6WZ599FgCwYMGCXh9fsWIFbrrpplDtiUagyzb88jCpp8UeXNAiXtiLlJRp2VPVBgCYkpMEnWbg2H5aXrJnfTWDltGCjfhE/dOoVVh27TQkx+vx3MZjWLb6IOrbbRiXacKR+k4cquvAkYYONHX2DlKeXHsYt84vxq3nFiPJqIvS7olI7gIKWsRXGEmeHC437C43gEDLw4ILWsQLe5XKUzJTa1FOpkUse5s+QGmYaHqB5/OH6zvQ43DBqGMzvtJJI48ZsxD1oVKp8PCiSUiO1+Hx1Qfx8hcV/a7LS47DhKwE1Fp6cLCuA3/73xG8+uUJ3H7eONx4dtGwXngjotGFzwoKIjbhA5FpxBcnh80sTMGOk62KKg8TH9u0/ORB12UnGZGeYEBTpw37a9sxozAlArujaBJfu2HMQjSwO84fh/QEA17dfAKpJj0mZCWgJCsRE7ISUZKZIL1o5nYLWL23Dk+uPYRjjVY8seYgXtpUgbsvGIfr5xTyhSAikjBoURDxjBatWgW9duh2Jd/I4+Aa8cVsxCVTs7HjZCuaOm2KGP3rcgvYW+N5bGVDZFpUKhXK8s349GADyqssDFpGAakRn6kWokEtnpmPxTMHnzCqVqtweVkOLi3Nxr92VeOpdUdQ2dKFx/69H89/dhw/XjhxyPsgotEh6MMlSX4COaMF8DXiB1Me5n9hf96EDBi8QVK9xRbwfcnN8cZOdNldiNNpMC4jYcj10gSxKva1jAY8p4Uo9DRqFa6dkY///fh8LLt2GnLMRtRaevCT93bjxc+PR3t7RCQDDFoUJJAmfKD34ZKB9iv5X9iPz0xAjtkIAKhRQDO+GHyU5iVBM4yxtmI2ppxjj0cF8TeFmRai0NNp1Lh+TiHW/2QB7r5gHADgdx8fwAdfVUV5Z0QUbQxaFEQsD4sfxrhjwBe0ON0CbE53QF/r9Av7HHMcAGVMEJPOZ/FOBhuKmGk52tA5ooM6KTa4OZCEKOyMOg1+snAibpvvOQ/up/9vDz49WB/lXRFRNDFoURCxPMw03EyL37pAL7bFC/syb6N6TrI306KAZnxxKtpQ/SyizCQjspOMcAvA/tr2MO6M5EBqxGeihSisVCoVfnbZZFx7Zh5cbgF3vfkVdp5sifa2iChKGLQoiBi0xA2zp0WjViFOJx4wGVgz/ukX9rkKybQ4XW7sq/EEHtOGGbT4r2Vfi/K52YhPFDFqtQpPLC7DBRMz0ONw45ZXduBwfUe0t0VEUcCgRUHEQyJNwwxagODOaul1Ye8tjRIzLbUxnmk50tAJm9ONBIMWxWmmYd+uzPt9KPcGc6RkbMQniiSdRo1/LJmBGYXJsHQ78P2XtqGqtSva2yKiCGPQoiBd3sAjkEO5xAliYsAzHOKFfaJBizHeC3tfpiW2g5Zyv14d9TCa8EVSpqWamRal853TwqiFKFLi9Vq8fNNslGQmoK69B99/aRuaO2N/WiURDR+DFgXpcgQ28hgILtPiu7A3Sxf2UqYlxsvD9ngngJUNcajk6cSM0/FGKzp6HCHeFcmJ2IgfQExLRCGQHK/Ha7fOQa7ZiONNVtz8yvagRvaPRFVrFz74qgqPfLAHd76xEyu3VaLFao/oHohGKx4uqSC+kceBBy2BNOL7Lux9PR/i9LDWLge67a5h99XIjRiQiUHIcKUlGJCXHIfqtm7srW7HvHFp4dgeyYA4O4zlYUSRl2OOw2u3zsW3ntuMPVUWXPfMZnxzRh4WTsnC2GGcqxUIQRBwrNGKbRUt2H6iBdsqWlDd1vuFudV76/Dzf+7F3OJULJqWg0umZiEz0RjSfRCRB4MWBZEOlzQEUh4WeNAiXdj7BS1JRi1Meg2sdhdqLd0h/+MRCXanGwdqPQ2ew50c5q8s34zqtm6UV7cxaFEwt1vsaWHUQhQN4zMTsOLmOVj64lYcqu/A46sP4vHVB1GSmYCFU7NwydRsTMszB/w72mV3Yk+VBV9XtuGrylZ8XdmKps7eWRStWoXSPDPmFqfCZNDiv/vrsLe6HZuPNWPzsWb86l97MbsoFZeWZuOKshxkJjGAIQoVBi0KIp3TogumPGx408N6Xdj7nWOiUqmQkxyHow2dqLX0xGTQcri+A3aXG0lGLQpT4wO+/bR8M1bvrcNuThBTNCnTEtVdEI1uZxQkY/1PFmDNvjr8d18dvjzWjCMNnTjS0Il/rD+GHLMRC6dkYVxmAuJ0GsTpNX3+q4IK+2st+OqkJ0g5WNcBl7v3OUwGrRpnFiZjTnEa5han4szC5F59o/ddWILK5i6s3luL1XvrsOtUG7adaMG2Ey34y38P4bVb52JmUUqkvz1EisSgRUGCy7SII4+Hl2kRL+zNcToUpMb1+lyO2YijDZ2oaYvNvhZxXHFZfnJQr6KLQVw5gxZlk85pYdhCFE0ZiQbccFYRbjirCJZuBzYcasAn++qw4VAjai09ePXLkwHfZ3aSETOKkjGjMAVnFiajNM8Mg3bwFwIL0+Jx+/njcPv541DT1o01e+vw7o5TOFjXgZtWbMPbPzgLpQGWHBNRXwxaFKQrmJHH+sDKw3wX9n1T77E+Qay8n16dQIh9MJUtXWjrsiM5Xh+qrZGMsBGfSH7McTpcfUYerj4jDz0OFzYfa8L6g41ottrQZXeh2+5Cj8Pl+X+H5327y42SzAScWZiCGYUpmFGULPVnBis3OQ63zC/Gd+cU4PsvbcOOk634/svb8M4Pz0JJVmKIHi3R6MSgRUHEAyIDaYIPdHqYeGHfX6N6rE8Q8w/IgmGO12FMWjxONHehvNqCc0syQrk9kglfeRijFiI5Muo0+MakLHxjUlbU9hCv1+Llm2dj6YtbsafKgiUvbsW7t8/DmPThn/9FRL1x5LGCiCOPTQGd0xJ8puV0OWZP0FITgwdM9jhcOFTn6dWZFuC4Y3/ibfewREyxxEwLq8OIaDBJRh1evXkOJmYloqHDhiUvbu0zfYyIho9Bi4L4DpcMTyP+UBf2OVJ5WOw9KR+s64DTLSDNpEeuOfhpL2XeDBT7WpRLOlySQQsRDSHFpMfrt83B2HQTqtu6sfTFrWjoiL0X9ojkgEGLggTTiG8KoBF/qAv7XLE8LAYzLeVVbQA8E8BG0mAtjoEur2bQolS+c1oYtRDR0DITjXjjtrnIS45DRZMVS1/cilYeSEkUMAYtCiKNPA4g0yKVh9mHDlqGurAXMy0dNmfMnQovlb2NcMLL1NwkqFRAdVs3mjptodgayYzARnwiClBuchze+sFcZCUZcLi+E99/eRvaY+zvJFG0MWhRECnTEqZG/KEu7E0GLZKMnvuLtQliYmZkJP0sAJBo1GGst9GS2RZlksrD2IhPRAEoSjPhzdvmItWkR3m1BUtf3BqzRwQQRQODFoVwutywOd0AwteIP5wL+9xkT7Yllp6Iu+0uHK73HpgZ5OQwf2Xe7w/7WpTJVx4W1W0QUQwan5mI12+dA3OcDnuqLLji75vwxdGmaG+LKCYwaFEIcXIYENzIY+sQjfjDvbAXJ4jVxVCmZX+tBW4ByEw0ICsp+CZ8kTgOmhPElInTw4hoJKbmmvHve+ZjSk4SWqx23PDSVvxj/VG43cLQNyYaxRi0KES3tzRMo1bBoB3+P6vUiG93SrX6/RnuhX2OmGmJoaBlpOeznK5MasZvC8n9kbywPIyIRqowLR4f3HU2vjUzH24B+NMnh/DD13fA0s0+F6KBMGhRCLG8K16nCWiqkVgeJgi+npj+DPfCXpwqVhtD5WFiGde0vOSQ3N+U3CSoVUB9uw317bETvNHQ/AN7NuIT0UgYdRr86VvT8fi106DXqrHuQAOu/Psm7Kthlp6oP8NvfiBZ8407Hn5pGADE6TRQqwC34Al8TAOMSx7uhb3vrJbYuVjfUx3aTEu8XouSzEQcqu9AeZUFWVNGXnJG8uCfjOTIYyIKhe/OKcTUXDPufHMnKlu6cO0zm/H7b07D4pn50d4aKUCr1Y7nNh7DJ/vqkJloxLjMBIzLMGF8ZgLGZSQgLzkO6hh5FY5Bi0L4JocF9k+qUqlg0mvRYXOi0+ZE5gDrdnvHHQ91YZ/jPaulJkYOmOy0OXGssRMAUDrCccf+puWbcai+A3uqLbhoSlbI7peiy7+AMjae4okoFkzLN2PVvfPxwDu7sOFQI37y3m6sP9iABxdOwLiMhGhvj2KQ1ebEii8qsHzjcXR4q3FONHdh24mWXuuMOjXGpiegLN+MH108ISS9veHCoEUhgjmjRWQy+IKW/nT0OHC8yQrAd3jiQHLFTEtbDwRBkP2r0XurLRAET1lbRqIhZPdblm/G/9tZhT3eYI+Uwd2rPEzeP9tEFFuS4/V4+cbZeHr9Ufx13WF8XF6L1Xtrcd2MfNx3YQkKUuOjvcVRye0WcLKlC3uq2nCiqQuZSQYUpcWjKM2EnCSj7LIUdqcbb2+rxN8/PSqdFzc5Jwn3XDAeTrcbRxs6cayxE0cbOlHRZEWPw439te3YX9uOdQfq8bfvnolzxqdH+VH0L+Cg5bPPPsOf/vQn7Ny5E7W1tfjwww9xzTXXhGFrFAgx0xLIuGOR2Iw/UNCyr6YdggDkJcchPWHwC/tsb09Lt8MFS7cDyfH6gPcTSVLZW4hKw0TiBLHyKktMBG80PAJTLUQURmq1CvddWIILJ2fir2sPY92BBry3swr/3FWN78wuwL3fKAnbK+GdNicqGq043tSJdnEggMozckSl8gwf8fwXMMfpkJMchxyzEekJBmhkduEeLEEQUNXajT1VFuypbkN5lQXl1RZ09PR/faTXqlGQEocxaSYUpsVjUnYirj4jD0Zd4C8gj5TLLeCj3dV4cu1hnGrxVLsUpsbjxwsn4Mqy3H6DK6fLjVOt3Thc34G/rj2Mg3UdWPrSVjxw4QTc843xsvt3DfgK12q1Yvr06bj55ptx3XXXhWNPFASxET+QcceihCHGHvv6WYa+sDfqNEgz6dFstaOmrUf2QYuvnyU5pPc7OScJWrXK832w9CDPO1WNYpubjfhEFAFTc8148cbZ+LqyFU+uPYzPjzThjS2VeG9HFW44qwh3LhiHtCFeRBxIi9WOXadacbzRiuNNVhxv7MTxRisaOmxB3Z9GrUJWogHZZiNykuOQazbi8rJcnFGQHNT9RYogCKhr78HuUxaUV7dhjzdAaevqO8HNoFVjSm4SxmckoLHThsrmLlS2dMHudONYoxXHGq3S2r+tO4KHL5uMK8tyQv6CpSAIaOtyoMbSjdq2HtRaulFr6UGtpQd7qtqkfWQkGnDfhSX4zqwC6AeZKKvVqFGcbkJxugnnT8jArz/ah5XbT+Gv6w5jx8kWPPWdM4L+OQuHgIOWRYsWYdGiRSP/ylYroOnnAlujAYzG3usGolYDcXHBre3qOu1lUz8qFRAfH9za7m7A7R54HyZTUGs//fokshJ0mJrbf+DQ7T2nxWTQAD09gGuQc1fi432HTNhsSIUDcfYefLL1GE6cbOi11GmMw5p9dQCA6ZnGwb/HcXGAWo1ssxHt7VbU1zZhinmAIMq7FgBgtwOOQcY8Go2+n5VA1jocOHSqCZ8fbur3n8+l12Pr8WbPY8uKH/yxGQyA1vvr4nQCtkGe3PV6GHU6TMxOxMGqVjyzajfGpJn6XZqcYsK1c4o9r2a4XJ5/u4HodIDeGwQGstbt9vyshWKtVuv5XgDekXNdoVkbyO99NJ8jHC7E2XsgqE5rxJfBc8SQv/eBrD3tOQLOQQ6fDWRtIL/3EXqOgN0+8Fr/3/tA1g7jOQI6XeBr+Rzhe1+uzxGiEF1HnJmmx+vfLcW2imb8bd0RfFXZhhc3VeCtbZW4cHIWFhQkYP641IGzL97f+/r2Hqz96iTWlddg+4kW9HskjN6I9AQ9xqYnIEsvQO12QwAgQIAgeHr6BMFz4VzvVKOu3Yb6Dhs0djtaG7vR2ggc8N7VG/87gKun53p6JHJSZfEcIajV2HK8BdsO1eLAqRbsrbagubPv77TRYMCEvGRMyzNjenY8pmXEY3xmAnSa3hf/TpcbtT0CTlrsONFsRWVdG/63pwo1jW146NUv8XaBGQ8vmoTpBSmeGwTxHOFwubHzWCM27a3CpqPNqGzukq73RA6NFk6N537NehXuOisfN8wr8vQ427oB/y8zyHOEEcDjl47D3CwjfvPvfdhysBaX/18n/v69MzG7MDm8zxGD/d75E0YAgPDhhx8Ouqanp0ewWCzS26lTpwQAgkX82T/97bLLet9BfHz/6wBBOP/83mvT0wdeO2tW77VFRQOvnTKl99opUwZeW1TUe+2sWQOvTU/vvfb88wdeGx8vLXv9yxPC/8YOcr+A8Mz6o0LRQ6uEB9/ZJQiLFw+6Vujs9O3hxhsHXXvmvW8KRQ+tEooeWiVUf+/mwe+3okIQBEG49ZXtwnNzrh187d69vj08+ujga7dt86394x8HX7t+vW/t008PuvamxY8KRQ+tEoofXiV0PvfC4Pf77ru++3333cHXrlghCIIgPPLBHuGmxYM/tl9cfIfwnz01nvtdv37w+/3jH3172LZt8LWPPupbu3fv4Gt/8hPf2oqKwdfedZdvbUPD4GtvvNG3trNz8LWLF/f+3RhsrQyeIw6lFQqdPQ7f2ig/RwiC4Pm+DPZ98xfC5wihocG39q67Bl/rfY4QBMHzczfYWhk8RwirVvnWrlgx+NogniMEQfB8jcHWPv20by2fI3wGWyuD54hwXUfYUtKEK/7vc+nv8pcFpQOudcXHC89vPCZc+8wXQtFDq4a8jmjrsvv2MMznCKfLLXRdv3TQtS9+sEXotjs99xul54jKNeuFpS9uEYoeWiX8fsHg1zK2det89xul54itv/qLcNcbO4XSR9cMeR2x6oc/E57dcFT4165qoWP12sH3EMBzxCsX3ygUPbRKGPvIx8K7r/xn8Psd4XOEBZ6Y2GKxCIMJeyP+smXL8Nhjj4X7yyjWtooW/PqjfXh+iHXd3kZ8U4Ajj4dy5fQcWJNSUZASj5wPhldHm5ssj8kTHT0OJA7y+fnj05A2Ix9njU2Dqbwx5F//rgXjsH7nQPPYfHaebMWiaTkh//oUXmzEJ6JI02tU+Oiec/BVZSs2HmqE6f2BL+N6HC78/j8HpPfNcbpB73uoz/dHo1YNWZb+j/XHsOKwFb+4fDIuEYSotAPe9/YufJ1dAr1Gjam5SYOu1fdXBRQCq/bU4PwrHbA53XC0dWOwv/rv7jiFj221AIDEAY6iEF1elgucP87zTuvhEO0WuH5OIXZOzcVHu2vw/Gcn8K2Q3XPwVIIgCEHfWKUashHfZrPB5pcCa29vR0FBASw1NUhK6ucHR0Fp3X4FUPpR7VDjqr9vQrPVjlyDCq0d3ZiWb8a7t8/rs/a360/ipU0VuP38sXjkguKoln48u+EYnvy4HNeWZuGJxWWDrgUQttKP9eVVuGvFVozLMGHVfef2XRvl0o8Pv67GT/91ADPGZ3r+TVn64XtfpqUfnTYnZv9uHQQVsOvxa3zNliwPG95alod5sDws8LUx8hwhieB1REtHD7483owvjjThi2ONaGj3/JyqVUDZxDxcWpqNS6ZmI9uAiD5HCIKAj8tr8btPT6LO2y9zbkEifn5pCSZlDxA4hOg5wu0W8OHX1fjrukNo7nTAptXhwtJc/OLyyShK1EXsOWJvtQVPrD6IHSdbYdfq4FJ77lfjdkHvHHgPEwpTcf6UXCyYlInp2QnQOAbZQxifIwSdDm9srcTvPtoLtXfthKwEfHdOIa6cniv1RI/0OaK9vR3m3FxYLJb+YwPxpgPfa2gYDAYYxM35M5l6/4IMZDhrglnr/wQRyrX+T2gjWNttd+GHL21Gs9WOqblJeG7pTHzjLxuwrcGGvW3OPmeK9JoeZgwg02Ew+H54QrQ2N9kIh0aHEz0Y3r+JXu/7YQ/h2t31XejWGzFhbPbQ+9DpfL/0Q9FqfU9SI1g7tSQHTs0R7Ku2wOUWoNFohv8zHMhatTo8a1Wq8KwF5LG2n997t8aBbr3n96tXoiUKzxF9BPJ7H+XnCABh+70PaG0gv/dReI7og88RPnJYK5PriNS4OFyemYLLzxoPQRBwqL4DJ5q6MHtMSvBN1CF4jlABuGJeCb4xsxjPbTiG5Z8dx+enOnDZi1/hrLFpuHhKFi6ekoX8lAG+N0H+3n9d2Ypff7QPu6ssADQYm5eER6+civMnZPRePxwjfI4onWDCayU5WLO3Dn9YfUCa6pWYYESqKQmp8XqkmPTSf8dmmLBgQgYyT+9R0g9zDyF+jlABuOGsIswtTsVLn1fgX7ursbvVid2fHMfvN1Tim2fmYelZRZiY7ff9DOY5YrAA2Q/PaZEhQRDw0/+3G/tq2pFm0uP5789CXnIcLi3Nwb931+DNrZVYdu20XrcZyTktoZYjntViGSSCj4BwjTMOlXEZCYjTaWC1u3C8sRMlWYMVs5Ec+L9QquLMYyKSGZVKhUnZSQNnMqIgXq/Fgwsn4luzCrBs9QH8p7wOm481Y/OxZjz27/2YnJOEi6dkYeGULEzNTQp44pbLLeBAbTt2nGjBF8easXZ/PQDPZNQHLirB9+eNGXSCVripVCosmpaDS6Zmo63bgSSjFlpN9PYTjAlZiXhicRl+dtlk/L+vqvDmlpM43mTF61tO4vUtJzGnOBXfnlWACydlIsUUvqmxAQctnZ2dOHr0qPR+RUUFdu3ahdTUVBQWFoZ0c6PVsxuPYdWeWmjVKjyzZIY0LnfJ3EL8e3cN/rWrGj+7bBISjb7IW8y0xAdxTkuo5XjPaqmzRO+ASUEQ/MYZyzNo0ahVKM1LwvYTrdhTZWHQEgv8gxbGLEREw1aQGo9nlszEyWYr1u6vx3/31WPHyRYcqG3Hgdp2/N//jiAvOQ7nTchAXrIRaQkGpJr0SE/QI9VkQFqCHokGLXocbnx9qhU7TrRi+4kWfF3Z1uecuW/NzMdPL52IzER59NgCnjN4UsN4QR8J5ngdbp1fjFvOGYPNx5rx+pcnsfZAPbZVtGBbRQs0ahVmFaXg4ilZuGhyFsakD5xxsTs9B13ur23HV0drhvX1A77C3bFjBy644ALp/QcffBAAcOONN+KVV14J9O7oNJ8erMefPjkEAPj1VVMxd2ya9Lm5xakYl2HCsUYr/rmrBjecVSR9ritMjfjByDYboVIBdpcbzVb7kAdShkN9uw2NHTZo1CpMyZFn0AIA0/KSsf1EK8qrLbhuZn60t0ND6H1OC6MWIqJAFaWZcNu5Y3HbuWPR3GnDpwcbsHZ/PT470ojqtm68va1ywNvqNWq4BQHO02Y2Jxq0mFGUgtljUvCNSVmYMkSzPY2MSqXCOePTcc74dNRZevDO9lNYvbcWB+s6sLWiBVsrWvC7jw+gJDMBF03JwkWTM+FwCdhf0479te3YX9OOIw0dcLg8/45u2yD9bH4CDloWLFiAEfTu0yCONnTi/rd3QRA8WZWlfkEJ4PkhWTK3CL9ZtR9vbjmJpXMLpSyGeDBkXBROYT2dTqNGRoIBDR021Lb1RCVo2VPVBgAoyUwI6sDNSJle4AmoxP2SvPk/8zFkISIambQEA741qwDfmlWAbrsLm4424avKVjR32tDcaUez1Y5mqw0tnXZY7S7YXZ4BBdlJRswuTsXsMSmYVZSKidmJsju9fbTINhtx/0UluP+iEpxq6cK6A/VYd6AeW4+34EhDJ440dOLZDcf6vW2iUYspOUkYa07H48P4WtGvJSIAgKXbgR++tgMdNifmjEnFo1dO7XfddTPy8cdPDuJgXQe+qmzFzKJUAJ7GfQAwDTEaL1JykuPQ0GFDjaU7Kj0le6rkXRommuYdqLCvph1Olzvm6lxHG/9MCxMtREShE6fXSM35/elxuNBstUOt8gQt0Sg9p8EVpMbj5nOKcfM5xbB0O7DhUAPWHWjA50caYdJrMSU3CVNykqT/5qfEQaVSob29nUFLLPnxu7twvMmKvOQ4PLN0xoBNY+Z4Ha4sy8V7O6vw5pZKKWixesvD5JJVyDUbsfsUUNs2yNi7MBL7WablJ0fl6w/XmDQTEg1adNicONLQick5TGnLWa9GfP7BJCKKGKNOI/X4kvyZ43S4+ow8XH1GXsjuky/rykB5lQXrDjRAp1Fh+Q0zhyynWuItG1tVXotWq2d2d7f/yGMZiOYEMUEQUO4ttyrLk3emRa1WSeOrxWlnJF+Ct0CM8QoREVFkMWiRgTe3ngQAXDYtp8/5K/2Znm/G1Nwk2J1uvP9VFQBfpkUOI48Bz1ktAFAThaClqrUbrV0O6DQqTMqR/0QusYRtT3VbdDdCQxIzLWzCJyIiiiwGLVHW3uPAv3Z5Rr0tmVs0xGoPsSEfAN7cWgmny40eh6c5TS5Bi5RpiUJ5WLm3NGxidiIMWnl8PwYj9vww0yJ/YtDCkIWIiCiyGLRE2T+/rka3w4WSzATMHpMy7NtddUYuEgxaVDRZ8enBBunjcmnEz/ae1RKN8jCxCX9aXnLEv3Ywyrz7PFDbAbvTHd3N0KBYHkZERBQdDFqiSBAEvLnFM498id/44uFIMGhxzZm5AIAXPj8OwHMhZYjiqa/+xPKwuvYeuNyRHZFd7i2zkvvkMFFBahzMcTrYXW4cru+I9nZoEOKPMpvwiYiIIkseV7ij1M6TrThU3wGjTo1vzgj8YMHvzfGUiG0/0QrA04Qvl4upzEQjNGoVXG4BjR22iH1dQRD8Mi2xEbSoVCpfXwtLxGRNPKNKHr9lREREoweDlih6c6sny3LV9FyY43QB335KbhJmFCZL78tl3DEAaNQqZCV6pqDVWCLX13KyuQsdPU7otWpMyJJ/E75IDLDK2Ywva2zEJyIiig4GLVHSYrXj4/JaAMNvwO+P/21NMgpaAM8BkwBQ2xa5vhbxfJbJOUkDnnUjR8y0xAapEZ8xCxERUUTJo2t7FHp/ZxXsTjdK85JG1HtxeVkOfvvxfrR1ORAnkzNaRDlSM37kMi2xcj7L6cRDMA/VdaDH4YJRJ68ANJa43AIO1LbD4Qr9UIM672AJxixERESRJa+r3FHC7Rbw1jaxAb9oRH0oRp0Gi2fk48VNFbLLtOQmR/6ASamfJUaa8EW5ZiPSTHo0W+04WNeBMwqSo72lmPXEmoN4/rPjYf0aajXDFiIiokhi0BIFXx5vRkWTFQkGLa6anjvi+/vheWNxqL4Di2cG3swfTpHOtLjdAvZ6y8NiZXKYSKVSYVq+GRsONWJPVRuDliBZbU685e0VyzUbwxZcfPPMvLDcLxEREfWPQUsUvLn1JADg2hl5ITlXJTPJiNdvnTvi+wk18YDJmgj1tBxvssJqd8GoU2N8RkJEvmYoleWJQQv7WoL10e4adNqcGJMWj09/vIAZESIiIoWInU5lhWho78F/99UDAL43tzDKuwkv8ayWSGVaxMlbU3PN0Gpi70db7GspZ9ASFEEQ8MYWzwsC35tbyICFiIhIQWLvyi7GvbP9FJxuAbOKUjApOyna2wkrMdPS0GELS1P06cQMRayVhonEfR9p6ECX3Rnl3cSePVUW7Ktph16jxuKZBdHeDhEREYUQg5YIcrkFvC024J+l7CwLAKSZ9NBr1BAEoL49/CVi5TEetGQlGZGVZIBbAPbXtEd7OzFHLLu8bFo2Uk36KO+GiIiIQok9LRG04VADaiw9SI7XYVFpTrS3E3ZqtQrZZiMqW7pQa+lBfkp8nzXbKlrw90+PoK3LMeD96LVq/OyyyZhZlDLgGqfLjX3eC/1peckj3nu0TMtLRn17PfZUWTBrTGq0txMzLN0OfLS7BgCw5Kzgzz0iIiIieWLQEkFveqcafWtm/qg5hyPHG7TUtPXua7HanHhizUG89uXJYd3Pj9/dhTUPnDfg9+1YoxXdDhdMeg3GpptGvO9oKcs3Y92BepRXs68lEB9+VYUehxsTsxIxa5DgloiIiGITg5YIqWrtwvpDDQCA6+covzRM5Bt77CsP23SkCQ+9vwfV3kDmu7MLcElpdr+3FwQBD79fjhPNXXj+s+O478KSftft8R4qWZpnjukGbPF8GfHx0NAEQZBeEFhyVuGIzj0iIiIieWLQEiErt52CIADnjE/D2BgcxxusHPGAybZuWLod+MPHB/DOjlMAgPyUODx+bRnml6QPeh+/vMKFe9/+Gk+vP4qrz8hFUVrfTEp5jJ7PcrppeZ79H2+yoqPHgUSjLso7kr/tJ1pxpKETcToNruH5KURERIrERvwIcLjcWLndc6G+ZO7oqrfP9WZavjjWjIV/3SgFLDedPQafPHDekAELAFxRloP549Nhd7rxq3/tgyAIfdaIk8PEscGxKj3BgLzkOAgCpB4dGpzYgH/1GblIYpBHRESkSAxaIkCjUuEv356Oa2fk4eIpWdHeTkSJY4+PNnSivt2G4nQT3r19Hn591dRhH6ypUqnwm6unQq9RY+PhRnyyr67X5x0uN/bXei7wy/JiO9MC+LItPK9laM2dNqwu9/w8jLYXBIiIiEYTBi0RoFarcP6EDDz57TOgi8FDD0difKanFE6tAm4/byxW338u5hQHPhVrbEYCbj9/LADgsX/vh9XmO8fkcH0H7E43Eo1aFKX1nVAWa6S+FjbjD+n/7ayC3eVGWb5Z+r4RERGR8rCnhcJqTLoJr986BxmJhhEfpnn3BePxz13VONXSjb/97wh+dtlkAL3PZ1FCE7bYl1POZvxBud0C3hLPPZo7eoZbEBERjUaj62V/iopzSzJGHLAAgFGnwW+uKgUAvLSpAofqOgD4MhKxfD6LP7E87ERzFyyDnF8z2m062oSTzV1INGpx5fTcaG+HiIiIwohBC8WUCyZl4pKpWXC5Bfzin+UQBKFXpkUJkuP1KEz1lLntrWGJ2EDEBvzrZuQjXs+kMRERkZIFFbQ888wzKC4uhtFoxMyZM/H555+Hel9EA/rVlVMRp9Ng+4lWvL3tFA7WeZrwpymgCV8k9mfsZolYv+osPVh3wHPu0fdYGkZERKR4AQct77zzDh544AH8/Oc/x9dff41zzz0XixYtQmVlZTj2R9RHXnIc7r/Ic8jkrz/aB4dLQEq8DvkpcVHeWeiUcYLYoN7Zfgout4A5Y1IxISsx2tshIiKiMAs4aHnyySdx66234rbbbsPkyZPx1FNPoaCgAM8++2w49kfUr1vOKUZJZgLsLjcAz/ksSmjCF0kTxBi09OF0ubFyu7cB/yxmWYiIiEaDgArB7XY7du7ciYcffrjXxxcuXIjNmzf3exubzQabzSa9b7F4LsLa23lwHo3MwxcW4eZXtgMAJiRrFPUzVZiogtvWhVP1XRj/0/ejvR1ZEQA4nG6kxOtwdmG8ov7diYiIRhvx73h/h4f7CyhoaWpqgsvlQlZW7wMSs7KyUFdX1+9tli1bhscee6zPxwsKCgL50kSD+uVTwC+jvQmKqFMAMv8Q7V0QERFRKDQ3N8NsHrg/OaiRO6eX4QiCMGBpziOPPIIHH3xQer+trQ1FRUWorKwcdGPRMnv2bGzfvj3a2+ijvb0dBQUFOHXqFJKSghsfLNfHNlJKfVwAH5scDed3MVYf23Ao9bEp9XEBfGwDCcXf1XDiv1vsUerjAsL72CwWCwoLC5GaOvjh4wEFLenp6dBoNH2yKg0NDX2yLyKDwQCDwdDn42azWZZPEhqNRpb7EiUlJQW9P7k/tmAp9XEBfGxyNtjvYqw/tsEo9bEp9XEBfGxDGcnf1XDiv1vsUerjAiLz2NTqwVvtA2rE1+v1mDlzJtauXdvr42vXrsXZZ58d+O5k6O677472FsJGqY9NqY8L4GOLVXxssUepjwvgY4tVfGyxR6mPC5DHY1MJQ3W9nOadd97BDTfcgOeeew7z5s3D888/jxdeeAH79u1DUVHRkLdvb2+H2WyGxWJRbDQaDvy+EckDfxeJlIG/y0TyMNzfxYB7Wr7zne+gubkZv/nNb1BbW4vS0lL85z//GVbAAnjKxR599NF+S8ZoYPy+EckDfxeJlIG/y0TyMNzfxYAzLURERERERJEU8OGSREREREREkcSghYiIiIiIZI1BCxERERERyRqDlhimUqnwz3/+M9rbICIiIiIKKwYtUXbTTTdBpVL1eTt69Gi0t0Y0aoi/h3fccUefz911111QqVS46aabIr8xIgra5s2bodFocOmll0Z7K0QUAgxaZODSSy9FbW1tr7fi4uJob4toVCkoKMDKlSvR3d0tfaynpwdvv/02CgsLR3TfDodjpNsjogC9/PLLuPfee7Fp0yZUVlaO6L5cLhfcbneIdkZEwWDQIgMGgwHZ2dm93jQaDf79739j5syZMBqNGDt2LB577DE4nc5et62trcWiRYsQFxeH4uJivPfee1F6FESxbcaMGSgsLMQHH3wgfeyDDz5AQUEBzjzzTOlja9aswfz585GcnIy0tDRcccUVOHbsmPT5EydOQKVS4d1338WCBQtgNBrxxhtvRPSxEI12VqsV7777Lu68805cccUVeOWVV6TPbdiwASqVCh9//DGmT58Oo9GIuXPnory8XFrzyiuvIDk5GatWrcKUKVNgMBhw8uTJKDwSIhIxaJGpTz75BEuXLsV9992H/fv3Y/ny5XjllVfw+9//vte6X/7yl7juuuuwe/duLF26FNdffz0OHDgQpV0Txbabb74ZK1askN5/+eWXccstt/RaY7Va8eCDD2L79u343//+B7VajW9+85t9XoV96KGHcN999+HAgQO45JJLIrJ/IvJ45513MHHiREycOBFLly7FihUrcPqxdD/96U/x5z//Gdu3b0dmZiauuuqqXlnRrq4uLFu2DC+++CL27duHzMzMSD8MIvInUFTdeOONgkajEUwmk/S2ePFi4dxzzxX+8Ic/9Fr7+uuvCzk5OdL7AIQ77rij15q5c+cKd955Z0T2TqQUN954o3D11VcLjY2NgsFgECoqKoQTJ04IRqNRaGxsFK6++mrhxhtv7Pe2DQ0NAgChvLxcEARBqKioEAAITz31VAQfARH5O/vss6XfQYfDIaSnpwtr164VBEEQ1q9fLwAQVq5cKa1vbm4W4uLihHfeeUcQBEFYsWKFAEDYtWtX5DdPRP3SRjViIgDABRdcgGeffVZ632QyYfz48di+fXuvzIrL5UJPTw+6uroQHx8PAJg3b16v+5o3bx527doVkX0TKU16ejouv/xyvPrqqxAEAZdffjnS09N7rTl27Bh++ctfYsuWLWhqapIyLJWVlSgtLZXWzZo1K6J7JyKPQ4cOYdu2bVKpp1arxXe+8x28/PLLuOiii6R1/n8/U1NTMXHixF6VCnq9HmVlZZHbOBENikGLDIhBij+3243HHnsM1157bZ/1RqNx0PtTqVQh3R/RaHLLLbfgnnvuAQD84x//6PP5K6+8EgUFBXjhhReQm5sLt9uN0tJS2O32XutMJlNE9ktEvb300ktwOp3Iy8uTPiYIAnQ6HVpbWwe9rf/fz7i4OP49JZIRBi0yNWPGDBw6dKhPMHO6LVu24Pvf/36v9/2bhokoMJdeeqkUgJzei9Lc3IwDBw5g+fLlOPfccwEAmzZtivgeiah/TqcTr732Gv7yl79g4cKFvT533XXX4c0335Qyolu2bJEmA7a2tuLw4cOYNGlSxPdMRMPDoEWmfvWrX+GKK65AQUEBvvWtb0GtVmPPnj0oLy/H7373O2nde++9h1mzZmH+/Pl48803sW3bNrz00ktR3DlRbNNoNFKJiEaj6fW5lJQUpKWl4fnnn0dOTg4qKyvx8MMPR2ObRNSPVatWobW1FbfeeivMZnOvzy1evBgvvfQS/vrXvwIAfvOb3yAtLQ1ZWVn4+c9/jvT0dFxzzTVR2DURDQenh8nUJZdcglWrVmHt2rWYPXs2zjrrLDz55JMoKirqte6xxx7DypUrUVZWhldffRVvvvkmpkyZEqVdEylDUlISkpKS+nxcrVZj5cqV2LlzJ0pLS/GjH/0If/rTn6KwQyLqz0svvYSLLrqoT8ACeDItu3btwldffQUAePzxx3H//fdj5syZqK2txUcffQS9Xh/pLRPRMKkE4bQZgEREREQKtWHDBlxwwQVobW1FcnJytLdDRMPETAsREREREckagxYiIiIiIpI1locREREREZGsMdNCRERERESyxqCFiIiIiIhkjUFLhCxbtgyzZ89GYmIiMjMzcc011+DQoUO91giCgF//+tfIzc1FXFwcFixYgH379kmfb2lpwb333ouJEyciPj4ehYWFuO+++2CxWHrdT2trK2644QaYzWaYzWbccMMNaGtri8TDJCIiIiIKOQYtEbJx40bcfffd2LJlC9auXQun04mFCxfCarVKa/74xz/iySefxNNPP43t27cjOzsbF198MTo6OgAANTU1qKmpwZ///GeUl5fjlVdewZo1a3Drrbf2+lrf+973sGvXLqxZswZr1qzBrl27cMMNN0T08RIRERERhQob8aOksbERmZmZ2LhxI8477zwIgoDc3Fw88MADeOihhwAANpsNWVlZeOKJJ3D77bf3ez/vvfceli5dCqvVCq1WiwMHDmDKlCnYsmUL5s6dCwDYsmUL5s2bh4MHD2LixIkRe4xERERERKHATEuUiCVdqampAICKigrU1dVh4cKF0hqDwYDzzz8fmzdvHvR+kpKSoNVqAQBffvklzGazFLAAwFlnnQWz2Tzo/RARERERyRWDligQBAEPPvgg5s+fj9LSUgBAXV0dACArK6vX2qysLOlzp2tubsZvf/vbXlmYuro6ZGZm9lmbmZk54P0QEREREcmZNtobGI3uuece7NmzB5s2berzOZVK1et9QRD6fAwA2tvbcfnll2PKlCl49NFHB72Pwe6HiIiIiEjumGmJsHvvvRcfffQR1q9fj/z8fOnj2dnZANAnG9LQ0NAn+9LR0YFLL70UCQkJ+PDDD6HT6XrdT319fZ+v29jY2Od+iIiIiIhiAYOWCBEEAffccw8++OADfPrppyguLu71+eLiYmRnZ2Pt2rXSx+x2OzZu3Iizzz5b+lh7ezsWLlwIvV6Pjz76CEajsdf9zJs3DxaLBdu2bZM+tnXrVlgsll73Q0REREQUKzg9LELuuusuvPXWW/jXv/7Va4KX2WxGXFwcAOCJJ57AsmXLsGLFCpSUlOAPf/gDNmzYgEOHDiExMREdHR24+OKL0dXVhQ8//BAmk0m6n4yMDGg0GgDAokWLUFNTg+XLlwMAfvjDH6KoqAj//ve/I/iIiYiIiIhCg0FLhAzUT7JixQrcdNNNADzZmMceewzLly9Ha2sr5s6di3/84x9Ss/6GDRtwwQUX9Hs/FRUVGDNmDADPIZT33XcfPvroIwDAVVddhaeffhrJyckhfUxERERERJHAoIWIiIiIiGSNPS1ERERERCRrDFqIiIiIiEjWGLQQEREREZGsMWghIiIiIiJZY9BCRERERESyxqCFiIiIiIhkjUELERERERHJGoMWIiIiIiKSNQYtREREREQkawxaiIiIiIhI1hi0EBERERGRrDFoISIiIiIiWfv/DZayguPXu70AAAAASUVORK5CYII=", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:01.320930\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "ax = df[df.index<\"2020-05-01\"]['Rt'].replace(np.inf,np.nan).fillna(method='pad').plot(figsize=(10,3))\n", "ax.set_ylim([0,6])\n", @@ -2338,21 +360,9 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAEiCAYAAAB5tHquAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACN10lEQVR4nO3dd3wUdfoH8M+W7KaQbBpJCITeDc3QUQHp9rOhnJzYPVDEqHeW8yfqKRZETiycJ4odvENsKFWKSEdC7wQSSEJ6b1vm98fuzM7Mzmw2tCTweb9eviS73+zOluzO832e7/M1CIIggIiIiIiIiBqEsaEPgIiIiIiI6FLGoIyIiIiIiKgBMSgjIiIiIiJqQAzKiIiIiIiIGhCDMiIiIiIiogbEoIyIiIiIiKgBMSgjIiIiIiJqQOaGPoCLjcvlQlZWFsLDw2EwGBr6cIiIiIiIqIEIgoCysjIkJibCaNTPhzEoO8eysrKQlJTU0IdBRERERESNRGZmJlq1aqV7PYOycyw8PByA+4mPiIho4KMhIiIiIqKGUlpaiqSkJClG0MOg7BwTSxYjIiIYlBERERERUZ3Lmtjog4iIiIiIqAExKCMiIiIiImpA5zUomzFjBvr164fw8HDExcXhpptuwsGDBxVjBEHA9OnTkZiYiJCQEAwbNgx79+5VjKmpqcGjjz6K2NhYhIWF4YYbbsDJkycVY4qKijBx4kTYbDbYbDZMnDgRxcXFijEZGRm4/vrrERYWhtjYWEydOhW1tbWKMbt378bQoUMREhKCli1b4qWXXoIgCOfuSSEiIiIiIpI5r0HZ2rVrMWXKFGzatAkrVqyAw+HA6NGjUVFRIY154403MGvWLLz77rvYunUrEhISMGrUKJSVlUljpk2bhsWLF2PBggVYv349ysvLcd1118HpdEpjJkyYgLS0NCxduhRLly5FWloaJk6cKF3vdDpx7bXXoqKiAuvXr8eCBQuwaNEiPPHEE9KY0tJSjBo1ComJidi6dSvmzJmDmTNnYtasWefzaSIiIiIiokuZcAHl5uYKAIS1a9cKgiAILpdLSEhIEF577TVpTHV1tWCz2YS5c+cKgiAIxcXFQlBQkLBgwQJpzKlTpwSj0SgsXbpUEARB2LdvnwBA2LRpkzRm48aNAgDhwIEDgiAIws8//ywYjUbh1KlT0pivv/5asFqtQklJiSAIgvD+++8LNptNqK6ulsbMmDFDSExMFFwuV0CPsaSkRAAg3SYREREREV2aAo0NLuiaspKSEgBAdHQ0ACA9PR05OTkYPXq0NMZqtWLo0KHYsGEDAGD79u2w2+2KMYmJiUhOTpbGbNy4ETabDQMGDJDGDBw4EDabTTEmOTkZiYmJ0pgxY8agpqYG27dvl8YMHToUVqtVMSYrKwvHjx/XfEw1NTUoLS1V/EdERERERBSoCxaUCYKA1NRUXHHFFUhOTgYA5OTkAADi4+MVY+Pj46XrcnJyYLFYEBUV5XdMXFycz33GxcUpxqjvJyoqChaLxe8Y8WdxjNqMGTOkdWw2m40bRxMRERERXQJqHS58t+MUckurz/q2LlhQ9sgjj2DXrl34+uuvfa5T9+0XBKHOXv7qMVrjz8UYwdPkQ+94nnnmGZSUlEj/ZWZm+j1uIiIiIiJq+lbsO41pC9Pw+tKDdQ+uwwUJyh599FH88MMPWL16NVq1aiVdnpCQAMA3C5WbmytlqBISElBbW4uioiK/Y06fPu1zv3l5eYox6vspKiqC3W73OyY3NxeAbzZPZLVapY2iuWE0EREREdGlobDS3cW9uLK2jpF1O69BmSAIeOSRR/Dtt9/i119/Rbt27RTXt2vXDgkJCVixYoV0WW1tLdauXYvBgwcDAFJSUhAUFKQYk52djT179khjBg0ahJKSEmzZskUas3nzZpSUlCjG7NmzB9nZ2dKY5cuXw2q1IiUlRRqzbt06RZv85cuXIzExEW3btj1HzwoRERERETV1Lpe7os55DrbPOq9B2ZQpU/DFF1/gq6++Qnh4OHJycpCTk4OqqioA7pLAadOm4dVXX8XixYuxZ88eTJo0CaGhoZgwYQIAwGaz4b777sMTTzyBVatWYceOHbjrrrvQo0cPjBw5EgDQrVs3jB07Fg888AA2bdqETZs24YEHHsB1112HLl26AABGjx6N7t27Y+LEidixYwdWrVqFJ598Eg888ICU3ZowYQKsVismTZqEPXv2YPHixXj11VeRmppaZzklERERERFdOhyeoMx1DrY0Np/9Tej74IMPAADDhg1TXP7JJ59g0qRJAIC//e1vqKqqwuTJk1FUVIQBAwZg+fLlCA8Pl8a//fbbMJvNuP3221FVVYURI0Zg/vz5MJlM0pgvv/wSU6dOlbo03nDDDXj33Xel600mE5YsWYLJkydjyJAhCAkJwYQJEzBz5kxpjM1mw4oVKzBlyhT07dsXUVFRSE1NRWpq6rl+aoiIiIiIqAkTM2WucxCVGQThHOTbSFJaWgqbzYaSkhKuLyMiIiIiukjNXXsUr/1yAIPax+DrBwdqjgk0Nrig+5QRERERERE1RdV2J+atT8fRvHIAgFMqX2zka8qIiIiIiIguBu+vPoKXf9qHEW+tBcCgjIiIiIiI6ILanF6o+Nl5Dht9MCgjIiIiIqJLWlZxFT75PR0VNQ7dMeqEmJghc56DqOy8dl8kIiIiIiJq7G5493fkl9fg0OkyzLi5J0qr7diZWYxB7WNgNrnzWOoyRbEl/rnom8hMGRERERERXdLyy2sAAL8dzgcAvLn0ICbO24Ll+05LY9SbRDeZzaOJiIiIiIiaCqPBAAA4XVoNAMj1/B/w3Y9MLFt0us7B/Z79TRARERERETV9RndMJpUmOmVxmHrpGMsXiYiIiIiIzjExUyYGXPLsmLqhx7ls9MGgjIiIiIiILhm1DhfKqu2a13liMjhd7ppE+XoxdaMPrX3KBEHAc4t3Y9byg/U6JgZlRERERER0ybjjw4244vXVmu3vTZ76RYfTNwumrlLU2qfsSG45vtycgXd+PVKvY2JQRkREREREl4wDOWUoqbIjR9bEQ+SvfFEvUyYP3CpqnWd0TAzKiIiIiIjokqEVcIkMqqBMXr6obn0v/iwP1pSZtcDXmjEoIyIiIiKiS4bTz/5iRtWaMkWmTKclvl4zkPo0ZWRQRkRERERElwRBEDTLDkVS+aLTN3BTD9daU+b0U+7oD4MyIiIiumAEQTgne/oQEZ0Jp58W94DGPmWyjaF1W+LrdGisT6d8BmVERER0QbhcAm56fwP+/NFmBmZEdMEcyyvH5mMFALzBFqAdlIlryvTa3cuJ2TS98sX6ZMrMAY8kIiIiOgvFVXbszCwGANidAixmQ8MeEBFdEq5+ay0AYGXqULSwBUuXawVN3kyZZ58yl37my1VHo4/6YKaMiIiILogznUEmIjoXjuSWqTJlvmN81pTJxwfQEp9ryoiIiKhROxezyUREZ8poMMAhi8Q015QZVfuUydeIqcaLY+Sxl7/GIH6PLfChRERERGfO34wzEdH5ZjYZ6sxkeVvi+2bB1OM1G30wU0ZERESNmeLkhpkyIroA5J81JqNRUb7o0MqUSeWLnn3KAmqJr32b3KeMiIiIGp26WlETEZ1rdpe3XNFsNNQ5OSQFZVqZMnVLfJfy/4D/bo3+MCgjIiKiC0Je4sPyRSK6EOxOeabMEEBLfPf/NfcpU7fEFzs06qyX5ZoyIiIiuqBySqpxzb9+w4ItGbpjmCkjogvN7vBGVSajAU5ZWktrcsjoZ58y9RoxMd7TK1/kmjIiIiK6oDanF2Bfdim+SzulO4ZBGRFdaHZZqssAVdCkWb7oLjvUbvShHCv+viB4SxXl98c1ZURERHRBaZ3A6I0BlGswiIjOl1pZkOQSvPuPAfqZMkWJYwAt8cXbBpS3zzVlREREdEGJAZdWNzP1GIBryojowpCvKXO6hDoz9gaDfjMQn5b4GrdlVwWBgWJQRkRERGdNPFnx1+pebzE8EdH5oiwnFDQbfSjb5kO3GYhPS3yN9WZcU0ZEREQNxhFApuxMN1UlItKzbG8O9mWV6l5f61BmrrQyZfLPLaPBIO1R5v6dAEuyxaBMHgQG8gA8zPUYS0RERKRJDLj8ZcAUm7Y6GZQR0dlJyyzGQ59vBwAcf+1azTHqzJXD5RtwOdVBWYBNibQCPHm5pMslBJwCY1BGREREZy2QNWXMlBHRueQvQyayq7Jein3HPP+WB2oGg3r9q/5ta5U2ym+L3ReJiIjognIEkCnjmjIiOpecAbRxle9TJgjQ7KzoL1Pmd52sxjh5FUB9Jp+YKSMiIqKzplUGpMbui0R0LvnLzItqVZkyQZ4p81wnvx2DQbkuLOCJJmmfMllL/DqPzuu8ZsrWrVuH66+/HomJiTAYDPjuu+8U1wuCgOnTpyMxMREhISEYNmwY9u7dqxhTU1ODRx99FLGxsQgLC8MNN9yAkydPKsYUFRVh4sSJsNlssNlsmDhxIoqLixVjMjIycP311yMsLAyxsbGYOnUqamtrFWN2796NoUOHIiQkBC1btsRLL71Ur/0FiIiILlXiOUzg+5Tx+5WIzk4ga1MVa7x8MmWe/8su08umadEqydZasxaI8xqUVVRUoFevXnj33Xc1r3/jjTcwa9YsvPvuu9i6dSsSEhIwatQolJWVSWOmTZuGxYsXY8GCBVi/fj3Ky8tx3XXXwel0SmMmTJiAtLQ0LF26FEuXLkVaWhomTpwoXe90OnHttdeioqIC69evx4IFC7Bo0SI88cQT0pjS0lKMGjUKiYmJ2Lp1K+bMmYOZM2di1qxZ5+GZISIiuriIZUQOP+VEde0PRERUH1qZsl0ni5FbVi39bFdlvTRLDlXBVaATSMoyR/H+zmzz6PNavjhu3DiMGzdO8zpBEDB79mw899xzuPnmmwEAn376KeLj4/HVV1/hoYceQklJCebNm4fPP/8cI0eOBAB88cUXSEpKwsqVKzFmzBjs378fS5cuxaZNmzBgwAAAwH/+8x8MGjQIBw8eRJcuXbB8+XLs27cPmZmZSExMBAC89dZbmDRpEl555RVERETgyy+/RHV1NebPnw+r1Yrk5GQcOnQIs2bNQmpqKgwGw/l8qoiIiJq0QDJlLq4pI6JzSL2mLLOwEje8+zsubx2JbycPAaC1T5ksSNPYX1EQVIFcfTNlTW3z6PT0dOTk5GD06NHSZVarFUOHDsWGDRsAANu3b4fdbleMSUxMRHJysjRm48aNsNlsUkAGAAMHDoTNZlOMSU5OlgIyABgzZgxqamqwfft2aczQoUNhtVoVY7KysnD8+HHdx1FTU4PS0lLFf0RERJcarQXzaoGWBBERBUKdKcsqrvL835spq+8+ZQICz5RpNS9yqAK8QDVYUJaTkwMAiI+PV1weHx8vXZeTkwOLxYKoqCi/Y+Li4nxuPy4uTjFGfT9RUVGwWCx+x4g/i2O0zJgxQ1rLZrPZkJSU5P+BExERXYS85Yv129OHiOhMqdeUiaWD8kyX7z5lvgGXPOPmcgU+gaRei6a+70azpiwQ6rJAQRDqLBVUj9Eafy7GiHWg/o7nmWeeQUlJifRfZmam32MnIiI6Gx+sOYrBM1bhlGdGuLGob/ki9ykjorOlngSq9fSckHdcVAdJ8kDOEcCaMqefrvtaHWWbXFCWkJAAwDcLlZubK2WoEhISUFtbi6KiIr9jTp8+7XP7eXl5ijHq+ykqKoLdbvc7Jjc3F4BvNk/OarUiIiJC8R8REdH5smJfDrJKqpGWUdzQh6IQSKZMfjLk70SHiCgQTpdyvZhYqigPjGpV+5Q5NbojOlQdGhWBlct33Zl0/1rli07f7FkgGiwoa9euHRISErBixQrpstraWqxduxaDBw8GAKSkpCAoKEgxJjs7G3v27JHGDBo0CCUlJdiyZYs0ZvPmzSgpKVGM2bNnD7Kzs6Uxy5cvh9VqRUpKijRm3bp1ijb5y5cvR2JiItq2bXvunwAiIqIz4F230LiiGjb6IKILza4KgGqkoEzQHKMuX3RK5YvKjolaGTD1hJPLJSiCLrHCzt4Y15SVl5cjLS0NaWlpANzNPdLS0pCRkQGDwYBp06bh1VdfxeLFi7Fnzx5MmjQJoaGhmDBhAgDAZrPhvvvuwxNPPIFVq1Zhx44duOuuu9CjRw+pG2O3bt0wduxYPPDAA9i0aRM2bdqEBx54ANdddx26dOkCABg9ejS6d++OiRMnYseOHVi1ahWefPJJPPDAA1Jma8KECbBarZg0aRL27NmDxYsX49VXX2XnRSIialTEEwz57G9jIN88Wq8NtDw7xqCMiM6WOngSPxflre/tTj+NPjQCLgHqVvfaTYzUa82k2zrD8sXz2hJ/27ZtGD58uPRzamoqAODuu+/G/Pnz8be//Q1VVVWYPHkyioqKMGDAACxfvhzh4eHS77z99tswm824/fbbUVVVhREjRmD+/PkwmUzSmC+//BJTp06VujTecMMNir3RTCYTlixZgsmTJ2PIkCEICQnBhAkTMHPmTGmMzWbDihUrMGXKFPTt2xdRUVFITU2VjpmIiKgx0Orw1RgoN0wFTBrzmU6NVtRERGdKnfVSZshcMBlNvmvK6gi41OvOvIGbciJMHaSJVztUmblAndegbNiwYX43TTMYDJg+fTqmT5+uOyY4OBhz5szBnDlzdMdER0fjiy++8HssrVu3xk8//eR3TI8ePbBu3Tq/Y4iIiBqSXVy71cgWZckPx+Fynwz5jgmszTQRUSDU68NqHU7pZ7vTheAgk6Lph8ul3cRDPamkmEDSy5SpgzKpfFG2hq0ej6XBuy8SERFR4BxSy+fGFdS4VDPWWuSHzPJFIjpb6gYdyq6Lns9Kh3KMsuGQt9xRJOhk09TVCep2/NqNPppA90UiIiKqv8ba6ENr8byaInBj+SIRnSX15458ra1YtuhQZdO0yqjV5YvKn+EzBlBmxMTfk9+v/HcDwaCMiIioCRG/8BtdpiyAzopas89ERIFwugRsP1GIGlmJorokWh6UabXHV2fBtLrGCoLy81Vr/zHAN1Pm0mgaUp/POQZlRERETYhWiUxjID+p0WtCogjcmCkjonr43/ZM3PLBRsxdc0y6TN3Eo1bV6AMAalXli1prW303j/bdp8wnU+ZUZ8rc/5ev9+WaMiIioouUVklOY+AMoHwxkDFERFoyC6sAACeLKqXL5GvI5C3xAdmaMj/dF7XLF6E5xmdNmU7jD/W+aIFiUEZERNSEaH3xNwaBZMoCWXdGRKSl2u4uW6zRKFEE3C3pa53K7ovy/wOBZcp8No/WyZSpO+C6NFrnN5rNo4mIiOjcskvli40sUyb4nuioBdKhkYhIixiMydeUyYMydaasViMoc68p8/7skAIuZSClyHbplIzXqoOys9ynjEEZERFRE+LNlDWyoCyATJkicOOaMiKqBzEYq9EIvADfRh92z79rncrJIKdWaaIqkNLq0KguGfdpia/REISZMiIioouQvKzG3sgyTcpyH+2AUWvTViIiPfIgq9ruyZTZdcoXBUFnnzJl+aJDIwvmb02ZlAHzWVOm1xKfmTIiIqKLmvykoNGVLwaSKXMxU0ZEgVlzMBddnv8Fn286AUCeKdMpX3QJik6L4voydaMPrfVi6jVlDo2W+L7dF1Ut8TX2kGSmjIiI6CIkP1Fo1C3xdY4tkDFERADwyFc7IAjA89/tASBfU+YNempUWTB5pkwM0OzqgEtjcshv90WdNWW++5S5b5+ZMiIiooucfAa20ZUvBrBeTGstBxGRFrHbokgsW9RdUyYIqHVodF9UBW51dVYUIPiUYLtUa9EA3/JF9Xo1gJkyIiKii5IyU9YEyxcD6NBIRAT4fo5UB1S+KF9TptUSX6/7onINmc8eZKrfA7QyZYLP7zFTRkREdBGSf+E35n3K9NrduzQyZQIzZkQUgJp6N/oIYJ8yjY2hXao1ZYD7d9SXqTvgugRB47IAHpgHgzIiIqImQjnD27gyZfIZ4UDWlInlQDe+9zvum7/1vB8fETUen286gRFvrcHJosqAf0erJb48a+ZyAXZFow/fbojqNV/e8kVlcw71xJJWFkxdQq4VuNVn0olBGRERURPRmBt9BLJhqjqblp5fjl0nS7DqQC6qap2av0NEF5/nv9uDo3kVeGv5oYB/R2qJ7wnEHE6XIhPlVGfKpH3KlCWO6lJFQNV9Eb6lilrrxdQl5IIA2FW/V59PaQZlRERETYSyfLERZ8oCWFPmHmOQfs4tqz5vx0ZEjVN9Psfk3RcFVQAGBLqmTFlloNXuXr2XGSCuM6tj82iNTBnXlBEREV2EnBoL1BuL+m4e7RIERXe1vLKa83dw1GD01hcSAYDVbAp4rJghEwR3SaI8AHNfLihKG7W6LwoB7FOmVaroFHwzZeqsmFNjLRrXlBEREZ0nvx/Jx4i31mBLeuEFv2/5WojGlimr7z5lTpcyKMtlUHbReeq/OzHg1VUorqxt6EOhRspi9oYieh1lxTHyBh81DqdPUObOlMk6M4pryvwEXJot8TXWlDldvoGa1voxn/JFZsqIiIjOj2V7c3A0rwIr9uVc8Pt2KIKyxpWBkJcm6mVH1JmyKnlQVsryxYvNb4fzkV9egwM5ZQ19KNSIyAMVqyfgemPpAfR5aQWO51f4jLeajXC5BNXG0C5FVgxwfwapJ64EVUdEvX3K1GtitVrb19V90enSCtR8Ho4uBmVERET1UFHjDiQqG6AxhaL74nnMlC3dk42Br67C5mMFAf9OIBtDu1SBm7y5BzNlF5/KWgcAoKLG0cBHQo2JPJgSg7K1h/JQVuNAWmYxAOXnidVs8lk/VuNw+VwmCPBp9OF0CYrASB1cuaQ1Zcrui+rPV3ejD9WaMo3ATatNfqAYlBEREdWDeKLZMEFZ3c00zoWHv/gDOaXVeHxhWsC/E8g+ZcqyISgyZVxT1jidzT5yYre8cgZlJCN/PwSZ3KFIcaUdAFBW7f5/Ra13jNVsVJQuAp6gTJUpq3W6FJ89dqfLp6JAXZoolS8K/jNl2uWLvgGYb6CGgDEoIyIiqgfxhKIhZv8dF3hNWW0dJZJZxVXScWitKbM7XRj/742YOG+ztC+ZyOlyndM1ZUfzyvHENzuRrlH+RGfmvdVHMPi1X+u1l5TI4fRmMsTsMhEAlFd7PzvFIKakyh2MlVb7fr6ajAZUO5TvIa01ZTV25Zhap2+HRnfg5L/7ot4+ZT6NPnw6NDJTRkREdMGIGbIqe0OXL9Y/g/HV5gxsqkdJYkSIWfe6bccLMfi1X/HQ59sBaM8+/7InB5vTC/Hb4XwUVtYqyxcFnNPyxYc/345Ff5zEXR9tPqvbIa+fdmUju6Qa208U1ft3K2V/H5W1zJRdygRBUGRc5ZmyWk/GS7ysVMyUycY4XYJvpszuW76o/kx2Z8r87zfmCnBNmWamzKf7osZkGTNlRERE50fFBcyU5ZXVoLDC27lOWb7o/fIvrqzFjJ/3+80SbTiSj2cX78YdH27ye5/yxxUeHKQ77qPf0gEAvx7IBaBq9OH59xebTigei+LExyWgSnailXeW+5Qdzi0HAJwqrjqr2yEvsaT0TMoPq2UBN8sXLy0fr0/HnFWHAbgDsjs+3ITb/71RCoDKZJkyu9MlZcnk15XLsqt2p0tqhy/SKl+sVgVuWkGZe58y7+dQabUDD3++HYt3nJKNETRLE303j/bNlHGfMiIiogtEzJRV1jpRbXeioLz+GZ788hrc+eEmLN5xUndMjcOJfq+sxOUvr5BOEPS6L85eeRj/XncMM5cd1L09ebbD395RJ4tkQY2fE4oKVfZDUb7oEnAwp0yxbUBeWY1vow/ZzHZBRe1ZNS8JtQS+3xHVzeF0oaDC/d6Wn0QD7hPt6T/sxfzf03V/X77m8mwnMCprHfjb/3Zi9cHcs7odOv+q7U689NM+vLXiEHJLq1FQUYvN6YXYerwIBZ4JJnWmTL5lQplG+aLDJfgEXFrli1W1Gpkyh2/bevlnVWFFLZbuzVEEaoLgu2bX6fLNgtVVGum+DAFjUEZERFQP8kYfN733O1L+uRKn69nOfe6ao9h4rACPL9ypO0aeIRNL+5wa3RftThd+2JkFAPgjQ7/MLF8WPBb52TdKvn5IPoOtpj7RVpQvOl34Zlum4vq8shqfDo3yNWWC4A4cXfU5i5GJCrWc0e/JCYKAPadKmNmB+/0nxtDlqqDseEEl5m84jteWHtBtBFKpyJTpl/oez6/AK0v2IddPpnTNwTx8s+0k3vFkX6jxkjfsqXG4FD+Lnzvyzw6704ViRabM/e9y1RifTJndtyW+et1ZrUNvTZn/zxh123zAt+xRvEzxs6olv3h/gWJQRkREVA/iyUJlrUPaf0ks4QtUIOvR5LO+2SXuE1bFHjyeE4K1B/OkAC67pBpHcss19/o5mue9LN9Pdi+zMLCgTN19Un6CUu1w4fs0dzmQLcRdAplXXgP5+YpL1RIfAMZ/uAkv/LBX9z79Ee8HgCLYk9/fkdxyv90E/8goxnVz1uPpRbvO6BguJvI1fuogVTy5rra7dAPYqgDXlE356g/857d0TP7iD90x4vs1t/TsO3QePl2Gzzed8JstpjMnf99U1joVQZn4OVUme8/UOF1S50VAJ1PmFHwCMK2W+NW16kYfLs3MVV2vvaBTvqgO5rQ6O/rsU+b3npQYlBER0UVNzH6oZ1rPhFNWRlMqyx6os0ZZxVXo98pK/POnfQC8s78irQAis7BSEUzIO9ZledZJKTscuo9jcZp3LQQAjJy1FiNmrcXerBLF5fINfP21n8+UlS+WVjt0gxh1+aJ8Rnj1gVzkl9ciJsyCW1NaSffpVHU90wpOv9qScUYdFC1m7ylNTolv1uX1ZQcwctZafPz7cd3bEO9XHsBeTOxOF47m+Q9MRfL3SKnq/SsP1gvKtbOuVQGWL+7NKgUAbPPTTES8j/zymrNq0Q8A03/ci+e/24PfDued1e2Q166TxdhwJB+A8n1TWetQZujF8kX5mjKHS5G5L63ybfThUHVqBbTLF6tVP9sdvuWLWuvF1PQaffiuKfNtIqIOAuvzfmVQRkRNVmWtAze99zte++VAQx8KNWK/7MnBdXPW442l+uutAiWf8ZefEKjX3Kw6kIu8shp8sy0T760+gh7Tl+Pln/ZJX+Jmo0Eam11SjfWH83HVm6sxXZYlkgc92SXuQEm+pkGc8T3kCbbaxoRK1zldAlbsOy39XFBeozg58heUycsXnS5BNxMiDxodTpfiJGazZy3ZDb0T0cIWLN2n/BzGHeC6b6N/u2iMvSwBfdtEwekSzqhMTR4EZJX4Nvv499pjAICXPYGylnJP8FHip7zzfDhVXKVYV3O+vLJkP0a8tRZrDukHJAdzyjD0zdV4f80R6TJ1+WKpPCir0H4vyf9W/JWDhgWwFlDMsNQ4XKg4y/0Bs4rdAbt88qExKKm049GvdzS5dXMOpwt3fbQZf/l4CwrKa5An+5ypUmfKKsU1Zd73j93pQolGpqxMUb6otabMt9GH1poyrQ2m68yUQbs0UZ0F0+rsqNUmP1AMyoioydqRUYy0zGJ8tvH4Wc+eNrTcsmrsOlnc0IdxTpxNs4bzYc8pd8Zo96mSOkbqq3E4cf+nW/GvldrBgrqd+56T7vsqrXbg3V/dJ7fz1qfjlZ/3A1CusTlVVIVvtmVCENwBpHgyIJ8pFk8kfffJcUknrCO6xSuu23DU2/r+4OkyxXX+yxeVJ6t6JYzy46uodWr2BElOtKF5uBWAp9GHqm2+GJTd3Kcl5k5MwbPXdgMA/LInW/f49FTafZ8vfw7mlOHpRbsUjVrEE8JiP2Wb51pOSTVGvrUWd3+85bzf175sd1bqDz9ZqbeWH8SJgkpsPe4dow6q5EFZvl6mTJX1XbnvNA6r3ocAEO8J2gHorisrlAWs+ToTCoIg4O6Pt2DSJ1v8ngiLr7e/iYntJwox7M3VWCmb2DjfluzOxo87s/Der0fqHtxAckurMezN1YrPweMFFSitdsDhKQ/O81O+qJUpq3W6UFwlb/Thmylz35by5xq7E7Wq6gd1Ns3udPkEagGtKdNof+/SyIKpx2iXPfq9KwUGZUTUZImtrytrncjSKFdqCDUOJ27/90ZM/XpHvX7vgU+34YZ3f9dcC9RQymscOJLrexLlz9I92ej+wjJpPVFjIK7HOuWZGT+SW44b3/sdq+tYB3aquEo6Qdh+oggr9+fio/Xa3eZyVJkZeQAoPzn97bC7xEd+wpGeX45V+90nfyVVduz3nDiXK4IyT6ZM9Q1f6/SW/oxNTlBctyOjSDqROZSjfB31TkjLaxw4mleuuCwtsxjbjhcqLqu2OxVrPNTlmSJrkNEblJXXKDdtlXVfDPFkSzo0b+a5feXC/t0nS/DFphN+J18Ua/ACaIs/ZvY6LNiaiRmyTLt3vaBvadT5siOjCFV2J3aeLPEbLAd6W1O+/EO38Yx4+8cL9DeDNhh8L/MJymQn1QXltRAEAQu3ZkglbIDy9dh9qgT3f7YNo95e5xMwyZ/nfZ5SRrVCWeCn9xwVVNRi7aE8rDmYpyjVlbM7XdKx+9uCYemeHBwvqFS0SddyNK9c0ZBHyxtLD2Dyl9vrnKw67PmszTyDjbovlJnLD+J4QSXeXnlIukz+XKfnVyie10q7U5E5K6xwf04osmAOAUWyTFlFrRNOl+Cz4bg6SNNcU6b6m611CsgrV77OWmWIau61YVqlif5b4n+/MwtPf7tbeVt+70mJQRkRNVlZshOvI7nluuMcGp2bzoQgCFh/OF/3BBQA0jKKsSW9ED/szPLbJEGu1uHCHs/JiPqEuCE9+Nk2jJy1DjsziwP+neV7T6PW4cJaP+VRou0nCvHTrizp54oaR50nOFqKK2vx+MI0RbmenBi855RWw+F04fONx7EzsxgvL9nnc5JfVFGLvVklyCysxNUz12DM2+uQU1JdZ+YlWzYpUG134pAqIyBWK572jCuXzfou2JqpKMnacNR9Ylup0ejDqTpRKCivlWZieydFYt7dfbF48mC0jAyB3SlgmyfboZ600MtuLNuTgxqHC+2bh6FjnDtAeuSrHbh17kZpnda/Vh7Gg54No0V65WnBZhPi5JkyeaMPwdvoIzjIHZQ1s3o3q5aXhE5dsAP/+G4Plu3N0bwfQFlO+daKQ0j9Jk1RXiS/bXnQclB2Uik/WZT//X7yezo+1gnIBUHA2ysO4aPfjukem9yJggrFCZ88i5mWUez3d/PKavDe6iO6n0GvLNmPJbuz8YnOujkxy3SiQH/yJzLEt4tlWbUD6w/nS9n8EkWmrAbL9ubg74t2Y4Js4251IxjRLlXGWn5bYiZPTf65oPfeLZKN2X6iUHOMvKGEv0xZjqehiL/vleP5FRjx1lrc+N563TG1Dhfmrj2Kn3fnSJ/xesT7Ol1ao9moptbhwofrjioa8QDAgi0Z+GW3/8zy9hOF+Oi3Y34nNTYfK8DY2euww9PBdcmubPR4YRl+lwXaWsHuIZ+gTJYpq1GuKSv0lLrKM2U1qvJFAMgorJRKtkXqstVAyxfVr3Ng3Rc11pQJApx1lC+e0Jjs4JoyImq0yqrtPh+cZypbdqKsVRYDuD8QJ/xnM654fTUKK2rx322ZPifMgVr0xyncNW8z7pq3xefDWLRDFsDoHZMor6wGryzZh43HCqSZO/kX2J5TJbjnky04kOP/y/xcE2v8xfK3umaL5Q55ZnvFgDm7pAov/7TPp/GCyyXg/k+34ZGvduDQ6TIcz6/A1W+twdA3Vvt8QYvSMoux+6RvCeKiP05h8Y5TeOCzbZr7folf7k6XgJzSamw85n5cx/IqFPtoVdU6ccsHG3DdnPV48ce9qHG4kFVSjXvmb60zgymfIDh0usznC/3G3i0BuE/6Kzz/icRGB2LzD/F5l485nl+BeevTcUx1HLme4CIi2IwgkxEjusWjT+soDOoQAwDSYxXLzdrHhgFwv6Y9py9DjxeW4a3l3rV233ta69/Yq6WiGQngDmTKqu14e+UhrFMF3eo1RyJrkBHNm7nL00qqlH/7Ttnm0SGeoMxkNEjBk3ibGQWVUgOOJbvdQVm13ak4UXe5fJuGfPvHKWw+5n195Y9nwRZvu3758yx/HGKwcPh0GV78cR9e+mmf5nvzQE4Z/rXqMP65ZL/P9bml1Zi2YAem/7AX244X4ts/TmLom2vwoSyAk38e7cjULysE3FmXN5cdxNsrfMtoc0qqpWYZ6swm4M7ii1mi9PwK3ZNFdVMPwB3E3f3JFtz98RYIgqBcU1Zegy83Z0g/i2vj9DqMLpcF1k6XoAi+dTNllXVnyuTvh83p2kGZvKGEuuRYTpw8Sc+v0M2qrPcEK5mFVYqAUC6jsFKaiNivE3CK5AFglkam93/bT+LVnw8oupMePl2Gp7/djb9++Yd0nN9szcSvB5QTVLd8sBH/XLIfy/a6L/9i0wlM/XqH4u9x/IebcCCnDH/73y7P/WWirMah+PyXBx3i+8c3U+an+6Ln70O+XtbuUJYvAsDwmWukYxWpJ35qHE6fwF8MZk2eWTC70yV17AwOcoc86uyWFq0OjXd/vAULVdt86AV306/vjpv7tPTcFoOys/L++++jXbt2CA4ORkpKCn777beGPqRL1v7sUrz6837NBdBOl7tc4tnFuwNaIF1Z66gzWyIIQp2zGoIgBLwR5pJd2ViwJaPugX4s2JKBm9//3WfWqCmqtjtx9VtrMXDGKvzsmdmrcTjxfdopzFufrvgQFAQBaw/lYf7v6Vi846Si+UBxZS3S8ysUi/mP5pVL7wn5ifverFJsOV6IvLIaPPr1H3jqf7t0SwtzSqox5cs/8MvubDhdgs8X45ebTwAAdmYW6zYikK/VOHS6HCcKKnTXN8z4ZT/+81s6nvgmTbpMPgv83uojWH0wD89+u1t6b+qtuSiurNX9O3C6BDz42Tbc88kWKWv4wvd78PpS3wYp32zNRK8Xl+Om93+XLpN/cQuCgO0nilDraXn++MI0Kfh0ugQcPu0+sRAzO28sPYh569Px4o/KNufH8iukkpVfD+Tizx9txunSGpTVOJAmW1u37lAeHv16Byb8ZxNueu933Dp3gxSIiORr8R5fuBOzVx6SMgkul6AICHefLMGh096Tn69lf59vLjuIY/kVEARg5X5vaeP+7FJ8+4f+Js+Au5xL/FwQSxfljTdGdouXGhrklFZrfob8bWwXAMCW9EI4nC5F5qesxoGXf9qHzzaeUPzOac8JT0wzq+Ly5MQIAEC6p4ugeKLd3lMeKB5zWY1Deg7yy2ukWfEbeyf6BGVOQZACSDV1oxNRcJAJESFmWExG6bF7b897EhUia/YgBmXiba6XzdSv3HcaH647isGv/YqBr66SsqDq/YlEabIgR/7ZPnftUenfxwsqpOOQn/h9vSUDN767Hm/KNuSWBwcOpwvZJVWKrLB67d7XWzLxXVoW5m84jkmfbMWnntfvt0PexyTP1KVpZKWLK2sx7M3VeObb3Vjn6Ri4bG+Oz3fVUtk6vF0nS1BZ6/DZJFdUVu3AxqMF0npLOa097MST1KJKO/LLaxXZrbSTJYrXSDxx15t8k2e0S1XVBDsyiiEIAuxOFz5YcxQ7MoogCIIi6BGDMvXjlz++LemFmt/l8k6R/jJl2aXu91Wt0+WTmRLJ1zht11mjJ+8i6i8oK6u2K7LtWk1IxN/fml6IAzml+Hh9OnbJvuvyy2twMKcMf1u0Cw9/8Yf0GSj/7swsrITLJeD1Xw7gh51ZWLrX/Z6RZ+ZqnS4IgiB9jonvkcpah+J1FzNX8kkFdVBWZVcGZQXlNfg+7RSO53uPye50oaii7qoSn/JFuws7VeuwxYkA8bPW7nBJ5ZMJEcHS46uLAG/DDrGcV93AA4DPGjNRu+bNYPD8IteUnYWFCxdi2rRpeO6557Bjxw5ceeWVGDduHDIyzu7EmuqWWViJDUfypUW4pdV23Dd/Kz5cd0wxM+RwujBvfTrGzF6Hvy/aja82Z+DtFYf0bhaA+0PpqjdW44Y5v+tmOAAg9Zud6Pr8Urz80z7pC+VoXjlSF6bhWF45juWV488fbcZlLyzDN1szdW/H6RIwd+1RTPnqDzz97W4c0ylJyy6pUnxginLLqjH9h73YfqIQM5cfxB8ZxfhcdjJ2oqACf/5okzRbXVJpx9I9OX73gqlxOPHyT/swZ9VhnxmnDUfyceN7v0tlC78eOI1nvt2tuS6huLIWh0+Xac4eOpwuvLJkH+7/dBtmLjuI/PIa/JFRpGi0kFdWg5IqOyZ/+QeW7MrGNf/6DY8tSMPLP+1TlLK9tvQA7v54C6b/uA+PL9yJoW+ukdY33f/pNox+e620Pgdwn9j8fdEu/H3Rbkxd4A26ftzpvc3fj7izBgdyynyCmxqHE3d8uBFLdmdj2sI0/N/3ezD4tV+x3nMfh0+XYUdGsfQB/cGaoz5BkCAIikzZW8sPYuiba/CSRre30mq7FJjma5woOF2ClDH5I6MY6w7n48N1x9D/lVWK9Vrbjhdi4rzNuPzlFbjyjdXI0CifWLzjFJbvO43VB/Pwy54cPPz5dny68QQ+WHNU8f5bue80nv52FyprnYqTiSOy9++cX4/glg824LEFO/D0ot1YvOMURr29DmsP5SGjsFJaZ5RdXI1qu1M6AVu2N0c6gQaUgdR7vx5RXCfOln/02zHc/ckW/LgzS3ouahwurFKtBRPfX2IWaPbKw7j85RVYsCUD+RU1ii/TRZ7gSgw4ftqVjUOny3C6tBqfbFCWpxkNQL+2UQB8y/+0iBMne065j39scgt0iQ9HZGgQBneIkRoanC6t9tlMt31sGO7o1xpBJgMqa53uwM3P37NIDFCjQpUBVIvIEMUxiQFOh+ZhPrdRUFELh9OFfVmlcLoEdGgehraxYT5BWXWtU/MkHtDOrgCA1WyEwWCQ1pXJOV3eRfhipgwAwoPFoMx9m/LyqSq7E6/+fACFFbWodbqk7IJ8xnxwhxhYPe3x5UGOvPxJnsVxCd4shTxTNm99OnaeLMFyWRAh/s27XAIe+nw7Br/2q6L7qzqrLf/bKa9xSKXA4olstd2pWN/1+5EC7DpZrJjIWXsoD8cLKvH1lgyc9sz6nyqukt5nop93ezNQtU4Xuv/fMgx905t5zi9Tfl5N+Ggzbnrvd58GQ8U6mWrRqeIqxeu9M7NY0eTlhCeI0StfPJxbjreWH4TD6VKc5FtMRpwqrkJ6fgXeXHYQr3u+A0qrHIqMRH55DX7enY2+/1yJ2bK1TYWqLFi7Z37GPZ9sUWTD1Zmy5xbvxqNf71AE1oIgSM8z4H5vOF0CNh0rwE3v/S5NZp2UBU5bdcol0/O9r//+7FIIgoDFO04qJoMA3y0YtM4LxNL2shoHxv97E176aZ9iwiC7pFoKjuUl5PLHn19Rg8O55VKZ7irP5NM2WVOXiOAg5JRWS99Lh3PLUW13+kzIFFXUorLWIb3egDsgPy3fSqHKrlgvtjerFI8tSFN83teq3gd6fNc12qXj7hIfDsAbXIoTO7VOQfpOjfMEZf7OAUXuSQj3OHFCSYu63b7IYjJKJev16UFmrnvIpWXWrFm47777cP/99wMAZs+ejWXLluGDDz7AjBkzAr6dWodyDUugL4rWOEFjmaB6nNbNa80SaY+re1AgxyD/Vfl9m41GhAeb8fOebKTnVaBnUiSyi6uwfN9pHM0rR6jFjD/1ScScVUdQVuOAyWjAM+O6YufJEulE6Pu0LLSJCUPvJBvWHy7Ax7+7T55Cgkyosjvx9dZMPDS0AyJDg2A2GmE2GvDu6iMwGQ24d0g7PPHNTuSX1yK/vBY/7szCzZe3ko7vh51Z+GzDcdzWt5WUphezNi9c3x1//98ubDtRhOIqOw7mlEkfJm8uP4gbeidKayEA98nkF5tPYPne04oSi+0niqQZ6pIqOzIKKnGyqBLTFqZBAPDV/QPQt200APeX/sSPtuDg6TL8d5t3rcmPu7Lw1JguMBgMmLc+Hb8fKcDh0+W4e3BbvPvrEVTZnRjdPR4f/qWv4jXZm1WCQ6fLcKKgEvM8ayI+33QCn93XH10TImB3uvD0t7uRUViJf3y3B72TIqVSFKfLhTdu7QXAPev59ZYMvLnsIKrsToRaTGgTE4ahnZtj0uC2aB5uxbSFafhplzvQWLn/NP7z2zHUOFwwGIBpIzojzKpsfTxt4Q7FCfPqA7m4sXdLpGUW4z/r3OU9I7vFY392KU4VV+GX3Tm4rW+Q5n42f2QU4w/Pegxxti62mUU6HrWNRwtwY++WEAQBby0/hAVbM6XXrMbhkp6Dj39PxxWdYvHf7Sel4zlRUIFDp8uxdE8OCipqcU2PFmgXG4aTRVXKWUHPzO2nG4/j1pRWSG5pQ63Dhb/9bye+S8uCFnFWb/epEsUX1awVh6QT8G//OIUbe7fEf7dl4qn/eTe5Lat2IPWbNHRrEYGxyQkY0jEWNQ6nYtLiyf/uVDRoSMssRquoUOk+XAIQGRqkODETN9w9WVSF91a7O4P9ske5tufj9em4s39r6edapwuLd5ySvkhdAvD5xhN4elxXAFDM8IonCM2sZpTXOLAvuxTVdideX3oAggDcmtIK3VpEIC2zGD/uzMKq/ael+yqvcUglfQsfGoTVB3Mx59fDyCyswv+2n0S3FhGK4xQzYH/q0xKniquwYt9p/OO7PZg2ohMEAWgXG4b4CCs2HStE/3bR6N82WtGFzp/skmp0jAuXMofdWoRj8vAOqHW4EBVmQUJEMI7lVeC0Rqbspj4tYTIakGALRmZhFbJLqv22EReJEyfRYcqgJ9EmBmXu66XyRVlQZgsJQmm1HYLgzjKImYZ4z8mLOiirrHXqdrD0lykDgNhwq+JEDACcLm9wFKwVlNU44HIJ+N2zxq5P60jsUK25EgO3yhpvcPfVAwOx/UQhbvlgI9Iyi6XvI/Vz3qOlDaEWEzanF+JgThmSW9p0g0uR+Hcxf8Nxn8kBwHfNjTgh1yspUrE2s6CiFnllNZ5tAgREBJthd7pLMG9493eM7BaP9/7cB1azSXc949K92ejRygbAfaL5h2dSLbllhBSwnSyqwtx1R/H3sV01y/4cLgGPfLUDV3eNw/h+SejWIkIzUyZ3qqjK70l0hme9WpXd9z0RHmxGWbUDc349grhwK3q2igQAtLAFo33zMPx+pACrD+bhQ8/nf2m1QxFsAcAXmzLwxSb35/PslYfxyPCOMJuMimYgotUH8/Db4Xx8em9/DOkYq8imOV2C9Dn/484s3JbSCi/flOzT5OX+z7YpbnPnyWI8NbqL1DgIcG+3UFBei/gIK265vJX0fS+f3Np5sgRTvvpDCp77tI5E1wT355O61P3FH/ZhzqojeO/PfZDSxn1uIC9vFJ9/eeY5u7gKG496JzAWbMlEbmmNlF0F3JPf8qzeL3ty8Px3e/D5Ju+k7+nSasXns9Ml4IHPtikmQcVjOFlUBUEAosMsKK92+GShAmlaYnd4g7LoMIviNerXNkr6/FWXSG88VoAahwtx4VZ0TgjHwdNlUlAW5gnK7E6XVKYqZsr0Aik5QbamzGo2+mxcLR27TqbMYjbCKGXKAo/KGJTJ1NbWYvv27Xj66acVl48ePRobNmzQ/J2amhrU1MhmBUrdH4R3fbQZBwoDK3G7FEQEmxXdmtTEtLz4gf3PJe620QYDMKBdNDYdK/QpF3v2mq4Y36817p2/FdtPFGHwa78CcJ/YXdExFks9dev/WnVY8QH7wZqjuKl3S2QUVuKtFYekTIr6RP/7tFMY1CFGuvxXzxdwbDMLrGYTThVX4V+rDuOBK9sjOsyCfVmluOWDDdJJhvhYAHfAMDY5AY8v3IlVB077BLQPfr4dj4/qjFsvb4VnF++WSmDkM7uZhVUY96/fcH2vRGl2K7esRjFTtnzfaWw4ko/YcCt+3JmFGocLn/yergh8YptZkVtWgz//ZzMWPjQIW48XIsMz07U3q1QxG/bz7hy8eEMyvk87hX8u2S+dJFpMRlTWOrE/uxT7s0vxv+2ZePCq9vhpVzaCTAZMHtYRy/bm4EBOGUxGA5wuAW+vPISYMPcC8kmD2+LrLRnSB91fBrXBZxtPYNWBXDzxzU58n3YKLgG4oVci3rmzD77ekoFnvt2NXw/mKtoniwwG9ySBweB+/cuqHdicXoDNxwpxqrgKYRYT4m3uE2LRpmPuoOyj39LxrifQCLeaERESpDh5FIMssVPfn/q0xC5PCZzYZem3w3lY8OAg6aRInCwQCQLwwg978b+HB+G3w3m6ARngXYi/3vNF2q9tFHafKlGc0G1OL0C13YkvPCcU1/ZsgT/3b4175m/FthNF2HaiCD/tysK6vw3Hin2ncaq4SvqyE5/zlpEhOFVchT9OFOO6nokoKK+RFtl/ef8A3PPJVoRYTDhRUImSKnfJ0utLD0hBtvgefuiq9vj3umPYkl6IXp4TRNF/POtmusS7vzA/33gckwa3RYItWLP9/+ThHfDG0oPYl1WCI7nlsDsFRIYG4c1be8JgMGBfVil+3JmFlftz8cPOLAzpEOMJGN0ndc3Drbi9bxJ6trJh7OzfFJMoaoM7xOCyljasP5yPLemF+N7zmrSMDMGTY7rg+e/2YOrVnZBfj8YjE+dtwVu39ZKyIJ3jwxER7A1sxGAnp6TGJ0C4sXciAKCFLQSZhVXIKq5CZUBBmad8MUzZnKFFpGdvsPIa1Dq8HedaR3uDsp6tbDiQU4a8shrkltVIkwjRntuKUAdldv2gTC+AFDNW6kweoFwHJi9fDPc8Z2XV7ln44ko7goOM+HBiX3yzLRPjkhMw45cDWLHvNEqrPN0SPQFAqOd2Lku0wWw0IL+8FieLqtA83Oqz/mNYl+YoqbJjc3qh9JrVFQgXV7mzA28s094bUV6K6HIJ0mfOU6O7YOLHmxWf/YdOl0mfL10TItCvXRS+2XYSxZW1WLnfXa0w6/beimyL+7FFYG9WKT75/ThS2kTh6q7xyCqugsMlIDjIiOt7JiqyaJ/8no5Jg9squuCJjAb3uqf5G45j24lC/PjIFVJmIyLYjO6JEdiZWaL4PDtVXCk973Kju8dj+b7TfssX37qtF7afKMK/1x3D1uNFaBPjfj/aQoIwtHNz/H6kwGcfuYI6OlJuSS/E4I6xUvA2slscerSMRM8kG77anIEV+07j4S+2Y+m0q3QbCRkNwH+3n0RchBXX9Gjh9/4EwZ0tPKkqMfyfZ+Lus40nsPDBQeieGKH4zql1uBTZzJ9350hBmZhRtZiMqPXsrZVTWo3Ub3bil8euhMMl+F0DB7gDcPkayvVH8hVlpYD7tRa/pwB3wCUPyAD3Z4Z8DACfgAwA/sgoks7LBraPxqHT5T6NUcT3QpjFpLu/XHmNQ7ouKTpUeo3+eVMy7hrYBj2mL0NZtUOqHAi3mlFW45C27hjsWT8LQNrLTB6UiX9jCbbAyxfla8osZhMA7c8FvfVp7goB97/Z6OMM5efnw+l0Ij5euddLfHw8cnK0Oz7NmDEDNptN+i8pKelCHGqTU1rtQKjFhJHd4tE2JhQD20fjsRGdsPDBgXhoaHsAQLcWEVj/96vx8NAOANyz9XPvSsG/J/bFnf2TMC45QSpxeeDKdnjwqg6whQThqTFdEGTy9vAtr3FIAVmoxYRahwsRwWa8cUtPhFvNOJxbjuk/7sW4f/2GH3dmwWDwzswCwOu39EDzcCuKKu14yNNhTN4ieMKANvjrMPcxfrDmKAbNWIVXf96PBz7bhiq7E/3aRuGze/tj+z9GYe5dKQDc62Lu+mgzVu53B2QxYRZYTEbcmtIKPVraUFhRi+e/24M7/rMJSz0ZiOt6er8YWkW5Z70P5JThzWUHfU40Hx/ZGXcPagMA+MvHWzBm9jrM+fUIPlx3DHanIC16Hdg+GqtShyK5ZQQKKmpx/6db8YanFEM+g/76LT2QFB2C8hoHrnnnNzz97W6U1ziQFB2Cl29Kxr6XxmBl6lDMubMPkqJDkF9eK5XwPD6qMx4f1Rk/PHIF5t51OdY+NQwPXuV+jcWTvqu7xkmZjm4tIvCPa7u7P2irHVj0x0k4XAIGtIvG9BsuAwAM7xIHwJ3VUbdaj21mRc+W7mDg9Zt7YpynLfgjX+2QvmymjeyMycM6opnVjPuuaAfA3Uxhb1YJZvzingB4elxXbP3HSLx1ey/F7YtZusOeL5uB7WMwslucYsymY+71Cxs9JXbX9/K+draQIIRaTNh+ogjfp2UpNgYd2rk5ru2pPAEQZ7PXedac3NArEX8Z1FYxptruwqr9udjtCWz+cW03DO4YixdvuAyJtmDEhFlQVGnHf9Ydk95Pdw1sg6s6NwcA3HdFOzw5pjMAb2MBsSFE14RwXJZow5qnhmHF40PROtqdRVt7KE8qt5xzZx8EBxnRJiYUqaM7IybMgiq702cRtHhC8s8/JaNP60hU1Drx8pJ9sDtdUvBv8Zy0x4VbcWuKO4N9LL9CKqXtmhAu1eZ3axGORM8X69Svd2DawjQpSEhu6Q0I28c2Q5DJgLIahzQrbJJt1hwTZsHQLs3RMjJE+kIXS31a2ILROykSPz56BQZ3jEXneO8arEA8991ulFY7YDS4s25yYlDmLl90f8l/8OfLseivg6WT05aR3gyXWOL45OjO0meOmjhTHt1MGZTFhFlgMRshCO77EzNlUWHe4GhAu2hFZ0Rx3Y4Y4KkzZfllNdLM/6D2MYrr9LoBihmwYLPvBsF2l7d7mrx8sZmsfFEsF4wJs6J5uBVThndE++bNpGBXzGyJpXJicBccZJKypGmZxZqldEM7N0dnT9mTmOHSCsr2vzRW+jwuqrBjf3YZqu0uNA+34ov7BiDMYpIW9R/MKZNOwnJKq1Fld8JsNGBA+2hc26MFgoOM6JrgvU9xQrJzQjM8NaYrtj43Eh9OdFc7/LQzG9V2ZSkxALzypx64omMsKmudeOjz7UjPr5BKINtEh+GmPi3RMa4ZHhvRCSltolBtd+HTDcc1M2Vf3j8QD13VHhaTEXtOlWJLeqH0mmx4ZgS+fmCg9HqItDJlQSYDxlzm/uz1V77YPNwqVYUczSuX9oNzB2VxPuMBb7ZJ/j0cZDLgmh7u+xM7coon8wPaxeCxkZ0wvEsc3p3QB8ktI1BW7cDPu7I1g7LHRnTCi57vmg1HCzTL9v88oDUOvDxWeu0OnS7zKTEc2S0OPVvZUFbtwF8+3iKtfVYTv6PENYAVNQ4s8VR0DOqg/Ls6UVCJMbPX4VlVm3XA29FVtGLfaZTVOBARbJb+rtUyCiqldc+JsgnOq7vGYXgX9/eDIAC/7hcnob23M7JbPN68tSd6J0UCcK8Xzi+vRfcWEfjnTT3QKc73s1Isp2+r+iyUEyeMDAagZaT3mMTtMYI85YPi56F6smhwh1gpK6UuX6ysdUrvVfE5CaR8UZBtFC1OLIn+1Kel9Nzp3ZbFU7YN1G9NGTNlGgyqTToEQfC5TPTMM88gNTVV+rm0tBRJSUn45J5+aBYe7vd2AUDrVrXuyqAxUueQzsltaR9X/Y5fHF9R48DB02VoEx3qsxgdAAa0j8Hdg9oitpkVFrMRfx/bBaMvi1eMn3FzTwDu9RP7sktxVafm0u8PbB+DnS+Mht0hIMhswDurjmDu2qO4+fKWeO6abtifXYZ+7aJgNZtQWm3HP5fslxbL920Thek3XIZj+RWY+vUOhASZcG3PRBzMKZdKJFvYgvGXQW3x+tIDMBsNuGtAa0SHWZBb5q5rP5JbLpVatIkJxX/+0heRoe6TmstbRwJwz6qJ2YpPJvVDr6RIuFwCjEYDyqrtWLAlEzOXH5SyIVd2isUrN/XAtuNFCA4yYvYdfTD5i+0IMhulmacRXeNwWUsbIkOCcM+QtiiudM/4iicXI7rGoVmwGX3bRmNY5+b4eXc2bklpBVtoEObf0x/XvbNe+iLv1cqGjyf1w/Pf70FKm2iM79cap4qr8c6qw9KXykNXtcfT47pKr2vHuGboGNcMtQ4XnvjvTrgE9wfRnf3cwZbFbMTYZPeJzMSBbaTnCHDP0F/eJgoRIUG4qXciLGYjereOlGbj5tzZB9f3SpTGJ9iC0b1FBPZll0rrwkSCIOCTe/qjsKIGHePC4RQEfLPN25RBflu3prRCeY0D8zccx4mCSrz04z64BGBU93g8dFV7GAwG9G8bjSs6xqK8xoHjBRUorrRj3m/u90Ln+GaIDrPAFhKFqNAgRa18ZmGVtMbvmh4tpGO4olMsureIwJvLDmLGL/ul2eOPJ/XF1V3jsWj7SekLGXCvL9t8rABbjhfCaACGdYlDiMWEzzeeQJXdKWWdXl96AC7BvUaohadU7Y7+rXFH/9ZYuicbD3/xB+asPiLNzI+5LB4TB7bBtuOFGNU9Xgrs954qRY3DKT2vgzvEAgBCLWbpdc4orMT/fb8HLsH93ryuZyL6tI5CSJAJVrMJgzrE4Kdd2VLWRp4ZDw824/LWUfjnTcm4fs56LNmVjZAgE2ocLoQHmzGofQyW7zuN4V3iEBfuznblldVImStxJhlwf6ZMGtIWr/7sngD47XC+9IXbQxaUWcxGdGjeDAdyyqQMZ/cWEVIAd3u/JFg9QUJrTzMOMbgR12KJ2sWGSdlePX8d1gGlVXZ8uTlDmqltGxOmKMkDgIQI9+fZyaIqKWM5sH0MomRZrhaeL/vs4ippjWhSdChaRYXggzVHoSaWtKozZQaDAS1swThRUInskmopax8RHIQXru+OTccKcO8V7aRKgDxFpsx9nPLJLgDYnlEkZSXn39sP+7PL8OmG41i845Ru+aJ4QiN2PpOTZwvlQVmEFJQ5pNsNVwUG4s9isCn+XYXKMm69kmzYfaoEu0+VSCeScr2TIqXs2fECdzdCdYlUVGgQQiwmRHoyfcVVduzLcr+PLkuMwBWdYrF7+hg4BQE/7spCeY0DJ4uqkBQdKq0BahMTiiCTEW+P740ahwsfrj2KAzllOJRThnRPqV+vVt7jG9alOWKbWZFfXoPdp0qQ7mmK8OqfeiCmmQW9kyLxyT39cPfHW7DhaAHmrT8mBZdtYkIRHxGMlalDAQBdEsKx/UQR/rf9pJQBGtg+GpvTC3Fn/9YY1CEGgzrEILukGj/szMIHngYoFpMRYRYTDAYDwoPNirLsk0VVPkF4UlSoNLGXUVCp2Q0TcAdlYrB/LK8CJZ6g2xYShM7xzZDcMgL7skpxU++W+M5TMSFOiLWJDpW+s67oGItbLm+Fn3fnYNne0/jHdd2lgCta9rdgNZtwQy935nBzeqFPCT0A9G4dKU0+uSfh3H9THZqHSWu9Ukd1RnCQCZ3iw3EgpwxbjhdK2Z2fHr0CuWXVGN4lDqXVDtz8/u84mleBf606LGW3buiViB92ZmHMZfF47eaeWLHvNA6dLsfRvHJ8uuE4ThZVoVVUCKYM7yhNEPVrG4W9WaXILKySskJ9Wkcit7QGwUFG9G0TrZgI2+LpuDmwfQxu75uENYdycXvfJDy9aDfaNQ/Dkl3ZKK12SJ/Ncyem4OstGZg4sC26exoDDXntV8Uk5M2Xt5S+u/95UzISbMFSpY44gTF5eAdEh1nwxOgu2H2qRJFBFEvTtdaUqoUGmRSTNx3i3O8ns9F7LgnAp5rl8jZR0mMX33PyzwHA/X6O8pyXBbqmTGziYZEFZS1swXh7fG+M+9dvyCqp1u2+yDVl50BsbCxMJpNPViw3N9cneyayWq2wWn3fbGFWs1SCcakLs7pPyvxJlJ0IGQwG3fFxEcHSYk25UIsZ8HwOPz2uKx68qj2iQoNgMBhwRSfv63PfFe2w/UQRftmTg64J4Zh/b380s5pxWWIESqrsaB0dimZWM25JaYlPNqSjmdWMT+/tj6SoUBzMKUXvpEjp/lNHdcbjIzth4dZMfLvjFK7sGIsJA1pLAZl4vHLv//ly9PKcHBg9f7HhwUF44Kr2qHW6pFLESYPbwhYahJVPDIXR4H58G54ZgZJKO4bOXI3iSjtGdY/HHbI1PFFhFvw89Urp5DJRdXL50FDvTHtsMyve+/PlmPTxFrSJDcWn9/ZHZKgF7/85RRozoX9r/LI7G2FWMyYMaI3bUlppBubX90rEa0sPIK+sBtf1aKE4wRQlRbuzo5uOFaJtTKj0HKWO6iyN+cugtvjtcD4mDW6rCMhEI7vHS+V18tLQgopaRIdZpC9i+clX9xYRiowj4J5BG3tZApbszpbaJt8zpK302IxGA764fwAA4OHPt2Pp3hwpQB/Qzj2LaTIacPfgtvhs4wmUVtnhcAn43/ZMZJVUw2I2YkC7GDwxqjO+SzuF567phugwC77ZlqloJzyovTv4ubJzLGwhQWgbE4qdJ93ryMTGNnf0b40kz8nCZ/f1R1ZxFYwGAx79eodUcnpFx1if52rMZQno3zZa+qJqGRmC7i0iYDAYMM5zYtY6OlQqadxzqlTaG2tIR+VMbce4Zvj1QK40633PkLbSbYqGdIyV1u51jm+GQe1jpC5zA9vHwGQ04LJEG6aO6ITZKw9LZT439k7ErSlJcLgEKRPUvUUE1pblScGCODMtevCqDnjgyva4Z/5WrDmYh10nS2AwACNU2csuCe6TJ3G92cD20VJQNkH2d9MmOlTxe/KZWsB9UtcmJlRRhqSWnGjDtT1b4HhBhRTcdtLIsInlM8dk5WhhVuXXsBgUnir2rjsLs5ilIFJNPOmL1vi7S4hwB2Xp+eVSyU54sBn3DGmHe4a4M8bi7HFuWbW0h5CYdVMHWmIXulZRIbCaTeidFIn/ek5+9Frii4FpiMX3+OXdJeWz0eJ3Z3mNQ8qEqWfHxZ/FY6yUgjLv8ylmyg7mlEmlT8FBRvRvF4NR3eJgNhmlk/FTRVWoqHX6nGQleCY8xBO64spaKRC+zHMiazQaYIRBmgj4I6MISdHe90x72Yx/kMmILp6Jhn3ZpVK5Vx/PBB7g/g7s1zYKv+zJwa8HcqUM1w29E6UMQJDJiEev7oQNRwvwv+0nMc4zAdYmRvl+HtktXppEFP/uRnSNx3sTLldkQu/on4QfdmZhzUF3QBAVFiR9Joar3qMHT5f5zP63jgmVsr05pdXo+vxSzTKx5uFWGA0GBJkMqLI7sd8ziWgLcd/fwgcHSWsw0zKLcSy/Qiot7RQfLgVlV3eLx5COsYgMdTelmL3ykLQWTv230M+Tmdt6vFAxeSPq1SoSkSFBUomduAH2wPYxeP667oiPCJYmiDt7skHiZE/zcKsnS2+THsdTY7ri4S+2S3vFxYRZ8OINl2FU93iMuSwBFrMRQzrGYu2hPDz1353SWujXb+mJLrLPu2ev6Yb2zZvhpR/3SQ2KkhNtePb+bgDcTXwO5JSibWyYNIkFAP3bRWNk93iM7O4+b/35sSsBAJuPrZTeS91aRKBnq0hpTZ8owRYsBTwWsxGPjeiEyloHBrSLkT6/IlWlyOKa5I5xzbD2qeHYdKwAR/PK8X/fexu0yV+TUIsJr9/SE8WVtXheNibEYlaUizdvJk4OeTJl0sSS9/1oMRvRNiYUJnWmTDWJ0zzcKlVLiJngIJNBs6OiSHyPyz+bxH+LAZe436B64u5M15SxfFHGYrEgJSUFK1asUFy+YsUKDB48uIGOis5EdJhFO7NnMODt8b3x3oTLseDBgdIXnMFgwMSBbTDUU951WaIN/31oEJY8eiU6x4cjxGLC7Dv6YJLnREZ+e3f0b41vHhqER0d00swEiiVZ1/dKxEBVyY/cA1e2x8hu8Rh7WQKGecr1mlnNipMMW2gQPpzYF5OHdVA0KxEZjQYkRob4BGRaUtpEYeOzI/DDlCsUgaQowRaMFalD8d2UIbi9b5JutthiNuKF67ujT+tIPDqik+793e0pwRMfm9qo7vHY8fwovHB9d83rH7qqPV668TLcO6Qd5tzZB6M9Xzg3X95SMU6cMQaAuwe30TzuKcM7Sv9uHR2Kge20X5fL20Qqfu7fLlr697SRnfHH86Pw5wHuE/x3fnWvSxvQLhohFhMeHdEJq54YhsTIEAQHmfD+ny9X3I54khoXHoz1fx+OhQ8NkjITB3LK0MxqVgSt/dpG48beLTH6snjFCdwQjaDMYDDgzdt6Sj8P69Lc53kwGAwY2N79eJ76706cKKhEkMmgeIyAu6xFnCns1cqGYRolRsO6NEdwkNGdQbmnv6JUZYisHGfq1Z2kcs1reiTghesvQ++kSHw8qZ/0O1d2Uj6erqpGHeKx39HPWyp+14A2uCxRebLVRRXMDe4Qi3/elIx/3dFbCnQBSCeSIjHrKCeW5ci7cMlLhyJC3H+j8veR/H0oEidpxJN1i8momIUFvCVF2SVV0kx0mNWsGdQA3mBEazJE/BwQs+dGgzvAk2suK1+UMg2ez4ObL2+p2HBZzJbILxNnpMt01mKJz5lWUCk+vuAgozRJJb/9smq7LMOnPG7xZ2/5onJNGeDtyHbodJkU4MaFB+Oze/tjoufzKCEiGBaTEQ6XoLmvoPh6iAFMcaVdmhxSv+dGdnN/Jn3y+3EIgiBlytqrOl52a+E+rt2n3Gu1woPNaB+rDOLFEr//ejLuzcOtiucdcE80JLeMQLXdJTWpUr+fLWYjbvF8RorPd2y4BTHNrDDL3s8D28Uogq8o2XeC+gRXzITI37sjusUr1g3qrduxmk0IMhml4xRL6cTnN8xqlt7LYumcuDlx25hQKYgel5yA4CATXv1TDwDA+2uOSuvo1EFZcksbQoJMnvWDykoLcbzRM3EEuJtUAe73xrAucYpmQeJki7ithri0QG5093jF7/RrG42oMAuu75UoPWdTR3SC0QApILuzf2sM6eieoPv72K6YOqITeidFun8e10W6rQRbMEIsJoRYTGjfvBm+f+QKn/L2y9toT2onRXuP9fa+vucP4mMW9WplQ5jVjH/e1EMxUao+X5BP0JmMBgzpGKu4HUCZye/ZyobreyXiup7Kydcwq0mx3Yn4nWXSyJSJOsU1g9lkhNHzVhTjIvXfSmy41ae1vb+uinJBsnHiJJMYcIm3pa4qsJzhmjJmylRSU1MxceJE9O3bF4MGDcKHH36IjIwMPPzwww19aHSOBAeZfNbxaBG/FM/WM+O64oqOsXUuHraYjfjo7r5+xwDuE3r1ifOZUn9wnanrevp+wKqN69ECq54YqvgAV9M6sRSFWc2KL58B7WLww85TPs+ryWjAB3++HEdyy3FrivYaz+6JERjVPR4r9p3GHf2TFCeEcrdc3gpfbc6QZme1nvferSOlrBAARWmt3GWJNiz66yDMWnEIU69WBq9iZiAmzCplOkd3j1fU84usZhPm39MfD362DfnlNZpBGeA+OfvPX/ris43HddcjPT6yM1bsOy1lkx66qoNPhn9g+xjsemE0KmociAq1aD5XLWwh+PWJYQgPdlcIyCcn5MdnNBow544+eGxEJ3SKa6YZMI/vlyQ1+gGgu6br6q7x6BzfDHangCfHdPG5Xp5h694iAld1bq5YVyZSZxYSI30z8Ze3jsKyvafRv120tHA+OswqzTqL65sGdogBPHN6nTSCMvWJilYpVaJsTZk4KxtmNSnK+7SoyxcBbymk2HwiPDjI5/UTZ6Pzyn0bfbSwheCP50fhreUH8e91x6THK8/uhViU7evlLCZvsKUu5ZRTXyeVJlY7pPJE9ftSWlNWpVxTJg/KOnveA9kl1VIHQ3VZk9FoQKvoEBzLq9Dcg01smCIGKfnlNVKQ2101YXD34Lb48LdjSMssxtbjRVJQ1qG58j3cLjYMPVvZpA53vZMifV4XcSsG8TlXr08E3Cetd/ZvjecW75EuaxvjO27CgDb4aH26VEal9bliNBrQrUWElF2XZ0O01gMC7kBq7l2XY3N6ISb0bw2DwYBhXZpL2TZ/OjQPw5Hccum5VGdfACDGk7EVuzDHNLNi8eTBsDsF6TFc06MFxiUnKLrBqoOyIJMRKW2isP5IvnQSPbJbPFbuP43klt7X8LKW7scvjtFqKqX+u9b6PjMaDZh5W0/8e+0xXNkpVrPyI6VNFP46rAPeW30UibZgPHtNV+k69ed1XHgw3ri1J77ekoHbUnyDKflnVpDJIGVw1eQbm/+pT0vNMQmyx6wX3MlfK6vZiNhmvp89oarJn6gwC964pSc+Wn8Mr9/injAMUk1IhQSZcN8V7fDU/3bhWtn3utkT8JR7Jl7kGV6xvN2o+i5RT2I1b2aVxogTBkFmI6DTfEROHnCJn8ni3YkljkEmo1S6DqgzZXXehYRBmcr48eNRUFCAl156CdnZ2UhOTsbPP/+MNm3aNPShURMV08yKm3Q+AC816pOTsxFiMWF8v9aa142rIwAGgLdu74V1h/Iw1rM4XUtMMyuWTrsKX2w6gTCrWWrUINcnyfvF1TYm1CdzJ5fSJhpf3j9Q9/rYcIsUlIlNObTYQoKw4EH37ehlMAF39nFUd+3Sa8B9gvHw0A6Y8+sRdE0Ix1SdTGdwkMnvSTWgLJeVB1IdVYu/jUaDZhZJFB4chLGXJcia9Wh/TVnMRix97Co4BUExkymSz1S/eONlmgEZ4C69MRq8X5xambJ7hrRDz1aRaGY1Y/276wG4MxdSUOY5SejZyt1ivbLWie4tfB+ju3TLe1/q0kXA28q+sKJWmskNs5rrfP61yhfFUkix/EvM6MmJ2bvcUm+mLEZ2kmUxG6UTHPFkVb6+S9ykVWtNmTVIPsOsPyutDjil8kXZmjKfTFmIcoNpb6MP77iI4CCpy6jYSl9rIqq1p9RQMyjzvB7iiejOzGLUOlxoZjVLWRtRc0+zmq82Z2De+mPSfapPkg0GA/4yqC2e/O9OANAsqeveIkJ6LwHePfjURndPUARl6kkGwB3QXZPcAks8jXpiwrTX93RP9AZl8kyZfG2YLSRIWscZEWxGSptoqWU7APx7Ygo2Hi3ApE+2at6HyP1d4N3/Td1UBvANHtvGhGlWowzvGuc3KAOgmFABgKfHdcE1PRIUn7PJqsyn+vUFfMud2+t8p12WaMM7d/bRvE70+MjOSIoKRb920XUud7m9bxJu76s9ydhc9pwk2IJ1S52v69kC7/x6BL2SIjWrYwDvRA4ApOgsI5FnRFtGhmh+B4WqJpxiwiy4vV8SbpdVOKizS2FWM25NaYWuCRGK8u8gTxpMnFSQd7QVJ9/Un+9Ws0nxWRsXYZVlt9zBk9loqHO9sPs45eWL7sclPmaHlClTfr5ZTLJMmeZmVNoYlGmYPHkyJk+e3NCHQUTnUURwUJ3ZPcAdkNx/ZXvd69vGhuGJUZ3hEoAHr2qvW2YWCHkTnis6aWfApLGBdPoJwLSRndExrhkGd4j1KaU7U10TIvDZvf2RGBl8Rsf5yp+S4XAJUpcyPeJaHi0tbCF47eYeMJuM0poSLRazES1s7hN3W0iQZqBkMRsxqEOMontdtKyLoRikWM3uMtUcz35lakEmI1pGhUiL9rUChIgQs3QyLs7oNrOaA8iU+Z6siqV34iawERonfmL5YnZJtbQHl/qkVn3f8hJIMfOk1bVQfnLoL6hU376yfLGOTFm12OhDXH+nvK3O8c3cWz94unmGajzn4om2WJYoP1ETsxDiSazY3KF7iwjNrPH4vkn4anMGlu11BxzRYRZ0S/DNXFzXs4UUlPXROPk1m4x4akwXzN9wHMWVdt2JpubhViRFe99TeqXrDw/tIAVlcRH6QZlIftIu76LYJiZUyvCp1/kB7tc8kCoT9QSd1m3FqDIw6pJkUX/V/amzoYA7qJm79qj0WFrYQnz+RnsleYOy21JaYYBGZYTZZMRNvROxbO9pjO+XhPuvbOczJlBmk1GxLvxsbkeUqDGpJHp4WAckRob4rRSSf3/pZ8q8r0tLjfJNwPc1UO+jCPiWD4Z6Gsv0UG2tYlYFb/LJJfE9oc6UBRkNCDJ59xdrHR0qlZzbHd51YCaDAc46gib596I40STdltO7Pk392MRj2nq8CLWV+muS5RiUERGdJX9r6erjQI53pl6rxOh8MBkNuLH3uc/k+sv01SWmmTWgUt66BHrC0yYmFKeKqxSzxFrk2QOT0ftFLc8c6a2ZFHVo3kw6gdYKAA0G97pQ+X4/oRaTT1tmuZAgk+ZkgPoEXSsoExt9iIv7DQYgUnWCrD7Bkq8x8pYv+gZl8uxYsJ/jVwds8u6LYqc4dZYvXCpfdF9foWqJL+qSEIHVB/OQ5uls20yjZFRcYyh2VWxhC5bWTakzZaLuOiViPVraEBdulRqwDOoQoxm8BQeZ8N+HB2FHRpHPFhsieUMWf0Z2i5eaSuhlhHu0suGlGy9TlP6pycsx5dkQ+X5jt/dNkoIyvQRDM6sZsc0s0mRA6+hQZBRWKvYx7Kk68a4rU2Y1GzUzV4BvdlBrIijB5l5LeMeHm5AYGaIZuHWMC8eMm3sgKjRI6hysZfYd/jNgDUHs1nmLxlpzUajFXOdnorzbrd77RP75oLWmDgBCg5R/r/JJLJHB0/BFzMBrvSaAMugElJ8XXXWCMrNJueHzdT1bSGsOxfszGz1r0eqoYNTMlHl+dkh7mRll4w0wGr1TrNtPFGHTgcCCMjb6ICJqJP42xr2uYNLgtg17IJcY9R5heuQnvOLJfXCQUbdcSIu8oYNWUAb4BlNhFjOMRoNuYKZVrgW4y73k5yrqtvKA74mXLSTI70kQoN3oQ6v7ovx4/WbKLNrli+6W+DqZshBvNg3QbokPAF0SlBkZdaMTwFumJp6syd8HiaruiyK9oMxoNGBEN2/J8JAO+hnvfm2j8eBVHc466/3k6C64uU9LvDvBf7Dwl0FtpX0atcjLiuXZMfmapTtlJ/VOl35rcfl7+KO7+2LayE748C/eiZZO8eGYONC7LKSuoKxjXDPdgNNgMPhkSLX0bRuNDU9fjR8eGaL7nN/Zv7XfgKyx+t/Dg/DWbb1wm04Dj0CltInCvyemSFsqaJGv/db7zFT/TWtlygBltkyvVD1I9bonRXmDcDHTr65gl2euEiKC0Soq1Nt9UdYx0WysOwwyy+7fmylTlS/Kbkd8TOJkTF3lkXIMyoiIGolJQ9pi0V8H4fnrtDtQ0vkhztp30+j0qPbI8I5IaROFm/u4T360sk/+iHvvANpZG0C5BinUYqqzWYZeUBZiMSlOYLRKxMKsZsUJrdZtqU+WtIIyrW578uOtT/miGDyW1zikTJg6oBSf94paJ7JLqqTOkOpj7aQqUdMKhNUdC2ObWXFbSiuM6h4vZQLUa9r0mikAUGS+1FtMnA9hVjNmje8dUDm2P1plWgDw8k3JGNktHgseHAiT0YAfH7kCfVpH4qkxXbVuBgAUmxe3iQnFtJGdfdbkPntNN/RoaUNkaBA6aGw8LG8g0cXPOlQA0mM36wRu0nFFBOuup2rK2saG4RadbWvqa8xlCT5rgeXkmbLAyxe1n3N5sw/9TJnyMXVJCMen9/bH0mlXKraykZMH8Pde0dY9RvXUmI0GxWVv3dYLH0/yrdBQdF80q7ovyhp9iCyqZiD1wfJFIqJGwt0l7Nx01qTA3d43CZ3jm/m0ONcidnrMLKyE0aC9H5k/ikyZzsywfK89eZAhtvVW0zvhAdwto8U97fQCyM4J4VJTCq0ujiEW5fytvHxRb3YbUGfKAi9fbCYLyoqrtNfDyYO0QTN+lR2P8rbUXQu1Ol7KW4UD7qDz9Vt7Ki4zm4zSpuhBJoNPsCc3pGMs+raJQmwzq27JXWM1584++GZbJh6QraNtFRWqKCfu0cqGxZOH+L2d5uHeAEyv9XiIxYRvJw+G0yVoBu3yTFlnnfVkouev747gICNuOA+l2KQkD2pbRWm/v9UTLepJDZEyU6YdlKmbaAQHGaXti0Ra5Ytz77oc+7JKca+nBFg9xuRp9CHq0zrS5/EYDcqAT5ys8La79xyj2TvGYlZm0+qDQRkREV3STEZDvYPhpOhQrHlyuE8zgrrIM2XqltCiPrKgTE6viYxWICXqFB+OVZ6NbrW6LwLuvRTFoEwrwAtRrQ8J08iUaZGfaFvrVb7ovf1sTzt0dabMbDIquhPqHU+Y1YyEiGCpq6lWEBlqMaNXKxt2etZKqfflEkWGWlBa7UCnuHC/TXGCg0z431+b5t6m1/dK1GzhXl/NZZkyf9kb94ba2tfJ/7bqCm6bWc148cbk+h0knRGL2YhEWzDyymt0u4KqM1d674GgAMoX1dlPraZHJo1GH2OTWyhKUdWHoA7K3G3s1fdthDxRp26Jr/U4pEyZ5qPxj+WLREREZ6B1TKjuujA98vbV+WU1mmPiZGVe8o6P9V1TBng3vgb0M2Xyk/ATnj355HyCJsU+ZfrBliJT5mfdXajqJMtqNkknNlJLfI3SS63HE6JxYiffvFlvb8aHh2rv5ScnNr/wV7pIbnWVGwZC/lqp29VTw/ri/gH45qFBmlsUqPlLGFkCKl9U7WemMU4dBKp/B9DKphkUl7k3fFaOMRqVt63ePFqkCMpMzJQRERE1evIv/dM6QRkAxR47IvnJSHCQd7PSaD/ZOnnzBq1GH4A7uBE3M9ba104r+yT920/5onJNmZ/ukRonWeFWMwoctX6PPSLEDFnDUvexasyit4sNw4ajBe7rdU78xsj2K9QL3MQT0GSNfcVIaVxyAiYNbqu5B1ugDAYDvpsyBKVVdrTW2H+NGo7e/mxa/G3noShf1Pm7U2fKtCZ41BkudYt69xh1+aJR8RlrNZl8bsdkMCiycFad0kSLIlMmBm4+h1AnBmVEREQX0LU93Bv53jukre6Ya3q0wE+7shUnJMGqfb/EoMxf+aK8XNJfF7CvHxiIJbuycY3GHkZ6+4gB9ciU+Tkx01rnFR5sRkGFNyjTyoppbbirVRIqP4HUC7iMRgN+evQKfLk5A3frdD995OqOaBkZgj/52SCe3IxGA6bfcNlZ305vnVJeajr8/e3L12JpTagAyqyX1WzU3GJCXb6o1VVRq9GHvIOodqZMWeLo3Txa9ThMyoybewwzZURERI3arPG98OiIjn5LvF75Uw+EBwfh1hRvi2t5ABQSZEIx3E0/1O3a5eTrNKL8BG9hVjNu75ekeZ2/NV+Brinzd2KmtZbEFmoBPKWUFpNRs3RTq9NetMZzIV/3ojcbD7gzYDNu7qF7/eWto3C5xkbPRKQv0EyZ1uQMoGyJr/c54lu+6PvZoA6SzEaDtM8YIG/Q4a1SMBkNqvJF7YBLsZeZid0XiYiImgSr2aTYpFWLLSTIJ0BQbMYsOzmpq9nIV/cPwNbjRRjVzbc0MRDqkyp5+WKQyQiLyajZEj/Q7otaJ22XJUZgp2fD5/Bgs+asc56s/PP7KUNw6HQZklv6Pq/yNWX+gkgiOvf8/e3Lgxmt9aCAMsDSC/DUe9hply/63q5LFpSJt2E0GODytFX0LV/ULk2UZ+jPpvsiG30QERE1AXqZJ72NWUWDO8bisZGdNMt+AiE/EbKajT4tqkNlM9wmnVlteeml+jC0ZsjlGSmtJh8AkFVSJf27V1IkbuubpBm8yTe4ddVjI1ciOnv+1mDKG33obQBuVgRuOpkyn86KvuGNOnAzGY2KTJlI/hHiW74YyJoyb8atvhiUERERNQF6jTP8dV88F4xGg3QyorUmS97sw6Ja/yGSH7tvAxPf27y8daTm7chd79kweFB7/xs0m01GPDK8I67uGoeUNiw/JLoQFv11EG7v2wovXK+/ttASQEv8gMoXNVriq2mVL2qts5WPMxmUHRrF+1ffumJNmYlryoiIiC5q8oyV+O8gk0F3Y9ZzKdRiQo3DpbmHlzzTZTEbUWV37x1mVWXYdG9bp2Oi6FRRlc/1gHvD4MvbRGFccoLm9XLipt9EdGGktImuc//HoAA2j1ZkynRKIdVZMO2W+L6/o5Upk49z72Xm/dmq08RDc58yrikjIiK6OGkFZVGhljOakT2T+y6CXbMFvnyNmbwcSR6I+Sud1DoZkz+mshqH5u9FBAfhzv6t/R84ETVa8rVYoTqNPuRrygLNlGk1+vAZo/OZJB+n3qfMGqRdmqgVlHFNGRER0UVK0ejDE8ic79JFkbiWQzNTplO+6K/jovx8Ra8joth5ckTXuHodKxE1DWJDDcBf+aI8UxZY98UgzZb46jVldQdl6kYfUvliAC3xuU8ZERHRRSpYI1N2oYOycI0ASp7psgZpZ8rUTAYDHJ4TMr2ypZdvTEa/tlEYcYZdI4mocXPIurbqBVyKTJnOZ4XPPmWaLfFVt6sTNckvNQXa6EPefdF05pkyBmVERERNgDwoi/R0JEyICL4g9x0a5D5dCNMIyuTNPwLNlBllmwHpnYyFWEwY34/liUQXK4fTtyW9mjx40m+Jr/xZuyW+b/dFLfJhJqOy0Ye3Jb7+ZtX+JqPqwqCMiIioCZCfkNzUpyXCrGbc2Dvxgtx3sJ/yRflaEKvOmjI1+SkN9w4jujRp7W+opmz0of1Z4dtZUaN8UXWR7poy2eVGg0G1zYd2Ew/LOdqnjEEZERFRE6DeMPrxUZ0v2H2LHRI1W+LrNPrwlymTn4xpZd+I6OInz5TpMWsERWqBlC/6ZMo0xqjH+ZYvimvK9Der9pYvat68X2z0QURE1ASEWLxf2XqlPufvvt0nI5rdFy11d19Uk63vP6tyHyJquhyuujNlQQFkynxa4gfQ6CPQNWVyVp0mHprdF8/gM5qfhERERE2AxeQ9IdHqLnY+jbksHq2jQzGsS3Of68J01pRZ/WTK5C5ES38ianzsgWTKAmj04dPEQzNTpvxZb2JL/nlkNBhgl2X1xey/z2bVWvuUad66f6wZICIiagLkJxp6pTfny9jkFhib3ELzujB590Wz99/qmeggkyGgkzAiujQElCkLoCW+OsAKpCW+/j5lytuVB2V6AZdFc/NoZsqIiIguSvJ1Cxc6U+ZPqM6aMvVsdZC6RRoRXdLErq7+yD9HdIOyM1lTpvMZqt6nTKtDpM+aMrPWmjIGZURERBcl+ToJrZOOhtJM1n1REZSpTnoYlBGR3Ks3J6NjXDPMHt9bd4w5gG02fLovnsU+ZfKLjUbtEstA1pSdSVU2yxeJiIiaAHnAo54ZbkihskYfQYoTKHVQVvc6DyK6dHSMC8fK1KF+xwQpui+eRfmiUZ0pk68d815uUHVftGu07fe3pkyvGUggGJQRERE1AV3iwzGgXTSiwyxn1NnrfJG3yQ8JMuG+K9qhstaJVlGhinFamTL5GjQiIjXFPmU6jT7kHy1Gg3bnQ9/slvcCeVZfHm8ZDQbNdW/qOTFFS/yzWFPGoIyIiKgJMBoNWPjQoIY+DB/yzZ9NRuC5a7trjtMMynT2HSIiApRlhnpryuSZK7NOmbS/NWXKrJk6U+Zbvui7T5msfNGk3aExEPw0JCIiojMmb4nvL4Ontc6De5QRkT+BNPpQBGW6a8X0uy/KS63lv27WLV9U/qzZfVHzKPzjpyERERGdMXlQ5vTT8t7C8kUiqid5aaF6napInukKpIGH+Dvv3NkHsc2s+OjuvtLl6n3KHJqNPtSNRbQ2j9Y8DL9YvkhERERnLFQ2e11ld+qOS7AF40BOmeIyZsqIyB/5ei29Rh/yIEmvy6tvIGXADb0ScX3PFopATD7MZDSgbaxybax6DKDKlLElPhERETUEeclijUN/M9hX/9QDg9rH4D9/8c5K651kEREByiyYXqMPRcmhznYhvmvKtPcck48zGg2YPKwj7hnSFv99eJDmGEC1TxkbfRAREVFDq/aTKUuMDMHXDw5UXMZMGRH543R5ywd1N49WlC9qf6YYVBcHUuZoMhgQZjXjhesvU96Wn33KrFxTRkRERA3NX1Cmhd0Xicgfhywo0y1fNMrLFwPNlNVd5qje/0xkUIVcWo0+WL5IREREDabarl++qIWNPojIH3mjDb0gKbCW+Mqf9TJlerfr77bkQaF3TVmdN+97u/X/lcC98sorGDx4MEJDQxEZGak5JiMjA9dffz3CwsIQGxuLqVOnora2VjFm9+7dGDp0KEJCQtCyZUu89NJLEARlN5S1a9ciJSUFwcHBaN++PebOnetzX4sWLUL37t1htVrRvXt3LF682GfM+++/j3bt2iE4OBgpKSn47bffzvwJICIiuoQEminrmhAOALg1pdX5PBwiauJ6tLQBACKC9Vdcmc6gJX4gAZ5OfOez9Yc8Jgk6izVl5zUoq62txW233Ya//vWvmtc7nU5ce+21qKiowPr167FgwQIsWrQITzzxhDSmtLQUo0aNQmJiIrZu3Yo5c+Zg5syZmDVrljQmPT0d11xzDa688krs2LEDzz77LKZOnYpFixZJYzZu3Ijx48dj4sSJ2LlzJyZOnIjbb78dmzdvlsYsXLgQ06ZNw3PPPYcdO3bgyiuvxLhx45CRkXEenh0iIqKLS7UjsKDsf38djO+nDMG45ITzfERE1JTZQoOw4/lR2PzsSN0x8kpEve6L6hhJN3iT/bpu+aLsYqNBWVYpZsrOICY7v40+XnzxRQDA/PnzNa9fvnw59u3bh8zMTCQmJgIA3nrrLUyaNAmvvPIKIiIi8OWXX6K6uhrz58+H1WpFcnIyDh06hFmzZiE1NRUGgwFz585F69atMXv2bABAt27dsG3bNsycORO33HILAGD27NkYNWoUnnnmGQDAM888g7Vr12L27Nn4+uuvAQCzZs3Cfffdh/vvv1/6nWXLluGDDz7AjBkzztfTRERE1KR1aB6Go3kVGJfcIqDxzaxm9EqKPL8HRUQXhagwi9/r5cGTXiBlOoNMmV75onxNmcloQGwzK6Zf3x0hFlPTXVO2ceNGJCcnSwEZAIwZMwY1NTXYvn27NGbo0KGwWq2KMVlZWTh+/Lg0ZvTo0YrbHjNmDLZt2wa73e53zIYNGwC4s3rbt2/3GTN69GhpjJaamhqUlpYq/iMiIrqU/PfhwZh71+V48Kr2DX0oRHSJUe5TFlj5ol7rfPml+oGb7+1OGtIO4/u11hwTqAYNynJychAfH6+4LCoqChaLBTk5ObpjxJ/rGuNwOJCfn+93jHgb+fn5cDqdfsdomTFjBmw2m/RfUlJSQI+diIjoYhEdZsHY5Ba6pUNEROeLotGHXkt8VZCk133REECmzHgGa9gCUe9Pz+nTp8NgMPj9b9u2bQHfntZCOEEQVLtray+oOxdj1JcFMkbumWeeQUlJifRfZmam7lgiIiIiIjp3FPuU6WXADAZFYBbIPmV6YxRryvRSYhdiTdkjjzyCO+64w++Ytm3bBnRbCQkJikYbAFBUVAS73S5lrBISEnwyVbm5uQBQ5xiz2YyYmBi/Y8TbiI2Nhclk8jtGi9VqVZRWEhERERHRhSGPi/xl640GA5yepE1g3Rf1A7y6xlyQTFlsbCy6du3q97/g4OCAbmvQoEHYs2cPsrOzpcuWL18Oq9WKlJQUacy6desUbfKXL1+OxMREKfgbNGgQVqxYobjt5cuXo2/fvggKCvI7ZvDgwQAAi8WClJQUnzErVqyQxhARERERUeMRSDmhe5z334GsPdPLggWSTWt0a8oyMjKQlpaGjIwMOJ1OpKWlIS0tDeXl5QDcTTS6d++OiRMnYseOHVi1ahWefPJJPPDAA4iIiAAATJgwAVarFZMmTcKePXuwePFivPrqq1LnRQB4+OGHceLECaSmpmL//v34+OOPMW/ePDz55JPSsTz22GNYvnw5Xn/9dRw4cACvv/46Vq5ciWnTpkljUlNT8dFHH+Hjjz/G/v378fjjjyMjIwMPP/zw+XyaiIiIiIjoDMizVf4yZcoMl844WTCl7tgoCqRD45lkys5rS/z/+7//w6effir93KdPHwDA6tWrMWzYMJhMJixZsgSTJ0/GkCFDEBISggkTJmDmzJnS79hsNqxYsQJTpkxB3759ERUVhdTUVKSmpkpj2rVrh59//hmPP/443nvvPSQmJuKdd96R2uEDwODBg7FgwQL84x//wPPPP48OHTpg4cKFGDBggDRm/PjxKCgowEsvvYTs7GwkJyfj559/Rps2bc7n00RERERERGcgkDVlQP0zXHqZskA6NJ5Bouz8BmXz58/X3aNM1Lp1a/z0009+x/To0QPr1q3zO2bo0KH4448//I659dZbceutt/odM3nyZEyePNnvGCIiIiIianjypJRekAQEtl5MMUYvCxbAvmj+mgTqHl+9f4OIiIiIiKgRMAW4piyQccrATft2AgkCG92aMiIiIiIiovPFFEDmCggsmAqk3b0B9cumBYpBGRERERERNUmBbPgMKAMl/U2mAwi4AgnudI9CH4MyIiIiIiJqkuSBkd+gTB5w6bbE175d3dvhmjIiIiIiIrrUmRSZMv1xgXVfrDvAU5Q4BpBNCxSDMiIiIiIiapLkcZG/DJUhoO6LqHOM/Hb0WvCfyT5lDMqIiIiIiKhJCrTRRyCZMvlqsEACt0CyaYFiUEZERERERE2SvHzRXywU2D5lCGBM/fY7CxSDMiIiIiIiapLkXRX9taI3KvYp0w6BAto8up6t9QPFoIyIiIiIiJo8/y3xvf/WzXAZ5f/Wua2AAjdmyoiIiIiI6BLkv/uiPFNWdxMPk06UxEwZERERERGRjkD2KTMY9LNgBo3x/u5D73aMAbbpV/xOYMOIiIiIiIgaL39rysQ4Sb/zYoAbQ8v+rb/fmfff/jpCKn4noFFERERERESNWCDli3pNPtS/H8h6Mf2W+AbNf/vDoIyIiIiIiJo8/+WL7v8HminTLXFUZMG0b0f+m3pjfO47sGFERERERESNVyCZMpPJz6B6ZsrOprW+z+8ENIqIiIiIiKgR81cqaJDKF89yTZns4sAafTAoIyIiIiKiS0Qg5Yv+Gm8E0qBDmQXTvh1DALfjc7sBjSIiIiIiImrE/MU/YnDkv9FH/TJlJp3bUmTTmCkjIiIiIqJLhb+slFi+GMgYILDOivobTNc9xud3AhtGRERERETUeFnNdbe797emLJCyw/qWODJTRkREREREF72pV3dEr1Y23JqSpDvGGECmTBlw+b8df7cVSDMQNXNAo4iIiIiIiBqh1NFdkDq6i98xgTX6qDvDFcgG02z0QUREREREpCK1xPezT1kgWTD5ZmaBtMTnPmVERERERESQZ8r0w59AuibK4zC99WmKjBszZURERERERN5AyW+jD9SdKQsk4JJfykwZERERERERvEHW2W4ebQhgTRkzZURERERERCqGADJl8gBKv3zRe7nebRlkEVaAMRmDMiIiIiIiurgF0n0xkK6JgbS7Z6MPIiIiIiIiFTFQCtLbgAzKNWWBNPHQbYkvH8/yRSIiIiIiokD3KZP9O5A1ZTrt9ZkpIyIiIiIiUgloTVkAwVRAmbIAWuv73G5Ao4iIiIiIiJqo+mfKtMcEsu5M2X0xwOMLbBgREREREVHTFNA+ZQGtF6t7L7NAAjef4wtoFBERERERURMlBmUmP6mrwLJggYzxXm5o6PLF48eP47777kO7du0QEhKCDh064IUXXkBtba1iXEZGBq6//nqEhYUhNjYWU6dO9Rmze/duDB06FCEhIWjZsiVeeuklCIKgGLN27VqkpKQgODgY7du3x9y5c32OadGiRejevTusViu6d++OxYsX+4x5//330a5dOwQHByMlJQW//fbbOXg2iIiIiIiooYiNOwJdU6bb7j6gvcy8//bT7FH5O4ENq78DBw7A5XLh3//+N/bu3Yu3334bc+fOxbPPPiuNcTqduPbaa1FRUYH169djwYIFWLRoEZ544glpTGlpKUaNGoXExERs3boVc+bMwcyZMzFr1ixpTHp6Oq655hpceeWV2LFjB5599llMnToVixYtksZs3LgR48ePx8SJE7Fz505MnDgRt99+OzZv3iyNWbhwIaZNm4bnnnsOO3bswJVXXolx48YhIyPjfD1NRERERER0nklrynQ6JsrHAP4afXj/rbt59Bl0XzQHNOoMjB07FmPHjpV+bt++PQ4ePIgPPvgAM2fOBAAsX74c+/btQ2ZmJhITEwEAb731FiZNmoRXXnkFERER+PLLL1FdXY358+fDarUiOTkZhw4dwqxZs5CamgqDwYC5c+eidevWmD17NgCgW7du2LZtG2bOnIlbbrkFADB79myMGjUKzzzzDADgmWeewdq1azF79mx8/fXXAIBZs2bhvvvuw/333y/9zrJly/DBBx9gxowZmo+zpqYGNTU10s+lpaXn8FkkIiIiIqKzVe81Zbrj6s6muW8LEIRGuk9ZSUkJoqOjpZ83btyI5ORkKSADgDFjxqCmpgbbt2+XxgwdOhRWq1UxJisrC8ePH5fGjB49WnFfY8aMwbZt22C32/2O2bBhAwCgtrYW27dv9xkzevRoaYyWGTNmwGazSf8lJSUF+nQQEREREdEFIMZb/hpvBNLKPpBsmvz3G90+ZUePHsWcOXPw8MMPS5fl5OQgPj5eMS4qKgoWiwU5OTm6Y8Sf6xrjcDiQn5/vd4x4G/n5+XA6nX7HaHnmmWdQUlIi/ZeZmen/iSAiIiIiogsqkEyZMYBMmXyMOYBSyPMWlE2fPh0Gg8Hvf9u2bVP8TlZWFsaOHYvbbrtNKg0UaXUkEQRBcbl6jNjk41yMUV8WyBg5q9WKiIgIxX9ERERERNR4ePcp0w9/FPuU6Zz+K5qB+IkRxPgh0PLFeq8pe+SRR3DHHXf4HdO2bVvp31lZWRg+fDgGDRqEDz/8UDEuISFB0WgDAIqKimC326WMVUJCgk+mKjc3FwDqHGM2mxETE+N3jHgbsbGxMJlMfscQEREREVHTU59Mmclo0E3KBLoHmXhNgDFZ/TNlsbGx6Nq1q9//goODAQCnTp3CsGHDcPnll+OTTz6BURWZDho0CHv27EF2drZ02fLly2G1WpGSkiKNWbdunaJN/vLly5GYmCgFf4MGDcKKFSsUt718+XL07dsXQUFBfscMHjwYAGCxWJCSkuIzZsWKFdIYIiIiIiJqegyygKvOMX4zYN5/+7stYz0zZedtTVlWVhaGDRuGpKQkzJw5E3l5ecjJyVFkokaPHo3u3btj4sSJ2LFjB1atWoUnn3wSDzzwgFQGOGHCBFitVkyaNAl79uzB4sWL8eqrr0qdFwHg4YcfxokTJ5Camor9+/fj448/xrx58/Dkk09K9/XYY49h+fLleP3113HgwAG8/vrrWLlyJaZNmyaNSU1NxUcffYSPP/4Y+/fvx+OPP46MjAzFOjgiIiIiImpaBraPRpjFhL5to3THSNktPxGSYt2Z30YfdY+RO28t8ZcvX44jR47gyJEjaNWqleI6cb2XyWTCkiVLMHnyZAwZMgQhISGYMGGC1DIfAGw2G1asWIEpU6agb9++iIqKQmpqKlJTU6Ux7dq1w88//4zHH38c7733HhITE/HOO+9I7fABYPDgwViwYAH+8Y9/4Pnnn0eHDh2wcOFCDBgwQBozfvx4FBQU4KWXXkJ2djaSk5Px888/o02bNufraSIiIiIiovPsxt4tcV3PxDqyW+7/n8tMmb8xitsVxAiJzonS0lLYbDaUlJSw6QcRERERURPx2cbj+L/v9yI82Izd08dojjl0ugyj317nHn9vf1zVubnmuB7Tl6Gs2oFbekRj1l2D64wNLug+ZURERERERI1RIOvOjPXNlDW2fcqIiIiIiIgaKzF88l++GFhLfG8LfgZlREREREREAQmkY6L8Gv+bR7uv87ffsWJ8QKOIiIiIiIguYoE0+gh882jPbQUYbTEoIyIiIiKiS14gHRMVLfED2POswfcpIyIiIiIiairEeMvfPmXy5Jg5kPb6YFBGREREREQUEDG7ZfYTlcmDMv+NPuq3TxmDMiIiIiIiuuSJ8ZO/OCrg8kWN8X7vO6BRREREREREF7HzsaaMmTIiIiIiIqIASWvKAuiqCNQRvBmV/68LgzIiIiIiIrrkBZIpUwRlAawpY/kiERERERFRgLx7iwVYvuhn82jxGu5TRkREREREFKBAslvya5gpIyIiIiIiOofEDFmQnwyYPMgKZD+zQBt9mAMaRUREREREdBEb2C4Gw7s0x019WuqOkQdl/vYzq+8+ZQzKiIiIiIjokmcLDcIn9/T3O8Ygi8P8lS8G0slRjuWLREREREREAZCHWP7KF+u7poyZMiIiIiIiogAEmYxSFizIT2tFafNoBmVERERERETnTnCQCc9d0036tx5xKZmRa8qIiIiIiIjOrfuvbF/nGG/3xcBuk2vKiIiIiIiIziHuU0ZERERERNSADPVsic+gjIiIiIiI6BwSQ7FAG30wKCMiIiIiIjqHQi3uJiDBFv1mIHJs9EFERERERHQOPTWmC9YeysOAdjEBjWdQRkREREREdA71aR2FPq2jUFpaGtB4li8SERERERE1IAZlREREREREDYhBGRERERERUQNiUEZERERERNSAGJQRERERERE1IAZlREREREREDYhBGRERERERUQPiPmXnmCAIABDwngRERERERHRxEmMCMUbQw6DsHCsoKAAAJCUlNfCREBERERFRY1BQUACbzaZ7PYOycyw6OhoAkJGR4feJV+vXrx+2bt16vg7rjDXW4xKVlpYiKSkJmZmZiIiIaOjD0dTYn0OgcR9jU3iNgcb9HIoa8zHydT43Gvvx8XU+c43xmOSawmvb2J9DoPEeY1N4fUWN7TksKSlB69atpRhBD4Oyc8xodC/Ts9ls9XrTmkymRvkmb6zHpRYREdFoj7MpPIdN4Rgb82sMNI3nsCkcI1/ns9PYj0/E17n+GuMxaWnMr21TeA4b+zE25tdX1FifQzFG0L3+Ah0H1WHKlCkNfQiaGutxNSVN4TlsCsfY2DWF57ApHGNj19ifw8Z+fE1FY3weG+MxNTVN4TlsCsfY2DXV59Ag1LXqjOqltLQUNpsNJSUljTJKv9jw+b748TW+NPB1vjTwdb548bW9uPH1PXOBPnfMlJ1jVqsVL7zwAqxWa0MfyiWBz/fFj6/xpYGv86WBr/PFi6/txY2v75kL9LljpoyIiIiIiKgBMVNGRERERETUgBiUERERERERNSAGZURERERERA2IQRkREREREVEDYlBGRE2SwWDAd99919CHQUREdMnid/G5w6CMGrUNGzbAZDJh7NixDX0odJ5NmjQJN910U0MfBp0nmZmZuO+++5CYmAiLxYI2bdrgscceQ0FBQUC/v2bNGhgMBhQXF5/fA6Uzxr/hixu/jy8N/DtuOAzKqFH7+OOP8eijj2L9+vXIyMg4q9tyOp1wuVzn6MiIKFDHjh1D3759cejQIXz99dc4cuQI5s6di1WrVmHQoEEoLCxs6EMkojrw+5jo/GJQRo1WRUUFvvnmG/z1r3/Fddddh/nz50vXibPmS5YsQa9evRAcHIwBAwZg9+7d0pj58+cjMjISP/30E7p37w6r1YoTJ040wCOh+mrbti1mz56tuKx3796YPn16gxwPnZ0pU6bAYrFg+fLlGDp0KFq3bo1x48Zh5cqVOHXqFJ577jkAQE1NDf72t78hKSkJVqsVnTp1wrx583D8+HEMHz4cABAVFQWDwYBJkyY14COiuixduhRXXHEFIiMjERMTg+uuuw5Hjx6Vrj9+/DgMBgO+/fZbDB8+HKGhoejVqxc2btzYgEdNevh9fGnid/GFxaCMGq2FCxeiS5cu6NKlC+666y588sknUO91/tRTT2HmzJnYunUr4uLicMMNN8But0vXV1ZWYsaMGfjoo4+wd+9exMXFXeiHQXRJKywsxLJlyzB58mSEhIQorktISMCf//xnLFy4EIIg4C9/+QsWLFiAd955B/v378fcuXPRrFkzJCUlYdGiRQCAgwcPIjs7G//6178a4uFQgCoqKpCamoqtW7di1apVMBqN+NOf/uSTHXnuuefw5JNPIi0tDZ07d8add94Jh8PRQEdNevh9THT+mRv6AIj0zJs3D3fddRcAYOzYsSgvL8eqVaswcuRIacwLL7yAUaNGAQA+/fRTtGrVCosXL8btt98OALDb7Xj//ffRq1evC/8AiAiHDx+GIAjo1q2b5vXdunVDUVERtm7dim+++QYrVqyQ/sbbt28vjYuOjgYAxMXFITIy8rwfN52dW265RfHzvHnzEBcXh3379iE5OVm6/Mknn8S1114LAHjxxRdx2WWX4ciRI+jatesFPV7yj9/HROcfM2XUKB08eBBbtmzBHXfcAQAwm80YP348Pv74Y8W4QYMGSf+Ojo5Gly5dsH//fukyi8WCnj17XpiDJqJ6E2fb09PTYTKZMHTo0AY+IjoXjh49igkTJqB9+/aIiIhAu3btAMBnLZL887lFixYAgNzc3At3oFQnfh8TXRjMlFGjNG/ePDgcDrRs2VK6TBAEBAUFoaioyO/vGgwG6d8hISGKn6lpMBqNPqUx8jIYajo6duwIg8GAffv2aXb0OnDgAKKiohAaGnrhD47Om+uvvx5JSUn4z3/+g8TERLhcLiQnJ6O2tlYxLigoSPq3+FnNBhCNC7+PL138Lr6wmCmjRsfhcOCzzz7DW2+9hbS0NOm/nTt3ok2bNvjyyy+lsZs2bZL+XVRUhEOHDrHs5SLQvHlzZGdnSz+XlpYiPT29AY+IzlRMTAxGjRqF999/H1VVVYrrcnJy8OWXX2L8+PHo0aMHXC4X1q5dq3k7FosFgLtrGzVuBQUF2L9/P/7xj39gxIgRUokqNT38Pr608bv4wmJQRo3OTz/9hKKiItx3331ITk5W/Hfrrbdi3rx50tiXXnoJq1atwp49ezBp0iTExsZyf42LwNVXX43PP/8cv/32G/bs2YO7774bJpOpoQ+LztC7776LmpoajBkzBuvWrUNmZiaWLl2KUaNGoWXLlnjllVfQtm1b3H333bj33nvx3XffIT09HWvWrME333wDAGjTpg0MBgN++ukn5OXloby8vIEfFemJiopCTEwMPvzwQxw5cgS//vorUlNTG/qw6Azw+/jSxu/iC4tBGTU68+bNw8iRI2Gz2Xyuu+WWW5CWloY//vgDAPDaa6/hscceQ0pKCrKzs/HDDz9IM+rUtLhcLpjN7orqZ555BldddRWuu+46XHPNNbjpppvQoUOHBj5COlOdOnXCtm3b0KFDB4wfPx4dOnTAgw8+iOHDh2Pjxo1SE48PPvgAt956KyZPnoyuXbvigQceQEVFBQCgZcuWePHFF/H0008jPj4ejzzySEM+JNIg/g0bjUYsWLAA27dvR3JyMh5//HG8+eabDX14dAb4fXzp4XdxwzEI6mJRoiZgzZo1GD58OIqKitiJ7SIxduxYdOzYEe+++25DHwoRnQH+DV+a+H18ceHfccNhpoyIGlRRURGWLFmCNWvWKNorE1HTwL9hoqaPf8cNj90XiahB3Xvvvdi6dSueeOIJ3HjjjQ19OERUT/wbJmr6+Hfc8Fi+SERERERE1IBYvkhERERERNSAGJQRERERERE1IAZlREREFJAZM2agX79+CA8PR1xcHG666SYcPHhQMUYQBEyfPh2JiYkICQnBsGHDsHfvXun6wsJCPProo+jSpQtCQ0PRunVrTJ06FSUlJYrbeeWVVzB48GCEhoayqx8RXfQYlBEREVFA1q5diylTpmDTpk1YsWIFHA4HRo8eLe0nBwBvvPEGZs2ahXfffRdbt25FQkICRo0ahbKyMgBAVlYWsrKyMHPmTOzevRvz58/H0qVLcd999ynuq7a2Frfddhv++te/XtDHSETUENjog4iIiM5IXl4e4uLisHbtWlx11VUQBAGJiYmYNm0a/v73vwMAampqEB8fj9dffx0PPfSQ5u3897//xV133YWKigpp41rR/PnzMW3aNBQXF5/vh0NE1GCYKSMiIqIzIpYcRkdHAwDS09ORk5OD0aNHS2OsViuGDh2KDRs2+L2diIgIn4CMiOhSwaCMiIiI6k0QBKSmpuKKK65AcnIyACAnJwcAEB8frxgbHx8vXadWUFCAl19+WTeLRkR0KeCUFBEREdXbI488gl27dmH9+vU+1xkMBsXPgiD4XAYApaWluPbaa9G9e3e88MIL5+1YiYgaO2bKiIiIqF4effRR/PDDD1i9ejVatWolXZ6QkAAAPlmx3Nxcn+xZWVkZxo4di2bNmmHx4sUICgo6/wdORNRIMSgjIiKigAiCgEceeQTffvstfv31V7Rr105xfbt27ZCQkIAVK1ZIl9XW1mLt2rUYPHiwdFlpaSlGjx4Ni8WCH374AcHBwRfsMRARNUYsXyQiIqKATJkyBV999RW+//57hIeHSxkxm82GkJAQGAwGTJs2Da+++io6deqETp064dVXX0VoaCgmTJgAwJ0hGz16NCorK/HFF1+gtLQUpaWlAIDmzZvDZDIBADIyMlBYWIiMjAw4nU6kpaUBADp27IhmzZpd+AdPRHQesSU+ERERBURrXRgAfPLJJ5g0aRIAdzbtxRdfxL///W8UFRVhwIABeO+996RmIGvWrMHw4cM1byc9PR1t27YFAEyaNAmffvqpz5jVq1dj2LBhZ/1YiIgaEwZlREREREREDYhryoiIiIiIiBoQgzIiIiIiIqIGxKCMiIiIiIioATEoIyIiIiIiakAMyoiIiIiIiBoQgzIiIiIiIqIGxKCMiIiIiIioATEoIyIiIiIiakAMyoiIiIiIiBoQgzIiIiIiIqIGxKCMiIiIiIioAf0/FlJ1aTAmxOoAAAAASUVORK5CYII=", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:01.769624\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df['ninfected'].diff().plot()\n", "plt.show()" @@ -2367,21 +377,9 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAEjCAYAAADXBVt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsx0lEQVR4nO3dd3hb5dkG8PtIsiRPedux45XEcSbZJM4gCSMkhbJK4SMkhbIJkKaBAm2/llWSj0KBlhlmKCtAy4YGUghhJM52dpzllXgveWue74+jcyzZki3ZluVx/67LF+To6OiVdHysR8/zPq8giqIIIiIiIiIi8okq0AMgIiIiIiIaiBhMERERERERdQODKSIiIiIiom5gMEVERERERNQNDKaIiIiIiIi6gcEUERERERFRNzCYIiIiIiIi6gYGU0RERERERN2gCfQA+gu73Y6SkhKEh4dDEIRAD4eIiIiIiAJEFEU0NDQgKSkJKpXn/BODKYeSkhKkpKQEehhERERERNRPFBcXY/jw4R5v92sw9cILL+CFF15AQUEBAGD8+PH485//jCVLlgCQIr6HHnoIL730EmprazFz5kw899xzGD9+vHIMk8mEe+65B++++y5aWlpw3nnn4fnnn3d5UrW1tVi5ciU+/fRTAMAll1yCZ555BpGRkV6PNTw8HID0gkVERPTwmRMRERER0UBVX1+PlJQUJUbwRBBFUfTXID777DOo1WqMGjUKAPDGG2/g8ccfx969ezF+/Hg89thjePTRR7F+/XqMHj0af/nLX/D9998jLy9PGfjtt9+Ozz77DOvXr0dMTAzuvvtu1NTUYPfu3VCr1QCAJUuW4PTp03jppZcAALfccgvS09Px2WefeT3W+vp6GAwGGI1GBlNEREREREOYt7GBX4Mpd6Kjo/H444/jhhtuQFJSElatWoX77rsPgJSFSkhIwGOPPYZbb70VRqMRcXFxePPNN3H11VcDaCvH+/LLL3HhhRfiyJEjGDduHHJycjBz5kwAQE5ODrKzs3H06FFkZWV5NS4GU0REREREBHgfG/RZNz+bzYYNGzagqakJ2dnZyM/PR1lZGRYtWqTso9PpMH/+fGzduhUAsHv3blgsFpd9kpKSMGHCBGWfbdu2wWAwKIEUAMyaNQsGg0HZxx2TyYT6+nqXHyIiIiIiIm/5PZg6cOAAwsLCoNPpcNttt+Gjjz7CuHHjUFZWBgBISEhw2T8hIUG5raysDFqtFlFRUZ3uEx8f3+Fx4+PjlX3cWbt2LQwGg/LD5hNEREREROQLvwdTWVlZyM3NRU5ODm6//XZcd911OHz4sHJ7+zbkoih22Zq8/T7u9u/qOL///e9hNBqVn+LiYm+fEhERERERkf+DKa1Wi1GjRmH69OlYu3YtJk2ahL///e9ITEwEgA7Zo4qKCiVblZiYCLPZjNra2k73KS8v7/C4lZWVHbJeznQ6HSIiIlx+iIiIiIiIvNVnc6ZkoijCZDIhIyMDiYmJ2LRpk3Kb2WzGli1bMHv2bADAtGnTEBQU5LJPaWkpDh48qOyTnZ0No9GIHTt2KPts374dRqNR2YeIiIiIiKi3+XWdqT/84Q9YsmQJUlJS0NDQgA0bNuC7777Dxo0bIQgCVq1ahTVr1iAzMxOZmZlYs2YNQkJCsHTpUgCAwWDAjTfeiLvvvhsxMTGIjo7GPffcg4kTJ+L8888HAIwdOxaLFy/GzTffjHXr1gGQWqNffPHFXnfyIyIiCqSjZfUorG7GheMTAz0UIiLygV+DqfLycixfvhylpaUwGAw466yzsHHjRlxwwQUAgHvvvRctLS1YsWKFsmjv119/7bI41lNPPQWNRoOrrrpKWbR3/fr1yhpTAPD2229j5cqVSte/Sy65BM8++6w/nxoREVGvufXN3SisbsZ/V5+DUfGdLxBJRET9R5+vM9VfcZ0pIiIKhNomM6Y8IpWzP7d0Ki46a1iAR0RERP1unSkiIiLq6GhZg/L/BdVNARwJERH5isEUERFRAOWVtS0aX1TdHMCREBGRrxhMERERBZBzZqqwhpkpIqKBhMEUERFRADkHU8xMERENLAymiIiIAsRuF3GsvC2YKq1vRavFFsARERGRLxhMERERBUhxbTOazTZoNSqEatUQReB0LbNTREQDBYMpIiKiADlSKmWlRieEIS0mFABQyFI/IqIBg8EUERFRgBx1dPLLSohAWkwIAAZTREQDiSbQAyAiIhqq8hzNJ8YOC0dlowkAUFTDYIqIaKBgMEVERBQgcie/MYkRCHEEUYVcuJeIaMBgMEVERBQALWYbChyBU1ZiOFSCtJ1lfkREAweDKSIiogA4Vt4AUQRiw7SIC9fBZJVaohfXNsNmF6GWoysiIuq32ICCiIgoAOT5UlmJ4QCAYYZgBKkFWGwiSo0tgRwaERF5icEUERFRABxxdPIbkxgBAFCrBKRESR39iljqR0Q0IDCYIiIiCoCjpXLziXBlW6rcHp0d/YiIBgQGU0RERH1MFEVljSk5MwUA6Y6FewvY0Y+IaEBgMEVERNTHKhtMqG22QCUAmQlhyvbUaJb5ERENJAymiIiI+pi8vlR6bCj0QWple5pc5sdgiohoQGAwRURE1MfkEr+xTiV+QFswVVTTDFEU+3xcRETkGwZTREREfUzOTDk3nwCA4VEhEASg0WRFTZM5EEMjIiIfMJgiIiLqY3Inv6x2wZQ+SI1hEXoAQAFL/YiI+j0GU0RERH3IYrPjREUjAGDssIgOt6cqpX7s6EdE1N8xmCIiIupDBVVNMNvsCNWqkRwZ3OH2tGipPTqbUBAR9X8MpoiIiPrQkbK2Ej+VSuhwu5KZYjBFRNTvMZgiIiLqQ3nyYr1uSvwAp/boNQymiIj6OwZTREREfUhuPtG+k58sPUYu8+OcKSKi/o7BFBERUR9qa4vuPjMll/lVNZrRaLL22biIiMh3DKaIiIj6SH2rBWfqWgAAWQnuM1MR+iBEhQQB4LwpIqL+jsEUERFRH8lzZKWSDHoYHAGTO6mOUj+2Ryci6t8YTBEREfURpcTPQ/MJWbrchIKZKSKifo3BFBERUR85Wip18svy0HxClhYtBVMFDKaIiPo1BlNERER9JK+s805+Mpb5ERENDAymiIiI+oAoisgrb1uwtzNpLPMjIhoQGEwRERH1gYoGExparVCrBGTEhna6r1zmV1LXArPV3hfDIyKibmAwRURE1AeOlzcCkLJOOo26033jwnUIDlLDLkJppU5ERP0PgykiIqI+cMxR4jc6vvMSPwAQBEEp9Suo5rwpIqL+isEUERFRHzheIWWmMhPCvNo/1VHqx4V7iYj6LwZTREREfeBEhZSZGhXvXTDFJhRERP0fgykiIiI/E0URxxxzpjK9KPMD2B6diGggYDBFRETkZ5WNJhhbLFAJwIi4zjv5ydKZmSIi6vcYTBEREfnZCaWTXyj0QZ138pOlRUtBV2FNM+x20W9jIyKi7vNrMLV27VrMmDED4eHhiI+Px2WXXYa8vDyXfURRxIMPPoikpCQEBwdjwYIFOHTokMs+JpMJd911F2JjYxEaGopLLrkEp0+fdtmntrYWy5cvh8FggMFgwPLly1FXV+fPp0dEROQVuZOft/OlACApUg+NSoDZasdPJ6v8NTQiIuoBvwZTW7ZswR133IGcnBxs2rQJVqsVixYtQlNTW/33X//6Vzz55JN49tlnsXPnTiQmJuKCCy5AQ0ODss+qVavw0UcfYcOGDfjxxx/R2NiIiy++GDabTdln6dKlyM3NxcaNG7Fx40bk5uZi+fLl/nx6REREXpE7+Y32spMfAGjUKlw4PhEAcNMbu/Dt0XK/jI2IiLpPEEWxz2oHKisrER8fjy1btuCcc86BKIpISkrCqlWrcN999wGQslAJCQl47LHHcOutt8JoNCIuLg5vvvkmrr76agBASUkJUlJS8OWXX+LCCy/EkSNHMG7cOOTk5GDmzJkAgJycHGRnZ+Po0aPIysrqcmz19fUwGAwwGo2IiIjw34tARERDzlXrtmFHfg2evnoyLpuS7PX9Wi023PnOHvz3SAU0KgF/u2oSLp3s/f2JiKh7vI0N+nTOlNFoBABER0cDAPLz81FWVoZFixYp++h0OsyfPx9bt24FAOzevRsWi8Vln6SkJEyYMEHZZ9u2bTAYDEogBQCzZs2CwWBQ9mnPZDKhvr7e5YeIiKi3iaKI490o8wMAfZAaLyybhsunJMNqF7HqvVy8mVPoj2ESEVE39FkwJYoiVq9ejblz52LChAkAgLKyMgBAQkKCy74JCQnKbWVlZdBqtYiKiup0n/j4+A6PGR8fr+zT3tq1a5X5VQaDASkpKT17gkRERG5UN5lR22yBIPgeTAFAkFqFv/1yEn6VnQZRBP708UE8t/kE+rCwhIiIPOizYOrOO+/E/v378e6773a4TRAEl3+LothhW3vt93G3f2fH+f3vfw+j0aj8FBcXe/M0iIhoCNp+qhoPfHIQLWZb1zu3c9zRyS81OsTrTn7tqVQCHrpkPO46dxQA4PGv8vB//znKgIqIKMD6JJi666678Omnn2Lz5s0YPny4sj0xUZpY2z57VFFRoWSrEhMTYTabUVtb2+k+5eUdJ+ZWVlZ2yHrJdDodIiIiXH6IiIjaq2ky49a3duONbYX4cO/pru/QzvEKqcQvsxtZKWeCIODuRVn434vGAgDWfX8KT2461qNjEhFRz/g1mBJFEXfeeSc+/PBDfPvtt8jIyHC5PSMjA4mJidi0aZOyzWw2Y8uWLZg9ezYAYNq0aQgKCnLZp7S0FAcPHlT2yc7OhtFoxI4dO5R9tm/fDqPRqOxDREQkO1Jaj0c+P4yKhtYu9/2//xxBXbMFALC7sLaLvTuSM1OZCeE+39edm+aNwCOXjgcAPPPtCbzyw6leOS4REflO48+D33HHHXjnnXfwySefIDw8XMlAGQwGBAcHQxAErFq1CmvWrEFmZiYyMzOxZs0ahISEYOnSpcq+N954I+6++27ExMQgOjoa99xzDyZOnIjzzz8fADB27FgsXrwYN998M9atWwcAuOWWW3DxxRd71cmPiIiGlie+ysM3Ryuwt6gWG27Jhlbj/rvFXQU1eH9XWzZqb1Gdz4/VW5kpZ8uz01HfasXjX+XhL18cQYQ+CFfN4NxfIqK+5tfM1AsvvACj0YgFCxZg2LBhys97772n7HPvvfdi1apVWLFiBaZPn44zZ87g66+/Rnh42zd4Tz31FC677DJcddVVmDNnDkJCQvDZZ59BrW6rPX/77bcxceJELFq0CIsWLcJZZ52FN998059Pj4iIBiBRFLHvdB0AYE9RHdb+54jb/Sw2O/740UEAwM8mSmXp+VVNqGky+/R4JxxrTGXG905mSrZiwUjccs4IAMD9H+7Hfw6U9urxiYioa326zlR/xnWmiIiGhpK6Fsz+v28hCID8F/CZa6bg55OSXPZ76fuTWPPlUUSHavHN6vm48sWtOFnZhFevm47zxrqfj9teTZMZUx+RytQPP3whQrS9WxAiiiJ+/+EBbNhZDK1ahVevn455mXG9+hhERENRv1xnioiIKND2n5bWPByTGIEVC0YCAO77936ccJTjAVLA9fR/jwMA7l8yBlGhWkxNlZbo2FPk/bwpeX2plOjgXg+kAKkpxaOXT8RFE4fBbLPjln/u7ta8LiIi6h4GU0RENKQcOFMHADgr2YDVF4zG7JExaDbbcNtbe9BksgIAHv7sMJrNNkxPi8KVU6UutFPTHMFUYZ3Xj3XcTyV+ztQqAU9dPRnnjI5Di8WGG9/YCaOjYQYREfkXgykiIhpS5MzUxOEGaNQq/OOaKUiI0OFERSPu//AANh+twMZDZVCrBPzl8glQqaT1CuXM1L7TdbDa7F49lpyZ6s3mE+5oNSq8uGwqRsWHoa7Zgrd3FPr18YiISMJgioiIhgxRFHHgjBRMTRoeCQCIDdPh+WunQqMS8Nm+Etzxzh4AwI1zMzAmsa1OPjM+DOE6DZrNNuSVN3Q4tjtKZqqX2qJ3JkSrwe3zpbLF9T8VwGT1fYFhIiLyDYMpIiIaMoprWlDXbIFWrcLoxLZs0bS0aPzhZ9JiuM1mG4YZ9PjNeZku91WpBExOjQQgdQH0RluZn38zU7KfT0pCYoQeFQ0mfJJb0iePSUQ0lDGYIiKiIWO/Y77UmGHh0GnULrf9ek46rpiSDLVKwCOXTkCormPDiCmOUr+9XjR5qGs2o7LBBAAY1UfBlFajwq/npAMAXv7+FOx2NuwlIvInBlNERDRkHJDnSyUbOtwmCAL+dtUk7PnfC3D+OPetz6c6MlN7i+u6fCw5K5UcGew2MPOXa2amIkynwfGKRnx3rKLPHpeIaChiMEVEREOG3HzirOEdgylACqgMIUEe7z8lRcpMebN47/Fyeb5U32SlZBH6ICydmQoAeOn7U3362EREQw2DKSIiGhLsdhEHz8jBVGS3jmEICVJK9vZ2sd7UsT7q5OfO9bPToVEJyDlVg/2n6/r88YmIhgoGU0RENCTkVzehwWSFTqPqUYAzJSUSQNeL957ow05+7SVFBuOSSUkAgHXMThER+Q2DKSIiGhLk+VLjkyKgUXf/z5+3i/cerwhcZgoAbj5nBADgPwdKUVTdHJAxEBENdgymiIhoSGibLxXZo+N4s3ivscWC8vq+7eTX3thhEThndBzsIvDaT/kBGQMR0WDHYIqIiIaEA4626O46+fnCm8V7TziyUkkGPcL1nhta+NutjuzUezuLUdtFwwwiIvIdgykiIhr0bHYRB8/UAwAmpfQsmPJm8V65k9+oAMyXcjZ7ZAzGDYtAi8WGt3IKAzoWIqLBiMEUERENeicqGtFisSFUq0ZGbM/L7rpavPeY3BY9QCV+MkEQcOt8KTv1xrYCtFpsAR0PEdFgw2CKiIgGPbk9+PhkA9QqocfHm6pkpjoGU3a7iNxiaXuggykA+NnEYUiODEZVoxkf7CoO9HCIiAYVBlNERDToHZDXl+rhfCmZvHhvQXUzqhtNyna7XcQfPz6IPUV1UAnAjIzoXnm8nghSq3CbIzv14pZTsHhomkFERL5jMEVERIOe0snPsUZUT7ku3lsHABBFEX/65CDe3VEElQA8edVkjIwLfGYKAH45PQWxYTqcqWvBJ7klgR4OEdGgwWCKiIgGNYvNjsOlUvOJ3spMAa6lfqIo4s+fHMLb24sgCMATv5yEy6Yk99pj9ZQ+SI2b52UAAJ7/7gRsdjHAIyIiGhwYTBER0aB2rLwBZqsd4XoN0mJCeu248npTuwtr8dBnh/FmTiEEAXj8ykm4YurwXnuc3nLtrDRE6DU4VdmErw6VBXo4RESDAoMpIiIa1NoW6zVAEHrefEI2NU0Kprbn12D91gIIAvDYL87CldP6XyAFAGE6Da6fI2Wnntt8AqLI7BQRUU8xmCIiokFNDqYmJkf26nFHxYUhXK9R/v1/V0zEVdNTevUxetuvZ6cjRKvGoZJ6bDlWGejhEBENeAymiIhoUDtwpg4AMGl4782XAqTFe88bEw+VAKy5fCKunpHaq8f3h6hQLa6dKY3z+c0nAzwaIqKBj8EUERENGJ/vL8Hcx77Fh3tOe7V/q8WGvLIGAMDEXg6mAKnRxPY/nI+lM/t/ICW7ad4IaNUq7CiowY78mkAPh4hoQGMwRUREA8Kpykb87oP9OF3bgnv/td+rQCCvrAEWm4joUC2SI4N7fUwatQpx4bpeP64/JUToceV0aV7Xc5tPBHg0REQDG4MpIiLq9yw2O377Xi5aLDbog1Sw2kXc/tZunKlr6fR++8/I86V6t/nEQHfbOSOhVgnYcqwSBx2vERER+Y7BFBER9Xt//+9x7DtthCE4CF+unIdxwyJQ3WTGLf/chRazze199hbV4rlvpcxLb8+XGuhSY0JwyaQkAMxOERH1BIMpIiLq13bk1+C576QP/GuvmIgRcWF4+brpiAnV4lBJPX73r30d2ny/t7MIV6/LQVl9K0bGhWJZdloght6v3TZ/JADgq0NlHgNSIiLqHIMpIiLqt4wtFvz2vVyIInDltOH42cRhAIDkyGC8sGwaNCoBn+8vxfPfSZ3pTFYb/vDRAdz37wMw2+y4cHwCPr5jDuLD9YF8Gv1SVmI4okO1sIvAycrGQA+HiGhAYjBFRET91p8/OYgzdS1IjQ7Bg5eMd7nt7IxoPHSptO2Jr/OwYUcRrnkpB+9sL4IgAL+7MAsvXDsN4fqgQAx9QBgVHwYAOF7REOCREBENTAymiIioX/p47xl8klsCtUrA0/8zGWE6TYd9rp2ZhmWzUiGKwP0fHsCeojpE6DV47foZuGPhKKhUbDrRmdEJUjB1rJyZKSKi7mAwRURE/c7p2mb86eODAICV52ZiamqUx30f+Pl4nJ0RDQAYkxiOz+6ai4VZ8X0yzoEuMz4cAHCcwRQRUbd0/JqPiIgowN7cVogGkxVTUyNxx8KRne4bpFbhjV+fjR9PVGHOqBiEaPmnzVuZjszUCZb5ERF1C//iEBFRv7OjQFqQd9msNGjUXRdRBGvVuGBcgr+HNejImanCmma0WmzQB6kDPCIiooGFZX5ERNSvtJhtOHBaWkh2Rnp0gEczuMWGaREZEgSRHf2IiLqFwRQREfUrucV1sNpFJEboMTwqONDDGdQEQcBoR3bqRAWDKSIiXzGYIiKifmWno8RvenoUBIHd+PxtlNLRj/OmiIh8xWCKiIj6FTmYkjv0kX9lymtNsaMfEZHPGEwREVG/YbXZsaewFgAwPY3BVF8YneBoj84yPyIinzGYIiKifuNoWQOazDaE6zTISgwP9HCGBDkzVVjdhFaLLcCjISIaWBhMERFRvyGX+E1Lj4JaxflSfSEuXIcIvQZ2Ecivagr0cIiIBhS/BlPff/89fv7znyMpKQmCIODjjz92uV0URTz44INISkpCcHAwFixYgEOHDrnsYzKZcNdddyE2NhahoaG45JJLcPr0aZd9amtrsXz5chgMBhgMBixfvhx1dXX+fGpEROQHuwqkEj+2RO87giAopX5sQkFE5Bu/BlNNTU2YNGkSnn32Wbe3//Wvf8WTTz6JZ599Fjt37kRiYiIuuOACNDS0XcxXrVqFjz76CBs2bMCPP/6IxsZGXHzxxbDZ2koRli5ditzcXGzcuBEbN25Ebm4uli9f7s+nRkREvUwURWWxXgZTfSvT0dGP7dGJiHyj8efBlyxZgiVLlri9TRRFPP300/jjH/+IK664AgDwxhtvICEhAe+88w5uvfVWGI1GvPrqq3jzzTdx/vnnAwDeeustpKSk4L///S8uvPBCHDlyBBs3bkROTg5mzpwJAHj55ZeRnZ2NvLw8ZGVl+fMpEhFRLymqaUZlgwlatQpnDTcEejhDyijHWlPs6EdE5JuAzZnKz89HWVkZFi1apGzT6XSYP38+tm7dCgDYvXs3LBaLyz5JSUmYMGGCss+2bdtgMBiUQAoAZs2aBYPBoOzjjslkQn19vcsPEREFzo58KSs1cbgB+iB1gEcztIyW15qqYJkfEZEvAhZMlZWVAQASEhJctickJCi3lZWVQavVIioqqtN94uPjOxw/Pj5e2cedtWvXKnOsDAYDUlJSevR8iIioZzhfKnAyHZmpwupmmKzs6EdE5K2Ad/Nrv7q9KIpdrnjffh93+3d1nN///vcwGo3KT3FxsY8jJyKi3rSzUJ4vFdXFntTbEiJ0CNdrYLOLKKhqDvRwiIgGjIAFU4mJiQDQIXtUUVGhZKsSExNhNptRW1vb6T7l5eUdjl9ZWdkh6+VMp9MhIiLC5YeIiAKjqtGEU5VSW24u1tv3BEFQ1ptiRz8iIu8FLJjKyMhAYmIiNm3apGwzm83YsmULZs+eDQCYNm0agoKCXPYpLS3FwYMHlX2ys7NhNBqxY8cOZZ/t27fDaDQq+xARUf8ml/hlJYTDEBIU4NEMTXKp33F29CMi8ppfu/k1NjbixIkTyr/z8/ORm5uL6OhopKamYtWqVVizZg0yMzORmZmJNWvWICQkBEuXLgUAGAwG3Hjjjbj77rsRExOD6Oho3HPPPZg4caLS3W/s2LFYvHgxbr75Zqxbtw4AcMstt+Diiy9mJz8iogFCXqx3Okv8AkZuj36cmSkiIq/5NZjatWsXFi5cqPx79erVAIDrrrsO69evx7333ouWlhasWLECtbW1mDlzJr7++muEh4cr93nqqaeg0Whw1VVXoaWlBeeddx7Wr18Ptbqt09Pbb7+NlStXKl3/LrnkEo9rWxERUf+zyxFMnZ3BEr9AyUxgZoqIyFeCKIpioAfRH9TX18NgMMBoNHL+FBFRH2o2WzHxwa9hs4v46f5zkRwZHOghDUkldS2Y/X/fQqMScPjhxdBqAt6jiogoYLyNDXilJCKigNpbVAebXURyZDADqQAaZtAjTKeB1S6ioLop0MMhIhoQGEwREZHf7SqowYxH/4uV7+5FRX2ry22cL9U/CIKAUfHyvCmW+hEReYPBFBER+ZUoiljz5RFUNpjw6b4SnPe3LXhzWwFsdqnKvC2Y4nypQJPbox+vYBMKIiJvMJgiIiK/2p5fgz1FddBqVJiYbECDyYo/fXIIV7ywFfuK67C3qA4AcDaDqYAbLTehYGaKiMgrDKaIiMivntssLZFx1fTh+PiOOXjokvEI02mwr7gOlz73E5rNNkToNUpWhAJnVAIzU0REvmAwRUREfrOvuA4/HK+CWiXg1nNGQq0ScN3sdHxz93xcNHGYst/09GioVEIAR0pAW2Yqv6oJFps9wKMhIur/GEwREZHfyFmpSycnISU6RNmeEKHHc9dOxeu/noELxiXgjoUjAzVEcpJk0CNUq4bFJqKQHf2IiLrk10V7iYho6DpW3oCvD5dDEIAVC9wHSwuz4rEwK76PR0aeyB399p024nh5I0bFhwd6SERE/RozU0RE5BcvfHcSALB4fCI/lA8gmY5Sv2NsQkFE1CUGU0RE1OuKqpvx6b4SAMCKBaMCPBryBdujExF5j8EUERH1uhe/PwmbXcQ5o+Mwcbgh0MMhH2Q6OvqdqGBmioioKwymiIioV5UZW/GvXacBAHcuZFZqoMl0lGSeqmxSFlYmIiL3GEwREVGveuWHUzDb7JiRHoWzM7gQ70CTFBkMrVoFs82OkrqWQA+HiKhfYzBFRES9prbJjLe3FwEA7mBWakBSqwSkxUht7POr2B6diKgzDKaIiKjXvLGtAC0WG8YnRWD+6LhAD4e6KT02FACDKSKirjCYIiKiXtFituGf2woBALfNHwlBEAI8IuquDB+DKVEUIYqcX0VEQw+DKSIi6hX/3nMaNU1mDI8KxpIJiYEeDvVAeowUTBVUdx1MGZstmPvYZtz+1h4GVD1kstpwsrIRpyrZSZFooNAEegBERDTw2ewiXvnhFADgxrkZ0Kj5Xd1AJmemCrzITO0sqMGZuhacqWvBTyeqMTcz1t/DGxTK61vxr92nUVDVhKKaZhTXNKO0vhVyPPrBbdmYkc4GLkT9HYMpIiLqsU2Hy1FQ3QxDcBCump4S6OFQD8nBVHFtCyw2O4I6CY6POS3u+/dvjmHOqBiWeHrhkc8P4/P9pR5v/+lEFYMpogGAwRQREfXYS9+fBAAsn5WGUB3/tAx0CRE6BAep0WKxobimGSPiwjzue7y8rSRtZ0Ettp2qxuyRzE51RV4U+X9mpCB7ZAxSokOQGh2Cj/eewV++OIIjpfUBHiEReYN1GERE1CO7Cmqwp6gOWrUKv5qdFujhUC8QhLb26F3NmzpWLmWm5GzWP7457t/BDQKiKOJ0rbSG103zRuDSycmYmhqF2DAdxiVFAAAOM5iiXmJsseCnE1Wc0+gnDKaIiKhHXvpemit1xdRkxIfrAzwa6i0j4uSOfs0e97HZRSXDsubyidCqVcg5VYPtp6r7ZIwDlbHFgkaTFQAwPCrY5bZxw6RgqrimBQ2tlj4fGw0+D3xyENe+sh1fHy4P9FAGJQZTRETUbacqG7HpiPQH+qZ5GQEeDfUmuaNffpXnznLFNc0wWe3QaVQ4OyMav5w+HADw9yGYndp6ogrXvJSjBJedkbNSsWE66IPULrdFhmgxzCB9KXG0rKHDfYl8IYoivj9eBQDYU1Qb4NEMTgymiIio2175MR+iCJw/Nh6j4sMDPRzqRelKRz/PmSm5xG9UfBjUKgErFo5CkFrA1pPV2FlQ0yfj7C9e/TEf205V46O9p7vct7hGek1TooPd3i5npzhvinoqv6oJNU1mAMBJLwJ98h2DKSIi6paqRhP+tVv64HjzvBEBHg31thFeLNx73PHhbHSCFEgnRwbjymlSdmqozZ06WGIEABRWew4+ZXJmanhUiNvbxzqCqcMlAy+Y+njvGXy890ygh0EOuwvbslHeZE2HovL6VtT3oKSWwRQREXXLP7cWwGy1Y1JKJM7OYAvnwUbOTJUYW9BqsbndR85MZSa0dftbsWAUNCoBPxyvcvkgN5hVNLSivN4EACiq8SaYkvZpP19KNtaHzNRHe09j5bt7+8X8qoZWC+7+YB/u/mBfjz6cUu9x/h0sqmn2+Ls8VBVUNeHcJ77DNS/ldPsYDKaIiMhnzWYr/plTCAC49ZwRXFdoEIoJ1SJcp4Eoeg4Q8hxzekY7lXimRIfgiqnJAIZOdurQmbagx5uFjtsyU56CKen1zCtvgM3uuQObKIp49Iuj+HRfCd7dUeTLkP2ipK4VNrsIm1306nUg/9vlFEzZxa67cwLAmboWfH2ozJ/D6jfWfX8STWYbDpXUo9TY0q1jMJgiIiKfVNS3Ytkr21HXbEFqdAguHJ8Y6CGRHwiCoGSn3JX6WW12nKqUtstlfrI7Fo6CWiVgy7FK5BbX+X2sgXbwjFH5//pWK+qazZ3u31WZX1pMKEK0arRa7J2WWZ6sbEJVo5QR27CzOOCtr0vq2j6MFnhR7kj+VddsVkr70h1LHZys6DqYuvdf+3DLm7uxOa/Cr+MLtPL6Vvx7d1tJ6t6ium4dh8EUERF5bW9RLS5+5kfsKapDhF6Dv155FtQqZqUGqwylCUXHD2CFNc0w2+wIDlJ3yLCkxYTisslSduq5zSf8P9AAO+AUTAGdBxLSGlOdl/mpVQKyEqUAtbP1pnKcWtCfqmzCzoLAllWWOH2zz8xU4Mnd+0bEhmJ6ulSK3dW8KZtdxJ7COgDAD8eq/Dq+QHv1x3yYbXbl33u6WZbMYIqIiLzy/q5iXL0uBxUNJmTGh+GTO+di1oiYQA+L/KizzNRxp05+KjcB9XWOBZy3n6oOeMbE3w45GkXog6SPVYWdlFLVNVvQZJbmrSRHug+mAO/mTcnBlE4jPe6GnYEt9XPJTDGYCjh5vtS0tCiMipfmNZ6o7DyYyq9qQotjXtWOgsG7Xpyx2YK3HaXqP5+UBKD7reMZTBERUacsNjse+OQg7v3Xfphtdiwal4CP7pijZC1o8MqIlUqD3AVTx8qlD2XOzSecZTrmUdW3WlHbPHibEdQ0mXHGEUQszIoH0HlHP7nELz684xpTzroKpkRRRM4pqf386gtGAwC+PFAKY0vgXuvSulbl/72Zm0P+tavAKZiKcwRTXWSmnDOhh0vq+0VjE3/457YCNJltGJMYjt+enwkAOFhSD5PV9wYdDKaIiMitZrMVGw+WYunLOXhjm/QN3m/PH40Xl01DmE4T4NFRX5AX7nX3wVju5Nd+vpQsWKtGkmPx2c4W/h3o5PlSGbGhmJBsANB5IFHcRYmfrKu1puT5UjqNCtfPSUdWQjhaLXZ8mhu4tuQuZX6cMxVQFpsd+07XAQCmp7dlpk5VNnba1ORQSVvJql2EXzpy/u6DfbjoHz8ErLNgi9mG17cWAABuXzASGbGhiA7Vwmy1d2s5AgZTRESkqG0y44NdxbjpjV2Y8vAm3PbWHuwsqEWoVo2Xlk/Db87PdFvSRYOTnH0srzehyWR1ue14ubzGlPvMFABkxEn3lxtVDEbyfKkJyQakRkuZvKJOM1NyMOW++YRsTGI4BEF67asdTSacbXOU+E1Li4JOo8bVM1IASI0oAqXEKTNV02QOaJZsqDtcUo9Wix2G4CCMiA1DSnQItGoVTFa7Szmmu/sBQLAja9rbi2+3Wmz4957TOFRS32GuYV/ZsLMINU1mpEaH4KKJwyAIAqakRAIA9nSjCQWDKSIigrHZgpve2Inpj/4Xv/vXfvz3SDlMVjtSooNx09wMfLFyHhaxa9+QExmiRVRIEADXbIvFZscpR7YpM959ZgpoC8Y660g30Mnf5E9IinDK5HVd5tdVZipUp0GaIzg7UtrQ4XZ5vpQ8b/GKqcnQalTSh9TTff8h1W4XUWaUgimN4wuXzuaOkX/tcpovpVIJUKsE5ffRU6mfKIpKMCUvb7Ajv3eDqZOVjZATY/kB+JLFYrPj5e9PAQBunT8CGrUUCk1JjQQgNVnyFYMpIiLCmi+P4L9HKmCzixg7LAKrzs/Ef34zD9//biH+9+JxSiMCGnrSlY5+bQFCYXUTLDYRIVp1p00UMmKlrNVgDqYOOtaYmphsQKqj/XRVowmN7TJ5sq7aojvzNG9KFEVsbxdMRYZosdjxhUcgGlFUNZlgttkhCMDE4VK542B+3/u7PU7BlExpQuEhmKpoMKG6yQy1SsDybKmBzL5iY6+W48kZbQA4FYDz45PcEpQYWxEXrsMvpg5Xtk9NlV6n7rRHZzBFRDTE5Zyqxnu7pNKgd26aif/8Zh5WnT8aY4dFcDFeamuP7pRlUJpPeOjkJxsRN7gzU8Zmi7Kg8fgkAwzBQUomz1OpX1dt0Z15mjd1srIRVY1m6DQqTEoxKNv/x1Hq90luCZrN7oM5f5GbT8SH65RmB5014iD/EUURuwqljJJzMDWyi2BKzrKOjAtFVkI44sJ1MNvs2NeLa8XllbdlWft6LqXdLuLFLScBADfOzXBpAHNWSiRUgrRgcXl9q6dDuMVgiohoCDNZbfjDRwcAAEtnpmL2qNgAj4j6m4yYjgFRV80nZCOcyvzsnUx6H6jkD58p0cEwOIKoNMfr5a7ETVpjyrsyP6AtM9V+raltp9o+KOs0bR8IZ42IQVpMCBpNVnyxv9TXp9Mj8jycpMhgp2zm4Ayi+zspIDBBoxIwaXiksr2r9uhyid84xxdpZ2dIa1P1ZqnfcZdgqm/Pj01HynGiohHheg2unZnqcluYTqNcz3wt9WMwRUQ0hD2/+SROVTYhLlyH+xaPCfRwqB9yt9ZUW/OJzoOp5MhgBKkFmKx2lPr4be9AIE+gn5jclh1Kc5T6FdZ0zMrUNlvQLK8x5U0wlSQFUycqGl1aNrefLyVTqQRcNV3KTr3Xx40oShzzpZIMwcrcsXzOmQoIuQPf+KQIBGvbgm3n9uju1n6T10sbnySdz2c7Fvrd0YtNKJwzUwXVzZ12FuxNoiji+e+krNSvstMQrg/qsM9URxbP1yYUDKaIiIaoExUNeP67EwCAB34+Dobgjn9ciDLcZBnkzJSnNaZkGrVK6XAXiMnm/naw3YdPoPPMVLEjwEqI0LlklDxJMuhhCA6C1S4qpVnu5ks5++W04VCrBOwqrHXJAvhbqZKZ0iPdsT4Zy/wCo219qWiX7SPiQiEIgLHFguomc4f7yRnQcY4gXs5M7SmshdVm7/G4ms1WFNdI54lKAMxddBbsTQXVzdhXXAetWoVfz8lwu488b2qPj+3guVAIEdEAJIoiCqub8cOJKmw9UYXqRjOsdjusdhFWmwibXYRNFDE9LQqrF41GfLje5f52u4g/fHgQFpuIc8fE46KJwwL0TKi/kzNT1Y5W18FBaiVL1VVmCpCaUJysbEJ+VSPmZg6uMtKDbjJT6Y7MlHPDDpkvzScAQBAEjB0WjpxTNThS2oDxSQaP86Vk8RF6nDsmHpsOl+O9ncX434vH+fy8ukNeY2qYU2ZKbo/OL2r61m43zScAQB+kxvCoYBTXtOBERSNiw3TKbfWtFiX4lefqZSWEI0KvQX2rFYdL63GWU8lgd8gZ7dgwLSJDtDhR0Yj8qiakRHv3+9ATcknuuKQIl+ftTO7od+CMEWar98Ejgykion7MbhdhstrRYrGh2WzFgdNG/HCiCj8cr1S+4evMiYpGfL6/FKvOz8R1s9MR5GgD+/6uYuwoqEFwkBoPXzqejSbIozCdBnHhOlQ2mFBQ1QR9kBpWu4hwnQbDDPou7z8iLhQ4EpjOXf7U0GpRgsoJbsr8ityU+fnSfEI2dlgEck7VSPNZpnmeL+Xsf2akYNPhcvx7z2n8bnGWV1mwnpLXmEqK1CO03TkzybGGD/lfo8mKo2VShml6elSH20fFhSnBlHNm86ij/X6SQY+oUC0AqWx0Rno0vjlagR35NT0OppznWobqNEowdc7ouB4d1xvKfDBH1s2dEbGhiAwJQl2zBUdK65Fh8K6Ab1AFU88//zwef/xxlJaWYvz48Xj66acxb968QA+LiKhTLWYbDpcasf+0EQfOGHHgtBGVjSa0mG0wdfLtWJBawNTUKMzLjMWIuDBoVAI0agFqlQoalYBmsw3Pfnsc+04b8ZcvjmDDzmI8+PPxGJ0YhjVfHgEA3L1otNffktPQlRETKn0wrm6CyhF4j0oI8yoIl8sEB9vCvfL8kuTIYEQ7PnwCbWV+JcYWmKw2l0DGl+YTsvbt0T3Nl3I2f3ScEszsLarrdN/e4tyAAnA9Z3wNpowtFlz23E8AgNvnj8TlU5OVL4Koc7lFdbCL0jmWENHxy45R8WHYnFfZoaPfYafMjbMZGVIwtT2/BjfNG9GjsTkHUzqN9H72VRMKpYRxmOdgSl68d3NeJfYU1SJjone/N4MmmHrvvfewatUqPP/885gzZw7WrVuHJUuW4PDhw0hNTe36AEQ0pImi6PGDYavFhjN1LSiqacbpmmYU1TSj2WxDRHAQDO1+IvRt/x+u17i0jW5otaCgqhn51U3Ir2xCQXUTjpTW41h5A7yZgxukFpAWE4p5mbGYlxmLmRkxCNV1fhk/b0w8PthdjMc25uFERSOWvbodiRF61LdaMSE5AtfPTvflZaIhKj02BDsKaly68o3uZLFeZ4N14V65xG98uw+fMaFahGrVaDLbUFzTonRQA5wzU95/gaG0Ry+r73K+lEyjVmFMYjgqG0xKAOdPZqsdlY0mAFKZHyBl6HYU1Lgtd+zK14fKlPPl3n/vxzObj+OuhZkMqrzgriW6M/l8PNmuo98hJXPjWjoqz5vaVVADu13sdCmErhxzalwjH6bPgikvMlMAMCU1CpvzKrG3qA6/GGrB1JNPPokbb7wRN910EwDg6aefxldffYUXXngBa9eu9f5ATU2A2od0uE4HaBwvo9UKmEyASgUEO33r1NSNE0WrBYIcNcY2G9DaCggCEOJ0AW5uBkQRe4tqvV4DwK7RwB7k+AbNbofGJKXlrcFtx1WbWiHYfZtoaFerYdc6alBFEZrWFjfHNUGw+7bwm6hSw6Zrq23VtEgXZas+WHo9AKjMJqhsvh5XBZuu7Rsb5bg6vfT+AVBZzFBZO67T4aYBTtttggCrvu246tYWCKIIm1YH0XFeCRYLVBaL52N42G4NDlEeW36PbFotRLV0/gk2K1Rmk+fBeRi7y3tkNkGw2WAPCoJdE+Q4rg1qx3Hddf/xdGzX98gMwWb1eP55GpszuyjCJtrRotbBIgqw2u2wt5oBixl2tQaiTgtAgAARWpN0/tnsImx2wGpzzCWyizDb7GhqtaLRZEWT2fFfkw0NUEOjDYJOrUKIYEeoYIMmKAj10KDM0YUs2OxbNzJBAHShwQgL06PFbEdtfTO0VgvsggBTUNt5HWxuRUyYFhOTDRifFIEJyREYHhmCYK0auiA1goPU0AepoXb+I6bVAkGOa08n1wiVKOLqcTFYnD4Dz24+jne2F8FY1YpQAXhs8RTld1URFCQd2/EeocVxe6jTor0tLdJtvtBopOslIL3Zzc0dj9vaKj0XX6jVgNPvnHK9DQlRzj+YTNL12ReeruPBwco1AmYz0MnvslseruPQ69v+9lgs0rF95e49cvc3qhvHlRffPV1SA7PZCo3N2tZ8Qj7/PBgRLJ3j1eWtMBnr2zI17t4jT+efL9y9R57OP1+0e4+OnyqHzmp2mS+FpiYIAEaHqXC0rAnFxRUYFdr2e1tVVoNgcytSdfa2c6qLzxGZCWEIt5pgqmvFT/sK0VRTj0iNCpOiNZ1+vkgJk455ura5y88RPnHzHlXUNEMUAa1GhZhQLdDSglGhAoLNrSg9UwU0JXV9XKf36KuDZQg2t+LsjCgcMkpB6b3/3o91Xx/C7fPScelkH4KqIXaNOHisBMHmVsyK13U8P0JDMdLR0a/4TLV0u+P8O1xaD7XdhokG1/NqgkGDaNGClrpWnCwoR6a7eZLuruNuPscWFVcg2GzCmHABNrsonR8lVZ7P4166RlQ2mNBQbUSIAIwJV0n383CNmJoaBYgiDp8oAZoSuzw2AEAcBEwmk6hWq8UPP/zQZfvKlSvFc845x+19WltbRaPRqPwUFxeLAESjdMp6//P++20Hff99adv8+a4PFhvr2zEBUXz22bb7b94sbRs3zvW448b5fNyn5lwjpt33uZh23+fi+Tc8J4qAWBUcoWxLu+9zcVvKBJ+P+8aUi5T7T7nrbWW783E/z5rj83E/z5rjcgx5+5S73la2vTHlIp+Puy1lgstxq4IjRBEQz7/hOWXbU3Ou8fm4eTGpLsfNi0kVRUC8+po1yrb/veA2n4/r6T26/dL7lW23X3q/7+eZh/fofy+4Tdl29TVrunVcd++Ru/PP1x9375Gn88+XH3fvkfP5N/ZP/+nWcd29Rwczp4j3vJ8rPvvtcfGrg6WiLab/XCPEBx5ou//Bg9K22FjX486f7/txV6xou39FRdt2Z1de6ftxr7zS9Rjy9oqKtm0rVvh+XE/X8YMH27Y98IDvx/X0Hm3e3Lbt2Wd9P66n98jd3yhff0RR/M+BEjHtvs/FHycvEEVI14gteY7XWD7/fP1x9x65O/98/XH3Hnk6/3z5cfMefZ41R/z2SHnb9u4c14vPEbWhBp+Pu/muP4tp930u3vN+rt+vEeboGDHtvs/Fc/76rev558uP4z1qbLWIZ696V9neZLKIL205KU575OtufY7gNcLx47hG1DaZXD/rvf++aLLYxFF/+KLbnyNcyNdxd3+jfP0JwDWivsUsTl0pfY4wAiIA0Wg0ip0ZFJmpqqoq2Gw2JCQkuGxPSEhAWVmZ2/usXbsWDz30UF8Mr1/JSgzHpZOlb4gSi6VoXqdRKdsAIOZT911OOpMRG6IcI7S+7Zsa5+Mmfed9jbhyn8hgl2PIFk9IRFOElMLO2OP7fI+YMJ3LceXa3XPHxGNcirR9zAnvSlicRQRrcPmUZAhO/waAeaPikDQ+GQAwuSLS5+PqNGr8YupwANKXNHGfSe/RrBHRCJkmbT/LHO3x/p25avpw5f9Ttkjv0bTUKJgda5WMCHb/O9SVK6YkockgjSlzn/RN2IRkA645Wyq7jS/qxjfvAH4xdTjqRoyEVi0guyQG+EnqwHP3BaMhAtDX1gDP+H7cF5ZNQ/PseTBZbAh55SiwCcgeEYOP75iDlCjHnIhHfD/uny4ehxsvmA2tWoWRW+qBT6SyoMd/OaltJ/Z+oH5O7ujXaGr79t6bTn6DldlqgzxLanxy52VDvUHTjdKqSMciwqdrWwA/z++XSz+TDL7/nW/vu7xKWJzacIdoNbj5nBFYNisNpd88BeT1+CGGtMgQLWLDtC7bTlQ0wmITERzEEspwfRBGxna+5EN7giiKop/G02dKSkqQnJyMrVu3Ijs7W9n+6KOP4s0338TRo0c73MdkMsHkVO5QX1+PlJQUGEtKEBHhw4WxH5T5+YQlPJJ+mp7vlB9LeBSdpOd9NsBLeGA2ez7/fMFrhITXCMkAvUa0mG0Y++eN0FnNUNnt0Ifqsefhn0nzDL24Rtz9/j58eaAU9ywajRvlSewD+Bqx+3g5lr3wI2INwfjhgZ+17eM4Tz7YVYw/f3IIczNj8fKvpgMA9p+uw9XrcpAQocN3v1vYdh8vrhGvfXUAj391TPn3mzeejenpnX+BtvNMI3752i6kRofg+7vP8es1Yt2Wk1j7fTGumJqMJ6+aDLS0oKnFjOl/+S8AIOf358EQ0kV7dMd7tPLdvfg09wzunDkM91w4psM14g8f5OKjvWewZEIinrx6ctfjHULXiHd3FOHhzw5j9sgYvHr9jI7HdryWV6/bhtxjpfjrFRNw6cwR+CC3FL/7137MTovAO7+a2uFuOSer8Ov1u5AQocPmexZ0nF/sxeeI9388jgc+OYQ5mbF4xfE7ceULW3GopB7PXjMF541zTYgA6LVrhHz9+e0FmbjlnJFdXiN+/+99+PinE7h2Wiz+tGwBjEZjp7HBoMhMxcbGQq1Wd8hCVVRUdMhWyXQ6HXQ6NxmY0FDXk8IXGk3bBbH9MXtCrXZ/jBDfMzIuVCr3xw3u4TdLguD+uM4Xs+5yd1ydru2PZG8eV6tt+4XtLnfvUVBQ2wWmu9y9R57OP1+4e488nX++cPceeTr/fOHuPfJ0/vnC03vU0+PyGiHhNaLNALlGBGvVSDLo4Wj4hXFJUW0fqLy4RiQPj0VLXi2ON4nev0f9+BpxoKIZLVo9Rqe1S/k4jjt8eBxatHqccHq+RSYjWrR6xCZEeX58D+9R5ohEtGiLAEiVFBOzkoAu2p0nx0sfFkuNLbAJKqj9eI0oNkvngpKZCg5GaHAwwmIMUke/VmBSXNevuclqw7dHKwBBwLnTR3R8nfR6LDtvHN45VI1PThjxO6tKaXjhtUF6jTh4xohnt5eiRavHhNFJnZ7jo+LDsD1fh2ONdmW+FACMGR7j9n6Txuhh0R9CQauI02ZV5+tCefgccdhoQ4tWj/SUOOUxkpJjsavKjBPNIs7r6neyB9eI3Bqz9Ps6IrHj/m7eoylp0Xh3px67K7wLhAdFPk+r1WLatGnYtGmTy/ZNmzZh9uzZARoVERHR4CGX+gHA6ATfymBGyO3RB0lHvwNnpA+fzutLOZPXmiquaYbVUbLWnbbosrFO7Zw7W1/KWUKEHhqVAItNREVDN6oLfNC2xpTrc8twtIkvqPbufd96shqNJiviw3WY7GFNo3FJEZg1Iho2u4h/bivs/qD7kV0FNbj4mR+w7WR1t+7//s5iXPHCVpypa0FqdAiWzuy8i7XchEJujy538mvfmVIWrFVj4nDpXN+RX9OtMR6vcLRFT2wrD+6LTp/NZqty3emqk59sqmPx3oOlRq/2HxTBFACsXr0ar7zyCl577TUcOXIEv/3tb1FUVITbbrst0EMjIiIa8JyDqUwv26LLBlt79EOOFJ2nYCoxQg+tRgWrXUSpUQo0utMWXRYbpkNcuDxX1rt2zWqVgGGRUpbgjJ/bo8trTMmPJ0uPlZ6rt+3RvzooVRhdOD6x0xbcN8zJACCVtbWYfSwN7ofe2FaIg2fqcf+H+13mi3Wl1WLD/f/ej3v/vR9mqx3njYnHZ3fOdbu+lDO5PfqJikaIoogjXrQNl1ukdzeYyitra4suGxHn/y9Z8soaIIrS71B8uHfVDyNiwxCh18Bk8e69GDTB1NVXX42nn34aDz/8MCZPnozvv/8eX375JdLS0gI9NCIiogFvhFMwlZXoYzDl+NBU2WBCQ6uPc0j6mVaLDccd3+hP9BBMqVQCUh2lUHJWpieZKQD42YREBAep8bOJXrZrhrSgsPNj+4scMCa3y0yl+ZCZstlFbDpcDkBqMtWZ88YmICU6GHXNFny090x3htyv7CmsBQAUVjdjw44ir+5TXNOMK1/cig07iyEIwD2LRuPlX03vem4a2oKpwupmnKpqQoPJCq1a5bImWntnO+bo7SjwPZiqaTKjyrEOWabTY6TH+P9LFmWxXi+zUoD0+zsl1f06Xe4MijlTshUrVmDFihWBHgYREdGgI3/wAdC2xpSXIvRBiA3ToarRhIKqZqVkaCA6UloPm11EbJgWCRGe59mkx4TgREUjCqqbMS+zLaDpdL5JJx68ZDz+eNE4aDXefw8uZcFqcKbOf8FUk8kKY4sUIA8zuH7zL2ckvQmmdhXUoLrJDENwkJIF8UStEnD97Aw88vlhvP5TPq45O8Xjouv9XamxxeX9+fs3x3H51OEI62RB9p0FNbj5n7tQ12xBVEgQ/nHNFMzL9L5l4zCDXllY+j8HSgEAoxPDOl27a3paNARBCnzu/dc+hOmCEKJVI1irRqhWjYy4MMwf7X4Mx8qlEr/hUcEuC83L2W75S5ZwfQ/nirqhLNY7zLeum1NSI7H5gHdlpIMqmCIiIiL/yEoMhyAACeF6xIX5Pll/RGwoqhpNOFXV2G+DKVEUcbq2BftPG3HgjBEnKhohCIBWrYJGLSBIrVJK5sYnGTr9AC9nZYqqmxzHlcv8upeZEgQBWo1vAUNbZqob3Qu9VGqUXo9wnabDh2E5AC/wIvPw1SEpK3X+2ASvFuT95fThePLrPByvaMSPJ6p8Cib6k92OrFRWQjhMVhsKqpvxyg+nsOr80W73LzO24rY3d6Ou2YJJww14ftm0DhnBrgiCgJHxYdh/2ohP95UAAMYP6/x30hAShLOSDdh32oj3d512u8+GW2a5LUM97gimstotp2AIDkJsmBZVjWa/fcnSncwUAGnxXi8xmCIiIqIupUSH4PXrZyA+XN+tLEBGbCh2FNT0u3lTxhYLXv3hFPYU1eFgiRF1zd6VIU5xTFL3RG5CUVDdjKpGM1otdggCfO8+1wNy4OZNmd+pykbUNJm7bLne3hkPzSeAttegttkCY7PFYwmaKIr46pA8X8p9F+b2IvRB+OX0FKzfWoDXfswf8MHUzBHRmJkRgzve2YOXvz+Fa2emKfPkZBabHXe9uwfVTWaMHRaB927Nhj6o62Yk7oyMk4KpY+VSyao3wcazS6di0+FyNJmsaLbY0Gyyotlsw8GSehwprcc/txW4DabyHMFUppu16TJiQ1HVaO70S5YPdhWjxWLDr7LTfXiGUuno0VLpsX3NTE1OjcTwqGAUe7EvgykiIiLyyoKs+G7fV5431d+Cqdd/ysc/vj2h/DtILWBMYgQmJBswdlg4NCoVrHY7zFY7LDYRVpsduiAV/ufszjumtWWmmpXMkNyYoq8kO4KprhpQiKKIX722A6drW7Bu+TRcON77eVmlHppPAECoToP4cB0qGkwoqG7CpJBIt8c4VFKPM3UtCA5S4xwPpWLuXD87HW9sK8DmvEqcqmzEiDjfyk/7A3m+1LS0KPxsYiImpURiX3Ednvn2OB6+dILLvk98nYedBbUI02nw/LVTux1IAegwP8qbYColOgQ3zM3osP1oWT0WP/0Dvj5UjvL61g4NMOSALSux4/uTERuKnQW1Hq8LpcYW/O5f+wEAs0fGdjqvq72C6ia0WGzQB6mUklNvReiDsHHVOTA80PW+DKaIiIjI7/prR7+DjjbnV09PwbJZaRidGOZV6/GupDuyMoU1TSiq6VmJX3elODoHnqlrgSiKHjOKVY1mJXt177/2Y2KywW2myZ0So+fMFCCV+inBVEqk2302Orr4LciK8ylASI8NxXlj4vHfIxVYv7WgQ/ARKC1mG97KKcSlU5I67SDXYrYpbcmnpUlrt92/eAyueTkH72wvwg1zMpR5RZsOl2PdllMAgMevPMvn4KC9ke0Cz7E+Zm6cjUmMwPS0KOwqrMWGHcX4zfmZym2iKCpzptx1Ac2Ilcbh6brw5YG2NWS3HKv0KZiS50uNSYyAupPukD01aLr5ERERUf8ldwPMr5TmEPUXeeXSB67LpiRj4nBDrwRSgBRcqFUCWi127C2qA9C9tug9kWjQQyUAJqsdlY5uau7Ic1oAqexx1Xu5sNm9e4/ktuhJBvdBg9wevbMgeqOjxK+rLn7uyG3S/7X7tNIIA5A+xFc1mnDgtLHP26e//MMpPPrlETz06eFO99t3ug5Wu4iECJ0y7yl7ZAwWZMXBahfxxNd5AKTOfXe/nwsA+PWcdCyZOKzHYxzl0lUvpNOGF95Yni11z353R5GythoAVDaaUNdsgUromA0Duv6S5UtHgwxACqZ80d35Ur5iZoqIiIj8LjUmBIIANJisqGo0d5gPEghNJiuKa6RgwNd2710JUqswPCoYhdXN+OlEFQAgpY8zU0FqFRIj9CgxtuJMbYvHLImcOZiQHIH8yibsyK/Bs9+ecMkweCI3oPCYmXJ8WC6sdt8E40RFI05UNCJILWDhGN/LSLNHxiArIRx55Q1Y/V4u9Fo1CqubUFjVjAaTFQBwwbgEvPyr6T4fu7t+PC69398erUCrxeYx2ybPl5I65bVlTu5bPAZbjlXi8/2luH52DR7+/DDqW62YnBKJ3y8Z2ytjTIsJgUYlwGoXMT6p540fFk9IREyoFmX1rfjmaIVSKnrMsb5UWkyo29dhhFP5b/vsaamxRXmNAGD7qepOX8/2utvJz1fMTBEREZHf6TRqpcytN0r9Ttc24+p125TWzt0hBxFx4TpEh2p7PKb25LWm5HWp+jozBbTNm+qsCUWeY07L/NFx+MvlUqnc37855tUCrSWOBhSeGmt0tZaQ3Hhi9shYRHSjNbYgCLhhbjoA4JujFfhifykOnqlXAikA2FtU6+Heva/FbMPeYunxWiw2/OAIrNyRA4Wpaa6d48YOi8DlU5IBAMtf3YH9p42IDAnCc9dO7bU5d0FqldIgpDcyNzqNGr+cngIAeCunraW4/Ds22sNyCqnRji9ZWq2objK73PYfR4nfjPQoDDPoYbLasd2HRYP7KjPFYIqIiIj6RNv8iMYeH2v9TwXYnl+DF7ec7PYx8sqkD3pjejkrJXNemwvo+zlT0mO2zZvy5LjygTccl08ZjiumJsMuAqs27EVds9nj/URRbCvzc9OAAmh7DQo9rDX1tdLFz/cSP9kVU4fjlnNG4NqZqfjfi8bi5V9Nx6bfnoMdfzwPgDQnrNls7eIokqNl9WgyebevO7sLa2GxtZVIyvPB2rPbRewpams+0d7di7Kg1ajQYpFKFJ+8apLPLdC78rOJw6DTqHDBOO86KHbl2pmpEATgh+NVSvB8zOncckcfpFaeV/uA+wvHFyU/mzhMWcNqS553pX4VDa2obDBBEPz3+y1jMEVERER9Qp43daqyZ5kpURTxH8eH1COlDTBb7V3cw728Lj7o9ZT8zb8sIJmpLtaacm4QIL8Oj1w6ARmxoSgxtuK+f+/3OMetpskMk+O1T/QwZ6p9e3RnXx4oxb7TRggCevSBPkitwh9+NhaPXj4RN80bgQvGJSAzIRzx4XqE66UZLd60h9+RX4PFT/+AP350oNtjyTlVDaDteX9ztNxlDpHsVFUT6pot0AepMN5N5iQ5Mhi3zBsBALjr3FE4d0zvBDzO7l6UhaOPLO618z8lOgQLHEHPO9ul7FRXwRTgNG/K6brgXOK3ZIJTMHWswquxHHG0RM+IDUWI1r+zmhhMERERUZ+QPzSd6mGZn9xKGwDMNjuOltV36zhyZqq350vJ0pwyUyrBc8DhT121R69oMKG+1Qq1SlDmr4TqNHjmmikIUgv46lA53tpe5Pa+pY5OfrFhOo+NO+T26ACQ75Sd+v5YJX6zYS8A4LrsdL/NoZM7GnqzcPGuQqmE7JsjFV434GhvmyOYum3+SESFBKGu2eK2XHK347HOGh7pcZHi1ReMxpbfLcDdi7K6NRZvdGfNuM4smyU1onh/12m0mG047igh7SyYGuHmuuBc4pdo0GP2qFioVQJOVjahuKbr97Kv5ksBDKaIiIioj/RWe/T/HHSdJ7XvtLFbx5G/NfdfmV9bJqqv15iSdbVwrxxQpsWEuAREE5INuN/R7OAvnx9GRX1rh/vKJX7JHkr8ZG1NKKT3fXdhLW59czcsNhEXnzUMf7p4nC9PySfy85cbjXRG/pDeYLJ2K0BvMlmxr7gOADB3VCzOHytlk+R5Yc52F3ou8ZOpVIJLQD4QLMiKR3JkMIwtFrzywyk0mKzQqIROW7m3XRfayn+/dCrxAwBDcBCmOhbK/v5416V+fTVfCmAwRURERH0kw+lDdftv/g+VGPHr13fgo72nuzyOPA9F/kZb/gDri6pGE6oazRAE9+vf9IaU6LZgKhAlfkBbmZ+81lR7ShmWm9fghjnpmJIaCZPVjg07izvcLgdTnppPyOSgMr+qCUfL6vHr13egxWLD/NFxePKqyX5dA0h+D7zJTDl3HPSm+UZ7uwprYbWLSI4MRkp0iDIP7OvD5R1e+7ZOfp6DqYFIrRKwdKa0oPXz30nzGTNiQzv9IiEjznWtqVJjC3Y5lfjJfJk3dbhE+oKFmSkiIiIaNJIig6HVqGCxiS5lZxsPluLKF7Zhc14l/vejg6hvtXg8xvHyBpysbIJWrcJd540CAOw/XefzWJSMTHQIgrW9s7ZUe/ogNYY5SvuGR/d98wmgrWV5s9mGuuaOr6tShuUmOycIAq7LTgfQcf0goK3Mb5iXmamtJ6ux/NUdqG+1YlpaFF5Y1nvd6TxJ8SEz5RxM7SzwPZjadlIq8cseGQMAmJsZixCtGqXGVux3yp7WNplx0jE/aErq4AqmAODqGSkIUgtK8wx355Yz+UuRgupm2OyiUuI3PS3KpTR2/mipdf7Wk9WdzpNsNluVkkFmpoiIiGjQUKsEZMTI8yMaIYoi/vHNcdz21h60WGxQCUCT2Yb33WRBZHJWas6oGMwZGQtAWqvI1w5scjDlr+YTMrkRQaAyU/ogtTIfyV2p37GKzltXL5mYiOhQLUqNrfj2qOvk/zNKmV/ngaL8nu/Ir0FlgwljEsPx2nUz/N4YAGh73Yu7yEyZrXZlzSxAGquvi0vLzSeyR0jBlD5IjQVZUjbFudRP7uI3Ii7ULy35Ay02TIfFThkld1lPZ0mRwdCqVTBb7Sipa1FK/C46y3Vx4vFJEYgJ1aLRZFVeQ3fyyhogitI4PK2t1psYTBEREVGfkUv9DpfW46539+LJTccAAL+ek45HLpPWOHr9pwK3HdAAKF38lkwYhvgIPYYZ9LCLwMEzvs2b8ndbdNn80fFQqwTMGhHt18fpjDxv6Eyda0AhimKXDQKk9YOGA0CHRhRKZqqLMj/neT9pMSH45w1nwxDi+5pS3dFW5td5Zup0bTPsIqAPUkGrUaGq0ezT3L5GkxUHHOfgLEdmCmhr+e4cTA3WEj9nyxylfgCQleg+UJepVYLypcO2U9VuS/wAaQ7ZOUpXP8+lfn05XwpgMEVERER9KMPRMe6Jr/Lw+f5SaFQC1l4xEQ/8fDx+MXU4YkK1OFPXgq8OlXe4b1F1Mw6X1kOtEnC+o5X2WcMNAOBSRuWNo+VyJz//fuC6fcFIHHzwQsx2ZNECoa09umtAUWJsRaOjQUD7NbGcXXt2GgRB6sDnvF5UaRdrTMlGxIVimEGPJIMeb904E/ERfdfVUA4kjS2WTstHixzNJ9KiQzF5eCQA3+ZN7cyvgc0uIjU6xCVTt3BMPILUUhe6E47Fm3d50XxioDs7Ixpnp0cjXKfpsCixO3IpqLxuXPsSP9k5o6Xfo87mTfVlJz+AwRQRERH1ITkzZReB6FAt3r5pJq45W/oWWx+kxrWO1sqv/Hiqw303HpLKf2ZmRCvlUWc5Pvju82HelN0uKgvVdvWteW/w15wsbw2Pcp+dkZtPdNUgIDUmBOdkyusHSdkpq82OMkeHv6Quyvz0QWpsvmcBvr1ngUtTjr4QqtMo58rpTuZNycFUakwIzs6Qsog7fJg3ta1diZ8sQh+kBNJfHSqDxWZXGqYM5mBKEAT888azsfX353pVatd+DTq5i1978xzn4eHSercdJuXbAGamiIiIaBCakR6NILWAMYnh+OSOOZjZ7sPn8llp0KpV2FtU12FeRFuJX6KybVI3gqnTtS1oNtug1ag6zcgMFske2qPLAWVXDQIA5/WDitFqsaGiwQS7CGhUAmLDul4jSh+khj4oMEGl0oSik3lTcvOJtOgQzHAEU740oWjffMKZ0tXvUBkOl9TDZLUjMiQII2L9H8gHkj5IjXC9d+Wc7VunL5mY6Ha/2DAdJiZL2ejvj1d1uL2+1YKjjgV7mZkiIiKiQScjNhQ7/3g+vlg5z22WIi5ch0snJwEAXv0xX9leZmzF3qI6AMCi8W0ftCY6yvyKa1pQ02T2agx5jiBiVFwYNB4WTB1M2uZMtc9MOeZLedEa/twx8Ugy6FHbbMGXB0qVtuiJBr1fW5v3BqUJRSeLvSrBVEwIpqVFQSVI55RzUwpPjC0WHHK04nYXTF0wLgGCIK2H9vn+EgDA1NQoqPr569aXnIOp6WlRnc7Dm+9h3lR5fSuuenEbWiw2JEToOl3bqjcN/isIERER9SuRIdpOP4DfOC8DAPCfA6XK+kDyBP5paVFIcJpzYwgOUkqEvG2RnudYkDXLz80n+ovhypwp12BCWWPKQyc/Z2qVoJRjvpVTiBJH84mkLppP9AdyW/rOmlAU1UjlZSnRIQjTaTA+SQrSvZk3tTO/BnZRKlVLcDMfLC5ch2mOFuhvbCsEMLhL/LpDnksJeC7xk813dEj84Xilsl7dycpGXPH8Vhwta0BcuA6vXT+jz4J8BlNERETUr4xJjMDcUbGwi8AbWwsAtLVEXzy+Y/mPr00ojpbJ86WGRjAll/k1tFphbJGaMEjzxqTMVKaX7eGvPjsFGpWAPUV1+OaI1CCkq+YT/UFKVOcL94qi2NaAwlH2qcyb8iKYkudLzXKTlZLJpX7y+kgMplzFhemQFhOCUK26y2BqSkokwvUa1DVbsP90HXKL63DlC1txpq4FGbGh+PD22Uow3BcYTBEREVG/c+NcKTu1YUcxiqqbsT1f+sC6eIK7YCoSgPeZqWPlQyuYCtG2NWGQF0s+U9eCFosNWrUK6THeNYWID9crQcGn+6RytWFdNJ/oD4Z3sXBvZYMJrRY7VEJb58MZ6d7Pm1LmS43oOpgCpCyfPNePJIIg4P1bs/Hlb+a57eLnTKNWYe4oqanH3785jmteykFtswVnDTfgX7dl93mTEwZTRERE1O/MHx2HkXGhaDBZccc7e2AXpUU73X1QmpQifQudW2zscqFVs9WudAzL8vOCvf1J+3lTckA5Ii7Up3lj186SSv3kl7mrTn79QdtaU81uz49CR1YqKTJY6Wo4I13KHB0rb0RtJ3Px6prNOOIoG53ZyVpiqTEhyppm45MiAt7hsT9KiNC7rEnWGXne1Hd5lWix2DAvMxbv3jwLMV40Q+ltDKaIiIio31GpBNzgyE7Ji6EucZOVAoBxwwxQqwRUNZqUhWQ9OVnZCKtdRLheg2FdfAM+mCS3mzeVp8yX8i2gzB4Rg5FO81uSBsBrKD/3JrMNtc0d15pybj4hiwnTYVS8NJess+xUzqkaiCIwKj6syxbgl09JBgAscAQC1H3nOL2Gl01OwqvXzUCoThOQsTCYIiIion7piinDERXS1lp58QT3cymCtWolKOiq1E8p8UsIhyAMnW5qckAhl/nJ86W8aT7hTBAEpU06gE67rvUX+iA14sOljIW7eVNFjoWIU9tlPb0p9cvxsL6UOzfPG4F3b56FO84d5d3AyaOkyGCsvWIi/nzxODx51eRO10nzNwZTRERE1C8Fa9W4dqb0wX1UfJiSKXBnkqMJxb4umlAMteYTsuHt1pqSg0pvm084u2LqcEToNQjXaZDq5XyrQJNL/dzNm1IW7I12LTGb6UUTCiWY6qT5hEylEpA9MgY6DUv8esM1Z6fihrkZAW8xH5h8GBEREZEXbp0/Ao0mq8cSP9mklEhs2FncdWbKEUyNGWLBVLKjo92ZuhbY7CJOVMiZKd9fB0NwED69cy6sdjvCAlRa5avhUcHYXVjrduHewpqOZX4AlMV7D5bUo8lk7VBGVt1oUoLzWV5kpmhwGhi/AURERDQkheuD8OAl47vcz7k9ut0uevy2Wv7w250gYiBzbkBRVNMMk9UOnUbVobTNW+l9tCBqb+msPXpRtZyZcn0tkiODkRwZjDN1LdhTVIt5ma5znT7aewaAFJjL3RJp6GGZHxEREQ14oxPCodOo0NBqRYFjDkx7Da0WpZvdmMSIvhxewMlrTdU0mbGvuA6AVDrZVwubBpqn9uiNJiuqHd363JUsyutN7WxX6vfqj/n4yxdHAACXTE7q9fHSwMFgioiIiAa8ILUK45OkAGmfh1K/Y46mC4kRehicGlsMBRH6IETopYKkzXkVAIZWds65PbqzQkfgHRUShAh9x3NCDqa2O4IpURTx5Nd5eOTzwwCAm+Zm4Pb5I/02bur/GEwRERHRoCAv3ruv2H0Tijy5xG+IzZeSyfOmthyrBABk+tjJbyBrK/NrcVlrqlhuPuFhfSO5o19ucR1aLTY88Okh/OPbEwCA312YhT9eNHZIdYWkjhhMERER0aAgL97rqQlFnmNx1aHWfEIml7rVOdZaGkqLFg+L1EMlACarHZUNJmW7ssaUh7ljI+NCEROqhclqxzUv5+Cf2wohCMAjl03AHQtHMZAiBlNEREQ0OExyZKYOldTDYrN3uL27C9UOFvJaU7Kh9DoEqVXKmljFtW3zpjx18pMJgqBkp/YW1UGjEvD01ZOx3GmtLRraGEwRERHRoJAeE4pwvQYmq11ZR0kmiqJS5jfUM1MAEByk7hBcDXZta221zZuSO/mldNLVcNYIKZjSaVR4+VfTcenkZD+OkgYatkYnIiKiQUGlEnDWcAN+OlGNPUV1GJ9kUG6rbDShttkClYBOF/8dzJyDqcyEsIAvdtrXhkeFYHt+jbJwMQAU1kgNKDyV+QHAVTNSUNNkxvnjEpR5eUQyBlNEREQ0aJw1PBI/najGnz4+iKc2HUNaTAjSY0KhcsxtSY8JhT5IHeBRBsbwqLaAITN+6GXnUqLl9uhSNspis6OkrhUAkOahAQUAhGg1WL0oy/8DpAGJwRQRERENGpdOTsJn+0pwurYFNU1m1DSZsbeoTrk9a4iW+AGuc6ayEodedk4OJosdZX4ldS2w2UXoNCrEh+sCOTQawBhMERER0aAxJjECP953LhpNVhRWN6GwuhkF1U0orGpGdZMZtw3hNYEiQ4IQqlWjyWxD5hBqPiFLUeZMSWV+cie/1OiQIVfySL2HwRQRERENOmE6DcYnGVzmTQ11giDgymnDsT2/RulQN5TITSbkjJTcyS+1k/lSRF1hMEVEREQ0RDx06YRADyFgEiL0CFILsNhElNW3oqhaaj6R6qEtOpE32BqdiIiIiAY9tUpAkmPe2OmaZhTVdL5gL5E3/BpMPfroo5g9ezZCQkIQGRnpdp+ioiL8/Oc/R2hoKGJjY7Fy5UqYzWaXfQ4cOID58+cjODgYycnJePjhhyGKoss+W7ZswbRp06DX6zFixAi8+OKL/npaRERERDQApShNKFqUOVOddfIj6opfy/zMZjN++ctfIjs7G6+++mqH2202Gy666CLExcXhxx9/RHV1Na677jqIoohnnnkGAFBfX48LLrgACxcuxM6dO3Hs2DFcf/31CA0Nxd133w0AyM/Px89+9jPcfPPNeOutt/DTTz9hxYoViIuLwy9+8Qt/PkUiIiIiGiDktbaKnTJTLPOjnvBrMPXQQw8BANavX+/29q+//hqHDx9GcXExkpKSAAB/+9vfcP311+PRRx9FREQE3n77bbS2tmL9+vXQ6XSYMGECjh07hieffBKrV6+GIAh48cUXkZqaiqeffhoAMHbsWOzatQtPPPEEgykiIiIiAtDWhGLf6To0m20QBNfFjIl8FdA5U9u2bcOECROUQAoALrzwQphMJuzevVvZZ/78+dDpdC77lJSUoKCgQNln0aJFLse+8MILsWvXLlgsFrePbTKZUF9f7/JDRERERIOXHDhtP1UDABgWoYdOMzQXcabeEdBgqqysDAkJCS7boqKioNVqUVZW5nEf+d9d7WO1WlFVVeX2sdeuXQuDwaD8pKSk9MpzIiIiIqL+SV64t8ViA8ASP+o5n4OpBx98EIIgdPqza9cur48nCB0XSRNF0WV7+33k5hO+7uPs97//PYxGo/JTXFzs9ZiJiIiIaOBJiXYt6UuLZvMJ6hmf50zdeeed+J//+Z9O90lPT/fqWImJidi+fbvLttraWlgsFiXTlJiYqGSgZBUVFQDQ5T4ajQYxMTFuH1un07mUDhIRERHR4BYXpoNOo4LJagfAzBT1nM/BVGxsLGJjY3vlwbOzs/Hoo4+itLQUw4YNAyA1pdDpdJg2bZqyzx/+8AeYzWZotVpln6SkJCVoy87OxmeffeZy7K+//hrTp09HUFBQr4yViIiIiAY2QRAwPCoYJysdC/ZyjSnqIb/OmSoqKkJubi6Kiopgs9mQm5uL3NxcNDY2AgAWLVqEcePGYfny5di7dy+++eYb3HPPPbj55psREREBAFi6dCl0Oh2uv/56HDx4EB999BHWrFmjdPIDgNtuuw2FhYVYvXo1jhw5gtdeew2vvvoq7rnnHn8+PSIiIiIaYOR5UwCQxswU9ZBfW6P/+c9/xhtvvKH8e8qUKQCAzZs3Y8GCBVCr1fjiiy+wYsUKzJkzB8HBwVi6dCmeeOIJ5T4GgwGbNm3CHXfcgenTpyMqKgqrV6/G6tWrlX0yMjLw5Zdf4re//S2ee+45JCUl4R//+AfbohMRERGRC+d5U5wzRT0liHKnhiGuvr4eBoMBRqNRyYoRERER0eCybstJrP3PURiCg7DvgUVd34GGJG9jg4C2RiciIiIi6kvpsVI2KiOWWSnqOb+W+RERERER9ScLs+Kx8txRWDAmPtBDoUGAwRQRERERDRlajQqrF2UFehg0SLDMj4iIiIiIqBsYTBEREREREXUDgykiIiIiIqJuYDBFRERERETUDQymiIiIiIiIuoHBFBERERERUTcwmCIiIiIiIuoGrjPlIIoiAKC+vj7AIyEiIiIiokCSYwI5RvCEwZRDdXU1ACAlJSXAIyEiIiIiov6guroaBoPB4+0Mphyio6MBAEVFRZ2+YP4wY8YM7Ny5s88er76+HikpKSguLkZERIRX9+nrMXYXx9m7+ss4Oztn+8sYu8Jx9q6BME5fxtid63JvGQivJTAwxjkQxgj4d5y9eS7z9ew9A2GMQP8ap9FoRGpqqhIjeMJgykGlkqaPGQyGPv9Dplar+/wxASAiIsLrxw3UGH3Fcfau/jZOd+dsfxujJxxn7xoI4+zOGH25LveWgfBaAgNjnANhjEDfjLM3zmW+nr1nIIwR6J/jlGMEj7f30TioE3fccUegh9ClgTBGgOPsbQNhnANhjADH2dsGwjgHwhgBjrM3DYQxAhxnbxsI4xwIYwQGzjidCWJXs6qGiPr6ehgMBhiNxn4XEfe2ofRcaXDgOUuDHc9xGix4LtNg4e25zMyUg06nwwMPPACdThfoofjdUHquNDjwnKXBjuc4DRY8l2mw8PZcZmaKiIiIiIioG5iZIiIiIiIi6gYGU0RERERERN3AYIqIiIiIiKgbGEwRERERERF1A4MpUgiCgI8//jjQwyAiIiIiGhAYTA0y119/PQRB6PBz4sSJQA+NqAP5fL3ttts63LZixQoIgoDrr7++7wdG1Mu2bt0KtVqNxYsXB3ooRD7hdZqocwymBqHFixejtLTU5ScjIyPQwyJyKyUlBRs2bEBLS4uyrbW1Fe+++y5SU1N7dGyLxdLT4RH1itdeew133XUXfvzxRxQVFfXoWDabDXa7vZdGRtQ1f16niQY6BlODkE6nQ2JiosuPWq3GZ599hmnTpkGv12PEiBF46KGHYLVaXe5bWlqKJUuWIDg4GBkZGfjggw8C9CxoqJg6dSpSU1Px4YcfKts+/PBDpKSkYMqUKcq2jRs3Yu7cuYiMjERMTAwuvvhinDx5Urm9oKAAgiDg/fffx4IFC6DX6/HWW2/16XMhcqepqQnvv/8+br/9dlx88cVYv369ctt3330HQRDwxRdfYNKkSdDr9Zg5cyYOHDig7LN+/XpERkbi888/x7hx46DT6VBYWBiAZ0JDVW9dp88991zceeedLseurq6GTqfDt99+6/8nQuQHDKaGiK+++grLli3DypUrcfjwYaxbtw7r16/Ho48+6rLfn/70J/ziF7/Avn37sGzZMlxzzTU4cuRIgEZNQ8Wvf/1rvP7668q/X3vtNdxwww0u+zQ1NWH16tXYuXMnvvnmG6hUKlx++eUdvqG/7777sHLlShw5cgQXXnhhn4yfqDPvvfcesrKykJWVhWXLluH111+HKIou+/zud7/DE088gZ07dyI+Ph6XXHKJS2a1ubkZa9euxSuvvIJDhw4hPj6+r58GDXG9cZ2+6aab8M4778BkMin3efvtt5GUlISFCxf2zRMh6m0iDSrXXXedqFarxdDQUOXnyiuvFOfNmyeuWbPGZd8333xTHDZsmPJvAOJtt93mss/MmTPF22+/vU/GTkPPddddJ1566aViZWWlqNPpxPz8fLGgoEDU6/ViZWWleOmll4rXXXed2/tWVFSIAMQDBw6IoiiK+fn5IgDx6aef7sNnQNS12bNnK+elxWIRY2NjxU2bNomiKIqbN28WAYgbNmxQ9q+urhaDg4PF9957TxRFUXz99ddFAGJubm7fD56GvN68Tre2torR0dHKuS2Kojh58mTxwQcf7IunQuQXmkAGcuQfCxcuxAsvvKD8OzQ0FKNGjcLOnTtdMlE2mw2tra1obm5GSEgIACA7O9vlWNnZ2cjNze2TcdPQFRsbi4suughvvPEGRFHERRddhNjYWJd9Tp48iT/96U/IyclBVVWV8k1nUVERJkyYoOw3ffr0Ph07UWfy8vKwY8cOpTxKo9Hg6quvxmuvvYbzzz9f2c/52hsdHY2srCyXqgCtVouzzjqr7wZO1E5vXKd1Oh2WLVuG1157DVdddRVyc3Oxb98+dhKmAY3B1CAkB0/O7HY7HnroIVxxxRUd9tfr9Z0eTxCEXh0fkTs33HCDUkv/3HPPdbj95z//OVJSUvDyyy8jKSkJdrsdEyZMgNlsdtkvNDS0T8ZL5I1XX30VVqsVycnJyjZRFBEUFITa2tpO7+t87Q0ODua1mAKuN67TN910EyZPnozTp0/jtddew3nnnYe0tLQ+ew5EvY3B1BAxdepU5OXldQiy2svJycGvfvUrl387Ty4l8pfFixcrf3Dbz3Wqrq7GkSNHsG7dOsybNw8A8OOPP/b5GIl8YbVa8c9//hN/+9vfsGjRIpfbfvGLX+Dtt99Wsqo5OTlKV7Ta2locO3YMY8aM6fMxE3WmN67TEydOxPTp0/Hyyy/jnXfewTPPPOP/gRP5EYOpIeLPf/4zLr74YqSkpOCXv/wlVCoV9u/fjwMHDuAvf/mLst8HH3yA6dOnY+7cuXj77bexY8cOvPrqqwEcOQ0VarVaKWtSq9Uut0VFRSEmJgYvvfQShg0bhqKiItx///2BGCaR1z7//HPU1tbixhtvhMFgcLntyiuvxKuvvoqnnnoKAPDwww8jJiYGCQkJ+OMf/4jY2FhcdtllARg1kWe9dZ2+6aabcOeddyIkJASXX36538dN5E/s5jdEXHjhhfj888+xadMmzJgxA7NmzcKTTz7ZIbX+0EMPYcOGDTjrrLPwxhtv4O2338a4ceMCNGoaaiIiIhAREdFhu0qlwoYNG7B7925MmDABv/3tb/H4448HYIRE3nv11Vdx/vnndwikACkzlZubiz179gAA/u///g+/+c1vMG3aNJSWluLTTz+FVqvt6yETdak3rtPXXHMNNBoNli5d2uVUA6L+ThDFdv1ZiYiIqE989913WLhwIWpraxEZGRno4RD1ieLiYqSnp2Pnzp2YOnVqoIdD1CMs8yMiIiIiv7NYLCgtLcX999+PWbNmMZCiQYFlfkRERETkdz/99BPS0tKwe/duvPjii4EeDlGvYJkfERERERFRNzAzRURERERE1A0MpoiIiIiIiLqBwdQAtXbtWsyYMQPh4eGIj4/HZZddhry8PJd9RFHEgw8+iKSkJAQHB2PBggU4dOiQcntNTQ3uuusuZGVlISQkBKmpqVi5ciWMRqPLcWpra7F8+XIYDAYYDAYsX74cdXV1ffE0iYiIiIj6LQZTA9SWLVtwxx13ICcnB5s2bYLVasWiRYvQ1NSk7PPXv/4VTz75JJ599lns3LkTiYmJuOCCC9DQ0AAAKCkpQUlJCZ544gkcOHAA69evx8aNG3HjjTe6PNbSpUuRm5uLjRs3YuPGjcjNzcXy5cv79PkSEREREfU3bEAxSFRWViI+Ph5btmzBOeecA1EUkZSUhFWrVuG+++4DAJhMJiQkJOCxxx7Drbfe6vY4H3zwAZYtW4ampiZoNBocOXIE48aNQ05ODmbOnAkAyMnJQXZ2No4ePYqsrKw+e45ERERERP0JM1ODhFyaFx0dDQDIz89HWVkZFi1apOyj0+kwf/58bN26tdPjREREQKORliDbtm0bDAaDEkgBwKxZs2AwGDo9DhERERHRYMdgahAQRRGrV6/G3LlzMWHCBABAWVkZACAhIcFl34SEBOW29qqrq/HII4+4ZK3KysoQHx/fYd/4+HiPxyEiIiIiGgo0gR4A9dydd96J/fv348cff+xwmyAILv8WRbHDNgCor6/HRRddhHHjxuGBBx7o9BidHYeIiIiIaKhgZmqAu+uuu/Dpp59i8+bNGD58uLI9MTERADpkjyoqKjpkqxoaGrB48WKEhYXho48+QlBQkMtxysvLOzxuZWVlh+MQEREREQ0lDKYGKFEUceedd+LDDz/Et99+i4yMDJfbMzIykJiYiE2bNinbzGYztmzZgtmzZyvb6uvrsWjRImi1Wnz66afQ6/Uux8nOzobRaMSOHTuUbdu3b4fRaHQ5DhERERHRUMNufgPUihUr8M477+CTTz5x6ahnMBgQHBwMAHjsscewdu1avP7668jMzMSaNWvw3XffIS8vD+Hh4WhoaMAFF1yA5uZmfPTRRwgNDVWOExcXB7VaDQBYsmQJSkpKsG7dOgDALbfcgrS0NHz22Wd9+IyJiIiIiPoXBlMDlKf5Sq+//jquv/56AFL26qGHHsK6detQW1uLmTNn4rnnnlOaVHz33XdYuHCh2+Pk5+cjPT0dgLS478qVK/Hpp58CAC655BI8++yziIyM7NXnREREREQ0kDCYIiIiIiIi6gbOmSIiIiIiIuoGBlNERERERETdwGCKiIiIiIioGxhMERERERERdQODKSIiIiIiom5gMEVERERERNQNDKaIiIiIiIi6gcEUERERERFRNzCYIiIiIiIi6gYGU0RERERERN3AYIqIiIiIiKgb/h9ixQUqKENZGgAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:19:23.000659\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "ax=df[df.index<\"2020-06-01\"]['ninfected'].diff().rolling(7).mean().plot()\n", "ax.axhline(0,linestyle='-.',color='red')\n", @@ -2442,8 +440,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/2-Working-With-Data/07-python/notebook.ipynb b/2-Working-With-Data/07-python/notebook.ipynb index 17cfe156..b1a2b46e 100644 --- a/2-Working-With-Data/07-python/notebook.ipynb +++ b/2-Working-With-Data/07-python/notebook.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -31,35 +31,9 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 1\n", - "1 2\n", - "2 3\n", - "3 4\n", - "4 5\n", - "5 6\n", - "6 7\n", - "7 8\n", - "8 9\n", - "dtype: int64 0 I\n", - "1 like\n", - "2 to\n", - "3 use\n", - "4 Python\n", - "5 and\n", - "6 Pandas\n", - "7 very\n", - "8 much\n", - "dtype: object\n" - ] - } - ], + "outputs": [], "source": [ "a = pd.Series(range(1,10))\n", "b = pd.Series([\"I\",\"like\",\"to\",\"use\",\"Python\",\"and\",\"Pandas\",\"very\",\"much\"],index=range(0,9))\n", @@ -77,28 +51,9 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Length of index is 366\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEmCAYAAACwBgXzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebglV3UfDK+qOsMdem6BZgkxyA4W+MVgxBAHm8GBjxC/xsnnxNgv2I7fODjPZ+L4BWMSBycYYYgd4hD7i7HB4Agz2sYgMwuJWSMakITmobulnm/3nc9QVe8fVWvvtddee9euc+rc7pZqPU8/fe+559TZVbVr77XW77d+K8rzPIfWWmuttdZaa6211lprrbUz2OJTPYDWWmuttdZaa6211lprrbVprQ1sWmuttdZaa6211lprrbUz3trAprXWWmuttdZaa6211lo7460NbFprrbXWWmuttdZaa621M97awKa11lprrbXWWmuttdZaO+OtDWxaa6211lprrbXWWmuttTPe2sCmtdZaa6211lprrbXWWjvjrQ1sWmuttdZaa6211lprrbUz3trAprXWWmuttdZaa6211lo7460NbFprrbXWWmuttdZaa621M95qBTZvf/vbIYoi498555yj/p7nObz97W+H8847D+bn5+HHf/zH4Y477mh80K211lprrbXWWmuttdZaa9Q6dT/wQz/0Q/DlL39Z/Z4kifr53e9+N/zhH/4h/MVf/AVceuml8I53vANe8YpXwN133w3bt28POn6WZfDoo4/C9u3bIYqiusNrrbXWWmuttdZaa6211h4nluc5rKyswHnnnQdx7Mdkagc2nU7HQGnol773ve+Ft73tbfDa174WAAA+9KEPwdlnnw0f+chH4F//638ddPxHH30ULrzwwrrDaq211lprrbXWWmuttdYep7Zv3z644IILvO+pHdjce++9cN5550G/34fLL78c3vnOd8JTn/pUePDBB+HgwYPwkz/5k+q9/X4fXvKSl8C3vvUtZ2AzGAxgMBio3/M8V4PfsWNH3eG11lprrbXWWmuttdZaa48TW15ehgsvvDCI/VUrsLn88svhwx/+MFx66aVw6NAheMc73gEvetGL4I477oCDBw8CAMDZZ59tfObss8+Ghx9+2HnMK664An73d3/Xen3Hjh1tYNNaa6211lprrbXWWmutBZWo1BIPeNWrXgU/8zM/A8961rPg5S9/OVx11VUAUFDOXF+a57l3IG9961vh5MmT6t++ffvqDKm11lprrbXWWmuttdZaa206uefFxUV41rOeBffee6+qu0HkBu3w4cMWikOt3+8rdKZFaVprrbXWWmuttdZaa621SWyqwGYwGMBdd90F5557LlxyySVwzjnnwJe+9CX19+FwCNdeey286EUvmnqgrbXWWmuttdZaa6211lprLqtVY/Obv/mb8JrXvAYuuugiOHz4MLzjHe+A5eVleP3rXw9RFMGb3vQmeOc73wnPeMYz4BnPeAa8853vhIWFBfi5n/u5WY2/tdZaa6211lprrbXWWmutXmCzf/9++Jf/8l/C0aNH4UlPehK84AUvgO985ztw8cUXAwDAm9/8ZtjY2IA3vvGNsLS0BJdffjl88YtfDO5h01prrbXWWmuttdZaa621NolFOeornya2vLwMO3fuhJMnT7b1Nq211lprrbXWWmuttfYEtjqxwVQ1Nk8kG6cZ/O13D8CBExvqtW/cexRu2XdiouN97vbH4L7Dqw2NrrXWZMvzHD53+2Nw/5HZzLW7D67AF+84WP3GBizPc/jsbY/CQ0fXan92ME7hr2/eD4dXNmcwstZae+LZN+49Cjc/snSqh9HaaW7fuu8o3PTw43ueHDixAZ++5QCk2exwAtz/Hpxg/wuxOx9dhq/cdWgmx95qawObQLvm7iPwpo/dAr/7d3cAAMDS2hDe8MHr4Zf/4obax7rrsWX4N1feDL/5iVubHmZrrRn2/YMr8G+uvBn+/cdnM9d+/aPfhf/7L2+Ch4/NZrGldvMjJ+DffuS78La/vb32Z//ulkfhNz5+K/y3L90zg5G11toTy1Y2R/CGD14Pv/Bn18HmKD3Vw2ntNLW1wRje8MEb4A0fuB6yGTr9p9p+9+/ugF//6C3wrfuPzuw7vruv2P/e8qnbZnL8X/3fN8Evf+hGI3l/plob2ATaI8fXAQBg31Jx0x89uQHjLIel9WHtYx1aLrLGR1cHzQ2wtdYEW1or5ueRldnMtaOrxfGPrdV/DuoansPxtVHtzyI6iuNtrbXWJre1QQrjLIe1YToxa6G1x7+tbI5hmGawMhjDxuM4AD6xXuxJx2e4D+4rfdClGXxHluWwf6k4/vHHwR7ZBjaBhgEMTqql0rnK8gIirGOY4RqMswZH2FprtqXl3ByMZ7OpjLNiDo+2YC7jOUyS+dtfJiRGafvMtdbatJaSPe/6B4+fwpG0djobXW8fz4ENPg+zpKJh0DSL7zi5MQI87Kx8ha20NrAJNMxIH18bQp7ncGxNZ8DrzjN8wAeP4we9tdPDcBHcHM3GoR+nxfHHW0AzwIRAOoHeyf4TbWDTWmtNGU0utIFNay6jyduN4ePX38F9disCm1HW/B5GGRePh4R7G9gEGsJzwzSD1cHYgByzmo7WevmAD1snq7UZmw5sZrOpYKCwFXMZg7NJEJsDiNiMH78879Za2yqjiYybHl5qEwatiTYcPzEQm3wLEBsMPtK0+e+g/uywDWyeOEZv/PG1ocFzrDuZMXMxGGe1aWyttVbHcG6OsxzGM3A+0KHZCirapIjN5ihV9WxtMqG11qY3uudtjFK4/cDJUzia1k5Xo+vt4xqxyWfPXFhSiM1sA5uWivYEsuPrZmBzbArEBh/wPAcYzSD6bq01NDo3NxsOPrIsVzTMraGiFeOvm0h4lKi8PB6yUa21dqqN73ktHa01yZ4oiA3Gb3V9wTp2bIY1NsdbKtoT0zhic3waxIY84I+H6Li109dowNE0HY1yfbeCirI5oXgAla9sKTOttTa9jdM2sGmt2oZPkBob3JP4c9Gkoc85C+bFcVIzPphRPe5WWhvYBFjKZJ2PscBmUvEAgFOTQT6xPoS3fPI2uPEh92b0t989AL931Z0TUeXe/7UH4E+/dv80Q3TaTQ8vwVs+edtMZRV99oU7DsLvfPp7tRzkP/rKvfDhbz80u0F5jAbdk2ZiRmkGv/Pp71mNOOkivhXzGAOzuugQ1tcATBbY3H9kFf6fT9w6UWPQ092WN0fw1r++Db59/7FTPZTWoJAlPxPmGs9Mf+v+o/D6D1wPv/Pp7zXqeN356DK8+ZO3GqjrVtinbzkA/+Wzd54xvVc2him87W9uh69+/3Cjx/3ja+6D13/genj9B66Hd3/++7X9gWGqfZ1pEJtTuYeGWLaFqmh19r+Hjq7Bmz95a2WDbkM8YIbJv8Mrm/CWT94Gt+0/MbPvAGgDmyA7uTEC+jxzxKbu4kczF6cC9vvMrY/Cx27cB3/29Qed73n3578P7//6g3DPoXod6zdHKbzzc3fBFZ/7PqwPx9MO1bI/+/oD8LEb98FVtz/W+LFD7L1fvhc+/O2H4ebATsrH14bwh1+6B/7zZ07NJmlQ0SbcWL77yAn48Lcfhv/25XuN12lgsxVUNHxW6sL9JmJTf5z/+zsPwydu2g+funl/7c+e7va1e47AX12/D/7bl9vGpaeDffjbD8EnbtoPn7zp9J5r6MCds2MOztrWg81RBtfecwQ+/O2H4db9zdXb/OV3HoaP37gfPnPro40dM8T+6xfvhj//xoNw18HlLf3eSe07Dx6DK697BN7+mTsaO+by5gje/fm74dp7jsC19xyBP77mfiWbH2pNIDa4h/6Xz9450ee3wpTc84yoaGmWw4n1+oHNp27eDx+/cT98/IZ93vfRmvFZqvV+7vaD8LEb98EHvuH2PZuwNrAJMArTARSTgCI4dSezSUXb+sAGm4z6aHA4rrWawck4yyHPi/qhWUDPa+UxZ9VwssrwmoVmnyjKcCruNU2+TBrY4Dnz+bLlVDQUD5gCsZlEPADn2uOBe8wNaQf7y+ZvrZ1awyZ8p3s9Au55vU4MH//XL4T/+s9/GM7ZMQcAzdKrT1XPN6znO1PoU5vlOB8+tg4HT242c0wyBxd7ifVaiNH7tj7l/jNK89MWQcNxzQqxoX1m6iCioc/PVsk947o26/WtDWwC7BjrxHpkdQBL67r7+aTiAQCnpsYGHT1f8lo1dqzJt2yC+uQzzCbwYHOrDBew0Mw/vR6zQLCqv1/fg0l72bg0+mkwsxUiGIMJxQP2TykeMMvGaKfa8Dk/uLzZ1h+dBnbgDOm3hM9CEkfw1Cdtg3/23Atg92IPAJqtMxir2oWtvR64zp8pYiNUKet6D8W81jFTHbzO9zoAUB+Zp9dvc8Igka67W8EMmMR00DGb8R1nfRNDA7yx8lf883irxAPSmv7TpNYGNgFG0RmAgrdIH7a6/ZJOdY0NOnqpZ+B4fnUDr2zGgQ1m3JfWRhXvnI3h6YU6Hqe68zId5qQQc+5YtOnvW4nY1N3bpq2xeTwHNvi8Zjk0lultbTLL81z3WzpDAps40q91yl+afE4woNlqh1Yl9k7z+4BGA7/rH2ymXg4l/PtJDN0kKr+n3n2gDuyk+x91U2apOjaNqeTfjMZ3nPk7oc9DaOPQpS3qY6PaQ8z4uWoDmwBDmA4X7nsPm3Untalop7jG5sBSQXfwTfZJM1b0WsziAcGs/bFThNikNa8LvcazapLp/X5D7nm6jJkXsdkK8YBxfSraOM3g4LJ22KcJbE7XTXUao/PjwBYXaLdm2on1kaLanu60R9wfEhLZ4M9NBiHoGG91UqHuOn+qbWQENs0gNphE7HZicm/rXY8h2XPWJ0Rs6HeevogNztPZzBfOUAl9HhTi6Xl/nueMijY7PwUD41mvb21gE2DHSyraU85aBACAlU2TUlSX90kf8K2W1iuaFVZnoFXGquYENBGb5h8QPOapUkXDBSy0VoNmrCZd2KexzAisJqSiOZqP0d9n0TSMm+pjUyPAOLQyMOb5KM1rKfvkuVZEfDwjNgAmstXa1tu0IhdbafgMJrF2ITCr36Rzh07tVju0ZxwVjcyXew6tNrI/4rl3kwi6SXGfa1PRyD45aWKPJpTS0/S5yBx7ZFN2jN3PUeAzlgYkBtaHqeHnzTLowHG3iM1pYNic8+lP2ib+vW4md/MU9rGhm6cXsSn/VHeSU6dzJjU25TE5NLtVpjmi9RGbU1GI2kQfG10YaZ6zWWOzhVS0GpsHFsXvXuiq1+oICCxvjpXT8LhEbGhg0yI2p9So4tRWIKDT2FghNvq1WSA2oVSapg33sTMlsOE1SE2gNrimdxOC2NQMLJpQRaOnNiuq17SmGnTOaJ4uscAmNMALQWx4EDzLZDuOuw1sTgPDG//0J8uBzTQNOrd64aRZ2RAqWt3AyxAPmMEDgtdraX14iuSTi/9DHQ+aWTkVNTZN1DzhIWwqGkFCtmAe4/jrbG7orCPaClAvG740RSPeM8HopWgRm1NrZ1IjWUVFizQVrVOiN00+JyNVY7PV4gHF/5OoKJ4K445rM4FNKR6QxIqGX5+KNr0qmikecHrej61GbEK/J4QixwObWc55JWYwbsUDTrnhjX/KWYsGpxitbiZ3/RTW2BiIjWfcPGP16VsOwEve81W467FC1//eQyvwkvd8FT5+o6mPTp8f2pyrKVPObZbD8ubWozacivaVuw7Bj737arjBoURzqhEbo8Zm0o3F0XyMZgmrFtoT60N4xR9eC//jK/d63+czHH+eh2fG0Fm/hAY2NZ65Y0ZgE/yxM8ay0xSxGacZ/LM/+Rb81qduO9VD2TKbVpZ8K02JBwg1Nk3S6ManqsYmn31m+R7HHjqJ4TVHWebrH5peQAD3/l4nhk4yGRpHxRf4/vdX1z8Cl/2nL8AP/IfPwfPe8WVnw3B6713z4Et3HoJ/9O6vws2PLNUan88eObYOP/Ffr4Err3u48r2zRhZ58BEa4GlVtDqIzez8lFY84DQylHveu60Huxd61t/rzuWNU0lFI5unC1bO81wpYWEg8fnvHYSHj63DN+87CgAA37zvKDx8bB3+9rsHjM8aVLQZIDb0ep2KOhsuV/jluw7DvuMb8OW7DonvHzegCjONmeIFEyI2DjibLpZVjtit+0/CvYdXp2qsSscfitogjfTsHXNKwanOomo04j1NaRDT2OkqHrB/aQNufHgJ/vaWA9VvfpzYgRO6l9DpToHCZ6ETU8Sm+RqbUYBj1rTleb4l4gHXPXBM3EMnMUwyXXrOdgAAePTE9AqHJhWtROOmoKLxxNrnv3cQVgdjGIwzOLo6gK/de1Q8Bl2jXIHDl+88BI8cX4ev3XOk1vh89p0Hj8GDR9fg8987WPnezJH8a8qswCa43UR1iwQrsJnhnG/FA04jw+LhPQs92LtoBzZ1JnOa5cbDfioRG5ejJtHJcFFS/5fj5s7QLPvY5LnZ5PJUBDYZQ7Lw/+Or8lhoZuVUiAc0ocrmWrTpuVWhIE00MKOZpNDj4DkvdBPodYrlrk42nKrRnK6KPNMYr7E5XRrgjWecAT0d7UyiouH9iaPZqqKhw76V84B+1Vb09GgioYDzZb6bGMeexpQqWhJBtwkqGuvjhvvKjrmiR45r7QlBbJDy3eT6hWMPeRZn3aDTRmwCa2zS8BobFP+YZbK9FQ84TYxK4e1Z7MHuxa71njqTmWftT8caG1MAAAOajP1fvP7YiU1jMcmEzzZlhaKV/p3zTrfCdIPOMrBJUczAFdhMH1hMY0ZgM6Xc8zgzFcVo1qhqoW1C55+OPxQ9wWByvpcoZZ86zxwVqThdnP4mjZ7TsMycng6WKSpQPRW7M9nMfkun9znTBp1onaT5PjZ07dkqS9kzMbPvKb+G76GTGCJb/TJ508RaJYoH1FVFo+IBjDGA17lfBmOuY9O13vUeJQve4FqhA5vqY7qUQ5sy7l+EoqKaIud+P/pRZ++YA4AZz/ma4kuTWhvYVNjaMFU3eu+2Huxd7FvvqfMscZ7pKa2xcTyE9Hzw3DfHDLEZacf+CHGGZrkp8Ez7KaGiMe416vQfX3cENpSKdirknhugBtJj0ClDF6cqFGTaDHya5cYGE3qcDRLY9MrApo7TSBGbxyN6wB2B/acJHc1ogPz4u+yWrQ/HsLSug+jTHbHBNcEIbEq6UpPd10cKsdm660HXu1nWOilJabaHTmKIbM0hYtOAg4/XvteJtdxzXSqaR+4Zn3Fcl13JKvqdroBNI3u1huc1HDtXnJMMhzWL5BfvMwMQvocpVTRvjU0x987dWQQ2W0FFm3Xipg1sKgxVkea6MSz0OrBHoqLVWESswGYLs/i8WaFr3BKdDJ1i9TvJnu93oEBNPyD8Wp0SKhqq5XAqmmMsdEOeVBVmGmtE7plME4N+RhGbisV/Wg4yH3uon4MI6XxXIzZ1nEZDPOBxiBzwjfh0UUY7E5SQmjR+3U/3Ght0UBKxxqZBKlqAY9a0bR1io79n/5TPHa7FiNg0QkVD8YApEBu61rqoaN0KpK8OYtNkHWQdxMZVh9qErZPkOtL2Qu9viKgBshLO3TkPADPuY5OaftOsrA1sKkzR0ErRgN0ksEkmWMg5FW0rEZuDy5smX9XxwIpUNAdiA+Cu22k8sGHHO6U1NqnOtgG4a2xGpxqxaSDQdHGcXUGO7xiTZrSsbF/gBobXfKE3aY0NEQ94HEIH/DqeLgICxjw7zWlZTRhHyk53VTSF2My8xma6hMgkRp+JraDlAEz/3OFaPNdojQ0GHrEKPkLQC+MYnj42CrGpCMZCamxUI9cG1woce0hixaUc2oThHtTvxLB9rluOKRSxwXOog9jMzk/BcQzTbKYU4zawqTC86Xu2FQENFQ/An+tkCU5lYMOzgi7nUHKGlYiA+l2fh6tup2k06nQIbDgVDfXYVwZjcUFoonh/GmtSPADAXCCNPjahiM2Eixm/98FUtPKc57qJ2pzrOCtLj3PEht+20waxCcjSPp4Mr/t5pXNxulPRcHixUGNT1/n1WYhj1rTxurOt+J5pn7sxR2yaoKKV597tTI7Y0HWbq3Li9tGtoKKFqKKNZ4HYpGHBElWRnUVgg8n1vYu92gGmrlFzvx/9KAxsZjnnx9nWrOtP2MDm5PoIvvvIEnz3kSWrqys1hOn2lLU1SEXrd2LYVqHmIRmHY7cysEG4+6wySAvJkLhV0UhgQ2RKQxCbPM/h0RMbtSN2/sBNG9jkeV4rU0YXMHQ8qE7/iXW7r44JxZ+hfWxovYORSaeIjX8ea0h8oiHYVDQ2dzZHqXqeHyX3tFEq2uPAwcZnDw2v4/Z+sZZNmzk+vLLZyMbommfT2uYo3VKBhEPLm0Hjx7UZG8me9uIBgtzzLBGbraQjGlS0GQaYptT6uued1YbjRMQmz2HqjLgWD4gmbr5K14JhmhnPAj7juC47/ZEAkRpdizUDKlrF3DOp2s0/t+if7l7sQQdrnWpS0fw1NsXxz9kCKlodn2Eae0IGNoNxCj/xB9fAT//xt+Cn//hb8JL3fNUKONAUYrNQQICI0uxd7CkYvk52hDtoW9nHBh2aC/csAICP06p/xgXTCmwoFc1AbPRnXQ/IX12/D170rqvhozfUa0zGr9W0gc2HvvUQvPhdV8Onbtof9H6pcJ4u3McEOprRoPOUIzaTigfonw3ExoHe+MYxaUaNj50v7D//Z9ep5/nFv3813HtoBQAoFa2jKA9P5D42f/b1B+FF77oaPnProwCg78sF5Zrw6BSBzYETG/CiK66GN15509TjDKGfTGL/1weuhxe/62pvMqspu/fQCrzgiq/Av//ErZXvxeuuApvTvMYmLZ+hWBAPaPJ+jQKz5k3aVlHRZonYAEx/H/Da90mDzrrOKA8M6R4YKh5A74frPSqwmQFig6wMl5lCJ7Ojou1Z7KlEQngfGz9FbpRmsLxZ+L6KijaD/oNodNxV13Uae0IGNifWR2qyxBHA8ubY2dBqY1jc5PlekdH8kYt3w4894yz4xRdfojT86yST8HhoW4nYYPH6rnk/T1OSbN7klDRKRXMorbnO7b7DqwAAcH/5f6g1TUW787HlYhxHwsYhFZUOKxqGPh7knjOHk0mdr2Aq2qQ1NmzsHCW9r7yHcVRkK+8t55ZCbHoxkXsOG8PmKDVQtscDYqOevfJ64TnhmjANqvjQ0TUYZ7n6jmksdQTQ09oDR1ZhMM62pJbo/iNrxVw8VH09MLF2Vpk4G8wwm9mEoX8y8xqbKdUUJ7FTg9g0U2OD0snFa9NdM9zjqNzzNIgNgBnYKPGAToV4QEC9nZonp6DGJkTcYBrDa7bQS8gzFjYvq54fen92lcn7rehjAwAwSGf3PU/IwIZmIs7bVcBvy5s2jQhATyDkNs51E/jLX74cfuUfPVVlq+pE6RYVbYbRMTderBfSEGswymCUZuo1LiIAUGSbEPYO6WOTTsibxmuFTcimDWyWN4p7EZrlMWVA8/J/ff8kyWcKvZ4KKlpmUNEmFA9wLNz1xAPK8TQlHsCOgxveU/YWGe+1QXFv8ZrPdancc9h1sHsHnPmBDd4/vA/auZg+247PexM0KoNX36CzMi1yWMfw+QhxFPC+zPWKtW004+LaaQ3nj9zHpsEam4AGg03blqmikUPTPXQSw2dujgQ2085xQzwgrkeBUsfggY2QKNJUNPkY9DvdyEPpwJ8CVTR6nWchS47n3IljTUWridi47hu9XvPl2pPlzdJ/pfEAzJZu+4QMbPREiWBHqTKxsilT0Uap+fBRw5emoaJtpfqNDmz8DbE46kLHLFHR1oYpnNwYiZ+VbDShczEsI/xzdxWQ6cYonUppbGVQjjnwAaPjHSnEhgQ2AnefXuNToYrWhJhD5nAy64gHKNWYScUDrMJT8zj4/TtK5GFtMIY0y9X9Weh1lPMe6qw8HgMbnlTgdJCpApsROgLTr2mzknsOkT9tylQdXsB8Q0dlgdRInM7zDZ8/Se65WcSm+dqJKqPTbaZUNLKG0T10EhuTZC1aU1S0bhJDktSjQKF5qWhK7tlPRTP2H2evm+J7mlSuVIhNYP0o/7kpw+cpiaPaz1gVYkOv1zwJimfFJDJ8hhk+W0/IwIZOlO2lAMCyY1HBSY3ZKGqailYHsSkebERNtrKPTSin1UAmxpkxyaU+NgC6+DWEn4zOcd1FAB2nPQs9dQ7H1iYvBK6L2JjZBiGwOQ2paI30sXE4meM6gc2UxZ12HxuG2JS/78TAZpgan5nvJtCryRPnTdFO83ruIFMbHUNYe5369YLclIpQA5u7Gdg0d+HxUFuB2CCHPMQ5xudqoaQ8A5zeAgJ4f0wqWrM1NlmWq/u1pYjNFjXo5Ndpml42vI+NdPz6xyzOvZdE0K1JgULzITYZ80dCEq0uRISva02YqrGpuI50SLMIbPCcOySwqdvHxnXf6HHo2jOrwKYVD5ihKcQmiVWG14XY4AODUCw1FdjUmMuYsdit+Ixbh9jg5K6jGz8Yp17EBh805AiH9E0ZTZiFw+PNdROlTre0NnmWa6WkH4YGpnRtEMUDhMCGnuMpoaIF3I8qSx0LtyvIEY+R25+vY5bcM9nA8jxXx92pakXGxvXuk+7ZoQsqLzB/PPSx4f2EzgjEZgZUtK0oRh8pKlo4YoN0EIDTu5cNXsdYQGyaCsgoH38WFB+XbR0VzbxO09TZKHo9ybo3Fth0YhW0TkpFw/jXoKKxBp0h1HjXcztqMKmCpqlop7bGZqz81UhLqgfX2CDq5Li25dijqEj0472YVZ0NvT6zXN+mCmyuuOIKiKII3vSmN6nX3vCGN0AURca/F7zgBdOOs1HDm9yhiI2jxmboQWymadC5a74sEt3CwAbnEWZ1slyWhKSnU1DR9BjxZ5z4F+0t1JRQ1cX4rAMhmJQOgt/Z78SqUepUiM1mTcRGkLKmD+eSUGNDF8VToopGTm2WfWyqFinlSE+siuausaFjUojNQAfk890E4jjS4gGBjhcGqnW7PZ/OpqkJYPxfJbkaYvh8NhE0mHOuQSralJTIOjZyoNuSqRob4pjOujv3NKYQG+JB6P2wmXHTebSVqmicsbAV3wMwnTLaWCUoIhVETDvHcY/rJvHEPYpwX0A5eUM8IHDtCVEdG82QilZFCzVU22aB2KT4rMVKeTC4xqaiRg3vASKv/bJMYVa139QfmuWzNXFgc8MNN8Cf/umfwrOf/Wzrb6985SvhscceU//+/u//fqpBNm1yjY2fiibV2GCyqlaDzjJjsbNEbIZbKPeMG04VXM170fgQm6c9aRsA6GxTSI3NpEo3+CD0OrGS3Z5UQCDPc3XPQ8dh1NikGWRZbjj3lXLPpxix2ZxwITGLI81rIP0sGS7+k/ZXsKlo+me6yKOyy9pgTBTRisW6rtwzSr0/aXvRw+rxIPeskwq4aZcOUSPiAU0iNvrnRqloCrFq7JBOw3EPxtVCAJpFENUWuTgVRgua0ZqusdmqZn7ctkwVrUHEhvopyQRqrZLR+uJJ7y3u2ejvSCqT3YqmoiHNescT0tt9Ngjc37IZz9Mx8Vc7NSmBKpHjChpzE3nFfWBW8/60Fg9YXV2F173udfD+978fdu/ebf293+/DOeeco/7t2bNn6oE2aTgpkiRS2Vist7Deqx5ud41N1cO0PhzDX9+8H5bWhsq5RXnVraWimU4MfY0ah+JpxhE3aXQ0VWCjEJvqbBcuwnUzSnit+p1YUdF8gc237j8KNz50XPzb5ijTSirBVDTzoeQPf1WNDW9QNgvDuXaiRI/GBp0jn8hZchVH0nOppKI5jkFt3/F1+LtbHxWzXjwoo3OHUlZ0jY2momFRpJZ7Dg1simuIgc2ZgNh8676jcPMjS86/q8CGIRfNIDaaDjKtolcdmmMd4+d9dHUAf/Pd/TOpf8P1Ic+rHR58LjuEDnJaBzboEAlyz009J3R9CTnmzY8swTfvOzr1924VFQ33SmyYPQ1ig3tZJ4mVk+pyfg8vb8Jf37y/8twQcex24tq1HQBF0gSfAWSoSOIBqubXiSpU7x2zbNAJ4H9+6Z+a+P6jqwP465v1mqT81TiqLaleVWOj1A0VYoO137NCbOTEaNM2UWDza7/2a/DqV78aXv7yl4t/v+aaa+DJT34yXHrppfArv/IrcPjwYeexBoMBLC8vG/9mbToCpjU2MmIzIu/llgTKPX/8hn3wGx+/Fd731fs0Fe0U1NjwYj0Aeex2jY05xrVhqq7hU8uGco8tb4qflaxKgtBlOrBJVI2SRP8CKDL8b/jgDfDzf34drA7soJXe79DnK2WIDX8wpbHwQGZS1CTUcK79/699AADsc5vEgXNlzGhRZSgVjR+P2n/42+/B/++vvgs3CMGoTUUjTg9ZLHcQKhomERRiU9NhPLqKgc2cd9yni60OxvD6D14Pv/QXNzjfoxEb8/cmERuA6TOXs6Ci5XkOeFicj//tS/fAv/vYrXDVbY818h3UaAO6qnVeU7uiiRrJbrVpuWf9WreiCLyuuaTlXeN5/Qeuhzd88HrnXh5qnLEwK8NTOn93Qed+7OQ0VLQyCCFZfdcle/cX7obf+Pit8NnbHvUek4oHdBSKGH5viwRH8TMmnDYNKpqZNHYiNgGBzUzEA4j/4ktIGtL0Dcz9P/rKvfAbH78V/q5sokwRm25NuecqdgxddwBIYDOzGhtCRTudApuPfvSjcNNNN8EVV1wh/v1Vr3oVXHnllXD11VfDH/zBH8ANN9wAL33pS2EwkGshrrjiCti5c6f6d+GFF9YdUm0bp/pm6hobF2KDEK+7xqYqsMHM732HVzVis1DW2Gxh3UUoYmNSrnKr6J3KUmpKXWZ91ikekCIdpGZgU16rfjdWRZKuB3x9mMKwrA+6+WE7g01rqkIpRnS4w3FmZbyW1kdOtS49LnmeNWXH14vzwsJ3fm6T9LKhh3AjNmFUNAD3hnu0lMuWAkQ+bvp1iNhEkeZyrw3GRo0NAEFsAhdU7AZ/we75ctyneWCzOYZRmsOJ9ZETMcGNhfexUeIBUzgGA8MRmO5aGVS0hhAbyUHCuXZUkGqf1ugmXrXOK5GapH4j2VNhkniAQmyaEg+ogdic2BjBSjn/XUJAoWag7DOkiuOzhmvWNEEURWww++56lpeIP+IzXCcL8YD69VN0f9wpNAAORYtDKImzoKKZ6IIHsQkIvOrYkZViLUK/UdXYJBMgNhU1NlQ8AIDU2MxMFY1c09Olxmbfvn3w67/+63DllVfC3Nyc+J6f/dmfhVe/+tVw2WWXwWte8xr43Oc+B/fccw9cddVV4vvf+ta3wsmTJ9W/ffv21T+LmibV2LjknumCwS1SVDT/9+GkOnBiQyE2+KCfmj42BLGpoKIB2NfmBHE8F0uJQK6yBOB+OCZGbFQGKa58wOk4rn/QRgBoIBs6Dnqthmmm7h3u7WmWW70IuFO2OZzt/caNB519fm4TITaOzCk9tyz3L+ohiA3OF+mR8IoHIF00jmERA5thqqloJWKDXO5RoMOInPeL9hQZ1a3k+U9inHYoGX/2FM+dOBeT0sgofWE0JcrStLMAwDKrjHs+i42cru1Vx6d0k7oB+KkwmkVGa7zGhooHVByT0oCnpY9xyvGsDL9nrjv9/VZUxiRSwaaTtlW+XiUvjdexCLbr97Gh92HHfCkeIMg91+pjI5wTpbw1WQdJx+9DT5uWpse9jq/VnTiq3QQXP5vnsq/HG+32avZ6q2tbhdh0qt+i7aabboLDhw/Dc5/7XPVamqbwta99Dd73vvfBYDCAJEmMz5x77rlw8cUXw7333ises9/vQ7/fn2DokxvdRLZXNujU3GduCOJUPUwqsFnagG2l40WpaHmeqyBpliYFNjJiY/7OFePQee9RtRRBwtmVpZxUwQQdp343rqxvovdEDGxIABI6Dl44jw//XDeBJI5gZXMMx9aGSrENwL6+s1ZG4xQjfm6TOHAuKgBfmEZpBklsPv/qcwFwPWb8pcCHQ+MGVUklHyJY7Bffvz4k4gFdpKKhA1F9D9YGYzhRol8Y2JzuiI3RTyHPxcUd52OmHPvidSPZkeu1rY4ZVLQpHcJZFI7T66MTMcXvs6Be0AC6ylGgwfkZQUXDBp1CjU1T1EGj43zFfDICmymv25aJB5TXsIp9EGJ0/lTVwyC6XiVWYDTonEDuGa9dEkfK7zGoaOWhqttP0J/9idgm6/HovfcdtyrwqmubTDafCnXUlVQ3fJYsgz7bn1P2HM+cirZFNTa1ApuXvexlcPvttxuv/eIv/iL84A/+ILzlLW+xghoAgGPHjsG+ffvg3HPPnW6kDZrZx8Yv96y4qwJio6hoFZMZb+bGKFX0Fiymy/NikmKDvFkaRariqFhYxCieOZYchcCgoN/VDxoexhAPcEzcJmps6jSeumXfCdgcpYaUKkVsgptdMYoeVWnbNd+Flc2xRaPiFK1ZU9FcneXRJkFsaAZ/7NlERmlmXGNzXPpn1/Oi6IzC33kxI1+wAYp5vUioaBvltVaBTQ3EBjf97XMdha6e7jU29Flw+ZZcaj1TdBC9/owzd4Dqs9AMZ4gZdV0NbYBSB3N8XmaRoTSoaJWIjc6cKvGAM0Du2ehjk/gd6rpGr18VAnicyP5Pey95EibNcrXXN2l4nfoNBLLKT+lUIza4bleJFaDz3KOIzQRUtF4SqzVYVEVTfWzk41QFDnRPmhli4znvxgObsQ+xqVcLWYXi8+e438XApvm1J89zs0Z3hlTbWoHN9u3b4bLLLjNeW1xchL1798Jll10Gq6ur8Pa3vx1+5md+Bs4991x46KGH4Ld/+7fhrLPOgp/+6Z9udODTGJ0o1YiNCZdSiyq4rPr79CQ5XPInsfgdoIiOacZ0VqY3z4LKlaW5GFzwB4AHNpjJniv7gxTHtmlELjSKZ41DjfaxGSrakivLYwZYt+47AZc/da96jRaYhgZYOVvAMLPSSwqVtoeOrVuSz3x8s0ZsVECDnGN2jSfJxBgbvUEP4YiN+zoaxf6VVDT775ts3BIC1EliRY1cG6TqWi8gFa2GeABu+ufvmifoYOXHTqkZyJqrxoZx0blzBTC5TCydW9MGNrOQUJXmDE7ZWWzk9BpUPXfUyZu15GoTJiM29Qqbq4wep8qRo82Rp72XfP4Px5nROLUpw2uIyaBpnhlFmY+J3HNFnd2hlU0YjjOn72EiNvWpaAOS+Jvv2X1seI2NK2iqoiTWqcWqY8NABLppaXqN2JjJlyQhcs8BcyXPc4N9I7JzysNsRR8b/v2nlXiAz5Ikgdtvvx1+6qd+Ci699FJ4/etfD5deeil8+9vfhu3btzf5VVMZVYJAuefVwVjOBvgadEYmWuEyaUKhehPA1jViw4WuQ2QDpXPmGXMrsNnAwMbWzDc7wsvOrkRbCzGKkCQVnF++qHM6GpX3Dg2w+HOIams9j/x0EzUudQzvnRuxmYSKpn92NegsfvfxkOnPjsCmHJvklPNxmzx4G7HZGKWwOiiu9VyvvnjAfiIcECoScqothO7nRmxIb6tJa2wapKK56rqmMaluB1+bxUY+rKGKNiK0ne4EClRbbUqAh+yLk0gC+4yuJ1UO41KDNTZ8/s9qf8brNNfBwGby60ZFjqrqT2ndxcGTm85j0v12kntLPz9fIgEboioaCpfIx6lqgGkEwA09MrRuB6Cijw0dXwN7xEDV2Jjsi6KPTTglkN8ric6pqGhYY1Pei8EMgg6J4TErq4XYSHbNNdeon+fn5+ELX/jCtIecuVFHCBEbgEJVaCdBUgCoWo1HFa1ikkkTaqGXQC+JYZhmWyb5jBMrjiNvVocv7LzHj0JsOonFq7ZrOmw0CscxDRWtSreev349kxA25Z5DAxvzfVJgY1HRmFPGFeaaNh3QyNdnWiqaz+EMXfyramzEPjYh4gFJrNAZAIBjpdIVV0Wrg9hcsHtBSdqe7n1sDDEH13PB+rhIdXeTqlqZcs/N1TnMUhUNxzkLTrlRKBso99yJqSra6YvYcG4+ANRuHlj5HeR+YfFz7KCEHWuwxsbaw9IUALrym6cwHCbSfxpBbJLYm7Sk7wUA2H9iHS7auyC+b0iCJXSoRzXWQC0XHSvEa0NQRcO1J6SPjYjYGHSrZuaeVD/qMpdS6KSGex3eJ63iS2uaq+8Df49PARe7mSgq2gwSsHxdmOX6Nnv+0wzsf371PvjgNx+c+PO8ZwCqkkh1NnjxpT42uKZXOTwSP3Oh1yGFWvrvn73tUfjdz9wxk0JlWmPjy+rwl7gq2smNYhPBovni2OZ3oEmTV1HRJg5sdDFjiPY9AMBNDy8Zi9Nkcs/m+9YwsEli2LNYCGBwKhp3yjY8gc2jJzbgzZ+8Fe581O7l9N4v3wN/+Z2HK8fIeblNyD27KE42YuO+jlW9CMZppuadNCd5YCP1OekkUTk3ijmJ9wKDnTqKL1hjc/6ueTXXpnkm7zu8Av/PJ26FR46tT3yMew6twJs/eSvsOy4fI0SdhyMVXBUNYHLEZmhQ0aZEbIS6rk/fcgD+y2fvnPg+pEJmFZfmWdAi6lDRqABGTwjA8zyHd3z2Tvjb7x5odIwfue4ReM8Xvl9bCY+rKQE0X2PD55DPmWtSFS1kD2vCFBWt0wAVjfSxqUKYqfPtq7OhVDSuxnXTw8fhtz51m4GUccNnqk+paOX+R3tK9SrqRgwRCcGXovOkqceY33N/g87qpF0d22SUbNFvC1hfLcTGw86xxQOauZA3P7IEb/nkbXB8bRiM2Hz8hn3w7s/XX5OonXGBzcn1EbznC3fDO666a+JJxKUqEbWRAhv13in62EjjnO8mpFBLb3rv/vzd8MFvPgR3CM7ttEZhRx/axF/j10XX2FCIukRsrJoOe/JOLB5A+thUSYviue5Z7MF8N4H1YWos4rSmKjQjzM8NEZt+J1Y1UycsxCYcMfm7Wx+Fj9+43wpgDq9swnu/fC/8l8/cWfmw88WwCcTGpDi54XlvVqsCrqfzRPo7D8gkSlwnjiCKIlgsAxnsTTLHVNFCnO4DS0XwcP7u+cq+ECH2gW8+BJ+4aT986ub9Ex/jyu88DB+/cb/Tua26xgA6COSBb3HtzPfUtdlR0Yqf3/OFu+HPv/Eg3PnYZGujoRrHqLMzp6JVHF8F50Q8gAZbdx9agT/7xoPwrs99v7HxrQ3G8Duf/h78z6/eX6mQxQ1vLw1sJlHO8hmfh779vtHAZqupaF29Lk3izBUS7cXP3SQ22g9IRu+P774r8YBOrBGb8rU//doD8NEb9sGX7jrk/LxJRSsRGyZljGMGCJV7Fs6HvNhUQpjfcz8bQf/chMAM+jlj5ScRmmqNfkI2YuP2xZR4QMN9bP702gfgYzfugy/ecdBK8A8de8Q7P3cX/PE198O+45M3rD3jApsBUYyYNLDRiE1x+lhnwylXAPqh6UmqaBVFevoY9t/nerGWnyWTCJ3lWahnKfGAKPJuQqHiAf1OYimw8M9KD4iSe665COgMEEGKHA8HReUwgKQPNkWhQhcjfm54j3od2j/FvG94fdFp9FHRMJu1wY6BvW+GaVbplKugkRWJI2oxyYJlUAFS+WeAisW/ArGh4/KJB0g0C0rjAQB1L446qGgh2XmK2CBYO002DlGWaWqsVsq1gQspoFWhYgD6edFyzzg/I6terq5R571JyV1cg/Ha4RpZ+5hb3McmVBUty3SRbyeR5Z5x3XCpd05iNz+ypNantUG9eZkSZwutUyObHGL8OL6A25R7no5GYyE2M6oFwGeQCndMEhTSedIhtDF3YBOI2BBVM77u4nz0rWdiYDO0Jf27FUifua75EZumaJD8nvvFA2aD2OC6ZyI24ZRAPhbpHDiltOk+NtqfTYP9BZwj3JeqY2dcYNOEtB+vm9HKaPam4WvQGTMalvv7zDckcUE3QP16uulhtD6LxZSqa/jqBuwaG7mPjYnY5OJnJQoGd75DDR0nWszo2gio2of0XorYhGZ5+NuwOL0IbIp7yR0EXJy29W1VGG54Xfi9Nxv9hXUw5wINCz27j0CoGRkpAynhWa2wxV9GbGwZUOPv5b3HAI0egzanA6CBjUlFC1VFG44zpV54fkPiARgoTfNc4zWo6r4NUJ2t5apgFMWdHLHR93BarrnkLOBm66Nz+ow+55yKN5M+NuQa+BwFej8N8QAqN1v+vD5MG8tKU0GVuuuCyvTOsI8Nf059+wUNbKaVkeXPzqxkaTVio+sCJwkK6fzpJnGw3DOAH7HBAvJuhzboLF7De+Ob1+jXdGmNzQjrKPX7sHFyCK1cWvsMmfuGbhW/5745bdKipxvAKM2sJLFmDRFKYMA84WP2qqIpxKbZPjaY/B2S80Jzydnj3Jom2XTmBTY1JCBdlhIFGgCtULYsSD5TigA3fKkuYjPfTSCKIj2JSKYTo/VZwN+4T3SIeECIKtoacyROqj42iZbCVZx1lu0SERszaxxqVO45roBkJdodvQ808xmK2FhUtE1dY6Nkhh2IzY4yePY5ZQjV8mtGf6+qkeGZaPwdAy9Xtj/kmADm4sgXylAqmvS2YQUVDe89XmdDqY0lH5CKhtki3FS7gdmox05uQJ4XgfvexZ56VibdtPI8V/2rpuHR4zUIUQJ0PVuWKppCNqkYymTjMxraTbnBS84CrhuTSqZLwRIPmpo0Guj7HAWTlhORRrKU9qnfs95QYe91JLCp60SkzCECaF4Vzco4O46b57kR2Eyr6MSfnWkRIJfh+SGjoPiu+mOnSYQiq18e37EGjAICmzzPSY2NXZOLz4svmYXnQvvYKCoaGRvOd6fgCX1uhXNqwifkxu95aNIORS4mNZpgGLE1qlBFK5NzAYt0SI0NXs+Yyz03tB5ujLRPw/c+aa6nBL2eZk0+8wKbbPrNk9fYaCqaUGPj6WMT3KCT/R0zNDw6ptH6bAKbMqCLIiXTKS0UrgURszYKsekkVsEon6tyjY0/8+wyKh5QWWOjuKMgQvMrkzTo5AHfwKairU+B2OBc49eMLghVmVXM5HCBBo3YTEdF8ynANEdFsz+P414oAzRTKafcgMs5geeKpp63QFU0pGect2seokg3vMtzmIgDf2xtqMY/zXONxwgrsvW/hzv2cdQAYkPm1tQNOoV5huOaFLERxQNy+ZlrwkzxAPfxqZPiknumjtb6hFQ8apujFG7Zd8L4vY6JVLTETW+exDjdxjWn14epcX2bFg+YlWopzr0eaWw+yXNDHcSEKp4GUNEeO7Epvo/W7fSS2NpDcW76rjWloi0wVTSpxsaJ2Dj6qKHNoo+Nbw/mxgPhaeps6P6s/CSlilavQWcIlZOLgGhVtGbmPK4rw3EWlAitI7jiszMwsCGb05SBDfIVfU06cdGQxAM4WuH+PvMGulSa6OYyCyoa7W7tRWwcp7NzvpA0xkw47WPjpKIJD8ikqmhDFdgkYq0FNV0UHVvZJgBWYxNKRWPvW1U1NokKbDj/H4+9fc5UhZEMHThf4WIoFY3D2IhiTCLj6ILaa6mikT+JiAyZJ7J4QDFuDBAlFIlT0dAWGGJTVae0n9TXAJiStpNsnJTHPo1amJYBdaCUmf8aFu8xn1PVaDFATanKZikeUGSQi9cmRSyk4HqWNTahgQ111jpxLPLcqRDBpDVG1G7bf5IhwTUDm3I4ktxzU84lT5y4Am7eO+xMUUWjdaDT1Cfp5GshnlLVxyY1AuYMjpS1iNToOkVV0XBO8/8lM2psCBUtz3PjWexW0Ksq5Z5ngdhwVTTPfeHTcpoxGIiNSlJq1lCdeRKE2KgEsNnHpin/k1LRLMRGoHgaa+YUwdWZF9gYzZgmm0AU2gMA2DFfIjaSKhoqg0g1NhWZEX4M3APmFWJjwn40Wp/FRpsRB7BOg060XazHz1xXiwdkZTZb6mPDTRW216ai6YWyqlGVzkTbG+44zQx6XXBgw96GiE030UpcXPQBx4eBjc8pUzC/B7KtQlzQKbUQm/7kNTZmc007K8/51/Ix/Fk1X43NONXZHgxSzIy+DmIBNO0OzRIPqHi2dA+bIrChvTMmWXMo3WOaDWNzbGc7qZn3ST4G7zelnCtSizbpEAeG3HOTiE1uOC+bDSA2PAEwk74NBhWtGrGJIo7YyAhYE72wrnvgmPH7Zs39RpJ7rnKo6xp33lzzvunAxqKizSqwweDQcc9DjbNKqpgkI4a27RcEBOg6JTXoHAYFNroGFVHzNCueZVM8ILzGRkq60H2nCVUygHqqaPw7pwlspH3QSEjXQNX5uEShKCUeUPzedB8bTOQOx0KNjYjYhK2ZVXbmBTY0KzkpYsO6Ju/wiAfQHhncEuLU+wxv6Dk75gBAc/45Fc1AbGai0oPOvj+wcT2Yu+Z5YBMbtUdpltuIjU/uua54AKmxqURshMUA38sznqEZan5uWGPTp6poFhUNA5vi2vmcMnyvvagSp65iwbGLw4v/t2GNzSRUtIoaG6R+BTcxq6SimX+nThfW2ISIB6DNdeuJBxzgiA2Z45OwtAzEpgEqmgv1qQoeAfT4eaPOOI5UomYSKlqe58Y9rNPITzIehNAxNVFjk7HnYxaJpFDRD55o63ZKuWd6Pcmx1hpAbHjD4onFA2ZYYxPSYBBACGymVkUzf5+ZKprao0CU+A61EcnoA1QzSXCfwcSNVGdD516HUKBw7VHiAb7ABlVMWePkDSKAEUdU6VI+TtXeMRKe62nNUkXzHJf7D9ME9psCnVetD0lEkojNIDYWFa3hGhs8n8HYVnSV9mEapE7zHJ+BgY1/kodYyhYCl9wzpT9IDTr5AvLuz38fXvner1kbDz54F5cdfhVio/rY4M2fbWCjN1DS4NITxXOzEBsi94yfCxIPcPS88Rl1nPqCGhs3XxDHKYe+otRf+PPr4Nc+cnMxXk5FG9jiAcM0M84ZHTJFRfM4EI2IB2RmJs1SRZuAt2oUpRtUtKw8djGfXbr0xTjk46ENfYENuWZzEmKTmc/oYs9EbBT1MxBmx0Dk/N0CFS1wzr73y/fAy//wWji6OvAiNmuDMbz6j74Ov3fVnZXHxOvgEswIq7EpPosbI93YOirTWzkU8bvppZlWFc2UGM8MlaJJEQujjw0T2ZiNeEAYrYIjjlKDTjo+lwzqx2/YBz/+nq/C/UdWveMapxnc9PASAAA89azFcnzmNf3ynYfgx959NdzIAiA0HowBaOdoWrROjTOwj82xpqloW9zHJo40YjMdFc1EbKTrlee5Wicu2lP4I5LkM97DXhJDZKC55vMSSkXrJnrP3hilck+9gBobKXDxITargzG88r1fg9//fL3+TzYVzX2efExNUdF4AjghfluI7xsir2yLBzSnijZOM7XfDceZdQ2l52oYuGZW2ZkX2DTAp+SOkKqxGZiIDVer4aZU0cr3ffa2x+D7B1esBnLoiPzDp58F3SSCH7l4FwCA1cdms8E+EJLRgnqfcoor67GDITZ9AbGxG3SyjvHEAaoTmFLHqd9JtPiBi5ZDFk7M5ONGyfvyuM732NoQvn7vUbjqtsdgnGbWua2RPjYLhP5E6WiaitYt/1aN2PgaX1aKB3DEpvxf19jUn1eujBmOFwN17+Kf+59bA4Jn1xnPuS9QIuj3dh2IzTyraatCTU6U82PPYh8ATMQmdM353O0H4b7Dq/DFOw4ZVA9+b2/ZdwLueHQZPnPrY5XHVIhNBf0SwP1c41tUHxuysWGSYhLEhmf4pq2x4QmsYY1nwGWSg4T/z6SPTSCtgovZ6H5LdhIBwN1z5rO3PwYPHVuH6x6QgxG0ExsjtQ4964KdAGAnTD5z26Ow7/gGXHvPEfEY3CEqxh9e2BxiIRleAIDja2aNyNRUtIDkXBNG69umoaJxxNoX2NDnChHpo2KNjbmm8j00SDyANPgEMJ1mGtTFnnpf/npljQ2bM3c9tgzfP7gCH79hn3Oc4th5cjFQFU36vY4ZdYpsD++S5r0h31GnxobLPTcx5zdYzTi/d5KP2xQVrVP9ltPLxgEFslVGoT0AUmOz4c7kS31s+ALioljh7z984S647T/9Y0JFM2E/g6O+VYiNp2kTt50WFS0xNrY0yy042VIXmZBKSI8ToopGM9E4Qjx/XkvllsU0M0G2KprmEHfLxnrDcVG/s6tIhhEqWnWNy9iB2IQWIQPYvFwV2PSbQWzMTaYYC87nUCqadN/pedl1WiVS17HFKopxmIvzIlNF4zU2VQX8NFtJj+sau2R4ba5/8JiB2PD+CJgtDQnyMate1ZSW/6xeE+4j7WMwjXgAz/iHyJH6jM85g4o2aY2NEPjRurYsyw0EeloL7WOTMrqz1KCTOlYuKhqqpVV1JafODKKZfF3CeelKsHGHCEBTu5ursQlDbI6vmev5tEnBEAesCaP1bYp+OE1gE1cjNvS1PYuFGJDcv68MbMq5yPfbkUJs3PdaITblOkr76+CubKw7rr28IinG92lquP8eWxvCxjBVe1WV2Q06fUk78/emEBuuBkmvVUgAHNTHJjef417HZBFNY0ZgM069CVs1xieqKlrV5h1i3BFyNeikk1vsY8NqbBTNwzGhOnFsPFi8UGvWiI2pila8JmZ2HZd1V6mKhjbXSaoRm5F7c6qzAVLHyeyE7N94Y0ElBqloKvvvWJxpgJplQh8bRUUr7qkSEBhQxCaciqZqbDyQbV3EBi+xy4EJMemeUZomBg6+rJaxOVWoormoaFSswqjBYFSMBS4e0GPiAWnmlW3GxbXXQc66/lsoFQ3P4boHj8OBpXX1Or+3qMAWgpLgZuNs0EmDR0nG3fi7+b4kkvs9hVrTiA0PoA0q2qSqaEIvJfpa02sufW59m/SIUE0AoFI8gPcV469XBe50H3Bx6jEYdzWn1A6Rfq3rcagnsfAamwJxwDVWUluqY1uF2ND6ti5SjKZo0InZfCX3LKwBdB5hYMMTugD6GmJQ0mGJUEUxCqSiFcfQ84N2vE8Ca4Lws9bfPbWF9HdfM1Ju1nrmmdOzk3s29/JOEtVCRa1rISWxy6+bRR8bmoAapXZiWFqnhoHJoCo74wKbRqhoKsNhigfwBp30u8Q+NmwBwXtiLcgOyeg+i45nLR7gK6iX3seN19j0u7FF0+HH4wvfyAgWagQ2JPsTE7lqJ2JDqWhsMUCp510LxcLuWojMhoOZXVTKFm5J8hm/U6mi+ahoDlqMIR5QkcXQqKEZZE/Vx4ZcHo4IAWjFNb8qmv+5HXiybjjmuW4i9mjgxbPbCBUtjvTmTJUNfRsVr6uLokgFN6FrDp7DYyc3jXWFZ6kwM17VSToldCxXEFTVK8ikd2XG++IYKh0Mn9VREQox+vFxalLRmkBs9JqtX2uajjYOPLaimiBig4XkVDyA1tg4EJs1hdhUzCU1vyOVXDNlZjM4tLypfpZszIKx4me9p0zS78n1HWrczsCmqLFBcZ5pA1Srxmbm4gHNUNF4jY20xtFrqhCbgY3YDB3HHGVFUkiponmpaCk7hlY/w3sZRcXaA+C+v9WIjTuhQ+9lncCmlipaQAARapLcM0186Aad1d8Rkhhw9rFpoMZmg/mzIdTSJ7Aqmj/zW+cYGrEpHKGVzZGxIKOjRpU7qHFnB9EDPrE5hxptq+We6TgmUkUT5J6502f3sTEfkIkRG0JHAgCrMSg3fGYSD2Kzuzwf15pFHzwJsUFTgU3PDl5UjU2/WhVNKc1Y4gH6M1WBCaegoQ+82J8csTELuXPjfwCAhW5NKpqI2OhxWVQ0hdjEpLZK/10VXyNiQ6hoC70ORJGpNgVQxQ03N3UAP71DMtfmxr/3wIkCzal6Fnxy2GhVPb5SI6lQ/i8U8U6SMPIF45MYRWK5KtqkNTZS4GcGH81KPgc36Ew11QRARmyoc+0SD8Davqq5RKktc+UeRBMmB09uqmSG65mmSB8aFdhpArWxmA+OOaUCm51lYDPlfbSSczOrsSn+j6ekovH1z0ftohRR3M8lxEbRcYX9tghcoXK8PPGHy+k4zcV1p6r3FoCc1KHzgs99uo5IIgku4/Pe28fGUkWbfL5sCus8FerQ+1/1dwTV2DjEAxqpsRmagQ2/LtJ3jAPXzCo78wIbmtmdcPHkii5YFD9Kc1NuLzMXDG4xeyDHarOU6VdcWY3zGWfdoFNSIhERmxo1Nng8PL6rPgLNgI1rBKb2IumH7jXMTxfl4hhYY7O7RGxc52sumLZ4AJpGbIrrQREbXmOzXjYo830fp0rVkXu2amzK4yCaNMliYdZmlJk6ch91jU3Y4i9NbUPumSM2Y01Fk1AFTsWgfWxwjgKYiI0vCONUNACoLHC1juF4n4XYBFLRJBlQblV0P4myQXn+0wU2XOZ82qw5OVaWM1W0yeSO5RojEtg01G0bwKRqAvidbb4fSeIBRmDjQGxw3am69vT78Pmg84uKXVTV2NAtLSGMhCbqbPh6UoXYnKsCm+nu45ZR0UiCtTMVFQ0TMSV1NiBp2U0ib5sLRGKUeECs6xPpnAhRRVPJSMKcoOfuaxZenJ9/76DrWp4DS07rn/cTSnCVWYiNZ33mfsGktd8AbJ1XpQ36WtWhLPLrKe0xmrJf/M5ZRNMYDWwGaWb1hJTWFlMV7QlUYxMiaRp6jITIw+KNpQ+5UltyFJRyKlrGnEo0RW1xUtHKGpstknsuAhuP3LPwWhTZqmhz5fhV/4vUXLAA/Nz7elQ0rYwFUN0zQTUjjTVdDr8bEZudZcbK5QjQh0wSD0DrJyYVzVRFK46BdVxpljsDADx+nptzqM7DTh3WnIx5sTd5g0562ip4J+dQVzxApKIZcs/m3xQVrZOI2Ui8f5J4wHzPRF0wwexLHEgS73UL6/n7ziudLt4l+7ETBeWnyhGUZEC5VdF0UyHw0Q6qLelax2yRkOkcW35/DSrahAGINAfpNWkSJef304/YmAk0Sb3PCOwEVbQ000m5asRG739zAhXNkCd3jBuvG31GKCOhicCGr8su5/LYrKlos1ZFiyJR4jvU9Hpl1thI2wyVFsf9nFPwAWzUmt5bmgBw1WDRY+hkpE5K0RpY3uSbWyYk1qj5AmD62amoaJ7z5Ldsuj42EmJTfAFl2oR8hxXYCBOCiwcoFlEDSR5ORcMx+/yFkSOZU9fOwMCmecQmiiLleFLFLC2j6EdseJbc5gbriUmNR8d0MjW9mFIn1xAP8DhAuCDhWJG2gIbZvg5x+vCzSE/iG7qLinZoedObadQ9bGyUSDLJYcOHGGtskIrmmkbUsSioaPL78Dphgf4qcTw4YgPgFhCgG7erOV9Vh3A6F+l4cWyTOG8ShQfHRGtYpqGiDY1rbf5dyT13Y7H5nEZszAATAGChq3+OoihIGU1t6mT+V2UVufGN5yllvxC6WB9e2SRiDP5jS9xrblXXWHLs8aWEOBgTBTZsI5wWsRlzKppRY2M7YvcdXoHvPrKk/t2674Q1HyVEi/pJTa65/Lt9joILsXGLB9jnvyYkU0K+T0ZsdGbb9UzrvUS/ZtRbTklFBBBoRcIxR2mmElVnzwqxmbEqWhxrmixe7+XNkaXe6TLup+gEheQ44nsjtSctb4ysgMIq/CdJ2fVAZglXRaOIsEFFY8qq3CSfYTjO4PCKXAfm6nWIVLSVzZHV1NUau3VMD2ITEECE2mBk+w6qhCCJa8k927Q897WNVWCjk+3T1slxVTRcw9EXkYJFg4o2RXB15sk9ewrFgo+hJop+oLbPdeDkxghObtBCX9Nh4hZHOtMAIPO26Zh5nQ466XgDZ4nY0CF1KGIjXEN8aaGXqHHMdROV3UPDQjPqEOFDPtdLYGUwtigqlrOR5XD/kVX4yfd+Df7pD58H//1fPEccP16jUMRGU2zsYkrcCJV4QAAEPs4yJ8LExQNQFY02Q5vvFQpy4yyHjWFq0foAzLk9HGdQtlEx1ZWqEJvcPAaaknueUhWNBzadUua6eM2T1RICEWp0nvC/G+IB5RSUGoXinDCoaEzes5cUkty+54v3xQGwaadVpkQj+h1YGYzhKWctwrfuP2bMf875HmcZJLEsRyqp5Vjf6aBgSK9ZVDQhAVDHeJfoaTP2Zg2VWXjKEwOfvGk//OYnbrWO8f951jnwx697rnhMja6TZ6vBGhv+LHhV0Sy5Z7veoqqPDUVxqq49vedzQrHwAaPvUkXiyKixoYjN9PtXiFztUumgxhHAk7YVC+aZ0qBTErhB9ahX/revQZYDfPO3XirW91LjFB+9HwvvJUkgpKKNS7SPKrZy34ciczSx4EtmDVhwRJkTyBCOo8igMKZ5bjmldBrgNfs3//smuPaeI3Dtm3/CSqK4xAYOnNiALMvhNf/jG7C0PoLrfvtlBlWZmi0e4H6mmqSimX1sip+NGpsacs88sJWeH0pFBtCITZYX75f6N4YarTUepplC8edVQ2934A3wBKuxMZ2sSY9hIyiopLQm1Ee4bi53slRvBEcGgQdInGs4S7lnuknEcaQL+TyTfZ489P1OrAIxNERwTBnH4m8uhMDmfebwwNE1yPOimZbL0HHqW4uknyoh1RPhJo6UpRBVtCxzv08hBeXxUHaVnmsnQPnGVSxsNuj0zwseHKFNhdgIGwXdTPH58CM25HgVVDS+MWBD1R1zXRFV8IkHzLNgXOoRYo5TI11dgWYT+lji+N70ikvhhU/dCz/zI+cDgHlP9vPAxrN5bnoCP/6dAAFyz2zNimPdKG+SoIRn16bOmrNAmKKZXBXt3sMrAFAEkRfsnoezSgf3/sNrxvt4gJ7nJqrZJBWNzy/fep6qxJcp90yvIf25ErGpIfesxAMcVDRnPRc5Blo0ZZ2WNc6AGpsNIgU/52AJ1DV+yjOvsYnMvWFtOIZHT27CweXNoHoyq0FngNwz9jDC+8XRId7LiyaBN4ZhzBKX3HNmsUf0saV42EBvyzlx7+FVGGc5PHR0zUtFoz8fWt6EOx9bhoeOrcPJjREcWbEbk6LhHMLp7VX8tMQDJp/7EhXNqLFJwuWefUIKaK4+NgDTz3uu8ovXEP1KSVGP1hU+ofrYUO72pFkh3jcAQK6P4Jk0bpQWk2VaKcSW2dOLCTXex2Ywmh1iw51szMCI6kkssgYoN46OOV184gHzXZmryRchushJ6ixoeJyeUIgoGc0ocqEBvD94LNcxRix7Ui0eYAbHdB4kcUS6N1cjRCYVTb8eKvcMADAgWXS8lymj9YQYdzKL//WzobONYXC9WGPjQSSwT8XebT1R5purDi6SebvAmnV2BSldavQcKBWtLk0Lx/TKy86Bv/q/XwDnlV2+DcTmBEdsPIGN0LjN+k4DkXGPif6sHNSpxQPCqRshxp0T+ixyxAYpDT//wovhG295Kbzv554jjoFSK1IW1ADMNrDx0SpU4itUFU0QD1gTJOZdRjPAWu5Znpeu54Qri6LVqQGoMr5XSHOK1pfgOjx1jU1msgMGDScZ9ffopAKidOM0866FktE+eXi84ljuvb0bRyUFXyvCUtM1NmawBMB8JG+tohkc0cSJpIoGICcP6WnoxBomg1NrXtBfzd5eAJ++5YD63ddTDs8fk5XePjZWADFNYGPv+7Q9iUZsqr9DSiLb7yn+x3tDA5tp10NLFa0cM15T6Tl9wqqipSyLPtExmCMEQHuQ2BzHbixfJqqUZNJAZMTGFg/gcs+zU0WjkzyJ/Xx6XHQWaGDTSSzYFmkMFGLG42mEwC33DFBmY8tzldRZ0LTcc3FcvCVhfWxYLRSiDRWBDW946KSiKcSmbNA5tPtJdBOtQe9EmWhg43BqKlXRaDE0WSRprUndBUOmounNFK+jL1MsFa5TM+SM2d+xs/juhZ5YxM/7RHWSWDkl82zO1kHN6Prgy4JKlrE1pkdqe9DBthGbaloHQBgVTXQQMvvvVD2wWVW06RxbjsjRjXyU5sZ9srLLjvOg1yTLbDGQaVR4uPHz9z1zPPElUTurqGhrBhWtAtUV5J7x/mWZFrQAcO9DPNOLNo0AhWucaNIx8T29jl6HpqailR9XlJkZyz0nkU4ODdPcS8uVjFNn1T0QERv0RYrvw8DmJEsqcrnnAtEt/rYRUO9XnAtLRhJ1Up14NOmMoj8irFuY2d8cZdazRucN37M/fcuj6mdfTzm85+gX+vwxPuSpAhsm95wRBoHpy1TPyRDEkzfaLVAhFH6abj1ct+SezYS5LB7wBA1sZtHHBsB2SgFsh4kbfp4X/vJ+EjhMLvdsN+gMg3gnMSOwifwKSBIVba4bC4FNoo4HwMQDMCqvyOSmxMFYG6ZO585WRQtEbAQlEfxbn2QnRM1/Mpax4Aih2Q06i7HShYUq0YVIAbua81VR0VzBEUXf6s4tOly8f5SmqVCQQMRGutY+8QCF2Cz2RNllnfHW9xOppXzO0gBDMvq61McmxNGgtVWqNwmZa/gdHLHxbYjU6XapQ6WeDR3A3vDzXK9N0yI2dTjpIWbeX7sHgtTM2OLyezKpaW6fZ5PJJH4sn5OgEm0JD4Jl1FakogkU6qrvS+JI0YtxXTmyOgiS8+XcfLQmEZuQBoNU5WsaZTFq6OzNB/TnmsbofaAJF99aKNmQBSu+Pjbcp3FJPuMY6BqIx98YhiVg3eIBcrNw15h9NZ6bo9SmonnqOQ8T+pmv0S+OHRO0oc2npd/rGG+US8+lE8fqHkwm9+wOGuk9aEoZjSfquXhAJqzBbYNOqCcXTC0VKGaaRmQ/tDwgQaOoh0uGmjohPEDSGabZyz1zWpSkLoWGb6VOYb+bGNE8AKl3IRQrJR7g4DtLzgZ9bdXRo0Fp4nOUKJO7XNONl2c5RoxqACBfhyHLkrvWkr4KbMrgWFHRzOw/XjvXouSqj6mD2IwdwVE30deh7oIh1dgMyQZJC19dVo3YuBEJVLDZsygjNpxjDgCwUN6LhZ6M2FRR0fiGW9Udmxp9Czp+Ug+dA6yvgp+KRq6Pa/441iDpNS5fLiGbdaxxKhpzTvj9ok6J7ryOGWs56ZFxxIbNwyb72FhUtHHmVBni8uLSHKXHk+SeTVU0//2jDAIu98xRRJfMLVdTQqtCpeuYxXxwqKIBFOfSVHNBntibWY0NqW/Te0PGCsirn0XelsK3t3ParlJG23QgNjSwKT+zLjx7klkJh0jvw7QxJJ1CVUizbhBdBjbjVBAkkj/LbWPkpr6rwKaPgY37OHaDzmkCG+Zz0DWa7OFB84IHNsK94g06AaAxSidH9vA+0YS5nRAjiM0Tqo9NWu+hl49hR6mI2IjiAR1HYFN+nDsJLgejltxzw1kiGpkXRZ72+NR7JSpaORmRutDvxKqju0JsMorYOAIbAR6lr7nqbAYs+0OvpTQNJA6vhdiQB0ymOZj30eWYaLlnRGzMGht9zXEc8r2lrzvFAyo2WXoatAAyiiKrb1KoSXNb0x9i9XyEZrVk8QA9Jr5RYJ+K3SSw8YkHAGge7zxXRasQD+AKa2h1qGh8MwIwM5/D0sm1amx84gEGYiO/T6JsGMcnf89z8/e4ItlRZVYfm2mz5uz+8qB5Q6Dt4jV20VRT5vBYVLQm+9ik5jrIr7c5LnPOSQjogCU6uENgUNEqrr3eC2Ii91x8HuckjqUKsbGekwpUuo652iZQo+pdjVHRcjM5NzMqGkm+0aasIbRTalycSFO+fIFN8V4XYiMpwqrAJrAW2IWkppmJVkUkuBERG5qQKH/G8W2ObDRXasQrGRVBsMau0IViH/H15bISKA0hNpSmD1DWRteQew4RNZARG6z9nm7ec6of/m6wR1L3vvEE62MTNml9lrKHG4AgNkI/gKoGnTkPbBgfXL3fCmxYjc0WIDY45pAGnbTwGoUDMBigaA4NHKpqbGQqmn7Npd3Pa2zMLtdCJiLTY3PV2BiIjXAd6EMmOUJoGGxtUwIUJRWNbf5ViiYu8YAhyZpWZTEM+dryvTjP+xOqBkmF/5T+1a1wglzHoObbzFHSda8R2Oi/8+sMoJ9nTkWros3h80ozlQD1xAOkZEZCOOqjNIPja0MiY43OoPv6BTXorAge+Wv0fiVRvU2Tm55r4cWtPuNS6/zabIwkxMZPUzWCJTGwaa7GRhUf96tr23gD56o+NgBgqWWtT4LYxKSPzRhRxCKwuWjPgnEe3KRMLx4ToJkaG+5MylQ0HRQ2lWlWAjgeWdomjNa30Xs+CHjWqXHEWqLrovF6HNW/jyUUFRWto+8vJo42QxEbR40NFeJJyPoI4GCQsOc2z3N17MFYoKIJsvaSZLZPPADPazGAisYv81SIDVsjqB9giAcEIOIpG7Po6wnP8aQJUG78+mJATBEbPn8MKtoUgdWZF9g02cdGcIQoYsM3HG4mFY0iSbKTxkUIuCqaxBtvyvgDHiT3LCE25ZhpTxvK6VX8ZFJ4+fCxNfjMrY9CluXW96W5mY11BjakSSMAQ2yES0W7OvMgbjwBFY3WD/E1kjfoxOCYbroA+jq5nD4XFa1OQZ1UY4PTblKqBr1lnOPcScxso3NcBhXN/rtB+yN/3xylSj57D1FFM5XabJQF74WLilaF2HCUlqKSVWZIqzsgfsyMP3l7XyUQvFQ0x3ygJokDmOPigQ1BbKLI6xBVGSpHbSupLTj3b35kCb5539Hax+NKfHzOmnSYMhi1MsP2WkOPb9XYNKmKVh5rGw1sHI4UT7T1FapIE2QMoWHZ0DVB9MZldC+YI2tCluVw4ERBj1QNZR3XBKe4JR5QofxYZfcdXoHPf+9gOU6NONNxU8Pgp5vERv0cfU6Prg7gz7/xIPzJNffDX3zzQTixbjdnvPaeI3D7/pPG9+AeFzovvnr3YfjegZNB7+X1bZSKRgOpMCqaia742BhcPGDHvKyKpqloev3E9ZVTjFxMBs6yMMSWylPE15RimqTkxhAYel6FeIAbscHrd96uOfXajnKNkhr98rEv9HE9c98H7oeGFPY7v5etEXS/T+JI+ZB5Xr0XhdSopcJzzBPuk9omW6OQPtztuOvhmhIPOPMadAq0mPrHKC4Yzfprp9RWl6lq0JnmbolBfOiiyOYj4waGTsss+9hw6oBP7pkXT9Kx6v/136iMo43YZPCmj90C333kBJyzc85aILg60cqmg4qWmsEIfRCL+2Q6sPg9sQDfcrlnALluwbyPeiOa6yaGY1Ul95yoa+53HF0PNd1YK1XRBNRHN9+akIomyT2TDbIZKlom/h3ra7pJBNv7HW8fG/qc7lksmq/yRqhVdBUnFc2TUeRG1wJ6nG4Sw+aoaDb52MlCeeq8XfPwaBnkhFLRqgQzXO/xOfJxPF22HbNri70OnFgfqczqGz5wPWyMUrj5P75CZYdDjJ8LTwZsDu0kUKUqGjsmd0gapaLhGlM63ENWOyG9lyM26MQlcWTVunDJ54lqbAhiA1CcPyqiXby3QGycQXSlKtpk1/I3Pn4r3Lb/JHzx3/0jdc9xvfUhNt0kMpIRwzSDubLZ7e9/7vvwiZv2q78dXB7Ab73qB9XvR1YG8IsfvB6evH0OvvPbL1PnVqfG5vDKJvzSX9wA5++ah2+85aWV7+f1bV0SlNFMdUjydsQSOz7aLE8CKcTGJR5AERuhxgbH3OuY84Aeg/exocEJ3RsHrjGn7rVgMEotZM/Ya8rjPfWsbbDv+Ab0khhe+LS98IU7DvnlnjEx4ZEmlr6v+N351krjawSu+4rOTnzWUZZB39HQWR6X29czAhuhae8kxucJrlndsqZsmNo1fKYPNPn3n3GBTZXyT4hpJRUbsVmXEBsXFa1cRwsVJJJlETIukmT09n6xqGAn9FkiNjgOdAx9zfh48SQARWxM5AaAcHrzXDl1+NmTGyM4tlookeD/fFwUVl3ecCE2fJH008j0xmufq0hFk6QxDRRBL8b9TuwNbNaZKhrnPrtgZIOK5qqx8SzGVBoSgNTYlPe8NyF3VqKRKWQjjoKoaK4aND1WWa4WA5vdC71iYSd1bWiSeMC//Ymnw4W7F+DVzz7X+J5qxMYOkgDqSSHT8dMNQzXkHWeKOrR9rkMKQn1UtOosblVgYyM2JhWtbq8eajjXUEBjVGaesSh5bZBOHNiMU7v3kq/GxlXLllUgNrOgonU7BUVKqotBw3OTFfQySOLERmx4YGP0salCdfX30TVwc5SqZrhn75grv9+eC5R67exjMyEV8dhq8bwfXh6o64LrbRUCQemjwzRTe9W37j8GAACXnLUIDx5dg31MtOPQ8iZkOcDxEsmpEsCR7MT6CPJcr1dVRtevyKixYeIBAdcRnUOtiuauc9IJqeI+7VB9bALEA5Qqmv3eHkO4KV1MI6k6YKeMCgA/1ZeL19D9c3NkK6marQCKn8/fPQ9/8M9/GHbMd+Grdx8uz8N9Xy3xAM8zZYsHTO678f0d1321NlT4PeY42Lg8fY0oswB9N0lWvo5ZVLQhBmllMnSYqsbr0hifUKpoo9S/eYeYtCirrvEDCrMGIjaZWzxAEipAQ9oGQAEFu7L0TZiF2CTurA4Ov9eJ1bg1BU2oscHrkGq61jyRe8bjDYUi4DTLDbSEq7OgWX1syOX0FsUJ0tb4fzeJvUWLrhobl4QwOnVrw7ER7Gr6X7mwVzgLAG4qmk/umQdneAw8/0khZqlBJ2bJgqloQhaNmpGlJMOjimgAJMAQ1gGagHjG2dvhN//xD6jiWLRexVh5/wY0SY3NZXqzACWwAWAGVXgf+x0i4elZz4zAzxGUVauimZ+jwTPtAD6ZeEAxvkVC3TCbzdWbc+Z6mgk1Jh5VNEetEA/8rMCmSVU0IpfLRWK42bV4es7oWgIe2MjZUHo8l9E9qUP6aw3Gmcrc7y2fNylTTQ/P5Z47U4oH4D3ZGGmEBh0tyTGjCIQR2JTXa//SOhw4sQGdOIJf+bGnAoCu2UPDc8bnCr93oUaNzYh9tsroo2g0b04zs6dXjUSKaqYZ43e4kxtcPIAnFIdCgseF2Ei+SoHYFj/3E2zkrf+m1sjyNd/6aq0FrP2B1cjV2Bv0/PiZ514Ar3jm2bBQzqd1nyqaqrEJoKIFICOhZgU2Y7N2kfqRVXWMfBxyLbJOAKNtE5rVT2JcThtRZcNnYIiN0b/PoyRZZWdcYFPFI69zDFM8wKyPAJApLtRcgQ1/EAHkOp0kjtQkWt4cW7rfk95UyXgw5+O0UqUM3JStGhtCRaM0HU5FozYcZ6KzQTcDV5NO3seGqox5i+JiW41MkvQVERsHdcUZ2JSLYJYXCy4NoAC0CIW0wPAN0ZR71n/bHKfOeeGiGiUqsJmQimZch3IDr6mKRocm3S+6oNF7wQObWLhfI+F5dhmOdeRwMl1UNP2sV36FGhsfD9I6hqlGZ/vdhEjkup/3TYOeUi0OUEXpANDnGpUBmAoIJsi2o+ON6xkvgq7r6KYs68oDUVE8oE4fGyGwaZL+S5H6queOq/rRrCzOUzxHXH95LxuDQh3o8OC8o8poWES+d1sZ2AjOBb1unF49bR8bXBs3SH8SHJ+0btLkI5VNxrXvugeOAwDAZefvhAt2zwOAjaogWoHPFadihyQZuQxxldH5nUSRUR9kCKmEUNGYn+JDP7h4ANbYuOSepV5ePBNf1WiRsyyyPLcoUIlnfTWfW9OhF+WehdYCNCDA+l9eA0KNIzZeNoLn+ahrPHE5YIgN3ZdqIzY+KhpJUCwIzeonMT5PVI1NEgXV2ABMviafcYGNqzC/3jHsyS6LB7iDEvp5TmuQUCUXnU3pyG+MrKxckxutxGkFcGRIiFKGFdig3HOFeIArsJH72FAqWkUfm479vZMiNp049gZ4BhWNnBsdQyfWFB5K3VsdjNU84MovPoqA+m4HFS3PPUpFPAON4gFYY6O4s3URG3ucNOivS0WTntvBSH6uj3HERijir2qkSw039JlS0VR9l/m6WszHGrGZ6ySVMuAAdlGpOIeYA8DNGfiyAt5JEkaqUzfKozLEpm5fE66ExD9vyF+XWb8+U0XjBbYWFW0L+th0O1GlGiGXe6YOOs5HPN6u+eI54NlUE7Hxnwff/1Qvm3GqEkt7F/vW+/V49e98X6Pd5Scx/K6N4Vgdo68CG2GNZtQq7jBd/2AR2Fx+yR61hhzjiA1BK0aZTkjN9WoENuVYXUkHbmZwaKo1mv3TQoIqc/1LIvdaxZNA251yzzZyLTXoxDFzo+dgNc5NCWITQEUzxQNM9LagornnJ1eDBdC+TEiNzWKAsAv/06R+aZ7nhjIugI3YFLL8UI7JPzf43JESVho509dnG+vHN6nx66sQmzh2tl3g93JSOtpUgc0VV1wBURTBm970JvVanufw9re/Hc477zyYn5+HH//xH4c77rhjmq8xjBeSTWI6ky5Q0YZ2ltHZoFMV6XGngjqlZjaOm9aRH1sw5LSSqdQ4LcrLaSXwJE5AG7mR5Z4l4QG04djmw4YjNrjQ2iotvgc2iXXBnXLK8b4mEfggcJuKVvxMz50u/HEcKXnI9eFYB1CsKFgMojhNyENLdNHR+OI7IIWHAHrTr7tYSEEJLVhVKEigKhq/1nmeO/vYUKlnABmxqUJWqdE6F8lURtOhihay5kiIMB1fkZUtzneuq6lovmPzDa9KHEAuHJaD55glO6arsUFHIDPGXDeDzwVYfFS0IbtnprCIHOylWW45oE3W2Bj9VaqawgrzhdeC4fF2LRT7Bc+mSvuWy3BuaBU2zanH4yBiQ8eAZqANDdfY4Oc2htphxcBLRiDMZ5+Lg1z/UBnYPHWPOqeltaGBQtH6ErrO4x4WQqOklJqQuU7nXiG1rlFvk3YakEgh6CCAX+hE1XOpGhu/3HOP+Eg+8QBu+Pk4EiSdM7tGyyd4YAuJmFQ07uAbzzwmFwWhKH4exvjL78D3uhB+ADuQnRStLFg65muYbKH+o6J7ViKz5u/BiI3gC09iG0PT/8Da44KKpgN5avz3SZNNEwc2N9xwA/zpn/4pPPvZzzZef/e73w1/+Id/CO973/vghhtugHPOOQde8YpXwMrKyqRfZdi4YvMOO4bp5AMQKprRoNOEbblJD2rxOdsRdCE2GgoeWYFNk3U2LuhXFA8wEBszkOmzWht6zAK5AuvvaMNUQGxy1qCzso+NhNjY14lS0ew+Ntop92Xi3VQ0PQZei7HQ17VaLrnnEMTGJR4A4HbAbEfNnOdN1Njoa6gdiqqCfD42m/ubO6lqGrEpMshSgMFVgXwWLPfMqWjlbQ5BM1yKUVruOSU9bOpT0QBkAYoqVIyvl+iMhRTwVhkG0dtIp26j2VxNR5cjNhYVTVBF4+IBAO5gL83t57BJVTRNaYwrVYZ4AgRAnwuOCc9x90KJ2LBs6rrQWNplvO4T17MjK1rchSI2XLnIQBtYjU03rg7SvWNTVLRMzfF+x+3I8fqSHqlnOry8CQ8eXYMoAnjuxXvUtRtnuUG9onvOKLWTc2MhCHaNAyAw+cGCQ4OKRtHrICoaQ2x86IcKgkwqmguxMWpsyuOvB1DRdCLS3q/T3BYP8I2Z7x0GFW1k97GRqGh0b5gn1EuXDVmiplaDzgn9UrrGzyuU10RsAPwNWM1xmfuihP5JiI3UrL6u5XmuEJtdpTIpRWy6jmQPv5dbSkVbXV2F173udfD+978fdu/erV7P8xze+973wtve9jZ47WtfC5dddhl86EMfgvX1dfjIRz4y0QC5NdGgU6ui6dPHKHV9mKoHCTdTZx+b8mVORRsLTpckHgCgoeBja0ML0mwysOGbmRIP8Cx+IhVNUdLogqU3Hlqfw53+4VjQnM/Muhun3DPrYwPgp9PhOIrgxSxo1YhN7EdsGNeZq+UA2I0ct5FGr5ryUXLnPTQNHpxRJ8sKbAIRG6vGhvVNCjVRPIBsplVdygEYnaBCZpfOh+NrhbO1Z7Grvo+PSXIMXaaDC3ntkIpmAUy6ZZVJ4iT0mMOxdvoLxMYd8KLxTbhKntyX3UajtWYAzSI2oywzxQNqUpO4xLhPFc0SD6CBjTBPip/ter9ZBDa9jl5Dnc+toL5JA3CqMLW7fA58qmhVGWNXjc2RUrVyvpvAXDcGjFm4c2GgDU3X2CjEZkwQm6Qct339Rmwvp72iEK35B+fsgJ3zXZjrJsppo3U2dM8Zp3pe+Dqku8YNEDbX8RpifRvW342YKlrIs6jXYjOwl1kIufFe9D/WhiabwicewGtTJD9FKaIJn6eomFJp9SSOeIsP3hbBQhSFdZAiEvMhiA3W2AQ06ORjnhStxH05ivQYeY0N/bkKScTrphIDoq9nHhNAblZf10aEbogtFzZH2meg7AVjzJavMxlqNFFg82u/9mvw6le/Gl7+8pcbrz/44INw8OBB+Mmf/En1Wr/fh5e85CXwrW99SzzWYDCA5eVl45/P6Ik3WWNDG6nhpjkWshbUYrKA8E7ZfIyuY6DcIs2W4QIQEtjkeQ7/9Qt3w0evf8T7Pr6Z+eSe8TlN4kg5w1YfG1pjU17GNM/F+hxahGnztc0H1IXY4ELZN0QLPA8sGYdaUHMW2MSRF7myqGiI2HRkKhoA6Yc0GAtqNbggVTudfiqaA7HhGXl0XFkfm7pZEJGKRqk2nowqgNmMDsAODvj5mVS0Yj4gYiM1kZQSFS7TmfAUfu+qO+ETN+4z/u6iotVpXulSQqT8f0VF61DExn1f+D2XNyn9+SpKB44DQCdopkFseIbThdh8676j8Na/vh1WK7KBnDbGO4FvCKpoPQmxcVCX00xCsJoMbPScrEJKpQazPVILRu/1zrLGxmrQaYgHhDk8CQ9sloseNtvnOpYEsfR5ALtZcWg2WbKc7KNUFQ3XW18fG15jMxxnqr7m+ZfsUe/fU9LRMGECYNbYUDo17/FDbWltCL/1qdvgpoeL7zD2igDHFk8F12Zcu1AmnY4HoGj++ba/uV1c+/HZ6rF9RkS4WBJgO1Fmpc+kUvUz6knLGhvOLPHU2FDqeEzGpVBtRGw86yuvjauqseFoL4D2FQC0P+KqsaGJhEXWoPMPv3g3XHndw+z95ucn9UtxjtE9gdfYAJh9rnymasVUYsB9bSXxgGkQG7o+b2e95OqIB2xZjc1HP/pRuOmmm+CKK66w/nbwYNEx+OyzzzZeP/vss9XfuF1xxRWwc+dO9e/CCy/0fn8TiI1ED5vraulf3mDRFZRQJQ9JOx3Azopyw4zJkZViU4ki/TBxjW/J9i9twPu+eh/83lV3ed9HHX2ACvEAAk+eu7NQkjm/VJQ5f1fx/3nl/wAmjEwRm3N2zEESR/APn3EWABTF7FIhahhiY9MCfRQemolQDluaG7LKtaloaqFwU9GobLiFknloGr7AxmpOGFxjY869ifvYkMNyOl+XIDahogb8bZyiY1LRELEx5Z5pUrRK5IMabv7fvO8ovP/rD8IVn/u+8XcXFa1Wg06B/gBAFNlSIvfcjYMkcvk9l+mX9O/+zCeOA8BGbCbJtuM9NFTRjH4cxc//85r74K+ufwS+ce8R7/F4dh7Pf0e5SfLu5wCkSJls0mNHsMcbA9NzaMIolafP6j64UQQZjRbX0s0ea2yo05HnOetjU+XwMCS3/C5EbPAaU7ELapTWHEXyc1JX3rs4rv55nSAIvhob/bwiYqOTaN9/rKC/P+eiXer9exYwsNHBDN1zRgSxobRnfu++dOch+OgN++D9X3sQAGxUocooVRqA1d+RuY17zv/4yr1w5XWPwHVlsEaN12j56lVGmbkndZNYOfq0zkbuY1NS0XiNjYTYCNRxmmDE88J4wyseYCE2+vfBOLMQMqNcQUDz54XkiHE+5PiqxibL4NETG/BHV98H7/is6WtZ+9vEVDSC4mNgw+pk6c9VNdgcsZHe7xUPmKLGZoOMG4+H5hMP4EyKLQls9u3bB7/+678OV155JczNzTnfxxe7PM+t19De+ta3wsmTJ9W/ffv2ie9DM7JuDdbYRFFkCQi4pF/RlHhAZtaJSMFXVY0NIjZzncTgCVcZZll8Ch90TPiAxx4nhmZT3vXaZ8Ff/coL4DkX7gIAgF944cXwl7/8fPilF1+i3m/UGqlND+ADb/hR+OSvvhCe/uRtABAm9+xq0In3jC60fi6xvsfUYaPf1Ylj0VFGs1XRip99VDQqG675zMV7Ool707fEA0hQywsZeSG5GqPFTzUXxUlqbFyFkXQzrapb4XPM6vjOnHaTisbkngXlrqoEBDV8zz2HVtXxqygYALIam8tUM1y25tEsvN7EEkJFc98X7nTLwTxx4isQHQB9riEFvFU2YNSNEUdsMBNfrq1V6xV/ppHXj8XOvhobqhzkqjui0vT8HJqwkcpYR2Q9d8k92/sRrbGhNS67FzR1CI3XLlb2sXEgNoeXiz0Is/guBUGJ3oM2DZ2Rfs/GiIoH6Dllf8bc1/AZG44z1WyU1gvhOmIgNoQlQBNtnZgIP7BrgDQdnMd07CENGjN2DfFaj3lCoHwfBvaSM85RK3+QgD6NXt9onS+abq5pO9R2g077e3hzTvp5SgO1Eq1szHlu1l/muRlkiqpowt4gNaB0rUH0XtM+NjifNkap1w+dNOFu1F3i8z+y71foM4b+QN9D5dS+nn4NyzKqUHWf4bVd6CaWj9SJbVl2NI42T4qi1wpsbrrpJjh8+DA897nPhU6nA51OB6699lr4oz/6I+h0Ogqp4ejM4cOHLRQHrd/vw44dO4x/PqsL+Urm4uQvMAEB3l+AG+WFumpseEDBTSM2ZWDTrVbRoYZRdVWBo1IHQSfbUzNAVdH2buvDC5+2VwWm/U4CP/aMJ4niAXRTiKMILtyzAM+5aLdxPtIiRCfzyuZY7NMi0Qd9fG7F4TX63ZiBVZJEXolbHqDie2gWqs+paATG5dkxXyDmQmzoNUWHw0VFczXojBkVrU5m2l60s3K8ejOtoqJVdWa2amzK96dZDic2kIpmIjZGHVsFKkqNU8wAAJbWCRXFQUWrg9go54E987RgUgU2ncnEA6oEKMQ5lvnnRzJF4TfeQ5yjYxK8Fd+dGWPgBenc+BCQ149OGG6clDZi1gPYKFhahdg0KfdMnOO6DToBWAafJDmQr07FAnizzioqml1jwxCbck/qOairOstrH3uaGht6PzZHqUr2+GpsNN3XrrHBgnicMwCa0nrMUWNDawOoKijfi/FectU6gLAaC16HR5scSzU2+vkRrgFLxuhGu/b36vfquYY+iBHYjN3PVIh4gFZVo5R1PTe4mJFrH5bWIrquFIFN8V0Yu0hCNYZ4QAViQ+81+oTjzERF6R7K/ZVJa2w2xyTZxahodG9TCdJAWXdfjY1GzihiU9abT9HHBuXo53qJxWrpEMEhvraECiVVWa3A5mUvexncfvvtcMstt6h/z3ve8+B1r3sd3HLLLfDUpz4VzjnnHPjSl76kPjMcDuHaa6+FF73oRRMNkFsziI3edKjxXjZq0XQ4TDTDybXW1XdV8P9xEzmsApukkrpAzejn4JnoPDLXiI07inehbNyoQ5SxBRvApFXw70szO9soZVKkINOXucgIckQRG/rgmFQ0AUWhQbRLPIA9tNuICAV3cLseyhG/LkO2cQLoDchFRePn4FJFq5MFsYOS3BhXl3QudwXXVVQ0q8am/PXE+lDxlzFTLXXV5siYz3j2CABgaV07OVVUtDDxAPMzaNR5oVQ0X60Ymk3Xs++hpAZkfsZ8jQeEeGmaqLEZZTlsCnRK/L+qzouPYcOB2NBrVoXmZmzvsBIBEyrwSGZS0SpqbIS1jTaSpVS7xb6dTeVc+HDEpvgOrGHB5JpGbGQKS+rYP+lrk8wh6hAW6ydmnD3rJnPUaSCCyme4bgJoGevjq/qZpw79OMsM2rYzsBmZ6zMNJmtR0colgqLeQzGwyY3zpcZVIX29hKT2E1jnyyl5dFz0+JYksYeKZiA2RLCIo36upJ+0jm0YgU2mkgjoN0koLXXcKxGbsb6e/UTv9ScJm8TVd8015hBTTZs7WlBGpuCH1tiY98BH86OIlqoTnkI8AM9lvpsYdVYApXiAo1G2RUWbMNnUqX6Ltu3bt8Nll11mvLa4uAh79+5Vr7/pTW+Cd77znfCMZzwDnvGMZ8A73/lOWFhYgJ/7uZ+baIDc6IMd4mRwyzJdyMzpYYvEKQXQcqhSlheAiAdkOUi9awAo9OtCbEwqWr8TOzNlknFKRp9NIj0OczPSQYH7vRLVQDIlHpCZ4gFoNFCTxAP4Yr2yOVZwKJokve2VeyYPrEuWuxNH3uvANxhejAcgyT1r1E8XEJeLN+unY56f7GSZgU1xTZyUFkcG2lJFq0VFM3/n4gG0jw1Ascn2Y3MO8mNU9Q/B70Aa2s75rtqIveIBIQ06hWf52OoQoASUXQ066xTWK6orp6LRGhshO1enxkYUoHA48dLfcRwAYU3yqgzvoS62zYxagbEKbGxHUDJnYIOIhUAB6nbo5m9fUy5IYCM2DdbYqOLrCPqZ/7mTssqUtjgi2W++R/GfAaoda153gFQV3IN4jQ136rlTTi1E4c9ldB1fH2oZXwy85Bob01HHMW+MUhX87SAF8ij5fHzdpYrGlD0d1wBpvipgN+ZZ9frKE4AmFU3fTzxn/F/yCXgQ4hM6kZK1CrHZMGWv6TEB3OuriNhIVDSC2PAaI5eSm3QpDcRmnEI/LQP0bgKbI5OVMQ1i0yMBBgDACYLsbxr3yPz8pM1pKRUN1woRsQlA+AECERuhNYHUrL6ubQyL8S/0bCpaN45VM+VKVbQJqWi1ApsQe/Ob3wwbGxvwxje+EZaWluDyyy+HL37xi7B9+/ZGjm8ojk0QGVNUI+FUtHLCrzLEpqrGhvdioQ8W5wBzw01EKcB0E2eWSDIKC/uKyTiVSwsf2N9BVdFCTCE2pI+NhNgMU1numT9wyxsjOHuHWcMlNbHz1tiQB5bSUuh3GcICFY4grbGhinBOuecBbdBZvKfrCcRciA2dA9WIjRwcTdOg05KyZNQI2oAQoFhs+2xVsegFVXLP5d+Pseac9FzoBjhiyJjPesJ7qPQr7RhPzaeex43TTNBUVnacMT61dmpchpt5FBXPp4hSVqDZ1vxgiN6k9RFFg9XiWDj/s9x0uBWVRqDuSMbHj04IOqlITaOUNjoP9XOtr6lLPKCbRAXlq0l5fYIipknxszshYc9fumZSOesFoccE58LXV0UzHR8bseGIqjy/6WuTOHf02aLnh4kkH9KNayteN/pMG4iNqrEp/p7nuaWKRp1u2nuKmg+xCWmszXtdmc17bfRHNZf2JMV4HyexbpRR0gG0D0J7+/iK/+1juhEbSezHYHZgUoUIMVGT1jGKBOdknSkC4JEo8U7n6kIXmwgXDA6exMJ7zQMbitjQPdiiok0Q1BfH1IgNrlVSjY0voUsNj9H3JAakJLaWe26AitaVqGhuxUVa1170L5tsDFMHNtdcc43xexRF8Pa3vx3e/va3T3to0eqqj3DjGXtqils4NGtsnKpoZAExVdFsmNJFRaNyiwBF9gwX6SAqmiB7KhnfjHTNgP1eCb71GaWwSBkAo8ZGQmzYA7osKKNJiI1PWpSeLw2AaM+IKIr8CjLsPuJ7uqXoQJrlgtyzXhTsBp3uzIndmMpGRuZLB8RZY+NyXLHGZoI+NpLYA4BJAaHPkTQH+TFciE2/E8NgnKm/LzHhAHouNJOJty6EiiY9y8cFKhp/Xn29Ibi5avhUYXNK5Z7jyoBiTIrDt/U6sDIYi9fZhU7wcaHxwNdXb+azUarvwQLp/bEqNI0MoaJR5UK0TYbYIIKD9SdR5MhqCtlbADCaBM53Exil40YDG1r3k4PppHDz9bEZjjPjWFKPCdyvFntJse5UUlTM7+PNlJHuh8G9VWMjrPFo0yjr0c9QFEWiGKHxHi5IezlWUs3murGxRu9hgU3Rud7cu1VyzqCiyckYHdjI88xlnAJEHT06TzKyzgHIzixXhdStHKS12A6itysqGkVsTBSo+Iy8vnprbIT2DDRJyBEba78RHBRXH52+oJ4n1ebO9fR5bIxSa08YEISU7iknjMCGIDboF5QJkkmYRPSYc91EPXObLPlUfE81dRlAz0meuKCWsvsAoCX1h2WPoBBRHm4bhIrG65ALlodGpKnh/rDY78DJjdHEVLT6Iz7FNi0VjWfsqS0o/jJTRXNkgqlT7Aq4qgqbd8yZGt9zdalo5AHzBUIWYuOpGeAa81VGFyyJs0lV3njGaSw0ypN62cjiAWHcUVMVjW0Cno3YRUWLY63qwR/6RUJF42PuegIxOygx52Cvo7n6rsDGoqKVx8C1eRJVNJ6NKgIJLbmJTU5dzfwA7GDAJXKATjFHbHYLiI3uSeRGYCWj9+tZ5+8EAJNvz6WD0VwZRclcVE7JeaEKOK6NimYo0bGtmkNBVLQxPiPF75M6pRSJ2N7X65lB8WHFzz4ahfT1vMZmXSlX6uQTrQmUHCUzk6vvJSYjmm2ITKholX1s7OQXzeBTaoymiehrjujGTob+O8fGVEHnGH25Su7Z1aepeC023lPHqBNL9wCkDvkSQryPzdFVrBcy99fdLLDhew11TA0qmqOoeSwE6iFS17hsiVQ0oV5H1za6n2veoDZUPGCHoqIRxEZKJDp8GKnZsdSgkyZAqUADgFuRUURsHPsfOtBm82bb/+qRxtwSHY0+bzFJjJ4kCTAjsCnPpRcYcLhM9bER5J6pD+rrU0RN1ahhHyhpb2b3AQCMMoBJBQRw3AtV4gFsbcFnB0GGLetjc6rN5E9O8HkyGXhWVul38z42jkww7qOcry1lb7ouKhpDbGpT0WoiNqpBpwfOlCa7zwzERghA6PlI0r/8AZUknyX0zOeI0V4itGiRizn41OG4opJuZmWr8KBRyXB9702KgCj37JA5pNnauYoaGVfjSzzXOqIUaLIwg0nTpM388Ppe98Ax+Efv/ipcc/dhJ+qDpqWCTaf9uI+KxpAjgEDxgPIabOt3VH8lKv3Ku9jr78VzD8/GWg06VcGklkLuk00MN543f/JW+Gd/8i01FrqJUpWeR09swEv/6zXwoW89ZHwvgIuKJm8iIckOn0kqQgCs4R+j0vjWKnoeuMbqGhtTGZDWn1CTULCcOTx4PTCgHqbZxNlWbirgoqpooxTe8MHr4Zf/4gZjLCIVjdDAVLCdxIacPB4DgxwMSKqLis29gFJrAfSe5BIPkJr6oU2D2FCaOA2KVcZZQimZA43PGPa/4vsrp6KtsMAmVDyAr8+1ERtWi+rqY4NzlKtRGmNme5rvOZYo3YjYLFciNub9xuVN2k8kKhtlLPA5FBMfghr+HkV6TXa1O1CURXovyh9pUBZFkRYQ8AU2iekjuKhoismBgVUDiA3eHy4ARMdTRffkNTah4gG9jqaXrwYICOR5Dr/4wevhX33oRrUmKXqgUGPTiasbdOrAZgtU0U4HGzk406FGF1yegFD63eXNrERsFD2Fw592xsWJ2LCurIbcc13ExvN+pefO+PTSs1FbFY3QgyS0h56PXWNjB1dSk05p8/f3sdHnS+sjXP18fDQHgCIgxvkWkweTw6yLgnhASA1DlXhAEdjURWwy4xyr+mlIJstgZ9bG12VB21fvPgKPHF+Hq79vBzauPjaYmcWNATPR20jRjrpfiNjQREUAYvMDZ2+HuW4Mr37WufCkbbb0axUVrQ7NhB+D1iwYcs+s4PrTtzwKNz68BPccKhoM4nvphjNOc7jhoePwwNE1uOq2x6yxTSIeEKLOJhmlblAHYpX1BwGQRTG40fmB54svKVW0UVoihzq7Si1h15SOAX/GIcwT+lxTymg0441ju3X/Cbjm7iPwle8fNuuPBASE9pCR1oA819+BtDQa2EiS+fz78FmaY9fOlnuWxT0kqvI0NTZS0XcUAfQSD2LDg7RyzEdXimeaIzZ7SlW09WEKm6MUTm7YinI0OYfH42uuRUUT9vyQc1WIDWFpiKponoSARUXz7jP2PopNt+87vEqOaTrFAIKKbE834+UmqaLRJCKfQ04qGkG/cZ3CwnRuiDxWITYAOgiSmlBy4QNctw0qGtlD8daHUsRcphAbsicoxIYGNmptCERsPFQ0qXQAQPsx6wECAiuDMXz17iPw5bsOKcl42seGs1q6CW3QaY4J5/m2uelQ9DMusHEFEHU/303srsmLTL9bylpQo7x7FxVNLyTyMfods/i6LmJDm2X5ekNwdTYfDxeHX5uKltMFS/+dno+9cGkUZ+e8racPACb1iRbReQq6x2RBpBkOLgiB67u4adINJjdpdnhOdoNOKh5gZv87jgxo8f2OjKByGqPKwMZZQ1GeY1U/Dckk/yjN9P1QgQ1bqLRcdW7TCxyUOcyiaZoZBqH2PcfLRRMdLqoEtaectQjf/Y8/Ce/6mWcpvr0h91w+Q24qWvWmNRaeAXrMQhWNUNEIfYf2ZTmwtAEA+n5RGdBxphv54TWoqj/kfHWeDZSktEOMjq9A74rjmYiNmdn2bcr0GvPEAXXeh2kmUmYAZElU6n9luZ5ntC6oqV42tB8SUkHuP7JG/m7fK7q2UTqyOsdOZKCSeAxEbHaSJJnPuaqqsbHEA8by8ys9b10hoAw1yUE2Jfl9jroDsWGJw+39jhrjsbWhjdikuVFDhHODSwPjnJfmcwgNjzuUSlgmlRt0+qho3E/xJtCEufa8p+wGAIDvHTipRG8424COFQ3RWU5VBJCpaJT2zROgLlo5FXLgvV246Robcr4O2qTrvgLYQRmuuabcs11jg+daV3wFTSM2OkGEc8Fs0Bn2PehT+MQDXOhrnSad9P7jnoV1UPMCFS2J3eIB+PviE42KZkK+E3zeEcED6KKpNUs8QHaY8BA+KprUfI1aFEWGgAANdIICm0DEhmeIfDxcn+qNZJXiAYFyz+hocsSGfkTKXPh6elDxgDGhounrYPNy0UwJT1PxzUVFWyByrByx8ffMMecJ72PT68QqsxqqiqblnhFdql9j49oceeYPryOOV8uhyvfcGOfYRGx0ltJ2WrkiDBeDCLH5XgJRFKn5dozW2GT2d+LxAcJQYk2D5Jmq4hi0R8dcNzbmJxVDOHCi3CQIRYHWMAyZc1VFRXMhNnp+6gRFHVPiD110rIr/zRobdNCqERs6zr6jsB0AYHOos9s8+STx0M1Mrs7M9zuJWssnpT5wk6hoxt+FDL9LPGBEzpFm2vHcUDzACGyCFDKL77DEA8rjqO7gFspuZtupqTk0SY2NsNZ0YrNPFje+R+P/SDXj4jxRFCnJ56W1oSVUM04zY4/ANclGbMqWECpgp/ezen3VSTIox437kL6f9H0+8QBO0/Y2nRYQmwt2L8D5u+ZhnOVw8yNLTELdTUVTPauEZ3ngQWwkyrpqGWHJPetnA99bVWMjKSFy/2vekyQcsaAM1zMjsCF7KI7R1y8mxKR1HgMoWj8aKqmua2wQsbHvk+tZ1kJa1eshDbZxz8LPzQuqaF2iisaDYk1Fq++rUDvzApvMnlC1Pi9k/tEWmH63xEelFqvssRnYSKocrmMAmFml+oiNfk+IsxDiZPs2Lskk8QAnFc3ToBObMPIaG6OpZmARHT0Hqp7GaUIubi//XkrviCO7IRyaKPccI6RdPd4FokhS/K83LXTyXM6Xq3YFfT50PCepsaGZtzTVCKW6DoQ6Q79jLNQtuBqJLvDARgiweRG/L1FRZVwhqRi//LzW6mPjyBLiYk4RSS73bGwSmP1SQgMxkQzPreC3iorGx25T0eT3VZnm0xf3ryMgNuM0M5DXkHpAABsRne/pvj8bI508CKmx4YEfnV+9CdBMn1HZcF7DQv8OIDubRsNG4mhRBw3n/upACGwCmjVrxMYcHwYDqGjF75VPXGaqGhthXewkukZS2qvw2uDzirQ1/HouzgOgn3sJsRllZv2Hi7LEkwomSyMg+cHWNhpAUGEILpIS0qDTV2PD1220yy/ZAwAA1z943AhkfeIBuNeJ4gFSg86Y7sPFa1YfG2uv0PeiOrCxkQmFnrO5OtdzU9F4UIZ728l1WRVN1dh4xIFCTDdtTtSxNGJj34dQWXcVcEl+R/mShdgQSn2V0fUB9yyliuYUD5CTJoqKhojNhL3FzrzAJjU3p9qf96ARSjwAu1oH19gwxIb22qlAbADMrJIR2ATV2Nja85JxxEYvMvZ7fcWhkpmITfEzDYp00bStipaS7L8LsaGbhiQeIEKsiK5EkZHl5rU6Phlfg4qWmc1HFWKTmNlO2rXX3nDcXFdcHBbVZmE6rWaNjXyf+XGHrLmX7mMTvljwRRu/h9eiOKlo5Lqh8fWVBzZZXtAPJcEIfr+qJNl9RqlouTqephBRSzxZUG5V4gFcypY6g/SZx+zXgNTjUMQK36uyxg4nHs1GbMyscR26HTVKRQPQ84yLB9Djeqlo5BpztKOb6Cz6+nAMLrqw1OuBHjfLeC3FdBlCbnRcUtNkSu+SarIoB52itlFkItAAmjoditikLPB2oWJdlqxA44pe1OrUolnjEj7TTai4hhux6TgSTVw8AABg7zZMaAwMJbDieJouHceEsjSUqWgj9gwCBNbYMPEA6h/QY6WlShseUqQxszVQ7ceeFgY8cfP8MrC57sHjxr7XFShQaDwJR80X2IjiAY71ldYG4/4p7X8GZZEcQj1bvGdhtw4Vrfj/hEM8AL+v13Hv7yFG+9jwIM4UDwj7Ho1Iu9/vYudoEaSagc0JFth0E9WME61LEkn0s1mmk03bSnXNSWsez7zApmLzrjJfoMF5hVVOE30YpSwBAKF7eAqbaVZpri4VLVAVjWfpghCbwCQ4Ljh0EhqIDW3QmdkLF34fUgR4jQ3NTND7xjd44xwUFc0MgHjPCFVrJGbCzLmWGo6QTEXDwGRzpCV98d77Mjp4DrhZDBRiox3tubp9bFhGvkpVTTIaqNLrqGtszI15pAIyHShY4gEWsoSLoHZCslxOQnBUQRKVCDUMbEZpDisDUzCkyya/el4CsrGuPh+4jmCWGGtS9EaVGc/wfkRsxpqigMdIM5uKZjSgFJwal2oep2XWFg8YcUegRGw2TUoNdcpCEJtCCYkHNrFWNBqlYodzek4uFCvNzUSFrj9rlorWiWNrbAAOKpqB2JQZzXGmgiBeQ4HXEMVuaILMdw859W3O6DWi60pc+5APJdVBen2HRMpAV9bYZCZtyAps5m3EBveZ42sjQRXNpFO7KEs458clkj8pFY036ORG61GkY+e5LYjjk9yWeiYB6MDmln0nlP/TTSIjQck/4xMP4HSuYlza53CJB/A1it4LLoFMrZNE4jH0dbaRXwC7Jw6AXR8k9cszEJvMfD4nSbgDAKu7NM/V8HsCGjoD6Ofc1+DWxc7RIkg1qWiI2HhqbDoJ9XHJnkDmtqKiPXH62NhoSK3PexblbTXFA2L1IDH4U5J7DkRs+gSxCXFAacbBG9g46z3cQUEwFa10nGmmx0BsEn0+otxz+ZoLsaEPjpS5kJw4Wuhv1Niw7KiuNTKPQRWX8LP4Fl+NzSKRu8UADbNePrlnnNe8p4beIHRWedMxL1xUNK0YVH+xkK+jVrfTNDszA0OLa/k+76oFokXcRSBpw/CU/ll8n53tDrW5bqLq6rCXzdCRzOBqbD6jwhXUeiqw0V2Zi7HrZ5E6kbrGBje8mMyhnASReK39a6OF6DmoaPXFA3SmsTgfO0AaZRlz5t1zkDreUnA4T7Louv7EEYg6EmF5ThD5WNPFmkZsep1IrrGRqGjGmqlpYFwggUuro3LRIimM9+2NXCmKUuW2z3VUrZou8HU7m9y00zXJ3mx/pkPWWn8fG3k95jU2AFTyeSAk0Uw69byDikYD4FGai3u+z/g1TOJITCRyNgjfOww2A+4znqbTkiALAMAlZy3CWdv6MBxncMNDS8XxOL3TIZRTVxUtzW06o4vqSwNAHxUNm2bTczQ+z9ZifV9tRIKPXWojIMo9Y2AzwdwvjknEAxITnUpi+zrWrrER7pOLnaMQm7pUNAGx8YkHmOugPp8nnngAy7rVNT9iY4oHjCqywe4Gnfpm6AJy96U2EJu6VDSy4PINaJxmcGh5sxxTeGBDHfgQ6wh8Sad4AMuw0kJ0bJ7Ga2zoPZOa8EmbqJTpofU8FhVNWFDp9KIbDO3bwh9ayoPH8wiSe2aIDac49AIQGzubV/yPm0a/xrxCk0QYDMSGIVe8YZ1MRZMdbBrYZHluSbniOOgxQqiePttN+PbF+P1UtBCnP3WgtF0W2KhAgDiqdKE/vjaE9eGY9TfQc9lXYyPtrdV9bCZEbFiNjSS2MmbOH+/kbo5TB9P8WN0kEhEbywmTEBtr3um5jWMPQck3RykcWx1430MDbjGwIecvIZPYmXs4tgUSOM0Os6qLvY43ecK/D9dAitjQvUhyPgA0fZnXLQD417gqE8UDktg6X2ocseW0F7nGppB5P742tKloDE2YLx08lyoaQCnJbQQfAWtE+XG6n0kJVEr7lY5tFvpjkIDf4Ua4uE8TRZGqs/n89x4Tx2MhNow2TU1u0KnXLt4rT1N9zeNINTYbEhUticSAzlV6oJIjwrFcqmjUqDKbXaQv3//DK5ve9cWQey7HiwG0WWPj/h7J5/OpolHaJTWl7hokHkACGwmxsVD3SMubs+cIDeWeB+NCaOfRMmAKtTMusDE27ymyQhI1bBsTD1BUNJd4AOGyGg+Tkb2RM4rULFW0OuIBFLFh73/rX98Ol7/zK3Dno8vBnNZizLnxnirD99GJ6aSiMX18yqvc46CiufoJ+TZRmumh2SCeHa3i9tLj0SwTnhN3WqIoUosCbpqarlU6CuKCVLyGn83KjDKVVZ5TiIu82LgUu/Be0AWuCsbmx6SITZrpWqUuC9o0hU43UKykorE+NvgdCmUUN0dEbCanogHo7O1SGdi4qGh1EBt8/LkjgHMGqR4cseFODADAoyc2dFEp63mjef65NbY6fWwsueeaCSMXJ9347tTsYRXSx4YG02gWYlNBRfNRl5V4QhwZqHKV/fyfXQcv/v2r4QSRCecm1dh04gjOKnsnGeiVgBJSwRV+jlxSGRNxC30tHe5HbMz1fY4hNmoMpDZS+rxMRZssOAZwyD0nJDEl0YWRpofiAQGIDfayObIiiAekup6lQGyK4/HAhjtkJlpaPYe0w65f4w4gvs9kg/DkhP6bZiG454DPp0E62pfvOlyMx/FMoS1OWmOTuvvYOMUDyFog7X+dJBZRH6WqxvaH+ZAam8S9nsniAW4Gyb7j6/DCK66Gf/uRm62/8WNSQRk8FTp+n9/z5k/eBi+44ivw/YPLOuDy9LFxCYHUEw/Qx10ZjOHkxkitSRJi04ljJchAg2L8OYpMSv7vXXUXvOhdV8N1DxyrHAvaGRXY5AwZmQaxkR7sBRalaphbdppwY8hzBqllWkHLJ1aAZqmiOTJlkvnknu87UjTcuv/IqiXx6W3QGTBmalqiWN8Penn7iW4qp2krmveJY8NNiBcHjh33LBacF+kcjBobBsW7kCtJ4jRXDhfA//d5F8Lzn7IHfqzsXk8NF/yTCrHhXF37oqOjQ1EL6tQEiQc4An0lHkAWmFCIl9ZbibVKDLmyVNGyzO5jwxt0lnPCoKLldvBEzyVjz9ck4gEAtjKai4qmm9BWH1NRfdhmwZMb6FDSYIUjGfuXNtT1KfobaHSHC0y4aFeu1/AeWQ06ayaMOFVKQs/GWW4E9F7VLuPZ5XQYE7Hh9SfqfVIfG3ZaqsYo0pt/iArPvYdXYXOUKdqFZJSK9oyzt8FLf/DJ8MafeDrsmC/pO0KvErreLigqCAnemPws3idXnyOXcToulXumCAdXOkTzBjZTKEOJ4gEOihEaZ1WE1Ng848nbAADgtv0nlNzzolJkzIzzw/vgEg8AMGmh+HuVSXQ+yc+gexaAnRSjgQ4+fyHiAdK9e/Wzz4UfuWgXXLB7Hi7cMw9veNFTjL/z9WthQrnnLLf72Oi+evJeEcd6zDIVLbLqL+nxeJJWi0LYjjutaQTQz4HxHioeoPYg9zx94OgapFluNEHlRq+Zte4J80Rap+86uAJ5XjRb1X1s3IGuSzxgm2pbUR3Y8GD7waNrcM+h4jwvOWtRRP40nVZO8CAVdzDO4KZHlgAAVMPqELPTGaexVWV+Q8z3YNMMRNF/w4+2UMfFUo7Jiw2TO4CSmapomrowrXiAogWRrDmnYMkNOuUo3mUYYFQhNgCaq2wgNkhF6mv40TyPKsTGPgcJwqZCBVWUPClLSalor372OfDqZ59rfS+ARl0wsLEQG09RpxHYEBpKL4lJ8X+YeACaK7ApGRleowpIWa4zP9yh4KpS2unOK59b1ceGOFgUyTPEA5hyl1b5mQyxCaaiIZoRsOa4khk8I2shNmlmPcMHCGIz1010PU1myz3XVUWjVCwAPzffZ64gl7+HPlP+ZsIksOFUtDg2lKqUpKlTFc2NYum9IIY6zWtxjnh7xRAqWjeJ4QNv+FEAAPjiHQfL77aDPLrPYAC0sjmygu0OCzjGJPAJ4d/zNZAGNnQvcjXR88k9+/aVKpOQ7AKxCUAglEplNRXt/7hwF/SSGA6vDNR+tHuxB2vDjWK9IjWmc05VNHPfpfczJKiTWBFScqYKsaFrTcTZGJ7khuTTnLWtD3/9xhc7x8zp9IuKNm1/j9igkwQvVh8bB1qs+9jouS2hLF0SDEgJHr4/zHkQG2yhgciwVL85MBCb4v9eRwfH3HCt9q0vQyOwMccr19jYx8JAZGOYKoSTJpHzPDfoj656at36pDrRw9eHv7/9MRiOM3jS9j5cctYiLBGZ7DgqvkvTXEnQTuYMXY+R3sZrr312RiE2rmi+jvmyTZidASgEBHw9bwDMyeDivkrN17iZqmh1+9gQxMbR7GiYZtZC6pN71g585dcXx4rM76PfA+AIbLBLcE4l/rRznOd0wptok/peH2JjdCzWCx53hF2BjUxFw/P1X5gFFtiE1DXhhtXvJOq6Y4ANUGxEVYiN63mg36/18cPUnygVzVBFYxQQriplIDYVzy2+d548f+NMlntWgh25KQntSxz4bC+RfAZohormoj/wYAmphbS2hW8SB5Y2jKJSTeegNTaFo0CH5qOYoo0sxGaybDt3zKW1bpSZPay8zYSJ42yKhRS0UuqUjByBqJT0cKGySQy1amxCevG4an/Uhk7HJaxv28s9YXnTlrTmxfS0gJ6jOZJxZ49S0SjCoXnwsrPpU0WbDLERqGixLW9NjTfxDaGizXUT+OELdwKApoUicktpUp04EilLWWYr/NG5HULDkxAbucbGFNxx+RlSHaKUhOFiC3WsToNOpCIbiE2ix4WnwdFil3hAHOn34v63SJKAnTgSaeUuf09LxguBTdlCAyWhJSTNaNAZ0MdGBzbufVddsyS2SiVMxMZNLUPq2MZIJ30oXZ5/hLbFoKaa1QdQ0fha87ffPQAABbUxikzxlI4jOUN/7iRazGVlYwRHy3rGlYCxoJ3Zgc0Ei6ckrYnWI1LLa8Ox3pyEDCSAKYfMN0QcW1UvHIDJ+9jkeQ7rhiqa7JyPSGATIvfsU72RDGsg6DWI2UKLx8KMgkRFw8Ayz+Xss6sbfBXEaqiisYXdlaW27mduZ5lcttgzN0Mcp27QaV9zOi8p318UD6iJ2NAgs44DB0CcTH4d0ZktC1axF4ZuLKqz2vZza34HpVrhUDPyHRJiUxwnd2bkQg0LiY+tYmBTzjWHo1wHseH0B+649DkVLc0spPDAiQ11v/udRAWSFLEBsDOBIYjNiDj2xf+TOaVcmU6usTGdwRAqGs3sFcctxrdAnBJdWM8znLYzzIM9DM6pfHsVYpPnOvj0rc9aJIWtWbihC1Q0Ooex/8rK5siqV+CiKaogvCIIQFPOniAeICE2LiUuSTUz8aDSVSY36Iy96zxvos2fMYmKBqDrSdBQAtoQD4gisY8Nv+8jPrcD+KpyYGNfzzQza4v4vRgJyR9vICgoTYaas0FncI2NXrtciI1PFQ2fHVwPtzOhCwlVd6HneF8lWhstfMdjc6OfwzHivi3O0zQAsSF7Pafd8wQPgDzPEGHZGKZWjQ0dBx+7VT+lyjLqqaIBABxeKQIRFKOgcwAThlK5BZ3L6Kc8cnxd/X2FiUr57MwKbBw3pY5J2TFqi6RoSmWDHIsAnQyuDqohjpdZY2PyC31WIBv6d9ekHY4zy0n0OTH4UnBgw8QDpM/hor0mUNFwDIskY29wmB1KLj4Vp1RAGgBop2rzOricPjTa36AKycJFAY3X88gbjn6oaWBLawiU3HNgHxs0SaEutMYmU5u8WSPEnVlefE1pUpYqGnNqFbc4iY1GmFJAS52plEhyTyoesGexePaOrw3UeIvvNNcHn9gGN9czX0lFcyA2Ayr3TPjV9L18ToT0sbHFA8LPkRqX5ZYdNFMVLYSKxuWe8Z7Q3iJSvwwAudbD6uOT6uZ3PYY4Vo0NwI+KuGTIJQqGpFSlEJuNETlHExHj3ei7SUyyxp6gi81PKp5g1NgITfQAKD2oacRGCGyIQ+uTyZcQmzgys/rUnn/JXuN3RG65sqdEWeJy+Vw8IASxwbdXU9EYGiQonxafFRAbSe7ZUUMYYjxhgY6/VxWNBjaEIkeRGPo3Vz0mFa/Bt2wjQXgniUTxAKllAAChoomIjVljI81zmlzUVDS3PxJCRcM1kTboRBNrbIQgEMe+PkzVtaMNgq3AkTWKRavTx8aV4MHkQc9ITpkJCBcVTbqWqy1iU30MV6CBqMHKYEwUKVyIjT4Gz7TiYoQZJZ/cM0dsaHM2n3FnxkVFG4wztZByPr2PhxuqisYVsSSqFm/21u/oiY3fR1WxKIfVpeRCoW1utDaEwroDhqK4YHur305m1+e4jG+mWu65OqPTIdljk4oWq8zL5sik6qG5ngc611VmOrCXDc2e00wx31B18TVms/PyvHKbisZ+x8/0u4mxOUkURHrts4wEhBP0sQEg0q8lD9hVs1MHzUgdzzzP3quN05B7Nten/ZSK1pHlngFsFE9GbExnA7+LU9HqigdwkRWJultI4tq0A8no+kMdNlxDaN2Ds++Q0HjXidhEkVUj5rLQJqMutB/PQaIu0bmtamwGY/V8WFQ0RomjTQp9iAnvYwOg1wVDFc2xD7mcIXrMphp0dhO5dgKNU6so7WX7XNeoJ6D23It3G4wLrLWj5+rqY2PXgHLEpvr5kdB/l9yzq5UEgEwt8+3tvuRjlXWMscrd49HUPu9QtOS1HVV9bKicMxqdq7QGR+xjw6lojv5E9LUFL2JDqGiZuQZJ/siAiOpIezeAGQxa+48RuMp0U1rovzmiNTZ6/JJfUxyTBTa9cMQGx0Fvz875Llz65O3qfNAUXbmKiiawpB6/NTbsRtYtcgXw19gAaHj1JIG9nH1sfIhNhoiNTJWgRrNkdeSe+UPpFw8Iz86GUq7QuHiA5GP2Ogn73abbUSogdTBcdD5vjQ2eA0NsVNPKhC+o5uftbtt5sKgCR2x8D7M6PtmgaBBoUtFI4CfMDVemMBYcmPAam+J/eh3TjPSYYQ6FrrFJy/MS5J7ZMGmDR6rWxwUvcBxozSA2ulkfgHYUQjrZu0yvMebrFhVNNbSkwVxxPhftWQAAgEMrm4pbXPSxkaloPPPoS1igszFkTk5T4gFiHxuO2HgcX1PuWaCidUvFnpFb7pkqMKnjOhCrOI6swNxlZnDmvk5SJp2eA967Qm2x+BsNznFPyHOAExsFTRKDJL6OjEjiJ0TumauiAWgqqVFj4xIPcMxver7TJB2pcQosdwp5IqJnBDZubaRt/Q5cdv5OACic3DmhQWscy5QlvvZS9UoAP1qm3iMEh9Jzk/HnxqKb26wSXodofK+AgoeaGdjofUpCX8UGnWRuZGR/pv/b6L5+H/dHthsKfrG4frn8PR8VDV/D4Ee6VgYVjck9+xAbAHfyhAoF8WQ6XRtcAiHUHzRrbKoRG/4sL7LWJz7DuX/ujjn12o8+ZY+ah5Lkd0+4ViYV7XEe2KRZDp++5QDsO75uZStcjtyJ9SF86qb94k2pUjpD/e6TRMnB2cfGo4qGYxun8oNFzZJ7DqyxsbT1rTFk6nWOVPkcNb3oer9emZJ7RkdJcPz5RFUZUuJIULTCCGwcGXBvHxtBJpIeFzd1nd2S0S60LNP9DSRuOTUe2HCJbV/9Q5fQYoZpZtQQUC685IC5FnF6P+rW2FDxAKpqw4vsnapoNCBk53/jQ8fhT665XymS9TsmFU1CT+gUoPSmSTKQACSwWWXiAS4qWoDD5pqv/JhK7plkufG+nLtrDvqdGPIc4JZHTqj3G9LQBhWNzVdP13GeOEk4YuM4xwMnNuBvvrtfQDfNuSBlOEfM+fNT0Yr/O3FkOVMAAPO9Erkcpgopt+S5BZqqJTNO1itcd77zwDH4s68/AIfLJnfWeTgaypnj12sF3zu480P3NJqV7ZMkD9Z/KVU0dp9ovZsveULHB2A+MzgXwxp02oGROocp+thIz1Y3MecAfwuf05T2IimiUXv+UwqqzI75jjoXuq4mcUQaOaYqSOCO6ShlBf7lz98/uAxfvvOQ+N1ScOhCbAz6YwBiQ6+XJRiS2e8PNZo8KmiPbsRGqv2h+wdHbFzMCcoY4Mmr7f1qKpqrxsbXx0ZR0Xomol6cQ/G/1McG56BPPADA7df5VdH07662EZSqtU5qbLqdSKEpfP5ooSiG2JTXdj2Aiob3/ylnLarXLic1bKbkNyZnMCgWEJs4UokWaiuDx1GNzXceOAa//tFb4D/93R125texeP6vrz0A//4Tt8JHb9hn/U07QvKpI2KzRJqvuYIgOve4coySBA2gymzrd9TN3z7XCZZ75llaV3A1HGcWChPS3DK4QSciNmNzsaLGM6p9QbqYct2HRmAjB6NeyWqy+VLHnnfydSFXkgJfFnhdaK0QgHb41MMsyj2XTlZiXgPNOy0oimphFRAXlZH3NFbrC5lJn0kbyyjVtV24cfE5q8UDNA2SZnPHaQZv+OAN8Puf/z6cKJMI2+e6xuYkOWD0XlJ64LR9bNaGKQzGqRhM0TGEoBnOGhuHKpoUrPSSGC7eW6A22C9lx3yXFI7mtaloqsiVUUiqnAu0//yZO+DffexW+PuyMzma1SPLIVsr0Q4kw+c5ZoENOq3UKdHXiyEjIt/e/B4V2CWRcoK//cAxeMdVd8F7vnC3OLYQKprZDV6mommpZn08ukdEUaQQBwz8VQNUEjzkOaUv+gvt0aRkwM4yuXZW2bySfh9fr+iawG2aGhtRPCA2FaLoWp/ntnhIKGIDAPCCpxZ1NnsW+4ROrZ+jONI1Nil5NiUqmtmgsxjTv/3Id+FfffhG2EcKoNFCVdHSLDfOmScEJDYDr0OU3u+qG/YZ9Zl6ndibgPX1sTHWdpSodjAn8DpR1TO0bUZgE4sUPJcQ0pxHFU1R0QTEBqnLEhWt50ErDcRGSEpSUZIe6Uelz48ENg7KMA1CCsRGI/Ku55IjZ2hKFW04dlLn0PC53butD7sXinUEny0AM9mA11KVWwh7Qq8jIzarNRCb076PDUq9HV0d2Aus44I/WjoCSC8xPuNwOtB2leooqOwA4M4GR1HhaGa5m4oW0qAziSP4g3/+w7C8OYJdCz0lHlAZ2LBsg73o6cCGj4PD1TRir6uKZiE2UmDjoOFQB5tCkGafAPmeeeuECMRKx4MLEu/nwxdUsY+NA7blhoV3apwBwSQNgA3xAMXVL/oUdJMYBmO73wk9Rq8TGwu2IR6Q2NfXZ5lxHYvPLpNu3ZjRpMXX4zRTmdUx6QvRTWLYHBUNOwfjTGWYXvuc8+EHztkOT3vSohFASM03E7ZpK2GJCREbujkWzRBN5199bw3ExuX42YiN2SdhTBr99Tox/O4/vaxASHKAvdt68PJ/cDbcXzZ4G2eZidiwDVoa5pidm+LbByI22MT0m/cdhX/y7PPIcc3Eg+Q0Fc5fdVAAYEqQGht6+fO8ah5H5J45YiM0sXOKJ0QR/NzlF8HJjRF878BJuPHhJXWu3IxGzA4qmhHYVFDR6LXm6+aO+S4cWxuqPVCJBxAVPTofu0nkTZ6gSXvgf/wnz4QbHjwOP3LRbvWaq1G0puTax560TqsYlz0nOgyxoedLz1HqoeRSREP7iR98Mvy7l18KP3rJbrh130kAMPejJI6MvmKbwwz6nUREbKSA91h535bWh3BhSS3l50GddVeDTuOcHYgNDYrN5A+QnzWSOAnC3WX7iK8WWJJ7pog99zGc4gHlobkIEIApHtCNdS1tCGLjpaIxVTSKTO5d7MHR1YGxf6YhiE3qrtEq/q6vYSVi40BFDcSG1oiXTW5HbA2mY7euT7kvZnnhM807RDgAKMshgvf+i+fAoyc24FkX7NTnI4gHVFHRpF5odahop31ggzdic5RaE8a1eC6X9THS36sCDVRHObxcLErdJHIWIAIUD1yW56IjXIzBzqhI9pof1o5CMBVt6Kei0S7wfDPjsrl0fHUXP1ycR4zaQs1CbIRi3TjSXG+zxqYce4DzgoaFc3FU3L8kjiDNcrWooJPuysTzZnGmkov/uiz0uCoac0iEDZzWihg1NoR3i/8XgY19zui4NYnYSH1sljeKBYZSB2mgamRhSB8bKodJnaX3/PMf1gE3CSAkuWeaTKD880kRm0L5qAi4VjfHTgRI97GpPqZLoMRWRbOpaJRa9cKn7YUXPs1Ub6I9DHyIjTTHUnYflHhAIGKD33fdg8eN1y3xAGGt431svI630IMKwFZF2xilCil31dgYfWwc9RlJHMHZO+bg7f/0h+BTN+2HGx9eEptF0s8AuNdnem5VVDS6p/H5sl1JPo+Nz1LxAOoYdJLYcB5dJjkzL3jqXiPLSr/H1crAh9hM1KCzvG4LvUQlZrqJqRDlKqSXVNGqEJskjuDXX/4MAAC489FlAGCBTRQp1HCcFYpTO6FrZdwLqreN2NA+U9wkNJqvD/g+45x5Hxsmu8+PWYxLt1ZAm4SKxqWpXYEvgNygkyZO+ByKHfOG7gGcZbOdqaLxOh3a24vTJucDVNHmhT42iPAPDMSm+H+aGhv6d6nGRlZFM49DxQNokJPEEXTjGDYhs8aGh7AadBIq2NpwHBTY9JIYXnLpk6y/02cIz6NDfIE0y8vAi1DRpCbPNVDg056Khjdvc2RnqV20ENwI5AXFn+HdrRCbzfJ9/kvEC+fR7Aad4ZdaZVRrIjYu1Mho0IlODHlYXQV7oVQ0XLCQsx5ERVPUJdzAIqOZE104XFS0kBobLpagEBvmSFsbhiAegJepkorGEBvFK/VkxGnwRh0KzlVGaouvF06fCTVIfWzCqWj6GHgNMXGw0EtU0K8C0pGp1kVV75RqDIHd44hRzWL8XhK0ODT9mxAPANCoDRZpS8fDcYX0sXGJb/D5i4gN3fAVYuRwPHRGnKmi8Rob4fZyVTR9zOL/qq71OGceOLKm1kd63Kb62FA5YVHuuayx2fAhNsK5WHLPrEFpMXZ9fSWrQ0VL4khA7cwk0Jg8B/y9vEaE19iMMnNP7MRaRS6kT1AVyinRRYpjuz9fhfr5DMdFHVZ0ytR3OyTDuew8QHWNDTVFRSv31IjcD93MsfArKlXRyvPA16S5JAnRBNXYOASCqH/BlSP1sdxIYojR59qssXE78n2BipbludUYUiPi5nFMIRHzb1Q8gAb1+JxTv4YnW5UqGqmdQltniA2dU3tKqqYp92zub5U1NgGBjVUna4gH6MQGtTUSpFF0o2OgWSxJ4RBEiglaWSUgwBNbkikaLaOiFZ/PjP+piBS+ty7CeNoHNnjRJMTGlZVCqoy0uFchNjhxD5XFo1UOE04Il3JMKGJDTdF6aiI21Bmn/OMQxAaNbv51qWic2kLNoqIx5ECpZSi0ypZ75hkbbx8bFpxxSWotTetAbATxgCpFPTReY6PrecqFz4MkdmKzxob3A+C0P2qpw3EV5Z5rIjaUp4uKgZTG1ScoI12kKdKFWcWUOPCWQ2ogNvL1psFo6D3xGSJsJ4hgCJ+vrs7YkrnGncSRIYnZF+SeXR3r0Vw9b2qpojlodhqVciA25PtueHBJ/aydq3LTEu6FJR6Q2gpX6ngkCUM3QPx5vlRF2yCqaK6GqkaNDW/CK1BcuZSydB5qnBXvkRx/XnCtG/Pa95sjDiqwIUi1gQ4lMbikYKmNU3PNdVmXURbRfKqZUv+gUEP0wWy8WASHUvHzSEJsjMAmnJCCTaallgW80Fxqq2DOi8yomZD3p+J/GsxSHwG/k1JyAWwmgdjHhilH6nHagWAdM+rdPDU2lIosUdGKv+McKo/taN2Ah04YegtgigfQYEBCQxPmf2HQkufmXphlufpdQmyQ0UMTdrx2UaaiVSA2ZM3g6x6+zn/m84oGIFSmme7drpYp0nTQymh+2roruUSN1wfS9/JEQDeJjST3ebvmDV8jxE77wAYf3E1SDIXmWjv9iI0/W4UT9+DJIrCporjgYezFzpz0dWoAKBXJV7hl1djQxZVcnIFRY2NSsOgYAcyFMHTIuDjjR8UamwpVNMzKeRGbWH7YRclqJ2Jjige49POtDSQjSi415Z47QqaVG+0ITYMEvmj4smR4+7njGrMNCcDsE+Qz2qBTITZl4mBBCGwG49RauAdjTSspxplbFDs+VleDTgCTPjhtHxsAfb9OEIl3Z8AVJB4gO7ZRFBnnOyfIPSsVvI48x4wgyCceIPU5YlxwNLzmWmrbEdiQ77v+wWPqZ+6c02s3T4qvLVTU4XzrwmIzmaERG9LHRs0jOcMp9bRQ34+IjeA0uOSo61DRJNRNPb8q8eXeHzji0GfOQSGhbSKfXcd6Rs2nakbNJefrWwdd2eQQw4SPURTuUZSk1y4iwTm+t6rGhhpet4EwJ+ZZPYYk90zPl/eekeaJhNjQ+YLZci5MYDFDhHtpiAc40J5JahJ9qmjUT+H1ImhiHxu8b471lRa323LPdJ5Exr6A30P/Tm2eUK1oUoiuo3KNTV+/t5wPShXNS0Uj/piw93J5bDuJG1k/+wIbitgYkumOmkMpGU0FBHzmapJMraf2BkRs9HtxHXZJt5+/a1719Qq10z6wUYjNOLMWSxfcjlQZX4G1i2OKVLRlxWv2LwC4iDgRmwkyynQx8HHR7T429qJfvG5nSJyBDfm5StYYjS8ach8bmYqmal6w0aNAlXJBnWqhDOAw24hNuYA4FlRORctynWGu8qGd4gGebCatFZFU0TiHXKI3oENtZ+T1z3URG7oB8Rob2oiUBqT8uRuwIIbW2Lj6xWTkPS75anqcaahoeB4nSyXEKBK+swYVDadjlYhGn2UEaeYXBUS4SUEQgERFE54JJR7A5idzLlw0Ivp9tM6GZ43p2ooFvuMst4IF1/otoYTF8cvARlBFs6loxf/0WeOxnjS/fBK2xevmuiq/R0aRAMi9VuIBbvSEb+Y2YpNZ8r14HF+fILUnVTwzrgaMPsQmpManaly8doIeVxKg4M8+VRgNNbx+SI2WEBvcb/naWdQ6mUheFbIn1SkZiE25JqW5v8bGxQgRA0GSpArd281j6vncSzRdKM/NNYPTqtAohZjPIdf6StFbO7AxqWhckp+OiQfhtF8cTRBTnwpVKw1VNKIaqAMbKN8Xl7/XR2z4fsh9KjoGl9wzRVaogljRg85GkwyqnjAfQnvZ1KKikcQ6fiVXiMR1E33B83fN16KVApwJgQ32YhEKpkUeeZoprqFYh+ChCQAU6kPUqrJaaiMR4Njif+2whhp1TH0CAvhg4QJu1DaQizMkQaFCbBxUNPpMVjWiROOLRhAVjTnYeD8kVTS9eMt0E+6I5TnpOaMUn0ykosODDSubbDrjBu1p0gadsUZbnI3mKsQDfFQ0V42NIR5Qu8ZGb0B4HKSiLRqIjT4uHxt+F97bNCfIhKM2wqCwOVCdLJ9ePABAI09IRZOOVeX0U5M6u6NRZ3eOLfY0UHMjNnq9MfvYVCM2SjXPcc1Nbr5/c7770AqcKANBnTXGbJw+DmbfR6mdmHL1sqHJIDNLXPy8QBAbd4AsbOTsnKS+W1VUtHGFwwrgp6JZcs+OOQ5gOm7Fe8rrKyA2Xb6eBSE2/nXMJR7gS9ZR6fK6hsEBdWLUOi3cTxdai3OhjjOE15ZTowFMhLB4D6ttHaeGb8KTDnISykw0FmPQvyCd2VJFc9Ty+pBvNY6KpG6VGQmATmSsUQaSqWrXzO+i95D3sXEhNrQGhM83QxWN1GHgUHyIDYAWb6GBDd7juW6skWxyDtv7HXWtN0mTXQB/0nFI5oy09/Lkn62KZl9H7g9T8QAexIo1h5SdIwU2RH3SZ7WoaIm91uL+wecy+gvn756vlaQAOAMCG7p5cEhMWrypGoSkbFNZY7NoBjZViA1uipbUssoauJ0cl9EJ4pN8xocQexAMHZvuMM3UAkEpWLif14niJeOReh3xAN4wE2tvzD428kasFzI3RZFnhPj3uRZUnDs4niy3lVxcxmtsOGrExwhAz9HkLg+Z4+6jouFChWPW309QgsAeSWiUXmhR0XoyFY0fG51uldHKwOnAUwTN1XyTbmCjCZ4vbttKhA2paBKkLqnn5XkOv3fVnfC33z1gvNdX90PXkzmG2ISIB+Ac4jRUTm+oU2PDVdFwLNzwvs53E8hzgBsfWireyxIPNBmEgQ3PYgMU83vf8XV48ydvhXsPrajXaTZXQmzmDFU0eVOVkh5WjY3gxFY1uJT6LnBz1Y/R1zgVTURseI0Ncw6ozDC/9i6kPycIQBWl1iUe4Co4Lr5fXpNDTBIP4EiUiV44EJsEEZs64gHmfkRvR1WNzSb7nScd8F7fuu8EvOWTt8GRlUGleAAGU5zWxp9LJ5sB5ZOF6zVJD5tifOZYTTqR/p6B45nEZaEQRDDH6UL61FqQ2HLPJhUttvwBPBYVgqDGA1YAvVdRqhr93sV+R+2vCrFhlOlpxAOkAICPwZW8WBWQFR+Vkz6iIhWt3Bf5cTdHKbztb26Hr959GAACAxshYFNrIfa+YwkhvM6PS8SGRr8IiSlKi5CVpNxCX6bE2cdmvmsU+FZlN5DbayvH8Ixc+GJCnUifA4qRNN50s8bGfJBE3Xwhq2NQ0WaK2GCNDcovR8b7BmJgI2eaXQVxdCx849IUh+J9Vo+L8n20QZty8qvknl2qaIISCJokHjAYa/lffM2ripbKjiu99D0BEfOZ3hw0nI2BzTZynjQg5XOWb3Rp7hEPUFQ0s+6IGqUcpAEweJVx8QDpWFIt1t2HVuD9X38Q3v357xvv9a0x9Hx1H5tyHqeZ0ylAw3vAs2g80JEQF96lHY07FwAOOkU5tudctAsAivMHsM+3IyA2NGjT48ngr28+AB+/cT9ced0j6nW6VnElJgAwpEdxvXehUNTBdvaxMTZbP+IwYgkjyfDZlHoxcCqaQiWFucIdc+4cUEl0jQr7Awt6WlWIjbOPjZeK5ke8fIbXdjvrT0LHSp+/IQuo0c7dNQ8AABfumQ/+bqXsyfYjABMhBLAz7vxZTNlcx/nwwW8+CB+7cR987nuPiUky6iOgU1mI1ujvS7NcDFasVgjC9eJBcF3j0tQdkhx1NVqkhmtXntuotpQ4ouNH6W1qVDyg26Fyz/ZnJds1XySxHzupFR5Vc06StKPnsdhL1LrtqrGR/FKTilZdY+PydYq/6f2CmoSs8OtrNJKtSGLjNeDCNN9+4Bhced0j8Edfubc8ZrWPq+oDjfXcTCJxKtq5O+cAAOAfnLujVpICAE7/PjYUdcHApt+JDQljaidJAbC/j43DcUhi2Dnf1U5OxeKP98mSB1ZSj/7vc1kviWEjs7Pf1NCZQS62i9c7HGdWgTAAOohmUS9dNEMTO75mUmh8kesxxAYnuUSVkpRf6PdYWR76wDKONt+4nIhNioGNAJ9XUdFcfWzIHOBjptlH2qDVEg9wUB/pMXkNxVRyz6QZn5Z7Lp7DBUOVhlDReGCDiA1RjXGKByACmmllHRcFsSnxAHS+T5Zyz1JQITXoRB4zDyp8GXH6HODcMuWeKwKbci7xTQxrbLpJ0YhNFA9wUNGktcHud6Cv9a4FM5HCHSZ6fF1jk1kb8Wicw+qgWGcpj5uiy1KmkmZTcb2vg9gkcWTMQVM8wO+Yh1DReOaRGg8WFOIoOAW8+L3HnINRmqtMOU+eVAkzuL5T+r4sLz7HE0n+Pjb1AxuN2Ji1EwAy5VvLwZvj+F8//1w4cGIDLt67GPzdPiraHENseB8bTgMdZWZfOxwnfn5jmIqolym6oRMCUu+aflyMCe9z3xHYSH1/Jm1mTMfX7cSqYTTdpwD0/Pf1U+NS67w+Bo2i33zcc71E9TTrxrbccxVb5jkX7YK7D63AjQ8dh1c882wA0PdojrAe6L690O+ov+GaG9Sgs6qPDaNh8XM118FyjWLfI9XC8L4xLjEV317F93Pc99bLmp4qJU96LI76Aeg5zKlo7/3Z58CDR9fgsvN3Pg7FA8hFXcHApuueQBSxkSVxqzO8lI4mZd2oVco9T7iYSLLH3HBBRSqaSzxgmGYGpKvGLmRJJqGiueR4qdHrGEf6+iueO4MfKbXGBbe7OvDKiI25cXWYM8ePgb9jASFV6aryoZM4Ygujncm2i0A1giHLPUfq7wBaqtY4b6Si8UwZ+V59fUOpaPbGsrIpyD0T+W4uU675wxF5ze5Mjd8DYC6mbipaM+IBmJFdWq9HRcONjTuRvjXGUEXrYnGqnseubCcfx8bQpgfQ44sCFSguwaiKeHnpc+uqRwHQmTxdJ8JQA3Le2ykVTTgmXkO62bucmR5xcvH6IHoYkvTgKntSjQ1fl7g1TUXTiI393mq558xq0FglS15VdyB9X3FONvLl62Mzkdxz+R20dk/3vbDPS8079qycs3MOnnvx7lrfrcQDUtPhBpDEA8w9ed2iyMuOPnXgJNSLXm9ck9LMTuDyvZ1/lh6Xrldjxz4aahyxof9LVCsXigqgrwVHFPgjRZOJfB/oJbFB5+WoOgJdrnn+/Ev2AIAphKKacxJU2ESgE+UT4DzgDTorA5sAVTQXAkfPx+5jYwc2iUqq2s9lVWuPHnsm0LQ6YPF/CBVN9+CyEXjVSJ4lhJ60va/uUV3E5rQPbKjDyaloEt0CNzoAB2Lj4TSj7SWBTdXi76Ki8Y2r7mLCEQ3JcEFFKppXPECAZcWCMsJLjSqQCX4c1+8ApqPWKWFsAF3DgZNc1WoItDoXPGst/DQTEZvv5XLPPMuDhtcSF85xmlsS0j4zJEvRISPXkytCjUgA3FNZV7MTPUAFFS2TAxsTsZEXK5fh26KIymkWry2Iqmg2yijRqzTCIKMH9BjcacV7SutwphEPUHLPZTG8SEUTMoq4sLuSGlKAb1DROmaDThPJkudYFRXNlzV0ITY8+Jc+T89RCwLkxv9Sg85FQzyAodpZpq4hdRbp9UsSeyME0M4mziNX7yZpbeOZQrmPjT9o4T8b56Xqx+w5yaloLuU/AKlBZ+nkG+IBZmBURaWj607VOkavtxF4+uSe1feHrS/U9PyMiLS1uU4bPV08Utl1rcv2I4mKtumoseHP4jjNRcaBcuDGmVpXq6hoaWYnBCRlOF6rKK1XkzQLp9Y1nNLI+F8SD/D1U9PIWPG7RsTltbQTRxalrEsCmy7xKXhS2VUTi07z9w6cVL4l0q4WuqYwAdpCr2MlB/F50Kpotj9B54O09/JgkD+bdE/Sz4J5HKnfjO/5qWrt4fJB8XcccwgVTVJ7482EORWNWp2eVABnQGBDHxiEwFAmVVq8jRobYXHFB8dXQIeSzwDVfNSELYj8eyZdfKVMCLeN8sGSxANMBywDqbeG5NTjj6GKaPQ4aKJ4gKGOEtl1OeVndJ8VGtjI19CFtkj67IqKxuSenX1symtJG6XhW0JqjyhHlwo24Cm4IPeOhdiYi6aXiqZqbAJU0QL72FDKBHf4Fw3xAA8VjfWxAaCCAmweRPgZD2IT0MSzjim5ZwetCUBvLPS2oVNtO+xuB8IUD8B7qt+3MbKvlTGO8jxdVDRKH+LKe1y9By0m85O/F43eU8xmam606ZzTtRUDG3qv0EbjXI2bHt8l99wxHAxzjlsZa8yepvZG3mfBn+lcYmDjD1oAAuSehTlJ0Tk6Bmn+csSGOz00WLRlkeWxmYiNf2+TuoMXxwDnmPGYknNXZZTSuMB6iPj62EyT1EDzJefmKmpseA0CRV7xdwCamc4rxQMWqCqalTS1gwgXFdO8XiayWtco24OL2QwDAhuTilZcs5jtz/yxy8gzSr8/jkpmBHGYOa28qp76gt0LcP6ueRhnOdz8yBIAEFU0itiQ52Sx31EJKavGhpyv3QyYIjZCYMOQetvXsYPKECoab1Au1RzGjiS2i4rG+zkFUdEY2lz8jMc3nw/pODMVD/iTP/kTePaznw07duyAHTt2wAtf+EL43Oc+p/7+hje8AaIoMv694AUvqDUgbnSDWS0jUioby22Z1NhIGbWR2kjcp04lnytV0RwLot2gs97ii+fo62OzyVTRRo5NdzhOxU1cFA/I7fdVmS0eYL/HQGxi20nGSS7X2OTGe9T3oLPJgwSBToffZyE2Dm6vQj+62hHxZeK5LRgLo/0wu7JwVDyANujUHFX3vFCOG1dFo03gavaxoVQ0PtcpZURJXWa5xTmX0JlNIdjB7ynGp4/BaTo0GJ2WNw5QT+6ZzhPax0CC+KuQS5zrdMPGgKW6xsbcxCRqH51iWaYDc5/DQeuXqNGMIq8T4RQvQx6V9LHhG2RBRbOdxSoqGoBZZyOek1A7xykj6r3k1zoNOt3KaW6H25J79rzXVWND1Zd4g0bJoaVm9vYQ36KsqKGwEyk+OXP6WkgzW2r0uPMqE88zzjYrYRoaKpqP+qOoaIyC40oycKEMjmyOUirmoz8nUdG4KhqAjNi4xTPscUyaBDKexXIu9gQ/ZZA6AhuyD7moaK4+Nkks76OaihZb56xr6ty+1+UlanN9SUdTVDSyhxpIGhUPGKeQ51pUiN4DX2LIK/fsUEWj98wl0CGJB4QgNq754JJ7x7Hi//Xknm0EXtdquhNCM62xueCCC+Bd73oX3HjjjXDjjTfCS1/6Uvipn/opuOOOO9R7XvnKV8Jjjz2m/v393/99rQFxoxsMFpqi0y9lhCoRmwCe6R6Diua/RNzH5dnASeSeAdzRMrX1UUlFw8BGCAYAwBBasMUDzPfSTr+hFiIeQOlRtJkWP4avjw0PMqsQG0qn453IeVGqSwpWU9HCKRwAcvdsOmZX3xzex4ZvXN2OuRhQc8n5moiNfX19RiUz+ZygjUjpd0rykADmRoeZMRdtDq+/JNVJpUybyNpS5a7iWG6HzQhsyDWUMrTSPKHjxACUPj94XSQ4vnivzohTw8+5Nlc6vy1Ej9zX2PFM0SyscnZVps18pqQ+NgD2nBunmZLKdQY2QpYYwOTA878ByA4+p4ygJQLv2y0MYDuK3EKoaIrG4Zkr26x+WKZzMEpza22kf5OM7gMhVGMViBE5Xz9iQwKbmogNff4wY26t09RRZ9L905iNHOvfFRWNITaY2LEQm9SsseFUtFGaiQlEOgac31mWW9fRDK5dKGzxv6R4OulaKSUZJOU8pzBMbKuoKfEAR0BOkS0jQYeJ0HJ/7iWRSlAo30sFT+5z4nU2G4IqGqXJd5LYEA+g46V0QN8986qiCbUoAAzpcFwr3HfpPFI1NoJEdFWi1lXnzWts6lDRusYcMpMVqjZRWDdnqor2mte8xvj9937v9+BP/uRP4Dvf+Q780A/9EAAA9Pt9OOecc2oNwmd0g8GIVPHIJcSmqsYmgLqyZ7Gvfg7tY4PW78SwPkynatAJECYe4O1jk5mLn3TeUnZWyiRVGb+WPlgTv9dVLyP1WeFZSf4Zi5crwPz8NvJMhmshwsCGOgoh14YqhiXComR3YdfzpCfQuuqpolUHNqF9bKiTyTNfi0IfGwAzuYDnwd/De9vwsaq6HMFpocFok+IBaKGqaJsj+oxlhjQ4gIwi4cYVRWDVEQCQWpkKxIabhIBJzzWAm4oGYAaN1ChVQhfAo3NuZtqMRoPkOeAO4CjNrU2SjpV2zAYwz50jNi7xAEkFyOfE0p5CeZ5ba1nTVDQfPSiJI9je7yjRHF2Aqx0Cni2tknuuS93sdmKAYWrsLRKNio4ZjT4TIUYVRPGZ5Ii71NPF9azUMb630GeC97FBKtG2fgdObowsVcQ0y0WRCYrYSK0DpAadEmIjCRNY66jwHE+LcElCB1JW30VFw3GNiRCPQmxcDToJwyYR6FgYZBSIjZlUDmHLYGBzy74TsDlKiSoaFQ8oPo9rWZ/IPdNbQ+ehKzHEf+av1eljwxP3iOLvXezDweXN8nOYGLATHvhx11rg8hVwzR6lhfR4CGKDxzIajTqoaNK+uWV9bNI0hY9+9KOwtrYGL3zhC9Xr11xzDTz5yU+GSy+9FH7lV34FDh8+7D3OYDCA5eVl4x81o8ZGyT0XEyvP7Q14hQQ2sipaNXVlz6K+iFUBCZ8UODbcGCetAeA1Njc+dBx+7N1Xw9XfP6TewwMb2tGed0KWilSl7OwkVDRXDYR0PgAlH5ZdVlyoeh65Z1cTsnGWw+HlTXjpH1wD7//aAw7anZwBkdRjiu8sfp8TEJKQa0N7vEgQeprl8L+/8zD8+Hu+Co8cWzceatprhqMIXiqaQmyY3DMNbLr15J6pE8OvP+3XQ6kAHLHh1A0At3gAV0WTnhtKC3PVX9UxnhmXjiVlQDcF5T4cF4AfsemXcqn8fQp56cjn4zpPvJ40eJQKhwFsYQL6qwsFpRlFPgc5VZSOkV5b7gCOskzVetHNk1IkpMJ+ABuxsQqVVYayOC7dJ3xUNBpIi1TmKaloVu+Giv1h+5xdxExRJa4YqRp0kvM9eLJYG//s6w8opDg4sBEcV2l9RZsGsdEKcRIVzUbSmkhqoPmC3XnWgR39CpzbnBY6SjMxMYfjHYwzta5K9V3Fd+okiU8cx1VjIwX2mu48mdtX9DIz5yCiFDc9vAQvftfV8He3PkqcdDuodVH3cfgWrZxS0YT6DKx3oeICeG2rqFYAAJectQhnbevDcJzBbftPEiqaHjsmKDDY1jU2meE3UKTBJUYEIO+9nHJus2Co/2QmR4pjpmotoKUUvO7R6InkSVAAuOu8aUJPaiLuO5Yp92yuhT5FUF5vWGW1Z/jtt98O27Ztg36/D7/6q78Kf/M3fwPPfOYzAQDgVa96FVx55ZVw9dVXwx/8wR/ADTfcAC996UthMBg4j3fFFVfAzp071b8LL7zQ+DvdXJR4gKdIC3tsADSD2FSJB3AYj0pRGzDllKpo19x9BPYd34Av3kECG9bHBsCu7UHDRVlEbALrA1wWoopGJ32S2Aon+OD22XkDeMQDCLx648NL8MCRNfjs7Y/pTISgAKc+W/4u0fEAbMSGBskhND1JPID+PEoz+PvbH4OHjq3Dt+4/amSXnry9mH/3HlpVn+OZHMmpUnK+Hm6z1ADVZzg1qCoaGg8I8Ng0uQCgM5xJoqkI1YiNHQzx99A+NtPQURZY3yEx0yg8K6YkuUyl4oabH80IUoehSjzA9VxuMDQbgNFQyPz2IXouSgjlgGsqmuyc07HTDWmDFc2OxrLcM12D6PrrrbFxOXap6eTgOVCLBcSmOC/JAbEdRW44L3itG4AdKFTRg5Bm3E0iKxAepRmR2jbXB3q/b3joODxwZA2uuv2xIGePmkQ18iGS9Lh1e9mMCG37uRfvgV4nhn9w7g4AkB0zV+3lJOYTwLEQm3Jtwh5NHImkicRinJyKlot0PkkcI839iI3Olst7sNTMc1LxAHpcVWNTXvuPXPcIHDixAZ//3mOkJ4s/8AWwpeZdiE0hvGPvY8+9eDf0khieed4OnXxiiI1vrkdRBJedX8yxB4+uEiqaXl+efvY22NbvwPNKCXFNRUtNH4/sQVZiyKCiuREbqZElALAEj7n+AuieMgAAZ23rW5/zIdiuRK1UPwVgJvQGI1vARLLnXLQbkjiCZ1+wi5wHBmiMihZQb1hltRt0/sAP/ADccsstcOLECfjUpz4Fr3/96+Haa6+FZz7zmfCzP/uz6n2XXXYZPO95z4OLL74YrrrqKnjta18rHu+tb30r/MZv/Ib6fXl52Qhu6Oai5J5ZVpLucSsDSkVz03V8GV4q9+xTTwOwe5rQon86ieoiNtzBx8V0jSyiKrAhMN0ozaDXiS3HVxfN6wFLiA3+2LgqGrln3Ti2HgK8zlIfG6d4AMniYeA2Gmv+sktRiX7WWSytApviffTPdWtspGAyzTQNZ2VzbPQYeM5FuyCOQMHJADb0LwU2+Kj4ZDZ1v5l6NTa8eBPADgj63Rg2RiksO6hoyJMe5zmRJ5YzpbjQi9LL6hq60bw6RmuFACqoaBSxGdsOBoC/rq7HMo3q+HEE4yzXNTYOZ831uqQ8Zzg1ZB31UdFc/G2dGY6sDcmu86DZ7gSiqHh+NiUqGso9CyqIcexWRatbY2MmmWR0h/+tCrFxSaaj7Opi395eORXNJ/cMoANDGrgZ4gFMdVNC3PDeDR3qmD6TxQPcDhEG6VRsJdRokPdbr/pB+PWXPUPdZxGBCFA4DTUfijffK35RqmjlXMX7u86RyDRnwYeJbI7GmSVeA2DeY6SipaSOCk0UD3AE63S9GgU4+lXWTWIYjDMLPcS9amVz7M288znDVdFcQkC8WS9+/2/+4x+AX/uJp8N8L1ECAHaNjf9895aJ7GNrQ3WP6fry5O1zcON/eLnyyeYI64H6DXG5R/K5n2WmmIRYY8NqaX11yxJrA3vY9DuxCrjp56Qam6r2FS6hoU0DfUqdAhbU/s/nnA//+IfOMa6rOo8AKlpdxKZ2YNPr9eDpT386AAA873nPgxtuuAH++3//7/C//tf/st577rnnwsUXXwz33nuv83j9fh/6/b7z7/QhVg06DeUfN2LDlacA7OJxyXZT8YDaNTa6sdbYs5lWGVcHw//Xy2uQZVoqlUazXG1Hv64dVDQJsamK4iWz0Bfho3SRS2K33DOet1Qv5BIPSDPtKBuKM+QcLMSmPJYrQ62oaAJHPCTm03KlZpFuohwFff9WNkcG/3n7XBd+6LydcPuBk+pzOH+U+piIRsqIjUFFE+S0fUaz57Yqmnlt8Ni8xgYDuCQum6iRuSsVmALQPgf2c0Pve5N9bPjxpXEZMuoOKhq+RayxKQO5OZbNR4dhUsRG6uciZucioVZNEA9w9bHpdRKNOqCjxlAzevy5TgLdOIZhmllUtHGWqXlIN3sqYCJt6ABSjY0j6VEey6CMsHWErkX0b1JiLISKhtSkxZ69dvBAoSrRhkkrSnOhdDOe9JHUw/DeDWg/s0CEkyo0olVRWDBIr43YMEdUapJI5+WQJIOmNRfNGQBgvuxpohEbpKKZjTvR0iw3xBbwXuhGnRn0suK6GkkFgYomBYjGvS2/J0QVLWXo3iRmITZsr1neHDvFAwDcDrtad5g/51oLpGulxANy85mvCuKRunV8dSjW2PDfcZ/bHKVAQd0k0vsbPQ+eAAmqsXH4KwAE9U0zVQdIkyl0bdSIje03VIoHJPazj+eNNhhnlniMy+xkVGQc3xcQd4loQ4hNjeHmee6kmh07dgz27dsH55577sTHp5uHhNjwxXNl04/Y8J4LkhkNOquoaOw4ePFHaW7QAWojNl2TsoD/Y/0CVWTa1u9otRFFD5E3XbqhKRqWFMXXQWw80oRodoNO27EDkB1v3gCQf0+R6R6X781AgqBdPXB0Jt4cL6eiGd8bcG3QWbaRqeIc0kxnq5fWR7pRafl3lKHE81CZl9hcDKjhefMxm+IBduDoM5wacRRZ15AHBHhsi4pWzsmYKNs45Z4ZYiMWVRMu9ahmBlqyRYY8SaosUjEu5RqPhUBcSg7oee6+R8XfXYiNfJ4bCpHVdD8TsdHPkA9hdSE2I7Lx8iaTHLGhY+x39ft5YDMcZ2oeOGtsyLF6gjOD5kt68PNx0R8BTMql5JiHUNFwjeaIJv1u1aCzgkqpqWh0/SzHZ1DRwhCbcRrm7FnjlZQzHVujS/mxynxokuSYabR2eiqaVzyA9bEZqsCmY/xO542RmFOIjQ5wdHCov9OUFS4RG4GKNiRBk6twW3qOm2hoypEa/r0rGyNLupgaD6gVYuOghFP01pXk4MfSirR+xx0NVXCPrw9VkMoFZahpxCa1WktIc5/vtT65Zy0Cwu+n/l3yfxGxWewnxti53yCrosnnqZV5zXV7YCA2VMCk3rzizZB9VDQAgO0CAu6yWivCb//2b8PXv/51eOihh+D222+Ht73tbXDNNdfA6173OlhdXYXf/M3fhG9/+9vw0EMPwTXXXAOvec1r4KyzzoKf/umfrvM1hkk0KeoUcOiS0mB8NTa+h3uuqydHleIKf2ho528aXEzaoFN35i4Rm/LBo7ze+W5iRdeubJnUoFOShKwzXO7oSwtJv0I8gGeCJJUkV3CS5TlsDCl/2V7Q7BqbMsPJiozRhr7AJuDiLCrExhWM6Wz18bLjPYB2Wp5PApuukK0RVdGERmEA5nWoi9jQLuN8U1royojNqkVF04iNqqFBZMJR7zFgzoJxPuVHaOf1abK2c93YmO/SMy89KzS5YGS0PQ4E3j8bsYnE99njkF+Xer9Iz7WEvBmIjYPrjufXT3QfG0VF89TYzHUT9bpfFc2mohXnYjv0ACZi00tiS72MByf08fbVoAGYdXDcwhCbsgbDQ0XDgAabL/LkEJpEResQJ58Xj3eYswCgHe8B6Wc2jXhAFeqjaoAcyTWX+WpmfA06m1FFk+cAgKfGpm/y/vF948wUDxgyx204zsRaVnoeKMwiiwfY95avoxLy2kRNEn/G+bplIDZiYCMfzyXiY8g9G9dKCn7N5FNKWBA+21M2ZD++NlTrEUeEqbnkniOSuJPuEVpIg05fspjOE1yDMOm/2DMRG359xSR2BRXNpYoGEE5Fk4wnTXxUNACA7TXqbGpR0Q4dOgS/8Au/AI899hjs3LkTnv3sZ8PnP/95eMUrXgEbGxtw++23w4c//GE4ceIEnHvuufATP/ET8LGPfQy2b99e52sMkzYPl/JPnudGg05fVrtqYd+z2IP14UZlQOKioo2yzNigQ3oGGMdRtSYmVQMn8DrpAxLHRe8TCgu6solidpbCk02oolUiNrbcs93HxnYgXE2rxoTmMkwz8sDS47PvQ7UdleUxx6upaPbDGnIvUe7ZpsBppwTv6dIaCWzKcf7oU3RgQxcMLxWNONRJHIkBIe1jI8nZcssEhxmguC58g8Sx2apoOkjBQ7goV5qK5qZk0Q2sCfGAKIpgsadldb2CBWSeOFXRPBsGXqO+B1UDcGe/qtajTow9onIxO0fVg6Tv5mpiaGYfG0yimGsNL2AHKFQF8XXOLR+lWjygCFIz6CQxEw+Qs7SGalGIk0McJleygX4PXUv5mNFcqKdCbPq2c+RSRXPViSAVja+fxWcza/5LAYBERQtNBEjiAdL6So0qP9Yxn7CP5Jg1gdai8etBk0ELDLHhVDS0uW4Cq4MxpCkXDygDGkK5EZU7aWBDVNG4DyQ36JSTFTRQaKKZMc4zTUUzr8Hy5ojUi9jz3/XsSdQ5+nuS8Ho7974wVoFN8XowYrM2JImnasRmc5QaDaxxnADmdbcbXHr62LioaAZapX8ejXOAnlnXNycENgrJlWrlKvvY8MCMJPRqUNG4qbUw088FgMyYAJATRS6rFdj8+Z//ufNv8/Pz8IUvfKHO4YJM2lw6SawKUnlfCUnnnlqoI7RnsQf7lzYCqGjm7+gIp47eMaFm1diUDgBCjuhU4QLY7cQAA1s6j5vRoFPI7PIHNcTqigcUjjcbV4KBTUmVEpqN2kohegNFKlpRIKuzPK4xcrUQjvwpKloFZchl+BD6KDLo1B1fsxGb3Ys9+IGzt8Pdh1asawdQHbTTwEaiomV58SxUwccZQWzofeX0reLYxTh5jQ1Or5hk3XSNDd+Qi/+D5Z4bknxd6Ce6X4hHFc2Ue5apaCFyz3zjdFEzuVWdJ6Vs0NjERenA19BcgT7deC0qGsuMcsQG5ywmY+a6MWyOMisAHpaBDXVIQuSeffcLx0b3CV9Xb/p3mcpsZ8C5YY2NF7GxFOUc9Is5ex3pqsAmrEHnkOwhtRGbjhmIAVQ7RDrhVC+wcfUZAqAUu+p9YRLz0RPnCGKT57nVoFO/D9E41qCTiWyM0lykfHeNhICe33wvl1BDl9KhKPc8xfXCZ6OnnnXzXg3HmULsfeqSaJZ4AJsySj2O7T/eZAbKPQcGcnvKGptjq0NF/fRS0To6sOH1Zj4qKJpPFS1EPKBIlBf76iBNAaCrEt4LPZOKphIeiT2uSsRGQGuL826Wiob1aFUIbB0BgelXhBmbtLl0E5luscy4/Wmm+7rQ1wDCEBv8Lp9Zcs+kj43adCYKbMxJhY4sRuZcb10VYrENk5tUd2KKB5Tvq1NjY4kHVAU2sbWRK7lnpdplbwz8OlJKkiEeIKBOLiqai3rjqrEJvS68wZz6XpKxxeDUCGzI+5GORjddbx8b2nOGBrCUikYQqBseOg7ffWQJvvvIEuxfWhfPQ1PRzLFJik8497nDSs8N7/OmUkVzITbuTYkGGbSx6TRGz0daWGkwhWsKRWxMsQs3FQ0dgjl23tzZdtXYVK1bFJGRqGgFDdT9vNLM6dpgDCdKmuSA0A0oFS3PqTKXvSnPdbXYAF+zLGSv3DBp0S8N+KTO7MXr1dSljMzjqkSM7xmTGi9ywzXaW2PDan9c+4xYY0Oa7dl9bOzMN455SGpyQtcxybmpSti56rQAip46LiTHpxBHke4DJzaMpMY08sV8zGh0DHSubY40zWzbHA9sNMoyNFCVAj3F06bJN6mPTb9jqoZyR9hwmh11CRIC0oSKHKei4fw4f9e8qu07ulrUXIcENko8gNXHHDy5CeNUq/hxxkBIE2Xly1T5eiUVbWmdUNE8gU1foKLhuUvtI/g64RMP0I0s5YRo8V2RtUbRZMq8WGNjo6hV18dJRRtTKloG01PRTB+3SkglxGqrom21SQ56QWmJgNMtsGiZZqtHaW5IyoY29NOBjf9muYp+x4yKVtd4rQlFbPJcyxvPIWITWGMj8enraJtLFpMMAoCDgsOKX/nGqhp0CrQVF9RpIDYjjVRJ/GVXgCGp7dDv5FS0UMaTzrTKlDtKC1kqnUeuoPb8S/bAX37nYVMqW1HR3IhNJ+EKMvpneh9+7v3XGZ//zL/9h/CsC3Yar7lU0aSMltS3g1pMkDoXFY1eHz52NFrIX8XLDbVFR98h9Z3ktSwvkCVT7tl+hqQsPN5LvnFKdCjJuuyY893EKMqnyJrk1HAHoXjNHkea5fBP3/cNOLY2hO+89WUmFY1I2ku9umiPC0onw/VhodeBpfWRJTKh167i/zgOo6L5aqI0LYXM44pETFd91n7GwuSe3apovA9Vldyzl4pGAhWemTXGSXrm+JBQyfi+AqDXBNcz5+qMfsu+E/B//s9vwusuvwh+76efZX3O19MHv+ub9x2F//zZO+HnX3CRqnGZhoaK5kISAMy5tjFKSY2N6T7h+0ak9gmguE8cZcHlgs499B36HVPgg9dkmPfW3w+MUqJ4EDyJ4bPGVdFe+LS98IU7DsLK5hiOrQ6N85HGpX5niE2a5XD7/pPwmvd9A/7Fj16orhNF+wEc4gFs3fPJ7lNDxGZ9mKq92F9jUyI249TyeaT2ETwwFREbhrxR2XTpHPpJXNDAxugX6mSKrIrm8fUcl8eN2JCWI8NUq4DOmor2eEJspKxYN9EPPl07T5ZSz7sXdGTHF1eVAah4uP/Zcy+A5168G17xzLO977MRG+1sTyNFa8s9F5Mpz4tMAcK9qBShmikxpSJu9LxxgaMPIc1s1jEpYKJmyT2zS4L3kyI2eW46Ja6smqmKRiiAtPGeIwPCM0VoLsSmiq+Ldtn5O+Ellz4JfuEFF4tjXiPZateG89IffDL82DPOgtddfpF6DZ0usUFnqh1qF2ITxxH80osvgQt2z6t/OGfvO7JiHVPRgphDLCE2lnQzu1RJpO/JpqNfiy0e4NnA8pzMjWkRmwpqE7mG+J1mryWBiibMlZf9g7PheRfvhtf+yAXG6zxgcS3ufN3ikttYXwVgPtcGYuMR+8Cfh2kK9x9ZgxPrIziyMjCpaOXxh2OT+ovfe/6ueXj1s86FX/qHlxivo2FQxymL6MBR1NgVoNPAWsoM8wwlpU9ZiJWV9HAjNmFUNHcfG3xGkEZdJff84qfvhcsv2QP/8vl6DaCdx7WSkOlYGYgNbeRXji3Uue2yfQXAFBSRTMoOAwDce2il/H/V+gyAP8jD16695wgAANx9cKVRxIY2yeVjSOJIzbG1wVhdc07HpUkwXn/HA2Ip+fbUJ22DVzzzbPjFF19iBjZWbZodrFi1igKltAkq2usuvwhe9LS98CMX7QYAgH/y7PPgORftgl94wcUqCEfExkcpVOMsh0Jrgu49XMyT7x9c0UF0wgMb97HrNOgEKHwoPN6J9SLZ4kNsdI2NTXtPVFBvI6ZoUo2NRCmkKCyvhdXJJWTyaFU0GbHBa0MSFKHiASkPbPTv1I+p+xyqdTaQinb29rnwY9caySkwyYGjWTcauGAGcM9iD46WWQMsrkJTwUaFI/Sip50FL/o3Z1WOz4qkSdYmNGMgmd2gU5/n6mCsGpFux4we24xdm67k8NbRNndZYmQX7L9zKppb7rm4fnmu0TaXeAA9F0prkRS1XBC4q2gRz6VKQcll/U4CH/ql51uv43lKdC1+TRb7HfjLX75c/PxQuL+mgowZSFL7ndc8E37nNc9Uv/+rD90IX77rkLFg8WNyCo9IRWNBIC3Ix3GgU4lohx0MaacZQKZNmIjN9FlIHCuanA3UP2cCFc3k1Jf3QRjT0560DT75b15kvR4qHsDXrcV+R611+J1SsE7H5HoWAPR1XCWdrDdGqaG+RRt0Sr26oiiC//m6H3GOWVHRHOp51Jmhn6VzZS5QPID3sRERGweaK+09IVS0VeJkcKNO5SitLrzdtdCDj/3rF4rjG2eU3440QB30qDGPbUckuI+NEORJTjk1KTsMoNflTcGxAyCIjad3FR5zeWPcGA1VfUei9zC+/y30EhiOM+X4AripaACmAiC9z/i7q9fa+/+v5wGA+exaVDSpxsaBfFNHtgnxgF944VPgF174FPX78y/ZA3/zxhcDgGYpKCqah9KLpqho5Vtp7en6cGz4I1XiAZxWXpU0QIuiCPYs9uDQsm5b4kNsqAAPp71zOhyAWS+aZrmoiqYkshOKtsQAkDlqNc0EoLOPDYokeRGbisDGg9isGoHNdFQ0l5+H9qs//jR4S+CxT3vERnLQO3Ekqk+g1PPuBR3JcMnJaehhkvHDUMTGB61XmVZFs+VQ14dj1Yh0x7xJeVKTxCG1SSexKAs7gXgAf38lFc2H2JBAgtPqLEUV8gDQBww3FameCA2vl7QQAeiHuei5YyIe0xiOSQxsApxzHxWNzm3q7FUFY1q+0nY4aLBExyfRbHgQyIMfWrjuqrHBvw/H9j1U7yH0QVfz1rpGxyoGU+Q1hdgYkq6241fHgbDkniukdNF41rgIas1x0p+L+jbzmHRO4/pAg471YQrDVKswUn43nYdV1CQ0RFtWHOp5hsR4kCqa4AgziinNrFYhNnjtpb2HB7C8hhOANOgUxQP0dw1JDUGtuULGZzXoFGhgNBij/Y6CvgtrN6XA3XW/0Yli108FNsI6A6DrjqSEAP+ulc1RpSNU17pGMsj8G863Exs6ieCiogGYPZvGGUNsxplVdM6Nni4PbGjjcZd4gKZl6deaUJD0GSI2y0o8wE3FRLPFA7QE/NogNeZa4khyoHEWTx2hDOozAgT2sRlp5A2/QkqUoi+Bgd9ASpgIEtm8bo4a9/co/dVEbDDhISSxQ8UDyHipeAbAdIFNj61VVX1s6thpH9hIWTGjQJb8GRGbnfNd5+JK6xCaMBcVjWZpJqqxYZNqyBGb8lxVZ2q2AYUgNtJDOIkqGn9/FRVNkntGZ5I6xxjUuSgHBmJDHDFcGM0+NrIDTQvRqVGlD9Pxs06tluF5rwUgNpL5qGiuGpsq2mW/o6F11zFjtrHI4gHm+PnmkBCd/02X3HNkZqK8RaI5lbieLRWNzqVUQGzGguNXB/XkNAtXAG03SbVrdaRgPXU4CAAyZXN1oDPTG8NUrWWF3LOegzQT7XR0E3le2IiNrgUpjmcGmSYVzY+wqQxleV/wUnBKpTRupQQmJIf4usrpakVfh9waozo2ufZjofg/xDSiRAJ7Rjmh4zQRG3fCQLIeo7wAVDuMOjtsXr+hCmzkpJsvw85fW94cT0X1lozeA4s+iYHNuq7j5TRl6lBusLXBrLHJK5uc0kaxPGMu9Sjie6MkINIkdU8yTLKi1REPoGsWInprwzFjIejPhSjn1Uli791mBjZ+uWedCMR1xVekLzV05QkRMbBhPgo1jqSukWSKXGNjI7lVvh4XsAKwg2wMbDijI8RwX8CGs8rnaiDwPu0DG1E8IInFAllEMbbPdZ10gmnoYZLZ4gF2Y61JoN8+yQoAmLzM9WGqsiKqgRubhCGqaBJlJVT73XfcEMTGpoNoGosWEDAjeR+FhmYO0OF08fPp7zrLI1PRegyxmXbeaMfRzlqGbDg+KpoLtp8OsdHHMGpshIwW38h4H4841g47HtfakGMzsPHx7VNCxZn2voQ6ygB6rlAHDcdB51Gd5546/z5HLY4jI7jmASZFs12qaD4qFt4fGnRsjEjTvSQ2soX0uK6eSPw6qBqbgSkegGscncd0bHQNme+R7K1YY2POM4OKxtcRNu5OIGIj/b5OnmvpGaGoJb1+odQwACr3bFPZJCoaR/uL94XNTalBpyRVTM2liob3V1pn8ty/X/LrszoYq+M10ceGfwff/3DOnij75FF1QDQq0WxS0XIjAB5S5U7P2qzXQvN6jdmxADziAQa602xSl9t2plolBjYO4Q5cd8aEirY2GDsTMiIVjTzzeZ4TdcXqZ2vPYl/9HEVuVUoAJvfMklj0PNDwHtHrwwOEoRB0qmBJOFeecDAadJJ1B8cl9Ser8vXwO7JcB8WcRoffO0lywUVF63amn5+nf2AjbC5dR1ZSoRjzHQ3Xs8XV1xV8ErMQG9SyT6frsUF5nADmhJIRG3OSSFSlODKbS0qKYHX7HKBViQd0Et3dvZPEFopArxGvL3JR+uiCtSIhNp6ABD+raDscsSFUtKpzq2N4niJiMyUVzXBeDWfVf0yq8sJNQe2xWXTuk3tG4xlritigcXREbeYK0bGvCS2MnYbuSc2gonmU2IrvLShI9HqpZpXkWapDW6ySMjXf60bOKGJDnRqaveTzQaKnrhjUzkxzwBkVLYQOZAU23WLMlngAo6J14sgZ8M1VqKJpxUdzDYkjWzzBVd8kPWM8ocD3J8ycFpK98n2k0vxVDTolQwcvTaU+NvaaTqkktREbtq/QYztRxUTee6V6UTT6XskRlZ7JpRI9aaKPDf8Oe84W8+1kqZrV78bWnO92dNIBA0iA4trxupiqOiUAveYMWDbfrPPKjb+pzwoOtk7qzoqKxhCbigQRgJ5DtPUErv2jVLdxSBjSKh6bPNcZQfND1uE9RHBqoZt4G1fr/TKDjAWoUgsNTkUDEAIbJvdcHAt9FHssXK1wjQiWLHRthU+pv06Vr0fnFH4P9xEwATbJ/kupaLRtwOOeipbnuUgHoFk3qY8NRWz45tR4jY2F2CAUSeWe619mn3jA+iAl6FSJ2PDARkBs+IYhITYTq6IFoBq0q66dJSWBTZejT7LzRL+GXh8sTKdvt75PITbaSaBGMyg0CJs6sFGITfNUNFPSl/DFAxEbqaiRZhar+9iY4+cZayoegOYUD/AqJBX/Z6SPzfTiAf6aDZQ0ByiuyTDNgMbCuM4YjSBngNgU7yX3wXONzYSFPDfwNf4zDbypeAClotGu6D76AD8fRFssKhr2sSFrtFkwrH82ETYpkWJeA0pv89UYAejncCSsoXw/4YpBtIjXZV3i+OPxquii5vjKNYAiNsyBkSSBAQr0jb6vyqSePlVMBJcgC95fCbHxNVClx6SG/b+aolbR7+VzQiE2ZTBFa83U52MdzK4TxGac5axOQe9XPqebqg8C6OAKHXbKCuHrqITYpBME0XWMIzYS6uGi+9HCfzo/MPnBE2tiwoscry5jhiI2PkU0ANKEPcstZoEUUOL9W+wlag/h9EKNiNuF/3KNjTk3MJBe6CcwR9DsJDHHJfl6Lv+Azm9NI2WBjUJs6s8pSkUzRGge71S0IjNqv07lnk3Epiyon+voi8Y2nqbkYdHo/YwitmlNUdiM2W/kY5pZt7EK4ngDN8woutTkqEmUgWlU0Vzfg6a66lYoM2mpa525KcZr3jPKQ6YmiQe4zl3iIgPohanLEJtpA2IMpOTApvrYGrGxHwzMAXC6TdVcn2PX2zhmThxCh9wuGu9jsyCgCfwc7UwjlGPJnGPndDWA6RdDE7GRj6WRELtOAJ83Oo/qzBUzG+n/HD0uR8VcDTrHhM7JT4/+LolbbAzHus9CEhsoW4h8MP8bCh7w5AsXC4ljDxWtQjyAOxh0E7cDGTnpMRKQhSoqmua6u50jicpXZ/6qPYYgZl2VNNJOlx6j/nldWBtDvovuP1IDZGpSdrg4hhbC4TUG9DpKY8NjnrtzDp60vXBCdWDTEGLjSQZp8QAMbBJrX6dS6Fwx0a7FwuSb+z7E7FjoUOtia7L+cfEAYQ2oUuCb1kJqbIy6V2FfzTJzXVe9CZl4jXQO9DlOs7yWENIeUmPjq6/hf0dfQ8lWK5+K1KUQgQepTx+A3ceGno8PsdFUtDKh4uhj40NsXEtPhyTzXPVxqw1R0cy5PH3gfVoHNr46ESmwWd7Q9CzVZM0q9pycHiYZp3HQDsnUmahrPYLYcNhybTgmNTZlYMP6DUjdnV0wMF38qrTNXVYlHgCgVVIKZSbzPfTB6DG0ylf0KI0T4VKJYqN/L76DykyicUW7OrSuKsNz4NlqgLANR3I00Kicp5l99B+T6vJzy0igW43YmBvCNk5FExAbixte3jOcktJzqgQGiPMwNWJDxQMcx9L86cz4bgDtNFDkr84zZDjwHn53MT79d67MRIMBCnb7+thEgrOxsskRG61iRx1AXc/mHjMPTl0ZUbymCrGJig7bvU4MUWR+jvYMkcQe8DvzvDieIYLBzp9fDypnzY07qBYVjXDdXUazrUoJrBa6p52UMQuM6N/QmhAPoGiuSqA41nlVQ8QbE5Jj8D3NbPRq309Mklx+yR5FecLApilauU88ANe7Q8ubAOBCbPSzZyA2TD0QQE6+WeNhCZw50koCwNwDXMI6huT7jMUDQmpsOo69lDJwaFCIPh1P1lXVQdIeZyEtGvYu6sDGp4gGYCJRmMjg6m70do8U2p1YTBw0WTyg+Fk6V1eNzUIvMQIbhSQlpn8IUO3rSfXOHLGZrsZG76fYy2bSY3E7rQMbV5+AbqK5rCJiM9/RmW2rQWfDNTYMFaALCt906hitseEPwfowJTU2JhUNFzupuVwIYtNEYOOal3hOSRxZVDcTsTE3Ux99ULqP+DljTI6FXzmBRmbL3DCM40xJRVNUn6Ed2IRsOBLVBACLJfV31BE88IkHuDo/S45bpXhAFAE/RVs8wE2T4q+dLDe9OPL3HQixKvEAgDDEhq43deYKvQ5VC7uB2AgNOqVsrSmbyq45rSHD+clqbCQqGoBWf/LNXVe9AjdeY4Njfc8/eza867XPMhynKIrUcfoVTs44y/3iAVawjc+YvYby525aKlrqoNn6jF5PfGY5bUVSzgKg4gFhexL2aqEqeVUCPOgYrrP1xKALOxIDADIN+md+5AJ4448/DX7jFT+g5sGGQ1lxUjPEA9ggnnnuDgAAuPGhJQAwa83QOkRYw5R7zuwmh0LyzR6PDoABKBWt3OM9iLVER50kiK5jO3hgIz6XMipGafF0bV1RfZfMhISEahvKlRlJLAc8W1TuuWoviSLdsFUFqKzGRpJb7yWxJQql3uORe5bulyo9KAMCGvx2iLAFjmee1AWhhbBzeF1Xk1S0LjkHKkPfxPN8WjfodEkWJ6TBo9nHhtTYxPLm1HSNTcKynZT/PM13qbqHcWbBlquDsaEABwDQQ4lShnIYY3Vs6I2rolWobHSSSNHINDJiBzZIXfA1YhMRG0kVjfwcRaShlgDR8qaDUmf2SQ3PQRIPCJkneA1dMuZ4HKPGpuK4faLyws2sd9DHlKg2do2NUNjOxmJzw81jSkkBvAdLZSHv9rnu1P2FtoVQ0UhWkT9fnIoWR7Zz5DO64VeLB+jjcsQmIWioxK+X0FLpOaFUtPWRpqL1O8Xno6hAQyahorkyorbcc/G5n/o/zhffP99LYGOUyn1saPY2y9W6lkjiAVb9HT5jE1DRSObUZSYFoz41miK7yiFIdNIIQFZlAtBFxqF7EibOKIKnrqXjGBjUrVt9ivT6whMDdB+QCreftL0Pb37lDxZjmjcd6Mb62Hh6f13+1D0AoK93nwX4AKWoUXlNfKpoAPIexY3fS3SK8XdaX2X3Zir+lxCbWVHRtjPxAHm/1j+7xH1oUIjuXVEbR9apAOVKKkJSZXtrUNEAAOY6MQzHmVr/uD8hyT33OjHxbWjNVW4EP2icRkYNry3S3PDZwuPPdWMYppnaV1RgQ+ZliFBUvxPDCuh1bpMl2RuhomWZuufTJijRTm/ExtFkkj7Ico1N1+AhU2u6xsZCbEjR6iTZODRaY8MLzdapKpqjQScufgs9G5bkvxuITaYdszpGNwKXogjPIpgcW30/VI3NKKuUAZVekzYNw3EUskZ5rnXdjUxYEoOvqLSuSTUM0rhc5qKijVlgUwdl6ivERqCiEUfdQGxC+thYPVbctB80a4P20A+xkJdvqJMYfU5czytFifm1ogW9dIyhRgt6JWoVNVcRffG9crbWh9jEAmJj9IUaavGAbhJDFEVqrqp+RLXEA+T7xeWeq64hboISJ9tEbMxO79Y6KDioxefsxBrfT/jviIjwgNM4PqnhmYRBQN+LDjSOWdr36P6xUVPuWTdd1IhNFaqPCY21oZkoGXoRGz8KRI0/703t5T6U+5nn7jCEOvqdQjnLFLeIxbnDVdEA9FrrO10+hjnmFLuacwIQdFmQfJ+VeAAPOGUqmpxwo3vUusBmiFmNjSjwQk6LoqEhycg9NahoADr4wbHi+H2BTZ8ENoORGfii0WumaGRSYENKD2jTTNzLcV9QiE3PRhKrxAMACBPISUUzEyt1jLZkwXVsLuDah9hpHdjg4sx7iRTF58XPUo3N9rmOvmiZGRk3ropGDtNJYuVA0yzNJLQ3X43N8fWRem37nF88wHDYHBQUA7FphIrmCGxYgasLUaHnTh96OUtjv6YkIh01Nq6xppl57dCZ56jcNIbzUgoiQgJgFxWNbmCFOk/1/UDzyT1Th9DsY1NdY8Pfw+lsAIJ4AA98PMEsBjacAjGJUUdUolAAmLRFfq14Y9xpnp8q8QDqHGyzgsdY0f3GQsKiqo+NKPdMVdES5H0X7wtCbNi1cGXlhg7ExmVYcxOC2JiN/uR1UH1WUAJTY8Ssd3kMi4pWXg+pOSeazlROpupHz3fTgdjQNZ3uH3VrbDBxZiI2fgoLJj04Kk3H4aqxCQlS+PPenCoaoaIJc+K5T9mjfkcHkt4LrqCJRkUeuIWooqHNMSqaq4cNgN4XzQAL59ps3D4u9yypormCGXrb14Qeb504rqSiUTEhQzEzYK7vIkFZlSoagL4XOFYcmkTvp8IAPSXUY1PVAJjcM0sEU6NNksdEZAv3YDwHvB4osU+DRsXO8Vwf3h9RqvcGqN6zxGMbVLRqpLuOndaBDS30n2MFUUqmt5xA4zRTm8qO+a6W7DSKpfSxm2vqRR7OKFKOWJpN1nwNTctG50bTNwCAQyeLAsYoAtjeNxt0KkqMQmz0YmP3byi/Q8jqzEIVTfVaEDIRch+b1OCqhiI2G5gNc4zJhcDgdRhl5gZAPztlXGONd9FACqrniYuKZvZP0WOOIjeChjbn4P0CgNMhDKGi8UVKQgtcjeX070JmrnyPpqI1gNjUoaJluTPjXKcpHDV676vEA3wiDp1YUwYzR42Ni7YCoJ0N6pSuD1OVMMGxYcZQF0G7x8yddtpckxpumiGZRAAdIFX1y6BiIBJiw4dOnQZu+Bo6Di4qmk8VTQVOY53JrxMIIxUQwK5xkhJ6Q6O589h4X5Vh4gyThgDVgSeuaTzz7quxqRPgcQe6qRobM/ll//3yS3RgQxU+6Tgk5HKUZWJDZQD/HOfPqVJFQ/GAsS+wKf43e1mdevEAw19y7M9S/Snd0wDceyVN1ioadUjCMIlhV9nLJoiKVt4LhdiUY5PqG2lSSBIPGDKGiBqTB7HpE3+PHktT0Vhg07MFgtIQxIYFNvy5xdOcmoo2NOvIprXTPLDREbehgpPorCTeHErt2T7XIYoL9oMNEDbZQ4wrbylerNA8rY7R7DelAQAAPLa8AQCF6hQuDrxDNF47H8VGQr0mFQ8w1E4qa2z8iA3tY2M0bgtVRatAbFw/K8SGZadDgrZQ4w7vk3fMqZ9DKAJUttGooaDIVqwRzpAAHikOYoPO8rCWeMD/296bx9lRlenjT92993Sn0+ksnQVCIjEkIWQHgQBhVzZBh0UQUREMKm6AIgGRiOM2DjriCIGvsqhsgwtxGDTMj2HPGGAwgksiIAmEbJ2kO919763fH3XPqfecOrXeukunz/P55NPpvlV1T1Wd7X3f533eAFQ02fOlym9wq2PD4FUsk0dsGmKI2BAHgDsVjRo2aioalyoO2U3CFOgUxAPkqFjCLsDpXsdG2tirZFfJPmyfpIpmtVekNniLB4hebQf9sHSqLBbiR/tk/Uu1gTIMUWDGjkQ7F3JnTS22gXRGFdhzYfOqUxXNXzyAFqbzyh/0AnuHnIqWFN8LU4MDRI9wWLlnFh3ZvS/Pqbp+9DnmJNgjOeTEHBvZsBEjYZ5tqlCODd0sqwz1hcSwySqMalUZA6BUt0aRv2h9T/CIDdv0Mccbp6J51HRRyX5XSjxAdjD5ORxoM+gcpIrYWPnL4h5QBTr3cWdOQG8ko6OFo6KJ40lVIJcWWM1KhgL9v+z4S0ljmoIydGjfYs+80RGxsX4XqGgBIuOcPcNyeVjxc+mUKGNQoKJxSfMRYNiwyc7qEHLEprQAl14OC5U3pJOW50TKOQHERSiOIkCAc1NAqy6XQ3uji/VuybB5a9cAAHGCz0heRvbs6ALr9FQ6B2Ex4KZChuh9UR9jyz0rIjaqHJt80fedqZ7tgCLHJqGYMACnkgpgP0O2WYvXsBHPH9NsFwYLcm2af0G9stRDlDCcHiQveEVsQlHRiPPBqukgbWBVERspP8IrsZ1eB7A3bHFEbKgR5kZF41WlTWfEZlCKlIale/jxxym85J6pcyV4xMa7f1sRG5HPz+YbtrH22pAK9ScSTjUp5ullG99iwA0Jz7FxfV/2XEyv6XX/9HpygU66lrD+7xqx8dgcsXYNEudXeEdSyRkxJBoE9Fmzdz6ooIAF3eyxsZUv2spFfnVsGD1SFg8QcmzyasdAkEhnkCT1KEj7rGGzJ7bxjSn7KVDRSIFOGf0uho23KpraUcRV0aQaRhScEqVgY8SVkyQjl04K+xY/uWc3x6MqxyaVNITIqpsjhdZxCpu/xiSfg0QNWO03Fl1irAhOAVTkuGVSRBWNGPkyzde+F+eYZqCO7AFyPhuT7B7YNRoVUdRCgL2eM8dGTIGQ2xMGlIrGC4yOBCoaneyEiE3CVqpik/eufjGRmNaT2b1vCFc/8CIef3Urv0ZcXguBxpGQ5J4L0bxx8rV6pZonqg2dnFSeV0RsnJ5Jp2HDxmPYXBKVdKMMOXwvbKiUVDSbqpEw1ANQLR7gpKK5RWlEJRXrp8xFFqlo5fUbOVLIis0BwfoJnfzo5EnpIYZhKNvuBruOjU+BTm4siXVEGKjzIZt0qgbRTTeDn3iA6v3KfTOOHBtaPM3dG0gjNi51bCI6M8QCnWEiNk66H40sMdBF3quOi6rdyhybFKNi+CePCvSKpOHoF20lBw3PsWF9zscL6GfYUOqgWMfGPiZhOMc0j/Z7KKC5UtF4gU6PHBuS+Bu1/ACbQ3nOj4KPny9a86dCAyEwPboxk+TPkTkP/QxPFkWUBVKCUNGCjBt5vFekjo3i3rKpJA6dNKr0fycVLZV0RkMZ+gbDR2zkbs3mV9bnBvN2DrLjXMUcUOk6NoD4bpQFOl2cjfQ5qJ5VImjEpnQZoY5NwL7OJJ+DGDbMicfSBNgjZT9/+szfcelP1uHVt3YLuVByXRjAVn+Vn1fQAp1UnIBBpqLRWnVs/NqUX/f7lJlAbNy2yUIRZVDR8sUiv25cVLS6lnv2yrFhEwp7OXYNm1IyPafsFPH//fkd3PPs6/jdn97m16hEHRtaGJEldbH2RkE2lUB+sMD5zUxilYFOInZHZ5QYJ2fRLWk2FlW0AFGN8aMs2tXYEv2KLh40GmMXhSs48l28vpfBFg9QH+e2gLENFZX0dNxbmd1GjjpRwyaMeAAgRSOlvqZSnnMDu08vwyZhGOhoyiCdNDCurUFp4MneOvmdycURDcM5Dt0SuYVjpD/JnPuomNjRgL9v6xOkP8XvJYaNw+MsJb6HzlET6VpekGmbyYQhfK8qgTxPFnmvqJhyPBFVNL6hKx1H6w8EaS+NpjOwRdKWewa/Fy9MaG8AYFWj9/peoY6NRKlU3a89h0t5bOR3TguKUKCTUtHYPYd1fsnHq6LL+aIJA+rcjqDUEcMw0JJLYWffEHr7hzC2NUeogupzWBRR3qDSiLA81xRC5H9UKmIjRPJd+vNR07vw9N+2o7u0holUNOfYYnA3bNzbI2/I5QKdQwX3vqNiYzCHn18OXzlozaXwzp4B5dwOuDsVDcNw7G8oZJqWnzODFuUN2j0OGNMM4C0+r3iBGZl9EjtkbGku+tvWvfjb1r3obMkINF5mEFH6GKWqUci1qShoTrXq/Imle2B7LeoAG8gX0ZBJhqtjwwybPMtjl5gCZVDRqGx2XKpodW7Y2BEPathYBTrFgWvXsGERG+bRMrl06Vu9FoWL1jEpFw4qmhAKLc9Dkk0nsXewwCM2oxrS2NFn09Jo57I7YKn2S+nZUc+hM8fGpmow+NEM3BDEsPn8CTNwwru7sfiA0Z7n8IhNochzR9w2Tl45NqLRmVD+P5GwJ1RmDO4oVbRmnNukj0c7DOTzBcMmgGcpSdpLufOyF5V9T5BcMlsVzYOKZhgY1ZjBg5cd7hohyUqGjaP4puFcnGQDSV6EvKhoDHHk2ADAnR9eiB19g+gk9EChLWTOkTnzssx62H5Cn5WveACNbiaTSCcNQoGzjUeV1KsqauZr2NCIjUTBkVW5lO0V3rkzx4bNY7bcczB61meWT8eyGV1YXKoxIoP1fUvIxfqblYPkY9gk7E0DBZUktjeZLqpoXuIBhIomO+SCQp4P2TOljpN8wYTpUjIhTP9szaUtw2bfkJDX5zZfsU2UnARO6Tcy7TVM/of8rCoiHuCy2bv4iCmYOb6VCwmIVDRnNJJB5TQCvDeVTlU028MNEPGAgHLP20tiK7QYZdxoKb2bjGJuB2QnoXN9yLtYNnKOp9tGmu5p8iEjNlccOw2HTxvN9yde4OIBAyIV7VPHHoRDJrRh7Stbcd+6N7B19wDv29mkuo6NOxWNOVad7aepB3INGwD43AkzcNzBY/ncSPfPfYN5y7AJsNeT28uMY6cyYRlUtIJNc20cCREbXlAqIYoHUOuddV4W1WAPnBZZM6XBEle0BnBuelm7aPG1ciI2gJ1j096UEQwbynPMSBEbFunwoqKplFOie5zt490m65ZcGodP61SeIxbotHM+hnySSlUTnEo8wGvzxiZUtgfYLhk2iQD3FhTywtfZnOGGShAD2DCsjeGglH8kS1uGidiwsVUoWrKkdJJiz4Q9s1kT2lyvQ6loqsrccn6HX2VqwFs8gCGOHBsA6OloRE9Ho+vn3AtK6gakk4Yg7U4NjDAI4o1kSEnRzXQigX1glE1a48s+h1bh9qSiKfpLvyrHhlPRSgXavCI2gtKP0+BtzckRm2DzZnM2hSMO6nT9nEZsaOFUP/l2m4omrhtU6plG5in6QlLRZIdcUDgNG+t32VHjzFZQn+8F1rbefXkhZ8NtbnGTexZzfeSITfQcm9jEAySHlwrZVBJHTR+j/O60Z8RG/SY8qWjS85WjhF7iAUmpD5umyR12bhHpOMCi527OGVHiWZqHEgaUvEk4hRncJfmtn4IqWsA9d2MmhfccNMb/QCjEA0r31ZhJ4dTZ42HAwH3r3sD2vYN8XaS54tSwV1HJAOdaTsELdJIcmywxCuS5MZkwkCkVFWVGRJBcRjdVtNipaKXnGERqOwgqF5OMAZSGlCObJqppLosHOKhoBdPhHYpTFUT2/qW5l9AMNVmrkOGGjXVvHZKnhVJwWBI29xwX/MUDVHLPphnNGIuSYO8bsSGbd/fQs/PvLPIgJi2r/w+IG1YA2CYZNkEU34LCmRCa4tSNoM+N9W26qeJebk5Jsb4nSOSNenMc9SUIFc0PQsQmmXA+Z0PMb1AaLY6Ijcr4UW+MKw17zrEneOZckGXWwzoGxHoYwSM2mVRC8NjSHBohcZhU4Y4iHjAkjUObiuYca17tVUVs5BwbtreJKzqaL5iCApAbz99ub8nwkKIdtK6aTP1l4KponnVsrO8cLBR5HkrYPixHyIT8A5LALBd3ZggbsQEs5yGlNrkta2zNkcsUiDk26mhYMLlnyVscUzI8nY8Cz8WO/DGxLWwacKOieYsHyBEbdR0brwKdbNz39ue586uSERv2blwND488Jq8501JF83f+0EhV2IhNGDBnYL9CqAgA2pus57Bt76AoHqCSe3Z5j16sCzr/uBlGMhq55DOLjFt/DyIeMCRFbGTDpjxVNJNHukeE3HOeeCSo4hK13vnAlTxfVCNbDgPHqQoiK3vwiE3R9I02+IF1VBaNam8SJ6QWRY4N6+RsEaYdRb5v6t1gCNLZVQgSxpfhpopmF+gs+C54qmfLnoHgiZaSPFXXYLQ3Vh+FGZKxqqJJ351LJfhiEDScyz2+gmFTap8henmC9D06IcpjpUg83b7XkVTR/CI26urRak+01zGyQkulQA1g9pyYUSqrEZbjGAhax4ZFiGXeOp8bVYavol/4US1pErhMReOV7L3EAygNNECODXuG5ToRaD0fSqn0qjAPEE+iZLRQFSp5wWcIUseGPY8dfYM8pyB0xEaewxSb8kLR3bCJErHZvS8vrBVu62gToaIxR1m+IEr3O3NsgosoVCxi4yMeoEJGckjI/YnL7EYQD3DUf2KGDVfvdHf60VwTwKahNWWSsUnqqtDiE7ERnIQeDhYZsqKmqyQ/6fvUmRM3uCpaabzL9zK6yaIz79g7yKWSxTo2dn8YcjFsPAt0kqjvgCTF74YGKcpEJfDdkJEMMfZdsmFTTh0bwGYljYyIDVGnEiM27nLPTiqas0p4XBMhIGmxJ2yPTaFo8o1y1Jo5LGzJjbZsSujkNMdGlre25Z7t5yavQ3KRUyBY0SYVEh4hZjcIRqFCFY3WsXFbRL1VZdwiNtKGW/JubdtTMmyanYZNublZqmrSPC8spJdwSKCiiRtXW8HM/5qGYbgKCATRumegi7wlHiAvXOI79yvg5va98nXlRMZKgVI3bdlLZtiUlGYk6l5QyHko3seW6GAKFTfBsCH7UeQglgAAZDtJREFUcpmqKEYtIJzvBfk7g4gHyOPQ+f5kuedgbfEDuy9KRZOTkL2qeueliE0QKloQ8QAWXd9emmcyqUTozaYcpZAjB1b7TYHLTxHGi83eT+++IVFW3idiUzRtD6/cDnlNzhN2hh+aMilh3a0mFc1xjsQKkNcWeTMpw3MzL83dtL4b/enlIGJzwPa9Vn5xRwVpaIDdV4JQ0eRmez1yOT/TT5Kf7r/iyqemkKlo8lcwtsfO/iFOs3KN2PjJPSsGWpbs9xgjyS9iIxvZ0ahopRybGAybjGDY2OVa4kBdGza0aBflD6aStl63nGNjR2xKnxeKjrB3nBa8rIpGvWXcwxcxQmTn2FgvPZtOCtSyFoW0Ipd75jk2RDzAsaEHbytDVFU00WMY7By3DYat9V7knmbXZEEPb7Nb7oArFY15t0qLwGiFeEC5XUdFL5CNcT+oqWguOTYBG0zlICnCiElQVSCLiibej5wA6iVTyqAaO7WK2FDxgLgjNqLcs/fkzhwlcr4L+17Z6QPAscgHzT+TYRs21nF2HRuPiI1EnZPfOzdshkQ6X7nzNBVyEerY+EjT2+IBalU0sU6aOHcylSTPHJvSuSyXLwqVUn5PKqptnkjByogasaF9ym1DRDcnLNont8OtwG2QcZNIGEL9prioaGIUM9g5okGZkMax7dxxi9iEEw+QIzbqDbHVFjZXWcdwZ12TWhglLrSU3ot7DgyZqxw5v97OEUFF1eX6dC2XnTlxglHRmECGfC+jGq0xbZrA27v3ARDr2KhqS8n35KWKxpwjg0QVjea4qsCiIUHrUQH2WsT2lQNcFU02bMI/Y7qn6x1ZERv7hTvEAyRVNDnHhirPyF7oOHNs5KR5OsnyYmgRv0/OscmmEkLht1aVeECehf6ZKpqH3LO0oQeiq6L5bRZUEEPL9nOjXg0etXNpDx0csuyv24bNGUkobQRNFra3BhlbBLyUXMJCnrxy6QSPOASO2CipaOJ7C1PHhrUDUEVsrJ9B32mWbLblxS0QFS1AxMaZY1OtiA3zgtpyz3bEprxNeZJSWlLe57Jrs/lBjkYmpAgk4IzYuIl9ePXvdNJ+fzYVrcA/c22vIB7gnmPDxQNC5HV5gebY0HnNz5Bzi8ZQyoiqAHT/UIFTyzypaKVz3+GGTfj+Kz/vtGDcltgKHlS0MPM7zbGhdDK3uSWRMPg6xZLm5dw9Zx0bW4wjUJvIxkqlChYFtJ8mgzqZpPwxOf+N7UPcCnQGZRwAhIomF+j0oOuy+YjRq0c31ThiQ/4chorG1g42Jfg5OgsmkXivgGHDjAg23uV7SScTfF5jgk/ppE/Exq2OjUeOzWBeXcdGhXgiNiXDJgbJdbpu9faPoIiNTUUzHHLPtAo4YFt8rR4Rm6mdTdb1YsyxkUPitBNS5aQo4Dk2pXvLphJSxMadisZ+NqT9xQPyiohNOapoUcQDBE8XqWPjLx5ADBvJi+BmzDhzjewNEEDC9qUEwDipaPKzyaaSPOIQlFKh8haXG7Hhai15dY5N0P7ADZukk4pmiQeQjYBiA++sY+N/TNUiNiQSIosHsL4TpJqzClRVzE9hxouKlki45c6JibRu49WLNivnEwB2HQdP8QDJgSEf6yjQWWb9L/l7w0Zs3FTRqJNFVcTTrkLuvUCzc9k80xJBrlyO7lKHGm1/pSI2CcO7WHEjV0az+ocs4OMesQm2NlOnXlweeUE8IOB8J4t+OKXNrd9dVdEiiAewfugpHsD7vvU7E8SppHAA4J9jEzRioyo8DBCnjs9+oFgk0vtlOkhUkAtUq7qgbERmU+ocG7f36JljQ6loQXNs5IhNgHnWjYrWkpPpoOH31JbCq3WRXf0jKGKT5wuJmGNDPb9s4Mo5NraUnJ1jc+KsbrTkUpg9sS22Nop1bMSJ7Z091sLlRUvwAs+x6bcNm0ZyLcFrRZR2ALvTekdsrJ9U6z6qlyNKVMPN8GD3PVggcs8BxAPkhDb53ai+l7aXR2yksL3o3fa8JV/IRm4uncCCKR1IJgwc4iGlTMHu2atAJ/8Z8F3YERuJiuZTjE8GpUepEpx9qWgOio13VCeXTlS04JzwvcQbaBs21niUx13oiI1PJItCjtiIqmgJwQBj8IrYeMkfM0oF/T6rjdZxwaho4nkydYg5o+w6Nv5JrUHAHRbForCI+yUhq6Ix9HdKRRskxk8fUUTz2vRzKtqe6BEbuX+pxAPyxSJPXJYRShVNkWPjd36TVMtGdpi4yT17yYZTqJx65SIlrBHBzpH7tlho1+4nrlQ0j+9xGjZsT1NyXuYDiAdIa1olpZ4BYPbEUcikEji0p135uad4ABkzcjvZ3HtoTzvGt+WE+m/CNYQxH1xpLyyyabXhRdEhGTaZVII4bf0jNnMmtiGZMDB74ijHtWl5j4GQERtZPMCbimYIbWTrXi6VFAtyR3zGrO9yKtqIqGNTZC9crGOTJnLPrPO6Fei0kquslzGpoxHPfem4SJrbbhA3COLA/fu2PgDAhFH+lWxVYMmCbH+STScFKhqd3GklWvpTzLHxj9hEVUXz0qd3PcfFa5wlg9/Pk0fPkw0b+pq9krMpJW/fUIFLD/ICnRGiUW5QVZM+d9EknHHohMDeCvau8xK/n7ZPlSTuBTvHxk0VLVzkh9VXoVAV6JQRjIpm/79aUs+0LYWivZg4c2yiOQaiyD3ziI3UP1VUNFkVzU3sQ+7rrOo8IBs2IqUiuHiAlR+ZShj8WclUtGLRe8wHhRCxIZQR+nhVhn9KMS8Coiqayvhh+SSyt1kGO5fNM1H6sIOPrxhX+aKJodIzZbVtVMf7gbWPqqL5zQdyLRsnFU0yGkPmpjFjyzDioxrRDXDQ+U5mAojUtAT3ZLPIpvwevNouvyM2t9oRG0YDVRg2Btvgi6po8mY7bkzrasYLXzneEdFgEOYauZ4W+ay9MYM3dvTzZ8WexT0fW4x8seiaT0INurgivyrIYh+q/iKr2FqqaGLOCkDq2Ejv8cRZ4/B/K7uU+wK63wubY8PWePZsA1HRmNwzKwaaTiKbSvJxHNW5YJ1XsMUDRkLEZohGbEodyTBKixNPjrOOddSxIapo7MXn0tZ14lTJkKMCdBD9Y2c/AGBCezTDRjbAZCqaKseGyz0rCnQ6N43WT+rZDSPvSxFFKlNM6LfvlYZr2YbMzZNHz5M3CIELdLINkGlyLnIqYXBPqigeUF7fke+DRSLDDGjbW6yK2JSoRryeTbBr5jgVTdxwhK0p4klFk7zlqkiLW+FB4TrkHcRVnDMIBMPGhYoWR8QzqNyzLL3MrhMsYuP8Xvn3hnQSjWmn8wRwUg885Z6lPATreNsAZ3OanGNTLoXE9t4Svr3hr+CoopkBRF7XhYrGPKHNPhF6uU9H6cMyjddQzHX5gq2K1pxxzz/0A5sHaR0b/4iNREWT5hXXAp0BPb9cJChGWrmfDLgKdI12RKRTtqHD+oaslue1nsjCRHLuF+uPXlQ0Lve8VyxhUEk0ZJKuEUuvZ0x/z6WTQhV6LnqSMDw38HZuUfSaYkGQk5656j3KVDRBFS1AxAZw3xfQHBu7QKf3WGB7QRY9DEKblveVzJDJpRNChCgKFQ2w50LWlhGRY8MWjVTSlqNlExlNEjNN06GKxuk6pI6Nn0UbBfLkY5A6CexlTRzlXs3cC3JHlcUD1Dk2knhAoIiNMwm9HLnnSDk2lIpGVNFonpXfNZw5NpSiQ79LiiSQ98XUY9qbMnxyjjdiI3nhfCYjFVRUNPccm2DXz7qIBwT10MrXUdaxkfIbgtSx8RMPkN95JUETcmW5Z65GGDJXgEG1+XcD679qKpo6YuOM6InzKINg2GSSwsIqyHnLyeueOTbOSA/7mSUiE4WiKdQ7KXfPSlXR6CLuR5tNSXMpgx8VjUUnGj2EA2i7GKL0Yfq83epy5Yt2YnFzGbVfWPtoxMbXsMl6U9Ec4gHEiRmoTSHzEoMgJTkIgkCOtKaFMWJT09l7cMsdUbZHWndo4VV6TRUDxan0WZ2IjR+88lXpWMxJCrBh9xSFYjFy9DwI5IhNUCoaWx+D5Nh4gaYe8BwbH+OCS1RLqmjeERsxwsSpaOmkWLeuTCoawwiJ2NhyyeylyDkErKYE68SydO5QwRSszLihigrQTt6cTUWusyEbYhkSsZFrH6SlkCEzVmQ1OVXbabmGqKpoXtxZN7iKBxAvga2Wo353bnV9rOv7fxdgR6cKRVOpHiPm2JQ3SdKF2DD8ebEqqKhosveFR24CNtdV7jnk4iBQ0aR3JtOAVJth+Xu8aBZA9YQDAJHmwELyDlW0iEXhqCHkLx5gCMfJVDQaqWBw1rGB8JOez9CQTgoeNC+6nNeGVKDrSIaNvEAOForcCCtX5IU6LOgi7ueoUMmp099TRP1KJR7Q6FHDBnCqeLVEyMFUGYv8M1rHRlLvYwhjeLNze/cNBY5INoakotHSDkFgiwTFt6bT+SgaFU2i2qYMhxPNYdh4igdIRlPKNlgB0dB2tEsybOTabLWCTN2nEHInJXZK2LzdQtF25lQixyYIFU2ZY5N0MiO8DFQ3COIBrI6Nz/7WVRXN4zRZPMBmPyWF/Wl5VDQblCFQDkK15t/+7d8we/ZstLa2orW1FUuWLMEjjzzCPzdNEytXrsT48ePR0NCAo48+Gi+//HLkxomqaFZT+cJMOKQsvyaZMPjEIaqi2QlPcUO1eaYva8KoBs9EUi/Im95syvZiyLSrNAlTFwmnPJW0E9bcvLNKz27YiI2PF1QFmXvPYHs1/OWevXJsEi7Xd1NFKxZNpWcrVsNGotxF6RteVLQU74NOI9sLbjk2ZkhqIpucMymLlklvL5kQVdEyivEoz4++EZsqUtEozUGuY+NQRQv5XlNCxMZ7Wmb370ZFS5H+zCAbqOw9OCJk5PeGtBix8aIeeKuikQ2a1D9z6aSwoA8MFYlzxfWSgUANGxqx8qp9Bdj3JufYsHecSSZI8i4xbEqbeD8qmuzdjBKx8eovPFJFqGiyAyBKjk3fYMEuYeDTvxn1jVGwnHVs3Ap0BjRsOOU8vk1rlMi8oBQoCaakk07Je9no9XICynsLWl/JNG2jVaUuKUdtmcOuGlQ0L3hSwqWIDTUCA0dsyH3nI87FQSA7yVVTtsOwSSYcRVYB21gIE7Fhc7EoHuC9v22UcmwCUdGIYVMkjhIaaQeiU9Hk8Z7LxOOoCHWViRMn4utf/zqef/55PP/88zjmmGNw2mmncePlG9/4Br797W/jlltuwXPPPYfu7m4sX74cu3fvjtQ46q1n9CTOzU7a3tPdRDiAbRQpNYsmPMUNujFVKQ5Fza8BnB3doqIxw0acILNJW1edVnVOJQ2elOZWv0WQe44lYhPsHLcoiphjU4Z4gKFukxslr2CKVDTVd8Sl1AQ4vT5B4UVFk6OGYevPyBXBw9YUYRM363OUA5805Do27guy1zH0GVY3YmP9tFTRRPGAfNHabEQtCqeSO3c9VqKiyYpYsmIka5/1eYIfB4Skonmo4HjdrxixEefnbDohFDbcly8ESmoNAjq/UVEULzqM1TZ1xGZQQUUbEqho1tjxEw+QHStRcmxUBTnl3ykVTf6OMJs9SmPbVRKS8FsfGB1Pjti4zTNhKZw25TzGiA25VtDnI0QxE7LcszPPsDkEvUp0xhnCXJgnBcC91CWZIA4zMGsdsRH2CR7iAbl0oiwqWpHQT+PsIwyyEREoYpNU17Hxiry5gc8/IerYcCraYAgqGnGi0jbLkfaoDga579Ykx+a9730vTj75ZEyfPh3Tp0/H1772NTQ3N+Ppp5+GaZr47ne/iy996Us488wzMWvWLNx5553o6+vD3XffHalxdg0Tg0db2MRH+e67SsV96ORNJ/dqUdHs4nXEsImoiAY4B082neDcZbn2AfXa9BFpyXTCjtjIg0/t2bV+huWlJjwmLDfYXmPx/CxJZM/zQe8fsXGIB7hFbBwGnvUzTyI2laKi0ckragQxraKiSZMUz7UJOOG4yz1bP0OLByg23YmEOF6CyD2rNjq0r0SleUYB60OqOjaAtcnlkYGQE72fWpzYDjFiI3jOSESCyrjLOVjc8HU8bylik1YbNk76k3ubxXwQiYpGqIuAOHeVy4236ThFYXyI0WVVe53jC1BT0ajxw2qV+IoHSBuQKKpo9Hk7ctmIQTeQLz9ik04muLHGig36nW+LB5QMm9J44Qp4DiqavdYHQWVybNyNxUDnJA1hnbFybKSNG41C+KwlcnSDvvN8wbTFLJTzqPWzaJq8hk06aUSiPcYJbxEf+/85SQE2aHcVnRmVzLERn7nK0B/dZEtSp0oOJ1W9OC/xADewOWSgjDo2ct6lClkSsaFR1lxKFA+IqjTsyLGptXhAoVDAvffei71792LJkiXYuHEjtmzZguOPP54fk81mcdRRR+HJJ590vc7AwAB6e3uFfww2FS3BXwrzFHLvadGO2NAFgi5ONOEpbqiiDnFFbGQLPJNM8kXTq/Irq6cAWJOtqkI5YA9GujhHVkWLEMZnmz958meeANO0NzpuGycxx8arjo37omXnGplKWcwoUtZuoO2IIhwAQEmDkTX7eXJ4QG8VV0VzpaIFNZCs67AJXOgXjoiNwmhxMb4p6PuoptxzQrlhtMfhEEl8DxttEJKOFdQS1bFcUIWcmzBoxMbemLPFU47keaqiZSTDxoN6EFQ8wC4qah3PNgjsXvpjNGwEVTQXKprKm2vnqEibb0JFU8s9s4hNOCpalIiNl3gAXfu4eIC0oQ1reLM2bisVFQ0s9zwoqqIxw8YpHhBN7jnO0g3ligekCA0UEFXRGGhdOb8pQl6z6LWHikWfAp12H9hB6NVRafFxwVM8QKJpsz6UMLyLwaquX6y4YeOfK9Xe5KwBxiOWVBWtECziQkGjyuxaoaloTAI/iNxzvsijrKmSkU2/Lw4qmqWkWgMqGgC89NJLaG5uRjabxaWXXooHH3wQM2fOxJYtWwAAY8eOFY4fO3Ys/0yFVatWoa2tjf/r6enhn9niAQZmjmvF0TPG4IIlUwAQLmXRRO8+RcRGqGNjJzzFDTmHABAXy7IiNrIqWjqBI6ePwYIp7fjggknCZ3TiYzlH7O88x0ZaxBslCx6IniMQRRKZRxfkyT+T4s+VRVDc5J7ZPaWThqfijGh4qb0thaJpFzKjhk0EKWs30IUuasSGK+0Iho31k93zEQd1YuGUDpx92MRA12RjQ07ytQvyBWvbGYdOwPzJ7Tjm4C4A4qKblBZnr8JyDCqPbK1ybFhT6KZMNmwKIZOg+bVDRGyOO7gL8ye344xDJ1jfJW1yKc8csIzTDZsth9Hk0Y3C93mp0DVkRJ67qkCn6jwZKk84FQ8A7EU51ogNkRKllEpxc6U4L2Ev5hSUikYL5DHYEZvKq6LJNCUKatCxNufS4iY7bP9kDoRn/rYdgN2P3NAkUdEGZcNGnmeK7tEHFeZNascR0zpx/uLJgY4PgrTHptsNrB8wRVS6VqSTKvGA4PQqIbqRNIRnY0Vs3ClMNGrLIjbtNc6vAZyOLgo6pVgRm/B0Q5pbVFFVNAcVzXkMjdiwuZNR3PcM5Pl8ESViw/qdaQL9Q9Z1whboDBKxofm8+6R9tNd6EBQCgyVGRlXoXcGMGTOwfv167Ny5E/fffz8uvPBCPP744/xz2bI2TdPT2r766qtx5ZVX8t97e3u5ccOVUkoJ8Hd8eCE/juZFqCI2bDAM5G3Phqw9HgdUoVW6kE8sJ8dGmrCyqQTGj2rALy5d6jjWMKx6ELv6h7j0dbI02bLryPMfLbzGELSytAy3In9eUEW42O/tjRls3zuIt3r3eV4zxT2/SaUKF7+mh5wuVZBhhlS7W8SmzDlSzLGJGL5VqqKJSb1jW3P4+aVLAl8zF5Pc89EzunD0jC7+e4pTR60+Su/fq/6Cfb7ze8U6NtWP2LDNGmB5pg3DWmCGCmZkKifl9/tt7g4a24L7PmHPAYJ4gGErz7GF669b92Db3kFkUwlexVquZ8NAn3dDOik4g6jYg/zuvOqJiDTQhPCTGzal/seUxYDyaZ/Ua00VgPyk6bnwjEuBTjcqGi/QGZKKFinHxkM8gArn0E1TNpXEUMFqY9j+ydr4+KtbAQCLpo72PJ5T0aSIDTPiWDKyzRoIt+40ZJL46SWLwtyCL5Iem243yDm/8jh2RGzCUNGkyGIyYSBhWLXF6LtV5ioSRsv2UpRtdI3zawCphpTUbDn/lEdsQiyTlMkj02/jhOx0VhnCLOLdP1Tge7C2hjRasinsHsjjzZ39mNbVEkkVjc6/LFLsq4pWGpOh6tgoqGhylD1s24Xrk/P8It1hELo1mUwG06ZNw/z587Fq1SrMmTMH//Iv/4Lu7m4AcERn3n77bUcUhyKbzXKVNfaPwauGCV28e3mODaWiWef0kYWyIlQ0H7nnsqhoUnv9Qo1s0tzVL/Kg3SI2LaTwGqMcBbHiVfDyxLiBDSjVxNPeaL3Lt3qtSdktRMna2ZhJOgaXuDC4b2aol0dFRYsiZe0GUf0tYo6NgkJYrnfKXRXN+hl1k8nGripCoNK+d1LRvI2faubYsP7EPF7JhOVFZZsZGrEJ+x78DD4vyFExmYr2zEbLyz5vUrudb8fmKjmB10MVTczlEdvoqYqmcCpkuEMiIVx7H4nYlLshoQ4L1zo2Siqa03FAfxfFA0iOzQArwug9ruWNaLSIjbthQyM2NMFcKLAaMqGatZEZbwundngeL0dsWB4AFXih0eGokc44IVA6Az4euS6TMI7J3MBAjV6/tUTFOOBlLHzEA1LE8bt9r7Uf6CARhFpBzLl0n3ssKloprzrE2qOqXVWJiI2laGr/7tZGto+gY4/tCd/YYRVwj1bHxj6WOfb9jIuGtExFCy4eMJB31oOMm4oWVw0bIIY6NqZpYmBgAFOnTkV3dzceffRR/tng4CAef/xxLF3qjDAEQd5j4FK+O4/YkE0Oe/F7SDQiSs0QP6hU0dhklkkl0FnGZOKUe/ZuP5s0mWHDnoFbjg1brPKk4GAxZE4FgyAeEPAx21Q05wksjPv2biti4xbqZPfUkE46chNkuUx+jstGgEZsaBg5ipS1G+hAjmpoq+Sey9Xsz/JJr7w6NjJYW1U5HV71FxjUcs/2/2tRx4Zt1lgEmPKdoxqYtH+H9X6JClkJBxXt2ZJhQzejXLjD43k3hqCieYoHKKTWZfEA5m2Mk4rGx7XpUcdG8RX8fUo5NkNkA6KiorFoU5NfxIY8K8OwpZHDgD5vR4HOpL25o97grGQAh4HsNDx00ijP4xtl8QAWsSHRKepEsdUE41+jg0JQFww4z2ckwyYtRdKcNOvgEsYqZxx3auWLvDisl3gAjdh0NFZvrnQDdSR4KTLSiE2YvkqdOpWkohmGIYwnNyNVadiU0hP+sdMybKLIPdO+wfa4fo5Sdyqa+zl2xKZg5/KwiE0MqmgiFS0+wybUjHrNNdfgpJNOQk9PD3bv3o17770Xa9euxZo1a2AYBj796U/jpptuwkEHHYSDDjoIN910ExobG3HuuedGatyQRyiRJnz3qqhopQe9uzSxsoSnuKFKhmN/mzCqoSwPv0M8wKfjN0mGTYp7R0UvLT8+k+Sh7d59Q2jIJG1Z1LB1OCJQ0WzxAOfxbEJ4e3cpYuMj99yQSSk8l2oPpdvmeahgF+ikiX9+dS/CgH53VGqkiopWrma/r9xzxPv2UuGSKTn0OH6Mj8BALcQD2MLAJuJ0KgEMFgRVtErm2MiQPc3UUDdNk+dFLCKGjTxXqdqRk6lonrVTgkVsbOqOuDjyHJvSZtcwgicMu34veQ6CeIDPXMUMMdO0zmXHMEeCtZbYxiwD28T7Fugkz645m4o0tmg+iBwVoHLwIhXNfQ70AzVI5kwc5bsJYWuRXMemIZNCKmFYzjQy1+Q92BnVAl0jAtOppTVMKLRbquVF0UD6ht9cLdRhE8ZNAfliEUMeG2KqGmvXZqt9xMZrLZXnHjMCLZ51n6JpcidtpaKAuXSSb/bd3iU3bMiYd0RsIlDRWIrBYKHIo6i+OTZSTjVb273mWbFejlgPUqjhFFkVTXSkxYVQhs1bb72FCy64AJs3b0ZbWxtmz56NNWvWYPny5QCAL3zhC+jv78dll12GHTt2YNGiRfjP//xPtLS0RGpcnnOa3TdAVo6NUzyAR2yYd7UCNDSrHfb/5eKI5QgHAAq5Zz/DxoeKJg9wwzDQkktjV/8Qdu8bwtjWHKksHa6tAm+9TPEAwM5xYe/WVe7ZYBEbZ6V7+iu9dbd6Ptv3DnDqFU20pPk5ZW+2YvBQqKho5fKJ3ahoUQu2MrD7ZefT6yiNlkARG/tvUfITooK1nXnms3xc2bSkfDGaISjUwwi5uZMpRtSweWNHP7b07it52dvJcc73AYjP1qGK5iX37GXYSPQc66f1N5vWUIrYlObrciOjAInqFyTxAB+hEzo/DBWKSCaS/DqABxVtUCza6gZByTGiYe4VsaHvf6BADZvwBQ8ZaMTGj4YGuFPRsqkEcukk9gzkBcnnqPWf4gQdd0HHr0xFk3Of5MuIERvva6sEb2j9pEEv8YCE7fhltdlqXcMGUDuC+e9kLObSCRgoM2JTej7l0sfdIEZA1ccwEaKsKmIjGzYRKMiDhSKfdwIbNlKOjScVjUVsCs6yKWLEJqphY58Xl9QzENKwue222zw/NwwDK1euxMqVK8tpE8cQqWMjg07ebPKkXGU2KbCNaiVq2AByImpCaFu5ho2jQGdAL9lObtiwTYTYLoqWnCU4wGoBRa6c7jFhuUGlIscwWipu5Ta5MaOjIaMQDyD3wBLXC0XTVe75ndIC0NaQdiRk2+3wvic/CBGbqOIBik2VXyFTP7DokUxFiyr/zcA2sHaEgHymitgEkXumG8MI+QlRwb6X5VJwdRjivY9qYAoRm5ALnBwt5Zsa0+T5NbMnjhJraCgiaHI7wlDRvBY21SacjXlZYYd5E+Ogjwh1bEgkWijWq1hb6L0MFYq8jZSKpirQaYsHeM/T9DlGNczFKJj47FkEJ0+paKmEIxcrDCjNO5Bhw8UDWB0bm8aSSyewZ0CMDucj5qbFiSjiAWkeSREjNwCQThmOdZTm2ISpYyM7TakqmkoenuZZMRZCRz2oonnQ/YSITSpJhGeC94kUue9KigcAomPS7V22K6hoE9stRUFGRYuSYwM452DfOjal9g4WrPqAxQARMbZ3LBRNnq8uK1mq2hIUdUFFqza4Co1HAjGVe25VRGwY/BLvo0IVqWDtLUc4AAifY+OI2DAqGhcPcHY+y2PYz/OUgnR2FaIsCrZh4zxertrrV8emIZ1yDGxVqNsybCQDqHTc1hLtzcuoKjvHhlwrap9Mp5ybKptPHK1dqoiNaZpgwlCRqWiSUe0rHiC130vuOWH4J2rHiYQcsaFUNDBVtGgGpiqqERSCEZ4wBBrKsxu3AXBuRhOKCJr8e04u0JmkC5kUsQkoHsALdKaYYcOoaCXDZjA+w4Zu7iifXPAaqyI25HNK96RUNKo8xhA0YkOfXVTDXOwv0jskm1+3HJuocs8JAzhscrvv8czJtm/I2kSxPIJsKsnnvX1DRfz3q1vRkkuRAp2VcUAGgTyOwpwjJ/cD1jOXryIUnfT5Di/F1SFCRfOM2BC5Z3lNrQW8FAkT0txjIrxhQiNVhYj5wkFBJZ/dmBzsmdN3xPaFLGLjJQLhhbB7XOqk2pcvIowqGmCzZ2zDZj+holUbXrxbatgo5Z6lcyoVsRGT0q3/szC8n9a/H2ibDcN/gPMcmz5RPIA9F9UmkCujlTptdMMmAj+Ze/H9DRu3Ojbsntsa0p6qaOz7BqFIti1dm0lLt3sYNuVS0eKQe6YceoayIzbMm0OUiqjabWQqmmTQ+OWSON+Z8xjmDR7dnK1qwTnWbxhnnU3E9H1ENTAbMkkYhkhzCgqBQmPQuRF44fVdAIAFU8TNKH8v0rhKSQtNg2vERqaiubdZkMAtfZ9daNiam+Q6NnFQ0QRVNJIr5pczR/9GBQRUVLRBVcTGZ4EWqWgRIzYu+YOAvUEaLBTEHJt0+DmagTl7Zk1oCyTYQQtR9g3Z7bCoaFY73tzZjxX3/AFNmSQWHzA6UrvihBBNCNgO1o+bS8/Er05XmDo2oihIKWLDaK9EPMAr8j1UMPF2SVm0sw6oaAKzwxGxsf+fTSe4UyWMWhZVOOURmwrlbeUCjKfu1hwAMTLLmDxv7d6HwXyRl+cIG7FwGjbe6wZTcrMKn+fBprYgVDQAPPLXEKthUwdUtGqDhadVliwtQKWWexbPqVSOjcoDceXyGZg1oQ0nvLu7rGtTC9zqlAENG1LHBgA+dtQBGNOSxXvnjHecwzyGbHBFLtBJHndQ7z6Xe1ZMPEEjNqceMh6bd+7D6YdOcIRD3Wg2Dk9R6ffXd/QBAMa15cTvVnjOooJS4qL2STbZiHVsys2xYVQ0O2LDjFwgutdL9mj6GjYeG22Gno5GXHvqTEwp03EQFuwZbN5lGcAzx1nS9LTSe1QDsyWXxqozDkFjNhW6j9FnbJAckiKRL+9uFaPHKmog4CP37KmKFi5i87EjD8DopgwvMsoWSRYNi4MXnySULJor5qdySBNz6RjjBRFTzhwbmqjf5CMeQJ9j1Bwbodimi3z0zr4hoaq5IM8asn8ue1cXrjhmGo492L10A0UmmeAiAXsH8jzHJlPKsQGAP23u5YyLLb3e6pfVQBTxgPlTOnDl8ulKwyyTSghzKCAafP5UNGd72LumUt5euYpsL9CUSWJqZ1Oge6okxCiU+Bl9/rlUEu8e34ovnDgDh0xoC3x9lcR7pYxlmhrg9h0nHdKNv2/bixNnjeN/62zOIJtKYCBfxNN/24YdfUPIJBOY1tUc6vudqQreY9owDDSkk+gbLGDfYDFQ8W1rTbGMode2WfujrlZLhCLrsR4EhWDYjJSIjV3Hxn3guso9J6pl2Nj/ZxPVIRPbcMjE4IPRDbTjBqEtNbqIBxw4phmfO2GG8hzmSWBhxiLhoodBFPEAHr5XLLKOiI3LwGlrTPN7s4rB2nlVbvkact9gx72501pcZQphlOKjXkiVadio5J7LncQ5FS3vvCYQrkgahVzHRl74ZTgiCC7385EjpkZrUBmQp6FFB1j0LrrJDVIbwA0fXDgpUru4pLYUhSkUTe6wkOv9qMQcAHEsNshUNEpliigewMbx1M4mYU5i12aGdRy8eFXEJhkgYgNY/XawAMmwKUVsFFQ0lncFhJN7jp5j4+4tZdGV7XsHxRwbSrUKuRHJpZO48nj1GqKCYRhozCTRuy+PvQMFQkWzDZu/bt3Lj9/0jvX/qBHnOOAVTXBDMmHgimMP4r/Lcs/FomjYNIaiotn/l0UKBMU7xf5IHj+HTemoiCpsWHiKB0hsBsMwcNnR00Jdn+4Liy77gLhA12+3r2jMpBzjxjAMTBjVgL+9sxcP/uEfAIA5PW2h9wPOAu7+5zPDpn+oEMiJbRhWrbbBfBF/K41RFnEScmwiKrzWbR2bSoJFbJRUNB5qLfLqxi01pqLF7RnICoaNf/ubXerYeIF5DJlkdhArXgWx8Fawc9iAUm1i5CrJQZ4tG4Ru58jiDvJxbKBPlEQfaPvimCPZ9aLWVVJR0cou0Ml57+qITdTr2pvu0nWEHBtvKlqyFIGoF8gL5MIpzLCx/j5YKKJQA9lap+Ss9fd9Q/aGUqYPuYkH0LHbIFHRslL+AIXXXMOilF7HyVS0eCI2bJNTFBbxII4KPsYIFY16yGXxABZpSicN3yRe2jei5tioEssZOlSGTTIpeHSroT7WzCWf80KODVuL/7p1Dz+WUaFrqYoWhYomQ5B7ThqOeUCgokWK2NjRYc+IjXTtRQEEH6oBr0Le9FFFdfrxfSFx0FWqNhIt1xDWeGLO0zX/ZxW0XzR1dOjvT0uiEUH2E+y59g3mA6cdsHl/Y8mwmVhqu6CKFvEZ03UkTipaXRs2Q3nmIVN4JEqjYGcpnwQQvV/yhFIx8QBFjk1cEKhoAQwzNmkyIyVIe1p5xKY8KlpZERuV3HNjMCqaDLr5cvP+u8mjMjDVEn6dCPfmBXYvcVLRytXszxIqGqsfQJ2N0aloYmRAqGPjQ0WrJd9eBdr2qZ1N6CrxpykVrZJF4dwgqx6yd8UcHIYBtEhRBB5B84rYeMk9S4uq31xjR2fVx8kFOuPNsRFzB4MoOKqUB5VUtGIRpmkrBvlFawBxMY8asRGpaOI4ooYNVXIrp0BnFDAFsD0DeTvHJm1T4pgHmKKWdWzclDBDXUOa3+Q5jo4nP+NdnWNjO7VswQWF41e6dhAlu2rAa36nzyPIfsfr+pTNEDY6GRS5AFQ0N7CoB1OBjPJ+5L4VRHyARQyFiI1P29m8z9aTCaOs/VHsVLQRY9h4RGzY4s0Mm4a0KPfrpKJVKGLjUxOhHNCNRJBOy/i7zNEeZJNr59iUJx4QhZ/Mc2wUhmsunRTEDtzEA2TQkKhbIU75++RFTKaixb3ZZu2Kk4rGjJyonm4WsSmathdaoKJFFg8QaVJiHRvvBTnoO68WaNtZtAYQN8HFMqhoUZGWDBv2kyV7NmecRSDd5Z7t/8tUNDq/ymPIb66RqTQy2PzGDIRYVNGSzLARFYCCqBzyXAaqPKigorEinntKVDS//BpAUkWLWsdGigxQUMNmgCtnGVKOTeX7Jy/SOVCw69gkbfEAKlRSzXa5QTR4o11DziGkc1wmKUtue19LFVlk/ZI5AAA1pVdQzUslMDsGanwc8FIklBUZy7k+rZFUqbmYbuzDMgtoKZBkwsC8AEqDMug8kkkmAq39LAK/jxg2fs9H7l9sf8T+bhjR5+uRSUULUMeGLd4yh1zm/OWqIPcc96RMvYtBIk7yohokBMsWVlnuOewGOYp4gDxZy6AFxYJGbESFKBfDxkdkQK4/5CcPGxbs++NVRSsKn4UF9ZCx+hKUH17uxMVzOujC71PHpp4jNtTDRqlotYjYyFQ09nPHXpZf49w8u8k9C+IBmSRSSTs3w8vR4jfX+I11R8QmDsOmdC9WTQv7b16SswyqiM2ggopmHWPywqJBJEstiqX1/yAKY+r2uUdsWI7Njr5BIWmfvr9KFS2kYI6pvZSKlk54rsWVog0FAX2O0ec7MkZSCeF+0kkjVFRIGbGRHAD0bxT0/R7aM6pijJWw8HISynVsyrk+HbeVmovFOjbhzqXO01njW30l4lWgc3BQWrtNRSsEdmLTeaMhnUR7o6hkmU74C1u5XnskRmzyATikfYr8GsC5wfMrbhkVdB6uxABiHTZIaFamQQQJ68tyz3QDEAYCHzi0eICLYUPoaEE37F45Nm7fR7vXqMa04zmKhk2gZniCFycss46NoIoWMdLGwKQgAdvbVRBU0SJdlkdOVRECVRRSpHbW1/REn61o2Njvo+ARZa4U3KhobCOuojuxR+scI86Fhhng5VDR2EbcL8emEnVsCkWTLOLBIrD8nRLjntdVk3InhopFLvUchIpGry875IJCkHuWnj2Tqy+atjR5NlVeHZsoYM9i70DBLtCZSnquxZWiDQWBV/5HlGukkwmHIqDgePN5B2I/FSOee0nExk82v17yawBvZgcXPzGiU5vY3DdQoDk2lTJsohvC1HkalSYoOJoCGjacijZYsGvU+UVsSP+a2N7AjRg2n5SjZEj7bpx1bOpr5yBhiEvYeodaAWc9AKfcc4WoaBXOCWCLQBCLvEmqeB1IPKBBitjEIPccmIrGxQPU7aTKaEE3ioLyj3RZOQGTX5t8vxytsT6P9x2ze4nKI2b3qKxjE3FBNgyD9zEmIMA2g4YRvX4Pu1dVhMBtMrYpg/UVsWFtnzCqAT0ddh6WoIoWcfyUA2boqqJigJrulJQoggyCeIBUR4KOLXnM+s01qYT3Isj63jt7rJob8TgQ7IhNkRTro9f2FQ9Q0D0zyYRAdR7KF7mDTZ6D3cCeZdSIDTUAZNp1OpngxizbvGSSScFrX42IIo/YDOQF2WmvtThqEnIcSIUwOoJcI5MSIzTpZIJLiQMBxAMUbBD2k0Y2Ve+Stn/RAeET0ysF+nrdqGi5dDLyesNzbAjNsVLRyVyIfCkZNGKzMIJwACDOpUEjNmxO3zdUIEWLg0dsaLt5xCaiCBIgjpfciDFsCjY/WIb8MlSqP3RsVLOOTZxgHTYTSO5ZpqKFiNiUcmzsQnahmilEbIJu6saWkq/HlnTRZXQ02X8PSlEQ6BZSO7rb1N9Hj1MZNvTzOCbJsS1WO8YrvisI2HulOTZsoYtqLAH2GBngVDTr7+VwlOX8D/oa3TbDSUNcxOsFTL//yOmdwt/Z/EQNm2q2nfUnJmYg91HPiI3UzFGNVo2Fsa1Z7gBgY4LWd3JS0bzvl429rpac8vPxo6y/s/wuNjeUg2SpjYWCWNPCIMaNu9wzM1bVdWwShCY8VDDtiE2AHBvAmoOSCYPfd1ikPSI2gE1HY5ALdFaD8sXr6fQPYmDIWccGcDoka0k/TScS6GjKoDGTjEQNAsTnKlMWMzxq6Yxeq5AUoj3W/5mTYWeJgu+We9uQtu6hJZvCoZNGhbyLykGM2IifsXcfVS0UsB3YzFFbyXlYMGxCrpHdrTmMacmiJZtyFE8OCtq3gjKSWP/pGywEVsAVDBuyZxnbmkXCsIuQRsHILNAZoI4Ng4pHnk4k+OavOjk28S8WrFOFkXvm7QmkiqaO2ISmokUw8E6c1Y27LlnkmthIJZ+Dhju9qGjfPmcuNr6zF+/qbhX+TruXLBwASJ68GDzxt5x7KF7b3ocDx4QryMWgoqL9Y0c/AGBcWzRjCWBjZAj7JCpaOcacvIj7iQdYxwIo1B8V7dTZ49HRlMHcnlHC36n0by1ybCaNbsT9n1jKFx157KrmRrfoTnM2hQcuWyps0H9w3mH4x84+TCEF/hxUNJ+574fnH4Y3d/ULkS6Ko6d34Y4PL8A7ewaRMIAjDupUHhcGqogNFVgoFkzXeU6uUwPYjgSqrsgKJYZRRQOAOz68ENv3Droaen6gc5LKQdDRlMGmUkE9wFnHphrdk81Fb+7cJ8o9k7X4gDHNeGNHH97ZY23Ua1mgM5Ew8ItLl2CoUIzsCJXfC6UysvksnUoAg4VIOTbMQfD30rt1e16ZVAL3f2IpEobT4VlLeOWrJkjEJiq6S33u9e39ju+LG4LKYMh9QSqZwH2XLsFQwcQoSQE2KKLk2DDjIWgdG/l76P6oqzWHBy47HGNa1I7pIKD9N04qWv30eAWGCu4J0XJHUnklWZE1oFpUtPivnw1h2DRKNIgghhZ7bnsHC8jTAoMhJwQxxBzsnGTCwOHT3DcwVPI5DvGAMS1Z5SBM+lDR4pZ77mrNce96FKioaP/YaU3kExWGWVBQyWeA0hIjX5K/N5XUtpu3sV4jNsmEgfccNMbx9xR5H5Wudu2Gw4iqjjOarYrYlKhoiv787vGio6G7Lcc3VAwOVTSfDanqGhSJhIGjZ3R5XiMs7BwbJ0XQ+mm6Gu00GsNgi9nY+Q77hooYKhRtVbSAVLSejkZXIy8IxEKQznug0W5AjNikEtWpD8U2Qa9t7+Mb/KwUOZrQ3gDTNLlhU2vBkKjOJgZZjYw6n+Q8M797FZ2F1jmsFMGmbXv5d7hhRndLmKZXBV7UfVtUJ/oGl61/b+6qvGFTDhUNACaPbvI/yANRcmyoYROJiibtj2QnX1iMSLlnNhmqXloQHjl9aJWjotE2xf84GY8xkipaIPEA+7ntGchHVkXjsr5G9HwMGZROEYd4gBvo/lplGNBNXDXUhPyQItQn9vOt3n0A1BGnoLCLdFrXjUO6mEk2J4UNpQW3yTihMILqGRkFFa2WGzTZWFHn2KiPDQp5M12P74rXsTEJrZJEbAD3vm2LBzjr2LB+myGRur6QVLRyQdcalQOro0l855mkXT+mWn2TbYI2kno1lioaSUYe1SDMWbVURYsD9NlmJPEA1qdYvwkjHsCuw4pHv76dRWyG1/Pyyldlc1E5VDT2fJjuTdUMmxpMf+kIERsqHlAww0dsynGcqlCpPXrdjgrTND356kG8klGSq8KiknLPQDhVtGTCECJTQRIxMySZs7c/zzcAUcUD4kya7ohg2Ih1AgIaNkKOjdOLGiUaVUnIVc+37NqHomnde2dT9LBwTorYBC3g5YUUX8St3+U6DyrYm8+6nZ4E0PdR8BA8qRaCzI0JaYMfFoYhFrqsZdK3G4SIjbSI+8lPU6U7BhUVDbAMHqZSVS3aj6i+5R+xserYiNHTSoNtgpgyG2BtkugGZkJ7g+AFrkcDOQxksYC0yrDhYh/e16LPgvVXZgQyhttwM2w869iUbqWcDW5nc1YSOakSFa0GGwPRsAn2zHLUsJGcPW4QIzbRo8wqVIqKVrejglIAVDQk+U8qHjndXFQqYiMM1Ap0btk76AeaZxNUOpN5dHv3DUVW13JTWSoH7U3hqWiZCBEb2mZVxKPeaqvIVLQ3Svk1E0Y1lPX8s1w8gEVsrL+XY6zyOjZMPMBwLvSOcxKMslH7Zx0Eaipa7doTZG7kEbSy8qesLzKM+ohkymB9Li+JB9Cfbn1bjoqy6wDOYqNDhSL2crnn6tQLEYqlKjobjXZnUiU1rlT8c7QXxkibzGTCQEo2bEZJhk0d9qMwSEoGp2joiPOa31qicprKVKCgFKR6gddaaquiRb+nhCTIUb2ITQ0MG5LnGDbHpm8ofB2bdNJAVxn5NCoIVLSRYdjYC4paFU1suqyuAkhSclXIsal1xAYQPYZBK7fbtWyGoquiuRT8Kwd0cY4kHhCyng4tPiV8HrN4QLmQN10sv0aVHxQGOSIFCSDwxOcFTrtQFeh0Ew9wSWyvVzAqWl4o0FnLiI08N6qcPmy8Rv8evlGrw2gNQKhoUh0bgIonuJ0rRkWt/3tQ0UKKB5QLoT6KYpzQaHc2KeZpVst4SCQMjCObTPb9OSnHZkK77QWuN8GQsEhLqmiyShr96UfZVtV8acqmMIqsUcMtYpNI2Gq1juLACWbYlLfBpc7Jyho2tY3YUKdB2Do2+wbDiweMayvPcaqCQEWLUeCrbkcFpQCoaB0O5R+fHJtKFeikzajEpjdMjg0ghvOCLhLMo2tR0aJtZmVPaBzoIKpoQa+bjhAeZoN1Aik+JXxeZxEbSn0yTZMropVt2LA6NnmJilZOxEbOaSDRGLeFvV7r2LiBvY/Bgr2BrmXbgwir8GJ4MURs6pU+xAy8fNF0igf4RGy4KlqJm2uatuKdTEXLF8IX6CwXdAOt2tRQw4bNiXaOTfWWfTon2U66/ThiI9SxUVPRuHiAXx0bF6cpfV6ZOh17XmD3Ld8+j9iUucEV+1Pl+nqtc2yiqKLlyhAPKHd/oQIbH7l0IlajqX4Nm6J3xEbur6oKznQyqJTcs1BEqwKTDIvUBO24lIoWtD0tRPK5EDFh3KZ2hDrNu13ZlG/FchlhKjsz0MKLKgjiAXWwjtBNTb5o4h87rUTScoQDABqxKck9x6iKJosHeFEr/Qq31hsoFY05ZGpJzXLOjR5yzzHUKKrXzSiN2DioaD7Ke3IdGxq5SafEDepggRTojJFO4QWhxolSPIBQ0VjEJl399yUaNtazYWtxay6FllxaFA8Yhht1CkEVLZkQnItsbeIFOkOJB9A8B/t5DbeIDeDuBLUjNuXdE80DqeQSQveUtaGihc+x4VQ0WsfGL2LDDJuYhQMAu//GqYgG1LNhU7C9YyrPrl+BTkBWXKg8Fa0S3vx5k9qRShiutV5kNGYpFS1gxIZT0eyITdiN2cT2BnQ2ZzB3Unuo87xgGAYWHzAanc3ZwN4CgdMdcLKZNaENqYSB97jUzvCqllwLUG7tUKEYGxWN8Wf/tnUPgHiUZWZNaEM6aXBZyAmjGtDVksWhHv3EL7G73kBrntSiQKeMIOIBh0xsQzJhYE4Zcp2sH9YrfYjn2FAqmkRzdOvbch0bJq/bkE6isbQIs+e6q3+oBhEbb4dah5RjAwAHdjajrSFdtkRrGNDNEGvHQWOb0ZJN4T3TLen0toY05vSMwoRRDRhdhvhJPSCbSuDgca04YEwTWhvSksiDKB4QShXNJQ90OBo2chSf4ZDSOuy1NgRBtVT2ak1FExlJwe6T1czZvneQiAN5nzO3Z5RVW8yjNEdUTB7dhPbGtFCuIA7UbR0bXsPGZXMjbxzUVDQSsakYFY0YNhXY9F64dArOmd8TOLGqmSSvBh1sNGITNWG8KZvCE188JrDIQVDc+eGFGAxRMI3SMoLOaYdP68RLK09wfcYqrnMtQSe0oQKhopXpUVkwtQM/fmIjnt24HQACy0F6YW7PKLx4nf1sGzJJ/PcXlnn2k+FKRRsqmJHrQMWJIDTdo2d04f88+nwQMMdJvb4nO2JjG5wGp6Kh9NPFsCE0NgB4pjQm5k0exQ258SVHwhs7+tHH6thUSxVNEQmgUBk2bY1pPHPNsRVTCFVBRUXrbM7iuS8fJ7TjgU8sRb5YHHbJ8DIMw8DDnzwcpmnNAfR+bCoaixp6X8tNGlmgog3D5+VGAz1y+hjPdTgo6PPZn8UDKA0x6L6L7RE27+rnjku/tp82dwKOn9kda3I/Q1tDGk9dfWzs+8a6NWzypafuFnWQX4a6QCeN2FReFa1SgyhMhxLEA4KqopVofL39+ciqaEBlnnEiYSCXCH7dKOIBgPczpmOuHiI2dMEbzBfx5s5SDZsyIzYLp3QAAP789h5s2zMQ2KPjB/nZ+vUTdnvDTe55sF7q2ASI2ADlq9DIOQP1BhqxkaOPflQ8WaDjmb9tAwAsmjqaH8NqZvxjZz/2lsQD5CLJlULKh4rWmEkim0pgIF8UNg2VWgfdMJEIA1CvstyOZMJAMsQ8X88QFOsUYins86gRm4n7acQGiEcZiz6fSjibGWh/rgX1mBq1QSM2Y1uySCYMgVobZK2qhFHDUJF9Y+xXjAl5n4iNbFCoNLCFHJtKUdEqnGMTFmKOTVAqmjPHZpjsKR2IUqDTD3SDXQ+ytoZh8EVy865+DBaKSBjwrOweBO1NGcwYa1Wrfm7TDpgxFOiMAiowMBxAaUssN7BeIjZWnarKLEo2Fa0+3xNrV1HIsbE+86vjQ6WcTdPkUcyFUzv4MWzT/o8d/VzuubkG4gGq528YBleVrKVXn24yg+YB7E8QI2slRwCvYxPcsKFrEM0hyaTqc+x5gZeGqNC60t2WI86xCho2pD9Xe40EotWxSSUT6G4V9wn14KyNG3W7fbWpaP4Rm5ZcSpmHE+XFhwX92lp0bhmCKlrAQd1K5J6jqqLVCzIRxAP8kKww3TAKWN9mVb27W3OxeO/Yxu3ZjdtjKdAZBcNN7plS0XiF+xr2E/rcVDL4cSFV51Q0L1U0L68x/TxfMPH3bX14e/cAMsmEkJ/CaB1/3bqHU3jjLDLnBbnCvQpMVbKWhg3dZFaTAlcvoM4ZtpeJJB6wH+XYcMn1Cs0b6WQCY0ub92rJPddiChT3t8H7gUxZHy7rbBjU7ajgxdBcVWvo4u3kkMvHDFfxgLCgyauBDZsGFrHJO5JshxuiUtG8QBWI6uAVA7Df7d+3xaOIxsAMm2c2bouskFcuUhJlo95BqWj1ELFJJPznxjjANmj1ql7H+q1Yx0bk97saNsRYZdGaOT1tjuKSgF0gFxCpwJWEasMso72UKFxLg4JuModjPki5oGMjI6mihaGi0f+3N6a5ilTcuQnVAHsmlWw6G5uVnIczyQR3bNeCyUHXxzBja6JEWR+uez0v1O2oYBuEtMsLS0oRGxUqVfzHrR31sMA3RahjQwt0Ms+jX/GwegUd4LFR0cizqAcqGmDf56ZSxCYujXlm2Pxxcy96+4cAVD9ULStX1TuUqmg1pGdRh4bb3BgH6p2KRnNs5IiNbODI4EVXi0UuHEBpaACE4pOApZhWrT5rGIavyAanotV488vmppEesbGpaN75XQz0vdIxZhgGd2S57Y/qGX5jLw6w51PJaLJhGHxfWZMCnYSGGIaRJDtB62DbGjvq9pZe22Z5wdw6ZhCvJNWNr9SGlF63HjqIIPccVDyg9Py27h7gfxsum0oZlcixoe+1Xp4Lu88NW3YDiC9iM7Y1hymjG2GathJU1alow1kVrQzxjbhANwyqGjZxgVPR6tRrzDaDqoiNn1EgRGw2WcIBC4lwAGBtJphEOgA0VUk4gIG13S2y2VGSTq51pITNTSMxx8YwDFLQVRTb8FtL6LwrO02ZsVhrozUKKlHMWwZ7PpVeuxgTqDaqaPZ4CkVFkyM2w2SdDYO6HRW/enEzAPdJO0jEhk0GQRUjosJvgakmBPGAoHVsSpuft3r3A8OGRmximmzEAp318VzYZmXD5l4AYkJpuWCe6af+am3oqt2tefHEOo0EyKCJ5oP52lPR6HdXNGLDNmp1Olew5zCYd6rV+ebYlPre69v78Pr2fiQMKGstUIdCtWrYMGT4RtklYtNceyoaMLIjNoDdlzgVLRXMsHGTewbsfldrozUK/MZeHOARrQqvIYwSWJs6NiRiE2KP64jY1MmeJk7U7ahY99oOAB6qaDTHxsUryc6ttMTlxUdMxfvmjBe8d7WCIB4QcFAfOKYZx88ci4ntDZjY3oCzD5uItgp6eiuJSosH1Mse7oLFk9HTYb2vuT2jcNzBXbFdm3mm/1SKBlV74rMjNnU7PQlgC8xr2/uwd7CAdNLgNU5qAdpfK5pjk6r8BqUcjG9rQCphYM9AHjslWuUHF07CoqkdDnoZA1Mde26TFbWcNaFNqXhGvZ/Vyq9huOjwKTjx3d2YMrpJ+fmJs7oxf3I7Tj90QlXbJeO0uRNwWB20o1ZgfYk5Ak45ZBwOm9yOkw8Z53mem3gAALz/sImYN2kUTprVHXNrK4/zF0/GEdM6K1oodvnMsVgwpR3nzO+p2HcAVp3Bo6aPwcHjWir6PSpQJ26YyN1IiNjUbR2bwXwRiaT75iZQjk3p3EoJBzBcc/LBFb1+GESJ2CQTBn70ofmValJVETTMHwbUiK6XSeCS9xyAS95zQEWuvUja7NUqx2a4UNEYxaRv0CrSOGfiqKrXC6Ggw76SEZuUtGGrNzRkkpg9sQ3/+9pORx2bc+b3eG56mFNooBSBk8cEA/V+NleZivbZ42d4fn7gmGbc94mlVWqNO2Z0t+D+OmhHrcD6EpsnZk8cFeh5CGqckpNy3qR2PHDZ4TG2snq4cOkUXLh0SkW/o6slh19cWvk+9/GjDsTHjzqw4t+jAjVmsiHWG9nppsUDagA3S1SUNHXJsSl5FCslHFCPoF7D4ULliROZgDUCwkCM2Oz/z3RiewPGk5o41TbmOAd7mPRfeY5yiwJUC0HmxjjADJp6nmfkvJig84JsrMnXYZhYw4iNxvBAyocy6AaviI2GRlS551w6ic5mm11UL4JIcaLuDZsgBTr9cmxq6T2tNpojiAfsT7CrOsd3TdrXRoJhYxiGsDmv9rzHJtr0cKGiSUXyam3YyDW+KgVGRatnyqAj+hiwqfLcuWCKM78GkCM22rDRcCKTjBbZpMp39cIU0Kgf0PyqsPlrbN7aX/tV/a5IJbgp7iQDKP+wxWkkJS02ZmmBzpFz3wy8+FmcEZs6q1VUDVAPdfWpaKWfw+RZi+IS6iTzakKI2FRBFa2eHSiHTWkXDPOgfYq+03d1t2BUqSaMDCraUa3inBrDC+XU5WLrWL3SPTVqBzrvhhWRYJHm/ZGGBoQ0bFatWoUFCxagpaUFXV1dOP300/HKK68Ix1x00UUwDEP4t3jx4sgNdFPcEeWeXSI2yZEXsWnKhC/QuT/BjtjEd+/ixii2y9Y1aNShVlS0et4wU1Aq2rvHt6GlgvSvIBDzDytPRatnA7Q1l8bM8a3896ALOWUKeEXgaqmKpjE8kCpjPtMRGw03CDk2IdMt2Ly1v/q+Q93W448/jssvvxxPP/00Hn30UeTzeRx//PHYu3evcNyJJ56IzZs383+/+c1vQjeMWaBe/G022F1zbBJMFW0/fXsK5NIJvhGv1/oSlQRbPOI06iglYCRQ0QDgwDFNvMBfzXJshsmsG3QTXC0kEgaviO3m9IkD6TI80dXEwikk+hiwL9N78nqnzdkURjVa60+169hoDA+kI1LRAHsdG4lOSg1vRM2xAWxltP01YhNq1VuzZo3w++rVq9HV1YV169bhyCOP5H/PZrPo7i5PhnDuxFF4fvM+z815MmGgUDQ95J5ZHZuRs+AYhoGmTAq7B/J1ndRbKQStERAWScNAAeaIMWxYns0j/7cFRrWpaMNsMQ+6Ca4mkoaBvOk+N8YBLh5Q5+9p4dQO3P4/GwGEiNiQe1o4xfudThjVgJ19Q1o8QEOJcqhoCR2x0XCBkGMT0nlfrQKmtUJZrrZdu3YBADo6xIl/7dq16OrqwvTp0/HRj34Ub7/9tus1BgYG0NvbK/wDgAWlxaTZY7FoKnGaO5rU/GeWzFlJZaB6RHvpeYzEZFaWLN0QM9+deWNHEo9+8QGWp7uxyo4BtkEcLtSehkwSCcOiLC7w2QRXC6yfjnaZG+NAc254vKeFUzv4+wm6AWD3dkBnE7pac57Hsjoy7S55OBojG2wdbo4QPWXnNmmjWUNCJpVAOmkgYYRXZJzSaeUG7q/7mcijxTRNXHnllTjiiCMwa9Ys/veTTjoJZ599NiZPnoyNGzfi2muvxTHHHIN169Yhm3UWsFy1ahWuv/56x9/PXTQJyDbg/YdNdG3DqjNn463efa7F8E4/dAK27x3EWR7X2B9x4+mz8MfNvTioq7nWTak6DhzTjGtOfhemj423YNbXz7L6mt8mZ3/COfN78FbvPpwy27uQXNy49KgDMa4th1N8CtjVC5qzKdx0xiHIpZOuTpZq4+azZuOdvYMV7a/vP2widu8bwgfmT6rYd8SBjqYMvnXOHAwMFQNvABZM6cBnjpuOpdPUMs8Unz7uIEztbKr6ONEYHvjiie/C2le2YskB/n1Jxo2nz8Jft+7BlE51EVaNkYt0MoF/fv8cDOaLoZ3Y07pacO2pMzG5o9H/4GEIwzRZ6bJwuPzyy/HrX/8aTzzxBCZOdDccNm/ejMmTJ+Pee+/FmWee6fh8YGAAAwMD/Pfe3l709PRg165daG1tdRyvoaGhoaGhoaGhoTEy0Nvbi7a2tkC2QaSIzYoVK/Dwww/jv//7vz2NGgAYN24cJk+ejD//+c/Kz7PZrDKSo6GhoaGhoaGhoaGhERShDBvTNLFixQo8+OCDWLt2LaZOnep7zrZt2/D6669j3DgdptfQ0NDQ0NDQ0NDQqAxCiQdcfvnl+OlPf4q7774bLS0t2LJlC7Zs2YL+/n4AwJ49e/C5z30OTz31FDZt2oS1a9five99Lzo7O3HGGWdU5AY0NDQ0NDQ0NDQ0NDRC5di4yb6uXr0aF110Efr7+3H66afjD3/4A3bu3Ilx48Zh2bJl+OpXv4qenp5A3xGGR6ehoaGhoaGhoaGhsf+iYjk2fjZQQ0MDfvvb34a5pIaGhoaGhoaGhoaGRtmo75LRGhoaGhoaGhoaGhoaAaANGw0NDQ0NDQ0NDQ2NYY+6K2fL6G69vb01bomGhoaGhoaGhoaGRi3BbIIgsgB1Z9hs27YNAAKLDWhoaGhoaGhoaGho7N/Ytm0b2traPI+pO8Omo6MDAPDaa6/5Nh4AFixYgOeeey7Sd9Xzub29vejp6cHrr78uKEBE/d56vlcKet/HHnvssGhzHOfK57m9/zi/s17P9bv3eng/1Tg3TB+I83vr5dyw9z+c3m2Yc1XPod7bHOe57Lwo42G43avbuUHvfX+fG0fq/oCd+9hjj0VaE4bDu/U7d9euXZg0aRK3EbxQd4ZNImGl/bS1tQV6cclkMrIs9HA4t7W1VTg26vcOh3ulaG1tHXZtLudct/Pk9x/nd9b7uW73Xk/vp9LnAsH6QNzfW0/nBr3/4fZuw55Ln8NwaXMc58rnhRkPw+1e/c71u/d6eD/VOHek7Q/kc8OuCcPp3fqdy2wELwx78YDLL79cn1un36nPre/v1OfW93eWi+H2jGt17nBr70g7d7i1d6SdO9zaq8+t7+8s91wgZIHOakAX6LQwUp/DSL1vGSP5OYzke6cY6c9hpN8/g34OFkbycxjJ904x0p/DSL7/MPdedxGbbDaL6667DtlsttZNqSlG6nMYqfctYyQ/h5F87xQj/TmM9Ptn0M/Bwkh+DiP53ilG+nMYyfcf5t7rLmKjoaGhoaGhoaGhoaERFnUXsdHQ0NDQ0NDQ0NDQ0AgLbdhoaGhoaGhoaGhoaAx7aMNGQ0NDQ0NDQ0NDQ2PYQxs2wwiGYeChhx6qdTM0NDQ0agY9D2poaGhouKHqhs1FF12E008/vdpfWze46KKLYBiG499f/vKXWjetYmD3fOmllzo+u+yyy2AYBi666KLqN6yGePLJJ5FMJnHiiSfWuikVh37/aoz0uZBhpD6HkTQHuOHtt9/Gxz/+cUyaNAnZbBbd3d044YQT8NRTT9W6aVXF66+/jo985CMYP348MpkMJk+ejE996lPYtm1boPPXrl0LwzCwc+fOyja0AmDrw9e//nXh7w899BAMw6hRq6oHuidMp9MYO3Ysli9fjttvvx3FYrHWzRuW0BGbGuDEE0/E5s2bhX9Tp06tdbMqip6eHtx7773o7+/nf9u3bx/uueceTJo0qaxrDw0Nldu8quP222/HihUr8MQTT+C1114r61qFQqHuJ8BKvn8NjeGIOOeA4YqzzjoLL7zwAu688068+uqrePjhh3H00Udj+/bttW5a1fC3v/0N8+fPx6uvvop77rkHf/nLX/DDH/4Qjz32GJYsWTIinkUul8PNN9+MHTt21LopNQHbE27atAmPPPIIli1bhk996lM49dRTkc/na928YYeaGjZr1qzBEUccgVGjRmH06NE49dRT8de//pV/vmnTJhiGgQceeADLli1DY2Mj5syZM+y9OcwzRf8lk0n88pe/xGGHHYZcLocDDjgA119/vaNTb968GSeddBIaGhowdepU/OIXv6jRXYTDvHnzMGnSJDzwwAP8bw888AB6enpw6KGH8r8F7RM///nPcfTRRyOXy+GnP/1pVe+lXOzduxc///nP8YlPfAKnnnoq7rjjDv4Z87z9+te/xpw5c5DL5bBo0SK89NJL/Jg77rgDo0aNwq9+9SvMnDkT2WwWf//732twJ8ER1/s/5phj8MlPflK49rZt25DNZvG73/2u8jdSIUyZMgXf/e53hb/NnTsXK1eu5L8bhoEf//jHOOOMM9DY2IiDDjoIDz/8cHUbWmEEeQ77A7zmADa+KVTe6xtvvBFdXV1oaWnBJZdcgquuugpz586tfONjws6dO/HEE0/g5ptvxrJlyzB58mQsXLgQV199NU455RQAwK5du/Cxj30MXV1daG1txTHHHIMXXniBX2PlypWYO3cubr31VvT09KCxsRFnn332sIpcXH755chkMvjP//xPHHXUUZg0aRJOOukk/Nd//Rf+8Y9/4Etf+hIAYGBgAF/4whfQ09ODbDaLgw46CLfddhs2bdqEZcuWAQDa29uHZQT8uOOOQ3d3N1atWuV6zP333493v/vdyGazmDJlCr71rW/xz66++mosXrzYcc7s2bNx3XXXVaTNcYLtCSdMmIB58+bhmmuuwX/8x3/gkUce4XOD31gAgIcffhjz589HLpdDZ2cnzjzzzBrcTe1RU8Nm7969uPLKK/Hcc8/hscceQyKRwBlnnOHwPn/pS1/C5z73Oaxfvx7Tp0/HP/3TP+13Vuxvf/tbnH/++bjiiivwxz/+EbfeeivuuOMOfO1rXxOOu/baa7mX6/zzz8c//dM/YcOGDTVqdTh8+MMfxurVq/nvt99+Oy6++GLhmKB94otf/CKuuOIKbNiwASeccEJV2h8Xfvazn2HGjBmYMWMGzj//fKxevRpyOanPf/7z+OY3v4nnnnsOXV1deN/73idEpvr6+rBq1Sr8+Mc/xssvv4yurq5q30ZoxPH+L7nkEtx9990YGBjg59x1110YP348X9z3Z1x//fU455xz8OKLL+Lkk0/GeeedNyI8uvsbgswBXrjrrrvwta99DTfffDPWrVuHSZMm4d/+7d8q2OL40dzcjObmZjz00EPCeGYwTROnnHIKtmzZgt/85jdYt24d5s2bh2OPPVbo83/5y1/w85//HL/85S+xZs0arF+/Hpdffnk1byUytm/fjt/+9re47LLL0NDQIHzW3d2N8847Dz/72c9gmiY+9KEP4d5778X3vvc9bNiwAT/84Q/R3NyMnp4e3H///QCAV155BZs3b8a//Mu/1OJ2IiOZTOKmm27Cv/7rv+KNN95wfL5u3Tqcc845+OAHP4iXXnoJK1euxLXXXss3/eeddx6eeeYZwQn28ssv46WXXsJ5551XrduIFccccwzmzJmDBx54INBY+PWvf40zzzwTp5xyCv7whz/gsccew/z582t8FzWCWWVceOGF5mmnnab87O233zYBmC+99JJpmqa5ceNGE4D54x//mB/z8ssvmwDMDRs2VKO5sePCCy80k8mk2dTUxP+9//3vN9/znveYN910k3DsT37yE3PcuHH8dwDmpZdeKhyzaNEi8xOf+ERV2h4V7J1v3brVzGaz5saNG81NmzaZuVzO3Lp1q3naaaeZF154ofJctz7x3e9+t4p3EC+WLl3K2z80NGR2dnaajz76qGmapvn73//eBGDee++9/Pht27aZDQ0N5s9+9jPTNE1z9erVJgBz/fr11W98BMT5/vft22d2dHTwZ2Gapjl37lxz5cqV1biVWEHnwsmTJ5vf+c53hM/nzJljXnfddfx3AOaXv/xl/vuePXtMwzDMRx55pAqtrRyiPIcHH3ywau2rBLzmgNWrV5ttbW3C8Q8++KBJl+tFixaZl19+uXDM4Ycfbs6ZM6ei7Y4b9913n9ne3m7mcjlz6dKl5tVXX22+8MILpmma5mOPPWa2traa+/btE8458MADzVtvvdU0TdO87rrrzGQyab7++uv880ceecRMJBLm5s2bq3cjEfH000979udvf/vbJgDzmWeeMQHwPiKDrRs7duyoXGMrBDr+Fy9ebF588cWmaYp9/txzzzWXL18unPf5z3/enDlzJv999uzZ5g033MB/v/rqq80FCxZUuPXlw2tP/IEPfMA8+OCDA42FJUuWmOedd16lmzssUNOIzV//+lece+65OOCAA9Da2srzTGS+8ezZs/n/x40bB8BKOhyuWLZsGdavX8//fe9738O6detwww03cC9Wc3MzPvrRj2Lz5s3o6+vj5y5ZskS41pIlS4ZNxKazsxOnnHIK7rzzTqxevRqnnHIKOjs7hWOC9onh6ol45ZVX8Oyzz+KDH/wgACCVSuEDH/gAbr/9duE4+p47OjowY8YM4T1nMhlhXAwHxPH+s9kszj//fP681q9fjxdeeGHYUS+igr7zpqYmtLS0DOu5cCQi6Bzgd42FCxcKf5N/Hw4466yz8Oabb+Lhhx/GCSecgLVr12LevHm44447sG7dOuzZswejR48W1sWNGzcKnvlJkyZh4sSJ/PclS5agWCzilVdeqcUtxQqzFMXbuHEjkskkjjrqqBq3qLK4+eabceedd+KPf/yj8PcNGzbg8MMPF/52+OGH489//jMKhQIAK2pz1113AbCe2z333DNsozUMpmnCMIxAY2H9+vU49thja9zi+kCqll/+3ve+Fz09Pfj3f/93jB8/HsViEbNmzcLg4KBwXDqd5v9nPON6T5b2QlNTE6ZNmyb8rVgs4vrrr1dyInO5nOf1hpNyyMUXX8xzJL7//e87Pg/aJ5qamqrS3rhx2223IZ/PY8KECfxvpmkinU77Jk7S99zQ0DCs3jtDHO//kksuwdy5c/HGG2/g9ttvx7HHHovJkydX7R4qgUQi4aAiqUQx6FwIWH1iOM+FMoI+h+EMvzkg6DOQx798znBBLpfD8uXLsXz5cnzlK1/BJZdcguuuuw6XXXYZxo0bh7Vr1zrOkXOQKNhzGQ7z47Rp02AYBv74xz8qlQH/9Kc/ob29HY2NjdVvXA1w5JFH4oQTTsA111wjOKvYBp9C7u/nnnsurrrqKvzv//4v+vv78frrr3PnwXDFhg0bMHXqVBSLRd+xIFMZRzJqZths27YNGzZswK233or3vOc9AIAnnniiVs2pOebNm4dXXnnFYfDIePrpp/GhD31I+J0mX9c7TjzxRL5JlXNj9vc+kc/n8f/+3//Dt771LRx//PHCZ2eddRbuuusuzJo1C4D1Xpla2I4dO/Dqq6/iXe96V9XbHDfieP+HHHII5s+fj3//93/H3XffjX/913+tfMMrjDFjxmDz5s38997eXmzcuLGGLaoN9vfnEGQOOPDAA7F7927s3buXO3DWr18vHDtjxgw8++yzuOCCC/jfnn/++Yq3vxqYOXMmHnroIcybNw9btmxBKpXClClTXI9/7bXX8Oabb2L8+PEAgKeeegqJRALTp0+vUoujY/To0Vi+fDl+8IMf4DOf+YywOd2yZQvuuusufOhDH8IhhxyCYrGIxx9/HMcdd5zjOplMBgB49GI4Y9WqVTj00EOF9zdz5kzHWvDkk09i+vTpSCaTAICJEyfiyCOPxF133YX+/n4cd9xxGDt2bFXbHid+97vf4aWXXsJnPvMZTJw40XcszJ49G4899hg+/OEPV7ehdYiaGTbt7e0YPXo0fvSjH2HcuHF47bXXcNVVV9WqOTXHV77yFZx66qno6enB2WefjUQigRdffBEvvfQSbrzxRn7cL37xC8yfPx9HHHEE7rrrLjz77LO47bbbatjycEgmk5xSxSYkhv29T/zqV7/Cjh078JGPfARtbW3CZ+9///tx22234Tvf+Q4A4IYbbsDo0aMxduxYfOlLX0JnZ+d+Uesjrvd/ySWX4JOf/CQaGxtxxhlnVLzdlcYxxxyDO+64A+9973vR3t6Oa6+91vF8RgL29+cQZA547LHH0NjYiGuuuQYrVqzAs88+K6imAcCKFSvw0Y9+FPPnz8fSpUvxs5/9DC+++CIOOOCAKt5Nedi2bRvOPvtsXHzxxZg9ezZaWlrw/PPP4xvf+AZOO+00HHfccViyZAlOP/103HzzzZgxYwbefPNN/OY3v8Hpp5/O6ci5XA4XXnghvvnNb6K3txdXXHEFzjnnHHR3d9f4DoPhlltuwdKlS3HCCSfgxhtvxNSpU/Hyyy/j85//PCZMmICvfe1r6OjowIUXXoiLL74Y3/ve9zBnzhz8/e9/x9tvv41zzjkHkydPhmEY+NWvfoWTTz4ZDQ0NaG5urvWtRcLs2bNx3nnnCQ6rz372s1iwYAG++tWv4gMf+ACeeuop3HLLLfjBD34gnHveeedh5cqVGBwc5GvpcMDAwAC2bNmCQqGAt956C2vWrMGqVatw6qmn4kMf+hASiYTvWLjuuutw7LHH4sADD8QHP/hB5PN5PPLII/jCF75Q69urPqqd1HPBBReYZ511lmmapvnoo4+aBx98sJnNZs3Zs2eba9euFRLpWKL4H/7wB37+jh07TADm73//+2o3PRZ4JYqtWbPGXLp0qdnQ0GC2traaCxcuNH/0ox/xzwGY3//+983ly5eb2WzWnDx5snnPPfdUqeXR4XXPpmkKyeNR+sRwwamnnmqefPLJys/WrVtnAjC/9a1vmQDMX/7yl+a73/1uM5PJmAsWLBCEAlTJxfWMON8/w+7du83Gxkbzsssuq1zDKww6F+7atcs855xzzNbWVrOnp8e84447AiXNt7W1matXr65eoyuAOJ7DcEGQOWDdunXmgw8+aE6bNs3M5XLmqaeeav7oRz8y5eX6hhtuMDs7O83m5mbz4osvNq+44gpz8eLF1biNWLBv3z7zqquuMufNm2e2tbWZjY2N5owZM8wvf/nLZl9fn2maptnb22uuWLHCHD9+vJlOp82enh7zvPPOM1977TXTNC3xgDlz5pg/+MEPzPHjx5u5XM4888wzze3bt9fy1kJj06ZN5kUXXWR2d3fz+1yxYoX5zjvv8GP6+/vNz3zmM+a4cePMTCZjTps2zbz99tv55zfccIPZ3d1tGobhKsZSj1CtD5s2bTKz2azQ5++77z5z5syZZjqdNidNmmT+8z//s+NaO3bsMLPZrNnY2Gju3r270k2PBRdeeKEJwARgplIpc8yYMeZxxx1n3n777WahUODH+Y0F0zTN+++/35w7d66ZyWTMzs5O88wzz6zFLdUchmlWl5h74oknYtq0abjllluq+bUaGsMCa9euxbJly7Bjxw5PHvlIx+uvv44pU6bgueeew7x582rdnEjQc6EF/RziwfLly9Hd3Y2f/OQntW5K1bBy5Uo89NBDDqqehobGyEXVqGg7duzAk08+ibVr1+LSSy+t1tdqaGjsRxgaGsLmzZtx1VVXYfHixcPSqNFzoQX9HKKjr68PP/zhD3HCCScgmUzinnvuwX/913/h0UcfrXXTNDQ0NGqKqhk2F198MZ577jl89rOfxWmnnVatr9XQ0NiP8D//8z9YtmwZpk+fjvvuu6/WzYkEPRda0M8hOgzDwG9+8xvceOONGBgYwIwZM3D//fcrE8s1NDQ0RhKqTkXT0NDQ0NDQ0NDQ0NCIGzUt0KmhoaGhoaGhoaGhoREHtGGjoaGhoaGhoaGhoTHsoQ0bDQ0NDQ0NDQ0NDY1hj4oYNqtWrcKCBQvQ0tKCrq4unH766XjllVeEY0zTxMqVKzF+/Hg0NDTg6KOPxssvv8w/3759O1asWIEZM2agsbERkyZNwhVXXIFdu3YJ19mxYwcuuOACtLW1oa2tDRdccAF27txZidvS0NDQ0NDQ0NDQ0KhTVMSwefzxx3H55Zfj6aefxqOPPop8Po/jjz8ee/fu5cd84xvfwLe//W3ccssteO6559Dd3Y3ly5dj9+7dAIA333wTb775Jr75zW/ipZdewh133IE1a9bgIx/5iPBd5557LtavX481a9ZgzZo1WL9+PS644IJK3JaGhoaGhoaGhoaGRp2iKqpoW7duRVdXFx5//HEceeSRME0T48ePx6c//Wl88YtfBAAMDAxg7NixuPnmm/Hxj39ceZ1f/OIXOP/887F3716kUils2LABM2fOxNNPP41FixYBAJ5++mksWbIEf/rTnzBjxoxK35qGhoaGhoaGhoaGRh2gKjk2jD7W0dEBANi4cSO2bNmC448/nh+TzWZx1FFH4cknn/S8TmtrK1Ipq/zOU089hba2Nm7UAMDixYvR1tbmeR0NDQ0NDQ0NDQ0Njf0LFTdsTNPElVdeiSOOOAKzZs0CAGzZsgUAMHbsWOHYsWPH8s9kbNu2DV/96leFaM6WLVvQ1dXlOLarq8v1OhoaGhoaGhoaGhoa+x9Slf6CT37yk3jxxRfxxBNPOD4zDEP43TRNx98AoLe3F6eccgpmzpyJ6667zvMaXtfR0NDQ0NDQ0NDQ0Ng/UdGIzYoVK/Dwww/j97//PSZOnMj/3t3dDQCOqMrbb7/tiOLs3r0bJ554Ipqbm/Hggw8inU4L13nrrbcc37t161bHdTQ0NDQ0NDQ0NDQ09l9UxLAxTROf/OQn8cADD+B3v/sdpk6dKnw+depUdHd349FHH+V/GxwcxOOPP46lS5fyv/X29uL4449HJpPBww8/jFwuJ1xnyZIl2LVrF5599ln+t2eeeQa7du0SrqOhoaGhoaGhoaGhsX+jIqpol112Ge6++278x3/8h6BM1tbWhoaGBgDAzTffjFWrVmH16tU46KCDcNNNN2Ht2rV45ZVX0NLSgt27d2P58uXo6+vDgw8+iKamJn6dMWPGIJlMAgBOOukkvPnmm7j11lsBAB/72McwefJk/PKXv4z7tjQ0NDQ0NDQ0NDQ06hQVMWzc8ltWr16Niy66CIAV1bn++utx6623YseOHVi0aBG+//3vc4GBtWvXYtmyZcrrbNy4EVOmTAFgFfK84oor8PDDDwMA3ve+9+GWW27BqFGjYr0nDQ0NDQ0NDQ0NDY36RVXq2GhoaGhoaGhoaGhoaFQSValjo6GhoaGhoaGhoaGhUUlow0ZDQ0NDQ0NDQ0NDY9hDGzYaGhoaGhoaGhoaGsMe2rDR0NDQ0NDQ0NDQ0Bj20IaNhoaGhoaGhoaGhsawhzZsNDQ0NDQ0NDQ0NDSGPbRho6GhoaGhoaGhoaEx7KENGw0NDQ0NDQ0NDQ2NYQ9t2GhoaGhoaGhoaGhoDHtow0ZDQ0NDQ0NDQ0NDY9hDGzYaGhoaGhoaGhoaGsMe/z+IOZvvS0MTwAAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-25T17:30:45.936228\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "start_date = \"Jan 1, 2020\"\n", "end_date = \"Dec 31, 2020\"\n", @@ -111,83 +66,9 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Additional items (10 item each week):\n", - "2020-01-05 10\n", - "2020-01-12 10\n", - "2020-01-19 10\n", - "2020-01-26 10\n", - "2020-02-02 10\n", - "2020-02-09 10\n", - "2020-02-16 10\n", - "2020-02-23 10\n", - "2020-03-01 10\n", - "2020-03-08 10\n", - "2020-03-15 10\n", - "2020-03-22 10\n", - "2020-03-29 10\n", - "2020-04-05 10\n", - "2020-04-12 10\n", - "2020-04-19 10\n", - "2020-04-26 10\n", - "2020-05-03 10\n", - "2020-05-10 10\n", - "2020-05-17 10\n", - "2020-05-24 10\n", - "2020-05-31 10\n", - "2020-06-07 10\n", - "2020-06-14 10\n", - "2020-06-21 10\n", - "2020-06-28 10\n", - "2020-07-05 10\n", - "2020-07-12 10\n", - "2020-07-19 10\n", - "2020-07-26 10\n", - "2020-08-02 10\n", - "2020-08-09 10\n", - "2020-08-16 10\n", - "2020-08-23 10\n", - "2020-08-30 10\n", - "2020-09-06 10\n", - "2020-09-13 10\n", - "2020-09-20 10\n", - "2020-09-27 10\n", - "2020-10-04 10\n", - "2020-10-11 10\n", - "2020-10-18 10\n", - "2020-10-25 10\n", - "2020-11-01 10\n", - "2020-11-08 10\n", - "2020-11-15 10\n", - "2020-11-22 10\n", - "2020-11-29 10\n", - "2020-12-06 10\n", - "2020-12-13 10\n", - "2020-12-20 10\n", - "2020-12-27 10\n", - "Freq: W-SUN, dtype: int64\n", - "Total items (sum of two series):\n", - "2020-01-01 NaN\n", - "2020-01-02 NaN\n", - "2020-01-03 NaN\n", - "2020-01-04 NaN\n", - "2020-01-05 54.0\n", - " ... \n", - "2020-12-27 43.0\n", - "2020-12-28 NaN\n", - "2020-12-29 NaN\n", - "2020-12-30 NaN\n", - "2020-12-31 NaN\n", - "Length: 366, dtype: float64\n" - ] - } - ], + "outputs": [], "source": [ "additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,freq=\"W\"))\n", "print(f\"Additional items (10 item each week):\\n{additional_items}\")\n", @@ -204,39 +85,9 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2020-01-01 26.0\n", - "2020-01-02 25.0\n", - "2020-01-03 37.0\n", - "2020-01-04 30.0\n", - "2020-01-05 54.0\n", - " ... \n", - "2020-12-27 43.0\n", - "2020-12-28 44.0\n", - "2020-12-29 36.0\n", - "2020-12-30 38.0\n", - "2020-12-31 34.0\n", - "Length: 366, dtype: float64\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEkCAYAAAD9zqT4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edxlV1Umjq8z3Hvfsd6apxBCgFQgJEEgCAlKIAxfECMN2oqkW/D3a0TR1mjzVSNtk0ZNlG4QFRsbWhkUGm1tZAghCYQECAlkIEllrEyVqtQ8vvN7h3PO949z1t5rr733Ofuce9+p6qzPpz5V9b73nnEPa63nWc/ykiRJoLbaaqutttpqq6222mqrbRWbv9wXUFtttdVWW2211VZbbbXV1q/VgU1ttdVWW2211VZbbbXVtuqtDmxqq6222mqrrbbaaquttlVvdWBTW2211VZbbbXVVlttta16qwOb2mqrrbbaaqutttpqq23VWx3Y1FZbbbXVVltttdVWW22r3urAprbaaqutttpqq6222mpb9VYHNrXVVltttdVWW2211Vbbqrc6sKmtttpqq6222mqrrbbaVr2Fy30B3OI4hv3798P4+Dh4nrfcl1NbbbXVVltttdVWW221LZMlSQLT09Owfft28P0CTCYpac8880xyxRVXJOvXr0+Gh4eTF7/4xcldd90lfh/HcfLBD34w2bZtWzI0NJRceumlyQMPPOB8/L179yYAUP+p/9R/6j/1n/pP/af+U/+p/9R/6j8JACR79+4tjCNKITYnTpyAV73qVfDa174Wrr/+eti8eTM88cQTsHbtWvGZD3/4w/DRj34UPvOZz8COHTvgj//4j+ENb3gDPProozA+Pl54DvzM3r17Yc2aNWUur7baaqutttpqq6222mo7hWxqagrOPPNMpzjCS5IkcT3w7//+78Ntt90G3/3ud42/T5IEtm/fDldeeSX83u/9HgAAtNtt2LJlC/zZn/0ZvPe973W6+ImJCZicnKwDm9pqq6222mqrrbbaajuNrUxsUEo84Ctf+QpcdNFF8G//7b+FzZs3w0te8hL41Kc+JX7/1FNPwcGDB+GNb3yj+Fmr1YJLL70Uvv/97xuP2W63YWpqSvlTW2211VZbbbXVVltttdVWxkoFNk8++SR84hOfgHPOOQduuOEG+NVf/VX4zd/8Tfjc5z4HAAAHDx4EAIAtW7Yo39uyZYv4Hbdrr70WJiYmxJ8zzzyzyn3UVltttdVWW2211VZbbaexlQps4jiGl770pXDNNdfAS17yEnjve98L73nPe+ATn/iE8jmuZpYkiVXh7KqrroLJyUnxZ+/evSVvobbaaqutttpqq6222mo73a1UYLNt2zY477zzlJ+98IUvhD179gAAwNatWwEANHTm8OHDGoqD1mq1YM2aNcqf2mqrrbbaaqutttpqq622MlYqsHnVq14Fjz76qPKzXbt2wVlnnQUAAGeffTZs3boVbrrpJvH7TqcDt956K1xyySUDuNzaaqutttpqq6222mqrrTbdSsk9//Zv/zZccsklcM0118DP//zPww9/+EP45Cc/CZ/85CcBIKWgXXnllXDNNdfAOeecA+eccw5cc801MDIyAu985zsX5QZqq6222mqrrbbaaqutttpKBTYvf/nL4Utf+hJcddVV8KEPfQjOPvts+NjHPgZXXHGF+Mzv/u7vwvz8PLzvfe+DEydOwCte8Qq48cYbnbSnV7L1ohiu23kAXv6c9bB97fByX05ttdVWW2211VZbbbXVRqxUH5ulsJXax+bbjxyGX/7MnfDm87fCJ/7dy5b7cmqrrbbaaqutttpqq+2Ut0XrY3M625GZNgAAHJvpLPOV1FZbbbXVVltttdVWW23c6sDG0Tq9GAAA2lG8zFdSW2211VZbbbXVVltttXGrAxtHw8AG/66tttpqq6222mqrrbbaVo7VgY2jdSIMbKJlvpLaaqutttpqq6222mqrjVsd2DhaN0NqutGK0lpYNJuc68Luo7OVvntoagEOTi4M+Ipqq6222mqrrbbaaqvNbnVg42gSsTk9qGi/9Okfwus/eiscmW6X+l4UJ/CWv/wu/NRffhd6dT1SbbXVVltttdVWW21LZHVg42iixuY0cdb3nZiDXpyURl4WuhEcnenA8dkOzHZq2l5ttdVWW2211VZbbUtjdWDjaO3TTDwgilPKXTcud78RaYtUIza11VZbbbXVVltttS2V1YGNo3Wj0wuxyeIaEeA4f498vux3a6utttpqq6222mqrrarVgY2jUbnnJDn1HXYMULolAzkazHTrwKa22mqrrbbaaquttiWyOrBxNIrUnA7KaEgp65W8VxrLnC5UtIVuXUvkYgvdaFmSAvX7qa222mqrrbbTw+rAxtFobc3pQEdD5KVXssYmJo7r6RAA/tNde+H8D94ANz10aLkvZUXbgcl5uOiPvwl/8KWdS3rer9y3H87/4A3w1fv2L+l5a6utttpqq622pbc6sHE0SsnqngYCAhiflA1OKBWtbFC0Gu1He05CL07gvr0nl/tSVrQ9enAaZto9uOfpk0t63nuz93P30yeW9Ly11VZbbbXVVtvSWx3YOFr7dENsKlLRlMDmNEBsovj0EpWoaojkRUtMRcPger6WHq+tttpqq622U97qwMbRFCraaYDYDIaKduo/JwzeTocx0Y/hUIiXWFACx+BcXWdTW2211VZbbae81YGNo9GMfPsUd2Kp89kfFe3UR2zwHmvEJt8w4I2XGLHB8Tvf6S3peWurrbbaaquttqW3OrBxtNMJsYn7aLJJY5nTArGJpQx4bXbDYHmpqWgCsampaLXVVltttdV2ylsd2DiaIh5wijvs1Pks24uGBkWnQ4PObk1FczIcU0utJ4FUwTqwybfZdg/e+vHvwce+uWu5L6W22mqrrbbaKlsd2Dja6ST3TJ3PqI8GnaeHeEAd2LgYPqelDnZxrtbiAfm2c98k3PfMJHzpR/uW+1Jqq6222mqrrbLVgY2jnU5UNIrYlK2TieLTSzwA7/F0uNd+bNlU0YR4QF1jk2dzWQ3S6YCy1lZbbbXVdupaqcDm6quvBs/zlD9bt24Vv3/3u9+t/f6Vr3zlwC96OYyiNKd6YNNPk824j6BoNZpQRasDm1xbPlU0FA+oEZs8Q6reUr+f2mqrrbbaahukhWW/8KIXvQi++c1viv8HQaD8/k1vehN8+tOfFv9vNpt9XN7KsdOLilZdPOB0Q2zwfk91pbx+rRYPWNmGz+d0SEbUVltttdV26lrpwCYMQwWl4dZqtXJ/v1rtdEJslOCkD/GA06HGplurojkZBjRLTXXCwGa+G0GSJOB53pKef7UYIlpLLcddW2211VZbbYO00jU2jz32GGzfvh3OPvtseMc73gFPPvmk8vtbbrkFNm/eDDt27ID3vOc9cPjw4dzjtdttmJqaUv6sROunxubpY7PwG1+4Bx7YNznoy1oUiwYk91y2uedqNAzeTgd0qh/DgGapqU6IQCQJwEK33Du648lj8B//94/gyHR7MS5tUezPvvEI/M9bnyj9PURs6hqb2mpbWlvoRvA7/3QvXL/zwHJfSm21nRJWKrB5xSteAZ/73OfghhtugE996lNw8OBBuOSSS+DYsWMAAPDmN78ZPv/5z8PNN98MH/nIR+DOO++Eyy67DNptu2Nw7bXXwsTEhPhz5pln9ndHi2C9KFYc9rJUtK/etx++dv8B+N8/3DPgK1scS5TgpB/xgFPfSerVqmhOtlziAfS9zJVs0vmZ23bDV+/bDzc8eHDQl7UodmymDZ+45Qn4bzc8Wvq787V4QG21LYvd/uQx+L/37INPVEhI1FZbbbqVoqK9+c1vFv++4IIL4OKLL4bnPe958NnPfhZ+53d+B37hF35B/P7888+Hiy66CM466yy47rrr4O1vf7vxmFdddRX8zu/8jvj/1NTUigtuuINeNjuPztV8d3Xw/Pupk+mnPmc1Gt7jqV531a9JxGZpz0sD87lOBBtKfHcum6/TC6tDUQ3HYC9OII4T8H132p0QD6jjmtpqW1KbydaXOjlWW22DsdI1NtRGR0fhggsugMcee8z4+23btsFZZ51l/T1AWpPTarX6uYxFN77glF2AVltWv59eNP1IRa9Gq/vYuFm0zOIBAOUTC51e+vmySM9yGZ23UZKADyUCm25NRauttuWw+Vq4o7baBmp99bFpt9vw8MMPw7Zt24y/P3bsGOzdu9f6+9Vi7Uh1iMoqYK025SxVsrmPBp2nwUKN4gF1jU2+xcskHkAD87LKaDhfZ9qrI7ChU7WsCMB8XWNTW23LYnUPqdpqG6yVCmze//73w6233gpPPfUU/OAHP4Cf+7mfg6mpKXjXu94FMzMz8P73vx9uv/122L17N9xyyy1w+eWXw8aNG+Ftb3vbYl3/kli/iM1qy+orAgD99LE5DZx9fD6rJWhdLqNDYSkFBChFsCzygvN1rr06KKQ0CVGW8iecq1oVrbbaltQQLT0dxHZqq20prFRg88wzz8Av/uIvwrnnngtvf/vbodlswh133AFnnXUWBEEAO3fuhLe+9a2wY8cOeNe73gU7duyA22+/HcbHxwd60f/6o33wjQeWrqC33xqbVU1FKyv3TG6xFg+oDY0GvEvpPNPgumyTTnynM6uEitbPM65V0Va+/f3tu+H7Txxd7suobcAmqGiraL98/PAM/PW3H181NN3aTi8rVWPzxS9+0fq74eFhuOGGG/q+oCKbXujC7/zTvdAMfXjovDeVKpCtaoNCbNq91ZH5pQ5S2SAu6oPGthqNigfUfVLsRlGapeyV0h0AFW12lVDR6FQtG6DQoK+s8EBti29PHJmBP/zyg3DWhhG49f997XJfTm0DtNXYHPdj39wFX7v/ADxr3TC89cfOWO7Lqa02xfqqsVkOm+9EEGc9KZYq86sFNhWd/dWinNWPeEDcx3dXo+E9Jkmd7c4zOleXMt7tDgCxWS1UNDr+ytL9aNBX09FWnqFy1tR8d5mvpLZB22pES7HucLUoRtZ2etmqC2zoprtUC0GHiQeURmyi1UVXUqlo1RGb04mKBrB6AtflsJgpdi2VdfupsYlWl3gAV0UrY1QxbjU5WKeL9YRISf1uTjXDHlKrqSYVE3qr6ZprO31s1QU2FAVYKkpLp6eepypis1oKzOljLbuR9hMUrUaj97haAtflsOVISERxoghhzJWUe253V5ncc9IPYiPvcSmpgrW5Ge57dfLk1LPViNjgvrea6HO1nT626gIbJSu5ZIjN6aWK1k+dTHwaITZJkij3uFre73LYcqii8fqw0lQ0gdisPipaVfEAgNpZWYmG76TOkJ96hmhpdxXNO4HYrKJrru30sdUX2CwDV/90btBZNjih7+RU34T5mr5aELnlsOVQReObbhnxgDiWQWsVxObA5Dx8Z9eR0t/rx+I+UDEuHlDbyjIcy3Fdy3fK2XIhNnOdHtz44MHSCR8AOR7rsVjbSrTVF9gsA1e/X/EAdBRWi+PbTy+a5aAcLZdxRKBu0mm3fgrbq1qXzbcygY3a/yYqfc3/6Z/ug1/6ux/Cg/snS32vH1NouiWGYqcXK0HgqT5vV6NF5IXW68ypZTSwSZaQBvp333sKfuXv74Z/uOPp0t+NBIJYrxW1rTxbdYENnUirRTwA6VyrBbFRlM1K97EhaM8p7iDx8Vfz3+22HAmJbsypaO7IC09CzJZEbY5MtwEA4NDUQqnv9WNVUTGesa1V0VaeKZTXep05pYyuS0uZVNh3Ml2bDk+XX6MwuD4d6mhrW3226gIbunkvVZFrl4kHlO7tglS0rNfJSjelxqaseEAfaM9qM/5sVkvguhzWD02qqnEaZSnEpg+0B4AIhnSXbkxUrT+c66pBW+2rrDxT6MH1OnNK2XLVt2FAVWXfEojNKZ68rG112qoLbJaDMtHOHPRmkD6uquIBAKuDjqbUyZQVD+ijPme1GUcE6sDGbioVbWnOyQPr+RKqaLyZblnJ5+Wgn0YVkz48aKsRm5VnNJl2qq+rp5vNL1Ngg/O+U2E81WIWta1kW3WBDeUaLxkVLXNORlsBAJR3VlZbr5O+EJvTSO65pqK523KIB3BktS/EpqQyWk8ENkunqBZVpOlyKlotHrDyTBV0qdeZU8WSJFFk6KMlDFqFGluF8VTLPde2km0VBjb030sb2IwNhen/K1LR6LFWsimSzaUbdMp/n+qFhXxDWA3vdrmsX5n2vcfnSn+vLyoae7erDbEpRUVjz6V2Vlae9erA5pS0ThQvWzIQ532V8YQBWC00UttKtFUX2NCJv9SZ37FWQ/m/q60+Klp1xCZJTp8NuK6xcTelj03JefudXUfgJz/8bbj26w+X+p7ex6aEeACrjZktGdgsR40NnbdlHjGXs66dlZVndK2pqWinjmnCHctBRauwb6EwUD0Wa1uJtuoCm+WQjRWITUZF66fGZjU4v/30sVGzT6f2osfvr6ai2a0f8YAnjswAAMB9z5ws9b1BIjZlVdHw60tJRVPqD/tQRVsqUZba3K2Wez41bTnRUkz0VEJsRB+beizWtvJsVQc2S9bHJsIam4yK1k+NzSoIbJQ+NqWpaKeRKhp7NrXDYTclIVFy3uJz3X+ynCwpfi/wPQDQHfg84/N0tmSNDW74S4nQVg0eNfGAUzwhsRpttdVp1uZmWmCzhAhIP+IBUu65XitqW3m2ugObJUdsqgU21OFYygxuVaOPtexC208PnNVmNRXN3RSZ9pKPCZ/rwamFUnMe38/EcEohnetGznLrutxzWcRmGWpsKgaPc906sFnpplDR6nXmlDGebFnKGpt5QUUr75PUDTprW8m26gKbXlzdQapqmCEbz8QDytKz6ORfDc5vPwo89OOn+qKnUdFWwbtdLutHFQ2faxQnovGli+HYXZPN2yhOnLPdfcs9Z7fYLiEx3a9VTfrw2qOairbyTBUPqN/PqWLLVd9G1diqjKeeoKLVY7G2lWerLrCJl4OKxhGbko02V1uNjUpFK1lj04ei2mozTrVbDcIQy2X9IK1t8pz3nZx3/l5XJCQa4meudDT+Lks36FxuxKamop1SRteamvK6Mi2Ok9INuDlaulQsB6rGVknuOfvOahqLVd7P6WqrXfJ/1QU2y9GgU/axCeXPSkzoSKGirfyFgDuhZRaDRKmxWd2To8j4JlRnUu3WjyoaTQYcmCwT2KTnGW4G0AjSOhvXAIUnIMoiNssS2FRExZZTmak2N6vlnle2LXQjuOwjt8Cv/cM9pb63XHOPnrc0tT5OBCK9WtaKbhTDm/7iO/BLf/fD5b6UFW9/ct1D8LI/vqlUEnGlWVj8kZVl/RQhVzWO2ODPWmHg9P1VJ/fMHmsvToRjWGSKKtopvgHXNTbu1o8qGnXkDpQQEEC+eiPwYLgRQDfqOQc2fJ5Wlntewpq6uGLSp0ZsVr71o1RZ2+LbMyfmYfexOTg60yn1PT73lipopectK0ZBg+zVUkd7cHIBdh2agV2HZiCOE/B9N3/mdLSv3LcfTsx14aH9U3DG2uHlvpxKtuoQm+UQD+hGOmJTZnOhBYGrQdGGw5BlkBeVirY6Fr2qxql2nWjlC0Msl/Uj004DxjJZJPxeI/BhpJnOXVcqWv+qaFlgs4R9bCqLB/DApqZrrDjr1nLPK9qk/HG5ucPr25bKp6Fzvp++fEspdtCP0ftdDcnl5bKTcx04NJXWsa7mdaZUYHP11VeD53nKn61bt4rfJ0kCV199NWzfvh2Gh4fhNa95DTz44IMDveBl6WOTveChhg9hFumXyc7Tub+UxcRVjTs2ZWpl4tMIsYlqxMbZBiEeAFCOiobZxND3YaSZoquu6mY455thukSWQWziZUJoVZqu+/fmu0w8oB7GK87oWrMakmOnm6GDXzYwWa4+NjTB0+2VFEMiC8RqoZvTdX9+Ffhgy2W7Ds2If582gQ0AwIte9CI4cOCA+LNz507xuw9/+MPw0Y9+FD7+8Y/DnXfeCVu3boU3vOENMD09PbALrtqErh9D56QZBMLRKePErjbEhi/OpRCb00oVjSE2dWBjtX6QVjpnDky6U9G6IjjxYBgDG8dNDZGWdSOZVHQJueeeEtgsIRVtUH1sasRmxVldY7OyTcgfl8wKLBcNlK5npaloEUVsVsdaQQO5hTqwsdqjh6Svvpopr6UDmzAMYevWreLPpk2bACBFaz72sY/BBz7wAXj7298O559/Pnz2s5+Fubk5+MIXvjCwC4764OpXNUlp8aARZIFNCdrRalNF42IBZZCX+DRSReMTv0qjs9PF+qmN65CM4v5Sqmg6YuNMRcvm97qRJgCUEw+Il0kspKpAA3euVrsizqlo1GGu+9isPEMHP070/TPPOHqwVIECTfCUHU+rscaGrnE1YmO3XQdpYLN615nSgc1jjz0G27dvh7PPPhve8Y53wJNPPgkAAE899RQcPHgQ3vjGN4rPtlotuPTSS+H73/++9XjtdhumpqaUP3kWkYe9VOIBXUJLQcSmjMOy2sQDeMBYplamnyLx1Wb8/lZD0Lpcpo6Lct+lGcWjMx1nFATnbSPwYTirsSmrirZhrFnqewBsvi9hjU3Vuac3CTy15+1qtFo8YGVbVURa72OzNOvFfF/iAfLzS3W9/RoN5FyTW6ejqYjN6ni3JisV2LziFa+Az33uc3DDDTfApz71KTh48CBccsklcOzYMTh48CAAAGzZskX5zpYtW8TvTHbttdfCxMSE+HPmmWfmXkNVHnk/hk5OM/ShmSE25cQDVhdiw2+tDGLDN+BTWTeeT/zVQDNcLuuLisYCmYOOdLReJJHWkQYiNm7ICyYg1lZAbFR596XbRClFpBxiszwFzLW5G91vTnUkfDVaVXqWroq28sUDlHtdJUE2XfdrKprZkiSBXSSwWQ2+qs1KBTZvfvOb4Wd/9mfhggsugNe//vVw3XXXAQDAZz/7WfEZz1Nl9JIk0X5G7aqrroLJyUnxZ+/evbnXsByIADqsrdCHVoUam9VGReNUlDKLLXeoTmUniW9g3AGvTRodQv30sQEA2O8o+YzUwFQVDcUDyiE267PAZrbdcw7SaaH3svWxqYDY4Nq2VEh4be6mJIxKFnvXtvhWlWq7fH1spKMfJ9WTl6sF3Z1TamxWvg+2HHZkug0n57ri/6sZGe5L7nl0dBQuuOACeOyxx4Q6GkdnDh8+rKE41FqtFqxZs0b5k2e9igtIP0ZlY0WNTWUq2sp3fvlzLVMQqQkPrJKFr4rVDTrdrWqPFQD5XDE/4lpng5t1GBDxgJKBzbrRNLCJE/cgZbka8sbK2uj+PaRpjA+ldL1TORmxWo1m1VczReRUNUUprA/EZslqbPpAilRVtNUxFusam2KjNDSA1b3O9BXYtNttePjhh2Hbtm1w9tlnw9atW+Gmm24Sv+90OnDrrbfCJZdc0veFotFs6FKLB9Aam1NZPICrIlVVRQNY3ZOjyPiivhre7XJZf+IB6XPdPpE2C3OVfBa1cQSxcd3UBBVtuCF+5kpHU+Sel3ATpfO2jAAAbvrYgLhGbFaeqRTfep1ZaaZQbUvslzpis/QNOgHK0ahXo3jAfB3YFNqjB0/TwOb9738/3HrrrfDUU0/BD37wA/i5n/s5mJqagne9613geR5ceeWVcM0118CXvvQleOCBB+Dd7343jIyMwDvf+c6BXbCyeS8VYkMcJCn3XLHGZhUMFq1BZ0XxAIDVw8GtYriZVZEAP90s7mPe4pw5a8MIAADsd6yxEapogUfEA8rV2Aw3A0ljc2zSuVyIjeJcudLm4kSM27EasVmxttr2kNPNqrahmMt6SCEavVT7JXfuS7WvWIbkcr+mUNFq8QCj7dIQm9Xxbk1WKrB55pln4Bd/8Rfh3HPPhbe//e3QbDbhjjvugLPOOgsAAH73d38XrrzySnjf+94HF110Eezbtw9uvPFGGB8fH9gF91OEXNVM4gGdKIaP3/wYfP4HT+d+lwcJ7W4MvSiGD331IbjxQbuownIa3zer8m8BTu1CV5z4o5nj216BDsdij7Wv3b8frv36w4UIQV+qaD0MbEYBwJ2KRlXRStfYKGhP6vC7Ija8kLgsXeOf7toLH/vmrlLfAai2NtJAb7zVKPXd2srb//ruk/B333uq9Pd6K5CK9nffewr+8c49y30ZK8Kqq6KpaOnSUdHUtazMmFJ7KhVf7ydueQL+/vbdzsdfDKNNiBcWoRzg9ieOwR/+6wOlGjmXtW4Uw9VfeRBufuTQohz/0aw553OyBOJKWWeqWFjmw1/84hdzf+95Hlx99dVw9dVX93NNudZb4sAmSRKlCzlm5586Mgt//s1dMNTw4YpXnGX9Pl+o2lEM9+w5CX9321Pw3ceOwBtftHXxLr6i8Yx6P+IBpzJig87GSDOEE3PdFdlf4r5nFnes/en1j8AzJ+bhZ35sO7xo+4T1cwoVrWKDzmetS6loR2faTt/rGcQDXKU+kULWDH0YawVwdAZg1hHt4XOgE8UQBu45pD/62kMwvdCDf3vRmXDG2mHn71Wh++Hz8DwQz6gObBbHZts9+JOvPwweALzzFc+GoUypz8UUZ3IFiAecmO3Ah772EAAA/OQ5m2B7iXF6KlpVehbOvzVDDZhe6C1jjU2Z5KW73PPJuQ782TcegcD34B0//mxRo7zUptTYLAJi89fffhy+9/hReNXzN8Cbzt828OMDAHzv8aPwme/vhruePg6XvcBet17VnjySBjYv3LYGdh+bW9WBzfKMsj4srrB592O9OAE8TZOIBzx1NB0EC904Vy3J1OvkxFwHAACmFxYvuu/H+hEPOK0Cm+zdokO4Eiki8530mibnuwWfrGaYoSpCQug0KNvZXlClMKvpOKYkYuPBUJihao7BJ1VCHM3O65qN43O+bC8blCOdK5n9q6IYie9tpBGA76d8mLLvpzY3m+9GkCTpXOhHYncloOCUynTd/QeW8UpWhlEHv0p9mxDuWKI9hDv3Zaho3RJyz4hyR3ECM8vo7yy2eACu2YtZv/PMiZSpUKanmqtNL3SFP/qcjSkzog5sltCWuo8NfblNIve8+9ic+HneOsadhHYvFhPcle+/1KYpm5USD6geFK02w3sTgc0KRGzQCVosiBzvuch576+PjfqcXbOa2Fg29H1oNdJ569rDgNJPR5sY2Lh9lwf3Zets8P6qfg+gfGAz3AwhyIj+ZRG12tyMvs+yc2ClNeike8JX79+/jFeyMqxqHxuK2JT9bj/Wj3hAGblnut6W6QU2aFts8QB8Dos5N5GCvRgBx4GsbnViuAETmWBOmTrylWarLrCpUiDbj1FnlYoHPH1sVvw8z3nnCimdXgTTC2n2fKWqc/DnWg6mVv+/WlRTqhhuZliDsRIDG7zGuW60KA4rbohFMuZ9qaIRyh+Ae80XUgMboS9oP66BTZsGNq30u65UNI1+WoLTHRGEuCwCWAXNRu75SDOAABGbU3jOLqdRhbyy6yLdY1YC5ZWiRvc/Mwm7j87mfPrUNzVx4/Z+elEs5vhSS61zxKaMQ079gaLrRcYAAMDUwuKwBlyMJpEXQzwAn8NiMlQOZIHNYvgZ+7Jjb5sYEqykGrFZQuuHq1/FcBD5HkAYSPGAE6SRUd7k5kFPpxcLyK8bJSty8HCfqB9VtJV4f4MyTkVbifeKm2ySDD6QjuNEbIhF6ELVxrpRnIjPl0VscO41fE8gra7N2XDet8IARvqlopVRHCLrRVkKm+pcuX1HUNGalIpW6rS1OVo/iI1asL386wy//q/ed3qjNlWYJHNkPcbAZskQm2518QAFPSwI4uies5zU+8Vu0CkRm8Wbm6gGuhio0IGs6fUZa4ehGXjZeZZ/nalqqy6wWWrxANyMMIpthJ72mbzrMFHRpomDtBh8SbTHD8/A53/wtJbhbvci+Oz3d8Pe43PG72nKZn2oopXNYHz53n1w99MnrL/fe3wOPvv93c6Z90HbQ/un4B/v3ANJItWu0PG1ZVJuePAg3Pb40SW7Rmp0EXRFHLglSQL/eOceeGj/lPJziiiUQWzKzFs69oZLFrd3iHiAQGwc0RMZ2PgwJqSiHalobBiUCVCUnlclN5YqUviSihZA6FejorV7Efz97btPm6z93U+fgC/fu6/092hgY3Ngj8924NO3PQUnszpM8fmo+rhYDON7whfv3Asf/sYj8MUf7smtOS1rh6YW4DO3PSVYDktl9+49Cf/3nmecP6/Ss9zeD6ImvgdCjr5qxj9JEvg/d+2FJ7IC8CLTqGiWvetbDx+CD3/jEfjwNx4RwSsdu0mSv14oVLQ+Apt+91AaYC0GUyZeisAGqWglEmUn5zrwmdueguOzndzPYW+4bWsXF7GZ6/Tgs9/f7axsWtVKqaKtBFOK9JaAiiaa/GUZ32agK9nkBjYG8QCauZjvRILTOGj74+seglsePQLPXj8CP3nOJvHzL9+7Hz74lQfhnj0n4C/e8ZLCay6z2PYjPPD0sVn4rS/eC2dtGIFb/9/XGj/z0Zt2wZd+tA+GmwH8/EVnOh97UPaBf90JP9pzEl6wdY2o4Rhp2OWeJ+e78L7P3wNDoQ8P/Nf/BzxPD4wX0+i7nG1HABWU1+9/ZhJ+7192wovPXAtf/vVXiZ9TR63Iea/ax4aeQyJjjohN9j7CwBOBjWuQgYFaM/RhBKlornLPsZ5IcDV6b2UpB1WCR3Q8hsIAfK+aeMC3HzkCf/jlB+G1526CT//yj5f67mq03/7He2HP8Tl46bPXwZnrR5y/R6lotiaOf3PrE/DJ7zwJMws9+I+vO0f8XKGirYDABsfXxHAD5rsR7Ds5D//jlicAAOCCZ03kKiSWsb+6+TH4hztSSel3v+rsgRzTxf7TP90LTxyZhQuftRaev3ms8PP91LeNNENoBEgDrfZub911BP7ff74fztk8Bjf+9qsL9xmqhpgk5mB5rtODX/2Hu5U16cfPXq/5A904hpZvVvhTEJt2teB0aiHdQ4cbAey8+o2V9tDFFg/A+blYiFscJ3BoKkVVyiQ2Pnf70/DRm3bB8bku/M4bdlg/J6lowySwGfy9fPW+1Pd85OAUXPv2Cwd+fLRVh9jQd7oUiA1VRwKQAQ61vMHMF4FOFCvZp8UUEEAlLK6I9eC+SePP0bjjWeY59yMVfXg6lfE9OWdfAFHqd7myw/jMjs92hHMyTMQDeLZypt2DKE5gthPB7DI0BqNOUFUBAeRGH55SG2NSh72IblWFJgWgOvfDDURsHGtsSC+aoUw8wDXIoIgNLvSum1Y/4gH0OZUJiPh3Xecszs9G6AMqsZZdV3F8PMgQvVPVcA0oWzNAx4GNwvNAtjYf54jNChMPwGuYGG7A3/y7l8Ivv+o5sG4kTdBN5qzfZe2pbJ2fnF9aGhNmuIsy3WiqBLJrYJPe0zCpb6vqGOO4eezwDDx8YLrg00SNLWMbmFCA6YUedKMEPA/E+jk539USN3n3uzAAKtpstofOtHuVg5J5hYq2mDU2i5N0ODrTFnOuE+Ur8VLDYGhyrgCxIVS0Rrh4iM3x2XRtODbjNq+q2ioMbIrh/EGaUEcK7IFN3sTWnJyuitgsJhXNVtD2aNZh1obEaMFJiSxSP2gPBnx5iwM+rwOO3ecHbXh/C91IPBcsLgfQxyTdMJaaTgGgXk/VwAaPwTcmGnQslngAbZSJvWDc5Z7Tz4WBL+SenWtsCFKLFC3XhZ5/rEyAQsd+WcSmCioWkTqkquIB+PnD02044egIrmbD+y37nFxqbLD7Nx+nqira8iM2FA297AVb4IOXvwjOyPpMDZIqhw7XUt8zPn9XJ7gKYjNP6tsweVI1WYvNFQHcVOrw3BNZMGp6Z3jvw42AKGXF2vqb54fRgKJqYEPP56pMSS1JElU8YBWqou0j1K0kcR8n+Mw7BdclqGgTQ4taY4PHXFhkAZRVF9jQSbSU4gENQUXTYdBcxIZT0aJYkT1cTGU0XBDoAE2SBB49OK39nJqmbFaGisa+WyYoEqIKOc8TA5t9i8zRtBk+i3YvJkXtktHJnVG6YSyHjr8S2FREBxGZmmn3lDnXKUVFI8crU2PT0wMMZ7ln0semjNwzFUVoBvK8rtfdTx+bnuX5lj2v67Xi+QLfk1S0PgrbMWlyKltV2gkNcE1r6tGZNhzNMpk8GFb62KwAxAbHCM4NABg4hSVJErHOL2VgkySJeP6u+zOlFrqOC1Hf1pCITdVnt+ugnHdfvW9/bkafqrFhwGJ6vhiIDzUCkdDtRHGp5OUgxAP6ZR20e7Gy/yyGzyWSyIvU3oIncl3HCfqaefMnSRIhTLB97TCEPr7rwa8zsj3E4rJXVl1go6grLYXcM8kYA1gQm5wBYK6xoVS0xUds6DUcmWkLRTebA8MDxlLiAX006MSFLw+xmc+cc8wwLLVRxAbvbZh0ENcCG/L/qeUIbJRNodpYoxv1DAmOlBqbUlS0CohN6EMYYGDjNh7x/TQIYtOLk0K6AA1GW41AIkVVA5vKVLQ+AhtnxAZRLYnYlK1dpE0Fd50GgU1lxIYEuKbvUueUB8MrrcaG9ohCG3TR8Ym5rpgDSymY0I0S4QhXQWxcE65UkVAmT8rfZ6cXC9GA0PfgmRPzcO/ek/bzkntaO9wEAICuoWeJrL+TdNxuL9bWwbz1mCKPVRkLdK5U6YXDpa35/wdhi43Y8GJ716QXPvO8OXlstgOdXgyeB7BlzZCkoi0CqtKpERuzUUd5KREbKR5gCGxyHAHdyYmYeMDiObu44FAEZNdBCVnbkBEtOIlTKPeOJ4+J+4njBH7w5DFtsdKzOeURmzixv1vcDA5OLixLI8EeCWxwsWg1fOEU8g2YLijLQkVTYPyKiA15znTslqKiVRQPoFTQsjx0idhIVbT0WvPHJP29cl5XKppWY1NGPKA6Fa2KFD5uxIHvDwaxOTi4wOaRg1PLhszaLEkkmlfWgVdV0fTvUrSLO9QqYrP8gQ2loqE1BxzYUGduKe+ZKie6OsFlmlaKY4seUmFfNTa7j81CL05gvBXCT12wDQAAvnrfAft5iRob0qjNVDSC2BA0jo9dV8SGByXTC134+s4D8OV798G3Hzlsfcc0WLAlghe6Edzx5DHjGj3H5pIrHTlJEvjhU8ettcjUFlsVjSM2roG+bC1i/zzSPTeNtaAZ+kLIosq97D85Dw/un7T+vkZsLLZcDTpFYBOaVNHsAwCvly4MU/NLi9jQyU43T5ujpimbRTH89xt2wTs+eQd8fWe6YN740CH4hU/eAX9y3cPKZzkEXmahniGqKbbv4aLcjRIhJLCUhu96gVDRGr7sb8SdUbooL0fnZZWKVhWxMdPpVLnnAipaRcRGyK2HnsgOF0mMoiENMgxkHxuA4iwsDUQagVeaAsevrSpiU17umVyD4yPG8Rz68j7Lrqv0mgeF2EzOdeFn/uo2uOJTdwzkeIOyqpRKAEZFMyE2NLDhVDRaY7MCGnTi9VAqGgY5g2ogqAQ2S9gFna4Pi1ljg3v/UCMoTXelhsmEc7aMweUv3g4AAN98+FDheUeaofBnTO8M773VCBQ0jgcyVcUD/uhrD8H7Pn8P/NYX74Vf/syd8E937TUeg+4/tuTc/7jlCXjHJ++Af75bl+jmyWPXd/qdx47Cz//P2+G/fPmBws/2hK+1NIiNa9Ahamxy5o9QRFub1sj1k6D4pb/7Ibz147dZfTOB2NSBjWp0012KJI4LFc2lxmaEFJhTB3NRA5tEp0xQuoNVPECjoiWw53iqTrMn632DPXB4zxkd7SmP2Ni+lySJkn3ZvwwCAqp4AGa7PZHl4M4o3TCWo0GZSkWrdn4a6FLUidJlysk9u5+bKpvR7LBL7RY6Q83AB9/3xNwtgsGpIprneaVFC/qpsaGBcNmsVhVlJuqgBhX72NA5/+jB6YH0MTk624ZOFMP+k8sjEmKzXh/iNQpiYxhLFO3KEw9YDO57WcPrDwMTFW0w10ez1EuJ2ND5Ou84dyvNvew5tUK/NN2VGgbE524dh7M3pvLjeYp9VI0tLzsvApvQF2tnuxfriI2zeIB6TehQ4zUctOznLnWi+06kxzKJCnEfy7XGBo+Z11cPbbFrbLiv4x7YFFPRkNZ/xtohAOhvHu89Pge9WEpTc8O9dTGapFJbfYENpVssA2LTMIkHONTYjDQsOu+LGdgIygRxPEhW0OYc8tvpxbGoz8BFEReYp47OKplInD9ywXR/R9TxN32PFy4eWAaaCp6/3YsVOoYt87XsVDS6KVRVRSPvQqGiRVTu2T6OkyRRgplKVLQwULLDLs5DjyA2AFKyvShbxOd82Wwq3+jLUNGUGpuyiE2FtTESDqoHfkU6DK0xnFrowaGp/pFUvJcy0qZLYQpjoOTGn1djkyQJ7CLKVnzM0HVkRVDRCNKHNnAqGqmjzBOUGbTR9cHVCaZzxnX+UOGOsCTdlRoGxDu2jAtUO29sUjW2Vo60rxQPUOlJWo1NzjXnITY4H7asGcqObb5mFzo1JhRNazQGNmuGUpGf+W7ktKbgu3/mxHwh20LQ/hcp6cB9HRdUNEkScd15ARcGg9smUsSmaq1cFCdizNj2WBHYlGxlUNZWXWBDB/lS9LHpMsSmVVLuGX/XsgQ2i4nYSHg0vYc4TuCxQ+6ITZNkqjGQwQBnVkyYRPQasH3X1RTExjCpeBC4HPx7WmOD/24EvhgXK08VjSA2VVXRaI1N21ZjY18E+fQoJR6gqKLJueeygQhFw2wsYp1NMRVNIjYAUFq0oJ8+NvQcpeWeycerqKIFXjXEhjs6g1BGo5vqUsj6u1oVBxZNpaKp73b/5ILiPK18uWcTYjNYmViK1i0l/Y7OV1fKTBVxFEoD7afGRiA2W8alulrOWkXV2BoWCjUAEQ9gVDQeNOUiNnmBTXbO0UxV1EbpV6lo5veB6LbpvtFvWD+aCiUkiduaTN/9YwVr2mL2sen0YjiSUbtszBCTzXUisffmUTn3n5RSzwAAzbDaPJ5XKJzm78oamxqxUUyloi09YkOpaIEDJ51mtkxB0Vx38ZxdCY+mf+87Oa/Q4IpqbJqhhCQxkBF/k+NQCgU+CwzkylHR8mtseBC4HL1sJBVNIjYBoTnlUdGWRxWNZrv6V0VTqGiOgQ2fp5VU0Uiti+sxRODpY2Aj6RS55xSBTTqGZTa1IhWtVGBDEJuy4gEVBBrk+uQLxKafGhsAle5a1RTq1QqoKUHrJ7GW18cGnxk2VadOVZIkakC1EqhopP8R2sCpaMslHkARG8fEo1Jj4zh/pHCHV7nGZr4TwdMZLXzH1nHZTDjnHVA1NhHYGD6PlN2hMFASdxw9yzuXitiojAUM9JGmPwjExnQtcyyw4dflcu1FtYP43hYDsTk0tQBJkvpjm8fz0S1q05Z6WG4Y2JyxliM25e6F9gqyzRupiuaGmlW11RfYDIiKNtvuwa5D07Dr0HQuzNjmgU0gkZetGYSa26AzG0/U+aW2mFQ0gdhkF4GTUzQctFy3QJlCbBomqWgSuZHP7DFCoeCIjW1ynDR0wlWpaPpE1AOb/hGbMg0FqYPRVhAbT95vLhVtmcUDBqyKpgY29nHM52mZeSsQ0zB1vNHx4wFzN4rFfD6WZbeEKlqWgZJNOguoaJE65wO/HP9db8pbpkFndYfetYCZzj0TYlPWh+wXsTGtBXTdGKRT24viviihao1N8XVNznXFmkjnCF8X8Zk9b9MYAKgZT61lwAqg59FxgzbojuU0cVVGSKPdi/oqTqbP3hmxUQJe17ocSQMtu8agPX54BpIEYMNoEzaOtQi6nFjHCFVjy6Md4brVavgqYqPV2Njvl6ui0WvC/WOshYiNJbCh4jUW1gGulWYqWvqdNcMN4fu41HjMK8nbGevn4lhSrRcjAMfAY/vEkJUZYjK6zuXX2GRUtCywCQNzkrbI6POyUTjxOpJkcSXcV3VgUxWxafcieO1/vwXe+OffgTf++Xfg0g9/W4k2qeHDbzDxgI1jLRhuZqhETmSLkzKwITaLGNjEIrBJ/0YO9zlbxtOfFyA2gn8b26loAKojIxEbzBzp5/g/d+2FH/vQTfB/mAoKDTBNz5QHgf0WFv/DHU/DS/7oJvjyvfucPk+HW5t0YA58XzjPvC6CLihU9W2pTBEPqEhFU/rY2OSeczaKfhAbkVjI5h+iL3x8/NLf/lDM51dc8y144siMcB5DgdgEhddKfy/OWbF/Dr8Hp+/2RUWja6P5M5+57Sn4sQ/dBN94IFU3pDU2yCoqS0XD9eLZ69PC5TLKaNfdfwB+7EM3wd/f8bTyczpuB7kB/vJn7oSLr73ZGEy5mCLrW5DRfPLIDLzsj2+C3/uX+wEgv8YGn9mFz5rIPpuvoLbc9DzaIwptkDU2UZzAwalq4gG/+vd3w0V//E2R4ChrfdfYOGa6pXCHFEYp69PguDlny1h2rGJUW1DRmgFhZeRQ0UIV2Smjikb37DhR/R2cDyPoR9kCGyr3bKOi9bDGxUBF60qECnvOubzXeUfEhiJ0izEvaQ1MmfoXShu3fb4XxaLQf/sEigdIKlqZBMqcQ2Cj0jzrwEbYIBCbg5MLcHg6XfQ8L21QtPe4OftPFZIAAM4/Yw287Kx18K6Lz3KCj2mH5pZBKtoWUA3CuAQh6rHjALZNQiFRHcrgRKOitc2TngdFpnM8dGAKAAAeYZQVlYpmQmzUZ8UlEMvaPXtOKNdTZPQ9pzU2ko5hk3umEP9yIDYUlatKRaOObiUqWh+IDaeCBpY5h+/Q99Ixd/8zJ8XveH1cMWIjM5X0nM5UtL5qbGhGs6wqWvHayOeeqoqWIbQl11V8LsjRPjnnHsA/nF3Pw2wOLhYV7eEDUzDT7sHTx+Yqfb8MFW3XoWnoxQk8sD+9t7w+NpPZMztz3Yjhs/p5lrvOBs+vIDYl+P9Fdnh6gdUVuY3JJ4/MwLcfPQIz7Z4ixlDGaGGze42NvGdn4Q6S9BQsipLPDvf0TRlFidY8FbVMGGkG0MyR6JZ9bFTEhh83791w51VF/NPrGM0QG1ui1YV1kI/YYE1RKCjyLkwZeu15KPRi178dy1glm8ZbIoHqMseKxJgA0nUGL3/NcAMA5H6ZJOUCbRrYFIkHACxuL5tVF9hU0Yvnhhvv9okhAf3bsjvcsRpphvAvv3YJ/MfXnUMK/oqz1b6FiraUfWzw76ECpAkfKwZiM+2e+BnW1tDs/57jcyLowEeB3zVN9C67HgBVwQPAUmOTTQR0oI7MtPtyeo7NpAvGQoUmbAs9SUULAymHqQU2yyz3HDnwk4tMrbEp36CTIwDVxAOyehdLgTJ+7gVb1wAAwNFpmZHH7wjxgIKAocNQIqE05EpF02psSqii9UFFow6V7Vpxg8Pf49+B71dGbNBBw8xrmevGYl/u1HQrOLUuRsU/qliZRowYnGAfDVU9UqeXAQCMZ8pNVAHSpHC1lH1dTEZpVGihoOP2f20cjXd1GGljyqqUQ1XuefFV0ah4QFmfhiZO6d9512GusTFQ0XpSPIDub2UQeD7PTIkxKR5gW7OKWQcdgdjYA5uRZgDDzfQ+XN4rvfYj0204bqGtL3b922SGLk8MN6yUd5PRZ21bk+m14xikKGyZtXe+bGCziLWTfQU21157LXieB1deeaX42bvf/W7wPE/588pXvrLf6xTmQrcoMsxyrBluwIasoOyoZdDywIZaWcSmSQYMZo8XVxUtcxpEYVv6/+GCwv6Y0cloBpYjNwBpZP/44TQ7ptfn2Ddl6ry0e7EyifKoaGesHYZm6EOSgFUv3cWOzabBrPvmpcKokoom5Z75Brzccs9dRVGmao0NuYcKqmj6Ruh+blEnE6gbt80x3LymBQCgNAiTqmiZeEARFc0i9+wqOashNiUgd4WKVnKBcylgxueJc406V75XTZlJ9uqSTrmr4VrA5zsNdAZbY5Oep+qmqibW3CiNuMbnoTB4j2uGGvL7mWNpWqcXk5/uYlyYA6C6TKzJOBrvKm/7lfskrbhqQ2QVsXG7lyoUebF/BLL5cNW5F5gCG8t7oAhGXqE43nurIZGdbhTre5xjjQ2Aun/gfEDxgCIGCUCOKlrOXMHEAqWiuaAF/NptdDSaeFiMPjYnM3917UgjNxDlNlNQswygjhGssVQCmxL3o4oHmL9Hr2Mxm3RWDmzuvPNO+OQnPwkXXnih9rs3velNcODAAfHn61//el8XSa1XAfLlRgfKxrHUEbIhNlL6VaeR+Q6BDV14MFAAkNrtiyUeQAvacAFFxwwdvG5kLjDkwQkGggA6FW0igy9RGY3X2Nj60aTXJd8lbyiWJx4w0goFna4fOhoiNu5N2Ahi043E9afiAWZIn2ZWqm60/ZiyKVQca3ZVNJ0vbbyGAVDRWjmF/FGciPvclM3nI0pgk/WxqSj3HAj+e/lxQo/nYgoVrSQHmSZ9bKgLR0upsp+LyqPJeK+uUmIJ2P+BXS99DoOkouH5qm6qdP8pymbi/BCBTZ4gQE9FbNJrVBNTAUmOrRgqGkFsmgOUe0ZhmC1ZosLF4X/k4DQ8cUS2HqiKkNNgppIqmmsCZACITY8lfgIHxIY6+hKJ0e+TNuikDrWWqMrrmZMdA8ctvpMeOc5YhtjYggKa9LDtoTh/8tRUh8vW2GTfQ8Eaa2BD1svFaJ6L/tfEcCO3Joqb2vA8P2j0PenP0l6NZWTW5x1q0zpKYLPCEJuZmRm44oor4FOf+hSsW7dO+32r1YKtW7eKP+vXr+/7QtEGIR6AA2XtcBM2jKWIDTq53LhjRc0FsUEnLmCIzebxdMFerBobOtk43WOY9NQxXTuvsVEQG6aK9mNnrgUAOen1Pjb2bKOyYLFNyDQRxYLcCEQzqaqSz0mSSCpaBbpB2oEZNybfLvesBG/LLffcq6SmZFNFc6ei2Y9XZFLumRXyW1SzNo0jYpO+29BPUWMAoormKPcsmvJaBAtsxukhZahoiipa2QZpDlS0HkNqTM5V1T42gopWBrHB62Hf6ec55JmQa6+K2JSoscGAdq6Tzjulj42G7GLSSXaDx3WJBjam8b8chvduknsexPtCKtpZG0YBwM2R++p9+5X/V0XI6X6wmH1sqNS6kJTvE7HxPK9Qnl4mCINc9VIh98yoaPyzedeMzw/XZXwnNNkzImpsLGsWOX6RyFNe/7uRZiBrbEogNs/PyhUetcjYK0qJi5BwQP9rYlgiNi50T0UVrYCKRnvEeZ4HVRqsl62xWcwmnZUCm1//9V+Ht7zlLfD617/e+PtbbrkFNm/eDDt27ID3vOc9cPjwYeux2u02TE1NKX/yTNm8KyI2lLMoEJtZS40Nc6youTTVospZlM622IiNaaHFaxluyqyg6drxsSJKNUUQG+zfggHOS569FgBkMbJAbEI7vIyTrGtxmAEKEJtmANvWps8Pm3QenFyAn/izm+Gvv/14dg8J/P8/cyf8h8/eaXTUpts9qaleYfOiDTrDIE88gFCLerHi3HzmtqfgVX96M+wmDU77tTt3H4dXXvMtoXrFGx1WcTrofdOMGT1WGfEA27z9628/Dj/xZzcr9EKbeADdTOi5RWCTiYPQGgBEKl0RG6QXlm2eh88LVROrIjZlkQoX8QDhADCaahj4gopWNmEUx+q60o0S5+AIHQHdWSLIyEARmyywycbAP9/9DLzymm/BA/smnb5fpcYmTtJ/u1DRGoEvAnD8vMjK+56QVC4zj/efnIdX/enN8D9vfcL5O0UmFAeVBp3lEgB5hkj8WZnSnssY+Nr96ZqH/TimKyLkbYfMM7cqNTY0qSBkmkvTT2VwhGarQ0TDWtWRRiCK0XNV0SrKPcdxIrLyuC5jApPOhdEiVTSnBp16shRNIjahRGycxAPSz7w4S97aApsySoku9qUfPQOvuOabcN/ekwBAGUZN4Wdw9VWTTVv2amqmWjmAarRSRRXN1semQvPbKlY6sPniF78Id999N1x77bXG37/5zW+Gz3/+83DzzTfDRz7yEbjzzjvhsssug3bbHDhce+21MDExIf6ceeaZueensGfZzCIaRsBrRxoCsTlqQWzQEaU0MjSXomJVFY0gNhnEPrdIL9c02TCQoIiNaeDK4CSDj9kGcXy2I2huOzLpaEQ/8J1IKpp+fPyZUrvBEZvcBSqA9SPpe8Og6969J+CZE/Nw00OHACB9x9965DB88+HDcHemfkaNInSuwaUa2EiucZjToJNnVigy9c2HD8O+k/Nw5+7jTud3se89dhQOTi3Atx85ol0zQDVlNGsfGwIl5znvfJ7a5u03HjgIz5yYhx/tOSl+xuXWhfNkCQAwUXFUdGqmdW1IRXNDbHD8N0pKsWJQgQhGGUpZZAnY3L5bArFhIgIKYlNWFY0hNgDujrdEjuyIzaDEA+I4EUkbdF6/9fAhODi1ALc/cczpGOVqbNSNPq9BpxznnkaZpFl53HPKOBz37DkB+07Ow43Z2jgIi2K59qENso8NqpY+K1OJK6L4TC10YU/WqPLN528FgD6oaBWcLzoW+qmxKU1FY+gwgESYbcdqi4AlEH35TGsN/mwoJLLQvUQLQKznIcfcLBAbVUijGfjGNZ0anf828YC2SNgY/AYSyA033FB7APnuX7A19XFs7BBlrRpAjc03HzoMh6ba8J1d6R4+RahoYo45iQc41NgwxA8Nx1OZBMo8eTc2NEZJhq4UKtrevXvht37rt+Dzn/88DA0NGT/zC7/wC/CWt7wFzj//fLj88svh+uuvh127dsF1111n/PxVV10Fk5OT4s/evXuNn0MbhCqaKh6QX2PDFZKouWRyMUjwPVUVDTvILpZ4AL0mzqsfJkGaKYDgVDRuuOkAyGJXzKrgaZs52buOIUvLe7wYiwCJHr3cRJPsmKqjRu+fUxQA1PftmpWj463djSQdI0cVjS8opm7Ag1R9EsXhltqFKgICvMYG6Wx0kYrixJptdFXRQZqBSepXQ2wMVKVm6MPakXQ8okQmDWyEeICrKho7p6vDJh390Ol81OhY6AexsQ2pLnMAaJ+tfpWZaGDjGpTx60FTRRQGs0Z2DUEjzn3XdbgKYgOQOlcKFc1SY9MMfU2WXFlnKtSxyGB2cI6ERGwWp8YGGRSogFl0zAMZdW1iuCEaDVYNbCohNiUoivxzNKlQlooWkeAIDf9tQ1KoOEoj550tkACIfo7v6bb9iz67jZyKhsIEIe3hY9s/KGKjv9MkSUiNjYmKRsQDsjXKRQkVr39rNgZprbF6fYNFbJAVgXsY9txKxQPc5xilosWJeVz2SHKWWplaHrTSiM1KoaLdfffdcPjwYXjZy14GYRhCGIZw6623wl/+5V9CGIYQGTagbdu2wVlnnQWPPfaY8ZitVgvWrFmj/Mkzmk0cjHhAVmNjUUXjCknUZI2N/eXTjEqTCBBgUaRJPnEQZsre4iBtUcTGcO34XE3BHEDaYwBALT7kGWCB2BiOL5WQ5O94/YlZtjH9zHAzFNzuHqsfko6SPPbXdx7QNnWK0FWpsVnoRYoqWsNGRWP/Vwr62DUPwqQCntmZqdKkk/eTwDnB783mzOriAebz4GJoalLJFcqMwU/gw9rhpvL7hkJFc0NsaDYxPWc1ueeRClQ0JXjuQ+7ZVkuFga4UDyDOVWVVtCyzS9YV16Csa5kDKiI3mPWRU0kB5Jib67rNCzqfipwY+v7mO71c8QCFiiYok+qzCQgVrVRgw9aEQZgMiAkFykfUuv/zIKK+1TGw2Z+JDWybGILxrGZjpnKNTaz824UZUibgRcO5GPTRoNOkTleksIZzsxH4ueMJA7xW6CsUKB2xMb8bIRwQ+kJkCNkfQqCl4RMUshix6UZJLt07T+55uBmINaqMeMDWrGxgpt0zPidTErkfQz/n6Ewb4jhRxANaJeY/F1rIu3Y6jwGgVC2PvO78hECSqFT4FSMe8LrXvQ527twJ9957r/hz0UUXwRVXXAH33nsvBIGuHHbs2DHYu3cvbNu2bSAXPEjEJhUPQMQmP7DJV0Wznysi6jEtQ40NwOIICCgcdbaxhaQI1fQMudwzt8NTaTZtpBnKbHZ2Pq3GJk8VLafGJo+KRvX3uWPE64kA0iDmjiePK8eiNVXukp7qAor3EQaeO2JDkCm8/0GqPonnYVGJqYbYmIMzjkTYHHHuZNsSEkgZMKIxGGQE6ngDkPdMN1A0yj2Xcs9uiA2O/7BkISW+8iqBDR0v/TTotPaEYPVtlIpQlYqmSNqHbqgYGqfG8Z8DDC7wVxIT2ZznAU6ZYxQjNvKYc4yKpsvCS5Sc91uiz1cmUNzfkQhiByhFaxQPKEGTybO5Tk+s9a6IDdbknLF2WCjLVaeiua1r1OhYcKXI437SCDxj7aCLUcQVrUhggq6XzRwHVjboDJR3y6/RNg9wbg03Au2d0ORREVLM74PvYXT/NB1DigeEYg9w6mOTHZf6alMG1Iaul4NIHsxkdPFjMx2Y6cgeglQ8wMVn4OPfRCvjQjdoVYRAivrY9AgV2PaZQVmpwGZ8fBzOP/985c/o6Chs2LABzj//fJiZmYH3v//9cPvtt8Pu3bvhlltugcsvvxw2btwIb3vb2wZywbTGpuoYmiQqE1hjM9PuGR+0Wx8b+8vHawwYFW3DWFPICC6GgIDq5KgbWzOUWRIzFS392xTMAQAcygKbsVagLaJCFQ2RHFMPBtFMS/5OV0UzQcoysBHN4LB+yNJ4EI3T0ZQamwqIDbXQ96FlWQj4/03dgAep+iTqqSwqMf3W2ADITBDf8G3OLL89OxUt0n6v08Iy9MRA2WoGPkyMqIENnXPODToR2RSITUm552z1xmL6MvLHpnt3NZekD86riM2XRuA7ydfnnTfwPTkPXBEbTLpYEAz+736MjhkR0PRBRXPtY4PHz23QScbwUEOtzaKF+lWKegXtcKCUV3lNaIOiouHanFJLm+J8eYqOSEXbtnYIxjN6dHW5Z3UsuOwPVRAbBfEvqbzIj0GR6SLqLKXu2mpDAeQ6qYsH2JMQ1HC/Hm4EAkXjqmitBvUhLIg/m2cciaBrjekYSoNOR/GAKJbI0GgrFNdvoqPR+x9E8gAT3cdm28JXHWr4GSXQHRV1SRZTASRqRe/EeN0FFE4+HldMYFNkQRDAzp074a1vfSvs2LED3vWud8GOHTvg9ttvh/Hx8YGcg9JaKosHzEvO4ngrFFkLEx0tL7BxqrEhRZaU2jU+1BB9H+im+rnbd8Ovf/6evjcHTh+if4cE+jadRwgAWGts0k1ktBVqMDIXHjBNJul0U8SG1djkQcqM86v8zYI4tOsfOKAsgEqNjWu21rKYUMQmr0EnQD4V7ckjM/Cuv/uhJiaQJAlc9X/vh499c1fxNWb3jRuVLh7Qg/9+w6PwB1/a6Sz9zI+B70qjolmQL/59EyLQi2IZ8JrQGBQPyFFFa4Y+jLdCkTAAUDNRsnYhf25p9LeC4lZuOOdHCWLzoz0n4N//7Q/gkYP5qo8KBSuKlXd0z54T8Et/90N4zNJPQeljY23QiUiNOk8CQkUruzdTZR1EuZzFAywBuCnA+8xtT8FvfOGeyrUinEoKIMeCK2peDrGR18nFA7QaG6Sihb5WC6Y2eS6f2e9F+rxC++tvPw7/5csPlJaBN3HzB9WgE/fhjaNNZd/Ne96SijYMYxk6ULlBJ1sfXBywMqIS8nPyvVatsTFRifA92BIUApEmgbIpEdEmiE2LBEA0IMu7ZoHYNAMRbIqkGKmxKToOT3rwJISKhJr8BqSwkwadBckt+s6HG4FImJ00BDaDrrFBROrYTEehoQGUm2MuSrMmERD1PO73o4gHZO/3lkcPw7s//UM4MDnvTF3/m1ufgP/8r+7+icn6DmxuueUW+NjHPgYAAMPDw3DDDTfA4cOHodPpwNNPPw2f+cxnCpXOytggqWgTww3wPI/0stEFBIQqWsU+NrYGneNDocjo0on6N7c8AdftPOAsP2ozdbKpzkMYSEqDaTHB4KRIPGC0GcrIPk6dMC4VbZR7FhstDWzKIDayY7Km8sT6dKwfbcJwI4CphR48c2JOHOvorIrYuEwim7PY8GWWlS+6fDJT3rfkvqefuf6Bg3DrriPwf+5SBTQOTi3A//7hXvirmx8vvM4uex74f1y3DkwuwMe//Th84Qd7lCaWecbf4bRBstP0fzT+3EzzhWZ7THUmutyzGdXxfU+ho6niAW6bGqefFvWF4Ib7xzCRMf30bbvhu48dha/ddyD3u/QcSaLe5z/f/Qx8Z9cRIWurndehjw0v1ledK/04LhYR50pw8R3pnVYqmoG3/j+/8yR87f4D8MD+/ODQei4aDGfXVx6xyae9UKPjbHK+q9Aw6HeTJCE1Np7styRU0fR1uxQVzYLY7Ds5D//thkfhc7c/LRTFyh6TZnrLZJPzDPfhDWMtJRmY58yZqGi86bOr8fXBDbGh48LtPDQoqVpjY6ISScQmP7BpFIkHEN+H1lyImjqRvDTf8Dyp0bFR0VqEPWKnorkjNkYqGhEdwjW5KJlJ33mLiNJMzhkQG0Mirh/D+zs+1xFBPtaOlmvQqV6rKXjtsiAVbVDiAf9wxx645dEj8K2HDxsSofo7ODi5AH/2jUfgH+7YA0/20QZjoIjNUpiq/FN+AV3oRiKaxCg8r0knhW25mbqgc4tpYEMW6dFmKDj486RwFYvr+qWnmQLALoGt8+DqmNXJcBOBTUtSwqIoUYrC84rcTIXteqGbyfmV6iacA9phwRJu4s3AF4sZPSYPYsvyqKkFxJnmUDWeEzNFpgaX+PeCxcmaJxStIrSBI1i46K7Jru9HmTY+AMBCp1xmEQ3vQc/A2KhoxYENHe8mZTCJnugOAC28BgBYqwQ2FLEpJ/fMg6mqcs8AADuzREWRk8SzvXRcmnpAKOclPy5URWMJgMD3KvexUQVSyiE2ct6qn1frrNJ/47Or2niRHhP586iO5BrY8ELmPKPv6cScurdwFS3cypqBLxJgC6w3R+D3SUVj7/W6+yU9tyxtS4hOGPvY9InYZPvwhrEm64Juf94oxbttYkg40TPtXiVWB18fXPbiKohNj2TLpdpjuWfXJclKtNCAalOjtMdmYJ+vqioaQWyQ0dHI7z+Dz3G4GcBYiwc2MnlU1HeHH5+jq4p4ALvnbiQbio40QmfxgAUSlPk5+ztANRqizegenyQgetzh+RGxLaL6dkjfLGQwmBEbXLvN4gFlaPKmBp2YXOCINYBZcvtr9+8Xa+FcBdo82qoKbJIkUQZRlUULi78C3xO8SZR8PmrIYOfJPZdFbHDTH2ulRffo+OCASJJEwJCudR82M1PRcCH1JaXHsDkXUdGOZA0UR1qheAbdWOXe4uZsOj4OcPp5nl3L48oONwOtoRlXZTN166YTmwexLnQD23tuBHLhO8kyOrgwrB9Ng2faEwg3Hl5rw6+FbrRF9Aqtxia7ZnT273n6hDyua4G3jYrG3pG7KpohaCWLInUMeB8bk4IOD0TsiI0qo2szjhKZBAvyDN/BCGmE+1S2QRWdm9Mu6AaGa4PdAZA/t62Neg2WzLzjfVYVDwh8TwSPrjU2UtWQIzZkDGTHQpSlau2EURWtpHhA1RqbE3N2OXs6j5qhryE2pkaO5eSeVcQe7asEPSwrKtIzUFiaOc0ey9jRTNhlw2hLySTbnKw4TkRgs33tMIy30vmfJNX6xOnr7+LW2ISB5+RL5J3XRAm0qqIRoQrZn0Z9tkkiHexWQ0V28LoRsbFdM86tVDxArXui/QGL7r1IPCBPbZDuK6oqWv4YpTQ6AImYnJzTk99ctKVqiQSArlr65JEZAJBJeNeAg/oJuB+aEjFFfWzKzGW6hsoklPRnXWpsvkrYCP2Iaq2qwIaPlyqIDXIk1wyF4GWh7IYcyWfRpMqgEOZSbKs26EwnCWaUhllgs9CNxT32G9iYCtoofUDWDRiieIsqGmZdELEZY5Qw6hBJKpoJsVFRBQA5EfO6EFPxgCbjgPJieao4Y2pqx9+1y/M2BWmB74HneaLIlaumoFMmAhulxkYNaPCz/FpoAFLkgOA94uaF58DFbV9G2QAo0XyO3bdVFc2yWfCF3khF69CAT0djdLln3TFERHQiexcAaiZziDU+tBmnn+L4SRK3ZAqVS6cZ5/Tc+RuFragcQM4R02aTJCpiauXXs9oribb4ArEpXcCMm6PXjyoaz7SqYyBJEnHMyogNC2y6JPu8ODU28hlwh0gZ4wSJaAS+yITj3kOz8s0KiA2npwKkgfZOQncuKwNvbAxZgZdvMkw6bRxrgucV3/Ox2Q50ejF4XqpgNUSc5SpjRcssO9Aq6bN1TQyYamx4YqPITCIOpl5f1DqoSEYpZuyz9BkMNWRbh05PzhlcT20o0wIVDxhi4gFKH5v8ccPn2QzL5NM+V/ye0WdANHnYcQ+Yz9gM+Pk1ArHR54km3d6HgABHKZ44kibEMDEpKWL54wSf80gzEImSvBobvk9VoqIR5hHS+/E65ruRFozxd7Dn2BzcRxgl/TSvX1WBDXeSq0TGmFFfS5wf0a18Og+x0WlZEvItDmx8htgASKoKTj66ufRLRaOLq+RYS/QpT8IWHzNHqbB7MB5vtBVK5CRW0bS8CWhqyofOMlXB4UbVTXjmssuCN8odlQpt8jlwaojL8zY5i7iJrLUUF+L1ycCmq/2OU9L4tdAFoMgB4XU7+M7XMBnk9LiuWfVsDGdrHzrYeL04D5ypaIbpQu9ZoSGRQlcAs/SyK2JTXTxALvou2Vg65zmdswgl4xszlwym10eNX5bNuRKIjaix0ekw5RGb9BhBjuy5zWwNOiPGW+/FMnAbBGLT7sbKvHJHbOzZYW4qFU1dFxRVP7Lhh76nIYtGuecSwYOgIpNr/xpTiSyrlijVuOT8kn1s+kNsjs9KKlp6jvzs8YFMOGDTWAuaoQ+e5/Ul+YzPHde10qpoju+G1tgUFfzbz5vNPYPcsw1RpBL6FAGg9ZtKYBMGSnCJxy2iouFzG2rKwKbdixWaVCsMHBAb9T54EiJPRp0KB6R/u6H2FG0CoPu7nvzWmgv3EdhzRsYTiNgw8YBOwT6C4358KIRGhqSa5iUXgkCr0seGrqFJkp5vhpRWFIkHfPV+dU3qxwdeVYENn6dV+IxcZQIAYMOoHbFxUUXDiX7rriPwF998TAm4TD0eBGLTUMUDaDa+Xym8nmGhVWRDc+QlZR8b1SnblAU2aKOtQGkMRgduMwcREl2CDapoGACYskBCPpIgRbJvi5qBpjK2AlbNzntiLi3k9Tz57m2b1z/c8TT833uesd4LUvooB5duEHh9G0yIDQtCJGLDFgDy/yIHRK+xUREbaq5jDMcDBp1cFY1uWibTqGhGxIYENuT3eoNO3QGQDeeyILNQPKAgsGFKbDQr7aJGhfcbeJ5G5+QFk0mSwMdvfgy+9fAh4/FNVLS8fgS2/6PxgFfpY1OxxgYvJ0WlEbEpFzTztbzLHH96vKqBDe8RROe8a3awqipaHmJDx5vneVojWYqq5fWKeXD/JFx7/cMaStE10P3QicA9jCPBTx+bhd//l/vhyi/+CH7vn+8XDpa8ft2hHhgVbUZS0QBIfxyLw7hfSD0Pi5+N9RHY4HtDZ9YJzTfs+UVmQmzSeiv3+WdCzooaXtI1lfo19PO4Tnleuq5SZEdQ0RpuVLShUNbYAKTOO0XFi1TRdMTGHtjYqGiYRB5ylHsW146BzbBdPMBV/trF+DxEiiWORc5UsRmO+7GWLrSkXKu1xsYeDNnMVBuM17HQ1QMb7n9gSw6sCXKtezTZqgps+KZfRRUNNxglsBkz19hEcSIL5XJU0fAzf/y1h+DPv7kLHiSqPTQrg4jH9mwBljU26cunTmu/XVlptoY3aKNcbSMVLbtmjtjQRlUAKWITkGw2XWBsNTYxeaamPjbrsgCAQ/K9KBaTbIRq3wvHSHXYlG7duBhkn8XmnOtHmjCaLbim5z0534U//PID8Pv/sjPlzho2nIAFNlGcKAsvLkAYsKm/U68V7487vzRrX4jYYBDLGnSaApuyzicu7rwAFNEgG2LDh5iZikYRG/kFWyG/0THMPrN2hAY2OhWtqK8MBpL8nPy8NotEFkxfN/gzv2fPSfjvN+6CD33tIePx6efx3Zs2NR0V0z+TJHLu8X5PYeBJam1VxEZp0Ok4tiJ9LQDQa2zoOxtMjU2siGe4bqJK0X+ReAC5Zo4QK4gUG+MCWeyZVNHs6/ZffPMx+J+3Pgk3PnhIPRcRikiSBCbnurDrUBqo/MTzNwIAwCy7/0/c8gR88c698K/37od/vGsv/K/vPqX83tQ/RWZ5+9u7qHiAclyLkyUV0eT+hHU2Vaho6HBhImfBCc0nzrXj/KF7FA1Myvg1JhGHor0dD0/FA+j1AJDmnGEAnif30DahorUKAk5Zp5LSzdDfmV7oSioaqd+xJY008QBORctBbBZYgFJWPACDtzzxAC0p0wcVzba/C8TGMXmA4358qJFL5bTV2JQVAkmSRHumx2c7YiybAxv5/6mFLjxyMG1j8Iqz1wOAKh9d1sLij6wcc+mHUWQ4MKnzY1NFUxAIE2KDkG82sTHapt3lZWEtwKU7NsH/uOKlcNFZ6wCggIo20BobFbFpBJLXmo/YmKloaKPNQFmQqWNrU0Wjk546WbixrsveiwY/U115qorGeOhxkgZPpqJK3HDpxulB+nsTejHb7glItRfHxmeF14Fa/+1eDCfnuqJYUtTYjKloRyrxmmSfUZ07rcZGQWzcamykOlz6/34QG9y0sYBxmlHRBGJj62PjIB5AlQEVNIZRXrhoBL2OZkb7ovcaKoiN6jDarN1TN0OKSrpk4wRi4/sa6smf+cMH0iQIvlc+7pXApo1UNP36XVAxXreSnk9ea5zE1u/mGc36Ndm8LLIOuw40rnqnIjYDqLFhiE2nl4qf8A0+7xhF6J1CRZvlKIr+LtDB4w06KV0kL2OLiTnuHHGUCcd/4HuwPQsG+LqC4/K5m0bhySOzumolSdihDazGJks8IUW8qMbmAOlhg1aVipYWzWeBTbaOuIislEHy0GhSgSdPLIKk9mMoiI29xob7NIrqHA1seqpjT2suepE6Tm2UN07nGmmGMNeJYLYdKVQ0U9Nlargmjg+FML3Qy2/QyZ49R9+HGRpqM008ILePDUvK9IXYmMca1o1iSUTR+orPaHwoFGPEjPTLpAk1V2QIbaEbCzWzwPcgihM4Qko7impsqO+wPZvHpw1i40q3yDMR2BDnZ2MGeeOCilYU2HDEpssCCHqNqVa9Dz91wTbYnCEfQjygq1PRBqmKxhGSMPCMjQ75d1sMsdm8hlPRQoXqY6Ki5RVD4/XMkM1nXTaB+fcw+PM9VfueB20AqZMnhRIkjxjvlVIdhnJ07ZWGelFiHG90QRBa92Txw8nMqWiq854hNjbxAFpjUxTY8BobRFtGqgc2uFBTxIaimZgdtcsQF89bOxVNFroCmOva+OZFAxuakZRFlOZ3iSY33fS7vu8JeNyFiiYl3nXEhm+ou7Jmm4KeaZkvSZL0jdj0DEkFiuIKued+VNEaJVXRGJqMpgRhvUSVva7YeJGrovHx7yIgEBmeoc3yqGimGhuRJNEQGxk45jVURKeL/446rL1I7Zkzmin30XUljhOB6Fy6Y1N6DHZMk0Nkq9coY0mSGBCb/Cz1fiL1jDZesUlnl7QtQMSmbP1lEZLHvxP6vkIFKkOx75L5i5bXUJj7NAFZ2+jvONJBg0shHoDrqeV6qXgAAMBYK/17tqNS0aiyqvEemQBOXo2Nrd4l1AKbIvEA9drX5Mo98+utjtjY1qC1osbGjSJGa2xEXaphzRDPx4LYuFLR6HXjtdI+efPdWEdslPcm93AuqlXFVnVgUyGuEeIBKhVNIjZqAZ10pvmLBwDZqTtRs+Ndw0QzfV9DbEi0Psg+NlwSueEXiAdkP9IRG5WKNtIMlYURF5jA96xKJ/T/eD2IcLVCc88ZAMqVTdXsOJ+bb940yxmKxSD9Gd040YkwBZIUgepFiXGjoBsSSkLSxU+KB6RBIQZxqipSnJ0vC2zyxAMKamz4GOSqaMpxHZ1PnHfrSI0NXaTWDGONjat4gAGxsVHReL2LAWnMEw+g846O57yNjTfoBIDcmjRueH++ocaGn/fRDH7H8a4lAgiKh4/N2HuKr42GV0sLQbk8OpWcLcukMCEK5aloam0BD/zp2KpKRaPB00I31uZ8+X4lRYENpZCqx86rI+OUSbqH5Mk9I/+fr51qkkv29Wj4PoxkVFyK8jxzYh7muxE0Qx/O2TxuPB/dS9BoEqFq8+yp+Z64X6TvhiKYMx+TNudEk/LC5dA9is5UrrFxDOooDYgGiK6BEYA6f9EkYqOPkTZREAszRU9TLxupBpuh1mS/xXOKGhvL9VLxAAAQtO/Zdk9JHhU1J8UgGt8H3wMVxMZCacWAQDToLGjKrdfYoNxzfoNOgP4CGwzEOXIsqWj56CWaoKK1GrlIKk28U3OlvKGhf9YKfRjJAtjDUzKwWejoiA2l6uLeFAYe6e94mgQ2unJOdcSGSsKKgvU4gSki50f7WaA0NDXeoJPL9wKoDTq5YZ8LUWPToefuE7ExqaLhJA89DcWgJvvY5IsHYEEgbm54zYHnkcx6TvYw+52i4GH5Hlc3CZmjyeWt6YLG+aKU6oDHMzm6FB7lfXrQ6IZi6mXD5Z5nOmnTOPocuHhAuxcrjioNQIoQGy4Ugc+BOvuiwLtkwTRmMGcWespmgk6EMxWtFGKjoicmuWchCY3iAWRuN0hgMUTGc57jjc+FBkJlmnRShwXnEK+bAEiz0wKxsVCy8Fpo5tmUrXdZG1UaqIoQKU0CS0Y2mNhRGnS6qqJZVMa6LLilY2sQDTq5eACAW4YwMiRmjJ+LE6MjIX9Px2/6OXQwuXhARJB2Gy0rSRKxt+mIjXrNuA42Ql9m0Ymz+Gg2Jp+/aUyoSHGnhNaHoKEzxM9ZxrCHzfhQKOZOUY3NAYN4QFUqGu4DnifXzLKqaJXEA4h/UWb+USopWh5iI8Ya8WlMtCPaoJJ/BsfCUIEqGq3TAQCCDkakxiZwFg/A96FT0eT7QSo6v1/cNyR9Ln9+iuai2ecnBBujowVEmnhAxaAeQNYPbV+rJpExqEMWTZFa2TShouVRObux+nzQTC0y8gznyEgzEM9MRWxkjc2wQcSnK/w1H4aZX1zFVnWNTSXxAIMq2lAjgPFWCNPtHhydbYtBzLPF3EJWY4MvR3Xe7YENvmCTKlq/iA3fgGlNR+hLJRJjFI81NsQpbIa+lvUfzTbFMPCgE8mBmiqpmDPcJj6sDGwaVqSH9rAB0KFSuvGqiA2BujGwQcRmtAmHsmajxsCGUdHMiA0JbAxUNK6KliRpcGOionRZxgyDLkUVrWBc4BjsRGlwhJdM5Z5ftH0N3LPnpHNWXaqiSSoaZv48T/YeKqKiIffWNG1V8QCJJuBn8X0bxQPy5J7J+/EzRKETxY6IDXEWHKTd0WKyWWBwJJ45eZdHZtpCBjiKk4zepz5DHBu0YNZED+B1S6asMUc1AajQgQ++h8+98BYVUwM5nJfli/FpbQH9ebfHamyydfLoTBu+cu9+47jzPYA3vmgrnL1xVPyMiwfwNdYlsHFFbIoCO1OvJhzjUpZcR2xs2dfZTmQUZUm/rzoQOH5C3xPJNbr3YLB97tZxK/VNqk7qVDSAdIwOg2OhCDHZw0Ym0Zo5KFU3iuHwdNack1DReKd7V6P9VQRtqWBc8Mbhzg06ieiG73vge6ljHsUJ/PCp45AkCbziuRucjkHXOZcaG0ozb4Q+QNssHtASiI2OduM4tQViosZGIDYYRKtUNEyMJtm9c1+Jsw7mOj3YfXQWnjo6C699wWZt/vfiBJrsGYQiaSDvA1HJvGvnqmjdKC2Sp82XdUXH/hGbZ68fgb3HZc85jti4UtHGhsJc+homTQJeY+PYLweNMmpw3iiIDWnQOT4UwjyjAlN6LG9cX8VWdWBTSTwg4zqvZU76hrEmTLd7cGymA89LacVKVsFk3MmSxeA0Cyk3EW6cikZfZN/iAYx+QJ8dbVppWvyEKhqZ9KPNQEDJ4mfZ/2UfE7lQ2ygTdHLhQoab6miLZG+4eADjvAolFZHpVgMmtfeDGsShrPe60aY4XhEVrRvFRqSBUtEEYpNp3dNgEheYbpTAzEJPGQ+ijw25h/luJNGkCg06+T2h8EMr9OEF21Inu2yNzboRSe+gDoCUUTYfTwYnnnDguc0bGnSaatxMXbXbLLBRVdHUjavVyA9s0kaQeG9y3ptEC2xG+9hg5vglz16nPfNdB1UJXdrVGw2fgUlNz3ROeh/cjIIiA+ljQwI5gQYWPyeq0gaQ3pcpC9y1UNH+/KZd8Pkf7LEe/1uPHIZ/eu/F4v/cAeHNdKmAhc14kGCzIsTdKFceMvEAVndF+51wJ8WUTJHXrCa5qIjMmIGKhvTIHVvGrWiJqTGkItRS0bk7JuofCeqak3E+OtOGOEnPTYMh3une1ahwiETz8+9F80tcAxvxDNPnFvrp2jTfjeDdn/4hJAnAvR98g8acUI5hSJzm1ayY2lcIx9dUY8MQGwD57osRGyYeQMYaTR5Rp7oXxxD46v1y1sH0Qg/e/ekfwu5jc3DDla/Wgu5eHEMT1DGD99gMfBFALnQjI0VbufYmCh8EYv8+OddVApvFkHt+9vpRuA2OAUCaPMTxnFdjR40mi93knnmNjT4m8owyatBfxoQDgIrYrBluwOHptrIX0r5Y3C+uYqsqsBkkFY0XU0+MNAGOzRkLv62IDaHF0KyNWsie/u0bqGy8SGpGEQ+oHvWn1ySvIU7UbHoY5Essol9DncLRVigyLvRn9HPozASeJ2sSCrIZ1GkZCnUZZzSuR88zl1ywQeWlq4scPovhRkDEA/TnQJ2zXmxBbKh4ACswpNfUDH1ohQF0o5TGlSj9A7LAhrwjGpSUatBJzkmPsX3tMHzorS+CTWMt+FHW3dddFS0LbDJnY7YTiffRDPzC3iWIHjQCHxa6sdFxpkE9JgNMgY2pq7acp/mqaADpZjy90LM6K9RhVKlodnoHN7y/wPPgP152Dpy9cRTe9pIz4G+/95RCK0TKDxotzEXDZ0qfj4mG4IJmq6hmrHwuVWayfzfP8FhU7tml6LSoFoRet4mKtuf4HAAA/PjZ6+HZ60fE749Mt+HWXUdEo0d5fPWaeNPMQSI2trmAqKV5/GaIDWvQ2SPOmeC+s+NTcQL+7JWkD6WiBR6peyABt0BsxoRqJH9XPUPCLpUFTp2/qoHNUdacM71Oe/aYFnn75Fp4p3tXo/QpV2lgrWDdkUrGe4gEvgcQpeMSx+JCJ84PbEwBJgr35CA2dG83zVkuHsATRACkQaflXeO7wWOMNU01NoGmOsnyp+K9I+vgscMzYu7tn5zXx3sOGup5Hoy1Qpha6MH0Qg+2rDFeunbtnufBxHADjs50YHK+K1p28PPRc1YxZGRsXTMk2AVrhhpi3ysS0kA7PisTBHl1OZEhME7PU5KKRvwzQUWbVhEb0R5iSG+xIVDkwNOYTFVsVQU23CGqgtiYqGgA0ilVNggDJYWaVBFSF13K+bTJ6QGQGptsEZmjDTr7Fg9QByR1Yqmzb0RsEjnYcaMaa4VKky0ASUEKGdTp0z45XDygxzeBRJH0tXE7MZuKz4wjQrxmhfZ+aLJ77YoMqS/4v2bERnUETbKWdEMRqmiZw0QX3CYJJrtRDDTONSF9NFtRTu6ZBDYd+s59+KWLnwMAUsrVtVcSPsv1pHYFF61mKDM0tiw9ZjBtSnkAqpw38n4p3Q0dKFMNlinjjdLbTTbvTLUu1JReTIaspks2Djc63/fghdvWwAu3rRGZ6E5WP+X7Huw6qAY2KDnMfwagvveqDTpNiA3N+OJ6VlbuWVFFK1Fjk6eEplLRVFW0hW4M3SgWtKX3veZ58JpzN4vf37X7ONy664ihkFi9L65UNsgaG9tcGG0GMLXQU5Ef5nyJGhumikbFGfi9TBrq+sQ1U0ePUNEagS/WcBxf3SgWzTh3bBmHp4/N5R6T72uNwIduFJXqWE5NIDYEfclzzPBeuNBNVVU0QbNq+LloPrWqFHku1RwGHkBXRRKLeqLkyT2b1MqQIqoiNli3Ic8lxQNk0IVBOZpzg87scyNCFS2SVLSGrzjVpsQRHh8L+On5aJAkjmFY5yizYnyokQU29qCXo00AIAIbLiDA18t+5M4pe2XDWBMOTC4Y62OLAg4qkOTSx6bBxQNy/EOTUUYNPjPaF3KeiAcg+rTQSwUcPM9jiE0ovlPVVpd4QE6Gz8XiOBGLxgRHbAxyfu2evghQk2oeMduo9M3PLB6AaEE6mGdog85+xQPYs6GLcyPwneSefU9S1jASpw65pKKpxegKFU2rGWDqQFGsBBo2B1JMnKYuP0n/xuuXMoayxobXsjQDTxTHmmts1IL2whobJh5AN4pGoNJI1EAYr0v+TNV4p1S0ouyhnnXj19kqoI5xo9REzLYgzNwKKWJjPp7k46efM/axoYgNC/QagSx0NSEn8n3qQaYJsQGwO5705/R4ZQrrTc7GENkgcSPWERuZ6eZF+BSpMwUNeq8g/bp47V8cJwKdpXV3ZeWeFce7RINOGwrA/81V0QBSAQve7wTNluHnawp3UAapimabC7hmmoQShCpayMQDyPypQkXTxQNklp8qVQEA7D46C90ogdFmAGesHS6movUpE8tN1NgQKlpejY1ophuYA5vy4gEUsbHvDdSqMklojQ2AfJY0GCtyLPkxAFS/hBsqy1GfxqSKJutoiDIkC2JxnLpS0caoKhqhMhc1J8X3bqKNzbX1xo8qQinRSTSXoFf24NGp5pPzakKkKmJnMqR0jbVCgVqaqNVFiSPa0oL7P9REUsrax6YCYpP5aMcIYs6paAApM0gybrL35Esq2pwDNdhmqyqw6Vc8YLrdExu+htiYepAUIDaUFqM4qmQwUFoKN05FG6h4AHs2uGD7Hq+BYQ4R+R793GgrlVlGZZO0uVf6XPAz6Mz4hIqGdTRoXLKTqqw0aeNQtjhw8YBQOMkq9Qy/S6kSmPHjqnVNWiDqIB5gVEVTxANUuWeqHKTQdHo8EI618ymBDVVFK0FFw3Hle6DQNLjqUpFRxxUTAoczxEYNbMzHE1S00K4sNqfU2KiBHi105YIdAOZ5KoottcCmCLGRRa1UCVHSTovXnJggnvK8NLCJII4TeMxARcPjS0EGfW1wkXvOcxDw9zTpgGPU9t08k6po5Rp0aoiKBQ3pMPEAgLRTNe93gmar79MQm/kKiI2FLseNZ7zRMJAwil9YqGhdkhwzZdfTe6GBjd3R6kaxktgZJVl0ABls79g6LqhlALpTRHuwUCtLYeGGwSpFbPAcHYOT32FBIVpVuWdZY5O/N1DrG7EJ1KQNveai50gz3Wh52XYTvb5pQAFM49dUr2g7DwBRFtPkntUGnSickB7LjiqYApsZE2KjJA1kEI/mEvRyKh6AVNvkvWwG2aATg62RVggbshYRihiOQ+PMKE4EDXfjGKGiGVBUfN7WGhvHeYz790gzFM+M5sfiRK6v+PwB5D4sApvQOw372DhkJfMM4frhRqDxVteybDuAudCOGnV26IR0VUXT+th0aI3NoAOb9HihCEbMixLNpvuEAoQBDV4zOl4AuniA76kZgKn5Ljx1dBYAzIo9MmMpZaLtfWxU8QA8Jldbo8+94auODkUC8njUis56rNc/AFjknrOFry3OIwsX8d7oIiMbdJrFI0o16CTPF5+Zjlq4ZSLRYuLEIB0AFU+wdgigWBUNF2WzeICKjgGY55+pMNb0ObxOW5bRJnVtUkQDkM/QhWZAEU80pHUCpBv+vpPzMNuJoBF4IpPZ7sWCPoJwvBQP0BVkqGlZY6Mqmvozpe6uj8BGUUVjhe+Hpxdg38n53O/J69PXTfw5f1/7Ts6Lz6wfVQMbW7axuMamnHhAXr0VOsjrRtRrw3VT7dOjzg8uHkAFaGxBmykhJ66T1R92LYhNkiSCHnnulnEA0JFDNNrsmVqzBGXTZEcNwap0zEwIhHSQqeGcmskUuG57/Ch8+5HDcPsTx4zzZ8+xOTg601bUwET9ZSFikx9Am4wKy3DEhjrchYGNwb/IUzyVtF09YKFJR5Njz9dEidiYr3GeITaU9kgTSACkfUMOFc2I2JBmn2gKjVUgARSxKQ56uaIbgNlHNF1zfw060/OOZVQ0AHNgk9cE9+RcR/jG60bdqGhajY0j5U1cN3lePJmDhv73WCsUzB+evAn901A8ABd4z9ORABebtNTXAJg7y5rUkahRWoyJWpRes5qVoTbSUBVpqNPq6nTajE82nKg4wW1UNOoQ+aQWBzfAsVYIh6fbikKaEA/APja+p3A2f/Uf7oYf7j4ON175aj2wiRIl0LA5v5LDqQoW4L1y5Z+IbN4iy8HkuFPNdPsksiE2zdAX16w26EzH0BRDbPD8NJtJx4NRFY3W2CiqaPnjQpXszAIbtmjheHZt0ClrRuTcUahojQIqGiI2vkTZuKniAfbAxuR8887tAET3n2/GBWiVTQmxDGJjK8hE8YiFbiQC/edtGoOjMx2YafcyxCY9Py7u7ezeaP2dkYrGrstUJ8OzoQpVMZC9NMpQ0VQ6G23QmfKn/83Hb4PphR7c+Z9frzhJpvvgqCtaKjCifnb30bT2g/Y7kfdiTtoU1dg4UdFK1tiMtUKlNgEDVqUmkDmbQySYiJVAxANTz5H0XnTRG3Gd7Lmq0qoSQepEMew6lNbXnIOBjcUpMtUu0HuoTkVLEybrFVW0HCqahS6OWeGphR786fWPwKdv2y1+9/437oDfuOwc8f/JuS684c9vhTPWDsOvv/b5AJCpojXcHKwqiA39SIOKB2TXjFYUJJmoVg2xVuUEggrCoz9fU2Cjo98oHmC+Rl6AP2pSRWtI1kcnMh8Lr2ukFYiC+hdsHYdHDk7DjIGK1jUkH+h+6yIFzq8dQPqIJzliU7DOlDGB2DRD2JShljQ5Qsd5N0pEo3JqSAFbO9LIfCr7/DHRpgHkmHStFzKJB3BD37oZpLXN813ZzwjHcZOoop024gE46JtBWhhclguOGTmu7gUgYcaThsyXC2JjariIvwMwq6IhrWehm8rP0hfpShOymVZjw7L3tgw0XQtTdTOkoqFko9psKz1WBlsSKhpdSH7w1HEAAHjiyAzwV9Yl9SYpFc08CecF1KmrtHR7MfBsL208Je41y0jRJmXlxAPS7421Qjje62TXQVTRRlQBCkGlQslMsuk3IrpAqdQrADXoUMQDcrLKtG8NAEFs2KJVFrGhtBNORWtSKlqBeEBeh2lF9QsRrKweq4hmYZqn777kORAnAK8/b4tynqJ755lENFvNmMlsgc1Qw4eZdhqonsjGyKbxlthgqdwzSqPiM53p0Cyu/vxioTyXin2Y1kbubC4QJcDQ9wVdMUlAFHUWGd3Eg0ClW7Z7MeyfTAPgE3Md2DYxbP1uel9qIkH+PNEDm2NpYMjrawDsNAo+7njmdc5hPrg2YqSd20cagei9g+uoqcYGr5vXY8nxlFdjI4M0PXlE9ybZK4mKBwCkSZNDWcLijEz1yUR9oQqgJvEA0zW4Gq51dH/Jyzjb9mjMynd6MfzL3c8AQDrXjky34cH9U8pnnz4+C+1eDE8enRXzksrYF+3FVWp/aeCO7AZ8llM59VL6cfS1Rux3OXRUk3gADRBMyDUPbPAYJkc+SRKRkMPnSHsmyRqbQLn+vJrfhu/D777pXDgwuQBDDR8eOTgNc52eFtiY51ZZKlr6vWGFiqYnv9NrHhxig8ntsVYIP/uyZ8Hjh2fg5y86U/xeld2Ojb7pUSaZnlf3JgM/nqCwB0MmozXQtsBmKkPImlkylPayUVTRTjfxANys8WWWVe8xwYtoojCMZPHaJIo0mU8CGxOvE8Ce2QJIZe9wMzs222Fyz5EVanQxK2LDFlGexaUOUWBAbHDDocGh4EDTPjYG6t18NzI6GxQet0HSXDwg8D0BZ3bjmNEtZOY7VRJSF03KaTc1wURT+tiQd0zvnW4oOIZmO5HCZZeIjQwA6XOPE10Ra0EJcuW/53IQG+504zvXqGgF1DFudPNEVOrItDsVjYsHmJxuGlhKxEad73gN6TXJc5l445c8fyP8r3ddpDnTRddqo6IhOmuSUOWGH+F1dS1SFI41DaPNUMmoiTGWjUtbg05b92t8BhicUOMOGB3fvqdeb9k6AYD0+y0SvM8WoEy5NTbkuO2eLh6AiNcGRkMDMPc64scHkIHNeMt9I1XRj7zARgbIdL+hCAkarxGjY2+hKxtvNpSeXDywKdHHpifnYxj4Itifzfq4AaTcfAAzAkOPx9WUeDPksmZCX/PqCmzzlSp4Ti30YONYC/7orS8CAID9jBqJ9wwA8GQ2rihisxg1NvQzQhXNQEUrovSZap1sveAAzIGgSWnLjNh4yr/zElXtXiySmDj+x5QaG05Fsx+LIpb/4SefC3/40+eJwNVUY2NKkKiBTXGPI97HBoD6iEwVja2z/aii4To/0gxgx5Zx+Nt3vxwueNaE+D2n4JtM1h62su/Ya6GsiE2JWkkAUirQCI3+NYAa2HAfRFFFa8i9z6VvnMn6CmyuvfZa8DwPrrzySvGzJEng6quvhu3bt8Pw8DC85jWvgQcffLCf0wjjm3dZxMYk4YdmisaR182lJNFsNTZ0otmytwCpNjoWiB2baWt0nH4mCA/6FkRgoy4kfHOmk9TzZAA0ygoAVSqaWmOTBh16cDPfibV7UpSgAqqKpg5ozKaONOlCKzc8uvF2ifJPugCrC7dCRcutseGIjZ5NDNmCib7h5HyX1NjoVDSeTeO1M/R66HjqsHoianzhmrdQ0aQyWFnExpNUtCmkogXFqmjZZeG8NSUk5gyIhClgMW2ARcgqNV6Yzc1GP7XNF5PFljmPDmS7G4n3PdIKCJVTBrc4zk1yzwD65imCR/IMuJPAN0LMSobZfKUCE65ra48JEDQJekdpk6Yxm6uKxhBwnnh4OkNsuHAAgFrLFSuBiHoMHF/rs2O41NioiI1906VUG7pm5amiSTEWqRS10Itkn6BAF0JBM9WGoinoVxwrTVkB5Ho22+lpcstUDAIDZXo8e8fyag4JrbdEy0OBeHNecV2+p6BRb7lgKzxrXdrrCFFENCpL+9SRLLAJ3eWeXerb8r4ja2zSe6C1H3kCFbTBbciCDtN1AchkrRqkmAIbPWBshmpCLy+IpesrUiulUEVPW2fzahhNPZNobVjReOfflapoxTU2Q+SeXRGbqs54kiSCkcFba6CFgS+EFmx0T5zDmJzIm5NU4Iha+T42klHDKcdo+NwaJJkia2zkuKSBkQuKbrLKgc2dd94Jn/zkJ+HCCy9Ufv7hD38YPvrRj8LHP/5xuPPOO2Hr1q3whje8Aaanpy1HcjccQDjZTFnJPJs3ZCHQ1hr4k0UNOmn2mE5IExXNFNgAyI352ExHkx/sR0CATzYpHqAuonzgKqpoRN2MBzSKc++rji3eKqcpUMk/eZ1UPMC3Fj5yVTQAUifEInuKoCn0jZ7qMDcCL188gFxrSuFIv08XHVqUGPieyP6enOtqFBO6wPDFL+/dcyfcJiCgBTbZYmNTsylLRQt8TyzuiDg0A1pjY14EhXgAqqJxEZA4UegeeTU2pg2wTGBTXGNjTmaEZK4XGe1jQ43WNlHKAQ3QBZ+8KQUFAHQKol4Yr2cm+XPmwfQCqYmjfwOolNQ8o58LfbVBpyJRbaRB5DgkbD3lYwv7q2wwUNHoumPi23PDeg4XTrdN4IAbpdoMk7USnW0FsTFklaksOU0s2GhZamPpvIAx0Wp6cE0/NtMR8xr3Jbr3yd5H8nj2TG+1pJxE08k6n0OL4Ypy1DAzDwDwMz+2HbZNDAFAijbTJAyVpUWK41AjgKGsFUARe4InEFyEEyjyG7IaG1U8wO28obIP2TP0cq3UE4QmVU7qK9GeYIo8vGEe4P5FlU5pMKLV2OQci9bLoo2SOozcmrKKqmiS3SO/J8WBeOPf/HXW1dLm1em/Ry2BDUAxmoLjGZPmLnLPfB7b+mXZjDJquH+NQQwiXU0DzbNL9q9WKIO3qnS0SoHNzMwMXHHFFfCpT30K1q1bJ36eJAl87GMfgw984APw9re/Hc4//3z47Gc/C3Nzc/CFL3yh0gVSE43+crKSeYbd5U2BzQQp/I5zHCtqZWpsTNQsALkxH5xa0Aaqa0Ydi0yp8WwiDhAMVBoWGFmhljC5Z4BUrYP+H4DIPQtJaRQoUJ/bQjfSNifKn28EUs6UOz2YTaVOAlXu4PQ/6eh5JIOVHpO+13zxABVBwwV2hNx7wO5RSkJ2SMDGeu/09M7cWmCTU29lq7PRqGgdczaG98koMsqnR7UxNIWKZjmeEA+w0KR4UKmpohUhNgUJCGri3kkmnJpdFc1dPCC2zHmapZoVlINQBrwEscHsZkfIPavPSAtskKZLngEPTriqlA3FpccrMo7Y4Fjo9OxUNK6EI49F0RA1cOVoIL6njQYqmspDJ8e0OInYeNZlE40MTpPJKNWGJmNw7aBjz7TPUFlySme28eUpYsPfs+roSbojJmXw+vYcT4PFZuCLBE2DICc45uh986SJa2d0m1HZVzSbYAIAofEZ9vSxzIE9Y+0wvOTMdbB+tCnm9aFJidIcI4jNgQzNoXLPSWJO2uA41gR4HNYIXKs9jyA22bObbuu0wiRJtEQUfa/Ucbft7fR4TeXz+vPFGk+beECo7NWGwKajJ4jQZ5ha6IlrE1S0nBpGE+qCx5ppm1TRdF/M1MemrNzzRLb3aapofB2rOPapD2CrUwHInw8AurJgHpWTJoCplaWi4R5uEg/YPJ4mFLDOsBX4Yr6KvQDFmIK0zYJoXr+Ugc2v//qvw1ve8hZ4/etfr/z8qaeegoMHD8Ib3/hG8bNWqwWXXnopfP/73zceq91uw9TUlPLHZj0S1aGVoaPlUdFQ8SJO5AsoVkWTkK+pLwm9ZhtigxszbioAcoNzQWwWuhG8+sPfhiv+1w+Un+s1NjhwcBE1D/ZIoaKRGhsh92yqsdGpaPRca4VIgh7Y9FgtisiM2xCbBj2vnunmx1R6PzAqWpNAoiYalSIeEEuxilGFDqe+V9roVTrmnrg/gJQOoMtZq4ssVULjAa5NGY0/W2xwxZGzol4u3EQTOM8T8wStSoNO+jMAffHq8fcUqhsq/R2AXBTdEJv0M/tPzsNP/Nm34T989i7l97Y5H5RQicFxwgVDhshiLhGbQGmQh/MW1f+k3LM6Prhji8uPkvThNTbMacDAFucrvV6XWiIAFc3zSI1Nuxcp14z3ce31D8OL/+uN8NihaUOSQ51v8t+JWL9oDwQAC2JD1tqeYS3mVgaxcW/QKQNkhYpmQGxMBc60HktQcQK3Ghstg61QcxKtjgURaImCNYVwBHWA8R3Sa+fbWj/iAVQCWXGifTk/uLUNyQ80HCs/feE28LPxuT0TRdg/KetsaI0NWitUM888qLh370m48Oob4a++9ZieHHTwSUwJTxNig+/ug195EF7yoZtgL/ETlMCGigdY2BgA5iDaRFWSDTr1z+H58gr+TcX3JqlzQUXDGkbDnJKoi7xHHLOmBp0qzVMfT2OtrMbGwnygDAKjeAALbAbVxwb3hNFmoKH91IqkmDmdNE8unSaAlXOUTFDQdhwU5QKQlDicFlRwCH0QKWiSnlf2sqnWpLN0YPPFL34R7r77brj22mu13x08eBAAALZsUZWItmzZIn7H7dprr4WJiQnx58wzzzR+DoDU2JAJVqbJK9dVpzbUkPrbqEpSjNjIyWiTe7bx7dEwqt6TbSq0u7tLYLPn+BwcnFqAu58+ofxcU0UT9RZqdpYvSjj48Hp/6vytcPbGUXj5c1Jk7nUv2AzPWjcMr3uhfMcY/EgqWvrdn33ps+DHn7MefvrCbek1WGBjJbARii4MvTJkkGhHah5M0o2DNiONYqkcptTYmBAbgkDgdwHMaBWaVEbrag4LXWD4c59hwYoiHoCSptlxbIiNLRjkyBmluRQZVVqjVDS0Mn1smpaEBH/2uVS0PMTGpcYmu9ZvPHAQDk4twK27Ditop00VLU9ClZu9xkY+9xmh0BgqVBt0xDFxgM+UL/AmSieAukHxNYBTlPBe8ZkGlRCb7F7RESaqaDRQwHd09+4T0O7F8NCBKUOmU0VdqeGmz1XQTDU2VFiErje2QETU2JRURXNp0NkK1QzmSE6NDaX6UHRPOHYEsaF9sLpRrASRpl5h8vpjjZ6D6xk6zfSZmp4lHWtcOa9sx3JqXQsSJOaHYX3J26Pf9pIz4Nwt4/DvXnmW+BnS0Q6QwOborB7YDDV8JdHG0e379p6EThTDPXtO6DU2DogNvgM653CdNqmi3f30CZjvRvDwAZn4pckHRRUtpx6QJ9vov02qaFbExvfF9ZqSICahppGmTq/C9xZYEppKHRHZxzBZMGOosaFUMNGA0ojYmGts6D5Gr1/U5nR6CuOAr5VVpc5xXx/JoaEBqHVvJkMqGibNmzlBSnEfm7JUtFAZM8ONQKGEAqhUNPRBRACaveN+e9mUCmz27t0Lv/VbvwWf//znYWhoyPo5vtjlSYdeddVVMDk5Kf7s3bvXelxTYFMJsbGoNqxlUKNNIx8N51kqHkAdLX3zswc26Ub99PGU2ztKOIouLxUnZyeK2aarPhdJO1HRA5tUJToq7730efDt978GNq9J3/clz98I3/u9y+DSHZvEd0ziAQAA//mnz4N/+tWLhTNiqrGhzTVbIRUPYItFT3fcZEAVKzLHvUhtQqcU7ZPJ3WQFopxHTREISuGgNTZc7U5BbFi2qKlch3qumQVzjQ0NmjGzbKux0SWy1RoKtBZBbIpq1Oj8Cn1f6wGF0o0AOYGNCCTlddDTIrIk7iObMyZVQoGcKMGIPWvLbYhdazdKlOJhWx+bIMdZ4CY3C9u5I9GXZrQZKhsVfpc36NSpaOp1xIzuB6CLNOh9bDhiI39XVhUNj9EigY3J2cbn3u7GWvKC14JQw/mxkQUyyCOn5pHaQFMhMTdUVpsv2aAzTuzKnLRWiyI2SOVVa2x0xIaie9Kx09FnANURBjBQ0VjtEg+kMIjGPYg+U8+j50yU45n2NJfO6DajDqGCFOQESygJzxMRAAC/dPFz4IbffjWcuX5E/EwgNielgACloqHh87cJCKAjRwU/0FyoSHlqZtOGPjZ8/gCo41lBbHLEA0xJINOYagsqlv45vFZRD2s4j4kd0wx9RoGTx7AlWumzbZgQGyJEgI/AhNLS5F4RFY2+ayoegKyVJDGreIpzVkZs0mPahAPQMNAvEg/gqmjGOkcM/Hhgk4P6mcwmHjA2FGpAQiPwhaAEJm05BRW/syRUtLvvvhsOHz4ML3vZyyAMQwjDEG699Vb4y7/8SwjDUCA1HJ05fPiwhuKgtVotWLNmjfLHZkWUliIz8T6piWx7VhzGZTi5KYgNpaIZVNGsNTbZpoo0gNFW6KzGAqBOTuqIF6qiWaJ40XenxMjgcs8cRpWymbGeTYxU+kFoofyY1G9woeMBYI/IPYdEIrXH+mE0Al90l44TfeKrm4issTHR8NAmSHdiTpFCpZ9U7tmckUZD6g19p0WBTZHENxqiFonhnrkpNVeBjthQVTSuDiiOYXC686ho+JzN4gE6ckIbvBaZqb5uH5F/tdXY5ElmcqN9R6gpcs/ZJjbKxAN6bIzh+ykWD1CvE8AkQ8oDGxWx8TxPOAf8uzbrsfVNqKL1YmNTUfy73Yu0Z2kTYAGQUqEcseGBDpqJSmGtsckceScqWg51lxodR7QuEAPWIlW/FnmONKtq6tHDVZo4Msflb2nSB0A6bJSKRk3WBiJiozuLaGU7livXydZm/m+TA902qHfl2fYMsaGSz0YqWrZODFkyx+jItclaLlQfHaaOuf+MHpDwHmem5t9IA5XHwbXKDeGigh9oRvGAUL3WvLpDU4NLAHXvpHRfWzBmUo8DkKjGLKGimaTU8fkpiE1GRePJRHHtXZnQpr7McCMQ6CVN2uiNgPtDbEx9Fqk12HzkdsxSY2Pau6w1NlX72DRUhHp8KFSCYwCLeIAIsFTEZkkCm9e97nWwc+dOuPfee8Wfiy66CK644gq499574bnPfS5s3boVbrrpJvGdTqcDt956K1xyySWVLpAaV0UDKNfLJo+KBiDrbCYZFc22aCo1NgpiQxYf5NvbamyyjRoDlFEC5blQhWhgQ+FyzckVDTozxMbSLya21AfkGW/QyfxogZClNTb6IkAzlg2D4wpgrrfACas5xnFizHJ2GGLTCDwlI0MbFgLoDTp5Nh1AlzulkpA8E2tDjgB0xxU3FvpOcaFyrbHhTVnR6EJTJCDAlXfyxAMAzKiNVEVzo6LxLKVKgdARPfyci3PDF1kAWTCcXr85A1wGscE5xPvYKOIBgnYQyF4hvYjIPasNOnkwa+OVB74MTjRVNDb3pFKinjUujdig8h8pKFaTLllgQzLPWh8bhTLFEJvs/rnTbaqxATDXENprbNI5W7aPDYA90KVUNLXGRgY2iJaaxjlFbCKlxkZ3Ungn9E5PXw/l9ev9tZCKNr1gpvtxx9dE70FDymY1KprMvCsUrRxHrgwNFQBgm0Bs0sAmSRI4NqsjNjj/cc7aERs5Z2XDyuJ7N1FHTQgYD2jUtgbmbLutTpV+X1GdMyA2uC/Q/ZGLuOTKPYvmnOp7oTRuusaGBoQVQJ1vSp0MItqEhonzTKG05qiizRtqfgHstdi+74kaX9pXTJfVr4rY4H24UdFM51noRqJ2aOOoitiY7nVQfWyoaq0S2LT0vja0tlkIcETqHMJnMN8tRtFNlv8EmY2Pj8P555+v/Gx0dBQ2bNggfn7llVfCNddcA+eccw6cc845cM0118DIyAi8853vrHSB1ISDVFk8IH1JtsBmLcm2A9g18tGcVNEi88BB4xv1aCsQk7wfxMZWY1OE2Ih6ihKBDQZJEhI21xaY5Z4TJWgJLdmFjsF5xXvhg79HMt8BQYFUoQIvo1mkG0oUp52SJ0AiEioVLREORitMude9ONGylpSKxnsyyABLV0XjjqsMbGR9jWhw5lpj0zVT0ZqBD56Xqf10IwBGL1OOqRQKe9AIU8lZ+j7o/Gj3YuDsILNil47YjDQDmOtI6o25xkYNyHuRpCGWkXvGz3d6sZK9Lexj4+CwSbln9ectoshG5Z7pRoXIr+hjk1E1cRObGG4oQTMapZAGvgdxlOiqaBZEkq5N6dxNSgc2eAxK4Tth6K2CFJd2T+/lhPdIefVoM4YaG9+TazY302ZO+6DR51cGsdFoJ3EMAPp+QgNkuhyOkGxsL06gEXjivpuGwKbdle8+9OVco/eFxcxrhkKYWuhpDg99zikqqDrVPEPMm542WOIKj8+zvOlnq1PRbPttXiFzUfKRG1LRMJlBn9f4UCj2U05F4wIuWI/VJuIOrdCHmXb1GhuTj4DvCs/RNlCgrIGNIcDKRWyociGOXwsVLfR9yCv4n++YgwPaJkINbMwJTbre0vuk8wjHzWgrBJhuG4WcaFuGMSJAMrPQg3VsvNuuHc8x21GFUXoksOXNt8vYnCMVTSYa9PXqeFZfE/oerBnOlA0r1NgUKa9RS5KE9BkMlfVufKihoXaqkmqU3Yu6Fw0vJWLjYr/7u78LV155Jbzvfe+Diy66CPbt2wc33ngjjI+P931s+hIEZaIEYlNUYzNRGbFRM/B0gShSReMZx9FWaIW/TUabTKmITT7txBZASCpaecRGiAdYiqaN4gFRotTPiCwQb6Yn6ih0+FpT1WKITVPAqrLrNk5cz/OsAgKKeEAcy47yvux/o4kHiDqtjiZXrPSxYeOWK7TgtQh1moZP+gA4qqKheAC7Rs/ztM6/NuOIjed5MEHoaK2s91CDjYG7dh+H13/0VvjeY0eN8scqFS299zVZkSFuDKb5x+kPdDy5iQf44lre+uLtAKDy7WWNjXqsPN46N3m/HCmT8DuKRdAam3YvErVHtEEnDXrXZc++24vh4OQCvOlj34F/uONpETyma2P2jLgqmgWxMTlXroENryGkzvmJOUnx4U1X293IWgtiesYmNGH9aMu6Tplq9fC4Nkd+vhsV7ieuheJ0HA0bEBv63SK5Zyq3TiV28Vpxv9o0nj4bG70YIJ1bvPaPZ4j5nsSDRJuSEgDh/ztmeqmZkCsAum7qz7oo+ciNU9GwHmGsFcJzNoyKz2ENgI0WPm+osaGU3CIz1djw9QJABqV8/gDYfYvcGhtDrSoPXAHk+KWITYOtw3nnsflaChWNOLw2RNxGRWsEvvbOTYgN7Y9Cv4vzi6tN0ms3ofu0Fw8avkscM/SaD0zOw0/9xXfhn+9+RjsWN4482SyvVxSloSE9kSZUuVE02HQOF/SR1nfzPjbjhhobVY0WUWC+Ji2heIDJbrnlFvjYxz4m/u95Hlx99dVw4MABWFhYgFtvvVVDeaoarZsQlIkqDTot8s28s2wRzE2dLBM1BoDQUgpqbNBGmyEMW+Bvk6lUtGLEBgMaW1an6HpNxht8cbSHbg7cmaG0rCYp9LeKBxg6UptqbGi3Yip/iVmOhuJEmDcvlYqWKOMPJ6ZWY+NARTNldfQaG7lx4jWiXKZdPIC9cyEeoI9fDgXbDJ+j58mAlQoI4NzgvWxuevgQPH54Bm586KBCV8KhYaKiIUVAp6LpdI0uC37SzxUvZy/aPgHN0Ieffemz4LztawBAVUiyU9FKOC1iDqk/V8QDCJ8axzQN0HEDpbLJLcJN7kYJ3PHkMXjk4DR85d79ihIbBjbcSbchNnSu+yXXVS42Qt/VcaI2hfQoIR5gUAbE/9NnjM8Mf0Zramz1Nel1qPQpABkw8+Z3NGNbJIGuZZRtgQ2lolFVNOK0CGTSREUT9Viy3xKtF6TfO5kFkNgvggY9SaKibz1SB4f7F88QazU2LKPftThD9B76UUXjIiB5cs95DTpNhlS0qYUezLR7spnhWBO2r5WCSAKxIepb1OZEjY1EmPE5xUlxwtUUlHBaM4Acs7hvdtieBKCvezZaF/0+Xd+2TqTP5P59k5AkKUXSRCWzUdFMCIWtGbqNimbb96UioK7Ax8ftqKix0ec8H6uo1DVlUEbLa+SOgRldq0Vg01DrIgEAvv3IEXjowBT8txseKRwTFMXPszwE5mhGq6QCIHlzkqLB5nMkhQJDNKE+1PCVMTPWMgQ2So0NEw/IzrukNTbLbRRNEFnJMjU2WNBmU0Ubkdl2ALV7tMkCcg10MpmyKjYq2lAjUAbySCsgxfbVAxs9O6tuADZJSPGM3eMa2ceGqSyh0fvRpUgTJYNIMzc4oWKCwHBVFQBTH5TEmOVMFdj0zWCYdJimplDRSPAa+BJK5fUrsjtxV6BDGESp8tTqc0cUBtduvBbaT2C0iIrGG3Qi/dDwMluOTTpNdAdK/8H3QYudAaRcdacn+/8EnifmDL3UOUtgYxSMYAEGbtSeZ59j1M5cPwI7r34jXPP2C0hPC1pjY57zEgEodtjkHFKvB48514nEPVPxADqOBQWGyCaPtkKFhiCD30hZG211MvYaGz1wdEXChYOWHYP2sqGIDa2twb+1ertIDWgBdDSBIjYmqWe00PC+8HmMMeeKBh5FG6kN4eamNuiU56Pnjtj90qBFKA12uXiAnAv4TCfnMzRrvKX9TqOlsUQSgB7obWRcUk5L6VmcIfWzg0Ns8hw52cE+P8uNNtYKxTpz4OS8zHCPNmFb5uADSCcVHWA9sDEhNvIaihIDpnXVTEVjSKfCBjHvtxJJMTmy+pr62nM3QSv04ckjs/DQgSnoRLFAjulzpd+hqmimQM7WDN1GRbMhNrQfHTeObCA9TamrswR/ecpoomTB4Cfi9ZuoaHivdM3BYOXQVBvu3H1cOx61WUHJLqKi4X3q75cLB6Sft88frmqJRhO/RXQ0XOs8L53/zcAX/qONiqaLB6jvCfu4nRaBDQ0Syha5AshsnKt4gElulhqdjIqiD4EII+IM24wOwrFWqEWzeWYTD+ALqyYeYMmQVBEPQKcGF19NFa0p0QGdihYrVAy6ufOMJn4GLVc8gGy+jYC+J/2diuwop6Ix8QC6GbUsiA1t4sXPRbPIeh+b9D1ix28MEkURZyMwwuDUbDU2psyqa5NOExecKqPhc+BNOhe6ciNW0AQDIoDXifMPn7PJ0eEbYIc8Y5ukPLdWGEDge7B9Qi0kxuul92M7b57ZNgt85icIkjHalMEKne/4rqls8iht5tmTncipcxV4kCMeoI45SUUjz9dCY7OZiXaH96MiNjEkiaSdpqpoxYgNX6snhhtizpmknsU15IgHUEd+OGuGJ4rEiwKbAhQMTTrcKhVtWEFscFNHNFo+Q1qPRdVA6bqFWXxU8dxEgj5OGxPnjBJBz8HnOMocOB4w8owvRcO5LUqNTY7SmmjJ4IjYAACcQRIaKBywYawlfg4g57/NARZUNBJ4UvpqkV/SM6BeRvEANkb6RmwMgc34UAMue8FmAAD46n0HtAw8Gm+1QJN6WnsJi6+lIjZUwMCcODIp4aJxZAMDHaVHlGWs4j5rUkbLE5nC66d9xRDFxWdFnzsNgL56/37teNRo0+Y8M/UdQkNqJU0A5Ylv2BLvtHa4KElBlQk9z1Po/eNDoQYkmBp0SvU6TkVbogady2nUYQj6QGxcxQPKNeiUL18pWLUoJFGjdLQRoormRkWTUGqeeICssckccpt4QPbfUlQ0FA9AR4l9FRewVDxAzyKbGnQC6NkqAHMhOR/8XUZFoxPbtLAL1Tbm5LeZypwsCpc1Kja5Z0pFk3LPktKhIzZZnUn2fYHYEEqApKK51dhgoGbKrLoq72GgS4+xRkFs0uO0CMJAr58iNoqcsKHGBrOjqBhlVsJTN8CiOZpn2zLqydGZtlbcrtXYDCSwSZ8R0l98L32vTUOAju+6TWpsRpuh4mRSuqKkv/lW1EWvu8vmnYmKVhaxIccQiA0NbCI1+UMdQrSuQDB0Kpr8fyCKf10QG1qrZ2qwi3sBZkmLMoRal/miGhumioY1aQAkOMcgyKiKJhEWTAxwyWcUD9g4Lp+HeJYG6hw6OBgwcMRmvU08AAMbpz42/SA26nGbliQcQLX5v43U2WCGe+NYU6wHAASxsTjAVBUN1yKaDCkMbAwJT1Og2O2pTaVVxMb8HvJqX/D7PFC4PKs3/Op9+4WvgBl4NK5OaauZBMgRD1BqbIoRG1MAiEbnVSMw93iyIzbpXjPd1qloCzl+Is4V2lCbIzZdw94GAPD1nQdzEf9Z0rQ5z/LmmKBWkjmcJ5eOQRmnQdI5WBjYGFgO6FPZamxaLHmP7xmDthUnHrCYRoME3IBd+y0A5BeFAejiATa+PVpAFhBF7tm0+BgmJhot1hxrBeKlzneKNwdnuWfW04SrS6FFFRAbKR4QG787TArBTF2xqXoYXSxxU1bqKJTMsJmKFkWJsuhLJ4ds6kqXb/15J0miBIpdhtiIGhu2YKJ4QC9OhGPHm6Ia5Z4z5xXHoMwIyrqwIioaD5bmchAbvrDYTARz5BBU8hnnhkBsumpgk6IJ6WcpFc3Ux2YNUauhKKjaoNOM2LiqIlHbMNqEZuhDkgAcmloQ15sej6mi5ThX3Gx1ajhm0JkabYZKA0R8Dp6nUkBwPRpthUQaOhYbcLsbkWCKSDbzjtgsqWASDzBRBfPMRKnBZzdL5mWnFyvzqU2SDGhSPEAmJZrsPbRCX2TRuSwxNVOWEo9LM6K46cqGcPkZQr0uqJiKhusfZjT5GBY0DJN4QJciNun3eOdxHB/rR5riPeDv9JoFGVDiWkqdzfFWaKSO0GPmZdFtCTMXs1PRJNLNrcr8xzqblIomaxJUKhoiNpkDzGoxcH2LEzPSVJQAMc0bE6uDCxPRwMYq1UtUQLnZapJee+5mGG0GsO/kPNzx5DEAkOMVTe0n5iv7ik2sSBcPyJd71lUHzfeoHyswHsPUxwYgn4qWW2ODDrdRPECnotEA6PhsB77/xDHtmGhC7tlZFU0fY0dZc06A/EBIBH5s7KW9kSA7T1Fgo/vJQ438wAaFFkQbgGxv4ojNnENy32SrK7ARmuSUiub+/bwBC2AQDygj92ypsSlq0AmgFsGONMs16KRQp4LYFNCSiqDfMg06qVJP+l1LjU0v1ooXU6UyXGwDZVMTiA0JRuixcSHjg79LAk1K30jFAwyIjeF590iWDK+FZuKFKprBecVjH8kWGbwnSo/hDgeqoqEy2Hw3yoKrElQ0S9dmI2LDoGCbyVoleQyzeACnosmMZkycbiMVTdTYyOOqann6BqiPjfJLmed5QiUJm3Takhk2OVKT8YJ6NNz4kKKF75NT0Rq+r5wfa1VGW6FSp0WDRxpM2eoP+fgQcs8GOowrFc2UNTatlx0y99Nz6w068fp6ZJ3nx2qFgWiwx4VXqJn6dInmp5TnLxAbNxUeZ8RG6WMTZv/OkiH4jHPGsIrYqNn9Bgs0sI/N2pGGlTaGRum4KFpBHUQTCsaPaXMWAdQ17oF9k/DrX7gHnj42q33OZDYV0twam27+Hm0ypJztO7kAR4l4AKWiUccMQHeAaQA8K8Q9pF9RRTzApDLXjRLFn1CpaOb3IARWDNdgQsEB0gDkDeelTdT/+LqHAUD3k3TxAH2vRrOKByjopfy3LSDOq+eiVLRm1oIBQJ3ztmA5v8YmTzwgQ2zI++dURHoPOE5wTH/lPjsdbVbIPbuqopmoaIYamxwqmo1dQBNuxTU22bxt6OtXWmOjPnuTeIDs68SpaBHc9vhR+I0v3ANHp/V+UzZbVYGNKvfcBxXNJh4gpHrdAhta52NSRaOKNHkICOWKUxUJrp1vMppJWmCOObV5RksyNbDDawYo18eGO/c2VbROLxaONC4QUSwX7kboKZkCzkHnWSabKloUxwyxkc4wL1Kj10cDGy6D3ItVxObMdSMAIPsioHmeJxz/ozywUeSe1eOjhj0NGtq92CweYKWimeeCKahuEccpz4pqbLgq2oKoDdKpaLSw3dTHZlxBbNTGreJemNyzbaN2NczSojKarcZGKOsVrDdJIgNiHuC3mNohZsolYpNugoHvKWNdBELNQBlDtI4J35Pv0WesXptTjU2JAI5+TglsDEFmJ1Lr60wNOkVxOgnIm4H+DJ+zMZ1752wZs16XqXO2scamwTKEJWtsCht0NnzYvnYIAt+DZ2VrBlek7BjWtxFBO+1pyTGB2GTfQ5rUWKthpY2hUbQYxzQN9EwNT7kgQF4WnZ7/H+54Gq67/wB8NceZ49eWHsO8zncN8rZlG3QCgJB1/tHeE8JZ2jDWgk3jLdg41oSxVijWYaQ9cjl+Ok6orL7cu4oQG4lKopmofb0oVtkghvGsdY0P7L5Rnk/zsy97FgAAHMmeCe5x8rjqOkEvV6uxsbBjbIiNXfAkj4qmHssUHAl0kn1/rIVInB7YzAo/UX9GJmVS3MuoYqU4VvY5rGG6d+9J7ZhouP5j4bzN8hCY4wYqmnwu+ngQczknSVEkmGMS2Xr2+nTsPGfDaIEqmurj4XsaFtTgHvzVzY/B1+4/AN965FDudVAr1aBzuY129MY5VoqKlk1qW43NBKlvaPciKy0FjTrwFC2JE32C5iE2NLoeaQXiWOXlnuUA5M+Fw+U2uedqfWx0GJMaDSTxevEdUPEAIYvspw30eFbe1riN00d6MZFmDlROujk7ijQqEthwFCiSyneB78F/ufw8eMePnwk/duZa7XmsHW7Akem22CBwAaey2PYaGzklF7qRKh6Ai6q1Qad5ATKKBxgK1k1mVEVjfWwAKCc2vTZRYxMR8QBKRSPjU1DRSFBH69bUuip13IpxXQGxAZCBKfaykf1HOBVNzbLbjPf9ocZl5gViw9T9QlJL0Y0kpXG0Fcoi4ihRVNFkLZS9j42mitazO1euSLgp8OX1SQCpU0rrudpdvUGnaEYY0bnLsn2BD3/6sxfCr7z6efDiZ01Yr0tKvMtzmFTRcNwOO1IfnFXRSEJi8/gQfP03fxLWjTay+1IpM7yRL4BMdh2f7WjOB6eGtUkdXkrd6+WLB7DkjoLYGFAwfj4aeHIThf69GI730nHrso8BSGqNNbDJoVbZ9miTvXrHRmhmKmAHsnm/cbQJge/Bl973KujFiaaKplHRSGCD63Ho+xB4HvSS4ga3JofSqIrG6nfbSvJSdQbFcfKeV44g0k+eswn+z69eDEen2+B5AC87a73ye17rmGb1PWVvRJu3NENX0VJyPBs1PieIpshGKjykU9FsiI9EbPQaG0wUUAaBuH4UD8ipsaHPApOQz1o3nH3PTnXFZ1bUx6aZg2CikAjdoymVM0kShV5oU9ZLv+dGKzWxHP78538M9hyfg/O2r4F79pwQP0c1Pa6iytckVKqc70Sw5/gcAEg0ysVWVWBDMxRlxQOiWFJbbIHN+FAoOrJPzneLG3SSBYVnvju9WKFzudbYjLZCsWg6BTYWKhqVR6ZZHlwgbKpoLmIH3PjCqmWqyfObymgTOHm7hlqKMPCgE8lrs3ekNiM2vYirosnMgwn9GTbQUDTEhtbYBB6MtkJ4ybPX6Q8DgCA2WGODgY1cKPhigdD2SDMUm8V8NyrXoNMyF0ybghAPKGikZ1r41hioaAI6zq6XqgYpzSMNmbn5rqoIB5BRMAz1ULhpx0maKetHPAAARO+K/QVUNEnvyH9eNJjQERvzJi/GMaOLtsIAulEPjmcI8lgrFNTTTk9S0brEWc2Te+aBLzpJdHwIRTXHdZUGVGhmxCZmiI1JFU1HbKiT2wx88H0P1gw1jAkFasZC4uzd5YkHFKnw0L5OSWIfD7L2Iz3+uVvHxe9kL6YssDEkWzDZdXRWdlIXiA0LNOgc4IpJfJ3pxhIpw3lFa2xMiA1v8GejQNHPdqNYZL5dm3V2CxJYJq5/UR2sycaHGnDZuZvhGw8eFHMI7/vM9SPsszplqdNThS/QyUWnLRWacUPCQwUttcwb8vzUvkxmGpHsL1MOsQEAePlz1ht/DsARG1+c20StthXg21TRRL2yhjDinqtfL61FaQa+Nq/Sf5vHKr5XU4NODHYog4Bf/4yxxkZPpmDQi81z8xInRQ3k0WSNjT7GUEhkYlinogGkayvdT0V5R44QiKkRKDUTy2FipAEXjKSJJzoGGmJvw8CGqaJl14H+xJ7jc3Aiuyeqsllkq4qKRh3Lso3kaGbaVmPj+5JGNGVQteJGBwMPQtJMtfx/XqCwcVSVezY52iZr9yJl0VPknmOd9wggF4giVbRS4gG88Ix91fNksT02xJJdgvW6l5A5kSZKEr0Ho9wzoaI1iDOM40Dt8u1CRSOqaAXPBrMlvMiWypbyBRyHMYVp5zscsSmSe7YhNvr4dW3QaXJcaR8bHbHBGhv57igdM6+PzXAzUOvWDEEo3cR7sbkOp4whYnNgkosHcCqaWyIlb87rtIz0meFY5A1V8eeI2Iw0A8VxpPLk6JAHlIpWhNjk9bFZ9BobHbUUVCey2dJjmZAgm5lqCCViI9d/3ojRVRUN0bdiVTT9mvlYMtFjse7y2EyHOB/ZuGBUNJr44dLIJuocR0aagaxPMDU91ep2cpwhWmMzJUR43AIb2zrvgtiUTWygChiaTWFv3ODI8n1ZIjZS/KaIyWmaN+Y+NmoSjM4hG5rB6brU+qHuUocYlRR5XzE0UWOjiQeoCoHimi0U2DxpcaUfVUNS0eicr1JjM52L2OjrRF4fGxw3KHSSt74I+l4B+mirsYniBKYWVBEiAFCampv6CAJY0FdHhcMiZhP1t0XfO6bKKmqimT+BQQ0AwPHZU7TGRnGQDFz9PKNOa152h2bbZeMtC2JDJht3EHkdRZ58Ms2SjTQDpdg+z/ikNDXo5EEcLkg2Ry0m9RCuxhcdk+M/zDiVmCHtkB4cEtlQ0SRbJs8kkwuAgYPMSlLHbZbwofm1qYGNjgLlFeNTo9kSet0tsiDhYsGd3UbgKdcjaCZhIBbVeaKUxO/bZOY+Nm51XL1IHw/YyBZALma8RoHW2KCPrDZ1I4iNaEwWKAE3OmAmKhqAWodTvcaGIzbmRdpV7jlvztu6cHPkkWe1qNhAiziudLzOiqDIs6IufMzhXKSZ4rK1i6Y5YVov2wZVNM6rxmNRiVca1JahG3GUAUAGEDRrjO8EqQ+uNTYYZLnU2HCTqmhZbx/DGEYq2uR8V9Ql4vdsiE0rDLQsq0mggSMunueJZ2KmomVzklPRDMkESnvhtapFZqLkpf/XM+FoRawKm132gs1izfI8gHUjlsBmSK/FmOuyehuC2Pjk3eaZqcbGtE5T6iCAGiR2LftRHrrcD3XXlGCSyrCcimZ20otU0TR6ak4NCKVsNQM/VzBE62NjoRgC6D3llOs3NOjU+tgY0DxEbKi/w030zzHU9lCzBRz0XpTAhrw3PoeinOfrTEWztEhAo4gNqlzqVLRsL/CRAaI/+2Oz+ruy2YoPbDq9GD5xyxPw4P5JJUORR0Xbf3Ie/upbjwkpRwC1mC3Pacds9BGiwFDUxwZAz0pReWC8ZpvxBp0iCOhEcHByAf7m1ieM6A3X1lcRG3NQJhEb80IiaUPWy9WMTwrT8+WQtKlYFyeShJRVxIYvxnhejpZxxIZ+DzmuJvEAGhjy/i5UPKCoxw9dVOh9NcgGLQqZ2QRuBlLue6ErC8QpFQ3ALEuLixaPK43iAUIVrWgD1jcGkyoap/LQ+g9at4VTJkoSuH7nAfjDf31AKJKNNFXJThNFR5UYlahOFblnAFpjkwU2tj42joWUCmKTQ8kEkM9MiAd0zQ4scoxHm4Gk5RBhCQA5j5Tg0RLYCHGSnk5Fy1NFe+zQNPzt955SnoEp8DWtl90oVtbIdjfSki9cPKARqA17y7xjU/Y2v49N+vcNDx6ED331IXjyyIx2zDhORJCeh9jERBDFFIzRWgDqaNBxPjHc0Kg1osaGOTZtEhhxNEdTRYvMSCjW7+WJB/Bj5okH9KJY8P1dAxsb+kqfFx/TNppykQ03A3j9C1MVsPUjTeuaTmsxUFiHB78CsQk8JWH4/cePwt/fvtt4XFfEpstqbFTExkyzQucwSfQ1oB+EW5V7VhOkNvEATe7ZoEhIj2eqCUvPo18vncfN0FcSBmgY3JVDbIqpaJQ1wREb+o5mGWIDYJeURx/PxihCE4E+o4hhIoGKzACo40qjpkaY3MqhojkjNsWBjdYeglHRcP0w1RmdUojN9x4/An/2jUfg2q8/ovD986hon/ruk/CRm3bBP931jPiZmGgFgwaz0QczagqAPbtBxwLPfPPIPM8ZXjfShNFm2g197UhTTPj5bgT/7YZH4U+vfwQ+a1ggNcTGUGNjk85E5IY7arTQ29U08QDDd/lkNRXr4mTk8tF2GVBEbEziAdI5ohN7Lo+KllNj06WITU69FIBauAcgxw+FkIWTaejKOxTKQGuBIDat0BdZIXR2lfvONgE+xvMadLr2saFZ/TVDYUaL8gQdYJhkvJNEFrZTVTQqHtDuxvBb/3gv/P0dT4txvHGspfT4MKqikeuISB1OVfGArRliM7XQg/lO1DcVja5HOhVNfS9IicJz8SASGyVidnDzmiFls5knwfc8UVRD1IVfKr5Ljp4GhsDGhIT/2TcegT/62kPwhR/ukfdrCHx57xkA7GPDqGgxordq0S3dbKtS0bjznx5f3j9eLs4/zKje/8wk/N1tT8FffOsx7Zg0Ay6zswZ6FDmnabOnY5xeHx3Dvu9pjTJDRlFs9zLEh8wBWryf3r+eATfVLWxak84DLHKmxh2cvLoH/OxMu6eo9rmYLYGlNAskzzsmCawq8//fvCSloz17w4j1M6iK1o2k9D5PMqpJhWwuJwn83v+9H/7wyw8ag2RTLyBjHxtWm0ad5q4FjQgtz4uig1USQaZ1mMvvo9n8rSIqGne8TcgW2hir15FBtY7Y8MAGv1ueiqY38uWqaDgmkyQRQe+G0aZIOJqS1HEsx1eRj8oTDWgo+84Tq57nGddDgHxxhtJyzzYqGkGgBHuF1fjyNcVUZ1SmxmbFiwdgT5njsx1R2Bf4Zq4+Giqd4HcBZPPFomh4a7bAP318VpzLtIADgGi2FsWJJh5AERvfA0WJglvge/C37345zHV6MDHcUKhID+6fBACAB/dPad/jMGrboIqmUdEYYoNF2LyoO+96uTXYpDAhNvw6TH0jMNPEs61FmTz+7CkvGTPYWOyLiI1JPGBOCWwYFY1JSOeZjtj4yjlpjQ3PTDRDX/CS0xobiTR6ngevPmcT3PjQIbh+50F40fYJ7RrxmCYkjJqkopVHbMLAh79918thoReJhZ6+zzahn3V6sbGPzWy7J97rf7zs+bBjyzictWFUbk6scSsafZfd2KxyV8bGWyGEWcHvibmOdZE2FaaajAY+fB4UUdHQcG7+6dsvhG88cBDiJIGNY014/Qu3wK5D09l1qIgNUtEoTVdv0JmtgYgI9nRapq0DOIDsav2Ve/fDL138HOVziiqaqcYm0mtseCCO/6djjj6bMlQ0k8QpzXC3wgDmu5F4J//+4udAKwzgh7uPw00PHVL2Dvl9eSy8FhMVjc6pvBob2qsJQEcdNow2FeaASTxACaIaUjzApopGhUvoe//wz14ID+ybNIoyNFiGGJ8jX/fTY6afPUoUjFwDGzx+w5LASq8/AfRn1Xt3Hxtol71gC/yPK14KO3Jkw8eaUlBoeqEHQ41AR2zaRBUtu9RelIgMumksyd5EBYgNK8xXetUZkk54HWg98rwigjhWq7GhQZjKrrC1l8gXD9ADG328OlLRQl+i6iSwsFHZ8qhoKMg0ZqSipeecMSA2eD/otyx0Y5FcGm2FMNIIYLYTGemuNCld5KPaxDRwnE0YaJUoyMRRnjyfhidJbFYk4NEMfPC91NfkNOtOlpzpsaSGCbGZnM8XdqG24gMbXPhnOz2lZ0IeYnMsg6zopjHviNhsy1SSdh9NM+JFmSAZ2HDEhkwqh26Xr3zuBvFvdLRnFnpwMmvOt+vgtPYdrq2vIDaRjYrmKX8DpA5iy0/PiROxyHlXj8kQG8Pt8gh8hBXCh+SdhsyJtNVRmBx2ABWxCf1MljKTkJY1NvJYXNELQHf4FcSm4NloiE2ImVa5IKFzwbmkzcATvTXmu5G4DlzsLn/xdrjxoUPw1fv3w3964w4lAMXnxZ+1KRMoqWiuiI16zxc/b4Pyf0otVGR9aR8bgtggcuZ5AL/zBnkfAXH6aONWaqHvifdRlYqC5nkerB1pwNGZjug7BKCjAyYpUZPl0RWH2DVKVTSWcc2+e+7WcUVNi15Ht5coSYF5ByoaR2wSw1yXCSP9PvEcdz19AvadnIcz1g6Ld6siNobARhMPiEQgLqloGdWJZFnVwMb9HZtV0eR6PNTwYb4biWcxMdyA97z6ubB5TQtueuiQkT5FnbeWgU9P7w3AnhSjlBm8Pt/Tx0xKX5HrvmyuLDO2SmAUyObAso+NnYpGn61prNHjpseUKnz0PqjhWMamsvRaiqyoXxlA5mRlrB66zlRFbH/qgm25v/d9D8aaIUy3ezC90IVN4y2NIUARG0qlxeszjSXXPjZcQVNp0FkgHkA/A6C+hyrrJZd7pn9HDBmS4gFmpASAqaJZ5J5540bbsZQGnQbhjAbbA9cQVTQugexCRaNjQAiKMEotbcsw3AhguBnaAxsylgsDG0vAgb7ixLB+3enzi7S5mFc33CRJxjxrE7q8yVLxqDQhwBt6A6Q+QocFsLQ2qxGkPrbbKpLaiqeiicCm3VMmMo5z0waMete4EAPYO+FyQ879U0dTxKZoAcDJZFJFk7UFuYfQjCI2OEmeODKjLZAcRqV0OD7Z0HCCN1hWB432CnI1rfNxjniA+L+oI9GpYZKKpm4M/F3YAsZelMjCSkEDyxzqjl5jY6r3Mck94/UUqaLZEBvplMoeHqOsy3Az9JWaH9qjAgDgdS/cDMONAJ4+Ngc7901q1wig1+3kITaufWyKAl3RUKsbKXOhF8uMI3W6ETkbCgNlUwnJBkcbt1JTgh+DwEBZQ/nqQ1MksLHIPRcWBSf25xUyWqRAbCzJB5NRGgINSueIMhM+T5t4AM+G0XmUlzCiY+W6+9Omi5GBo20qMuY1Nt0o0YJ2XN+tVLQKgY2pkDjwPXFOLt5BM4ncaA8jTh+kVsQ5p9lpmxIYgK7UxaloXUbva5JAkPecQUvFA8z0HJtxTn/E1lZqOJbp8HFpNA1gT2BRQQylpwvZ321JrkHYGJMG1qlocu7R8Y73YwrsjDU25B6wcJ0KpPBj2WS3FYEVS1BUqcbGQJszSyzLJsXc/2iFvniX1BE21cSl/7evp1qDTrwWto7Q46PhO40Tdd+njY/zApuUmph+z9bHBpO2o80AfN8jCVQdeZgnflDRXmujlaEK4drhYmVDgHxEi36HCrCYrIiKBiD9P6GKRj7b7sVaAOv7UkTpeZvGYP2oXvuXZys+sGmLwCYilJZ88QDMvNKMjqtG+PasE/n+rBN50WaKg9CkiuaqosXNhCr14gR2H5tVfsZhVBr140BxQWxoYFMlGOPZEBONTaPhsGDCVCAuamxsmTzLu+GITXpMXzkf3Txll9s8Kpp7jQ0PbBCpoZxVXMB5l+Fm6CtBnxAPEOpjIbz+vLTolXf0ttXt5IoHOFLRihZbSUXraUE+/p/WfyByxh3LkGQArRREGvz0idgASMGQw9P2ujoTf9tkRTVqdD4KuWcN8bTfC6UhUAcLx67ve0JunQcnNqVEE2JjWlfpWPnqfQfSYxqyxtRhwWfLERsA6SgOM8RG1h8wVbQSdCMqsoBG1wQh82zoig1gpk/hvXqennyhVkTNUGtsssDcFNiwzRy/1yLBLa2v8Ql1Twox6MgzrqdFyDMaV0fifXCo2XoYuZipb5W8BhWJop9vhX4p6nRZ44XmOhVNR0tn6V5iWGOjSN9LqJ+AyZYuQa75sWwMAo/QURXEJjuO57m/e2o0wST2VYPcM13/+fyiCnwmKpoeiNt9qDFGawsQVUc1VbJW8z17uBGIZ0RpZTRZnEdFA5CKZzKJnK0JiNhkv+d0bRNiY6PumczWxwapj5wxAmBu6lkkbkUTsXnm0ksK11tZR+2JmqN2LyJCQfI68Hnt2DJulKHPs1UT2Mx3JYyWR0Xr9GKh5U1fPK1VyDOkorlyUXFAaMXmPfeaDG42SO9RRkdDVTQcyCb+rSZbizU25JqUgkxCG3I1DbEx1tio98SDCVNhIi4QNueVc7xpV3q+6AuhgWyxaRomEG3Ox7Ou5ahoTO45UCd1J6/GJggEDEsbdNLnd/mFKX3ia/cfUBBLzFTxYwYGZ0M26Cyiork5QbROiWc05w31H4jY2GpZFDSGO/40+Iki42fK2ARDbEyOko0qcceTx2D3UZlwKAoEaVCByJqOROYgNqGsjaJrjqDD5Ejhd0QwbQ988/rYUIdl575JeOrorKJ4h9Yi70KuTTF02FibFU1p1XqVLnmGValoEvnTkz2087Um3hHoykb8+w1f8vnzAkBbBpN+Ny8w1xEbT/ksDRYF3ZVlZnXxALkvuSYDNPGAPF6+KbApKfdsOkaTBWwA1RXRyhqXfOZNFkVjXQMiDSCf2+RcF7750KGsFYQBsSH/xmAqrRcl90x8mjwRB1OgQKWeqwSCpuSjqR/eAnkepneJ6x6dH1J1kidj7MEuZTukcs8qqk7RH1PylSreoaFPlbYeMDzXwBdrBwZEvLcVvm9c3zCwyeuV5SpuBaDSkanZxAMAQOtvBaCOjby5zJGhJEnglkcPw6Ep3vstB7HJ7h2P6XlyDW53JYNFUavNvnPu1nFrnymbrfjAhi6KuLBQuWe+eVPlBKXGxjEiRsQGrWjRlIiN+vI7USxpXWUDm9BXJHtxUmPhMNo0kxJUERs1i4CGDr3nqdKUaFWumS86pu/a5Z6xmF9+hzfXsylf8UVTyNiS54AODh5z1kBFo4peaEifwEUpUsQD8seERkVjiA2A7IVgoqJJ8QBJN6LZ6kvP3QRjrRAOTC7AwwenxM97FsfVVOQrqWgDQmxoU9GeeeP3PUkpsSE2FI2xNZOjNVgDQWyyQPRwtlDnFnwTR/mZE3Pwjk/eAe/9+7vFz2QTV/O5aGAz0lIXe34uk+E45mgt5fmLXjQaYmNB9MjckyIi+rnxPT530ygAANz8yGEjYkPfBfYH6TAqGoDMaOJ4x2cbEVoCzRKXCWxMkqgUcV2TOaucboJJJSN9iNBi8rq75/WwAVCdzjxnnmYpfU++GxrYcOee97jhgRdV63TN2tuOabpmkwPqLB6Q8yzQMTNRq6pKvbuaVNBK59y8Ra438CUdiiI2eJ0fuelR+A+fuwu+vvOAkc1B11hEbLhyHhZbA+QrhslecDQQ6m+tpPuvRGx0H6LI18JkBxUSsIkH5CWHFSGChgxE8Dv0uyZBI1wDDk5KCjI2EDehNfy86Etw2j+uCRj44B5vEkxCc028A9hV0aR4gCGwMSQGVMTGkEwgNcHU7tlzEt796Tvh9/7lfgAorrEBkPdF5yoGQrSnGd2L8P2cu2VcQ6+LbMUHNnRRRA6hn4PY0AJg+l3XGpvhZgDryMAoUuLBCWeSe87jh+aZ53nKonDpjs0AoCM2uNBuEoGNLkGoNxrUF1IVnkz/LoPYcEff2KBTEw9QgwlVdz2bhIwrqzm4bBPlak8AMrsvpaH185kWHBw7uCj1SiA2a4Z4jYuaTQWQyBGnovEGnRh40GK6VhiIxpKTpDOvUJliNTZ5CJqr3HPRPY8QBG7BgthQVTR0Dmy0qA7JauqOvyHjPQDE5nCmQGWiPEkOuFxvUBL+EKGwYWLApqRIF3/cPIvGNTX87BSrr6Nyz4HFSRDiEtozJ2tCdmqeMKLP+gVZkfnUfNeozETXnHWZZHE3KqaiyRobOeaqNuiUfHs92RP6Plz5hnPg//eqs+GS521UvofnM9WFKH3ULNQZgBJUNFKHwevIAFQqGh1POB/a5JniubhiEu9TQRMZNiovN565FU7IgBGbvEDFpATVccgUD8KKqGhoYUCotm2K/qefx/XiwOSCGJe2Bp3o1HHlOwDaT8juXxipaBZKt6upfWx85W96HvS1bNTR33vzC+BXXv1ceOmz1xquV73XvHqwFqlHaQa+lmzIG6cAAD9+9noAALjxoYPiZ1LqOS+wSe8LEzNSBEVFiXGPx70R93ojFc3RPwUwoy8AkopmRGxyxFQAbGI3eqIYQPZ8Q/VhFyraMKOi0c/PdyLBkKLI2u++6Vz4Dz9xNlx67qbFRWw+8YlPwIUXXghr1qyBNWvWwMUXXwzXX3+9+P273/1u8DxP+fPKV76y1AVxo4viFEFsbBH+MRtiUwLq20ZQm2Iqmq8cH60Mdclk9Dovf3FKPdIQG+z/kfVgMPWxsdUwANCsDkFsKtDn+P0ZVdFoMy4CUWMAYayx4YgNexd8geb9Oei14THN4gGy8B2zYSKwyX7XJYhNXoPX9Fy+0rUYr5NePy5uruIBPBsiEBfyzoUgAQsiTZuCpKK5Ijb582CYIHC2GhuqioYZTb75oQOjyIBbEMG0QLccrcZkkopmR2xMwQI65ibeuy0xQANUKfdspr2ZDN/lFJOQpc09bXQy3NT45qlS0XRHBUANgCey4tS2JfuvIjZ2B22WBzZYFxLJMVe1j40xQ0kCpkuetxH+y+Xnac/Cxl8HII6k0ohR/1wRNYMiNnly5XQzNz3fbi+RVEwR2KgOjKirCvV9itNzbMZpYLZu7rb7KKK7onVznFjT+7SJDQzakIpmEw9AS1XwVGYAgNy/cFwsdCMxFoPAU76PNkEQG44KCmGI3OelJ2L6RbdVurinXDM9j6xnNp/nteduhj/4qReyYN2MgHYJfZSb58mC/FTuWU3UFolkXP7itI/R13ceEL4GvmNTDxu0UaboalJFS5JE/H5Mq7ExiAcgylVQA57eTxbks707XzzAlMTOr7Gh/RSp4X0h68SFiiZqbAJ9PZ9uy72MJltec+5m+M8/fR40Al9pcOpipUb4s571LPjTP/1TuOuuu+Cuu+6Cyy67DN761rfCgw8+KD7zpje9CQ4cOCD+fP3rXy91Qdyoshm+uMD3rZv3MYLY0BePzq7LwNme1dkAqHxxk9kyd91IlbktazgQ1o82RVbx6eNzyqKKgc0mAxXNqopmLNIn3xPX7H6tfOEwFU5TB5ZKMxqviy2WbUumiWfFJRVNPiPBS2c1NnQC4ZigKkW4GeOiVAaxAVDhYNxIqLqPCLTZeGxZxAOG2KKBASt1qrEAL49qRM+D58gzGdjkfkyRzNYCG0qTQg46IjYW9TE6zm0y30U1Cq6G1AiB2BgzxrrDj8FpuxcRekj+86LOuaix0cQRchAbDGwYFQ2XwZTuZ6aT2cQl1Aad6d8cCVcDG1nTZ6IqKoFNhtjwBp0A8vnh9UjxAMmrry73rCZHAPKdJH4OU8DvjNiIGhsbYiMRR5vEMYDardykOteJpLQ6T55wIYZhAyrtqiRmU1ozN+jUj+mM2ORR0QwZZ37vi2W8FsOK2JBxoSI26p6y0I2NSLgqHkBrbBhiw95DHmJjkoquTEUj38Pjmyi6ZZLI8njmhEokghPzWB0jQgRcyMBEb6J2yfM2wPrRJhyd6cDtTx4DgHypZzQu+WxKIkdxotUQ5lHRyjwzmyrayfk0qW8SD5BzWD5fXBspzZXasC2wya5/Xux/xZRQPJapLxkiXwB232rD6CIiNpdffjn81E/9FOzYsQN27NgBf/InfwJjY2Nwxx13yItttWDr1q3iz/r160tdEDfquE2KwAasm/cxpTGYfGALJaA+lHwGKM4S6g66jKZpQ7iyhpNkx5Yx2DjWhPWjTUgSgMcPyy7GmF3YOJ5lUJnMLoC9g3r6bz0LNgjxAFNhIp2wjcDXvmOCudEREVlNi4OLhlQ06pSIBZhl0mjASovtxWTtIhVNyju61psAqIsLncx80+bSzM0gkBCtRTwAQC4KKkoXa/cDYF4syiI2Rcp+I8I5TUQBJho6LD6pjcPFjCM2eJ65nMwydSrznCFXQ0cdaaymzJOJKoHzL07kfBNjxAmxMdfY5I0vnAOmjtkAqnNF6WRRLCVYncQDmIMh6CUEUWxbBFLomoM1Nr1Y7/WFpss9S8e5aoNOkyPsomqYp4omqS3yusxyz2aUVV6bHL95dQ8UsaHPQamxiVR+e5MFIV1Bk9Gzxa6ovK03Tl5TP2plqWimZyEyzuRYmPQsg+RVsfGWmYpmkqXm6xsADWxkgGNCwuk8RCpaN0o0B7bdU9+DaTyb1Mr6paLR/ZZT0eh5yhTC82NrKn4F+4+C2Aj6qbqO2PaGRuDDm8/fCgBSYdSNioby36lSL+aA6PrUi3XERrAaDOtgGf9UJi/UtSefiqYHukV9FhFx44GYQGyEr1R87VwVDUDuEzMUsbG8qw2LidhQi6IIvvjFL8Ls7CxcfPHF4ue33HILbN68GXbs2AHvec974PDhw1VPAQBMt50sBrYN+Oispcam4z5wFCqaI2KDhpOZKl+VrbEBIIoQW8bB8zzRHflRQkfTamwM0qaa41gA/1ahotkcT+V+GvS8vjaZmjnX5S4eoKIQtKcHfhaHC+W0p40AEUlQsxC4KNEg2QmxGaaBjZ5tFdfMaWOhp2RXea8PNFkjQzLSQmlNXZRNCxc62K41NsV9bOT1UTooNarYZUNscJOeJ70heDaJquah0tYgEBuxQRkcJVOxuCkrK/rYWJxnGqCOWFTR8oK0oiy775vFA+iGpgW+5HwyYWRGbIYagXg+7S5J3hRQ0QBUWVVqkoqGmWh5zKp9bERyhLwvl7FMg4aEoVY0sWHq34FWRM0QtMYoFhlU0zsfaYbi2RgRm16srY2cssWRe3ytZZSxuFNE5bi5mfbL8uIBdoqbqcZmyRAbpKJlFJx1LDOuqKKZqGhdpKKR+kGaVKA1NoKKZqix4ciZkRKoBwp9U9EMQRhdFw9MzkMvimG+Y96z8sxEaQOQ6K1tztI6RU5hlyqG9nGOdLRvPHAQ2r1IUtFaeVQ0mSSgayy9X9oMHNf5fPGADE0voYrG59VknipaTqLH9mxlAssc2Mxn1P0yiI05sEGquv1aFl0VbefOnTA2NgatVgt+9Vd/Fb70pS/BeeedBwAAb37zm+Hzn/883HzzzfCRj3wE7rzzTrjsssug3W5bj9dut2Fqakr5Q82U7QktmzeAitjQBaEM1EepaK6qaGgywy+paGWaXaKNZIVm52xJC3XPzf5+TAlsMipaVmPT6cUiMJFyz/YAQnBSY32wF9WRUHORe6aObyvUERtVI1+dhLaspk0VbYHUG4jP+m7fpfQiAJlVp8ihE2IznJ9tRdPlnmVG/OR8V4xhrdGZocEmLuRaRt7YoFMGgdyBo5anvMOvG5/LcVtgo1DRzIkGSUWzb8KUQokOXBFlNM/4RmBWRdOpEiYVvaI+NrR/CqdzoLlQpWwWeIROFutOPb0GNBe5Z3wfw42A0LUiY7BA15h1RPqcI3lomJCQvVekw0bVEsvV2KjOOM2s5tWW0GBEl0qWiE9ujQ0227OMSaXGpiCLjhs6dc5oxparomnSzKJ3kTmB4GKahHROptcUoPXixNhIm1seLc9UY7NUcs9jXO45m/frmKx/4Mt9jSI2nN7c7kYS9VL62FDERjIFuKxvhwWYppo8U+CdV8/lYj6pbeZ/f+W+/XDxtTfD39z6RCn0Ac2qilZERRuS0tE6Fc1OmUR7+XPWw5Y1LZha6MHtTxyTqmhOiE1PuV46x3oRRWyQiqZS2KiVEg8QiQ2VkYTzwaSKZqKvFQkD4bVoiE12/UmSBmRFKpAA0v9rMREkALkv5I3LjYutinbuuefCvffeC3fccQf82q/9GrzrXe+Chx56CAAAfuEXfgHe8pa3wPnnnw+XX345XH/99bBr1y647rrrrMe79tprYWJiQvw588wzld+bsj1pP4z035p4AFVFMzXodNgcFSpaycBmhPDFy1CXuL3zFc+GVz53Pbwpg0q3Zdd0hNwfDgjKxRaZYytiozv7SoNOwtV3Nb5Jmr5LJyznzqc/0wMuvAebWo6miiYK6vUFnKsO8fPjosN5o7iI0SDZpeHqGuIsq2iU+l2Nihb6cN72NQAAcPfTJ8TP+b1LxEVHbPQGnfr1tkgG15R1RnNFbDzPE5LPJyyBTSoekP5bIqjmcYCFiabFjmYJB1FjM8GKLU2Zdj4mAVQEos2yqLbEAI5RKlXqear6V77cc/F6ZApOKIVHV0UjgY0NsenJehgq0xkbNke65tCeTlbEhsk99wZIReuxYAnAjqal55Dn45lKE2JjqrGZKqCz0HoC0ZjOMn6RgkGvmdLluDIYl2a2SsCXcG5txzQFR7SOkJpLk848IZCmeJ+kxmaJ5J5tNTa8loEmXJW1oatS0RYIFc2UVACQyZauocYGj5eHSJiokoMQW8Dv8j4233v8KAAA/GjPyUo1NlwJFa0oOHnnj58FFz93A7z6nI0G8YDiUoDA9+Cis9YDAMCTR2bdqGhNrA3pKfO/Efhi7PeimMg9oyqamjylJsUDit8Njnc6p2SZhqcIF9FrA+Byz/nPRwQ2mniA/P9cp0dU0ezv+2d+bDv8+Nnr4S0XbJP3ke39GADmrUmLjtg0m014/vOfDxdddBFce+218OIXvxj+4i/+wvjZbdu2wVlnnQWPPfaY9XhXXXUVTE5Oij979+5Vfm9DbKziAbNmxKZMFgGldAFcVNF4YBOK66YZvrL2b15yBnzxVy4WQQt28EZ53zhOYKajBzZ4n0KCMKcuhUO3ACCy92UuWaei6Z9RAxtdPEBx/ll23LYg21TRTAGlRn2zICeYTRE1Nk19kXARE8JNj1OpeIClITahD+duGYdzNo+xbJBFPIDW2ESWGpsc8QAA0PrOUItLjGF0UK1UNFpcWyD3jAu9MbAhhfyDFA9Ay+tjQ52MOUNgU4TY4LFNanjiXDnPujiw8Y10MkRlfc/eFwgArDL6lMpLC+xNvZ3ovBxtBeL/trog3v+BZhKriweomz+l5OQ2QCXn43sPpcjZMswAUuTGRAmh51fFA8zXtDErmg0Nz7cT6Q06OVIlC5t5YOO+wHOnqIibb1RGK+iXBZCPKDQMPTUGMfddDJ1cTCTOWxEbOS4UKlqkJssoFY3OG3rfgopmqLHB4wmqu6nGxlBTgf/uJxDEa8Tr5mjR0dkOUUUrQUUjTZepFTEG3nLhNvjfv/JK2LxmSKldAyA1NgUbNvp7+0/Oi3ecq4qGfWzaUt0Or1HWBydS7rnlQkXL1leH5A3tQYf+Gq2vMVFMTRLR+HxsKpxSPEB9J5SCPUfo8nnj6qXPXgf/9N6L4YJnTYif8UaneWvSSDMohdj3vSIkSWKlmh07dgz27t0L27ZtM/4eIBUbQPlo/EPNFNgEgWflgitUNJPcs8Nk27JmSDTILEtFw8HbiZJCJ6eM4SaJkflMpyeoFWtHGmLiYxYVH4tOO/G1f9OswyCoaMY+Niyw0RAbg2OHk9C24dn62MjzkICCfddW64KFfZKKpgc2LogNBqJF5+X1MK0gAM/zBPcX74OPs1YOYqPX2JgDG3xNeU6HbDhZPB5w7NupaPI4uOjbxC1w8S+SXsbi6UGIB6AZ+9gYinFnlALh9N+CflqE2LB3RMeqi9yzzQKf0snkz9WCfDv1TTjdDMWbJ4i3rLEhmWcDogCQcuDxfEU1NqZMa/UaG0lXTP8miE3O2ub7nhSAYQ4llaG2qTgBSCfDpE6kXFuU36ATQGYqTTVMnZ6Ug+cNOjW55z4QGy1ILMiEG+tsInvyBC23QWcuFc3dga5iWG8hqWjp32tZYBMGnhgXingAIjZkbylCbFA8gNJtxfEYOmxy3AMDG2MQNUn4HhAl4mjRsZl2qXpmcVzD9QIUiwdQ4/fcdRRvQjbMgckFqYrm0qCz3VMSJoHviefRi2KRvEMqmmyJYA9sXPxT6uDjWDg5l+65tmRKntyzLWgU6qwWKhpAui+4UNFMJqho2b6QRxn0PA/Wj7ijNqWu5A/+4A/gu9/9LuzevRt27twJH/jAB+CWW26BK664AmZmZuD9738/3H777bB792645ZZb4PLLL4eNGzfC2972tjKnUcykgU+LkKmjkSQJa9Apv1tmsjUCH7aMp1F8Ef2BTzhKRXOl8bgY8iZPYmCTLbLNwIehRkCi+EjJtubRt0wFhlXqgvgzKGrQSQv9xM8MdC0hHoAUhULxADvFhjtzOhVNzaZI8QD9/bu8TlxgCuuCDOIBAAA/faFMBpiyOKYGmzQjR6/RtGB4nuck+VxG4hobg9oCG98rRmzwWjHANGVxqMToILK2jcBXev8YgymD0MasgW5SRD/FxZ8jNqpynhtVymS0VxCta+hF0qnhgRM9tw2xUcQDCBXNFPjSaxxphuLd2BAbDMR5x3CeALE1/DOZ4JRn9QlqZjX/GcomnTx7LPn+VHKcW14Rb3p+mZ0uqhMRVDRlLcPARm/QKYUF8Fmaa/RK1dggWuJQtE6PPdTwJW3GQUBA1lKa5ryecc5r6DlI41Q03CPWj6rvN0Wk038rfWxEjQ1FbHSnW6mxGZY1Nh0WFPLAxqhOZ6BK9ltjAyCfNZ6Tn/vYTIfUi7ifx0btdKGToXHp6aI+NmhnZDXV+yfnS1HR5jqq3L3nEcQmisX+IMUDZL88bmVqbKg/gGtU0ZrTEPNHr7u0J+Ey/0ATD6BUtMiJimYygdgQXzbPykg+lxrhhw4dgn//7/89nHvuufC6170OfvCDH8A3vvENeMMb3gBBEMDOnTvhrW99K+zYsQPe9a53wY4dO+D222+H8fHxMqdRzFRjE/qekQs+24mUz6uIjZlrbLNt2WAvj9hkC5LSvK7/hReL0TEbiBMQi9zoIKTPRG+AKK/FVGAYl8jQozmJB9A+NkG+KhrvGm5TvuKZKl3G1gzzm441LAr7zDU29Npc1IQwW1t0Xo2SlH3+uZvG4PwzUvTS5NBJuWZd4jtkNUxFxYEn5joa3YEfs6hBJ4ALYiNpeXZEsQQVLcrvA1LG6IZg7GPDNk0A1XnhtW3WzSLUa2wAzD0iTOZSY2MKTmhPh7z5SoOiJJGoM5VwpVQ0U+DbYogN3hvKenKqJPLKRWBD1CSVhm5lEBu2hlCHqShGtzXppI6AqU8IGvaTmLBkGHEudeOkUJIWN3MTJa9LaszwZzoFL6u7s9SyuVgz4Ihaft0DHnvtcFOTz84TEZCIgr7eYbAzyL4sroZO7mzmyKJjyqloKUVRR2xQYU9p0JmD2HieVPtKP8+oaGKtya91AlDXq0GILWBAj+8YxwBuifPdCE5k6EGpGhuWKIhZksMlscbrinoCASxAbDIV3P0n590adFLxAIbQS2QkEWOAN+icN4oHuPunjUDWseH+f7IosGHJCYASNTYWuWcArLGplmAQNTaogFrwntaXqLOxh6UG+9u//Vvr74aHh+GGG24oczgnMxUd2jZvKhwAkPWXiGIIA99Ja5va9olh+BGcLC/3LKhoMaF1OZ0y1xCxmZrvQpIkWiMpSk1SajNyEAPqIKLhV0tR0dhnTd+l2ZtG6GmLjaKKxhEby4LM61XyGlNqKmzs/yMNddGxUdFc0TfkSHPufB7K5Huqs3D5hdvhgX1TxgXDJPfcI1SOZuCLBce2YOBxf+bjt8H4UAhf+Y2fgLM3jiqfcen9gUabdJqMogn8GtA4Rz1XPGBAiA1A6oTun1zIrklfIyi9K44T8H2PyT1nVDRXxEbrX1QciALo47YZ+MoaSYu3lRob4kDz45ucqyhJ4Jf+7odwaGoBrvvNn5SId9NBFS37ve+l4xT/j2N1fChU6BiyxkYviqZzvFSNDaNkUbSlKDGRvv+uhjJEjjU2gopmQ2yIE1dERdtoQGxoMT9XVRP3XSQeUGJTarCgoldQ9yACm5EG9OIEpqEHnV4Mjx+egbf/j9vgV179XPiNy87RvieehQGxwWPe/8wkvOyPboL3XvpcScPrM6lRZFQha6bdI+IBuiqarUEnr/c11TdgUDTSCJTxwFW0RI8iDDBz1OlMa0C/6HZ63V527vTvV569AX609wQsdGN45sQ8AJQVD5Bj7Kmjs/Bv/vo2+OVXPacwiKbGE7WuNDZMYmODZgA3VbS5Tk8mYTx8HtJ34Q0686hoUjyg+Jl5ngdDjQDmOrKBN9b12eivJrnnonYk1gadNLBpR5WRU9xnpx1U0QBg8ahoy2Em/j9thEUzQEez+hqTSlhZpY43vmgLTAw34BXPXZ/7OU3u2aCKNhjEJh2wnSiG+W6kNWNqEWoSzU7mqqKZqGjCUXG/Ns/zVOeoQBWNSgPLa9EdO9yUbZKo/LnaCtFN39VrXdRFB8fdmAGxcbEXbZ+AM9YOw2tesNl63garIeAbzttf+ix47qZRoYxHzYTYUOdVqVmyjL/XvXCL+Pf0Qg9+tOeE9pkyvZjyqID4f/4zG0UGM1hGuWdCWxhULwvqhBr72JDj4/xS5Z6zjHQBlfMVZ2+AtSMNuHTHJuXnpoSDybh6Fpf2VFTRFKdGBgt8PNB3gkhtpxfDdx87CrsOzcCBkwtKRhHXlHY3NopLbF87DC/YOg6ve+EW8DxdAXENy4biuMGgkTp9KmJTnbOP9+8yjpskcKOmIjYqykStSDyA9uwocgpefvZ62DjWVMYLRZQkvz1TRXMVDzAEDzaj9S1JkhCH2nwMvL41ww2FivajPSdgaqEH39l11Pi9XPGA7Gdf+tE+ODbbgRsfPCSf3SI36GyFgbinyTkZ8Ob1saHOYKcXK0wSmnykz/CsDSPw3I2j8PrztijziTvCHB02vYcwUJ18vA6A/gKby16wGbasaQnlzkt3bIKNY034tdc8DzZkkrwisCkhHkBrGO95+gRMznfh248eKUWFlv3v3GrB0DaOtqAReJAkAIem0uDGtUEnvz6RBIhjrUGnk3iA41iWCrAZYlOQTDHJPYtkj7VBpyxvoDZLrh/ROYByVGEAuebhcyp6x+tLNOkshdgshxUiNuTXiNhsXzskam06vRhGW1Q8wG3gvPXHzoCfefH2wuyepoqG8sC9ZKA1NiPNABqBB90ogZNzXTiWNSLFIG6I8N4VKloOfSs08C6LHDObhYFH7lf/fZF4gEkVCjMutgXZpoomzuPrx6TXoHyXBzY9yU33vfJI1sRwA773e6/Vxg8POJQeN+yaNo234Ob/9Brj8VssCw5gVm0CsEPx17ztAvjg5efBb3zhR3DTQ4eUBQsNx4PLxsIpRmuGQjgxJ7sKp2hCPmKDcwULFk0BC814D0LCFKCYikbvH+eXSe4Z1yPbOHnZWevgR3/4BsO4IOhizrPmz2PtcAOOkExj4NkadGabWKiLB9C5gYc/Sd7b1EJX4c2rqmh6wNAIfLj+t35S3CO/Zu40UAeoG8cKRUKtsamOMpRJMnH6FBo9hhiDBqn0kwXZU1pj041UCgu3M9YOw50feL0yXkw1NviMOY0OAzstwVUi2UbnFmUi2Du6p9dKx2a7F4sxNGug4gAQRCEnsMFzH5vtiHvsp4eVq60ZCuHoTAcOTy+In+mIjZ64AVDfEwAinfq8GWoE8K3/dCl4nqckJXhgIxEbu+POk4MAUk2tnyTQVT/1Qvj9N79AjMfXn7cF7jrvDQAAsHGsCftOzsO+LLAp1ceGKJohQjU514EtWY8+pxobZHrEajKjCAnwfQ+2TQzDnuNz4me54gEGuWeswaQJlVmuitZQ6e7UFkom3ofE/o9UtCLxAN3X6xb4p6aWEkmSKIgN3SeqIja4jxbt4e999XPhvzoee8UjNma5Z1/2saFUtIzbv3l8SLwsXPyqKHW41FJoNTYNSUUz9Xioap7nKcpoiE4hB3tIQWzi7Dv5SmI8wwEgNw7XrtTiWGSjLBIPaIQFcs+CiqZC7ppMrdbHxp6JLqp14TQqWRDnKxn0Mu/S9AwpNQ0b/bkq8FGjYhFoCmJjqKUyWSsMJIfcoFqFY8ml5mqY0av4Iut7en2DTbVP9LExZJYDEpB3B5CFBFCd0DwqGoCs21AQm54qs56XGDCPi2KEDUAfx9ozLkBsQoPzRc+HARk65wApmtc21tiYawX4PfINj/PX6WbeixKlKV9lVTSWtCmTZLIVvEtlOZk44IhNpxeLcWEXD5AOWMfB+eLjhco9Wxt0igJzitTZEew8o5/tkro227PEa5hgiA0+F9M6g/dD70W9BvVcR2faAiVd7BobAJl1R7qS5wFMDOtovml/aPfU2t92N1aokdTwXfuEUsoz5h0H2qtJ8XRQtF2bb4BCF7am0nlGAzFUm5yc7+Yqv1mPweSeXfZs2uIDwK3GZq7T09Y/9EnmOj3xHMayfXGY+Bi81qyMeAAAbdCdnmNyPp1Ttro+ExWtqMaGXi/KSneIKBaARGx8r7yfi4mqGUfExqRQa7MVH9iYVNF8H4xUNERsNo41FWWbOJaFe2V4ny7GBwVG512qGDSAwAZAbpQn57pC1hoXE0UVjUw2LTtLrsXUFAv/WRZlos/B2KCTdpwNfI1uY6aiMcSmpCqaGsQVfJd1BZaIja9IWroU0edZgwVwlKpTxtmQNVW6KhqXyS3KWGG9h8nhKEMF4IgNX2SpKhpakXiAMXtLMt7tJUJs6DPELL0JsREIV8neVaYGtSbjWeG8JoE06dOzBL34Hf7vSRLYzLR7CpVXUNEsqmjc+LtZwxz+IR7YEMGKqg06OfWizDi2IzZ6cEhpvADyuXme3TkqI/ecd30pxUmVRecODK1RyKs5zDN6bYoojuUYtMZGIkiRCGyoTDpaFCe5SBD/2fRCT8y/smpMVQzf5aGpFLEZIeqAaJRJQq3di0ViACClD7mIsgiFyOy5CXn+Hnu3hmOYetQNirZrM65aVcbXoqpouA9NzndLUUhp3VuSJLLm1GFvoE3ZQ9/LpYThfjnT7mnBJb4Lun6OZAJBdH/kSmNlSyW4ommh3LNBfKOIZo7rckTowbNs7iIjoxUGpZPhnIrWj1oftxUf2NgQG5N4gEAxxpoiGuxEarakTBbBxfiGPqLU2OQXWZY1idh0CBUtXUxEFrUbKwOWow108JkWv7igD4fN6HlM3/V9T8kq5skvc0jZpubCj8H72OTRsVxrbFphYOzzUdUUyp2vUnXKITa4sOkLVcNXn69rJoQvWvSYed3a0bTAZliv/+AbP99A+GZuWuxokajk5ff3XmitionyRC+7G6fdwBV6SRezqPj5ctfjqooGoI7diWEWPPpUCp9cM3GgXVTRJucoYtM1igd0ejFxnN0DG0pF8zw1kOzGkt7WF2LD5LlN8rrW62WoBxpFfWyIzWRGCVkz1LC+R+rEVcmi0+evN+g0I1VUsYt+zsWoIAVtY2A7RlMENmqCEYVZeDE8Hldem/7cTM7pgcmU8rQUiA2OWazBGG6G2jpBkTxqFFkDSN8N7i8utFNsBDxGmn8D5I9p0/jsWJgPg7INrAbClfYPQFkasug+TiTVyU3uWZ6vFycE7Sn+7va1ErEZGwpznXRUMl3oSlEIPDeOXQxsmqFMztCghdPRFkoyioZIcgmAiAeUkHsu7GNDrkXQSFnyEwOqKnVumBjAIXraBDa9KAa2bwCAXTwAqWgbRltyQSXcXoDBBzZK125POmqUizyIGhsAyemdnKeIDVLRZDGZrIvwmXNvRi1oTU7kkIE1GV08bAgVTpRGqBcwqwiDmg1F6J1fPxctyJN7zjsfgFrYl0pzykyoK63LxThik/7tGa8pz8xyz+bahCI+PeUMcyvXxyY/sDGpolkRG+xjY6p3CdRsFUDa2LQfW0sCBFMGOEXWZEZwjgWBXM627DhxVUUDUB0/jtjQHl+xQe65YXC+FLTVgNhMLzDEhrwTdFLLNBWlgU3DT1FLWlBP1Z7ovZaqsSF0rTR7615jg4iUroomjxHg2hnxwCZfOCD9vkQc8+pKbEbvjQc2nEZnk/ku60RQFKsoi47nWTPcIAlGSUWb6+hUHFpLa1oHcX85Y+0wbMrqLvafXLB+ftCGY/YwIjZNE2Kji+IApEEdR/9mxbyxz3VBa+qqCp0dBxSSJwcBBtPHJs84YlPG16J9Cek+hLXSLtdMx7eyjjh8FyWfAfKFAwBUShQGFLis4HViYoiKD/kECeICAgvIKHIUXOB97Irq+kxNh3tx/ppIG4MvWOrjkIpWpZeUVv/dZ3KS2ooObEzCAQAqHYM65UhF2zCm6ufjptwMzQtPP6bINRKaR6c32AadADIaPznXFRMelUiEo9uNjZnF9PrMtDRTFF/2kmlG31ZfIAIbA2Kj1J6w7AL+bSzqJt/LU+UqQnvwu3OdlCaAw6oVBpUpHCYzNWLk2VYX4+IBVK2I042KrlkgNoZMaqk+Ng0e2OhS2Xwu2MQD0Cc3igcYnO8yCjwmK6Ki0WvrRQnMsGfFm+aVTgyUCGzoWOYZOirQYJJ6DQO9hxR9tzh3sRgVIKVcmBp0AsjMYxnBA6qKhmOTyr1Sh60Z+HDWhhHYONZSgs8io/M7issJudAaFmoKEm5BbIQ6kcXBoNeg1ti4jxd8/1GciL0N3wmnotFnqSI21cYnfT+2uodzNo8BAMB529aoCUbizPEmhV3i+JuOiypcv3TxWbApQwawkH+xG3QCSKrSD546DgAY2DDExtcTNwAZYmORzM2bN6LesIOBjZqlz3PcTfWzgxJasdmGseqBTUiSmVTEBhO4TlQ0Mqa7cezcxwZARWzGW/a5C5COt4DtQfiu8Bow0OAshpGmWUBAyD2XRGxwXZaNRc3XLj7fMSdCTeZ5niZSoCM2kopW1nTEc3DjckWropmkngEyHrmBinaMyD1THnLZQVPGFETE94wbwKACG+Smn5zvSnRqTBcPUDYzA0Igrp0V6QOAKBIre810M7KNT3Q+m6HM0pp41Zwil7cgNwJfOPd5fWzo4uZ59saq86zJa6uhOoJl1eK40c0Qn7+osekDsaEOViNQGxsWvcuxVk6NjVDJK76mkQLxAJMqmiZDW0AZxOMASL77mqGw781aFQ8wHysdB2nioNfliE1GRSuhIketYRgX1s9SKppR7jn9Nw1scBNrGqhoCuosMnRyDkwtdOUca6TqjJ6XBp+4QeeNMa3GhiI2ZA6goiNFGTzPg6//5k9CL05KvWOlLiRKSiGPktbL5Z4J+kFQF2pOiA1BynHeNsvUD5HnwBWFeGaWOr8NZT0sidgQilu3gJv/wctfBO977fNhy5ohJcFInbnZdk/JZtNCbxPi//+8aCvc+YHXw8axJnzv8VQuGof3UiA2b3rRVvj0bbth30kpZWxKypgou1zuGYAUTOe8B/Eus++OZU6rbNBpH9OBIfC2NboelGlUtFLiAek1xYl00gGgVOBP9+mI1K+5oLS0xiavhw1A6vCPNgOYWujBVNZPUDbozBCbeR2xAaAJVHmPSZKUFw/AgKOHQjZqzxxueE/TZI93aeUw3AxgthMRKhqvsekHsVGvdZC1X6sCseHP3U5Fk4gNPrROLy6tEV7GAiWbL5vRdaOkspNjM3S+Ts51RHd3lHsWxeS9SAxYnyM2nIKCWVJKRUuqZZyLxAPSa8wc+GwAKyo9RipaohSV5smAAqgCBfz4dHFrZkX71ESNTbenODRN5hD0T0XT34eosSkxsWXGRi0kBdALhYucGCxuNMk9I9UmcLg2JyoaOwx/ZxwZMjfrw8BGlTzvxxTExrK5SJnpWBEOACB9bComM8rURNG5YgoexdqYUKeGOuU8wZE/vmcIFW2okRaJ4lwWVLQS4gE0q4j3TTO2vCnfaCvMDRRMpmVvDfK6NhN0Lo7YKAmjfMTGhYrWixOFIuhqdJ2YyZxATe6Zd6f3VSpaWeSZHpfWQJnM9z3YsibNgNN9mKI0fP50C9AEz/Ng03gLPM/T5vtiN+gEAHj5c9bDljXyvCPNdB7wmkkXVTQAuW67UNHQxjhikzOmaaNINMF8WMHiAQAqEi9/X3zNgS8VRrtxLBt0Oox1SkVbUxDYAEiWw9S8irzh31h7oiM2ei8btQbc7d1Ihk5K67Qld9FwzaVBo0uyB88zb1E0FOIBlWps7PtQv7ayAxvRvCwQdQAAZsQmihPh7G8YbSmZorIa4WWMF6jTwtPIISIuY7hZPn1sTgzKdVndTYsUk0eGDTi9PvNAUuWeodI1K5KxNipaU6VL2Op/JBVNLdA21VsoWciQU+9IsES+a9oIaR8bIVYQpCIVRcIIZcxUY4NjtYp4ACIFXZI5DglyaEKnuI3mIDa9EpnuQYgH5IlKyOOkP0PEhlMgqpgLFY1SN4ua5pVVQqTnLHpf9JnwXhq+R3t8UcRGIqN5iI0pQJle6GmdsdFhxQxenrhEXh8bQeEg9NMy6IrNKIKsKnkVzzEeHKDJ9dyXDTpZjU0R1z39vlx3ixx6k9E5IpTBGmpyhDfoDANPeSZlgwFa1xOVqF2gzU7nSZbaVqPmgiRxB7psY8Aq5vse/PSF28X/h7OeJHzeGqloRL2OW94Y55Q8VONqM7lnU4Apk5a6KlqZ5qxljAecZejB9B6mDIGNiwBA+jmChloae5tszVAofMw8qWc0EdgwxAbnBCY4uEQxFykCUIMcZ/EA0reQ1pBbERvRVFQ+Wxd6LvrMsgeVuadSJSqaVh5wmiA2bQKdjrAirEDwyNOfnZzrQJykjty6kYbISnTIix+0cACA6sTThotUPWZw4gHphHviyAwApM4YbhxDRP6XZicbObxqoURC5Z4r1ti4oBo4SfCabTQ5KvdMnQtzvYUaENkUzOjCaAqQaCZFdPPG68ypUyprJsod/qwMnIvvGx1B6mDRGhsX53DUwvsFkBlflzFMNzLfAxhrGQrbeYPOnLooABv9MP0MNv/DOrN+zJ2Klm6aGmLDe0uUnj/muVD0WV5jQ3n+ruIBSo2N4T1PL3Ql6s2K1HFtza2xYUkFug7zGptelAhnrJ/AhqrD9WIqHlB8TJvcs6owpgePANIpc0ZsevkKYybzPJlAQ8QG9zs8TpyASuvzq8s9p8fFoD4u9X5okEjXFxti4xTYLANiAwBw+YtlYDPCAnwA3H/0a4kTPZBDy1tX+bMYazFVNBJocxN0R7IvSLnnxQkE1w9APADAjNi41l8YRUgcxrrneYKOxuljJsMgCK9VUtE85eejjJ4tEqhM/hu/67oO0NIDOq84AwINUSgjYpNzTlq7DWCvDatERSugofdjKzywkQ4mHWwh4ZGjI441J+tGmhAGviL3zLONgzTFeQ4lNN2JYkWdbBCGxbNIwaGZair/R7vF+wSe5QOYFuyi4XfLZpzpsQtV0ZgaGABAk3Zex+CQFNfyz8vvqU6TTcHMVLRPbURBbLKC3IavfbffPjam/jINFuC4GIV+F7qRyE75GUKDz9Nl7GFRKnc2AMoiNnKODjcCLSjxfX0jNxXgUsurscFrGwRiM9YKxXFt2SdTrwU0gdgkdmcjz8oo71GhjTxUjJZ/UGEJ2zpgOzcVDxCITU4zXP16yRwNfeMcQOejGxd3tnc1WqMwiAadtGbS1scGKSh5QgdU+KZdIqtMDZ8hiliIGhsqnR2pjSCryj3Tz3cjN4lvNPosFfGAjjmwcXGQ+HxfihobAIAXP2sCnr1+BABoYEPmLVOeo4aZfW55z5D/bpQHNjkBJqVzow2q55fNmuH/196Zx1dR3f3/M3fPHkJIQiABZIkiBkSQTUVEFgWq4taKCqW0tSK0tVq3WtCqlD7V2tYuthXwaXFpq1isSktReB4fRZGK8lOKtQWlQlgDCYEs997z+2PumTnn3Jl7Z+bO3ch5v16+JMmduWe2M+e7fb4eLo3LTuo/64A1ithYdQ77GANcPz/WxtE7ZtgkU0UD2FQ04xqbT4+c4D5H0Wt59fvfSfN4VjyArSE3W3uxqWi0jppt2myGGLGhawQxOueOKlo3idiwUpZsiI19edOFhK4Spk56nH6+5m1037BhUzDY/iFsxMZuvYoZYmO7SsZTzVrwYlGYX0v3EFJQNPGA+Bobu0XyydJZAL1AryaWf83XvcR7ccORKCccYKQtL0ZTzIwZH2dExd/2BYx4APWC0kUcV4OQ4qUMGBhYjsQDmHu5vSvC5BPzxpiVxUdC8QAbC0L2GTUrrmWfBbGHCTt+itFkJ97HogfXCYqioF9FIbweRZOTjfte5r4UQ/LUo6WfL3vfb1RjZuWzRUGfIDnPKEYaRGxECXh1rMz2hhGbcFwDOdH4S7R4EHvRBA2Ole1jkaw43Sp03lNr9exHGcSITRdTW8JKf7NYEQ9gI+VUpchujjodI73E9Hqw84sqzawb2qmIB3C9i5LIxBqNUxQPEJ0odvpRVQqGTSZU0QB1jrjqnL4AgPqeqoHDXjefJ14chdLSHj+3qtuYj12cC+kiWUx7NZrj9V5f+j1M++GkIyWfQhe8HsWesc46YMW6NcC6N5+NpOpNia1te3pNCQCgLma8JoJeC10VTf0OWltGr1HfHgXcdgVGqWgOSiVYVdQTXYmFAwBdPCDC1ONYebeHhJog6pAQ35FupKK5FQAAkOOqaIxhw1q+RuIBYl8XLnKi2jxx1rMbiAtrrsbGRvGaFcS8bdZzpXeiZ2ts1LF4PQoQiX+Z0fQs1uvovPiZjdgYf+b26Q24eGg1JgzsqY7PRLWMzZPVcjhNJkkxhcfM+xwQPidCpYo7I1HsaVa9Lb1L1UnJTITACXyROG/Q2H0RBLwedEaiaA9HNblUek3tpKKxEpTRKOEWt3YMG3ZiDhlFbBTe8AwaGKvi9xgaNsLvxIWOU1Z98VwcauswN2wSRmzUid+N5ydZtIf9LDUgw4w6mZGwipZv7kvcx8a0xkZI5zWT6U423oDPE5e+o/5fNxrpWFNO+/R5gA77acHUySIaNoY1NqJ4ADVsLNTYRKKE671mB3GuEFXRAMFrHef0cXZ/svn8lhTmmPchG6UR01477aSiFaXuLXbKwkmDMLK+B87p1yP23bzD1eyctJpFbBLW2PB/o5EEvUeReTTdqEfdvmNqTWJNWSju827RsziAfx9qQ4Hffid6n0fhWk/wf7N2jbVsj4ie7WE1jW3x5MEYN7AnJgysTPpZmoomRmwWTx6MM2tL0dEVRSjgxcVnVHHb0XUGe/+3OyiVCDIRmxMWMpKKAl54FKo614WCgNdSNkaBn3/uaU1lnHPBiXiAmIrmYu1XThs2ZuIBXB8bQg0bmp5FVcL0CbUTMbnEYBoiNkKNB9v52W25Z9ELyKeiUc9YRI8UaQVtCtAVv1Awjtio/7c9KVnoY1Ma8mPikF7az5xRwsnd6t4mveDRzLDhX9ZmxhI7uSUSDwCAfx9sAwD0Lo+PLKV6LVlZV62PjYOIDaBOJrRHgpZ+GBexSb5PNs3zRFeE+9lOITfrMTIybMQ+NkYTeZzcs1HvIjFi40KNDaB6Yakn1ghWaYh6P8sL/Th6oivlPjZ8H6fE2/JKgB4E/V4tgsQqA7ERm86I7uwQ72H+/o7/Pk7u2SAFh36vGVy6qEnEhk0/FR0zTjHsjWMlfcqvvztYjGpsRPEA2pjPrAM4O67OcBRH2qiynz3jXFwE0HNMG8l2xeRuNa+1h09BtHtuNcOGWZBZO5e6KhprFImOATZVMhnZSkUD1Pv8vMH6wpeT7/fE9+miUPUso/2ZEZeKFtCdbwASPidij7qW9i4tSsb2bHEbOhc7Sfv3eTzoipiILFg0xFlnrZ26OkB9D05qqEr+QbDiAbTmxKPt47IRfUy3M1JFY6X0rcKWHtB9JYrYKIqC4qAvJlEdRlUp67Q0f37Efjn0uY2P2LiQiuZixCZvUtGKuBobT1wTOur5qiziIzYdYV2atTDNERu/l6+x0QuJ02TYcKlo+g0oLka1Wg5RStcgDzdqo28Ji1EvDDvbGKVosXKoZtEMNjKhKIqpEcLX88TvK+jzaIIJHx9QxRlo6py7DTrjIzZ+wRixCiv53CWE3bUFo4VrEfLrx35CWHDYatAp1NjELX4VPlXDKDVU/J6AwfmOT0VzJ2KTDLau4njMc1URUyWjhk3UaR8bk7RJI9gIn8/LGwpmzYvDjEecLn7F4wKMDTK24DRkmopmPmZ2fEGfh0/fEerMwmxxuktCHWzvFUvpU4wCGIuVGptjNiI2h493aL1YehTZu4fF+ZA9x2zWABupSjYHJvw+QSwCsDZfaSIHnWHOGx8nHsC865MRH7FJvyqaGWbPHqUkSIu27dfYxIkHxOok9N5l5sIu+hygfmZvrP9OeaE/rt+Ym9C52Mk1Sdys1Npc4GXWDlrvrjQYvmY1NskoMBDq0WpsbBiDRuIBBUmuK62zoc+etYiNYNh0mtXYSFU0y3QwaUisF9mj6DdSVKuxoalo6glnDRtqZVpRu7CLWNPBq6JZV5Sygl84D5WGEZv4xqBarY3g5TMUD3AYZbIi9xy3jZCiIu4rHCFcOqLxPhTD/4tjSqY6pSiKNuFT1bnaWMjeTmF3MrhaCkHm2a7XQ2/SFWG8U2LEJvl41YZjVA6SX3DYidiE/B4tWmBk2KhKVcz4DcLX4vcYyj0LvxPlX9MFW1dB5xSqBCSqotkV3wj4rN9jdLFIn3luccWk+5mpoonfkUw8gEVTRbMjHhAXseGl+9n/swpmqXrwWGPJUY1NXIPOxKpohBBd7jmBeAB9Rg/EVP3KC/22X+piQ0+jeSWReIBTw5tt0GcprS82FrEg3CwVzUo6bkHAy3mnMxmxEWHTaYxUOWnkotWkxsaeKpoe/QLA1JDEH7+2Dold/31H1TQ0tl9LOqDrL0cRGxtGnunnmLWDHWeGXej7UlRFS4YWselixAO0Ghvr49RUcJkUz8IkEZ+SEG9kW0n5DQniAfT5dydiIzjHuosqWmdEL6yki05vzDMv9mrQU9F4j0FnWC/0FaX33ICbyJgaG0L0gmK3GnQCfNSGLZoOcnLPQsRGWzzwl9swFc3hwixZkz/DbQSjUNwXm4pm9vISox2mcs9JVNEAfTLefShWY1NmVGPjjhcZiK+HsfuCZqN0WmGzL3GUzgzqgRIXHHZqExRF0Tw8oYCXE4Sg2yeL2MSpollJRXNBPMAKekEu0TxX1NOuiQc4FN8w6uNk/ll130bRE48HcdFsOmb2e/wmkc1k6mZ0zkimZidux/47KBg6AD8XuSWTz/ZecaSKJjbojP3s9fJS0pS2Tj1abqmPDVX1c2CYi8+FkdJcZ1iPeIsRG/uGlLqt7Rqb2Lhoh3KKqdyzxTx7NkqbVcNGcEiw54RNxzVTRUs0P4vnl66BOsNREJL4ORF71O09pkZsatNYXwPozlYnAgWJsgLsqqK5WatnBFUStTtXGfaxcVRjo0dsrKSiAaxhoz57VpyWBVrqHC/3HBexcVBj4/fqadOAu7LtuW3YMI0SqbdCi0IIfWzEIky2MRi9GEVpqLERF8/sxEytebP6ECdwhk1RfMSGFQ8Qm0aJC3rdS2og95zCwszqos5UPIBRDUpWVCoaNpz32SSFzGxfhUIOM01F44QRUkwrDBgYcPSa2u2urkXpuqJxXu6AgWc+EYUmks92PN2Afg5DQsoR3ZwzbIwiNia9lrjPcKlTiesZ3ETrDcFEbHoW8aloTpvyGt0XZtBzYiS9zHqN2XV5l/CS95o8D4nkuNnrJXrbrHqegz4+khcfsYkyaXOpPWussWSnxsa0QWdUf8aMirOp1HPA50m4SBGPy4lhLoqpiMYjwEszq8IqyZ07Zug1Nup9Tx2MyaDnkjYspIgpr+y73gpsOlomxQNExHvZ4+HnN3r8phEbW6louioae98Zzc1iRJGmotF3WrqojTkDExn2ZrDHIS6crRonrKiHmJ7tJqIQldX3o5EqmpMG8lqDToviAQAr+RyL2FhIMzeTey4r8HPn1UkqmqIo/PPj4nXKafEANg2J1sfQRTO9kaKCeAD1GLB5xjR8lg5VNDFCwE7M/2hqBQD071nk2vexE4Z5xIZPgdMXD8YRGzb3mc6Xqcg9W438cp2wDRY71iI2Cvd/7uVt0mnb7EUoTiy0yNLVGhvuQVb//eULBqCqNIirz6mztS+9+3CE8XzzERurijDFWsTGOBXNagSPTq4FAS93zqlBw6miGUzk4j1qrIqm76OiKGg7uugUdvFNo8BxqWjEoWFjcP8n+6wuvcycZw8MG3SKaSt86qi+b/a5p9LX/2lWF0XsYj0V8QCfVzW+IlGi3Z/sXKRFnFP04FHjnl3gW6kVC2pOMWPxALaWgp07j1oQDqDbszhR9RMjG0ZRMDZS5YsTVrEZsYl9ni6irC7k6FiOCYbN8Q7jVDSr46LnTFHczYiwC33vKoo6R7JjUY14moqmHr9H0d+xQJK6kjjxAD1iw0YKjd5J9Pmm96eWipZG4QAAuLChF74z4wxOYMEq7HH0LgvhcFuHJmduNZ1Mr8+NchL3biOuJW2noqVq2DD1tdToSBaxKQ7aj9jozlMq96yvpQv8XnRFYg2CHToXgj6vJp6QtRqbX/ziF2hsbERpaSlKS0sxbtw4vPLKK9rfCSFYunQpamtrUVBQgAsvvBAffPCB48Hpqmi6eAC9CPGpaHyNDatsQ72ryS68E3i5Zw+nSkSbNDXE9NHdgPXqV5o06IyP2PD/p7CTAMV5Kpq519d8G/1znMeay5NNLPfsExZqZilxdiI2gDrJ0HPNCxKk9vDxstbqv3uXFeCmiQMTFhwbwYsH8JM4NaCseqvosYsLDjs1NgBQ6FefU7FBp1d4btnxs1jpaMxeD7eknq3AdrWOr7GJiQe4IPecPBVN/btRKprXIE0XiK+xYcUlWM87e32Kgz6UhvR7kvUIplJjo46Zvz81NaOIfTUjM1hjSY+2JN8nm8bMwkZ9dI+4/pkWCz1sgPjr60TVT4zQsNdQ66UWZpsU8l3N7RqNdD6hCzKrixBtYS9EaOIadCZRvxTRMjO8xv3NMgV9Duj9wDtuPEwqmnq8JaH4hrpm+ATHHBtJ5CM25s4fev31VLT0Rmx8Xg8WnH8aTq8ptb8tcy5KQvzcYz1iozscqPHn5oKZUiSsJS1HbPzxDkSa5uVEPKAjHNFrbJKKB/CGjZUacDFiw2Y/sd/n3LBxHkVOhK3R9O3bF9///vfxzjvv4J133sFFF12Eyy67TDNefvCDH+CRRx7BY489hi1btqCmpgZTpkxBa2uro8FxfWxiF52Gbum9GiUE7V0RbeLsKURsOpjiqvSIB/AXRlUc4qMD9RYaPlmFRmx8HoV78LkGncJiVCwop4heHYBNRbM3LvamdCIeYFRjE44mj9iIUslm9TDJxAMAfmKoLQ9pL0w3a2yCBhGbVPfFNmUVGx5aXWBrERtTVTR7EZuQIB5AIwFsRMBoMrTUx4b5TKYU0dixRKJE81xVCDU2TuWe/TaigokiNmo0Qf03Jx4gvORFYRFte4VfXLBduAu4iI3zBp3s/0WHRBejZuSWAmE4qiut2Sl4j5d71vdhVGOjCQckcVCIY3ByDxsZixSutogpoBYVPG19nxCxsTofmM3bZnLPllPRtFpa9xetdqDfb/Q8hXxezSFHDRHR6E383PDXi40ksnWxiSI29HN7YxGbdKeipQL7PiwM+LhzZbVWlO2B51ZKqxHxERtr40tYY2MjnYt1atpPReMjNonOT5x4QGwtXRTwcY5go+wLK7AOsqxFbGbNmoVLL70UQ4YMwZAhQ/Dggw+iuLgYmzdvBiEEjz76KO655x7Mnj0bw4YNw5NPPokTJ07gqaeecjQ4owad9MXLFsgeidXXBLweTV6R7WOjyT2nRTxA/ze9MGx0YXB1sWuqaABQGnvYK4oCnHc16DOK2PCLhrgaG0blieK0944TVTTWe8ql4mgpJCRpR2oxR59T/uEK9c0XAhR2YmBfAE6EEcywYmBZhRUPCEf5cK7uCbf2HfT5MldFszdxFwS88Hl1GWmP9uKPHz+LaOwZXXf2GrjVw8YKmjcwqs8pPZhUNEKILpeeQipasm3pOTGqsfF6FGPxgDDfrM6sgSv73cVB3rBxnIrmjX/26HwlpkyGI/Y62yeCVaiktU92amxoeiGFjV76mAUURZN6TqCIZjQGJzU2rCqaeC3o+FWvtW4kmjmSrH1fzLDpohEba/e3meEhzjN2VNEAVv00e1LPgH4fi41mAdXZKEY2Swv4NUiiR51Lq/Z5uBTDLiZSaJQ2rjsHCaJRgqZjVBUtvaloqeDj5h4v5yCwmwXSFdFbIKTqQDRCFKKy+hW6KppBKlrA+jhZRVRNPMCiKtrxDnWe6rKQnlvApM6FI1Etbaw46OMj+CmkolHcvE6O9xSJRPDMM8+gra0N48aNw65du9DU1ISpU6dqnwkGg5g4cSLeeOMNR9/BNuikHmXRMxKJEiYNLaB52bV0goheY5PuiI2YBgQAQ6rdS0MDdBlR8WXIFvZSb1jcot9k0RhmqoydiwfYX/zz0sxsipY+TjoBmNbYaCkt8REKbp+c98ssYqM/ZOwLgE8TctOwSTH6Q6N0YXYS5yM2Vr3e1OhvE1LRnKq+UO9TQPBo8qpoiaMxgHFqCnsOMxux0eccUTwgStRz5dQxEDAxwo0/S6NivJFAv9ewjw3t6eBNPCewzpLSkJ9LnUkcsbGWiqZFbPyiAa7+X1V8Sr5PK7B9bBypogkRG1Y+ll04UmiNTfJUNH4MlQ5U0RL1pNFV0RJFbOy9+un3UfEAq0anOLYescVqnNyzlopm7ZpX5mzERh9PyO+NM9S4KIQ3sQCD2LqAPZd0MetRjNPG9QayURxu60RnJApFAWpy2LBhn83CoC/uXNnZR4SJ/FpJP7WLKERlNWLjmngA49S0HrFxUGPDyEq3MWMuDPKS6057SfH9t9y7TrZX+tu3b8e4cePQ3t6O4uJirFmzBkOHDtWMl+rqau7z1dXV+OSTT0z319HRgY6ODu3nlpYW7d9sGhJNu9IWSkyB7KE2XuqZ/VxHOKKHz9KuihYfGWlw2bCpKFLPg6gjznpTqTeMpu1pXlqTNJ9ONhUt9i63uzDjJGNtpqLF5YgzNzs9FjPPnC6ZTI/VOKWHz1c2Hl+hWcSGObZUC9Xt1FIkQ6ur6orGRWyM0pQSQVUHxdx3uzUjdCFMnzVaHGgkHmAcseG/x8iDy+5DVM9JJ/Tl1RnWw/89CvU5R42Wxo/RCuw9n0gpCdA9e9RryIkHKIqheADN8RcdAOJLTcxzZ51BnCqaWGOTYMy8cAd/X/qEOYqTE05VFU3Lt4/aijyynnEWoxob1il09KTqYEuWihZXY+NEFS1BKpreYDRiKh5g99zS+4ZmR1jdXnx+e5UE0Xyiy1zu2aLB1SuFfiluItbYmMk9U9jFevLILP/OYq85XdOYebm1CGiUaIpoVSXBtNSbuAV7LMWMYWNVgQ/QzxnXxyYdERuHqmhav7j2MAghUBQlRbnnaAo1Nsnf7fT5au/Ua3nUtEgv1xDUjRobN0UebBs2DQ0N2LZtG44ePYrnnnsOc+fOxaZNm7S/izcgvXhmLFu2DPfdd5/h32gqQMDrwZm1pbhxXD+cXV8OgBcP0CI2TFoKmyetFzylv48NwE9IQ1wUDgCAqUNr8NauI3EKWn6vBwV+L052RTTPoaggJz7gdOI4xvQYiDissWH3bV0VTf0ScfIvCqj1GR3hKD6LTcpmKQqJ5J7Zfxulw4jQwj6AL7L0ccZIilEWF+UNdW9KBF1h3vsyqaEKV47siytH9rG0r0KTBp12IzZzx/cHAMxsrAXARmwQtx9DuWfh5jHsY8Oct0w15wT0c9vCSLdWMN/f0RXRislT6WOTzMM4s7EW/9jXihvH9QcQX2MjigccaevE3z9pBgCMqCvnvk+8rmxErVissUmQepDoeI3FA/gUHi0iwPVJSe1FR41Fu71xtPrMruQ1NlGiGv8ej2JZPEA0Ah3V2CRQeaTnsp0ZvygeYLdnBN32XwfbAOj3UTLEZ7xXSRAf7T+OE50Rbm1ADRurPWlGD6jAF86tx4RBPS19Pl3Q+9hIHCXo88RdG/beSHZ/8xkHHu6aJVOn08U4CPbFhAPS3ZwzVdhjKQzoqWh2nESaM4NVRctIjY2176gpC8HrUY2Z/S0dqCkLadE3O0Y6awTRFNjkqmixGpsOGrGx16CzTSjpYFPfnPSxAfhIj5ttUWyv9AOBAAYNGgQAGDVqFLZs2YIf//jHuOOOOwAATU1N6N27t/b5AwcOxEVxWO666y7ceuut2s8tLS2oq1MX7Voqmt8Dj0fB/ZcN0z7nZfLIxeacgD7Zt5wMa/KK6TBs+IV0LALBXCC3IzY9igJ45JoRhn8rK/DjZFdE6+kjGjRmud2H2jq1l4ymimZ3YcZGbCw+5F5hUUNRFAW15QXYdagNnxxWX6RmLzzx2Hh1NmMjwlIqWjmbimb/2MxISyoa06CTHn9ZoR8PXzPc8r6KTRp02lVFG1FXjhHXjtB+pi9jsTYOMPZQWRMPYFPRMhex0Qybk7p0a2FM1rozElUjNrG5xm5kL8Ddt4m3rS0vwCPMOWYLN71MxIaOZd3/a0I4SjCsTylO61WsHouQkmb03ap4ACtQYp56YFkVjdYhCqpodHvWmEhZPICJ2Nhp1kfPZ4dZxIapsQFUZ5AHii73nDRiw4+h0okqWqKIDa2HqvszdwAAPlFJREFU6WSjXx5Tp48VxAX654bXWhunl79PaIQ1EiXoCEe1e8puHxu/14Nls8+y9Nl0ootgGEdsxDm+1EbERqyJUhRFm2tOdCQWcdDFLaKMcEDupqEBYo2NT4/i2TFsmHThsE1BCjuI9SxWn6eQ34v+PQvxr4Nt2Lm/VTVsnIgHMJ9tjs071lPRYn1sIsmj2AWcYcOXdLiSisaKB7iYMpjyFSeEoKOjAwMGDEBNTQ3Wr1+v/a2zsxObNm3C+PHjTbcPBoOafDT9T9s+QUGhlktJiLaQZ9NS6OR+hIlGJCuucgI7sdDvpOMtCfoyWqxHX6jU0BPTTcTzSL3drMACcVj8zEVsLIeN4yNcFHredh9SJbPN0scCwj54+W1jY8bMsDEVD+DqqFI1bJIbWFbRIjZsg06Hi0Ez8QArkpCJoBOXLh7AezRFxPEbGbSceEAGa2zo/UQNm6KAj2sy1hGOaql7du8TVgHJbqSCfj/tpUHPD32WX3xvLwBgVqO+GNXkaYXzzd6SJSG/1hQQEGts+DEmrLExiC5oKTzac6sb6Vb2aQWjGhsr+2R7oBG2FxAjysKeN2rwHLMasREMDLGg3ApGxiJFbKZJv4dbKNv0jrJzVUnIh4kNvWyPE+CzKti5plObv3I3VcoIrcbGGz+/hfyeuAUfJ2Gc5F4MGLwr6Pe1dfKppSJGqWjplnpOFfZ9XRT0afXE9iI27DOfvoiNx6NwC/tk6cMstP3HR7E+h7p4gPX1qd+raFk1zbH1b7KIjVkqmpU+Nu2dkbi2Ke6IBzifkxJha0a9++67cckll6Curg6tra145plnsHHjRqxbtw6KouAb3/gGHnroIQwePBiDBw/GQw89hMLCQlx33XWOBke9d0YnTU+3AA7RiA2TFkIne/aip6ORn1GxOp1shtSUZFRjn3qDxDxoswadIb8qynC8I4zDxztREvLrqWh2awQcyT0nMmzUSZjq7yeL2CQVD0hQbEvhamzKzFTRUnv4ePW3FA0bpnmW3Rx1kSKTGhs7HduNCAjXxX7EJv572d858XY7hT4/dAFLjcGg34PWDjV11mkfKCO5c6toiysaFWNS0Q60tGPzrsMAgBmNeiRdSwET7mf2+qi9JExU0VLuY8OrounpU7onOtW5U+9jE68UmQh2vJ2RqDbWMCPQwc4tdIFgVTzAz0UcA46Ok28pwD9HojQzEEtFY+dDm/MY+33Tzqyx7KEV393FsaLjE50RNeqgBhBtp6LlCjS6R58n3nHjjXsuuFS0JM85+36gRk7A5wE6dPEAs+dOrwEj2EcV0XJY6hngn83CgFebz+y80zRRD1YVLQ0NOgF1/tfkz208w0OqS/Dy9ibs3E8NG/XetyMeoDrU1NKD5hMWDZtYKtpxJzU24YgmHlBkFLFxIRXNzUa7tgyb/fv344YbbsC+fftQVlaGxsZGrFu3DlOmTAEAfPvb38bJkydx8803o7m5GWPGjMFf//pXlJQ4S8eiERujSVQrkOVU0fRFDp1w6MVLRxoaINbY8KloQ6qL0/KdZtCO1zSC5RUMLaOJtGdxQDVs2jrQv7JIK362m4rG3pSWVdE8vBeKpU8sbE4dpqaqaKK8MbdA1P+tKOpiJBwlpqFp+qCWF/o5bwTXY8TNVLQU98U2ZU1VIlcrakxRFU1EXHTzDezin2vxJZZMPCCTERv6vVpOMyOQAFARh9j5svn82JF7FqHf79GMR/X3kSjBS9v3gRDgnH490LeH3k/LZ+BhFn8uCVrrY5PMCDGM2NBUNCFdlqZluPGSCzCLHDsRG3Y+6gwzhg2XisYYNrFJ85jWxybxPcl6d53KldtNRfPGRWyc35+zLKahGY2tIOBDYUBdEB7vCKO9KwJFYVTR8jViYxSR9nvi3qOOa2yEtYUWsTEzbJgeTnpzztxORWOPpTjoQ8hv36mmGXRp7mMDqLXAB4XvtQItT/goZtg4EQ9QP+/Bya6IVmrB1ggbQefykzFHqJUaGzrnd0UI49CjERtWPCB1VTQ3n31bq/0nnngi4d8VRcHSpUuxdOnSVMakkag5I50T1FQ0A1U04SSJnWLdgtOa1wwJ9f9uSz0ng6ai0YiNJh5g0scGUKNcnxw+gUMx4zDqcGHG1ba4kYomeJfEXG1xH74kERv1M6phYzbR0aI4sciS9SS5qormUsSmvSuid+52OInTRTrboDMaJZphafd+oIiLbvaQjeSerdTY0N+F/J6kXio3ofcTdRwUCz2zOsJRTYnM7sI8FUnxuO7njCraK9ubAACzmGgN91nhu/iIjV8rOAXMUw+SGWL8IlxUReMNnJNd7i1w6b47I0QXdbCRigbwks8RA/EAQDd4rKaiudFgNpEYCj13rIqR2jianRvtRmzUbSuKAhg/0HrBvji2woAXxUEvDh1XMy0WPLkFlSVBLULupuRrJkhYY+PzQpw2naqi0Xc4/T6txsbkfLHqYHuOxMQDcj5iox9LYcCnOWjs3Ks+5rjTqYoG8M5yO5kcVFDqo/2tiEaJFkExEtNJhGoIdWk/JxUPYJxUx9vDWgQ60X3IGls0M4o6QQvdSEVLU4PO9IQxXEJTRTNaABlEbCoNVNEomYzYXHF2H7ScDGPamTVp+U4z6KQppl3MbKzFP/cfx4UNVXHb0CgXPYdaHxub9xiXimZxW21RY+A9FGuTzDyME4f0wvN//0yrH0gUOfJ7PWjviprmco45rQJn9SnDtaNFxTn3IjZ0URRJYGBZJciqoqWYMkYX6WxH8AhTX+A0EiTKsydLRRPPr9GzP6CyCBMG9cSw2rKMpnrS+3XXIVXQgnreWGl5p6loPYsCuGRYDUpDftsv4kSpaLti4huj+lcYHot4v7A/l4SsNehMZvT6DRbhs4bX4qP9xzHp9F7ceNhUtFTRF3f2atA8HtUI6IoQrUk0AC4qqij6cxyJEnRF9DrFchs1Nk7lytnzLy4qaK+Y/S3GtZaA/YLq8wf3wtn15fj86Dp7qUEetRZA8yoHvJoDacvuI9h7rB17j7VrDpR8i9iM7NcDI+rKMTPmOBDnNwLCfb60wHqNjVGNqBiNM5uX6TWnTpiQ35PxDBK7sNe+OOjD4OpinNu/AhMGVVrehx6x0ZuYpqOPDcCvKe28d/tVFCLgU9ciG/5xAE0t7fB7FU3YxSri+zOZYeP3ehDyq997vCNsSRgo6PNAUdTMmZ2xmiC6NnPFsGFV0bLZxyaT6A06zT27EcI36KSI24idYt2Cn3zUf187uh7Xjq5Py/clQkyBoGObMrQaU4YaK9PRRmdUcIAuZm1HbJgJ1uqiRJN7NniZ9YmL2Bg/OIOrS/Dy18/Xx2FwPfSfPQn3VVUSwouLzov7vZNjS0TA68HJaMSFPjZ0McioPjncp5HcM9vg0U5xJAt9EVsVDxAX9UaTrt/rweoFYx2NJxXEsdCUHE1Fq0uP2NhdnymKgl9cf46jccVHxXTDhkZvxb5XesSGHyj73BcnSkVj/p1sgcY+h/SaTz6jGpPP0Ock+ty22+xsb+V7u5hUNKue1aDPi65IWIjY8B5OatiEo0QTlAD4xasR7Dl2KlduZCxSqGd+zxFVeIXW03hTqOOqKApgzc0TbI9TURRtEQfQiI16T7376VHtc3TRlG81NqUhP15YqJ8X9ryG/B5uDgVsRmy43ms0hZOvhTSXe+bP48VnVCftc5Jt2PNRFPQi5Pfi9zeNs7UP+v5jG/2my1hms4BsCRx4PRjUqxgf7mvBI+s/AqA6aJNFekXE96cV8YGSkB/tXR1oae/SnaEJ5kRFURCK1fK895+jAICGGlXgy+x9YId0paLl9CzSkTAVTb2Rjp7o0mpx2J4ScYZNGppzAryHJtveJvGFauVhozne1LMTdehxZid06+IBsYiNhVQ0qx4B3ggRUzRihpTNl6fPxYgNO47U5Z717sN04eZ0YcDKPVMlKLarutPjpteNbm4nYiM2bs027H3ApuSwqWg0MmC3Ri0VxHQY+t2H2zq1hVWPOKcHnwJGYZ/7kpBfKzgFhAadNhqK0sUtkKBWLvasnkziibaDpooWi6qo+7V2XYyadIpRH3ruIhGCozHDpiTkSzrvejy6opFTufJAgogNVXT8T7OaguQVxqseQ+beVawjqTDg1d7F2/Yc1X7fmaL4Sa7g4xw33rgFHyvGkSwyy2YpmNXYmIoHCM+knbqobOHjDBtnRpgoQgKkRxUNEFLRbM73VBltx74WAM6uj3hvWTFcWWU0LbU2aUNo9Xv+Heth1VBTHPd97kRsuolhk0jbnt5INK+5JOjjFkpxub1pSkUzkxfOBmIKhJWXOI1yHRIiNvbFA/TzbVcVzWixUxzkFZmsLti5gkuxxkbrm+MsvxxwKWLjczYOESr33BFmmpE5HB9dbISjevpNJMJEbBzuV2/QaT8VLde8t+zYLj2rRluY6IZNRHt+0qXEY4SZpDaV9Swr8MfXYZjU2Hi5GhufJblnSwX5wsJMRIvYhN1LRaP77ApHbcuWGzXpFPfB9grRhQOseV3pveO4xoYzbPjniBaJdwpRXL4vSgYNb+a+KfD7tHexKC2vjiu3nnm78PObR7vvAfWasV71pKlobP2u0EqC1tiYyj0LIiATh1iT584motyzE+gzyTb6TV/Ehq2xsfc8sfXXIb8HF59h3uvRDLZGNeDzWBpDCX32mBqbZPehqNY2ODZ2mormUVJwfDLOMjfXzzk9i3RoDTqTy8KKLwhxsi9OUxjWyy2ks3s6xZeqpYiNWGMTtb4ti8/B4l+UxxZhe8lYXeR6E4zDqUHhZh8b9vtTfZDZBp3hFAslWe8Lzd+mCznAuXgAfRHTF77Y50GEe55yrJCYjQCyPWGCjIGpiW9kcCrQup/Tc6wknhsBpu4iro8Nb9h4PYqWchEKGKceWHne6cLMzLNHn6v2LveUjOi9F3YQsaHPVmdEXyBFhNQNtlfIMdqcs8CaoULHUZkG8QAx2m0UIc5mxCbRu9ip5zdXYN8VIb83LrImqgkmgr9e6r/pfXkimdwzc86nnlljW3ErG3Byzw7Hq6srMo1+c6zGBtCjHgAw+fRqR4Yce02tiujQhsutHV1xqbXm36Nfl9qykNaLiRrpQZ/XcWZFt0xFS9SgU4wKiCH9TIkHcGlKWV6IiTmaVhajlUV8xCbqsMaG72NjbRv6EjCreWEFBKze9IkiaFqjUtvN6dITsUm5xoZp0OmkSzOL16NonhkqIECjD7TxoxPoi1j3cut/M3rZ0qJsIPe8t/Q+qC4NYjRTjB9k+gk5jXimgig5K95WRr1+dBVB/sPsdabpiTRqYxaxsTJXBIToltl4DrZ2cD+nAn3eO9meFhb3q0VsDMQD4iI2EYKjJ1XHkNU8ebqtK3LPwjGJ0W5dPCA93tFksNe8MODVFBiNyLVn3i6sY01t0MlH1rweXZ3OTsSGXmP6/7YkNTbs9Z01vLfhZ3INel5S6TmoqSsy/djceGcbwZY3pBKxmdno7PqwBodVQ5BPRbOWXcC+p6miG6AbU0572ADpEw/I6VmkoyuBKpoYsRGKMEVJznTV2PAL6SxHbARvoZWCby1iE6uxoTe73XUZfTg8Cixb78PryhHyezB6QIXh37mIjWXDxmP4bwA4d0AFSkI+nF5jT4Y7Ud2OE8YMqEBZgR+DU1SpYRt07m9Rm7CVOyxGBvRnhL407Xq5jaAy3UaqaMm897m2yBnVvwJBnwc3TRzIvXjZGhurXjA3GVRVjIqiAEb372H43UYRG7PFVa/iIPr3LMS5Ayq0+WzCwEqUF/q5l7GdGhsAGHtaBSqKAhhoovxzVp8y7kU9ur/xnGAHGiUKMw067dbYsIZNREjdoP+PMBGbMoupaOf2r0BNaQiDqpzNAUa9gVjYudMoQpzJ7AL2/V3AiAcAQF1FAff3XIvS2oU18kO++IgN/T2QfI4wcprSZ/mzWP2UmYFaHPBhRF05GvuW2VIVyyb0fKQickDff7S+jEqdpwMuYmNzvu9TXoCR9eUYUl2MSafHq9VagTU4rAgHALqzqrU9rKnGJXNysA6tBuYdcFqvYlSVBHFuCnN1TvSxyTR6g04jw4b/2agIM+jzaCHb9Mk9s16V3IrY2KmxaT7RiXCEVXVylopmZ7tz+vXA+0ummUZQnKSiJZJ7fvCKs7Bk1plZFw9YfmUjHricpFxDQie29nAEH+0/DoCfeOxSFPTh0PFOLWJjRec+GboqGuL2ZZYe4fMo6EDupaWMqCvHjvunx3kT2VS0bBg25YUBvHX35Lg+NpSEqWgG6Zrrb53I7ePha4ajK0JM6zqsRB5/dO2IWA8p488O61OGv987BW0dEXgU50X1LHTx3hUhtmts6L3HqqKJCwG2CeJRiz1sKL+ZOyrh+UhGogadgDp3/iOmNKY7CvQ5OtV+XHbgIzY+buE6tHcpSoIn8WGsiNpMij9fEBt0spL51LMd9HvR2hFOeu1Z45V+dnCVOr9TGXezZ8/jUfDCwgmIRklGr3Uq0Pu0OAUn9JCYo+DjA+r7MJ3OMad9bADV+fv8zRNACHEljcuqMailorWH4xw1ZrBGE+vcKg768H93XpTSmoirsXHxPs1Zw4YQklDuWUz1MMpVDrCGTZoa+bELgEwWDBtREvJpmuOAtYetR2FA26b5RJfWb8DuwoxOIHYf0kSLezYVzbJhY/AysPp9pvt0We5ZVYlKfT/UMOiKEHx2VPVQpdKrgBZDtsUKU62GqhMRlyYleDSNUK9hJOciNoBxSh4nHpAFwwbg73VxjEbpTonqvMTzbnS/qp5Qdd6wcqxig0gjxEVvqlBVqa4UIjZGcs9ajU3s/5Go3pU7WQ8bipXzYWV84r8p7NwppqJlOioS4BZgXm7h2lBdgsKATzNs7PbXyTVEVTRGVE9zBoSE9FzTfbF1VLF/UzUt+o5P5m3PF6MG0I83FSc0XXiHXcg2SAYv9+xsH6lEk5xEbPRUtK641For39MgZLuk+o6mz4TbkbWcnUXCUaItsp2kogH8JJm2iE0O1dh4PArnMbTyUHs9CipiUrCH2zr0BoO2VdGMvcWp4CwVzTxi45RcqqNiEQ3+6tJgXC8jO2ipaDRi48IiXYvYGIgHmOXmah5mF4y/TKDX2EQd16i5ifjdRk4fvU7E2StAUZQ4melcw6dFbKK27+UAE4WjmNXYdEUY8QCLqWipkkgVDUicipZpkRs6PkVR5yzWeB1SU8J5gXNNCdEurCFhJB5Afw9YqLExEHsYIkTkc/XZcwI9llR6DvYoCqCK6dmVqxEbN3AmHuC8xkZR4Dh11gz9HeLu+cvZWYT1lBlN3MnEAwB+4ZSu5lScvHAOeJvsNACj9NSadHbqfWxszpf02N30VNeWOVBFY2ueXBoLL4yQOy8SMZVLfOnZpUiQYXWjxkaM2CRr0Ml+Jl+8t2wqGl38ZtNTGl9jYxCxMUlFs0PQYq1AtqBzUjhCGNVAZ6lo0SjRveQGNTZ2U9FSJVGDTgCoLdcjNppBQ3sXZdh4oOMr9KvqSeyCsKG6hFOIyoV3aCr4OMPGY1gLJc6JZrAGKD0vlcUBrl9frj57TqCL21TrodmoQjodkawBlg0DMyREQq1ADZvjHWHLzp6C2Dq6f88i19X16LPgdhQ5Z2cR1rCxFLExSkVjJpXitNXYuL+QToVyJ4ZNLFXl0PEOLSfY7oSppxrZ2iwh1WX6gsyqYeNPQ3TFbblnt2AVdoDU6msAfaKm6ZsRFxbp2ktcEA8I+sybb2oLsDxZ5LCpaNEMpEAkIz4VLX5u9LngiLC6QMsW9NlgIzZWPYN6KhqVPmd6Ogn1hGwfmzKLcs+pkkjuGQB6M04hn+BUyPS9ScdaEJtf6MLV71XQv7LolIrY8I4bL+dcpYtCLWKT5P3ERWxi0WtFUbh042wLFrkJPd5Uew6y91M6ywNSUUVzA7E/lBX0GpsuhCPWpPWpeEAqae5m0GNw+12fs08FNWxEdTOK+LtKA69kgIn0dAdVNAAoTTFi4zQVrXdZCAGfB3UVhba2S0TQ58UZvUsR8HlQUxpKvgH4kLBbk5qTHj2Zgq1TGWJT7U2kqlR9hj7YewyAOxGb/pVFAKDdF71Kggj6PBgQ+70RWsQmTxY5nCoayYGIjYVodr+e6vWoT+F5FaW8cw36suyKEK3LtuU+NoLc80f71UL8oM+jveips6z5RCeOnrAn95wqQYMUJ5ZazrBR/963vAA+j6Jd+0xB7xPqVe7fswiKAoys7wG/14M+5QXo26MARQGvlhadrwS8HlSXBlFRFFAb4xpEbGiNTbL3E7vgZPfTwC3cc/PZcwKdi8yUE63Cnp901pOloormBqKMuhVotK+ppd1yxIa+q8cM6OlkmAnpU14Av1dBvctzUs6KByRSRAMMUtEMvJLstulTRTOefLIFW2Nh9WGr1CSfOxjhAXsPanlhAK/ddqEW6nSLZ74yFsc7wpZrR9JRD8N6E3KpxgbQFXaA1CM2086swcr/2411/68JD1x+lm0lKSPOG1SJv906UVtMlRX48dptFyZ8Huk5zoXnyQrU69TRFdUb3GYxZVG8XEY1Np8bXouhvUtxWgqLCJqKlquLKx8TsbEbidYadMYMmxff3wsAmHxGla5QVV2Mt3YdwUf7j+PYSfUZzEaNjZEDoLosqIk70PNQVRrCa7ddiB4pSMI7gT7HdPFVV1GIjbddqC2yFEXBnxZOQGckarkIOlfxeBS8tPh8RImqIshGbOg8EbL43HDvHeazrAMr24JFbjKzsTdOrylJaU4C+POTuRqbLKSiOaixGRyrkdlz5KTW0iPZPXTjuP4YN7DS9foaQHV0vnbbha47hHLYsDHvYQPwN5JHgeHCN5BhwyYXFr3OUtGYiE0KDQb7CB2v3aCswG/rpuciaG6JB3CCBLn1ImGN91T74ozuX4Hq0iD2t3Tgf/95UDvvqZxHRVHiJsTaJPdJrvaxMYNNRXPDGEwVj/AM0E7RLIqiYHCKhnCup6LRBbUqRGOvxoZu2xmJghCCP7+3DwAwq7FW+wx1JOxsasWxWIPOTBk27LMRNHhOgj4vKouDONjawT2/bkbUrULfw6zR0q8nH7F1Q947V2CzR4Le+Ka2dEFqRxWNrYs6VSM2bsxJgL54B9KbRVMcyB3DxqpDoGdxEJXFQRw6bt2J7fEocWpobtK3h/tzUs6uHDq61AWCmdeW9YhWFAUMLw4XsUmX3DMnHpD9SYZXRbN2eelL5RCbipazd0ZivJwRkoaITY69SGhaQ31FYcoCGV6PghlnqQu3F9/b64oqmrNxZKfI2Sl8g071d9lc7ItzY7rS4tKlaOMWdFHTGY4yPZns1dh0hKP4+6dH8dnRkygKeLlmejSX/709R9EV23+mUtE4tS0TdUHqQMh2ijSN7Fn1Kp9KGKmiac9NkvWCn1tbsA4sfZFppTlud6Mo6ENdhXrvp3NNVpjlGpsQJ45l/dlixTqA3FvTuEFuvpHApKKZTNrs+8moTwOQmVS0RJ3uswHrMbT6PqM1NgePd+jb5pD6lx3YF4BbHn8+Ophb5yWkFfa541GZNbw3AGD9h/s12efM92RRuP/nOqwqmtMGt27CGjLp9ITT487VXhn0/glHo1okzXKNTezYOsNRvPiemoY29cwazktKn7nDbWq0JuD1cF2604nPo2ipJAGv8XfWxnrZZHvhokVsLBY4n0oYyXIHHURsWAdvWYFf61Pkz9FnL9vQqFY6732/16Nd32ys/dj62gIbTs04yfA8ec/aIfsrcRPe+PgwAPOIDXsjGSmiAfqkEvB50pbWwj43uXCD8OIB1o6Z5uD/K9atV902+8fihHREbHK1jw2gGzaiF8YpI+rK0bdHAdo6I1j/4X4AmU+/o9fNrL4u19D62IQjmtJMNg1g9r43qq9xi6BWBJ1bzwSFFw+wmYoWu/dOdkbw0vZYGlrM6KeIPTNKC/yuNplLhKIo2rvRLF2bKqNlO2KjyT13w4iN16Nozwd9XqyKBxj1saHQxWmupUbnCvT8pPvep5lA2VFFYyI2NhwqYi1uLjjk3SZnj2jNu58B4JXNWLiIjYlXkk786UpDA9QXTM+iAPxehTMqskW5zQadgJrjqCh6/5KQ3+O6Xnmm4OSe3UpFY262XDP46MKqsW+5K/tTFAWzhqvpaHRBl+mFa77W2Bxq7dSkstOlwmgFNtpqJKriFrleY0NVy1pOdmlzm9V7mS7GX//4EA62dqCswI/zBvWK+xybe56p+hpKr5IgPAq4viYstOYunfeAFegcVVNmTdnyVCMgpKBVxxQ+k12XAJd9wN+3w/uWqftIo+Min6Hvw3Q6dgDdeZCNZ8yJeAAQr56aq/N3KuRsbHjfsXZ4goXmTfwsvLxp6DddaWiUJ+efi+MdYcMi3UzDiihYvWGrS0P47/nnYmeTKml6dn153ho21IPl9SiueU99aTCW3GLJrDNx6Vm9MeWMatf2OauxFr/Y+C+0tmcnFY16kPLHsFGflaaWdgCqR4ztI5JprDh93CDXVdFqywswpLoYH+0/ztSLWbun6Hvns6MnAQCXDKsxjIwMqS7B//7zEADeqZQJfn3jKBxp60SvEuNrPHtkHxQFfTh/UGVGxyVy1Tl9UVbgxwWD4w3D7kDQ58GJzoj2vNwwth/6lBfgwobE54Nr/i3ce1+ZOBADq4ox2cV5/1Ri6tBq/PQLZ2N0/4q0fs9j152NTw6f0NoaZBI+Fc36em1wlayx4Vi2bBlGjx6NkpISVFVV4fLLL8fOnTu5z8ybNw+KonD/jR071vEAraiimVnldNuiFIuqkzGsTxnGnua+xrcTyhxEbADg/MG9sOD807Dg/NNwTr/0TgbpRGxG5wbsAjvXvBs1ZSHMGl7rap3DGb1LMLCXPlFnPGJD5Z7zJRVNGKeYspRpOKdPOlPRcjxiA/AqZoD9iI22n+G1hp9j0zoyJRxAOaN3KSYkMFqCPi8+N7w24/LOIiG/F7OG16IswxGtXEGM2BQFfZg1vFZrlmgGJ0wkGOTFQR8uG9EnbY3H8x2PR808SHeU8LRexZygSCbhxQOs3wclIb+mYKsouVsjmQq2Vg6bNm3CwoULsXnzZqxfvx7hcBhTp05FW1sb97np06dj37592n8vv/yy4wGaRWxUo0n9t2kqmjaR5Gf0wQm8eMCpd8MmQ0tjcvHYeQnp/FhspwKbjgZkI2KTX6loIUHgZGaj8SI4U3BOHxNhFTfI9RobAJgpGCRW72U2DaiyOGjquGLTOrrrwl2SGM2wMRFCMkNRlLwTUpFkDqepaAAwJJammstzdyrYMvfXrVvH/bxy5UpUVVVh69atuOCCC7TfB4NB1NTUuDLARAXEXkVBmJAEqWi6h6S7UOagj82pBPX2u3nsvCCBa7vNaWY21uLRv/0TQPbkngN58jIPMikBjX3LspKWwEKdPoSkO2KT26pogNo1+6w+Zdj+2TEA1sUDgsyiYcZZNabPAJvWkemIjSQ/0NTQTOqFE+HzeNAVieSN9L0kc7BrY7uNbYfUlOC1nQdPWUdtSkd17Jj6sqio4FOXNm7ciKqqKgwZMgRf/vKXceDAAdv7pnKGidJR6As1acQmzalouUTI782LFJF0QRfFbqqhsJ6z7qJCM6iqGEN7lwKQEZtksC8YMfUpW9B0tPTW2OR+xAbgUwOtvsjZiI1ZGhrA98woL5CF3JJ46L3kROVRS8vNk7lQkjmCKURsMiGHnU0cPy2EENx6660477zzMGzYMO33l1xyCVavXo1XX30VDz/8MLZs2YKLLroIHR0dhvvp6OhAS0sL9x8ATD9Ljfgk8oJRtTOzPEqaw9qjqHt50mgxaXeKVFFozrHb6Yf0XHYnyVK6oCsJZfY+Ko59X7Ic9FyhMOjT+orMaMxufQ2F3qfVpekzbKgKZKqNYdPNjMZaKIr6Ere6uKTvndqyEEbW90j42TNqVAdAZYk0bCTxlGjzmf3npCT23pG1NBKRAr8Xfq8Cj2L/XXlGzGlZeIqWaTh+Wm655Ra8//77eP3117nfX3vttdq/hw0bhlGjRqFfv3546aWXMHv27Lj9LFu2DPfdd1/c72+6YCB6lJXhirP7mI5h2exGHGht1wqhRK44uw+a2zpx5Tl9rR7WKcFDV5yFHfta4tQvugMDexXh7ktPd61hJWX5lY1oOtauSXV2B744oT8i0SimnulOWqlVbpo4EDWlIcw4KzeMhGQUB314+Jrh8Hk8Wrf3bLP8ykYcOt6RVnW2q87pi9b2Llw7qj5t3+EGfcoL8NgXRiJCiGVnz5gBFbjzktMx9rSeSVPtbp/WgCHVJVmvrZLkJndccjo27TyI8QPtq9M9cMUw/PtgW9bTWyW5R8DnwX9dNRydkahtw/eM3qW4d+ZQ1FcUpml02UUhJNYq2waLFi3CCy+8gP/5n//BgAEDkn5+8ODBWLBgAe644464v3V0dHDRnJaWFtTV1eHYsWMoLS21OzSJRCKRSCQSiURyitDS0oKysjJLtoEtM48QgkWLFmHNmjXYuHGjJaPm8OHD2LNnD3r3Nva+BoNBBIPpS5eQSCQSiUQikUgkpz62amwWLlyI3/3ud3jqqadQUlKCpqYmNDU14eRJtYnZ8ePHcdttt+HNN9/E7t27sXHjRsyaNQuVlZW44oor0nIAEolEIpFIJBKJRGIrFc2sk/vKlSsxb948nDx5EpdffjneffddHD16FL1798akSZPwve99D3V1dZa+w064SSKRSCQSiUQikZy6pDUVLREFBQX4y1/+YmeXEolEIpFIJBKJRJIyUhxdIpFIJBKJRCKR5D3SsJFIJBKJRCKRSCR5jzRsJBKJRCKRSCQSSd6Tc+1saR1PS0tLlkcikUgkEolEIpFIsgm1CazoneWcYXP48GEAsKyiJpFIJBKJRCKRSE5tDh8+jLKysoSfyTnDpqKiAgDw6aefJh08AIwePRpbtmxx9F25vG1LSwvq6uqwZ88eTtrO6ffm8rGysMc9efLkvBizG9uK25ldfze/M1e3TXbsuXB9MrGtnXvAze/NlW3tHn8+XVs72xqdh1wfs5vb0u2cPA/5dqxm21o99lN9buyu6wO67YYNGxy9E/Lh2ibb9tixY6ivr9dshETknGHj8ahlP2VlZZYunNfrddzvJh+2LS0t5T7r9Hvz4VhZSktL827MqWxrtp14/d38zlzf1uzYc+n6pHtbwNo94Pb35tK2Vo8/366t3W3Z85AvY3ZjW3E7O89Dvh1rsm2THXsuXJ9MbNvd1gfitnbfCfl0bZNtS22EROS9eMDChQvltjn6nXLb3P5OuW1uf2eq5Ns5zta2+Tbe7rZtvo23u22bb+OV2+b2d6a6LQAoxEolTgax0130VKa7nofuetwi3fk8dOdjZ+nu56G7Hz9FngeV7nweuvOxs3T389Cdj9/OsedcxCYYDGLJkiUIBoPZHkpW6a7nobset0h3Pg/d+dhZuvt56O7HT5HnQaU7n4fufOws3f08dOfjt3PsORexkUgkEolEIpFIJBK75FzERiKRSCQSiUQikUjsIg0biUQikUgkEolEkvdIw0YikUgkEolEIpHkPdKwySMURcELL7yQ7WFIJBJJ1pDzoEQikUjMyLhhM2/ePFx++eWZ/tqcYd68eVAUJe6/jz/+ONtDSxv0mG+66aa4v918881QFAXz5s3L/MCyyBtvvAGv14vp06dneyhpR15/Y7r7XEjpruehO80BZhw4cABf/epXUV9fj2AwiJqaGkybNg1vvvlmtoeWUfbs2YMvfelLqK2tRSAQQL9+/fD1r38dhw8ftrT9xo0boSgKjh49mt6BpgH6fvj+97/P/f6FF16AoihZGlXmYNeEfr8f1dXVmDJlClasWIFoNJrt4eUlMmKTBaZPn459+/Zx/w0YMCDbw0ordXV1eOaZZ3Dy5Entd+3t7Xj66adRX1+f0r67urpSHV7GWbFiBRYtWoTXX38dn376aUr7ikQiOT8BpvP6SyT5iJtzQL5y5ZVX4r333sOTTz6Jjz76CGvXrsWFF16II0eOZHtoGePf//43Ro0ahY8++ghPP/00Pv74Y/zyl7/Ehg0bMG7cuG5xLkKhEJYvX47m5uZsDyUr0DXh7t278corr2DSpEn4+te/jpkzZyIcDmd7eHlHVg2bdevW4bzzzkN5eTl69uyJmTNn4l//+pf29927d0NRFDz//POYNGkSCgsLMXz48Lz35lDPFPuf1+vFiy++iHPOOQehUAinnXYa7rvvvribet++fbjkkktQUFCAAQMG4A9/+EOWjsIeI0eORH19PZ5//nntd88//zzq6upw9tlna7+zek/8/ve/x4UXXohQKITf/e53GT2WVGlra8Pvf/97fO1rX8PMmTOxatUq7W/U8/bSSy9h+PDhCIVCGDNmDLZv3659ZtWqVSgvL8ef//xnDB06FMFgEJ988kkWjsQ6bl3/iy66CLfccgu378OHDyMYDOLVV19N/4Gkif79++PRRx/lfjdixAgsXbpU+1lRFPzmN7/BFVdcgcLCQgwePBhr167N7EDTjJXzcCqQaA6gzzeLkff6gQceQFVVFUpKSrBgwQLceeedGDFiRPoH7xJHjx7F66+/juXLl2PSpEno168fzj33XNx1112YMWMGAODYsWP4yle+gqqqKpSWluKiiy7Ce++9p+1j6dKlGDFiBB5//HHU1dWhsLAQV199dV5FLhYuXIhAIIC//vWvmDhxIurr63HJJZfgb3/7Gz777DPcc889AICOjg58+9vfRl1dHYLBIAYPHownnngCu3fvxqRJkwAAPXr0yMsI+MUXX4yamhosW7bM9DPPPfcczjzzTASDQfTv3x8PP/yw9re77roLY8eOjdumsbERS5YsScuY3YSuCfv06YORI0fi7rvvxp/+9Ce88sor2tyQ7FkAgLVr12LUqFEIhUKorKzE7Nmzs3A02Serhk1bWxtuvfVWbNmyBRs2bIDH48EVV1wR532+5557cNttt2Hbtm0YMmQIvvCFL5xyVuxf/vIXXH/99Vi8eDE+/PBDPP7441i1ahUefPBB7nP33nuv5uW6/vrr8YUvfAE7duzI0qjt8cUvfhErV67Ufl6xYgXmz5/PfcbqPXHHHXdg8eLF2LFjB6ZNm5aR8bvFs88+i4aGBjQ0NOD666/HypUrIbaTuv322/HDH/4QW7ZsQVVVFT73uc9xkakTJ05g2bJl+M1vfoMPPvgAVVVVmT4M27hx/RcsWICnnnoKHR0d2jarV69GbW2t9nI/lbnvvvtwzTXX4P3338ell16KOXPmdAuP7qmGlTkgEatXr8aDDz6I5cuXY+vWraivr8cvfvGLNI7YfYqLi1FcXIwXXniBe54phBDMmDEDTU1NePnll7F161aMHDkSkydP5u75jz/+GL///e/x4osvYt26ddi2bRsWLlyYyUNxzJEjR/CXv/wFN998MwoKCri/1dTUYM6cOXj22WdBCMGNN96IZ555Bj/5yU+wY8cO/PKXv0RxcTHq6urw3HPPAQB27tyJffv24cc//nE2DscxXq8XDz30EH7605/iP//5T9zft27dimuuuQaf//znsX37dixduhT33nuvtuifM2cO3nrrLc4J9sEHH2D79u2YM2dOpg7DVS666CIMHz4czz//vKVn4aWXXsLs2bMxY8YMvPvuu9iwYQNGjRqV5aPIEiTDzJ07l1x22WWGfztw4AABQLZv304IIWTXrl0EAPnNb36jfeaDDz4gAMiOHTsyMVzXmTt3LvF6vaSoqEj776qrriLnn38+eeihh7jP/va3vyW9e/fWfgZAbrrpJu4zY8aMIV/72tcyMnan0Gt+8OBBEgwGya5du8ju3btJKBQiBw8eJJdddhmZO3eu4bZm98Sjjz6awSNwl/Hjx2vj7+rqIpWVlWT9+vWEEEJee+01AoA888wz2ucPHz5MCgoKyLPPPksIIWTlypUEANm2bVvmB+8AN69/e3s7qaio0M4FIYSMGDGCLF26NBOH4irsXNivXz/yox/9iPv78OHDyZIlS7SfAZDvfOc72s/Hjx8niqKQV155JQOjTR9OzsOaNWsyNr50kGgOWLlyJSkrK+M+v2bNGsK+rseMGUMWLlzIfWbChAlk+PDhaR232/zxj38kPXr0IKFQiIwfP57cdddd5L333iOEELJhwwZSWlpK2tvbuW0GDhxIHn/8cUIIIUuWLCFer5fs2bNH+/srr7xCPB4P2bdvX+YOxCGbN29OeD8/8sgjBAB56623CADtHhGh743m5ub0DTZNsM//2LFjyfz58wkh/D1/3XXXkSlTpnDb3X777WTo0KHaz42NjeT+++/Xfr7rrrvI6NGj0zz61Em0Jr722mvJGWecYelZGDduHJkzZ066h5sXZDVi869//QvXXXcdTjvtNJSWlmp1JmK+cWNjo/bv3r17A1CLDvOVSZMmYdu2bdp/P/nJT7B161bcf//9mheruLgYX/7yl7Fv3z6cOHFC23bcuHHcvsaNG5c3EZvKykrMmDEDTz75JFauXIkZM2agsrKS+4zVeyJfPRE7d+7E22+/jc9//vMAAJ/Ph2uvvRYrVqzgPsde54qKCjQ0NHDXORAIcM9FPuDG9Q8Gg7j++uu187Vt2za89957eZd64RT2mhcVFaGkpCSv58LuiNU5INk+zj33XO534s/5wJVXXom9e/di7dq1mDZtGjZu3IiRI0di1apV2Lp1K44fP46ePXty78Vdu3Zxnvn6+nr07dtX+3ncuHGIRqPYuXNnNg7JVUgsirdr1y54vV5MnDgxyyNKL8uXL8eTTz6JDz/8kPv9jh07MGHCBO53EyZMwD//+U9EIhEAatRm9erVANTz9vTTT+dttIZCCIGiKJaehW3btmHy5MlZHnFu4Mvml8+aNQt1dXX49a9/jdraWkSjUQwbNgydnZ3c5/x+v/Zvmmec68XSiSgqKsKgQYO430WjUdx3332GOZGhUCjh/vJJOWT+/PlajcTPfvazuL9bvSeKiooyMl63eeKJJxAOh9GnTx/td4QQ+P3+pIWT7HUuKCjIq+tOceP6L1iwACNGjMB//vMfrFixApMnT0a/fv0ydgzpwOPxxKUiGYlisHMhoN4T+TwXilg9D/lMsjnA6jkQn39xm3whFAphypQpmDJlCr773e9iwYIFWLJkCW6++Wb07t0bGzdujNtGrEFioeclH+bHQYMGQVEUfPjhh4bKgP/4xz/Qo0cPFBYWZn5wWeCCCy7AtGnTcPfdd3POKrrAZxHv9+uuuw533nkn/v73v+PkyZPYs2eP5jzIV3bs2IEBAwYgGo0mfRbEVMbuTNYMm8OHD2PHjh14/PHHcf755wMAXn/99WwNJ+uMHDkSO3fujDN4RDZv3owbb7yR+5ktvs51pk+fri1SxdqYU/2eCIfD+O///m88/PDDmDp1Kve3K6+8EqtXr8awYcMAqNeVqoU1Nzfjo48+wumnn57xMbuNG9f/rLPOwqhRo/DrX/8aTz31FH7605+mf+BpplevXti3b5/2c0tLC3bt2pXFEWWHU/08WJkDBg4ciNbWVrS1tWkOnG3btnGfbWhowNtvv40bbrhB+90777yT9vFngqFDh+KFF17AyJEj0dTUBJ/Ph/79+5t+/tNPP8XevXtRW1sLAHjzzTfh8XgwZMiQDI3YOT179sSUKVPw85//HN/85je5xWlTUxNWr16NG2+8EWeddRai0Sg2bdqEiy++OG4/gUAAALToRT6zbNkynH322dz1Gzp0aNy74I033sCQIUPg9XoBAH379sUFF1yA1atX4+TJk7j44otRXV2d0bG7yauvvort27fjm9/8Jvr27Zv0WWhsbMSGDRvwxS9+MbMDzUGyZtj06NEDPXv2xK9+9Sv07t0bn376Ke68885sDSfrfPe738XMmTNRV1eHq6++Gh6PB++//z62b9+OBx54QPvcH/7wB4waNQrnnXceVq9ejbfffhtPPPFEFkduD6/Xq6VU0QmJcqrfE3/+85/R3NyML33pSygrK+P+dtVVV+GJJ57Aj370IwDA/fffj549e6K6uhr33HMPKisrT4leH25d/wULFuCWW25BYWEhrrjiirSPO91cdNFFWLVqFWbNmoUePXrg3nvvjTs/3YFT/TxYmQM2bNiAwsJC3H333Vi0aBHefvttTjUNABYtWoQvf/nLGDVqFMaPH49nn30W77//Pk477bQMHk1qHD58GFdffTXmz5+PxsZGlJSU4J133sEPfvADXHbZZbj44osxbtw4XH755Vi+fDkaGhqwd+9evPzyy7j88su1dORQKIS5c+fihz/8IVpaWrB48WJcc801qKmpyfIRWuOxxx7D+PHjMW3aNDzwwAMYMGAAPvjgA9x+++3o06cPHnzwQVRUVGDu3LmYP38+fvKTn2D48OH45JNPcODAAVxzzTXo168fFEXBn//8Z1x66aUoKChAcXFxtg/NEY2NjZgzZw7nsPrWt76F0aNH43vf+x6uvfZavPnmm3jsscfw85//nNt2zpw5WLp0KTo7O7V3aT7Q0dGBpqYmRCIR7N+/H+vWrcOyZcswc+ZM3HjjjfB4PEmfhSVLlmDy5MkYOHAgPv/5zyMcDuOVV17Bt7/97WwfXubJdFHPDTfcQK688kpCCCHr168nZ5xxBgkGg6SxsZFs3LiRK6SjheLvvvuutn1zczMBQF577bVMD90VEhWKrVu3jowfP54UFBSQ0tJScu6555Jf/epX2t8BkJ/97GdkypQpJBgMkn79+pGnn346QyN3TqJjJoRwxeNO7ol8YebMmeTSSy81/NvWrVsJAPLwww8TAOTFF18kZ555JgkEAmT06NGcUIBRcXEu4+b1p7S2tpLCwkJy8803p2/gaYadC48dO0auueYaUlpaSurq6siqVassFc2XlZWRlStXZm7QacCN85AvWJkDtm7dStasWUMGDRpEQqEQmTlzJvnVr35FxNf1/fffTyorK0lxcTGZP38+Wbx4MRk7dmwmDsMV2tvbyZ133klGjhxJysrKSGFhIWloaCDf+c53yIkTJwghhLS0tJBFixaR2tpa4vf7SV1dHZkzZw759NNPCSGqeMDw4cPJz3/+c1JbW0tCoRCZPXs2OXLkSDYPzTa7d+8m8+bNIzU1NdpxLlq0iBw6dEj7zMmTJ8k3v/lN0rt3bxIIBMigQYPIihUrtL/ff//9pKamhiiKYirGkosYvR92795NgsEgd8//8Y9/JEOHDiV+v5/U19eT//qv/4rbV3NzMwkGg6SwsJC0trame+iuMHfuXAKAACA+n4/06tWLXHzxxWTFihUkEolon0v2LBBCyHPPPUdGjBhBAoEAqaysJLNnz87GIWUdhZDMJuZOnz4dgwYNwmOPPZbJr5VI8oKNGzdi0qRJaG5uTphH3t3Zs2cP+vfvjy1btmDkyJHZHo4j5FyoIs+DO0yZMgU1NTX47W9/m+2hZIylS5fihRdeiEvVk0gk3ZeMpaI1NzfjjTfewMaNG3HTTTdl6mslEskpRFdXF/bt24c777wTY8eOzUujRs6FKvI8OOfEiRP45S9/iWnTpsHr9eLpp5/G3/72N6xfvz7bQ5NIJJKskjHDZv78+diyZQu+9a1v4bLLLsvU10okklOI//u//8OkSZMwZMgQ/PGPf8z2cBwh50IVeR6coygKXn75ZTzwwAPo6OhAQ0MDnnvuOcPCcolEIulOZDwVTSKRSCQSiUQikUjcJqsNOiUSiUQikUgkEonEDaRhI5FIJBKJRCKRSPKetBg2y5Ytw+jRo1FSUoKqqipcfvnl2LlzJ/cZQgiWLl2K2tpaFBQU4MILL8QHH3yg/f3IkSNYtGgRGhoaUFhYiPr6eixevBjHjh3j9tPc3IwbbrgBZWVlKCsrww033ICjR4+m47AkEolEIpFIJBJJjpIWw2bTpk1YuHAhNm/ejPXr1yMcDmPq1Kloa2vTPvODH/wAjzzyCB577DFs2bIFNTU1mDJlClpbWwEAe/fuxd69e/HDH/4Q27dvx6pVq7Bu3Tp86Utf4r7ruuuuw7Zt27Bu3TqsW7cO27Zt47oxSyQSiUQikUgkklOfjIgHHDx4EFVVVdi0aRMuuOACEEJQW1uLb3zjG7jjjjsAqJ1Xq6ursXz5cnz1q1813M8f/vAHXH/99Whra4PP58OOHTswdOhQbN68GWPGjAEAbN68GePGjcM//vEPNDQ0pPvQJBKJRCKRSCQSSQ6QkRobmj5WUVEBANi1axeampowdepU7TPBYBATJ07EG2+8kXA/paWl8PlUleo333wTZWVlmlEDAGPHjkVZWVnC/UgkEolEIpFIJJJTi7QbNoQQ3HrrrTjvvPMwbNgwAEBTUxMAoLq6mvtsdXW19jeRw4cP43vf+x4XzWlqakJVVVXcZ6uqqkz3I5FIJBKJRCKRSE490t6g85ZbbsH777+P119/Pe5viqJwPxNC4n4HAC0tLZgxYwaGDh2KJUuWJNxHov1IJBKJRCKRSCSSU5O0RmwWLVqEtWvX4rXXXkPfvn2139fU1ABAXFTlwIEDcVGc1tZWTJ8+HcXFxVizZg38fj+3n/3798d978GDB+P2I5FIJBKJRCKRSE5d0mLYEEJwyy234Pnnn8err76KAQMGcH8fMGAAampqsH79eu13nZ2d2LRpE8aPH6/9rqWlBVOnTkUgEMDatWsRCoW4/YwbNw7Hjh3D22+/rf3urbfewrFjx7j9SCQSiUQikUgkklObtKii3XzzzXjqqafwpz/9iVMmKysrQ0FBAQBg+fLlWLZsGVauXInBgwfjoYcewsaNG7Fz506UlJSgtbUVU6ZMwYkTJ7BmzRoUFRVp++nVqxe8Xi8A4JJLLsHevXvx+OOPAwC+8pWvoF+/fnjxxRfdPiyJRCKRSCQSiUSSo6TFsDGrb1m5ciXmzZsHQI3q3HfffXj88cfR3NyMMWPG4Gc/+5kmMLBx40ZMmjTJcD+7du1C//79AaiNPBcvXoy1a9cCAD73uc/hscceQ3l5uavHJJFIJBKJRCKRSHKXjPSxkUgkEolEIpFIJJJ0kpE+NhKJRCKRSCQSiUSSTqRhI5FIJBKJRCKRSPIeadhIJBKJRCKRSCSSvEcaNhKJRCKRSCQSiSTvkYaNRCKRSCQSiUQiyXukYSORSCQSiUQikUjyHmnYSCQSiUQikUgkkrxHGjYSiUQikUgkEokk75GGjUQikUgkEolEIsl7pGEjkUgkEolEIpFI8h5p2EgkEolEIpFIJJK8Rxo2EolEIpFIJBKJJO/5/6kpYMEz+UdsAAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-25T17:30:46.696769\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "total_items = items_sold.add(additional_items,fill_value=0)\n", "print(total_items)\n", @@ -246,21 +97,9 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAE/CAYAAACU31agAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpyklEQVR4nO3dd1gVx/s28GdBqgI2pImKil2KDURR7A270cRuNMTYWzRGY4lRY4m9x66xRmOLscTEkliisWNDRcWCWEB6v98/eM+GIya/+BU42cP9uS6uhNk9Mjtnd3ae2dkZBQCEiIiIiIhIw0wMnQEiIiIiIqJ3xcCGiIiIiIg0j4ENERERERFpHgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizctn6Ay8Lj09XR4/fiw2NjaiKIqhs0NERERERAYCQGJiYsTZ2VlMTP75mcx/LrB5/PixuLq6GjobRERERET0HxEWFibFixf/x33+c4GNjY2NiGRk3tbW1sC5ISIiIiIiQ4mOjhZXV1c1Rvgn/7nARjf8zNbWloENERERERH9q1dUOHkAERERERFpHgMbIiIiIiLSPAY2RERERESkee8U2EyfPl0URZFhw4apaQBk0qRJ4uzsLFZWVhIQECDBwcHvmk8iIiIiIqK/9T8HNmfPnpUVK1aIh4eHXvrMmTNlzpw5smjRIjl79qw4OjpKkyZNJCYm5p0zS0RERERE9Cb/U2ATGxsr3bp1k2+//VYKFSqkpgOQefPmybhx46RDhw5SpUoVWbduncTHx8umTZuyLdNERERERESZ/U+BzcCBA6VVq1bSuHFjvfTQ0FAJDw+Xpk2bqmkWFhZSv359OXny5Bv/raSkJImOjtb7ISIiIiIiehtvvY7Nli1b5M8//5Rz585l2RYeHi4iIg4ODnrpDg4Ocv/+/Tf+e9OnT5fJkye/bTaIiIiIiIhUbxXYhIWFydChQ+XQoUNiaWn5t/u9voAOgL9dVGfs2LEyYsQI9Xfd6qJERO+q1Gc/GvTv3/u6lUH/PhERUV7yVoHNn3/+KREREVK9enU1LS0tTY4fPy6LFi2SmzdvikjGkxsnJyd1n4iIiCxPcXQsLCzEwsLif8k7ERERERGRiLzlOzaNGjWSK1euyMWLF9WfGjVqSLdu3eTixYtSunRpcXR0lMOHD6ufSU5OlmPHjomfn1+2Z56IiIiIiEjkLZ/Y2NjYSJUqVfTS8ufPL0WKFFHThw0bJtOmTRN3d3dxd3eXadOmibW1tXTt2jX7ck1ERERE/wqH5VJe8daTB/xfRo8eLQkJCTJgwACJjIwUHx8fOXTokNjY2GT3nyIiIiIiIhKRbAhsjh49qve7oigyadIkmTRp0rv+00TvhD1URERERHnH/7SODRERERER0X9Jtg9F+69gbz0RERERUd7BJzZERERERKR5RvvEJq/jEysiIiIiykv4xIaIiIiIiDSPgQ0REREREWkeh6IRERGR0TL00GwRDs82NJ4Dhi+D3Dp+BjZERERGLK80aIiIOBSNiIiIiIg0j09siIjIaPFpBRFR3sHAhshIGbpBJ8JGHREREeUeDkUjIiIiIiLNY2BDRERERESax8CGiIiIiIg0j+/YEBEZMUO/a8X3rIiIKLfwiQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmMbAhIiIiIiLNY2BDRERERESax8CGiIiIiIg0j4ENERERERFpHgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmvVVgs3TpUvHw8BBbW1uxtbWV2rVry08//aRuByCTJk0SZ2dnsbKykoCAAAkODs72TBMREREREWX2VoFN8eLF5euvv5Zz587JuXPnpGHDhtK2bVs1eJk5c6bMmTNHFi1aJGfPnhVHR0dp0qSJxMTE5EjmiYiIiIiIRN4ysGndurW0bNlSypUrJ+XKlZOpU6dKgQIF5PTp0wJA5s2bJ+PGjZMOHTpIlSpVZN26dRIfHy+bNm3KqfwTERERERH97+/YpKWlyZYtWyQuLk5q164toaGhEh4eLk2bNlX3sbCwkPr168vJkyf/9t9JSkqS6OhovR8iIiIiIqK38daBzZUrV6RAgQJiYWEh/fv3lx9++EEqVaok4eHhIiLi4OCgt7+Dg4O67U2mT58udnZ26o+rq+vbZomIiIiIiPK4tw5sypcvLxcvXpTTp0/LJ598Ir169ZJr166p2xVF0dsfQJa0zMaOHSuvXr1Sf8LCwt42S0RERERElMfle9sPmJubS9myZUVEpEaNGnL27FmZP3++jBkzRkREwsPDxcnJSd0/IiIiy1OczCwsLMTCwuJts0FERERERKR653VsAEhSUpK4ubmJo6OjHD58WN2WnJwsx44dEz8/v3f9M0RERERERH/rrZ7YfP7559KiRQtxdXWVmJgY2bJlixw9elQOHDggiqLIsGHDZNq0aeLu7i7u7u4ybdo0sba2lq5du+ZU/omIiIiIiN4usHn69Kn06NFDnjx5InZ2duLh4SEHDhyQJk2aiIjI6NGjJSEhQQYMGCCRkZHi4+Mjhw4dEhsbmxzJPBERERERkchbBjarVq36x+2KosikSZNk0qRJ75InIiIiIiKit/LO79gQEREREREZGgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmMbAhIiIiIiLNY2BDRERERESax8CGiIiIiIg0j4ENERERERFpHgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjz3iqwmT59utSsWVNsbGykWLFi0q5dO7l586bePgBk0qRJ4uzsLFZWVhIQECDBwcHZmmkiIiIiIqLM3iqwOXbsmAwcOFBOnz4thw8fltTUVGnatKnExcWp+8ycOVPmzJkjixYtkrNnz4qjo6M0adJEYmJisj3zREREREREIiL53mbnAwcO6P2+Zs0aKVasmPz5559Sr149ASDz5s2TcePGSYcOHUREZN26deLg4CCbNm2Sjz/+OPtyTkRERERE9P+90zs2r169EhGRwoULi4hIaGiohIeHS9OmTdV9LCwspH79+nLy5Mk3/htJSUkSHR2t90NERERERPQ2/ufABoCMGDFC6tatK1WqVBERkfDwcBERcXBw0NvXwcFB3fa66dOni52dnfrj6ur6v2aJiIiIiIjyqP85sBk0aJBcvnxZNm/enGWboih6vwPIkqYzduxYefXqlfoTFhb2v2aJiIiIiIjyqLd6x0Zn8ODBsmfPHjl+/LgUL15cTXd0dBSRjCc3Tk5OanpERESWpzg6FhYWYmFh8b9kg4iIiIiISETe8okNABk0aJDs3LlTfvnlF3Fzc9Pb7ubmJo6OjnL48GE1LTk5WY4dOyZ+fn7Zk2MiIiIiIqLXvNUTm4EDB8qmTZtk9+7dYmNjo743Y2dnJ1ZWVqIoigwbNkymTZsm7u7u4u7uLtOmTRNra2vp2rVrjhwAERERERHRWwU2S5cuFRGRgIAAvfQ1a9ZI7969RURk9OjRkpCQIAMGDJDIyEjx8fGRQ4cOiY2NTbZkmIiIiIiI6HVvFdgA+D/3URRFJk2aJJMmTfpf80RERERERPRW3mkdGyIiIiIiov8CBjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmMbAhIiIiIiLNY2BDRERERESax8CGiIiIiIg0j4ENERERERFpHgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmMbAhIiIiIiLNY2BDRERERESax8CGiIiIiIg0j4ENERERERFpHgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkea9dWBz/Phxad26tTg7O4uiKLJr1y697QBk0qRJ4uzsLFZWVhIQECDBwcHZlV8iIiIiIqIs3jqwiYuLE09PT1m0aNEbt8+cOVPmzJkjixYtkrNnz4qjo6M0adJEYmJi3jmzREREREREb5LvbT/QokULadGixRu3AZB58+bJuHHjpEOHDiIism7dOnFwcJBNmzbJxx9//G65JSIiIiIieoNsfccmNDRUwsPDpWnTpmqahYWF1K9fX06ePJmdf4qIiIiIiEj11k9s/kl4eLiIiDg4OOilOzg4yP3799/4maSkJElKSlJ/j46Ozs4sERERERFRHpAjs6IpiqL3O4AsaTrTp08XOzs79cfV1TUnskREREREREYsWwMbR0dHEfnryY1ORERElqc4OmPHjpVXr16pP2FhYdmZJSIiIiIiygOyNbBxc3MTR0dHOXz4sJqWnJwsx44dEz8/vzd+xsLCQmxtbfV+iIiIiIiI3sZbv2MTGxsrt2/fVn8PDQ2VixcvSuHChaVEiRIybNgwmTZtmri7u4u7u7tMmzZNrK2tpWvXrtmacSIiIiIiIp23DmzOnTsnDRo0UH8fMWKEiIj06tVL1q5dK6NHj5aEhAQZMGCAREZGio+Pjxw6dEhsbGyyL9dERERERESZvHVgExAQIAD+druiKDJp0iSZNGnSu+SLiIiIiIjoX8uRWdGIiIiIiIhyEwMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmMbAhIiIiIiLNY2BDRERERESax8CGiIiIiIg0j4ENERERERFpHgMbIiIiIiLSPAY2RERERESkeQxsiIiIiIhI8xjYEBERERGR5jGwISIiIiIizWNgQ0REREREmsfAhoiIiIiINI+BDRERERERaR4DGyIiIiIi0jwGNkREREREpHkMbIiIiIiISPMY2BARERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHm5Vhgs2TJEnFzcxNLS0upXr26nDhxIqf+FBERERER5XE5Eths3bpVhg0bJuPGjZMLFy6Iv7+/tGjRQh48eJATf46IiIiIiPK4HAls5syZI3379pV+/fpJxYoVZd68eeLq6ipLly7NiT9HRERERER5XL7s/geTk5Plzz//lM8++0wvvWnTpnLy5Mks+yclJUlSUpL6+6tXr0REJDo6+p3ykZ4U/06ff1fvmv93ldePX4RlYOjjF2EZGPr4RVgGef34RVgGhj5+EZZBXj9+EZbBuxy/7rMA/u+dkc0ePXoEEcHvv/+ulz516lSUK1cuy/4TJ06EiPCHP/zhD3/4wx/+8Ic//OHPG3/CwsL+zzgk25/Y6CiKovc7gCxpIiJjx46VESNGqL+np6fLy5cvpUiRIm/cPzdER0eLq6urhIWFia2trUHyYEh5/fhFWAYiLIO8fvwiLIO8fvwiLIO8fvwiLAMRloGhjx+AxMTEiLOz8/+5b7YHNkWLFhVTU1MJDw/XS4+IiBAHB4cs+1tYWIiFhYVeWsGCBbM7W/8TW1vbPHkC6+T14xdhGYiwDPL68YuwDPL68YuwDPL68YuwDERYBoY8fjs7u3+1X7ZPHmBubi7Vq1eXw4cP66UfPnxY/Pz8svvPERERERERZf8TGxGRESNGSI8ePaRGjRpSu3ZtWbFihTx48ED69++fE3+OiIiIiIjyuBwJbLp06SIvXryQL7/8Up48eSJVqlSR/fv3S8mSJXPiz2U7CwsLmThxYpYhcnlFXj9+EZaBCMsgrx+/CMsgrx+/CMsgrx+/CMtAhGWgpeNXgH8zdxoREREREdF/V44s0ElERERERJSbGNgQEREREZHmMbAhIiIiIiLNY2BDRERERESax8Amh3FuBiKivFsX5tXjzgyAWg4sDyLKSZwVLRudP39eXr16JUlJSeLv7y/58+cXkYyKXFEUA+cu9+S146WsMp8D6enpYmLCPhSdvHB9nDx5Uh4/fixJSUlSp04dKVWqlIjkjXMhOjpakpKSxN7eXk3LC8dN/4x14l/yQh1I/ywnzwEGNtlk5cqV8tlnn4mTk5MEBwdLQECAdO7cWV2UNK9cyLoK+9WrVxIVFSUFChSQ/Pnzi6WlZZ4pg8xeP+a8UgbR0dFiamqqBvd52fPnzyUhIUEcHBzE3NxcRIy7YbNq1SoZMWKEVK5cWc6fPy+enp7SqFEjmTZtmogY97GvX79eVq1aJSEhIeLr6yu+vr4yevRoETHu4/4ne/bskZ9++kliY2PF29tbPvroI7GxsRGRvFMfioi8ePFCrKysRETE2trawLnJXQ8fPpRz586Joiji7u4ulSpVMnSW/hPyYp2gO2bdtZ8TZcDAJhv88ccf0qpVK1m0aJE0btxYYmJiZOzYsXL37l1p0qSJfPXVVyJi/JW47gS9cuWKdO/eXZKTkyU2Nlbq168vQ4cOlZo1a+aZC/nGjRuyZMkSuX//vvj5+UmtWrWkQYMGImL858HGjRtl6dKlEh0dLfnz55exY8dKnTp1pGjRokZ/7K9bu3atLFq0SMLCwqRixYpSq1YtmT59upiamkpaWpqYmpoaOovZ6urVq9K0aVOZPXu2vPfeexIVFSVz586Vffv2iZeXl6xfv15EjPMa2LFjh3Tv3l2mT58uNjY2curUKTl27Jh4enrK999/LyJ5ryGzfv166d+/v3Tq1EmSk5Nl79694ufnJyNHjpTmzZuLiHGeC6/bsGGDLFy4UOLj40VRFJk0aZLUr19fihYtauis5bjLly9L8+bNpXDhwhITEyPPnj2TyZMnS+/evfWeahq7kJAQ2b59uzx9+lSqVasmLVq0kGLFiuWpOuHmzZuybNkyefnypZQoUUKCgoLE1dU1+/8Q6J1t2bIF5cuXR3R0tJoWHh6OMWPGoHr16pgxY4YBc5e7wsLC4ODggKFDh+L06dOYP38+AgMDUbRoURw5cgQAkJaWZuBc5qxr166hYMGC6NChA3r06IGKFSuiRo0a+Oqrr9R90tPTDZjDnLNjxw5YWFhgxowZWL9+PTp06IBy5cph+PDhuHfvnqGzl6t2794NS0tLLF68GHv27MHIkSPh4eEBPz8/pKSkADC+a+HQoUMoWbIkwsPD1bSoqCgsW7YMlStXxsCBAw2Yu5yTlpaGTz75BEOHDlXTXr16he3bt8PR0RFt2rRR04312s8sPT0dT58+hbe3N5YuXaqm37t3DzVr1kS9evWwd+9eA+Yw9/zwww+wtLTEggULsGrVKgwYMAD58+fH8OHDcePGDUNnL0e9ePECVatWxejRoxEdHY379+9j4cKFyJcvHwYMGICwsDBDZzFXXL16FQULFkS7du3g6emJ6tWro2TJkrh06ZKhs5Zrrl27Bjs7O3Tt2hXNmzeHn58f7OzssHv37my/DzKwyQa7d+9GqVKlcP36dQBAamoqAODZs2f45JNP4Ofnh+DgYENmMdfs27cPPj4+iImJUdOuXbuGXr16wcrKCseOHQNgvDf3lJQUBAUFoVevXmranTt3MH78eLi5uWH8+PGGy1wOSk9PR0pKCt5//329xh0ATJ8+HTVq1MCgQYPw6NEjw2TQAEaPHo1+/fqpvyclJeHw4cOoWLEiatasqdYTxnQtnD17FiVKlMDhw4f10qOjozFz5kx4e3vj4MGDBspdzmratCkCAwP10pKSkrBz5064ublh5MiRBsqZYURFRaFcuXL47rvvAADJyckAgEePHqF27dqoX78+7t69C8C4rgEd3TH16dNHrx4AgG+//RalS5fGkCFD8ODBA0NkL1c8fvwYFSpUwK+//qqXvmvXLpibm2PEiBFIS0szyu9fJykpCa1bt0bv3r3VtPPnz6N9+/awtbXF77//DsD4OrkyS0tLQ/fu3dGlSxc17dmzZxgwYAAsLCzUOiK7zoO88fwrh1WtWlViYmJkzZo1IiJiamoq6enpUrRoUZk8ebLcuHFDDhw4YOBc5o64uDi5cOGCvHz5Uk2rWLGiTJw4UTp16iQDBgyQkJAQox16kC9fPgkNDZW0tDQ1rXTp0jJw4EDp06eP7NixQ1asWGHAHOYMRVEkX758kpSUJFFRUSIikpKSIiIin332mXTp0kWOHTsme/fuFZGMITnG7uHDh3L16lX1d3Nzc2nYsKEsXrxYkpKSpE+fPkY3DKd48eJiZ2cn69atk1evXqnpNjY20r9/f0lKSpJffvnFgDnMfrpzuVWrVvLixQs5d+6cus3c3FwaN24svXv3ltOnT0tERIShsmkQqamp6jVgZmYmKSkp4uzsLDt27JBr167JggULRESM6hp4XVRUlKSmpoqISHJysoiI9OvXTz7//HP57rvvZN++fSJinHViXFychIaGSnx8vIhk3BPS09Olbdu2smHDBpk7d67s3bvXqL//tLQ0efr0qXh6eqppXl5esnLlSmnVqpW0atVKQkND1fdOjJGiKPL06VMpXbq0iGQMPy1atKgsXrxYBg4cKP369ZPTp0+r79y8KwY2/4O4uDi9m7abm5ssXLhQZs+eLfPmzRORjC8SgNjb24u/v788fvzYQLnNHboLsmrVqlKlShXZsWOHWpmJZJRRUFCQmJuby8WLFw2Uy5ylKwNvb2+JjIyUp0+fqtscHR2lV69eUrNmTdmzZ49e2RiT4sWLy++//y5JSUliZmYmSUlJIiIyatQoqVOnjkyfPl1SUlKMekyxrmJu1qyZpKSk6DXkTUxMxM/PT/r16yfXrl2T+/fvGyqb2SIyMlKePHmiTufr6OgoCxculM2bN8tXX32ld57b2NhI7dq1JTw83IA5zn66c9nf31+ePn0qS5culbCwMHW7jY2NtG7dWk6ePCk3b940VDZznZ2dnYwfP17mz58vW7duFRFR6wQnJyeZNGmS/PTTT/LixQujbNTrGuseHh6yZ88eefHihZibm6sdPn379pXBgwfL+PHjJTw83KjqRN29sGzZsvLBBx/I6NGjJSQkRMzMzASApKWlSefOnSUoKEgWL14s8fHxRtuot7KyEkdHRzl8+LB6jIqiSOHChWXWrFlSo0YNGTJkiCQmJhptgKcoihQvXlx+/PFHSUlJEUVR1M7fb775Rtq0aSNBQUESExOTLdeB8VxJuWT79u3SsWNH8fHxkWbNmqm9Ue+99558/fXXMmLECJkyZYpERUWJoiiSmJgoDx48kCJFihg459nr9RuR7oKsWLGiVK9eXRYuXCi//vqrWomLiNStW1dMTU3l559/ztW85hZdGTRs2FCOHDki69atU3vqRER9WW7//v1y48YNQ2UzR02dOlXS0tKkQ4cOIiJiYWEhiYmJIiLyxRdfSHR0tJw5c8aQWcxxuoo5ICBAUlJSZN68eXoNWgsLC2nbtq1cvnxZLl++bKhsvrPNmzdL27ZtxcfHR3x9fWXv3r2SnJws9evXl++++07mzZsnw4cPl+DgYBHJ6BC6evWqODo6Gjjn7+6XX36RuXPnysiRI+XYsWMSHx8v3t7esmTJElm/fr1MmTJFrl27pu5fsGBB8fT0lAIFChgw1zkrODhYTpw4oT6BEBFp3Lix9OrVS8aNGyfbtm0TkYzzX/dfW1tbyZ8/v1E16l83cOBAqVChgrRv315evnwpZmZmap3YvXt3sbS0lJCQEAPnMnvEx8dLfHy8PHv2TE3r0aOHFCtWTMaMGSOhoaFiamqq3iuLFSsm8fHxYm1tbbSNehGRli1bypMnT2Tt2rV6bSIXFxfp3Lmz3Lp1S6+z3Bh16dJFzMzMZMqUKZKYmKhOoCMi8uGHH0p0dLReh9A7yZYBbXnE2rVrYWdnh6+++grffvstvLy84OPjo25PTk7Gt99+CwsLC9SrVw/NmjVDvXr1UKlSJfVlYWOgGwt669YtjBs3Dm3btsX8+fNx4cIFdZ+mTZvCxcUF27dvR2xsrJrerl07TJs2LbeznGOePHmC33//HTt37kRkZKQ6RnTevHkwNTXFokWLEBcXp+5/9+5dVK1aFZcvXzZUlrPNr7/+ijlz5mDw4MH4888/AWScGz/++COcnJzQunVrvf2vXLkCd3d3XLx40RDZzVE//fQTJk+ejG7dumH37t2IiIgA8NdLo61bt8aZM2fU/R89egRvb28cP37cUFl+Jxs2bICtrS3mzp2LPXv2oHnz5qhSpYreBCoHDx6Eg4MDqlevDi8vL9SuXRuVK1fWfF24evVqFClSBB07dkTJkiXh7e2NLVu2qNf+/v37UaxYMbRs2RJTpkzB/v370bhxY9SoUcNox9GvWbMG5cuXR5kyZVC0aFE0adJE3Xbx4kV89NFHKFq0KObMmYP79+/jwYMHaNGiBdq2bWtU71f88ssvmDp1KoYNG4Yff/wRQEaduHPnTvj6+qJRo0aIjIxU97979y7Kli2LkydPGijH2Sc4OBht2rSBp6cnfH19MX/+fHXbypUr4e/vj+bNm+PatWtq+uDBgxEYGIj4+HijOQ+eP3+OS5cu4fLly+p9ID4+Hh06dED16tWxefNmxMfHq/v/8ccfKF26NEJCQgyV5WwXHh6Oo0eP4tdff8Xt27cBZLxrNGLECNSoUQPTpk3Tew/75s2bcHNzU9sR74qBzb/0xx9/oGLFili9erWaFh4ejmLFiuGnn37S2/fSpUv44osv8PHHH2PixInqjVz3srCW6W7MV65cQbFixfDee++hbdu2KFu2LIKCghAVFaXu265dO5QrVw7vv/8+Zs2ahY8//hi2trbqJAtad/nyZZQrVw7VqlWDoiioV68e/vjjD3X7tGnToCgKRo0ahV9//RXh4eEYPXo0SpQooTdrlBatWrUKzs7OaNKkCby8vGBmZqbenOPj47Fr1y64urrC29sb69atw65du9CyZUv4+voaXeNu9erVKFSoEHr27Alvb29UrFgRy5cvV4/z6tWrcHNzg7+/P4YMGYLvvvsODRs2hLe3tybrhEuXLsHT0xPLly9X09LS0uDg4IC1a9eqvwMZnR9r167FmDFjsGDBArUu1Gpw8+OPP6JYsWLYsWOHmtaqVSu0aNECwF8vv546dQpBQUFwdXVFzZo10bx5c/XleWM7/7dt2wYbGxts3boV169fx2+//YZSpUph1qxZ6j537tzBzJkzkT9/fjg7O8Pd3R01atQwqjJZtWoVHBwc0KpVK9SpUweKomDLli0AMs73bdu2wcfHB66urli7di02btyIli1bolatWpqsBzILDg5GoUKFMHz4cCxYsABjxoxByZIl9dpGmzdvRosWLWBlZYXAwEA0adIENjY2RtXRdfnyZXh4eKBy5cooVKgQunXrpnb4xsbGonnz5qhVqxYmT56M6OhoREVFYfTo0ahatSpevnxp2Mxnk8uXL6NChQrw8PCAvb096tati6NHjwIAEhIS0L9/f/j4+KBXr16IiIhAWFgYPv/8c5QtWxZPnz7NljwwsPmX1qxZg4YNG6oFn5aWhvj4eJQvXx47d+5U99NV0K/3Pmi94srs4cOH6hSOOrt27UKBAgVw5coVvX3nzZuHLl26wMPDA61btzaaSiwkJATOzs4YP348wsLC8PjxY5QrV05v5hMAWLduHTw8PFC4cGFUqlQJxYsXx/nz5w2U6+yxb98+2NvbY9u2bUhKSgIA9OjRA/7+/mpPVGpqKu7evYtWrVqhXLlyqFy5Mlq0aKE2ZIzlejh48CCcnJzw/fffq2l9+/ZFtWrVAPxVH9y9exeffvopPD094efnh/bt22u2LHbv3o3WrVur03enpKQgPT0dtWvXxrJlywBk1H9/1wOrtePViY6OxuDBgzFq1CgkJSWp39/hw4dRoUIFxMTE6M3wlJKSgqioKDx79kwvzZjcv38fAQEBer3ziYmJ6NChA4KCgrLsf/fuXRw8eBBHjx5VzwNjKJP9+/fDwcEBW7duBZDRiB05ciQaN26sdvalpaXhxo0b6Nu3L0qVKoVq1aohMDBQs/WAzvPnz9GgQQOMGDFCTXv06BF8fX0xe/ZsvX0fPXqEZcuWoX///hg/frzRdHICGU8dHBwc8Omnn+LmzZtYt24dateujUWLFqn7xMXFYdCgQfD09IS5uTlq1aoFe3t7zbcJdEJCQuDk5ITRo0fj8ePHOHToENq3b49PP/1Uvc4TExPxzTffoGbNmlAUBVWqVIGLi0u2Pa0BGNj8a0lJSdi+fbv6u64yqlOnjl7vXeZtxig9PR2bN29Ghw4dcPv2bfWGnZ6ejmrVqqk9NK+XQWxsLBITE3M9vzkhISEBgwYNwocffoiEhAT1hrR582aUL18esbGxejep+/fv48yZMzh+/DgeP35sqGxni1evXqFr164YNWqUXvrq1atRtWrVN37m0aNHePr0qdE17uLi4vDZZ59h2LBhiIuLU8/5CxcuwN3dHc+fPwfwV4MlLS0NSUlJePXqlfpvaLEskpOTsW/fPvV33fG1b99eb80SIONaMRapqamYMmWK3rEDwPHjx2Fra/t/XtvG8FTidc+fP0evXr2yTOE9Y8YMdTiart5/0/FrtTGfWWxsLPr164cBAwbopX/33XcoVarUG6+Bx48fIzo62ijqxGvXriEwMBCHDh3SSx8wYIC67IGuA8xYxcbGonv37ujTp49e+sCBA1GtWjWkpKToBfL379/H+vXrsX//fqNZ3y0hIQFBQUHo1q2b3rU+ZcoUlC5dWu86SEtLQ0JCAn788UecPn0629czypc9b+oYJ92LTaampmJubi6dOnUSkYwZP8zMzEREJDExUZ39CoCMHDlSWrdura4ybyzw/6elVRRFnJ2dxd/fX8qUKaNuT09Pl8TERHn06JGIiFo+Ovnz58/V/Oa0tLQ08fX1FUtLSzWtaNGi8vz5c0lISBBra2u1zEqUKCElSpQwYG6zj62trfj5+WX5Pj09PeXVq1cSFRUlBQoUkHz58qkrKjs7O6v7paenS758xlHtWFtbi7Ozs5QsWVKsra3V9Hz58smTJ08kKipKihQpIqampiKSMamAubm5mJubi0jGNaWVsoiLi1NnNLKwsJBWrVqJSMYx6I4vJiZGnjx5oqb3799f/P39pXv37gbLd3YyNTWVTz/9VH35XXd+29vbS+HChfXqgo0bN0rHjh3FyspKTTPGF+Tt7Ozk66+/VieE0NV5JiYm6gQzuvKKjY0VW1tbvc/rzh0ty58/vzRs2DDLy++enp4CQOLj48XCwkKdKVVRFHFwcFDPB63XiUWLFpWhQ4dK48aNRSTj3mhqaiomJibq9Na6Ok8HRjbNfXx8vBQqVEjq1asnIn+VQaNGjeSPP/4Qkb+WAcmXL5+UKFFCevToYcgsZ7vU1FRxcXGR4sWLq9e/iYmJNG3aVDZt2iTJycliaWkpAMTExEQsLS2lZcuWOZIX7V5NOWzbtm1y4MABuXnzpgQGBkq9evWkTp066vbMFbhupptWrVrJpUuXZObMmYbKdrbTnZyZK6F69epJ3bp1ReSvcjA1NRUbGxu9G9X69evFzc1N/P39cz3fOcnS0lKmTJmiznSnK6NixYpJsWLFxNbWVi2vK1euSOXKlY2qUTNw4MAsaboZTlJTU9Wb9K+//ip16tTRa/AZUzmIiAwePFj9f921YGtrK7a2tnrB/dKlS+W9996TokWLqmlaubFv2rRJtm3bJnfv3pXatWtL69atJTAwUEREr7FmZmYmNjY2IpJRF169elUWL15syKy/s1OnTsnNmzfF2tpaKlasKFWrVlW36b4/MzMzMTExURvwTZo0keTkZOnatatB8pzTHjx4IKmpqWJraytFixZVg5q0tDT1+k5NTdWbvtfPz0+qVKlilGt4iWTMivp6cGJtbS3p6ekSHx8vhQsXFhGR/fv3S6tWrfTqQS3WiZnreXt7ezWoSU9PV9sA1tbWeus2ffrpp+Ls7CzDhw/XTN33b9nb20vXrl3F19dXRP6qGwoXLizp6emSnp6uNugfPnwoxYsXN2R2c0SBAgWkU6dOUqlSJRH5qwwKFCgg6enpap2gKIrcvXtXXdMmJ2jvisoFGzdulF69eom9vb24ubnJwYMHpWvXrvLdd9+JSMYXpuuJsLGxUZ/m3L17V+7duyf58uXTW6BRq3QN9jt37sisWbPkq6++krVr14rIX5WxrmEjIurUnSIiY8eOlYEDBxrF1K4iIi9evJArV65IaGiovHz5UooUKaLOx5+55y02NladyvPzzz+XQYMGaX4ax9OnT8uuXbtk+/bt8uDBAzU987SViYmJki9fPrXhHhAQIGPGjFEbe8bi2LFjMn/+fFm2bJn8+uuvb9zHwsJCrKys1GuhSZMmsm7dOrVxoyVbtmyRvn37iq+vrzRp0kRevXolHTp0kLlz56r76KY0L1SokFhYWEjHjh3lzp07cufOHU3XhatWrZLAwECZP3++fP755+Lv7y+LFy9Wj0d3446KipJXr17JixcvpE2bNnL//n35+eefjXLBvTVr1kiDBg2kcePG4ubmJqNGjZLTp0+LiP7Tl8zXfbNmzeTly5eyaNGiXM9vTvntt99k+/btsnTpUnny5In6dCrz9P5xcXGSmpoqhQoVEhGRRo0ayaBBgzR/Tly7dk26du0qLVq0kNatW8vx48fVe1zmgMXS0lItl3HjxsmcOXPEz8/PIHnOCVFRUfL8+XP1nqgLajK3CaKiouTZs2eSmpoqiqLI5MmTpWvXrkazbs+LFy/k/v376rIFuqAmLS1Nr36MjIxUO8i/+OILadCggcTExORcGWTrwDYjEBMTg6ZNm2LGjBlq2tWrVzFy5EiYmppi/fr1evvXrVsXiqKgYsWK6hh7LY+Xfd3Vq1dRqFAhNGvWDJUqVULJkiXh4+OTZWrCtLQ01KhRA9999x2mTJkCKysrnD171kC5zl6XLl1ChQoVULZsWbi4uKBevXpvnJ7zzJkzsLW1RXR0NCZMmAAzMzPNl8HKlSthZ2eHWrVqwczMDL6+vpg4caK6XTdu+I8//kCZMmXw6tUrNG/eXO96MJZpPFetWgU7Ozv4+/ujYsWKKFCgAEaPHq03nTeQ8QKlvb09bty4gTZt2qBcuXKanP0pOTkZHTt2xGeffaamPXv2DN988w1MTU316kgAaNOmDRRFQeXKlTVfF166dAnFihXD5s2bkZycjLt372LGjBkwMTHB2LFj9d4XvHr1KkqUKAFvb2+4u7tr/tj/zqFDh5A/f36sXLkSly5dwqJFi+Dn54cGDRpg//79evsuXrwYAQEBCAwMRJkyZYyqTL799lvY2dnB19cX+fPnR+XKlTFhwgS9SQLS09Nx8eJFlCpVCi9fvkRgYCAqVaqk+Trx5s2bsLW1RY8ePTBhwgTUq1cPZcuWxdixY/Hw4UMAf90TRo4cid69e2P27NmwsLDI1pfDDe3SpUuoVasWypQpg/Lly6Nv3756M53qvt+ffvoJ5cqVAwBMnDgRZmZmRlMOly5dQuXKlVG2bFnY29urSxq8fo6fO3cOrq6uSElJwaRJk3KlbcjA5jWRkZFwdXXVm6oSyJjaedSoUShSpIj6gnxaWhoCAgLg7u6u+WlM3yQhIQENGzbERx99BCBjVqBLly6hZs2aWdYj0ZVFyZIljSqoefToEVxcXDBq1CgEBwdjy5YteP/995EvXz51MgldY/XixYvw9vbGkCFDYGFhgXPnzhky6+/s0qVLcHR0xHfffYfExEQ8fPgQn376KSpXrox+/frp7atr3Hl5eaF06dJG1ZABMm7oLi4uasdGeHg4Nm7cCCsrK/Ts2VNvmvO7d+/CyckJ5cqV0wtqtFYW8fHxqFKlil5gA2Qcx/z586EoCjZt2gQg4ybWp08f1KxZ0yjqwt9//x0VKlTIMi37hg0bYGJigq+//lpNCw4OhqIo8PPz0+x3/U90DZSJEyciMDBQb9vPP/+M9u3bw9/fH7/++quaPn36dCiKAh8fH6Mqk8uXL6N48eLYtm2bOgPk8OHD4evri169eunVA/fu3UOpUqVQoUIFo6gT09PTMXz4cHTo0EEvfcKECahevTqGDh2KJ0+eqOljxoyBoiiws7MzmvYAkPG9FitWDKNHj8aOHTuwbt06uLi4oHr16jhx4oRe59Xvv/+OgIAADB8+3CjaBDoPHz5E8eLFMXbsWBw7dgzHjh1D1apV4eXlhfXr1+tNFnHr1i3UqFEDffv2hbm5ea6UAQObN+jevTs++OADPHv2TC/99u3beO+999CjRw91hoekpCSjmrYys4SEBNSsWRNr1qzRS4+JiYGfnx8qVaqkLsiXkJCApk2bwt7e3igWn9T57bff4OXlpdfAefHiBUaMGAEzMzO9efr//PNPKIqCwoULG0WvzI8//ojSpUurs3sBGce+cOFCVKhQQW96z99//90oGzI6ly5dQpkyZXD37l299KNHj8La2hoDBw5U00JDQ2FpaYm6detqvixGjhwJHx8f3LlzRy9dN/Vx/fr11UXokpOTjaYu/O2336AoijoNa+ZpnBcvXox8+fKpazPEx8frrVem9WP/O5MnT0a1atX0FmEFMhbqbd68OXr16oUXL14AyJgZsHv37kZXJr/88gucnZ0RGhqqpiUlJWHOnDnw8fHBsGHD1IDn8uXLUBRFnRUL0H459O/fHy1atEBqaqresUybNg1eXl5YtGiRWgesXbsWJUqUyLIEhNZt3boVnp6eerNbvnr1Cp6envD09NS79+/btw+KoiB//vxG0SbQOXjwYJaOn+TkZLRp0wbVqlXDjh071Pry5MmTUBQF1tbWuTatNQObN1i0aBFKlCiB1atX660QCwALFixAkSJF1Ju5jjFMW/kmnp6e6NGjh/q77jifPn2KChUq4P3331e37d69Gzdv3sz1POak/fv3Q1EUvRsZkDG94yeffIJChQohODgYABAREYGAgABcvXrVADnNfidPnoSrq6vagNOJiorC1KlTUa1aNRw5ckRNN4YFGP/OzZs3oSgK9uzZo6bpeuZ2794Nc3Nz9ekFAMyfP98oymLnzp3w8vLCxIkTszy92LZtGwoWLJgl6NHScLvX6W7GcXFxaNWqFdq0aaMGs7q1eXQL7X366adZ6n0tf9f/ly1btqBgwYLqNZ/52Ddv3gxra2u1UytzORhTmfz+++8oWbIkfvvtNwB/HVtqaiomTZoEDw8PHD9+HEDGNNdr1qwxinpAZ+zYsXB3d1c7djMPyfz4449RqlQpxMbGAgDCwsKybcHF/5KFCxeiRIkS6u+6skhISEDFihXRoEEDddu5c+fQsGFDo1qvBwC2b98OJycntdNT105OSEhA48aNUb16dTXwCw0NRbdu3XDt2rVcy1+eD2zOnz+P3bt344cfftBrvH700UewtbXFhg0b9FaEPXr0KGrUqKH3yNUY/N2Y3+XLl6Nq1arqiuLAXxX0ihUr4Onpqfm1Wd5EVx4RERGoXbs2hg0blmVl4JCQEPj7+2Pu3LlqY84Ybl46YWFhqFSpEvr165ell/bFixdwd3fXe99Gx5jKQCcpKQk9e/ZEw4YN9Xqd0tLSkJycjPfffx99+/bNsn6Tlsri5MmTWLVqFZYuXYrTp0+r6RMmTECpUqXw1Vdf6a25cOXKFXh4eODGjRuGyG62evbsGZ49e6bXEFuzZg1q1aqFwYMH4/79+3r7d+rUSa/Dx1i9fv526dIFTk5OuHXrFgD94MbNzQ0rVqzI1fzltvj4eFSoUAHt2rVT7xGZy6BixYr4+OOPs3xOS/XAP4mNjYWrqyvat2+vpuka9vHx8ShYsKDeen/G6NatW7C2tsa8efPUNF2Ad/v2bRQsWBArV65Ut0VGRuZ2FnNceHg4ChUqpDdMWTf8LCYmBvb29pgyZYq6LSYmJlfzl6dnRVuzZo20bt1avvzyS/nggw9k5MiRcu7cORERWbFihXTs2FFGjx4tX3/9tRw7dkxu3rwpX331ldjZ2YmDg4OBc5990tPTRVEUiYyMlJs3b8qtW7ckLi5OREQaN24s5cqVk/Xr18u2bdtERNRpHp2dneXVq1dGMbuHzuszHtnb20ujRo3kl19+kW3btklsbKy6b9myZcXc3FzOnj2rzoKi5fUIXr16pbcmU/HixWX27NmyatUqmTlzpjrbm0jGNJa+vr4SFhaW5d/RchnoPHnyRO7fv6/OeGNubi4dO3aUhIQEmT9/vly5ckVEMmYHNDMzk0KFCklERESW9Zu0UharV6+W9u3by8aNG2XSpEkyduxY2bt3r4iITJ48Wbp16yabN2+WkSNHyu7du+XkyZMycuRIsbW1FXd3dwPn/t1899130qVLF/H09JRu3brJ8uXLRUSkd+/e0r59ezl58qRMmDBBQkJCRCRjzYrnz5+Li4uLIbOdo/bt2ycDBw6Upk2byvz58yUyMlJERBYsWCCVKlWSBg0ayLlz59SZ0CIiIsTS0lJvOnNj8OLFCwkPD1dngLSyspKNGzfKkSNHpH///iKiPxtcQECAOmNqZlqpBzJ7+PCh7Ny5UxYuXCh3794VkYw1e5YsWSK//fabvP/++yIi6nT+L1++FCcnJ7G3tzdYnnODo6OjDBkyRNauXStbt24VkYxZANPS0sTZ2VnKly8vjx8/VvcvWLCggXKafXSz2+k4ODjItGnTZM2aNbJgwQIRybhHJicnS4ECBcTPz09d00xE1CVRck2uhlH/ITt27EChQoWwbds2xMTE4OzZs3Bzc8OcOXP09psyZQoaNGgARVHg6emp9w6Blodc6OiO4cqVK/Dx8YG7uztKly6NLl26qL2Xly9fRvPmzREQEKBOqhAdHY3PPvsMNWrUMJoeiRs3bmDIkCFo2LAhPv/8c70hWN26dUPFihUxb948vbG1Xbt2xejRozV/LmzatAkBAQEoUaIE/P39sX//fvU8X7t2LUxMTDBkyBC1dz42Nha1atXCuHHjDJntHLF+/XrUrl0b9vb28PX1xeTJk9Vtq1evRs2aNdGxY0d1yElkZCQaNWqEQYMGGSrL72T37t0oWrQotm7dirS0NFy/fh0NGjTAmDFj9PZbvXo1OnXqBBMTE3h7e6NevXqarws3bNgAa2trLF26FN9++y0GDhyIOnXq6A0nXbJkCRo2bIgCBQqgYcOG8PDwQOXKlY2mF/51q1evRpEiRdCvXz/07t0bJiYmmDRpkrr94cOHaNu2LWxtbTFgwABMmjQJTZo0gaenp1ENyd60aRP8/Pzg5uaGcuXK4fDhw+q2HTt2oECBAujatSvu3buHxMREJCUlwcfHR+/dQ626fPky3N3dUb16dbi6usLGxgZnzpwBkFH3b926FQ4ODqhfvz6OHj2Ks2fPYvz48XB2dsaDBw8MnPvsc/v2bUyYMAGffPIJJk+erNZz58+fR5cuXeDr64t169bpfaZJkyb46quvAGh39rvMbt26hSFDhqBLly748MMP1SczoaGhGDVqFNzc3DB79my9z7Ru3Vq9DgxRBnkysAkPD0eHDh3w5ZdfAvjrpjx27Fg0bNhQHV6i8/z5c5w7dw5XrlwxyiFHN27cQNGiRTFq1Cj88ccfWLp0Kfz9/bF48WL1pLx+/ToGDRoEJycnODg4oEaNGihatGiuvQyW065cuYIiRYqgd+/e6NmzJ+rVq4f27dvrVdJBQUHw8vJCnTp1MGHCBPTo0QM2NjbqOzZatX79etja2mL27Nn4/vvvUb9+fXh7e+tNY/zDDz+gSJEiqFmzJmrVqgU/Pz+jbNxt3LgR+fPnx6pVq7Br1y6MGzcOPj4+6k0dyHi3pG3btrCwsICXlxcqV66MqlWranIq15cvX6Jnz55qEKOr3+bPn4/KlSsjPj5er7Ganp6OkJAQPHz4UPN14cWLF1GlShW9YbaXLl2Cvb09du3apbdvSEgIVq1ahXHjxmHu3LlG9d5EZr/++itcXV313hdbv3497O3tswzHmzFjBtq0aYOAgAD06dNHPf+NIbhZv349bGxssHDhQuzduxfvv/8+nJyc1E689PR0/Prrr3B2dkaVKlXg6emJ2rVro1KlSpo/J+7cuaPOePX8+XNER0ejR48e8Pb2Vt+fSU5OxoULF+Dj4wMXFxd19jdjekH+8uXLsLe3R+fOndGgQQN4eHigbdu2av1+9uxZ9OnTB8WLF8eAAQPUjhEbGxujedf4ypUrKFq0KHr06IHu3bujSpUqqF69uloGd+7cwfjx45E/f3507NgR48ePR1BQEAoUKJCr79S8Ls8GNv369VN7XHVf0vz58/9Vr5NWeyffJDo6Gp06dUJQUJBeeqdOndCyZUu9tFevXuH27duYO3cutm7dmuWlYa16/PgxqlWrhtGjR6tphw8fhr29PX7//Xe9fbds2YKPPvoIdevWRZcuXTQ/A9yFCxdQtWpVvbHxCQkJKFKkCDZv3gzgr/P96tWr+PbbbzFixAjMmTPH6Bp3wcHB8Pb2xrfffqum3b9/Hy4uLli+fLnevo8ePcKBAwcwY8YMrF69WrNlERUVhXHjxuHnn3/WS9+xYwdKly6dZfKU12m5Ljxy5Ai6dOmS5cXeZs2aYcmSJQCgN23p64yhAZ9ZUlISPv/8c/Ts2VPt1EhPT8eVK1dQsmRJdZ2SzIF7UlKS3jmgtfP/TS5dugQvLy+99yTS0tJQtmzZLDOERkVFYfHixZg0aRLmzZun2XpAJykpCcOHD0fXrl3Vd2cAYNeuXShfvrwa2GR24cIFBAcHG9VEAbr3S3UdPomJidi+fTu8vLz0nubeu3cPa9asQYUKFVCrVi0EBAToLYOhZY8ePYKXl5faLkpPT8eff/6J8uXL49ChQ+p+0dHROHr0KBo2bIhGjRqhbdu2uHTpkqGyDQDQ3sDPbODg4CATJ06U4sWLi0jG+EFTU1MpXbq0FCpUSG/M7KlTp6R27dp6n9e9T2EMEhISxMHBQfz9/UUk4x0TU1NT6dSpk6xYsULS09MlPT1d8uXLJ7a2tmJrayvDhg0zbKaz2YULF6REiRLSs2dPASCKokjjxo2lQoUKcvv2bfHz85OUlBQxMzOTLl26SJcuXSQ5OVlMTEw0OXY6s7t374qbm5s0b95cRDJWzjYzM5PSpUtLUlKSiGS8bwRAKleuLJUrV9b7fFpamubLQCc2NlYqVaoktWrVEpGM94xKlCgh9erVk2fPnomISHJyspibm4uzs7M4OztLs2bN1M9rsSzs7OxkyJAhUqxYMRHJqAtNTEykRIkSUrBgQb2VxA8cOKCeJzpargtLly4tgwYNkgoVKoiIqNd+SkqKREdHi0jGuPG/k/k+YQzMzc2lRYsWcuvWLbG2thaRjGvf1dVVREQiIyPF2dlZrQ8URdErHwCaO//fJCwsTKysrKRx48YiknFcJiYmUrhwYfVdI5GM693Ozk4GDBig93kt1gM65ubm4ubmJtbW1uq7MyIi1atXl6ioKHny5ImUKlVK8uXLp9YVXl5ehstwDjly5Ij6Lg0AsbCwkAYNGsjAgQPl3r176n2wZMmS0rt3b+nRo4cAkOTkZPXa0brTp0+LtbW1fPLJJyKSURdUqlRJ0tLS5NGjR+p+NjY2Ur9+fTl8+LCYmJhIUlKSWFhYGCrbIiKizasvG+iCGl2lJSKSmJgoUVFRanpgYKDY2NiIr6+v3g3emBQpUkS6d+8uvr6+IvJXQ8XExERiYmJE5K8beFxcnOTPn98wGc1BDg4O0qpVK7Wywv+fDCExMVEiIiJERLK8FP5PDR4tadGihZibm6uNF0VRxNTUVBwcHCQ1NVVNE/mrUZ+ZMTXuSpUqJYMHDxYPDw+9dABG3dDVBTUif13/8fHxEh0drTbQWrVqJXFxcdKsWTOjqQtLlSolpUqVEhHRmwBF10DR/X+7du2kU6dO0qNHD0NkM1fVrVtX6tatmyU9KSlJYmJi1O9+yZIl0rx5cylTpoy6j7GcF61atRILCwspWbKkiIikpKSIubm5ODk56d0HTE1N33hP1Go9oDN48OAsabrOTXNzc7VOuHbtmpQtW1YvADIWFSpUkC5duoizs7OIZHT4FSpUSAoXLqx2+GWWnp4uZmZmmg1o36RmzZrSu3dvtY5MSUkRS0tLKVas2BsnyND5L7SNtNvdlk0URVEr5NjYWElMTJTExERp06aN3LhxQzZs2GA0FfabmJqaqkGNrhdOJONJTlxcnJiYmIiiKDJ+/Hhp06aNpKWlGdUsaCIZvVH9+vUTkb/KQFEUKViwoN5NavHixXLgwAFDZTPbpaeni5WVlQQGBqppuuONjo5WZzUBIAMGDJAffvjBIPnMLcWKFRMfHx8R0W/o6uoEnZYtW8rs2bNzPX+5KSYmRpKSkiQ+Pl7atm0rISEhcvjwYbW33pjoZoXUKVSokNrr2rx5c7l27Zo6A1Rek56eLmlpaWJlZaUGwI0bN5Z58+aJm5ubgXOX/XSzP2V+WqNrqCUnJ6sdXQDkww8/lJ9++skwGc0Fuus8LS1NUlJSxMTERL0uRo8eLS1atJCEhARDZjHHVKtWTYKCgkTkr6DOxMREbG1t9e4Fq1evVoMaY+Pq6iofffSRiIjeMVpaWqodfSIiy5cvl9DQULVT7L/QXs6TgY3ugj137pzcunVLTS9SpIgUKVJE2rZtKzdu3JAbN26ImZmZ2nNtrHSVuaIo6nTHdnZ2YmVlJSIi48aNkzlz5siMGTPE1NT0P3HiZpfMjbTXGzgFChRQH6l+/vnn8umnn0qJEiVyPY855U3DiHTfv4WFhTpNZcuWLWXfvn3SsWPH3MyewejOA925UahQIbVXtlmzZnLnzh0ZOnSoIbOYbXTHePz4cTl//ryabm9vL4ULF1Yb9sHBwWpdqLXr//Lly2+sw3XHnvkmrRMbGyvvvfeehIaGyrVr1/LEfQAZ79yKiKg9srp7grm5uSQkJEibNm3k8ePHcu3aNTExMckyDazWvV4nKoqiHiMAtXEXGBgoBw4ckHbt2uV2FnNc5vaASEZnl4WFhaSkpEhaWpqMHz9elixZIjt27JBChQoZMqs5JnOgYmJiojeKQ/f/EydOlH79+snt27cNksfclPlaT0lJUTtAJ06cKJ988skbn2IZUp4KbHQVt6IosnPnTmndurXeWMHU1FQ5efKkREZG6t3MjOnx4uvS0tLExMREHYKnO2F179SMHj1aZs+eLSdOnJAaNWoYMKfZ4/XeZkVRsjRYdBdwZGSkpKWlyddffy1z586VEydOSKVKlXItr9nt9UZI5oaM7h0S3Y29YMGCYmZmJh07dpTQ0FC5c+eO5MuXTw18tO718yA9PV1N0/XK6srCzMxMEhISpEOHDnL37l25evWq5hq6rx9v5rrwhx9+kLZt2+qtSZSSkiKXL1+WlJQUTdeFX375pXh5ecmxY8fUc/f1+4C/v788f/5cDWbj4uJk8uTJEhISohfQae3Y/8nrQ+90FEWR/fv3y+rVqyU5OVkURRELCwtJTEyUhg0byvXr1+XSpUtqmWj5Hau/oyuP58+f69WZtra2kj9/funSpYvcvn1b7t+/r+k68U11oK498PTpU3WtLpGMurBgwYIyZMgQmTVrlhw7dkx9F9EYvV63p6SkSEpKiiQmJoqdnZ3MmzdPZs2aJefOnZNy5coZKJc56/Uy0J3nqampUrhwYZk/f75aBrr3FP8zsncugv+Of5qtZ8uWLTAzM8OyZcv00s+fP4/u3btrfmaTf0t3fPfu3YOLiwt27Nihbtu4cSMURUGBAgWMagpH3Yw+x48fx2+//aaWwf3799GnTx+8fPlS3bd169YoVKgQ8ufPj7Nnzxokvznhiy++wLFjx9RZnXbs2IFOnTrh0aNH6j4tWrSAoiioVKmSOo2rMV4PuhWRM5dFyZIl9aa27dKlCxRFgZeXlybLInNd+PosX3v27IGVlVWWuvDOnTsYNWqUUdSFzZo1Q/HixXH48GG9mcx27tyJ/PnzY+nSpXr7f/7552jatKlRHPv/RVcf6o7x+++/h6mpKdavX6/u8/jxYyiKAm9vb6Muk/T0dLU8tm/fjrZt2+Lx48fq9vbt20NRFHh4eGiyHsgs83Vw6dIlvbXo7t27BxsbG3zzzTcAMsrl2rVrUBQFtra2RjPrl87r0/Prvtu7d++qZaBTv359lC5dGlZWVkbVJsgsPT1dPT/u3r2L8ePH691DAgMDUbBgQVhbW/9ny8AoA5vMJ+qCBQswaNAgBAUFqdMRrlmzBgsWLPjHf0OrFdab/FOQFxoaCmdnZ/Tv31+v3P744w80aNBA82u06GQ+tiNHjkBRFHWtinv37sHZ2RmDBw/W2693795wcHDQ/JTOmb//H374ASYmJjh58iQAYOvWrcifP79ewzY9PR1du3ZFzZo1jbohM2PGDAwePFj9XdfQfb2RP2fOHLRu3VqTZZH5fJ41axY++OADtGnTBhcuXAAA7N27F6tXr/7Hf0NLx5tZ5rXIGjduDGdnZxw+fBjJycmIiIiAt7d3lmm8gYygTutr9PydzHXB5s2b0apVK/UYL1y4ADMzsyyBHgCcOHFCk+f/3/m/Oj4LFCiARYsW6aV//PHHKFOmjObLITQ0FPXr1weQcT9wdnbGuXPnAGQshVGoUKEs7QEAGD16tMGn8c0pp06dwpYtW9Tz4t69e3ByckK3bt309qtZsybMzMw03ybITPc9P3/+XC89NDQUTk5O6NGjh156q1atoCiK3rTX/zVGF9hkrrAmTJiAggULokuXLihdujRKlCiB3377zYC5y12Z56EHgD///BNbt27Fjz/+iHv37gHIqKwGDhyYpRJLSUnRe3phLB49eoQVK1Zg+vTpADJWjS9VqtQbK/IjR47g7t27hshmjti8eTOWLFmirlnz8uVLlC9fHvPnz1f30ZVBQkKC2muj1Rv4/2Xt2rUoWrQorly5gujoaPj7++ut56Pz5MkTTTZ0M9eF06dPh52dHYYMGQIvLy/Y29tj48aNml6H5p+86bgaNWoEZ2dndc2esLAwve2vX//GVjaZj+fIkSP46KOPYGpqiqCgIKSkpCApKSnL/fFN9wWty1wOx48fx8mTJ3H69GkAGfeDhg0bvrFOzPxZLZfD1atXUaZMGZQrVw6KouC7775Ttx09ehTffPONXhnpjl9LCw//W7qnEw0bNkSLFi0AZJwDlSpVQlBQUJZj3717t9Gs3wf8dVz79u2Dv78/fvrpJwAZaxbWqlUL/fr1y1IGFy5cQGhoqEHy+28ZXWCj8/TpU/Tq1Qt//PEHgIyKqGXLlnB0dFQX5jRmU6dOxZAhQ/Ds2TMAGT0z5ubm8PDwgLm5OerWravXU5u50jLGCgzIGG6me5w+Y8YMNf2nn34y+uMPCQmBq6srFEXRe7weERGRZd/MNzVjady9/p2mp6fj9u3bqFu3rroQ3+sN3f/r39CKe/fuISgoSK/e6927NxwdHbF+/fo3LrpnLPbt26c+nQQyghsHBwf8/PPPmm6cvosRI0agevXq+Pjjj1GrVi04OjrqDcE2toVHM8t8DQ8fPhxFixaFk5MTChUqhA8//BAPHjx440KTmcvEGOrEhQsXQlEUlCpVSi/dGI7tbejOhzNnzqBw4cLYsWMHXr16hU2bNr2xvtfqPeCf7Nq1C1ZWVvj666/VuvLFixc4cOCAZo/XKAOblStXwtbWFjVq1MCNGzf0trVs2RLOzs44ceKEgXKXO5YvXw5FUfD555/j+vXr8PHxwbJlyxAfH4+rV69i4MCB8PLywsKFCw2d1Vy1bNkymJubo0+fPoiOjjZ0dnLM6xVSQkICdu3aBQ8PD1SvXl1NN+ZGzJu83ogfPHgwSpQokeXpprHYsGEDFEVBhQoVsoyH7tOnD5ydnbFhwwb1XSNjcuPGDTg4OKBXr156x575yU1eO/8PHTqEokWLqg2YtLQ0zJkzB56enkYf3GSuE8+ePYuyZcvi1KlTuHTpEg4dOoTChQujdevWah2h1Ubd39EdT3JyMn777Td888038Pb2hqenJ169egUg65MoYysD4M1PZqOiovDBBx/go48+UtPygqdPn6JatWr4+uuvDZ2VbGWUgc3Tp0/RqFEj5MuXT320nvlEbd26NRRFMbqX4F6na9QMHz4cHTp00OuJunv3Lj7++GM0aNDgjb32xmzp0qVQFAUzZswwyor79WEEiYmJADJuaPv370fJkiXRqFEjdR9jbMS8yfLly9GpUyf8/PPP6vsXkZGRqFGjBpYsWQJA+zfyN92Q27ZtC0VRsH79er33TgCgb9++UBRFHYKgZW/67rZt24YqVargww8/1AtuGjduDFdXV+zbty/PNGKAjElhnJ2d9cbTR0dHY8KECbC2tka/fv3Uc8RYy2XVqlXo2rUr+vfvr5d+69YtFChQAJ999pmBcpZzdNfG4cOHMX78ePUdu8uXL8PDwwMeHh56nT6HDx/Wm1DA2Jw5cwY7d+7US1u/fj2srKzU94i0fi/4N0JCQuDi4qJ29GeeQCMzrZWF5gObv6t8IyIiUKtWLVSsWBEhISEA9L+cUaNGGW2DLvNxrlu3DoqiwNTUVH1BUOfcuXNQFAW//vprLucw5+nK4MqVKzhy5Ah++OEHve26R/EzZ87U3EX7b82YMQPt2rWDr68vlixZor5XtX//fpQrVw5NmzZV9zXWRkxms2bNQrdu3WBubo6uXbtiwYIFSEtLw/vvv48PPvjA0NnLVq8PwWrWrBkcHR2zzAwGZAxbNaa6UNf7rPP999+jYsWK+PDDD/VmePTy8kKbNm1yO3u55k312vHjx1GhQgUcOnRIL/3BgwdwcXGBu7s7+vbta1TnQ2bh4eH44IMPUKhQIbRr105N13X+zJo1C15eXnjx4oXR3Rd27NgBKysrfPXVV3qduleuXFGDm3PnzmHMmDEoVaoUHj58aMDc5oz09HS8ePECPXr0gKIo6NGjBzZs2KBuf++999C5c2ejHp6b2f3791GqVCmsW7dOTdO1BQ4ePIh9+/YZKmvvRNOBTebG2OXLl3H+/Hm9i/HZs2eoXr06Kleu/MbgBsgbvdVbt26Foij45JNP8OTJEzX92bNnqFixIg4cOGDA3GU/3Xe8c+dOFC9eHFWrVkXBggXRtGlTXL58WT1vFi5cCAsLC0yePNmQ2c02ma+HiRMnonDhwhg6dCj69u2LwoULo2vXrmrD7scff0SlSpXg7e1tqOzmqH8K1I4fP47hw4fDxcUFrVq1Qr9+/aAoCvbu3ZuLOcw5/+sQLK3WhSdPnsTNmzcBAHPnzsWgQYOyvNy6bds22Nvbo0ePHnrBTV4I6L/++mscO3YMQEbDvlq1aggMDNSb1ejOnTvo1KkTpkyZAm9vb6OZZOdN3++5c+fQu3dvmJmZYePGjXrblixZgqpVqxrd0Mxr166hVKlSb5wFEABu3rwJHx8fuLq6onTp0lk6QY1NbGwsTp8+jRYtWsDT0xPe3t44fPgwvvjiC7Ro0QK3b982dBaz3ZsmwYiNjUVAQAAaNGiQZZazYcOGoUWLFpoM8jQb2GSusL744guULl0apUuXRoECBbBmzRp1Rq/nz5+jRo0a8PDwwPXr1w2V3RyX+RHi7du3cfr0afz+++9qT9Tq1auhKAqCgoJw4sQJhIaGYuzYsShYsCAePHhgyKzniMOHD6NQoULqi+F//vknFEVBw4YN8eeff6plNXPmTBQuXBgvXrwwZHaz1f379/HZZ5/hl19+UdMOHjyI6tWro3fv3oiLi0NCQgK2b9+ODz74wOgad5mPZ8+ePVi3bp16Q888zvzFixcYOnQoOnToAEVR8PHHH2f5vBbk5SFYoaGh8PHxQevWrfHkyROsXr0aRYoUwdixY9UnlDqTJk1CwYIF8d577+lNY6/VgO7fiI6ORps2bWBiYqIGK8HBwXB2dkazZs3wzTff4Oeff0bjxo3xwQcf4OXLl7CxscGcOXMMnPN3l/n8fvDgAa5evaqmhYaGomfPnmpvdVxcHMLDw9G4cWM0b97cKJ7WZG4T6J7SZw7433SMp06dQnh4eG5lMVfojvPGjRs4ePAgzp49q3aAv3z5EleuXEH79u1Ru3Zt+Pj4qO8mG5PMQxGHDRuGJk2aYNmyZQgPD8eDBw/g5OSEpk2bYtGiRdi7dy8GDBgAOzs7XLlyxcA5/99oNrDR+fLLL+Ho6IhDhw4hPT0d3bt3h62tLWbOnKmOEX3+/DlKlCiB7t27GzazOUh34u7YsQMVKlRA2bJl4evrCw8PD/XdGt07N4qi4L333oO/v7861lbrQkNDsXv3bgAZixAOGzYMEydOBJDxPlHp0qXRu3dvlC5dGr6+vjh37px6kzOmaa13794NRVFQrFgxHDlyRG/b/v37YW5urg49zPyiqDE0cgH94/jss8/g7OwMPz8/2Nvbo1mzZjh//nyWY42Pj8eCBQtgaWmp6c6PvDoEa8WKFWjQoAG6dOmCmJgYbN26FY6OjhgzZoxeQ27u3LmoX78+evXqZTTn++t0x5W50frgwQP07NkT5ubm6pOb69evo1OnTqhQoQLKlCmD+vXrIz4+HgBQu3ZtbNmyJfczn40yH/8XX3wBDw8PODk5oVq1apg9ezbi4uJw7do19OzZE4qioESJEujduzfq1aunTiSi1XMkPj4eiYmJuH//vvqdfv/993BwcEBUVBQA/br/5MmTOHPmjEHymtN058H3338PFxcXlCpVCiVLlkT58uWzTCB14MABfP3113BwcDDK9Xp++OEH2NjYoH///vjiiy/g4uKCpk2bIikpCSEhIWjbti3Kly+PMmXKoG7dupp+B11zgU3mYQdXrlxB48aNsWfPHgAZ09YVKlRIfVl25syZ6kuSUVFRRtUzp6t04+Li1LRjx46hQIECWL58OZKSkrB3714oioI5c+boDc9SFAVffvmlWslp3aNHj1C0aFFUrFhRnZP/0KFDCA4ORmRkJGrWrIl+/foBAH755RcoioLq1atr+sLV0Z0Huv8+evQIAwcOhKIoWLt2LQD9m1jlypUxc+bM3M9oLvvmm2/0Fp7btGkTFEWBv78/zp8//8a1Gfz9/fWmAf+vy+tDsDJ/d2vWrEGdOnXQpUsXREdHY/PmzXBycsLo0aNx5swZJCcno0OHDti+fbv6OWMog7+jewKtO9awsDB0794d5ubm6rTfMTExePHiBe7fv69+buzYsXB2dv7Pr1Pxb02bNg0ODg748ccfkZqaikaNGqFkyZJqwzU4OBgffvghypYtq/eUSjfSQWuuXbuGDh06oEqVKsiXLx+8vLwwefJkPH36FEWLFsWwYcOyfGbYsGGYPn16lolFtE533ztz5gxsbGywbNkyPHz4EEePHkX37t1haWmp9x6iji4YNCZhYWHw9PRUF99NT0+HjY0NRo8erbaLk5OTER0djYcPH2p+xlhNBTa6YQdt2rTBnTt3kJiYiJUrVyIxMRHHjx+Hs7OzOn1x586dUbBgQUyYMEHvSzKG4EZ3Qz537hzKlCmj3oRmzZqFQYMGAcjopStRogQGDhyofk5XcW3cuBHXrl3L3UznIF2wUrNmTbRp0wabN29Wt+3atQs1a9ZU37Hav38/2rRpA29vb80vtLVp0yb07NkTwcHBer31T548Qc+ePWFlZaX31ObVq1coXbr0G1cW17qDBw+q33tUVBT69++vjp/fsWMHChYsiDlz5qBMmTLw9/fHuXPnsgzFqFatmvqU77+OQ7Ay/FNws337dlStWhVOTk5wd3dH5cqV1caOMQw1+jtbt26FtbW1+vRRd6z3799H27ZtYW1trRfkAhmL7rVu3RpOTk44f/58ruc5u2QOSF69eoWGDRti/fr1ADI6u2xsbNRhqbrz/9KlS/joo49QsWLFLJPMaMnly5dhZ2eHgQMHYuXKldi5cyfatm0LU1NTdOzYERs3bkSRIkUwcOBAhIWFITg4WB2OruUn1a+7d++ees6npqZi5cqVaNCggV5HxpMnT9C1a1d4e3ura/3pGGPdEBYWBi8vL8TFxeHWrVtwcXFRp7YGgNOnT2d54q9lmgpsgIxhBw0bNkTnzp31FtQLCgpCnz591Mb7oEGD4O3tjTp16hjViaq7OC9evAgbGxu9Hpg+ffqgX79+ePToEYoXL663cu727dsxe/Zso2jMvMmHH34IT09PdOzYEQ0aNFBvZitWrICLi4s6pvbzzz/HhAkTNF8OUVFRKFOmDOzt7VGlShX06tULq1atUrfHxcXhgw8+gKWlJYYOHYoZM2YgMDAQVapUMbqFCX/77TcoioIaNWqoT+yOHDmC8PBwXLhwAWXKlFFXEl+/fj0URUGlSpXUpx1AxthyCwsLXL582SDH8L/gEKwMfxfcvHz5Erdu3cKmTZuwdOlSo12j5fWntqdPn0azZs3g5uamruOm27Zt2zZ1OPLr5/rixYuzrPumJQcPHsSsWbPUp7SRkZGoXLkyIiIicOjQIRQoUEDt1ElISMDy5cvVOuDixYsICgqCg4MDdu3aZbBj+F9FRETA29s7y1TVERERWLRoEWxsbBAYGIg9e/bA0dERzs7OKFOmDMqXL6/pQPZ1iYmJ8PX1RalSpdR6Yc6cOShUqJD6aoIufd++fXB1dTWqoA7IuPc/e/YMv/zyCx4+fIioqCjcu3cP9vb2+OWXX1CmTBn069dPrRMuXbqE999/36jOA80ENq/fvPz9/dG5c2e1YmrQoIHe04n27dvj4sWLbxxyolWZT0Rra+ssL7jNmTMH7du3h7Ozszr0Kj09HcnJyRgwYACGDRtmdI9ZdT10P/74I3r37o2DBw+iQ4cOqFevHn744QdERkbCxcUFZcqUQZ06dWBnZ2cU7xWlpqZi7NixWLZsGf7880/MmjULdnZ26Ny5M6ZOnYqkpCRERERgxIgRUBQFnTp1wtatW9XyMqbg5ocffoCiKKhXrx7atGmj937AokWL0LBhQ3Wtpg0bNmDgwIF4//339Rq4kZGRejMG/pdxCFZWmctk9erVqFu3Lrp06YK7d+/qbTe2oObvntpeuHABLVq0yNJwO3HiBIKCgjBnzhyjqgNWr14NFxcXfPLJJ3ozetWsWRP169eHra2tOpEMkPH0qn79+npP98+dO4fBgwdrckas8+fPo0qVKrhy5Yp6juuu88jISEyZMgW2trY4cOAAnj17hsOHD+PkyZOaqfP+rfT0dJw4cQJVqlSBl5cX0tPTcefOHVSqVAlz5szRG35/8+ZNlC5d2qjeL7p58yZ69uyJChUqwNLSEnZ2dujatSsuX76s1xbIbOzYsahZsyYeP35soFxnP80ENkDWG3r9+vXRuXNnPH/+HIsXL4aJiQk++OADeHt7o1KlSkY57ODBgwcoWrQoOnfurJe+YsUKvP/++yhTpgwKFy6sjh2NiYnB559/DicnJ033xmX24MGDLEMGIiIiUKFCBSxatAgRERHo0KED6tSpg7179+Lp06cYNWoUxo4da1RD8H766SfY2tqq48UTEhIwYcIEKIqCatWqYerUqfjxxx8xdOhQFChQAL///jsA7Y4f/yfdu3dH/fr10aFDBwQEBKhP7MaNG4fy5cvjyZMnePXqFQIDA7Fo0SL1c1pt6HIIVlavBzf16tVD9+7d9Z7sG5M3PbXN3Hi/deuWun7Rzz//jODgYLRr1w6ffPKJuo8xBDebN2+GtbU1tm7dqgZ3mV8ad3d3h7+/v7p/TEwMWrZsiYCAgCzXv1brxjVr1sDS0lL9/fXr/M6dO7Czs8P06dNzO2u5Li0tDadOnUL58uVRs2ZNABn3gapVq2LWrFkIDw9HTEwMxowZg7Jly+otXK5lly5dgpOTE/r374+1a9fi+vXrGDNmDMqUKYMKFSrgyy+/RNeuXVG2bFkcPnwY33//PYYPHw4bGxujeN84M00FNkDWG7quZ+7JkydYvnw5OnfujI8//lgdkqbVhsvfCQ0NVd8l0U3fOW3aNFhbWyM4OBhhYWFwc3NDtWrV4O7ujhYtWmh+3HRmDx48QJEiRaAoClq2bImtW7eqT+327NkDf39/REREqC9RBgQEYPv27QbOdc4ZOHAgBgwYoP5eqVIltGvXDqNHj0bLli2hKAqmTp2K7t27o2DBgka3GKuuIbJx40Z89NFHOH36NDp06AB/f3/s2bMHERERcHJygpOTE0qXLo2qVasazUuyeX0I1ptkLpNVq1bBx8dHHaJpbEHd3z21fe+99zB9+nQkJSXh6tWrCAoKgqIoKFOmDDw8PNTz3xjK4+nTp6hXr55eZwWQEbxcuHABe/bswdSpU1GpUiXUqFED7du3R506dfTKwRiuixMnTsDS0hLff//93+7j7e2tDl03hu9e58mTJzh16pReWnJyMs6cOQM3NzfUq1cPADB+/HhUqVIFlpaW8PX1hb29vdG0i3SjeMaOHZuls2Lz5s2oVasWfHx8sHLlSvTp0wd2dnaoWrUqGjdubJQzwGkusAH+ftiBbv513SNYY+iNepNbt26hefPmaNOmDT766CMUK1YMBw8eVLc/efIEmzZtwtixY/Hdd9+pwzGMwb1791CjRg3Url0b1atXR79+/VCyZEksW7YMW7duRWBgIPbv3w8gY8abxo0bIzAw0KhejMts5cqVqFOnDl68eKG+U6Y71sePH+P7779HSkoKYmNj0bZtW7i4uGh+OOIvv/yi1zMNZByri4sLVq1ahSdPnqBDhw6oW7cu9u3bh5cvX2LBggVYsmSJWicYS92QV4dg/ZPMZdKqVSu0bdvWcJnJYf/01LZGjRqYOnUqrl+/jgsXLuDUqVPqeWAs5//Tp0+zvPS/ZMkSdOrUCYqiwN3dHZ6enjh16hQGDx6MoUOHYvbs2UZXD4SFhaFYsWJo06aN3ix3mZc08PPzw4YNGwyVxRyRuaMzICAAY8eOxZEjR9QJo/744w9UrVoVderUAZDRNlq1ahV27tyZZZIVrdKN4nnvvffUtPT0dL1ze9myZShSpAhWrFgBAAgJCUFsbKzmZz/7O5oMbICsN3R/f3/06NFDHXZgTD0Sb3Lz5k00adIEVlZWmD17tppuLBX1P7l16xY6dOiAdu3aYefOndi1axcCAgLQrl07KIqCWrVqISkpCUDGolzGOhRFp2bNmlAUBfXr1//bhUZTUlLw/PlzPHr0KJdzl710M+ApioJmzZph6dKl6iJimzdvRuvWrRETE4OrV6+iY8eOqF+/vjqhgI6xNfLz2hCsf0NXJrr3qXT1gTH6u6e2n376KZo1awZFUbB69Wp1uzGd/0+fPoWLiwv69euHI0eOoGPHjqhSpQr69++PgwcPYtu2bShbtizmzp2b5bPGVA5AxuyP5ubm6NmzZ5ZV5MePH49SpUoZTWNe5969e/Dy8kL58uVRo0YN9OrVC5aWlvDy8kL37t2xdetWbNu2DWXKlEGTJk2Msl2YeRTP62vzZD7eunXron379gCM79x/nWYDGyBvDTt4k9u3b6Np06Zo0aKF3gmdF479xo0baNGiBZo2bYqbN28iNjYWp06dQmBgoPp+hbGXg+74NmzYgCpVqqgvzRrzcYeEhKBevXpo2LAhGjRogMGDB6NIkSKYO3cu5syZg4YNG6rXQnBwMAICAvQmFTFWeb0ufJNnz56hTp06ml09+9/6p6e2T548wbZt24y6w+vnn3+GnZ0dSpcuDU9PTxw5ckSdwvfly5fw8vLC+PHjDZzLnJeamoply5YhX758KF++PD788EOMGzcO3bp1Q+HChY1m2NXrQkJC0L59e7Rt2xanT5/G/fv3sXnzZtSpUwe1atWClZUVqlSpAkVR0K5dOwDGVyfqRvE0a9bsb9uCAQEB6NatmyGyl+sUABANAyCKooiISGBgoOTLl0927dpl2EzlopCQEBkyZIgAkC+++ELq1Klj6CzlmpCQEBk0aJCIiEyYMCFPHXtmjx49kpo1a8qQIUPks88+M3R2ctytW7dk7NixkpKSIkOHDpW0tDRZvny5JCQkyIEDB6Rt27by/fffi6mpqdy7d09KlCghJiYmhs52jsvrdeGbJCYmiqWlpaGzkeNq1aol586dk3r16snOnTulcOHCWfZJTU2VfPnyGSB3Oe/Zs2cSGxsrbm5ueumRkZHSrl076datmwQFBRkod7nrzJkzMnPmTLl586YULFhQvLy8ZNCgQVKhQgVDZy3H3Lx5U4YOHSrp6ekydepUqVmzpohkfP/79u2Tmzdvyk8//SQrV64Ub29vA+c2Z/xdWzA9PV0eP34sQUFB0qVLF+nVq5fevcIoGTCoyjZ5adjBm9y6dQuBgYHw9fXN8hKdsfu7noq8ZsGCBShSpIjeAozG7MaNG2jevDmaNm2K69evIzU1FcHBwejbt686w0vm3ipjnOL4TfJ6XZjX5MWntv9WREQEWrVqBR8fH6MfevO61NRUo57e/U10swA2a9YMR48ezbLdmJ9a6vxde2jMmDHw9PTMM8OTjaIbU1EUef78uVy8eFHGjRsn5ubmhs5SrnJ3d5dZs2ZJ8eLFxdnZ2dDZyVXu7u6yYMECMTMzk08//VROnz5t6CwZRMuWLaVVq1ZG3SuXWfny5WXBggUiIjJ06FA5efKkVKpUSVauXCmenp6Snp6u1yOVF57YiLAuzGt053iDBg3kxYsXcvjwYb30vOj58+fy9ddfS58+fSQiIkJOnDghpqamkpaWZuis5RoTExP1HMgr54K7u7ssXLhQFEWR6dOny8mTJ/W2G+vTysx07SFFUeSrr76SCxcuyMyZM2Xx4sWybt06KV68uKGzmCs0PxQts7wy7ODvJCcn59mGzI0bN+SLL76Qb775RkqUKGHo7BgE/v/j5bS0NDE1NTV0dnKF7vG7iMi4ceOkbt26Bs7Rf0NerwvzooULF8rkyZPl+PHjUqlSJUNnx2AuXrwoX3zxhZQpU0Zmz54t+fLlM+pheKQvJCRERowYIc+fP5e5c+eKr6+vobOU63Rl8Mcff0hkZKScOnVKqlevbuhs5RqjCmwob8vLgV1eFhISIsOHD5enT5/KqlWrxMPDw9BZIsp1d+7ckS+//FLWrFmTZ55Q/p2oqCixs7PLcx09lIEdnRnvHY0ePVqmTZsmlStXNnR2chUDGyLSvOvXr8vKlStl1qxZeb5RR3lXXnxq+09g7C9J099iR6dISkqKmJmZGTobuY6BDREZlfT0dAY3REREeRADGyIiIiIi0jx2axIRERERkeYxsCEiIiIiIs1jYENERERERJrHwIaIiIiIiDSPgQ0REREREWkeAxsiIiIiItI8BjZERERERKR5DGyIiIiIiEjzGNgQEREREZHmMbAhIiIiIiLN+3/Za0/n7x/mEgAAAABJRU5ErkJggg==", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-25T17:30:47.138983\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "monthly = total_items.resample(\"1M\").mean()\n", "ax = monthly.plot(kind='bar',figsize=(10,3))\n", @@ -279,81 +118,9 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
012345678
0123456789
1IliketousePythonandPandasverymuch
\n", - "
" - ], - "text/plain": [ - " 0 1 2 3 4 5 6 7 8\n", - "0 1 2 3 4 5 6 7 8 9\n", - "1 I like to use Python and Pandas very much" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df = pd.DataFrame([a,b])\n", "df" @@ -368,102 +135,9 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AB
01I
12like
23to
34use
45Python
56and
67Pandas
78very
89much
\n", - "
" - ], - "text/plain": [ - " A B\n", - "0 1 I\n", - "1 2 like\n", - "2 3 to\n", - "3 4 use\n", - "4 5 Python\n", - "5 6 and\n", - "6 7 Pandas\n", - "7 8 very\n", - "8 9 much" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df = pd.DataFrame({ 'A' : a, 'B' : b })\n", "df" @@ -478,102 +152,9 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AB
01I
12like
23to
34use
45Python
56and
67Pandas
78very
89much
\n", - "
" - ], - "text/plain": [ - " A B\n", - "0 1 I\n", - "1 2 like\n", - "2 3 to\n", - "3 4 use\n", - "4 5 Python\n", - "5 6 and\n", - "6 7 Pandas\n", - "7 8 very\n", - "8 9 much" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "pd.DataFrame([a,b]).T.rename(columns={ 0 : 'A', 1 : 'B' })" ] @@ -587,38 +168,9 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Column A (series):\n", - "0 1\n", - "1 2\n", - "2 3\n", - "3 4\n", - "4 5\n", - "5 6\n", - "6 7\n", - "7 8\n", - "8 9\n", - "Name: A, dtype: int64\n", - "Columns B and A (DataFrame):\n", - " B A\n", - "0 I 1\n", - "1 like 2\n", - "2 to 3\n", - "3 use 4\n", - "4 Python 5\n", - "5 and 6\n", - "6 Pandas 7\n", - "7 very 8\n", - "8 much 9\n" - ] - } - ], + "outputs": [], "source": [ "print(f\"Column A (series):\\n{df['A']}\")\n", "print(f\"Columns B and A (DataFrame):\\n{df[['B','A']]}\")" @@ -633,72 +185,9 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AB
01I
12like
23to
34use
\n", - "
" - ], - "text/plain": [ - " A B\n", - "0 1 I\n", - "1 2 like\n", - "2 3 to\n", - "3 4 use" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df[df['A']<5]" ] @@ -712,54 +201,9 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AB
56and
\n", - "
" - ], - "text/plain": [ - " A B\n", - "5 6 and" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df[(df['A']>5) & (df['A']<7)]" ] @@ -773,112 +217,9 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ABDivA
01I-4.0
12like-3.0
23to-2.0
34use-1.0
45Python0.0
56and1.0
67Pandas2.0
78very3.0
89much4.0
\n", - "
" - ], - "text/plain": [ - " A B DivA\n", - "0 1 I -4.0\n", - "1 2 like -3.0\n", - "2 3 to -2.0\n", - "3 4 use -1.0\n", - "4 5 Python 0.0\n", - "5 6 and 1.0\n", - "6 7 Pandas 2.0\n", - "7 8 very 3.0\n", - "8 9 much 4.0" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df['DivA'] = df['A']-df['A'].mean()\n", "df" @@ -893,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -903,122 +244,9 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ABDivALenB
01I-4.01
12like-3.04
23to-2.02
34use-1.03
45Python0.06
56and1.03
67Pandas2.06
78very3.04
89much4.04
\n", - "
" - ], - "text/plain": [ - " A B DivA LenB\n", - "0 1 I -4.0 1\n", - "1 2 like -3.0 4\n", - "2 3 to -2.0 2\n", - "3 4 use -1.0 3\n", - "4 5 Python 0.0 6\n", - "5 6 and 1.0 3\n", - "6 7 Pandas 2.0 6\n", - "7 8 very 3.0 4\n", - "8 9 much 4.0 4" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df['LenB'] = df['B'].apply(lambda x: len(x))\n", "# or\n", @@ -1035,90 +263,9 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ABDivALenB
01I-4.01
12like-3.04
23to-2.02
34use-1.03
45Python0.06
\n", - "
" - ], - "text/plain": [ - " A B DivA LenB\n", - "0 1 I -4.0 1\n", - "1 2 like -3.0 4\n", - "2 3 to -2.0 2\n", - "3 4 use -1.0 3\n", - "4 5 Python 0.0 6" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df.iloc[:5]" ] @@ -1132,84 +279,9 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ADivA
LenB
11.000000-4.000000
23.000000-2.000000
35.0000000.000000
46.3333331.333333
66.0000001.000000
\n", - "
" - ], - "text/plain": [ - " A DivA\n", - "LenB \n", - "1 1.000000 -4.000000\n", - "2 3.000000 -2.000000\n", - "3 5.000000 0.000000\n", - "4 6.333333 1.333333\n", - "6 6.000000 1.000000" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df.groupby(by='LenB').mean()" ] @@ -1223,84 +295,9 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CountMean
LenB
111.000000
213.000000
325.000000
436.333333
626.000000
\n", - "
" - ], - "text/plain": [ - " Count Mean\n", - "LenB \n", - "1 1 1.000000\n", - "2 1 3.000000\n", - "3 2 5.000000\n", - "4 3 6.333333\n", - "6 2 6.000000" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df.groupby(by='LenB') \\\n", " .aggregate({ 'DivA' : len, 'A' : lambda x: x.mean() }) \\\n", @@ -1318,90 +315,9 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ABDivALenB
01I-4.01
12like-3.04
23to-2.02
34use-1.03
45Python0.06
\n", - "
" - ], - "text/plain": [ - " A B DivA LenB\n", - "0 1 I -4.0 1\n", - "1 2 like -3.0 4\n", - "2 3 to -2.0 2\n", - "3 4 use -1.0 3\n", - "4 5 Python 0.0 6" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df.head()" ] @@ -1416,21 +332,9 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+SUlEQVR4nO3dd3zUheH/8dcne5CEGSEQtjLCJsnlEFdFWqTUVQcVCCNWKyKIA3HVqhhXbatUkGEIoGKtglgHglaQClkQluwZRoAAyWWQC7n7/P7wW35FQTm4yye5vJ+Pxz0eTbzLva6Me/P5XC6GaZomIiIiIl4QYHWAiIiI+A8NCxEREfEaDQsRERHxGg0LERER8RoNCxEREfEaDQsRERHxGg0LERER8RoNCxEREfGaoJq+Q7fbzcGDB4mKisIwjJq+exEREbkApmlSWlpKXFwcAQHnPi5R48Pi4MGDxMfH1/TdioiIiBcUFBTQqlWrc/73Gh8WUVFRwPdh0dHRNX33IiIicgEcDgfx8fGnn8fPpcaHxX9Pf0RHR2tYiIiI1DE/9zIGvXhTREREvEbDQkRERLxGw0JERES8RsNCREREvEbDQkRERLxGw0JERES8RsNCREREvEbDQkRERLxGw0JERES8xuNhUVpayoQJE2jTpg3h4eH069ePnJwcX7SJiIhIHePxsEhLS2Pp0qXMmzePDRs2MHDgQAYMGMCBAwd80SciIiJ1iGGapnm+Vz558iRRUVF89NFHDB48+PTne/Xqxa9//Wuee+65n/0aDoeDmJgYSkpK9LNCRERE6ojzff726IeQVVdX43K5CAsLO+Pz4eHhrFy58qy3cTqdOJ3OM8JERETEu0y3m+z3X4Yjm7CNm2tZh0enQqKiorDb7Tz77LMcPHgQl8vF/PnzycrK4tChQ2e9TXp6OjExMacv8fHxXgkXERGR7zmKj7H21RuwbX4e27GP2LBioWUtHr/GYt68eZimScuWLQkNDeW1117jd7/7HYGBgWe9/uTJkykpKTl9KSgouOhoERER+d72tSso+5udPmUrqDIDWX3pg3Trf4NlPR6dCgHo0KEDy5cvp7y8HIfDQYsWLbj99ttp167dWa8fGhpKaGjoRYeKiIjI/2e63WQteJ4+W18lxHBx0Iil7DczSelztaVdHg+L/4qMjCQyMpITJ06wZMkSXnrpJW92iYiIyDmUHDvMrtkjSan4FgxYE3kFHdLmENeoqdVpng+LJUuWYJomnTp1YseOHTz88MN06tSJUaNG+aJPRERE/seW3C9p+K+76c1Rqswg1nZ5iOTbJmEE1I73vPR4WJSUlDB58mT2799P48aNueWWW5gyZQrBwcG+6BMRERHA7XKR/e4z9N3+OsGGi/1Gcypvmo2tZ3+r087g0ftYeIPex0JERMQzJ44eYt9bqfQ8mQVAXtQ1XJb2FlExjWuswSfvYyEiIiI1a3PWEhp/9gd6cgynGUx+t0dJvmVirTn18UMaFiIiIrWQ2+Uia/6TJO2aRpDhpsCIo+qWDGzdU6xO+0kaFiIiIrXMscP7OZAxAntlHhiQG30dXe6aRWRUQ6vTfpaGhYiISC2y6T+fELt0LD04wUkzhI09nyDxxnG19tTHD2lYiIiI1AKu6mqy5z5G8t4ZBBomewLi4dY5JHVJtDrNIxoWIiIiFisq3EdhxnDsznwwILvh9XRLm05Egxir0zymYSEiImKhDSs+Iu6rcXSjhAozlE19nib5hnutzrpgGhYiIiIWqD5VRU7mJGwFGQQYJrsD2hJweyZJnXpZnXZRNCxERERq2JEDuynKHI69agMYkNX4N/RMm0ZYRAOr0y6ahoWIiEgNWv/vfxK//AG64qDcDGNz8nPYBt9ldZbXaFiIiIjUgFNVTnIzHsJ+aC4AOwI7EDo0k8SO3S0u8y4NCxERER8rLNhB8dzh2E99B0BW05vpOWYqYeGRFpd5n4aFiIiID+Uve5e2Kx+iM2WUmuFsT0nHNmiU1Vk+o2EhIiLiA1XOSta8NYGUw+8CsD3oUiJ+N48+7btYXOZbGhYiIiJednD3FsreHk5K9TYAVsfeTp8xrxESGmZxme9pWIiIiHjRmiXz6LjqEeKowEEkO/u9RMrAYVZn1RgNCxERES9wVlaQP3sctqP/BGBrUGeih8+ld5tOFpfVLA0LERGRi3Rg1yYq3h6BzbUDgNXN76Tv6L8QHBJqcVnN07AQERG5CHmfzqZT1uO0NE5ygij2XfkKKb+4w+osy2hYiIiIXIDKijLWzR6L7dgiMGBzcAKNU+fRs1UHq9MspWEhIiLioX3b8qlekIrNvQe3aZDVKpWkkS8TFBxidZrlNCxEREQ8kLt4Ol3zniLCcHKcaA784m/Yr7rZ6qxaQ8NCRETkPJwsL2XDrLtJPvEJGLAppAexI+fRPa6t1Wm1ioaFiIjIz9i7OQ/z/ZEku/d9f+qjdRrJqS8QGKSn0R/S/yMiIiI/IXvh63TLf5YIw0kRDSm87nXs/X9jdVatpWEhIiJyFuWlxXw36/cklywBAzaE9qbFqHl0ax5vdVqtpmEhIiLyA7s3ZRHwwWiS3PtxmQbZ7e7BNnwKAYGBVqfVehoWIiIi/8d0u8lZ+Dd6rJ9CmHGKIzSm6FdvYLcPsjqtztCwEBERAcocJ9gycwzJpV+CAevDkmg1OpOusS2tTqtTNCxERKTe27HuP4QtGkOieYhqM4DcDveRfOfTOvVxATQsRESk3jLdbrLff5le371MqHGKQppSPHg6KcnXWZ1WZwV4cuXq6mqeeOIJ2rVrR3h4OO3bt+eZZ57B7Xb7qk9ERMQnHMXHWPvqDdg2P0+ocYr8CDth9/2HzhoVF8WjIxYvvvgi06dPJzMzk4SEBHJzcxk1ahQxMTGMHz/eV40iIiJetX3tCiIWp9HHPMwpM5C8yyZgG/oERoBH/96Ws/BoWKxatYobbriBwYMHA9C2bVveffddcnNzfRInIiLiTabbTdaC5+mz9VVCDBcHjVjKfjOTlD5XW53mNzyaZv379+fLL79k27ZtAKxbt46VK1dy/fXXn/M2TqcTh8NxxkVERKSmlRw/Sv4rvyZl28uEGC7WRF5B5P2ruEyjwqs8OmIxadIkSkpK6Ny5M4GBgbhcLqZMmcLQoUPPeZv09HT+9Kc/XXSoiIjIhdqS+yUx/7qb3hylygxibZeHSL5tkk59+IBH/4++9957zJ8/n3feeYc1a9aQmZnJK6+8QmZm5jlvM3nyZEpKSk5fCgoKLjpaRETkfLhdLlbP/yMdPr6VFhxlv9GcvTctwnbHZI0KHzFM0zTP98rx8fE8+uijjB079vTnnnvuOebPn8+WLVvO62s4HA5iYmIoKSkhOjra82IREZHzUFxUyN7ZI+h5MguAvAZXc9ldGUTFNLa4rG463+dvj06FVFRUEPCDhRcYGKhvNxURkVplc9YSGn/2B3pyDKcZTH63R0m+ZaKOUtQAj4bFkCFDmDJlCq1btyYhIYG1a9fy6quvMnr0aF/1iYiInDe3y0XW/CdJ2jWNIMNNgRFH1S0Z2LqnWJ1Wb3h0KqS0tJQnn3yShQsXcuTIEeLi4hg6dChPPfUUISEh5/U1dCpERER84djh/RzISKVH5fdvgZAbPYDOabNoEN3I4jL/cL7P3x4NC2/QsBAREW/b9O2nxH5xL804wUkzhI09nyDxxnE69eFFPnmNhYiISG3iqq4me+5jJO+dQaBhsjcgHvdvM0jqmmR1Wr2lYSEiInVSUeE+CjOGY3fmgwHZDa+nW9p0IhrEWJ1Wr2lYiIhInbPxm49o/uX9dKOYCjOUTX2eJvmGe63OEjQsRESkDqk+VUVu5qMkF7xFgGGyO6AtAbdnktSpl9Vp8n80LEREpE44cmA3RZnDSana8P2pj8ZD6JE2nbCIBlanyf/QsBARkVpv/b//SfzyB+iKg3IzjM1Jz5L8699bnSVnoWEhIiK11qkqJ7lzHsJ+cC4AOwPbEzJ0Lokdu1tcJueiYSEiIrVSYcEOiucOx37qOwCymt5MzzFTCQuPtLhMfoqGhYiI1Dr5Xy6g7TcP0pkySs1wtqekYxs0yuosOQ8aFiIiUmtUOStZ89YEUg6/C8D2oEuJ+N08+rTvYnGZnC8NCxERqRUO7tlK6fzhpFRvBWB17G30Hv03QsMiLC4TT2hYiIiI5dZ+MZ8O3z5CHOU4iGRnv5dIGTjM6iy5ABoWIiJiGWdlBWtn30/K0fcB2BrUmejhc+ndppPFZXKhNCxERMQSB3ZtouLtEaS4dgCwuvmd9B39F4JDQi0uk4uhYSEiIjUu79MMLsuaTEvjJCeIYt+Vr5DyizuszhIv0LAQEZEaU3mynHWz7sV2bBEYsDm4K41T59OzVQer08RLNCxERKRGFGxfR9WCVGyu3QCsiksladQrBAWHWFwm3qRhISIiPpf78Zt0yX2KSKOS40Sz/+q/Yr/6FquzxAc0LERExGdOlpeyYdY9JJ/4FxiwKaQHsSPn0SOurdVp4iMaFiIi4hN7t6zB/Y+RJLv34jYNslqPITn1RQKD9NTjz/SrKyIiXpezaCoJa58hwnBSREMKB7yG/YobrM6SGqBhISIiXlNRVsKmmb8nqeRzMGBjaC+aj5pHt+atrU6TGqJhISIiXrH7uxwC/jmSJPd+XKZBdtu7SR4+Rac+6hn9aouIyEUx3W5yFv6NHuunEGac4giNOfrLv2Pvd73VaWIBDQsREblgZY4TbJmVRrJjGRiwPiyJVqMzSYhtaXWaWETDQkRELsjO9d8SsnAMieZBqs0Acjrch+3OpwkIDLQ6TSykYSEiIh4x3W6y//kKvTa9RKhxisM04cT107HbBlqdJrWAhoWIiJw3R/Exdswaha1sORiQH55C2zGZdG7a3Oo0qSU0LERE5LxsX7uCiMVp9DEPc8oMJO+y8diGPokREGB1mtQiGhYiIvKTTLebrPfS6bPlz4QYLg7RDMeQGaQk/sLqNKmFNCxEROScSo4fZdfskaSUrwQD1kZcTvu0TFo0bmZ1mtRSHh2/atu2LYZh/OgyduxYX/WJiIhFtuZ+RcVrdnqXr6TKDGJ1p0n0euhfxGhUyE/w6IhFTk4OLpfr9McbN27kuuuu49Zbb/V6mIiIWMN0u8l65xn6bn+NYMPFAeMSKm6cTUqvK6xOkzrAo2HRrNmZK/WFF16gQ4cOXHXVVV6NEhERaxQXFbJndiopJ1eDAWsaXEXHtAxaNmxidZrUERf8Gouqqirmz5/PxIkTMQzjnNdzOp04nc7THzscjgu9SxER8aEtWV/Q8LM/0IsinGYw+QmTSP7tg/quD/HIBf9uWbRoEcXFxYwcOfInr5eenk5MTMzpS3x8/IXepYiI+IDb5WJV5uN0/PR2mlNEgRHH/lsWY7vtYY0K8ZhhmqZ5ITf85S9/SUhICB9//PFPXu9sRyzi4+MpKSkhOjr6Qu5aRES85PiRA+x/K5UelTkA5EYPoHPaLBpEN7K4TGobh8NBTEzMzz5/X9CpkL1797Js2TI+/PDDn71uaGgooaGhF3I3IiLiQ5u+/ZRmX4ylB8epNINZ3+MJkm66X0cp5KJc0LDIyMggNjaWwYMHe7tHRER8zFVdTfa8x0ne8yaBhsnegHjcv80guWuS1WniBzweFm63m4yMDFJTUwkK0vtriYjUJUWF+yjMGI7dmQ8G5MT8ioS7ZhDRIMbqNPETHi+DZcuWsW/fPkaPHu2LHhER8ZGN33xE8y/vpxvFVJihbOr9FEk33md1lvgZj4fFwIEDucDXe4qIiAVc1dVkZ07Ctm82AYbJ7oA2BNw2h6TOfaxOEz+kcxkiIn7s6ME9HJkzDHvVBjAgu9Gv6Z42nfDIKKvTxE9pWIiI+Kn1X39Aq68nkICDcjOMzYnPkDzkbquzxM9pWIiI+JnqU1XkZDyI/eBcAHYGtiPkjkwSL+1pcZnUBxoWIiJ+pLBgByfmDsd+6jsAspreTM8xUwkLj7S4TOoLDQsRET+x7qsFtFnxIF0oo9QMZ5stHdv1o6zOknpGw0JEpI47VeUkb/Z4Ug6/C8D2wI5E3DmXvu0TLC6T+kjDQkSkDju4Zyul84eTUr0VgNXNbqX3mNcIDYuwuEzqKw0LEZE6au0X8+nw7SPEUY6DSHb2e4mUgcOszpJ6TsNCRKSOcVZWsPat8aQc+QcAW4M6ETVsHr3bdrK4TETDQkSkTjmwazMVbw8jxbUDgNWXDKXP6L8SEhpmcZnI9zQsRETqiDWfZXDp6sm0NE5STAP2XPFnUq69w+oskTNoWIiI1HKVJ8tZN/s+bEUfggGbg7vSaMQ8esV3tDpN5Ec0LEREarGCHRuoencENtcuAFbFpZI48mWCQ0ItLhM5Ow0LEZFaKvdfM+iS8ySRRiUniKbg6r9iv/oWq7NEfpKGhYhILVNZUcb6WfeQfPxjMGBTSHdiR86nR1xbq9NEfpaGhYhILbJ3yxrc/xhJsnsvbtMgO340iakvEBQcYnWayHnRsBARqSVyFv2dhLV/IsJwUkRDDl37GilX3mB1lohHNCxERCxWUVbCpll3k1T8GRiwMbQXzUfNo3vz1laniXhMw0JExEK7v8sh4J+jSHIX4DINstveTfLwKQQG6a9nqZv0O1dExAKm203Owtfovn4K4UYVR2nEkV++gb3f9VaniVwUDQsRkRpW5jjBlllpJDuWgQHrwxJpOSqThEtaWZ0mctE0LEREatDODasJ+XAUieZBqs0Actrfi23YMwQEBlqdJuIVGhYiIjXAdLvJ/uef6bXpRUKNUxymCcevn4bd9kur00S8SsNCRMTHSkuOs23mKGxlX4MB+eEptB2TSZemza1OE/E6DQsRER/anv8N4R+l0dcs5JQZSN6l92P73VMYAQFWp4n4hIaFiIgPmG43We+9QJ8tfybEqOYQzSgZ8iYpiddanSbiUxoWIiJeVnL8KLtmjySlfCUYsDbictqnZdKicTOr00R8TsNCRMSLtq35mgYf30Vv8whVZiBrOj+I7fbJOvUh9YaGhYiIF5huN1nvPkvfbX8j2HBxwLiEihtmkdL7SqvTRGqUhoWIyEUqOXaY3bNTSalYBQasaXAlHdPm0LJhE6vTRGqchoWIyEXYkr2Uhp/eQy+KcJrB5Cc8QvJvH9KpD6m3PP6df+DAAYYNG0aTJk2IiIigV69e5OXl+aJNRKTWcrtcrJr7JB0/uY3mFFFgxLH/lsXYbntEo0LqNY+OWJw4cYLLL7+ca665hs8++4zY2Fh27txJw4YNfZQnIlL7HD9ygIK3UrFX5oABuVHX0vmu2TSIbmR1mojlPBoWL774IvHx8WRkZJz+XNu2bb3dJCJSa3236jOaLrmXnhyn0gxmfY/HSbppvI5SiPwfj/4kLF68mMTERG699VZiY2Pp3bs3M2fO/MnbOJ1OHA7HGRcRkbrGVV3NqjmP0unzocRynL0BrTh02yck3/KARoXI//DoT8OuXbuYNm0al156KUuWLOGee+7h/vvvZ+7cuee8TXp6OjExMacv8fHxFx0tIlKTigoL+O7lAdj3TCPQMMmJ+RXNJn5LuwSb1WkitY5hmqZ5vlcOCQkhMTGRb7/99vTn7r//fnJycli1atVZb+N0OnE6nac/djgcxMfHU1JSQnR09EWki4j43saVi2m+bBxNKabCDGVjrydJvmmc1VkiNc7hcBATE/Ozz98evcaiRYsWdO3a9YzPdenShQ8++OCctwkNDSU0NNSTuxERsZyruprszEnY9s0mwDDZE9Aa49Y5JHfpa3WaSK3m0bC4/PLL2bp16xmf27ZtG23atPFqlIiIlY4e3MOROcOxV60HA7Ib/ZruadMJj4yyOk2k1vNoWDzwwAP069eP559/nttuu43s7GxmzJjBjBkzfNUnIlKjNiz/kJb/Hk8CDsrNMDYnPkPykLutzhKpMzx6jQXAv/71LyZPnsz27dtp164dEydO5K677jrv25/vORoRkZpUfaqKnIyHsB/MBGBnYDtC7sgk/tKeFpeJ1A7n+/zt8bC4WBoWIlLbHN6/k+OZw+lyahMAWU1upGfaG4SFR1pcJlJ7+OTFmyIi/mbdV/+g9YqJdKGUMjOcrbYp2K4fY3WWSJ2lYSEi9dKpKid5bz1ASuHbAGwP7EjEnXPp2z7B4jKRuk3DQkTqnUN7t+KYN4KU6i0AZDX7Lb3GvE5oWITFZSJ1n4aFiNQra7+YT/tvH6EF5TiIZIf9RWy/HG51lojf0LAQkXqhylnJmtnjSDnyDwC2BV1Gg2Hz6dO2k8VlIv5Fw0JE/N6BXZupeGc4KdXbAVh9yVD6jP4rIaFhFpeJ+B8NCxHxa2s+y+DS1ZNpaZykmAbs6f8KKQOGWp0l4rc0LETEL1WeLGfd7PuwFX0IBmwJ7krD4XPp1fpSq9NE/JqGhYj4nYIdG3C+m4rNtROAVS1GkDjqFYJD9AMRRXxNw0JE/EruJzPpkv0EkUYlJ4im4Kq/YL/mt1ZnidQbGhYi4hcqK8pYN+sP2I4vBgO+C+lO09R59GjZzuo0kXpFw0JE6ry9W/Nxv5eKzb0Ht2mQFT+KpNQXCQoOsTpNpN7RsBCROi3nozdIWPM0EYaTIhpy6NrXsF95g9VZIvWWhoWI1EkVZSVsnHUPycWfggEbQ3vRfNQ8ujdvbXWaSL2mYSEidc6ezbnw/kiS3QW4TIPsNr8necTzBAbprzQRq+lPoYjUGabbTe6i1+m27jnCjSqO0ogjA/+O/fLBVqeJyP/RsBCROqG8tJjNM8eQ5FgGBqwP60vLUXNJuKSV1Wki8j80LESk1tu5YTUhH44i0TxItRlATvs/YBv2LAGBgVanicgPaFiISK1lut1kf/AqvTa+QKhxiiM05tj107Hbfml1moicg4aFiNRKpSXH2TZrNLbSf4MB68JttB6dSZdmLaxOE5GfoGEhIrXOjnUrCVs0hr5mIafMQPIuHUfy0Kd06kOkDtCwEJFaw3S7yf7Hi/Te/AohRjWFNKN4yJukJF5rdZqInCcNCxGpFUpOFLFz1khs5d+AAWsj+tF+zByaN7nE6jQR8YCGhYhYbtuar2nw8V30MY9QZQayptNEbHc8hhEQYHWaiHhIw0JELGO63WS9+xx9tv2VEMPFQeMSyn4zk5Q+V1mdJiIXSMNCRCxRcuwwu2aPJKXiWzBgTYMr6Zg2h7iGTaxOE5GLoGEhIjVuS/ZSGn56D70posoMYm3XR0i+9WGd+hDxAxoWIlJj3C4X2W8/TeLOqQQZbvYbLai8aTa2npdbnSYiXqJhISI14viRAxS8lUpKZQ4YkBt1LZ3vmk2D6EZWp4mIF2lYiIjPfbf6c5p+/gd6cpxKM5j13R8j6eYJOvUh4oc0LETEZ9wuF1nzHid593QCDZN9AS2pvjmD5G42q9NExEc8+ufC008/jWEYZ1yaN2/uqzYRqcOKCgvY9NIA7HumEWiY5MQMpMkD39Jeo0LEr3l8xCIhIYFly5ad/jhQ790vIj+wceVimi8bR3eKOWmGsKHXUyTfNM7qLBGpAR4Pi6CgIB2lEJGzclVXk535KLZ9swgwTPYEtMa4dQ7JXfpanSYiNcTjYbF9+3bi4uIIDQ3FZrPx/PPP0759+3Ne3+l04nQ6T3/scDgurFREarWig3s5PGc49qp1YEB2o8F0T3uT8Mgoq9NEpAZ59BoLm83G3LlzWbJkCTNnzqSwsJB+/fpx7Nixc94mPT2dmJiY05f4+PiLjhaR2mXD8g8JmNGfhKp1VJih5PZ5keTx72hUiNRDhmma5oXeuLy8nA4dOvDII48wceLEs17nbEcs4uPjKSkpITo6+kLvWkRqgepTVeTMeRjb/kwCDJNdAW0JuiOT1pf1sjpNRLzM4XAQExPzs8/fF/XtppGRkXTv3p3t27ef8zqhoaGEhoZezN2ISC10eP9OjmWOwH5qIxiQ1eRGeo75O2ERDaxOExELXdS70zidTjZv3kyLFi281SMidcC6r/5ByKyr6HpqI2VmOHlJf8Y2LlOjQkQ8O2Lx0EMPMWTIEFq3bs2RI0d47rnncDgcpKam+qpPRGqRU1VO8t56gJTCtwHYEdiBsKFz6duxm8VlIlJbeDQs9u/fz9ChQykqKqJZs2akpKSwevVq2rRp46s+EaklCvdtp3jucFKqNwOQ1ey39BrzOqFhERaXiUht4tGwWLBgga86RKQWy1/6Du3+8xDNKcdBBDvtL2D7pY5UisiP6WeFiMg5VTkrWTP7flKOvAfAtqDLaHDnPHq362xxmYjUVhoWInJWB3dvoezt4aRUbwNg9SVD6TP6r4SEhllcJiK1mYaFiPzIms/n0HH1ZOKooIRIdvf/MykDhlqdJSJ1gIaFiJxWebKcdbPvw1b0IQBbgrrQcMQ8erW+1OIyEakrNCxEBID9OzZS+e4IbK6dAKxqMYzEUa8SHKI3uBOR86dhISLkfjKTztlP0sA4yQmi2XfVq9ivudXqLBGpgzQsROqxyooy1s36A7bji8GA74K70XTkfHq2bGd1mojUURoWIvXU3q35uN9Lxebeg9s0yIofRVLqiwQFh1idJiJ1mIaFSD2U89EbJKx5mgjDyTFiOHjt37BfeZPVWSLiBzQsROqRirISNs66h+TiT8GATSE9uWTkPLrH6W35RcQ7NCxE6ok9m3Ph/ZEkuwu+P/XR5i6SR6QTGKS/BkTEe/Q3ioifM91ucj6aSvf8Zwk3qiiiIYUDp2K/fIjVaSLihzQsRPxYeWkxm2emkexYCgasD+tLy1Fz6XZJK6vTRMRPaViI+KldG7MI+nAUie4DuEyDnHb3kjz8WQICA61OExE/pmEh4mdMt5vsD16l18YXCDVOcYTGFA2aRkrKr6xOE5F6QMNCxI+Ulhxn26zR2Er/DQasC0+m9ei5dG3Wwuo0EaknNCxE/MSOdSsJW5RGX/MQp8xA8jreR/Lv/qhTHyJSozQsROo40+0m+x8v0nvzK4QY1RTSjOJfTyclaYDVaSJSD2lYiNRhJSeK2DlrFLbyFWDA2oh+tB8zh+ZNLrE6TUTqKQ0LkTpq25rlNPj4LvqYh6kyA1nT6QFsdzyOERBgdZqI1GMaFiJ1jOl2k7VgCn22/oUQw8VB4xLKfjOTlD5XWZ0mIqJhIVKXlBw7zK7ZI0mp+BYMWBN5JR3SMohr1NTqNBERQMNCpM7YkrOMhp/cTW+KqDKDWNv1YZJvfUSnPkSkVtGwEKnl3C4X2W8/TeLOqQQZbvYbLai8aTa2npdbnSYi8iMaFiK12Imjh9g3ezgplTlgQF7UL7gsbTatYhpbnSYiclYaFiK11HerP6fp53+gJ8epNINZ120yybc8oFMfIlKraViI1DJul4useY+TvHs6gYbJvoCWVN+cga2bzeo0EZGfpWEhUosUFRZwKGMEducaMCAnZiBd02YSGdXQ6jQRkfOiYSFSS2xcuZjmy8bRnWJOmiFs6PUkSTfcp1MfIlKnaFiIWMxVXU125qPY9s0iwDDZExAPt84huUui1WkiIh7TsBCxUNHBvRyeMxx71TowILvh9XS/awbhkVFWp4mIXJCLOsaanp6OYRhMmDDBSzki9ceGFQsxZlxBQtU6KsxQcnqnkzzhXY0KEanTLviIRU5ODjNmzKBHjx7e7BHxe9WnqsiZ8wi2/XMIMEx2B7Ql4PZMkjr1sjpNROSiXdARi7KyMu68805mzpxJo0aNvN0k4rcO79/JtpeuwX4ggwDDJKvJDbR46D+00agQET9xQcNi7NixDB48mAEDBvzsdZ1OJw6H44yLSH207t/vEzLrKrqe2kiZGU5u0ivYxs0lLKKB1WkiIl7j8amQBQsWkJeXR25u7nldPz09nT/96U8eh4n4i1NVTvLeeoCUwrcB2BHYgbChc0ns2M3iMhER7/PoiEVBQQHjx4/n7bffJiws7LxuM3nyZEpKSk5fCgoKLihUpC4q3LednS9ddXpUZDW9mVYPfUMrjQoR8VOGaZrm+V550aJF3HTTTQQGBp7+nMvlwjAMAgICcDqdZ/y3s3E4HMTExFBSUkJ0dPSFl4vUcvlL36Hdfx4ihnIcRLAjJZ0+vxppdZaIyAU53+dvj06FXHvttWzYsOGMz40aNYrOnTszadKknx0VIvVBlbOSNbPvJ+XIewBsC7qMyN/NpU/7LhaXiYj4nkfDIioqim7dzjyEGxkZSZMmTX70eZH66ODuLZS9PZyU6m0ArI69nT5jXiMk9PxOHYqI1HV6500RL1m7JJMOqx4ljgpKiGT35a+Qct3vrM4SEalRFz0svv76ay9kiNRdlSfLWTd7HLaiDwDYGtSZ6OFz6dWmk8VlIiI1T0csRC7C/h0bqXx3BDbXTgBWtRhG4qhXCQ4JtbhMRMQaGhYiFyjvk1l0yn6CBsZJThDFvitfxf6L26zOEhGxlIaFiIcqK8pYN/tebMc+AgM2ByfQOHUePVt1sDpNRMRyGhYiHti3LZ/qBanY3HtwmwZZrUaSNPIlgoJDrE4TEakVNCxEzlPu4ml0zfsjEYaT40Rz4NrXsF95k9VZIiK1ioaFyM84WV7Khpm/J7n4UzBgU0hPLhk5j+5xbaxOExGpdTQsRH7Cns258P5Ikt0F35/6aJ1GcuoLBAbpj46IyNnob0eRszDdbnI+mkr3/GcJN6oooiGF172Ovf9vrE4TEanVNCxEfqC8tJjvZt1FcskXYMCG0D60GDWXbs3jrU4TEan1NCxE/seujVkEfTiKJPcBXKZBdrt7sA2fQoB+wJ6IyHnRsBDh+1Mf2R/8hZ4b0wkzTnGExhT96g3s9kFWp4mI1CkaFlLvlZYcZ9usMdhKvwID1oUlET86k66xLa1OExGpczQspF7bse4/hC0aQ1/zENVmALkdx5H8uz/q1IeIyAXSsJB6yXS7yX7/JXp/9zIhRjWFNKX412+SkjTA6jQRkTpNw0LqnZITReycPQpb2QowYG1EP9qPmUPzJpdYnSYiUudpWEi9sm3Nchp8fBd9zMNUmYGsuWwCtqFPYAQEWJ0mIuIXNCykXjDdbrIWTKHP1r8QYrg4aMRS9puZpPS52uo0ERG/omEhfq/k2GF2zR5JSsW3YMCayCvokDaHuEZNrU4TEfE7Ghbi17bkLKPhJ/fQm6NUmUGs7fIQybdN0qkPEREf0bAQv+R2uch+50/03TGVYMPFfqM5lTfNxtazv9VpIiJ+TcNC/M6Jo4fY99YIUk5mgwF5UddwWdpbtIppbHWaiIjf07AQv/Ld6s9p+vkf6MlxnGYw+d0eJfmWiTr1ISJSQzQsxC+4XS6y5z1J4u5pBBluCow4qm7JwNY9xeo0EZF6RcNC6rxjh/dzIGMEKZV5YEBu9HV0uWsWkVENrU4TEal3NCykTtv0n0+IXTqWHpzgpBnCxp5PkHjjOJ36EBGxiIaF1Emu6mqy504mee9MAg2TPQHxcOsckrokWp0mIlKvaVhInVN0cC+FmSOwO/PBgOyG19MtbToRDWKsThMRqfc0LKRO2bBiIXFfjacbJVSYoWzq8zTJN9xrdZaIiPwfDQupE6pPVZEz5xFs++cQYJjsDmhLwO2ZJHXqZXWaiIj8Dw0LqfWOHNhN0Zxh2E9tBAOyGv+GnmnTCItoYHWaiIj8gIaF1Grr/v0+rZdPpCsOys0wNic/h23wXVZniYjIOXj0PXnTpk2jR48eREdHEx0djd1u57PPPvNVm9Rjp6qcrHpzLD2Xp9EIBzsD23N8+DISNSpERGo1j45YtGrVihdeeIGOHTsCkJmZyQ033MDatWtJSEjwSaDUP4X7tlM8bwT2U98BkNX0ZnqOmUpYeKTFZSIi8nMM0zTNi/kCjRs35uWXX2bMmDHndX2Hw0FMTAwlJSVER0dfzF2LH8pf9i7tVj5IDOWUmuFsT0mnz6BRVmeJiNR75/v8fcGvsXC5XLz//vuUl5djt9vPeT2n04nT6TwjTOSHqpyVrHlrAimH3wVge9ClRPxuHn3ad7G4TEREPOHxsNiwYQN2u53KykoaNGjAwoUL6dq16zmvn56ezp/+9KeLihT/dnD3FsreHk5K9TYAVsfeTp8xrxESGmZxmYiIeMrjUyFVVVXs27eP4uJiPvjgA2bNmsXy5cvPOS7OdsQiPj5ep0IEgLVLMumw6lGiqcBBJDv7vUTvgcOszhIRkR8431MhF/0aiwEDBtChQwfefPNNr4aJf3NWVpA/6z5sRR8AsDWoM9HD59KiTSeLy0RE5Gx8/hqL/zJN84wjEiI/Z/+OjVS+OwKbaycAq5vfSd/RfyE4JNTiMhERuVgeDYvHHnuMQYMGER8fT2lpKQsWLODrr7/m888/91Wf+Jm8T2fTKetxGhgnOUEU+658hZRf3GF1loiIeIlHw+Lw4cMMHz6cQ4cOERMTQ48ePfj888+57rrrfNUnfqKyoox1s+/FduwjMGBzcAKNU+fRs1UHq9NERMSLPBoWs2fP9lWH+LF92/KpXpCKzb0HgFVxqSSNeoWg4BBrw0RExOv0s0LEp3IXT6dr3lNEGE6OE83+q/+K/epbrM4SEREf0bAQnzhZXsqGWXeTfOITMGBTSA9iR86jR1xbq9NERMSHNCzE6/ZuzsN8fyTJ7n24TYOs1mkkp75AYJB+u4mI+Dv9TS9elb3wdbrlP0uE4aSIhhRe9zr2/r+xOktERGqIhoV4RXlpMd/N+j3JJUvAgA2hvWkxah7dmsdbnSYiIjVIw0Iu2u5NWQR8MJok935cpkF2u3tIHvacTn2IiNRD+ptfLpjpdpPz4V/pseF5woxTHKExRb96A7t9kNVpIiJiEQ0LuSClJcfZNmsMyaVfgQHrw5JoNTqTrrEtrU4TERELaViIx3as+w9hi8bQ1zxEtRlATof7sN35NAGBgVaniYiIxTQs5LyZbjfZ779M7+9eIsSoppCmFA+ejj1Zb+kuIiLf07CQ8+IoPsaOWSOxla0AA/Ij7LQdPYfOTZtbnSYiIrWIhoX8rO1rVxC5OI0+5mFOmYHkXTYe29AnMQICrE4TEZFaRsNCzsl0u8la8Dx9tr5KiOHioBFL2W9mktLnaqvTRESkltKwkLMqOX6UXbNSSan4DxiwNrI/7dMyiWvU1Oo0ERGpxTQs5Ee25H5JzL/upjdHqTKDWNvlIZJvm6RTHyIi8rM0LOQ0t8tF9rvP0Hf76wQbLvYbzTl54yxsva6wOk1EROoIDQsB4MTRQ+x7K5WUk1lgQF6Dq7k07S1aNWxidZqIiNQhGhbC5qwlNP7sD/TkGE4zmPyESST/9kGd+hAREY9pWNRjbpeLrPlPkrRrGkGGmwIjjqpbMrB1T7E6TURE6igNi3rq2OH9HMgYgb0yDwzIjR5A57RZNIhuZHWaiIjUYRoW9dCm/3xC7NKx9OAEJ80QNvR4nKSb7tepDxERuWgaFvWIq7qa7LmPkbx3BoGGyd6AeNy/zSC5a5LVaSIi4ic0LOqJosJ9FGYMx+7MBwNyGg4iIe1NIhrEWJ0mIiJ+RMOiHtiw4iNafHU/3SimwgxlU+8/knTjWKuzRETED2lY+LHqU1XkZE7CVpBBgGGyO6ANAbfPJalTL6vTRETET2lY+KkjB3ZTlDkce9UGMCC78RB6pE0nLKKB1WkiIuLHNCz80Pp//5P45Q/QFQflZhibk54l+de/tzpLRETqAQ0LP3KqykluxkPYD80FYGdge0LumEPipT0tLhMRkfpCw8JPFBbsoHjucOynvgMgq+nN9BwzlbDwSIvLRESkPtGw8AP5y96l7cqH6EwZpWY422zp2K4fZXWWiIjUQxoWdViVs5I1b00g5fC7AGwP7EjEnXPp2z7B4jIREamvPHoP5/T0dJKSkoiKiiI2NpYbb7yRrVu3+qpNfsLBPVvZ8/IVp0fF6tjbaP3wN7TUqBAREQt5NCyWL1/O2LFjWb16NUuXLqW6upqBAwdSXl7uqz45izVL5tFgzjVcVr0NB5Gs7fd3Uu6dSWhYhNVpIiJSzxmmaZoXeuOjR48SGxvL8uXLufLKK8/rNg6Hg5iYGEpKSoiOjr7Qu66XnJUV5M8eh+3oPwHYGtSJqGHziGvbyeIyERHxd+f7/H1Rr7EoKSkBoHHjxue8jtPpxOl0nhEmnjuwaxMVb4/A5toBwOrmd9J39F8IDgm1uExEROT/u+Cfk22aJhMnTqR///5069btnNdLT08nJibm9CU+Pv5C77Leyvs0g+jMa7nUtYNiGrDuyjdJuecNjQoREal1LvhUyNixY/nkk09YuXIlrVq1Ouf1znbEIj4+XqdCzkPlyXLWzboX27FFAGwO7kqjEfNoHt/R2jAREal3fHoqZNy4cSxevJgVK1b85KgACA0NJTRU/7L2VMH2dVQtSMXm2g3AqrhUkka9QlBwiMVlIiIi5+bRsDBNk3HjxrFw4UK+/vpr2rVr56uuei138XS65j1FhOHkONHsv/qv2K++xeosERGRn+XRsBg7dizvvPMOH330EVFRURQWFgIQExNDeHi4TwLrk5PlpWyYdTfJJz4BAzaFdCd25Hx6xLW1Ok1EROS8ePQaC8Mwzvr5jIwMRo4ceV5fQ99uenZ7t6zB/Y+RtHPvxW0aZLUeQ9KIdJ36EBGRWsEnr7G4iLe8kJ+Qs2gqCWufIcJwUkRDCge8hv2KG6zOEhER8Zh+VoiFKspK2DTzLpJKloABG0N70XzUPLo1b211moiIyAXRsLDI7k1ZBHwwmiT3flymQXbbu0kePoXAIP2SiIhI3aVnsRpmut3kLPwbPdZPIcw4xREac/SXf8fe73qr00RERC6ahkUNKnOcYMusNJIdy8CA9WFJtBqdSUJsS6vTREREvELDoobsXP8tIQvHkGgepNoMIKfDfdjufJqAwECr00RERLxGw8LHTLeb7H++Qq9NLxFqnOIwTThx/XTstoFWp4mIiHidhoUPOYqPsWPWKGxly8GA/PAU2o7JpHPT5laniYiI+ISGhY9sX7uCiMVp9DEPc8oMJO+y8diGPokRcME/UFZERKTW07DwMtPtJuu9dPps+TMhhotDNMMxZAYpib+wOk1ERMTnNCy8qOT4UXbNHklK+UowYG3E5bRPy6RF42ZWp4mIiNQIDQsv2Zr7FdH/+j29OUqVGcSazg9iu/1RnfoQEZF6RcPiIpluN1nvPEPf7a8RbLg4YFxCxY2zSel1hdVpIiIiNU7D4iIUFxWyZ3YqKSdXgwFrGlxFx7QMWjZsYnWaiIiIJTQsLtCWrC9o9Nk99OIYTjOY/IRJJP/2QZ36EBGRek3DwkNul4us+U+RtOsNggw3BUYcVTfPxtajn9VpIiIiltOw8MDxIwfY/1Yq9socMCA3egCd02bRILqR1WkiIiK1gobFedr07ac0+2IsPThOpRnM+h5PkHTT/Tr1ISIi8j80LH6Gq7qa7HmPk7znTQINk70B8bh/m0Fy1ySr00RERGodDYufUFS4j8KM4did+WBATsyvSLhrBhENYqxOExERqZU0LM5h4zcf0fzL++lGMRVmKJt6P0XSjfdZnSUiIlKraVj8gKu6muzMSdj2zSbAMNkd0IaA2+aQ1LmP1WkiIiK1nobF/zh6cA9H5gzDXrUBDMhu9Gu6p00nPDLK6jQREZE6QcPi/6z/+gNafT2BBByUm2FsTnyG5CF3W50lIiJSp9T7YVF9qoqcjAexH5wLwM7AdoTckUnipT0tLhMREal76vWwKCzYwYm5w7Gf+g6ArKY303PMVMLCIy0uExERqZvq7bBY99UC2qx4kC6UUWqGs82Wju36UVZniYiI1Gn1blicqnKS99YDpBS+DcD2wI5E3DmXvu0TLC4TERGp++rVsDi4Zyul84eTUr0VgNXNbqX3mNcIDYuwuExERMQ/1JthsfaL+XT49hHiKMdBJDv7vUTKwGFWZ4mIiPgVvx8WzsoK1r41npQj/wBga1AnoobNo3fbThaXiYiI+B+/HhYHdm2m4u1hpLh2ALD6kqH0Gf1XQkLDLC4TERHxTx7/zO8VK1YwZMgQ4uLiMAyDRYsW+SDr4q35LIPozGu41LWDYhqQf8WbpPxhukaFiIiID3k8LMrLy+nZsydTp071Rc9FqzxZTtbUUfTJmkCUcZLNwV2pHLOcXtfeYXWaiIiI3/P4VMigQYMYNGiQL1ouWsGODVS9OwKbaxcAq+JSSRz5MsEhoRaXiYiI1A8+f42F0+nE6XSe/tjhcPjkfnL/NYMuOU8SaVRygmgKrv4r9qtv8cl9iYiIyNl5fCrEU+np6cTExJy+xMfHe/0+jhzYTbecx4g0KtkU0p3q339DD40KERGRGufzYTF58mRKSkpOXwoKCrx+H7Et27G+x+OsbjWGTg9/RbO4tl6/DxEREfl5Pj8VEhoaSmio71/jkHzLAz6/DxEREflpPj9iISIiIvWHx0csysrK2LFjx+mPd+/eTX5+Po0bN6Z169ZejRMREZG6xeNhkZubyzXXXHP644kTJwKQmprKnDlzvBYmIiIidY/Hw+Lqq6/GNE1ftIiIiEgdp9dYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI1/j8p5v+0H/ftdPhcNT0XYuIiMgF+u/z9s+9+3aND4vS0lIA4uPja/quRURE5CKVlpYSExNzzv9umDX8gz/cbjcHDx4kKioKwzC89nUdDgfx8fEUFBQQHR3tta9bm/j7Y9Tjq/v8/THq8dV9/v4Yffn4TNOktLSUuLg4AgLO/UqKGj9iERAQQKtWrXz29aOjo/3yN8v/8vfHqMdX9/n7Y9Tjq/v8/TH66vH91JGK/9KLN0VERMRrNCxERETEa/xmWISGhvLHP/6R0NBQq1N8xt8fox5f3efvj1GPr+7z98dYGx5fjb94U0RERPyX3xyxEBEREetpWIiIiIjXaFiIiIiI12hYiIiIiNf4zbB44403aNeuHWFhYfTt25dvvvnG6iSvWbFiBUOGDCEuLg7DMFi0aJHVSV6Tnp5OUlISUVFRxMbGcuONN7J161ars7xq2rRp9OjR4/Qb1tjtdj777DOrs3wmPT0dwzCYMGGC1Sle8/TTT2MYxhmX5s2bW53lVQcOHGDYsGE0adKEiIgIevXqRV5entVZXtG2bdsf/foZhsHYsWOtTvOa6upqnnjiCdq1a0d4eDjt27fnmWeewe1213iLXwyL9957jwkTJvD444+zdu1arrjiCgYNGsS+ffusTvOK8vJyevbsydSpU61O8brly5czduxYVq9ezdKlS6murmbgwIGUl5dbneY1rVq14oUXXiA3N5fc3Fx+8YtfcMMNN7Bp0yar07wuJyeHGTNm0KNHD6tTvC4hIYFDhw6dvmzYsMHqJK85ceIEl19+OcHBwXz22Wd89913/PnPf6Zhw4ZWp3lFTk7OGb92S5cuBeDWW2+1uMx7XnzxRaZPn87UqVPZvHkzL730Ei+//DKvv/56zceYfiA5Odm85557zvhc586dzUcffdSiIt8BzIULF1qd4TNHjhwxAXP58uVWp/hUo0aNzFmzZlmd4VWlpaXmpZdeai5dutS86qqrzPHjx1ud5DV//OMfzZ49e1qd4TOTJk0y+/fvb3VGjRk/frzZoUMH0+12W53iNYMHDzZHjx59xuduvvlmc9iwYTXeUuePWFRVVZGXl8fAgQPP+PzAgQP59ttvLaqSC1VSUgJA48aNLS7xDZfLxYIFCygvL8dut1ud41Vjx45l8ODBDBgwwOoUn9i+fTtxcXG0a9eOO+64g127dlmd5DWLFy8mMTGRW2+9ldjYWHr37s3MmTOtzvKJqqoq5s+fz+jRo736gzCt1r9/f7788ku2bdsGwLp161i5ciXXX399jbfU+A8h87aioiJcLheXXHLJGZ+/5JJLKCwstKhKLoRpmkycOJH+/fvTrVs3q3O8asOGDdjtdiorK2nQoAELFy6ka9euVmd5zYIFC8jLyyM3N9fqFJ+w2WzMnTuXyy67jMOHD/Pcc8/Rr18/Nm3aRJMmTazOu2i7du1i2rRpTJw4kccee4zs7Gzuv/9+QkNDGTFihNV5XrVo0SKKi4sZOXKk1SleNWnSJEpKSujcuTOBgYG4XC6mTJnC0KFDa7ylzg+L//rh8jRN06/WaH1w3333sX79elauXGl1itd16tSJ/Px8iouL+eCDD0hNTWX58uV+MS4KCgoYP348X3zxBWFhYVbn+MSgQYNO/+/u3btjt9vp0KEDmZmZTJw40cIy73C73SQmJvL8888D0Lt3bzZt2sS0adP8bljMnj2bQYMGERcXZ3WKV7333nvMnz+fd955h4SEBPLz85kwYQJxcXGkpqbWaEudHxZNmzYlMDDwR0cnjhw58qOjGFJ7jRs3jsWLF7NixQpatWpldY7XhYSE0LFjRwASExPJycnhb3/7G2+++abFZRcvLy+PI0eO0Ldv39Ofc7lcrFixgqlTp+J0OgkMDLSw0PsiIyPp3r0727dvtzrFK1q0aPGjkdulSxc++OADi4p8Y+/evSxbtowPP/zQ6hSve/jhh3n00Ue54447gO8H8N69e0lPT6/xYVHnX2MREhJC3759T7/K97+WLl1Kv379LKqS82WaJvfddx8ffvghX331Fe3atbM6qUaYponT6bQ6wyuuvfZaNmzYQH5+/ulLYmIid955J/n5+X43KgCcTiebN2+mRYsWVqd4xeWXX/6jb/Petm0bbdq0sajINzIyMoiNjWXw4MFWp3hdRUUFAQFnPqUHBgZa8u2mdf6IBcDEiRMZPnw4iYmJ2O12ZsyYwb59+7jnnnusTvOKsrIyduzYcfrj3bt3k5+fT+PGjWndurWFZRdv7NixvPPOO3z00UdERUWdPvIUExNDeHi4xXXe8dhjjzFo0CDi4+MpLS1lwYIFfP3113z++edWp3lFVFTUj14TExkZSZMmTfzmtTIPPfQQQ4YMoXXr1hw5coTnnnsOh8NR4/8S9JUHHniAfv368fzzz3PbbbeRnZ3NjBkzmDFjhtVpXuN2u8nIyCA1NZWgIL946jvDkCFDmDJlCq1btyYhIYG1a9fy6quvMnr06JqPqfHvQ/GRv//972abNm3MkJAQs0+fPn717Yr//ve/TeBHl9TUVKvTLtrZHhdgZmRkWJ3mNaNHjz79e7NZs2bmtddea37xxRdWZ/mUv3276e233262aNHCDA4ONuPi4sybb77Z3LRpk9VZXvXxxx+b3bp1M0NDQ83OnTubM2bMsDrJq5YsWWIC5tatW61O8QmHw2GOHz/ebN26tRkWFma2b9/efPzxx02n01njLfqx6SIiIuI1df41FiIiIlJ7aFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNf8P4tge+AeWnaNAAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-25T17:54:22.234661\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df['A'].plot()\n", "plt.show()" @@ -1438,21 +342,9 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGYCAYAAAAeFavmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAXCklEQVR4nO3de5Cd8/3A8c8myyapXAiJpCJZg7qEkUkyxp2fS0cTqjfScRstIySItEgoJpTEPxpDu8qUoYiYYjAabap1b6rZJqTqEkxqizS0ZqMui+z390fHTrdEezaf3ZOzfb1mnj+eW57PMyT7znPOyakrpZQAAEjQp9oDAAC9h7AAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANLU9/QF29vb47XXXouBAwdGXV1dT18eAOiCUkq8/fbbMXLkyOjTZ/3PJXo8LF577bUYNWpUT18WAEjQ0tIS22yzzXr393hYDBw4MCL+OdigQYN6+vIAQBesXbs2Ro0a1fFzfH16PCw+fvlj0KBBwgIAasx/ehuDN28CAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQpse/Nh0A6GzMrPt79Hqr5k3qtl/bEwsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSVBQWH330UXzve9+LxsbG6N+/f2y33XZxySWXRHt7e3fNBwDUkPpKDr7iiivi2muvjZtuuil23XXXWLp0aZx00kkxePDgOOuss7prRgCgRlQUFr/97W/jy1/+ckyaNCkiIsaMGRMLFiyIpUuXdstwAEBtqeilkH333TcefPDBeOGFFyIi4qmnnorHHnssvvSlL3XLcABAbanoicV5550Xra2tsdNOO0Xfvn1j3bp1cdlll8U3v/nN9Z7T1tYWbW1tHetr167t+rQAwEatorBYuHBh3HLLLXHbbbfFrrvuGsuXL48ZM2bEyJEj48QTT/zUc+bOnRtz5sxJGRaA/11jZt3fo9dbNW9Sj16vt6jopZBzzjknZs2aFVOmTInddtstjj/++Dj77LNj7ty56z1n9uzZ0dra2rG0tLRs8NAAwMapoicW7777bvTp07lF+vbt+5kfN21oaIiGhoauTQcA1JSKwuKII46Iyy67LLbddtvYddddY9myZXHllVfGt771re6aDwCoIRWFxdVXXx0XXnhhnH766bFmzZoYOXJknHrqqXHRRRd113wAQA2pKCwGDhwY8+fPj/nz53fTOABALfNdIQBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAmvpqDwBAnjGz7u/R662aN6lHr8fGzxMLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACBNxWHx6quvxnHHHRdDhw6NAQMGxB577BHNzc3dMRsAUGPqKzn4rbfein322ScOOuigWLRoUQwbNixeeumlGDJkSDeNBwDUkorC4oorrohRo0bFjTfe2LFtzJgx2TMBADWqopdC7r333pgwYUJ84xvfiGHDhsW4cePi+uuv767ZAIAaU1FYvPzyy9HU1BQ77LBD/OIXv4ipU6fGmWeeGTfffPN6z2lra4u1a9d2WgCA3qmil0La29tjwoQJcfnll0dExLhx4+KZZ56JpqamOOGEEz71nLlz58acOXM2fFKAJGNm3d9j11o1b1KPXQs2BhU9sRgxYkTssssunbbtvPPO8corr6z3nNmzZ0dra2vH0tLS0rVJAYCNXkVPLPbZZ594/vnnO2174YUXYvTo0es9p6GhIRoaGro2HQBQUyp6YnH22WfHkiVL4vLLL48XX3wxbrvttrjuuuti2rRp3TUfAFBDKgqLiRMnxt133x0LFiyIsWPHxqWXXhrz58+PY489trvmAwBqSEUvhURETJ48OSZPntwdswAANc53hQAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaeqrPQCwcRoz6/4eu9aqeZN67FpA9/LEAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDQbFBZz586Nurq6mDFjRtI4AEAt63JY/P73v4/rrrsudt9998x5AIAa1qWw+Mc//hHHHntsXH/99bH55ptnzwQA1KguhcW0adNi0qRJccghh/zHY9va2mLt2rWdFgCgd6qv9ITbb789mpubY+nSpf/V8XPnzo05c+ZUPBjUgjGz7u+xa62aN6nHrgXQVRU9sWhpaYmzzjorbr311ujXr99/dc7s2bOjtbW1Y2lpaenSoADAxq+iJxbNzc2xZs2aGD9+fMe2devWxSOPPBLXXHNNtLW1Rd++fTud09DQEA0NDTnTAgAbtYrC4uCDD44VK1Z02nbSSSfFTjvtFOedd94nogIA+N9SUVgMHDgwxo4d22nb5z73uRg6dOgntgMA/3v8y5sAQJqKPxXy7x566KGEMQCA3sATCwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANLUV3sAer8xs+7vsWutmjepx64FwCd5YgEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAECaisJi7ty5MXHixBg4cGAMGzYsjjrqqHj++ee7azYAoMZUFBYPP/xwTJs2LZYsWRKLFy+Ojz76KA477LB45513ums+AKCG1Fdy8AMPPNBp/cYbb4xhw4ZFc3Nz7L///qmDAQC1p6Kw+Hetra0REbHFFlus95i2trZoa2vrWF+7du2GXBIA2Ih1OSxKKTFz5szYd999Y+zYses9bu7cuTFnzpyuXuZ/wphZ9/fo9VbNm9Sj1wPgf0eXPxUyffr0ePrpp2PBggWfedzs2bOjtbW1Y2lpaenqJQGAjVyXnlicccYZce+998YjjzwS22yzzWce29DQEA0NDV0aDgCoLRWFRSklzjjjjLj77rvjoYceisbGxu6aCwCoQRWFxbRp0+K2226Le+65JwYOHBirV6+OiIjBgwdH//79u2VAAKB2VPQei6ampmhtbY0DDzwwRowY0bEsXLiwu+YDAGpIxS+FAACsj+8KAQDSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAIE19tQf4b42ZdX+PXm/VvEk9ej0A6A08sQAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACBNl8LiRz/6UTQ2Nka/fv1i/Pjx8eijj2bPBQDUoIrDYuHChTFjxoy44IILYtmyZbHffvvF4YcfHq+88kp3zAcA1JCKw+LKK6+Mb3/723HyySfHzjvvHPPnz49Ro0ZFU1NTd8wHANSQ+koO/uCDD6K5uTlmzZrVafthhx0WTzzxxKee09bWFm1tbR3rra2tERGxdu3aigZtb3u3ouM3VKXzbYjefG8RPXt/7i2Pe8vRm+8twp+VWWrh3j4+p5Ty2QeWCrz66qslIsrjjz/eaftll11Wdtxxx0895+KLLy4RYbFYLBaLpRcsLS0tn9kKFT2x+FhdXV2n9VLKJ7Z9bPbs2TFz5syO9fb29vj73/8eQ4cOXe85WdauXRujRo2KlpaWGDRoULdeq6e5t9rUm+8tonffn3urTe4tTykl3n777Rg5cuRnHldRWGy55ZbRt2/fWL16dafta9asieHDh3/qOQ0NDdHQ0NBp25AhQyq57AYbNGhQr/sf6mPurTb15nuL6N33595qk3vLMXjw4P94TEVv3tx0001j/PjxsXjx4k7bFy9eHHvvvXdl0wEAvU7FL4XMnDkzjj/++JgwYULstddecd1118Urr7wSU6dO7Y75AIAaUnFYHHPMMfG3v/0tLrnkknj99ddj7Nix8fOf/zxGjx7dHfNtkIaGhrj44os/8VJMb+DealNvvreI3n1/7q02ubeeV1f+4+dGAAD+O74rBABIIywAgDTCAgBIIywAgDTCAkjjveBAl/5J743VX/7yl2hqaoonnngiVq9eHXV1dTF8+PDYe++9Y+rUqTFq1Khqjwi9WkNDQzz11FOx8847V3sUoEp6zcdNH3vssTj88MNj1KhRcdhhh8Xw4cOjlBJr1qyJxYsXR0tLSyxatCj22Wefao/aLVpaWuLiiy+OG264odqjVOy9996L5ubm2GKLLWKXXXbptO/999+PO+64I0444YQqTbfhnn322ViyZEnstddesdNOO8Vzzz0XV111VbS1tcVxxx0X//d//1ftESv2r9//86+uuuqqOO6442Lo0KEREXHllVf25Fjd5q233oqbbropVq5cGSNGjIgTTzyxZv+ismzZshgyZEg0NjZGRMQtt9wSTU1N8corr8To0aNj+vTpMWXKlCpP2TVnnHFGHH300bHffvtVe5RucfXVV8fSpUtj0qRJcfTRR8dPf/rTmDt3brS3t8dXv/rVuOSSS6K+fiN4XlDJt5tuzCZMmFBmzJix3v0zZswoEyZM6MGJetby5ctLnz59qj1GxZ5//vkyevToUldXV/r06VMOOOCA8tprr3XsX716dU3e18cWLVpUNt1007LFFluUfv36lUWLFpWtttqqHHLIIeXggw8u9fX15cEHH6z2mBWrq6sre+yxRznwwAM7LXV1dWXixInlwAMPLAcddFC1x+yyESNGlDfffLOUUsrLL79ctt5667L11luXQw89tGyzzTZl8ODB5dlnn63ylF0zbty48utf/7qUUsr1119f+vfvX84888zS1NRUZsyYUTbbbLPyk5/8pMpTds3Hf47ssMMOZd68eeX111+v9khpLrnkkjJw4MDyta99rWy99dZl3rx5ZejQoeX73/9+ufzyy8tWW21VLrroomqPWUoppdeERb9+/cpzzz233v3PPvts6devXw9OlOuee+75zOUHP/hBTf4APuqoo8rkyZPLG2+8UVauXFmOOOKI0tjYWP785z+XUmo/LPbaa69ywQUXlFJKWbBgQdl8883L+eef37H//PPPL4ceemi1xuuyyy+/vDQ2Nn4iiurr68szzzxTpany1NXVlb/+9a+llFKmTJlSDjzwwPLOO++UUkp5//33y+TJk8vXv/71ao7YZQMGDOj4/TVu3Ljy4x//uNP+W2+9teyyyy7VGG2D1dXVlV/96lflrLPOKltuuWXZZJNNypFHHlnuu+++sm7dumqPt0G22267cuedd5ZS/vkXyb59+5ZbbrmlY/9dd91Vtt9++2qN10mvCYvGxsZyww03rHf/DTfcUBobG3twolwfl3hdXd16l1r8ATxs2LDy9NNPd9p2+umnl2233ba89NJLNR8WgwYNKitXriyllLJu3bpSX19fmpubO/avWLGiDB8+vFrjbZAnn3yy7LjjjuU73/lO+eCDD0opvTMsPi2glixZUrbZZptqjLbBhg4dWpYuXVpK+efvv+XLl3fa/+KLL5b+/ftXY7QN9q//3T744IOycOHC8sUvfrH07du3jBw5spx//vkdvx9rTf/+/TuCsJRSNtlkk/LHP/6xY33VqlVlwIAB1RjtE3rNp0K++93vxtSpU2P69Olxzz33xJIlS+J3v/td3HPPPTF9+vQ47bTT4txzz632mF02YsSIuPPOO6O9vf1Tlz/84Q/VHrFL3nvvvU+8JvjDH/4wjjzyyDjggAPihRdeqNJk+fr06RP9+vWLIUOGdGwbOHBgtLa2Vm+oDTBx4sRobm6ON954I8aPHx8rVqyIurq6ao+V5uN7aWtri+HDh3faN3z48HjjjTeqMdYGO/zww6OpqSkiIg444ID42c9+1mn/HXfcEdtvv301Rku1ySabxNFHHx0PPPBAvPzyy3HKKafErbfeGl/4wheqPVqXbL311vGnP/0pIiJWrlwZ69at61iPiHjmmWdi2LBh1Rqvs2qXTabbb7+97LnnnqW+vr7jb/H19fVlzz33LAsXLqz2eBvkiCOOKBdeeOF69y9fvrzU1dX14EQ5Jk6cWG6++eZP3Tdt2rQyZMiQmn5isfvuu5dFixZ1rK9YsaJ8+OGHHeuPPvpoTT9J+9iCBQvK8OHDS58+fXrNE4vddtutjBs3rmy22Wblrrvu6rT/4YcfLp///OerNN2GefXVV8uYMWPK/vvvX2bOnFn69+9f9t1333LKKaeU/fffv2y66abl/vvvr/aYXfKvTyw+TXt7e/nlL3/ZgxPlueCCC8pWW21VTj755NLY2Fhmz55dtt1229LU1FSuvfbaMmrUqHL22WdXe8xSSikbwdtH8xxzzDFxzDHHxIcffhhvvvlmRERsueWWsckmm1R5sg13zjnnxDvvvLPe/dtvv3385je/6cGJcnzlK1+JBQsWxPHHH/+Jfddcc020t7fHtddeW4XJcpx22mmxbt26jvWxY8d22r9o0aKa/FTIv5syZUrsu+++0dzcvFF+03GlLr744k7rAwYM6LR+33331ewnD0aOHBnLli2LefPmxX333RellHjyySejpaUl9tlnn3j88cdjwoQJ1R6zS0aPHh19+/Zd7/66uro49NBDe3CiPHPmzIn+/fvHkiVL4tRTT43zzjsvdt999zj33HPj3XffjSOOOCIuvfTSao8ZEb3o46YAQPX1mvdYAADVJywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDT/D6tS1QuDYN07AAAAAElFTkSuQmCC", - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-25T17:54:43.474235\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "df['A'].plot(kind='bar')\n", "plt.show()" @@ -1491,8 +383,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 From 6df2b1a2ad849ef7a59acbafd70ec63b73d5540c Mon Sep 17 00:00:00 2001 From: Amber Wang Date: Fri, 2 Jan 2026 13:29:28 -0500 Subject: [PATCH 2/3] fix/incorrect-indexing-handling in notebook-covidspread.ipynb changed [2:] to [3:] to drop the correct columns and dropped the province column to ensure the function works properly --- .../07-python/notebook-covidspread.ipynb | 2093 ++++++++++++++++- 1 file changed, 2048 insertions(+), 45 deletions(-) diff --git a/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/2-Working-With-Data/07-python/notebook-covidspread.ipynb index 06d1e69e..64f29f20 100644 --- a/2-Working-With-Data/07-python/notebook-covidspread.ipynb +++ b/2-Working-With-Data/07-python/notebook-covidspread.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 124, "metadata": {}, "outputs": [], "source": [ @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 125, "metadata": {}, "outputs": [], "source": [ @@ -53,9 +53,209 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 126, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/20/218/21/218/22/218/23/218/24/218/25/218/26/218/27/218/28/218/29/21
0NaNAfghanistan33.9391167.709953000000...152448152448152448152583152660152722152822152960152960152960
1NaNAlbania41.1533020.168300000000...138132138790139324139721140521141365142253143174144079144847
2NaNAlgeria28.033901.659600000000...190656191171191583192089192626193171193674194186194671195162
3NaNAndorra42.506301.521800000000...14988149881498815002150031501415016150251502515025
4NaNAngola-11.2027017.873900000000...45583458174594546076463404653946726469294707947168
\n", + "

5 rows × 590 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", + "0 NaN Afghanistan 33.93911 67.709953 0 0 \n", + "1 NaN Albania 41.15330 20.168300 0 0 \n", + "2 NaN Algeria 28.03390 1.659600 0 0 \n", + "3 NaN Andorra 42.50630 1.521800 0 0 \n", + "4 NaN Angola -11.20270 17.873900 0 0 \n", + "\n", + " 1/24/20 1/25/20 1/26/20 1/27/20 ... 8/20/21 8/21/21 8/22/21 \\\n", + "0 0 0 0 0 ... 152448 152448 152448 \n", + "1 0 0 0 0 ... 138132 138790 139324 \n", + "2 0 0 0 0 ... 190656 191171 191583 \n", + "3 0 0 0 0 ... 14988 14988 14988 \n", + "4 0 0 0 0 ... 45583 45817 45945 \n", + "\n", + " 8/23/21 8/24/21 8/25/21 8/26/21 8/27/21 8/28/21 8/29/21 \n", + "0 152583 152660 152722 152822 152960 152960 152960 \n", + "1 139721 140521 141365 142253 143174 144079 144847 \n", + "2 192089 192626 193171 193674 194186 194671 195162 \n", + "3 15002 15003 15014 15016 15025 15025 15025 \n", + "4 46076 46340 46539 46726 46929 47079 47168 \n", + "\n", + "[5 rows x 590 columns]" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "infected = pd.read_csv(infected_dataset_url)\n", "infected.head()" @@ -70,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 127, "metadata": {}, "outputs": [], "source": [ @@ -89,9 +289,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 128, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Australian Capital Territory 1\n", + "Xinjiang 1\n", + "Martinique 1\n", + "Guadeloupe 1\n", + "French Polynesia 1\n", + " ..\n", + "Fujian 1\n", + "Chongqing 1\n", + "Beijing 1\n", + "Anhui 1\n", + "Turks and Caicos Islands 1\n", + "Name: Province/State, Length: 87, dtype: int64" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "infected['Province/State'].value_counts()" ] @@ -105,9 +327,992 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 129, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/20/218/21/218/22/218/23/218/24/218/25/218/26/218/27/218/28/218/29/21
58AnhuiChina31.8257117.22641915396070...1008100810081008100810081008100810081008
59BeijingChina40.1824116.4142142236416880...1112111311151115111511151115111511151115
60ChongqingChina30.0572107.874069275775110...603603603603603603603603603603
61FujianChina26.0789117.98741510183559...780780780782782783783784785786
62GansuChina35.7518104.28610224714...199199199199199199199199199199
63GuangdongChina23.3417113.424426325378111151...3001300730123020302330323040304330463055
64GuangxiChina23.8298108.78812523233646...289289289289289289289289289289
65GuizhouChina26.8154106.8748133457...147147147147147147147147147147
66HainanChina19.1959109.7453458192233...190190190190190190190190190190
67HebeiChina39.5490116.130611281318...1317131713171317131713171317131713171317
68HeilongjiangChina47.8620127.761502491521...1614161416141614161416141615161516151615
69HenanChina37.8957114.90425593283128...1521152215231524152515251527152815281528
70Hong KongChina22.3000114.2000022588...12049120521205712062120691207412077120941210012107
71HubeiChina30.9756112.270744444454976110581423...68287682896828968289682896828968290682906829068290
72HunanChina27.6104111.708849244369100...1181118111811181118111811181118111811181
73Inner MongoliaChina44.0935113.94480017711...412412412412412412412412412412
74JiangsuChina32.9711119.4550159183347...1583158415841584158615861587158715891589
75JiangxiChina27.6140115.72212718183672...937937937937937937937937937937
76JilinChina43.6661126.1923013446...574574574574574574574574574574
77LiaoningChina41.2956122.6085234172127...443443443443443444445446446446
78MacauChina22.1667113.5500122256...63636363636363636363
79NingxiaChina37.2692106.1655112347...77777777777777777777
80QinghaiChina35.745295.9956000116...18181818181818181818
81ShaanxiChina35.1917108.8701035152235...668668668669669669669669669669
82ShandongChina36.3427118.14982615274675...923923923923923923923923923924
83ShanghaiChina31.2020121.449191620334053...2420243224362445245124542462246624712476
84ShanxiChina37.5777112.29221116913...255255256256256256256258258259
85SichuanChina30.6171102.71035815284469...1181118211831185118511851186118711881188
86TianjinChina39.3054117.3230448101423...458459462463464465466466470472
87TibetChina31.692788.0924000000...1111111111
88UnknownChinaNaNNaN000000...0000000000
89XinjiangChina41.112985.2401022345...980980980980980980980980980980
90YunnanChina24.9740101.4870125111626...1000100710101014102110311039104710641067
91ZhejiangChina29.1832120.093410274362104128...1420142014211428142814291429142914291430
\n", + "

34 rows × 590 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n", + "58 Anhui China 31.8257 117.2264 1 9 \n", + "59 Beijing China 40.1824 116.4142 14 22 \n", + "60 Chongqing China 30.0572 107.8740 6 9 \n", + "61 Fujian China 26.0789 117.9874 1 5 \n", + "62 Gansu China 35.7518 104.2861 0 2 \n", + "63 Guangdong China 23.3417 113.4244 26 32 \n", + "64 Guangxi China 23.8298 108.7881 2 5 \n", + "65 Guizhou China 26.8154 106.8748 1 3 \n", + "66 Hainan China 19.1959 109.7453 4 5 \n", + "67 Hebei China 39.5490 116.1306 1 1 \n", + "68 Heilongjiang China 47.8620 127.7615 0 2 \n", + "69 Henan China 37.8957 114.9042 5 5 \n", + "70 Hong Kong China 22.3000 114.2000 0 2 \n", + "71 Hubei China 30.9756 112.2707 444 444 \n", + "72 Hunan China 27.6104 111.7088 4 9 \n", + "73 Inner Mongolia China 44.0935 113.9448 0 0 \n", + "74 Jiangsu China 32.9711 119.4550 1 5 \n", + "75 Jiangxi China 27.6140 115.7221 2 7 \n", + "76 Jilin China 43.6661 126.1923 0 1 \n", + "77 Liaoning China 41.2956 122.6085 2 3 \n", + "78 Macau China 22.1667 113.5500 1 2 \n", + "79 Ningxia China 37.2692 106.1655 1 1 \n", + "80 Qinghai China 35.7452 95.9956 0 0 \n", + "81 Shaanxi China 35.1917 108.8701 0 3 \n", + "82 Shandong China 36.3427 118.1498 2 6 \n", + "83 Shanghai China 31.2020 121.4491 9 16 \n", + "84 Shanxi China 37.5777 112.2922 1 1 \n", + "85 Sichuan China 30.6171 102.7103 5 8 \n", + "86 Tianjin China 39.3054 117.3230 4 4 \n", + "87 Tibet China 31.6927 88.0924 0 0 \n", + "88 Unknown China NaN NaN 0 0 \n", + "89 Xinjiang China 41.1129 85.2401 0 2 \n", + "90 Yunnan China 24.9740 101.4870 1 2 \n", + "91 Zhejiang China 29.1832 120.0934 10 27 \n", + "\n", + " 1/24/20 1/25/20 1/26/20 1/27/20 ... 8/20/21 8/21/21 8/22/21 \\\n", + "58 15 39 60 70 ... 1008 1008 1008 \n", + "59 36 41 68 80 ... 1112 1113 1115 \n", + "60 27 57 75 110 ... 603 603 603 \n", + "61 10 18 35 59 ... 780 780 780 \n", + "62 2 4 7 14 ... 199 199 199 \n", + "63 53 78 111 151 ... 3001 3007 3012 \n", + "64 23 23 36 46 ... 289 289 289 \n", + "65 3 4 5 7 ... 147 147 147 \n", + "66 8 19 22 33 ... 190 190 190 \n", + "67 2 8 13 18 ... 1317 1317 1317 \n", + "68 4 9 15 21 ... 1614 1614 1614 \n", + "69 9 32 83 128 ... 1521 1522 1523 \n", + "70 2 5 8 8 ... 12049 12052 12057 \n", + "71 549 761 1058 1423 ... 68287 68289 68289 \n", + "72 24 43 69 100 ... 1181 1181 1181 \n", + "73 1 7 7 11 ... 412 412 412 \n", + "74 9 18 33 47 ... 1583 1584 1584 \n", + "75 18 18 36 72 ... 937 937 937 \n", + "76 3 4 4 6 ... 574 574 574 \n", + "77 4 17 21 27 ... 443 443 443 \n", + "78 2 2 5 6 ... 63 63 63 \n", + "79 2 3 4 7 ... 77 77 77 \n", + "80 0 1 1 6 ... 18 18 18 \n", + "81 5 15 22 35 ... 668 668 668 \n", + "82 15 27 46 75 ... 923 923 923 \n", + "83 20 33 40 53 ... 2420 2432 2436 \n", + "84 1 6 9 13 ... 255 255 256 \n", + "85 15 28 44 69 ... 1181 1182 1183 \n", + "86 8 10 14 23 ... 458 459 462 \n", + "87 0 0 0 0 ... 1 1 1 \n", + "88 0 0 0 0 ... 0 0 0 \n", + "89 2 3 4 5 ... 980 980 980 \n", + "90 5 11 16 26 ... 1000 1007 1010 \n", + "91 43 62 104 128 ... 1420 1420 1421 \n", + "\n", + " 8/23/21 8/24/21 8/25/21 8/26/21 8/27/21 8/28/21 8/29/21 \n", + "58 1008 1008 1008 1008 1008 1008 1008 \n", + "59 1115 1115 1115 1115 1115 1115 1115 \n", + "60 603 603 603 603 603 603 603 \n", + "61 782 782 783 783 784 785 786 \n", + "62 199 199 199 199 199 199 199 \n", + "63 3020 3023 3032 3040 3043 3046 3055 \n", + "64 289 289 289 289 289 289 289 \n", + "65 147 147 147 147 147 147 147 \n", + "66 190 190 190 190 190 190 190 \n", + "67 1317 1317 1317 1317 1317 1317 1317 \n", + "68 1614 1614 1614 1615 1615 1615 1615 \n", + "69 1524 1525 1525 1527 1528 1528 1528 \n", + "70 12062 12069 12074 12077 12094 12100 12107 \n", + "71 68289 68289 68289 68290 68290 68290 68290 \n", + "72 1181 1181 1181 1181 1181 1181 1181 \n", + "73 412 412 412 412 412 412 412 \n", + "74 1584 1586 1586 1587 1587 1589 1589 \n", + "75 937 937 937 937 937 937 937 \n", + "76 574 574 574 574 574 574 574 \n", + "77 443 443 444 445 446 446 446 \n", + "78 63 63 63 63 63 63 63 \n", + "79 77 77 77 77 77 77 77 \n", + "80 18 18 18 18 18 18 18 \n", + "81 669 669 669 669 669 669 669 \n", + "82 923 923 923 923 923 923 924 \n", + "83 2445 2451 2454 2462 2466 2471 2476 \n", + "84 256 256 256 256 258 258 259 \n", + "85 1185 1185 1185 1186 1187 1188 1188 \n", + "86 463 464 465 466 466 470 472 \n", + "87 1 1 1 1 1 1 1 \n", + "88 0 0 0 0 0 0 0 \n", + "89 980 980 980 980 980 980 980 \n", + "90 1014 1021 1031 1039 1047 1064 1067 \n", + "91 1428 1428 1429 1429 1429 1429 1430 \n", + "\n", + "[34 rows x 590 columns]" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "infected[infected['Country/Region']=='China']" ] @@ -123,9 +1328,244 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 130, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
LatLong1/22/201/23/201/24/201/25/201/26/201/27/201/28/201/29/20...8/20/218/21/218/22/218/23/218/24/218/25/218/26/218/27/218/28/218/29/21
Country/Region
Afghanistan33.9391167.70995300000000...152448152448152448152583152660152722152822152960152960152960
Albania41.1533020.16830000000000...138132138790139324139721140521141365142253143174144079144847
Algeria28.033901.65960000000000...190656191171191583192089192626193171193674194186194671195162
Andorra42.506301.52180000000000...14988149881498815002150031501415016150251502515025
Angola-11.2027017.87390000000000...45583458174594546076463404653946726469294707947168
\n", + "

5 rows × 588 columns

\n", + "
" + ], + "text/plain": [ + " Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \\\n", + "Country/Region \n", + "Afghanistan 33.93911 67.709953 0 0 0 0 \n", + "Albania 41.15330 20.168300 0 0 0 0 \n", + "Algeria 28.03390 1.659600 0 0 0 0 \n", + "Andorra 42.50630 1.521800 0 0 0 0 \n", + "Angola -11.20270 17.873900 0 0 0 0 \n", + "\n", + " 1/26/20 1/27/20 1/28/20 1/29/20 ... 8/20/21 8/21/21 \\\n", + "Country/Region ... \n", + "Afghanistan 0 0 0 0 ... 152448 152448 \n", + "Albania 0 0 0 0 ... 138132 138790 \n", + "Algeria 0 0 0 0 ... 190656 191171 \n", + "Andorra 0 0 0 0 ... 14988 14988 \n", + "Angola 0 0 0 0 ... 45583 45817 \n", + "\n", + " 8/22/21 8/23/21 8/24/21 8/25/21 8/26/21 8/27/21 8/28/21 \\\n", + "Country/Region \n", + "Afghanistan 152448 152583 152660 152722 152822 152960 152960 \n", + "Albania 139324 139721 140521 141365 142253 143174 144079 \n", + "Algeria 191583 192089 192626 193171 193674 194186 194671 \n", + "Andorra 14988 15002 15003 15014 15016 15025 15025 \n", + "Angola 45945 46076 46340 46539 46726 46929 47079 \n", + "\n", + " 8/29/21 \n", + "Country/Region \n", + "Afghanistan 152960 \n", + "Albania 144847 \n", + "Algeria 195162 \n", + "Andorra 15025 \n", + "Angola 47168 \n", + "\n", + "[5 rows x 588 columns]" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "infected = infected.groupby('Country/Region').sum()\n", "recovered = recovered.groupby('Country/Region').sum()\n", @@ -143,9 +1583,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 131, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAEhCAYAAAByTU9UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFaUlEQVR4nO3dd3xb1cH/8a+85G3H244dZ5AdZ5CEDMKeSViF9gFKQoAuWkYpHYzSh9ERCi1P+zz8CmUGykjLCKQthAbIaAohy1nOTpzEifeUpyxL5/eHbMWKncR2Yku2P+/XSy9Z9557deRjXfmrc8+5FmOMEQAAAAD4qQBfVwAAAAAATobQAgAAAMCvEVoAAAAA+DVCCwAAAAC/RmgBAAAA4NcILQAAAAD8GqEFAAAAgF8jtAAAAADwa4QWAAAAAH6N0AIAAADAr/kstKxevVpXX3210tLSZLFY9MEHH3Rq+8cee0wWi6XNLSIionsqDAAAAMAnfBZaamtrNWHCBD377LNd2v4nP/mJCgoKvG5jxozRN77xjTNcUwAAAAC+5LPQMnv2bP3qV7/S9ddf3+76xsZG/exnP9PAgQMVERGhadOmaeXKlZ71kZGRSklJ8dyKioq0Y8cOfetb3+qhVwAAAACgJwT5ugIncvvtt+vgwYNavHix0tLStGTJEl155ZXatm2bhg8f3qb8Sy+9pBEjRui8887zQW0BAAAAdBe/HIi/f/9+vf3223rnnXd03nnnadiwYfrJT36iWbNm6dVXX21T3m63680336SXBQAAAOiD/LKnZdOmTTLGaMSIEV7L7Xa74uPj25R///33VV1drVtvvbWnqggAAACgh/hlaHG5XAoMDNTGjRsVGBjotS4yMrJN+ZdeeklXXXWVUlJSeqqKAAAAAHqIX4aWSZMmyel0qri4+JRjVHJzc7VixQotXbq0h2oHAAAAoCf5LLTU1NRo3759nse5ubnavHmz4uLiNGLECN1yyy269dZb9fvf/16TJk1SaWmpPv/8c2VlZWnOnDme7V555RWlpqZq9uzZvngZAAAAALqZxRhjfPHEK1eu1EUXXdRm+YIFC7Ro0SI5HA796le/0uuvv66jR48qPj5eM2bM0OOPP66srCxJ7tPIMjMzdeutt+rXv/51T78EAAAAAD3AZ6EFAAAAADrCL6c8BgAAAIAWPT6mxeVyKT8/X1FRUbJYLD399AAAAAD8hDFG1dXVSktLU0DAiftTejy05OfnKyMjo6efFgAAAICfysvLU3p6+gnXn1ZoWbhwoR5++GH98Ic/1B/+8IcObRMVFeWpWHR09Ok8PQAAAIBezGazKSMjw5MRTqTLoWX9+vV64YUXNH78+E5t13JKWHR0NKEFAAAAwCmHjXRpIH5NTY1uueUWvfjiixowYMBJy9rtdtlsNq8bAAAAAHRUl0LLXXfdpblz5+rSSy89ZdmFCxcqJibGc2M8CwAAAIDO6HRoWbx4sTZu3KiFCxd2qPxDDz2kqqoqzy0vL6/TlQQAAADQf3VqTEteXp5++MMf6l//+pdCQ0M7tI3VapXVau1S5QAAAADAYowxHS38wQcf6Gtf+5oCAwM9y5xOpywWiwICAmS3273WtcdmsykmJkZVVVUMxAcAAAD6sY5mg071tFxyySXatm2b17Lbb79do0aN0gMPPHDKwAIAAAAAndWp0BIVFaVx48Z5LYuIiFB8fHyb5QAAAAD8hzFGBVUN2na0ShMzYpUc3bHhHv7gtC4uCQAAAMC/OV1GT/w9R//cVqDSmkZJ0lNfH6//mtJ7ZvU97dCycuXKM1ANAAAAAN3hz6v367UvD0mSAgMsGpEcpZDALl35xGfoaQEAAAD6IGOM3tt0VP+zfI8k6bGrx+imcwYpNLj3jUMntAAAAAB9TGFVg37x4XYt31EkSbpqfKoWzBwsi8Xi45p1DaEFAAAA6EPe23hEjy3NUbW9SUEBFt136XB9/8Kzem1gkQgtAAAAQK9njNH+khr9a0eRnlq2W5I0MSNWT96QpVEpvf/aiIQWAAAAoBdbf7Bc9y3erKOV9Z5l35o1RA/PGa3AgN7bu9IaoQUAAADopSrrGnX3W5tUZLMrNDhAo1KiNXtcir57/tBefTrY8QgtAAAAQC+0Oa9SP1+yTUU2u4YmRmjp3bMUae2b/973zVcFAAAA9FGVdY367bLdWrz+sIyRokOD9McbJ/XZwCIRWgAAAIBeY8PBcn33LxtVXuu+sv31Zw/UQ7NHKzHK6uOadS9CCwAAAODH8srr9PH2Au0sqNay7YWqdzg1IjlSv7x2nKYNjfd19XoEoQUAAADwU4fKanXV/61RdUOTZ9kFIxL1/LzJCgvpfVe27ypCCwAAAOCHdhdW6963s1Xd0KSRyVG6anyqxg2M0XnDExQUGODr6vUoQgsAAADgR4ptDfrjZ3v19rrDchkpPiJEr91xjlJiQn1dNZ8htAAAAAB+wOUy+t/P9+pPK/erscklSbpybIoenjO6XwcWidACAAAA+Iy9yam/rc/TliNVysm3aWeBTZI0OXOAfnrFSE3vJwPtT4XQAgAAAPiAy2X0479t0T+2FniWhQQG6NdfG6evT07vU1e0P12EFgAAAKAHuVxGn+4s0p9XH9DGQxUKDrTozguGaWRKlM4eNEBpsWG+rqLfIbQAAAAAPcAYo09yCvX7f+3R3uIaSVJwoEVPf32Crps00Me182+EFgAAAKCbHC6r00fbC3S4vE7Zhys9Y1aiQoM0b3qmbps5WMnR/XuQfUcQWgAAAIAzzNl8CthP/rZF1fZjF4YMDwnUt2YN0XfOH6ro0GAf1rB3IbQAAAAAZ4DLZbTxcIU+3HxUy7YXqbTGLkkanx6jC0YkKiMuXBePSlJCpNXHNe19CC0AAABAFzQ4nFqSfVT7i2tUUmPXxkMVOlJR71kfHRqkGyan68HZo2QNCvRhTXs/QgsAAADQAcYY7S+p1aZDFdpwqFwrd5eouNruVSYiJFBXjkvV1RNSNXNYgkKCAnxU276F0AIAAAC0YoxRaU2jvthfqrUHymSrb1JlfaN25NtUUefwKjswNkxzslKUFBWqjLhwXTAiUWEh9KqcaYQWAAAA9AvGGDU4XKpucKiy3qGdBTYV2+xqcDhla3DocHmdDpXVKa+8TrWNznb3YQ0K0ISMWE3OHKApmQN07lkJCg0mpHQ3QgsAAAB6BXuTU9UNTc03h2z17vvqhibZGhyyNRx77Flvd3i2sdU71OQyHXoui0UakhChy8YkKy0mTJHWIA1NjNDYtBhO+fIBQgsAAAC6XYPDKVu9u4ejqt6hyjqHbPUO1TmcqrM3qa7RqVp7cyBpDhq2+pZA4g4h9ibXGalLgEWKtAZpWFKkMuPCFRocqAhrkDIGhCkzPkKD4sOVPiCMwfN+hNACAACADjHGqLLOoeJqu0pr7J5ejZawcXwgqaxvVFXzsgbHmQkckhRlDVJUaJCiQoOb74MUHRbstSz6+PtW6yNCAmWxWM5YfdD9CC0AAABQrb1JRyvrdbSiXkcq61Vsa1BpTaNKa+wqrrarxNagkhq7HM6OnV7VngCLFBMWrNjwEEWHBSs6NEgRIUEKDwlUWEigIq3HBRBr28ARaQ1SYACBo78htAAAAPQDxhiV1zbqYFmdDpXV6mBZnQ6W1upQWa0Ol9e1mRXrZAaEBysh0qqYsGBFhgYpwhqkKGuQYsKDFRsWopiw4OZwEuz5OSY8WJEhQQogcKALCC0AAAB9SGmNXXuKqnWkvF6Hy+t0sKxWh8rc99UNTSfdNjo0SAMHhGtgbKhSYkKVEGlVQqRViVFWJUVZlRQdqoTIEMZ6oMcRWgAAAHqpkmq7tuRVant+lbYftSknv0oFVQ0nLG+xSGkxYcqMD1dmfIQGx4drcEKEBsW5B55HhQb3YO2BjiO0AAAA9AL2Jqdy8m3KPlypzXmVyj5coSMV9W3KWSxSZpw7lGTEhWlwfIQnoGQ0z5QF9DaEFgAAAD/jchnlVdRpy5EqZR+uUPbhSu3It6nR6T0Dl8UiDU+KVNbAWI0bGK1xA2M0OjVakVb+xUPfwl80AACAjzU2ubThULlW7ynVutwy7S6sbveK7HERIZqUEatJg2I1adAAjU+P4ZQu9AuEFgAAgB5mjNHe4hp9sa9U/95bqi8PlKnuuJASEhigUalROnvQAHdIyRigjLgwri+CfonQAgAA0AMOlNToP/tKtfZAudYeKFNZbaPX+oTIEJ03PFGzzkpQVnqMhiREKDgwwEe1BfwLoQUAAKAbGGO0u6hay3OKtCynUDn5Nq/1ocEBmpw5QLPOStT5IxI0OiWaa5gAJ0BoAQAAOEOanC6tO1iu5TuK9OnOIuWVH5vdKyjAoqmD4zRjWLxmDIvX+PQYrncCdBChBQAA4DQ0OJxatadEy7YX6vNdxaqqP3ZleWtQgGadlaDLxiTr8rEpiosI8WFNgd6L0AIAANBJ9ian/r2nVP/cVqDlO4pUYz92pfm4iBBdPCpJl41J1nnDExQewr9bwOniXQQAAHAKxhjtKapR9uEKrT9YoX/tKFR1w7GgkhoTqjlZqbpibIomZw5QIGNTgDOK0AIAANCOlvEpn+4o1vKdhV7jUyQpOdqqOVmpump8qiZlDGAQPdCNOhVannvuOT333HM6ePCgJGns2LH67//+b82ePbs76gYAANCjqhscWr2nVJ/uLGp3fMrUwXEanRqly8akaEomQQXoKZ0KLenp6XryySd11llnSZJee+01XXvttcrOztbYsWO7pYIAAADdxeUyys6r0Cc57pCyv6RGxhxbz/gUwD9YjGn91uy8uLg4Pf300/rWt77V7nq73S673e55bLPZlJGRoaqqKkVHR5/OUwMAAHRak9OlrUer9PG2Av1ja4EKqhq81g9JiNBlY5J12ZhknT2I8SlAd7LZbIqJiTllNujy1wVOp1PvvPOOamtrNWPGjBOWW7hwoR5//PGuPg0AAMBpaXA4tTmvUutzy7XuYLk2HqpQXaPTsz7KGqSLR7t7U6YPjVdCpNWHtQXQnk73tGzbtk0zZsxQQ0ODIiMj9dZbb2nOnDknLE9PCwAA6EnVDQ5tPFSh9QfLtS63XFvyqtTodHmViQkL1qzhCbpmQpouHJnIRR4BH+m2npaRI0dq8+bNqqys1HvvvacFCxZo1apVGjNmTLvlrVarrFa+sQAAAN2jqt6h9bnl+iq3TF/llmv70Sq5jvtKNjHKqnOGxGnakDidMyROI5KiGEQP9CKnPabl0ksv1bBhw/TnP/+5Q+U7mqYAAADaU1HbqPUHy7X2gDuo7Ciw6fj/ZjLiwnTO4HhPSMmMD5fFQkgB/E23j2lpYYzxOv0LAADgTDHGaH9JjdbsLdXmvEpl51XqUFldm3JDEiI0bUicpg2N07Qh8UqLDfNBbQF0l06FlocfflizZ89WRkaGqqurtXjxYq1cuVLLli3rrvoBAIB+psHh1JcHyrRiV7E+31WsIxX1bcqclRTZHFLcvSnJ0aE+qCmAntKp0FJUVKT58+eroKBAMTExGj9+vJYtW6bLLrusu+oHAAD6OHuTU1vyqrT2QJm+yi3ThoMVsjcdGzgfEhSgaUPiNCUzTpMGxWpCeqxiwoN9WGMAPa1ToeXll1/urnoAAIB+pMHh1MrdJfp4e4E+21msGnuT1/rUmFBdNCpJF49M0syz4rmoI9DPcQQAAAA9orTGrhW7ivXZzmKt3lvida2UhMgQTRsar+lD4zV9SJzOSopk4DwAD0ILAADoFsYY7Sqs1ue7ivXpziJtzqv0muVrYGyYZo9L0ZzxqZqYHssUxABOiNACAADOGHuTU2sPlOuznUX6bGexjlZ6D6IfNzBaF49K1qWjk5Q1MIbeFAAdQmgBAACnpaTarhW7i/XZziL9e2+p12lf1qAAzTorQRePTtIlo5KVEsMsXwA6j9ACAAA6zeF06Z9bC/TWusNaf7Dc67SvpCirLmkOKeeelaCwkEDfVRRAn0BoAQAAHVbd4NBf1+fplTW5yq9q8CzPGhiji0cl6dLRyRqbFs34FABnFKEFAACc0t6iar3+5SG9v+mIaptP/0qItGr+9Ex9Y0o6V6AH0K0ILQAAoF0ul9Hnu4r1yn9y9cX+Ms/yYYkR+vZ5Q/W1SQMVGsypXwC6H6EFAAB4McZo6ZZ8/c/yPTpYVidJCrBIl45O1oKZgzVzWDyzfgHoUYQWAADgsfFQhX778S6tO1guSYoODdLN5wzS/BmZSh8Q7uPaAeivCC0AAED7S2r09LLdWpZTKMk9VfFdF52lb583ROEh/LsAwLc4CgEA0I+V1tj1h0/36O11eXK6jAIs0jcmZ+i+y4YrNYbB9QD8A6EFAIB+qMnp0iv/ydX/frZPNfYmSdKlo5P0sytHaURylI9rBwDeCC0AAPQzh8vqdM/bm7TlSJUkaXx6jB6eM1rTh8b7uGYA0D5CCwAA/ciy7QX66btbVd3QpOjQID0yd4y+Pjmdi0EC8GuEFgAA+oHqBod+/c+dWrw+T5J09qBYPfvNs7koJIBegdACAEAf98W+Uv303a06WlkvSfru+UP10ytGKjgwwMc1A4COIbQAANBHVdQ26jcf7dQ7G49IkjLiwvT01ycwdgVAr0NoAQCgD/rqQJnueitbpTV2WSzSvGmZemD2KEVa+egH0Ptw5AIAoI/5y9pDenxpjppcRsOTIvXkDVmanBnn62oBQJcRWgAA6CMcTpceW5qjN786LEm6ekKanrphvMJCAn1cMwA4PYQWAAD6gIraRn3/zY1ae6BcFov0sytG6c4LhspiYSpjAL0foQUAgF5ub1G1vvXaBh0ur1NESKD+9+ZJumR0sq+rBQBnDKEFAIBeyhijt9fl6Tcf7VSNvUkZcWF66dapGpkS5euqAcAZRWgBAKAXqrE36Sd/26JlOYWSpGlD4vTcvMmKiwjxcc0A4MwjtAAA0MtUNzg0/+V12pxXqZDAAP3sypG6/dwhCgxg/AqAvonQAgBAL1Jrb9Ltr67X5rxKxYYH6+UFUzU5c4CvqwUA3YrQAgBAL1Hf6NQdi9Zrw6EKRYcG6Y1vTdO4gTG+rhYAdLsAX1cAAACcWoPDqe+8vkFf5ZYr0hqk1wksAPoRQgsAAH7O3uTU9/6yUWv2lSo8JFCv3TFVEzNifV0tAOgxhBYAAPxYg8MdWFbtKVFocIBevW2qJmfG+bpaANCjGNMCAICfajkl7N97SxUaHKBXFkzVtKHxvq4WAPQ4QgsAAH6orrFJ335tg77YX6bwkEC9cttUTSewAOinCC0AAPiZBod7lrC1B8oVERKoRXeco6mDOSUMQP9FaAEAwI8YY/Szd7dq7YFyRVmDtOiOc7gOC4B+j4H4AAD4kRf/fUBLt+QrKMCiP8+fTGABABFaAADwG+sPluu3y3ZLkh69eoxmnpXg4xoBgH8gtAAA4Afyyut05182yukyunpCmuZNz/R1lQDAbxBaAADwsRp7k77z+gaV1TZqTGq0fntDliwWi6+rBQB+g9ACAIAPNTicuvutTdpVWK2ESKteWjBF4SHMkwMArXFUBADAR2qbe1i+2F8ma1CAXrx1stJiw3xdLQDwO4QWAAB8oLKuUbe9ul6b8yoVERKolxZM1aRBzBQGAO0htAAA0MNKa+ya99JX2lVYrdjwYC26/RxNzIj1dbUAwG91akzLwoULNXXqVEVFRSkpKUnXXXeddu/e3V11AwCgz3G6jGcMS2KUVX/97gwCCwCcQqdCy6pVq3TXXXdp7dq1Wr58uZqamnT55Zertra2u+oHAECf0eBw6pEPtmntgXKFhwTq7e9M08iUKF9XCwD8XqdOD1u2bJnX41dffVVJSUnauHGjzj///DNaMQAA+pKqeofmv/yVth6pkiT95mtZOiuJwAIAHXFaY1qqqtwH3ri4uBOWsdvtstvtnsc2m+10nhIAgF6nrrFJdyxar61HqjQgPFi/+8YEXTI62dfVAoBeo8vXaTHG6P7779esWbM0bty4E5ZbuHChYmJiPLeMjIyuPiUAAL1Og8Op77y+QRsPVSg6NEhvfns6gQUAOslijDFd2fCuu+7SP//5T61Zs0bp6eknLNdeT0tGRoaqqqoUHR3dlacGAKBXqKxr1Hde36D1BysUHhKoN749TWczrTEAeNhsNsXExJwyG3Tp9LB77rlHS5cu1erVq08aWCTJarXKarV25WkAAOi1Nh4q1z1vZSu/qkFRoUF6ecFUAgsAdFGnQosxRvfcc4+WLFmilStXasiQId1VLwAAeq2X/n1ACz/eJafLaHB8uJ6fP1mjUji7AAC6qlOh5a677tJbb72lDz/8UFFRUSosLJQkxcTEKCwsrFsqCABAb9HY5NKfVu7THz7dK0m6ekKafvO1cYoKDfZxzQCgd+vUmBaLxdLu8ldffVW33XZbh/bR0fPWAADoTdYfLNe9b2eroKpBkvTTK0bqBxcOO+FnJwCgm8a0dHHMPgAAfdryHUW6661NamxyKSHSqvsuHa550zN9XS0A6DNO6zotAAD0d5/tLNIP3twoh9PosjHJ+uNNExUewscrAJxJHFUBAOiit9cd1iMfbJfTZTR3fKr+eONEBQV2+RJoAIATILQAANBJxhj97l+79f9W7JckXT9poH779fEEFgDoJoQWAAA6wd7k1M/e3aoPN+dLku69ZLh+dOlwBtwDQDcitAAA0EFV9Q599/UN+iq3XEEBFv3m+iz915QMX1cLAPo8QgsAAB1Q19ik215dp+zDlYq0Bum5eWfrvOGJvq4WAPQLhBYAAE7B4XTp7reylX24UjFhwXrrO9M0Ni3G19UCgH6DEYMAAJyEMUYPvb9Nn+8qljUoQK/cNoXAAgA9jNACAMBJPPXJbr278YgCLNKz3zxbkzPjfF0lAOh3OD0MAIB2uFxGCz/eqRf/nStJWnh9li4bk+zjWgFA/0RoAQDgOA6nSz97d6uWZB+VJD0yd7RunDrIx7UCgP6L0AIAQCuNTS794M1N+nRnkQIDLPrtDeP19cnpvq4WAPRrhBYAAJrZm5z6wRub9NmuYoUEBej5eWfr4lGcEgYAvkZoAQBAUoPDqe+/sVErdpfIGhSgF2+dovNHcB0WAPAHhBYAQL/X4HDqzjc2auXuEoUGB+ilW6dq1vAEX1cLANCM0AIA6NcaHE599y8btXqPO7C8smCqZp5FYAEAf0JoAQD0Ww0Op77z+gb9e2+pwoID9cptUzVjWLyvqwUAOA6hBQDQL9U3ugPLmn3uwPLq7VM1fSiBBQD8EaEFANDvVNQ26ntvbNS63HKFhwTq1dumahqBBQD8FqEFANCvHCip0R2L1utgWZ0irUF65bapOmdInK+rBQA4CUILAKDf2HqkUvNfXqeqeocGxobpldumamRKlK+rBQA4BUILAKBf2HakSvNe+kq2hiZNzIjVi7dOUWKU1dfVAgB0AKEFANDnbTtSpVteWitbQ5OmZA7QojvOUaSVj0AA6C0CfF0BAAC608ZDFfpmc2CZTGABgF6JozYAoM/6Yn+pvv3aBtU1OnXO4Di9fNsUAgsA9EIcuQEAfY7LZfTymlw99ckuOZxG5w1P0AvzpygsJNDXVQMAdAGhBQDQpxRXN+jHf9uif+8tlSTNzUrV7/9rgkKDCSwA0FsRWgAAfcbK3cX6yTtbVFrTqNDgAP3iqjH65jmDZLFYfF01AMBpILQAAHo9Y4ye/mS3/rRyvyRpVEqU/u/mSRqezDVYAKAvILQAAHq14uoG/eafO/XB5nxJ0oIZmXpozmhOBwOAPoTQAgDotZZuydeD721VXaNTARbptzeM1zemZPi6WgCAM4zQAgDodZqcLj31yW69sPqAJGlCeowemjNa04fG+7hmAIDuQGgBAPQqFbWNuuftbK3Z554d7PsXDtNPLh+pwAAG2wNAX0VoAQD0Git2F+uh97ap0Nag8JBAPf31CZo7PtXX1QIAdDNCCwDA7xlj9KeV+/X0J7slSUMTIvTcvMkamcLsYADQHxBaAAB+rbHJpZ8v2aZ3Nh6RJM2fnqmH54zm6vYA0I8QWgAAfquyrlF3vrFRaw+UK8AiPX7NWM2fMdjX1QIA9DBCCwDAL23Oq9Tdb23SkYp6RVqD9Ow3J+nCkUm+rhYAwAcILQAAv2KM0av/OaiFH++Uw2mUERemF2+dolEp0b6uGgDARwgtAAC/UVJt18+XbNO/dhRJkmaPS9GTN4xXTFiwj2sGAPAlQgsAwC/8fUu+Hl6yTdUNTQoJDNAjV43W/OmZsli4/goA9HeEFgCATzmcLi38aJde+U+uJClrYIwWXp+lcQNjfFwzAIC/ILQAAHwmr7xOP/rrZm04VCFJ+sGFw3T/ZSMUFBjg45oBAPxJpz8VVq9erauvvlppaWmyWCz64IMPuqFaAIC+zBijdzce0ew//lsbDlUo0hqk5+dN1s+uHEVgAQC00emeltraWk2YMEG33367brjhhu6oEwCgD9tVaNNjS3O09kC5JGlK5gD9z40TlREX7uOaAQD8VadDy+zZszV79uzuqAsAoA8rq7HrD5/u1ZtfHZLLSNagAN17yXDdecEwBQYw2B4AcGLdPqbFbrfLbrd7Httstu5+SgCAH7E3OfXaFwf1f5/vU3VDkyT3VMYPzxlN7woAoEO6PbQsXLhQjz/+eHc/DQDAzxhj9PH2Qi38eKfyyuslSWNSo/XIVaM1c1iCj2sHAOhNuj20PPTQQ7r//vs9j202mzIyMrr7aQEAPtLY5NLft+TrxX8f0K7CaklScrRVP7l8pK4/O51TwQAAndbtocVqtcpqtXb30wAAfKy6waHF6/L08ppcFdoaJEnhIYH6znlD9b0Lhio8hFn2AQBdwycIAOC0FNka9Mp/cvXW2sOqtrvHrCRGWXXbzMGaNy1TMeHBPq4hAKC363Roqamp0b59+zyPc3NztXnzZsXFxWnQoEFntHIAAP9kb3Jq5e4SLd2Sr3/lFMrhNJKkYYkR+u75Q3XdpIGyBgX6uJYAgL6i06Flw4YNuuiiizyPW8arLFiwQIsWLTpjFQMA+Jcmp0tfHijT0s35WpZT6JkJTJKmDh6g754/TJeMSlIAY1YAAGdYp0PLhRdeKGNMd9QFAOBnXC6jTYcrtHRLvj7aVqDSmkbPupToUF01PlXXThyorPQYH9YSANDXMaYFAODF4XRp06EKfb67WP/YUqCjlfWedQPCgzUnK1XXTEjT1MFx9KoAAHoEoQUAoENltVq9p0Sr9pTqy/2lqm10etZFWoN0+ZhkXT0xTbPOSlBwYIAPawoA6I8ILQDQD9XYm/Tl/jKt3lOi1XtLdKiszmt9fESIZg1P0JVjU3TRqCSFBjOoHgDgO4QWAOgH8ivrteFQhbbkVWpzXqW25FWqyXVsfGJQgEWTMwfo/BGJumBEosakRnPqFwDAbxBaAKCPcThd2lVQrc15Fdp4qELrD1Z4jUtpMTg+XOcNT9T5IxI1Y1i8Iq18JAAA/BOfUADQixljlFder+y8Cm3Jq9LmvArl5Ntkb3J5lQsMsGhMarTOHhSrCRmxmpIZp0Hx4T6qNQAAnUNoAYBewuUyOlpZr12F1dqRb9PmvAptOVKl8trGNmWjQ4M0ISNWkwYN0DmD4zRxUCw9KQCAXotPMADwQ41NLu0trtb2o1XaftSm7flV2lNY7TWrV4vgQHcvysQMdy/KxIxYDUmIkMXCmBQAQN9AaAEAH7M3ObWnsEbbjlZpe36Vth+t0q6CajU6XW3KhgQGaFhSpEalRGlCeowmZMRqTFq0rEHM7gUA6LsILQDQg+oam7SnqDmgHHGHlD1F1XI4TZuy0aFBGjcwRlkDYzR2YIzGpEZpcHyEgrhOCgCgnyG0AEA3aHK6dLCsVrsKq7WnsFq7Cqu1u6hah8vrZNrmE8WGBytrYIzGDYzRuDR3UMmIC+MULwAARGgBgNNSbGvQ7qJq5ZXXK6+iTnnlddpfUqv9xTXtnt4lSQmRIRrbHEzGDYzWuIExGhhLQPEbxkglu6SaYilzphQY7OsaAUC/R2gBgA5o3XOSk29TTr5NO/JtKq2xn3Cb8JBAjUiO0sjkKI1MidKolCiNSIlSQqS1B2uOTtn1T+nzX0nFO9yPr/1/0qR5vq0TAIDQAgDHszU4tKNVMNlZYNO+kho1NrXtOQmwSIMTIjQ4PkIZA8KUPiBcmfHhGpUSrfQBYVxVvjcwRsrfJK35g7Rzqfe68lyfVAkA4I3QAqDfMsboSEW9dhS4g4n75h530p6WnpMxadEakxqtsWnRGpUSrbAQZu7qlew10vZ3pQ2vSAVb3MssgdLMe6T6CmnTa1JTg2/rCACQRGgB0E84nC7tLapRTn6VdhS4e1B2FNhU3dDUbvmBsWEa3RxMRqdGa3RqlDIGhNNz0ts5GqTt70kH/y3t/IfUWO1eHmiVxlwrzbxbSp0grfhNc/l639UVAOBBaAHQ5zicLm0/WqVtR6uUc9SmnIIq7Slsf2B8cKBFZyVFaXRqlMakugPKmNRoDYgI8UHN0W2KcqQti9232uJjy+OGSVNulyZ8U4qIP7Y8KNR9T08LAPgFQguAXq++0ansvAqtyy3X+oPl2nSoUvWOtleOjwoN0pjUaI1Ji9bYtBiNSY3WWUmRCgniuid9UnWhtO0dactfpaJtx5bHZEjjb5SGXihlnisFtNP+wWHue3paAMAvEFoA9DpV9Q5tPFSur3LLtT63XNuOVrW5OOOA8GBNzIjVuIExzeNPuO5Jn2eMdHSjtO9T6fBaKXeVZJp71wJDpBFXSONvct+fahpjeloAwK8QWgD4veLqBq3PrdC63DKtO1ihXYW2NhdoTIkO1TlD4jy3sxIjGX/SHzgd0rZ3paMbpL3/kioPe6/PmObuVRn7NSk8ruP7pacFAPwKoQWAX3G5jPaX1GjDoQptOFihDYfKdais7WxeQxMiNHXwsZCSPoBelH6lplja/r57hq+Wa6pIUnCEuycl4xxp+OVS/LCu7Z+eFgDwK4QWAD5X3+jUmn2l+ldOoT7bVazy2kav9RaLNColWtOaA8qUwQOUFBXqo9qixxkjFe+UDqx0z/pVWyIVbjsWKMLipInflNKnuoNKSPjpPyc9LQDgVwgtAHziYGmtVu0p0eo9JfrP/lI1OI7N7BUaHKCJGbGanDlAUwfH6ezMAYoOPcUYBPQtVUekA6vcQSV3lVRT1LZM2iT3aV8T53nP/HUm0NMCAH6F0AKgRzQ2ubT+YLk+31WsFbuKdaC01mv9wNgwXTYmWZePSdbUIXEKDmRGr37B5ZIqD7lP8crf7B5IX75fqjjoXS4oTMqcKQ29wD1NcVSKNHCyuxuuO9DTAgB+hdACoNsU2Rq0cnexVuwq0Zp9paqxH7uQY1CARVMHx+n8EYk6f0SCxqRGMyalr6stk4pzpKIdx+5LdkmNNW3LWgKktLPdIWXoRe4xKkHWnqsrPS0A4FcILQDOGJfLaPORSn2+s1grdhcrJ9/mtT4h0qqLRibq4lFJmjU8QVGc8tU32Wukkt3u3pOSXe4LOxbvaP8UL8k9HXHCSCllnHtcSsJwKSVLChvQs/VuzdPTQmgBAH9AaAFwWuxNTq3LLdcnOYVavqNIRTa7Z53FIo1Pj9VFIxN10cgkZQ2MYRrivqCpUarKkypy3adxeW6H3LN61RSeeNvYTCl5rJQ0RkoeIyWNdc/wdarrpvQ0T08Lp4cBgD8gtADotMNldVq1p1ir9pToi/1lqms8dvX5SGuQLhiZqEtGJen8EYlKiOzBU3pwZthrJFu+ZDt67L7y8LFgYjty7KKNJxKRJCWNbnUbKyWNkqxRPfISTltw8wxkzkbJ5ZQCAn1bHwDo5wgtAE6pvtGptQfKtGpPiVbtKVHucYPoE6OsunR0ki4fm6KZw+JlDeIfPL9kjGS3HQsiVUePCyfNN3vVqfcVFCYNGHzcLVOKTHb/3JkLOfqj4FZTajc1SCERvqsLAIDQAqAtl8toX0mNVjeHlK9yy9XYdOyb9aAAiyZnDtCFI5N0wYhEjU6NYhC9rxkj1Ve0CiGtg0irn9sb9N4ea7QUnXbsFpMhDRhyLKBEJnXfzF3+ICjs2M8OQgsA+BqhBejnjDEqtDVoS16lthyp0pa8Sm07UqXqVjN9Se4piS8YmagLRiRq5rB4BtH3lMZad49ITWHzeJEiqbpAshVI1YVSXZlUX+6+dzWden+Se4B79MBWoeS4n6NSpdDo7n1d/i4gwD1BgLORcS0A4AcILUA/U1Xv0LYjVdpypFKb8yq1Ja9SxdX2NuVCgwM0dXCcLhiRqAtHJmpYYiS9KWeSs8kdNGpLpLpSqbbUHUqq8tzjR6rypMo8dyDpjPCE9oOI5z6VXoOOCgpzhxZmEAMAnyO0AH2Uy+XuQcktrdWeomptbQ4qB0pq25QNDLBoRHKUJmbEaEJ6rCZkxGp4UqSCuMBj5xgj2auPzaBVU3Ssd6SmpPm+yN1DUlsiyXRsv9Zo98UUI5Pdp2VFprjDR1SqFJEghcVJ4fHuW+uxGDg9waHu8T30tACAzxFagF7M5TKqqGvUkYp6HSit0YGSWh0ordWBklodLK1VvcPZ7naD4sI1ISNWE9JjNDEjVmPTYhQWwuD5E3I2uUNGS+jwhI/jHtcUS466TuzY4h6wHpHYfEtw94bEDnKPIYnNcN+HxXbXK8PJtEx7TE8LAPgcoQXwQy6XUVlto4qrG1RcbVexrUHFNruKqlvu7SqxNaikxi6H88Tf1gcFWDQoPlxDEyI0bmBMc1CJVVxESA++Gj9ljHtQuid4tB4zclwYqS1Vh3tFJCkkSopKbtUzkuwOJS0/R6W4e0siEphK15+1XGCSnhYA8DlCC9CDGptcKq2xq7jarpLm27FgYldJdYOKbHaV1tjV5Or4P8mJUVYNTYjQ0MTI5nv3z+kDwhTcH0/xcjndYaPqqPuaIp6pfY94B5LO9IpYAtzXHolMag4dzadptQQTz7Jkxoz0FfS0AIDfILQAZ0CDw6mSaruKbMd6Roqag0hxc+9IcXWDKuocHd6nxSLFR1iVFGVVUrRVyVGhSoq2Kik6VElRViU33ydEWhUS1I+CicvlHpzumUGreRatqsPuCx9WHHQv6+hMWiGRrQJIO4GkpcckPJ5ekf6mpaelU6f8AQC6A6EFOIm6xqbmwNEqkLQKIcU293JbQwf/QZb7lK3EKHcYSYyyKjEq1PM4uVUgiY8M6Z+9JM4md+ioL3efrlW8090rUrClOZAUSq4OhD9LoHugenSaFDPQPVYkJv3YqVktvSLWyG5/SeilWnpamuhpAQBfI7SgX7I3OVVY5T4Vq8jW4AkkrX8usdnbXKvkZEKCApQcbVVS1LHg4RVGmtfFhgUrIKCfTh3suQDi0eZeknz3qVst0/xW5rnXmfYnEPASkegOIFGp7vvogc0XP8x0D16PTJYCOcThNHh6WhjTAgC+xic6+iR7k1P5lQ06UlGnIxX1nvujFfU6UlGvouoGmQ4OGQkLDvSEkcTWp2m16hlJigpVdFhQ/7yOSesB7a2vOVJXKtWWue+rC49dlb0j31oHBLtPxwqLlZLHuntGkkZJiaPdU/1GJElBTCaAbkZPCwD4DUILeqUGh1P5lfXNgaTeK5wcraxXka3txRKPFxocoJToUCVFhyo5OlTJLWNHmntIWgJJpLUfhRFj3OGivlJqqJIaWu7budWWHptxq7Pn/IcnNF9npPnih7EZUswg91S/sc29JIwfga/R0wIAfoPQAr/U2ORSfmW98irqlFfuDiN5rcJJSTtXcD9eWHCg0geENd/Cve4HDghTfERI/wkjLYxx/wPmqJMaa933DTb3eJHqfGnPv6TinK7tOyTy2LVGwhOkiHj3fXj8sbElLbcg65l9XUB3oKcFAPwGoQU+U1nXqINldTpUVquDpXU6VF6rvHJ3KCm0nfr0rfCQQGW0CiHHh5MB4cG9L5QY4/4HyVHvvrX+2VErNdZ5Bw7Pfd2J13uVqdMprzcSEOS+wnpozIlvYbHuMkzzi76MnhYA8BtdCi1/+tOf9PTTT6ugoEBjx47VH/7wB5133nlnum7o5YwxKqmx61BZnQ6W1upweV2rkFJ7yhm3WnpKMuLcQSRjQLgGNt+nDwhTrD+EEpfTPaOV3dYqXLSEjTr39R0cde7HDbbmCxUWuwOEVzipd5dtalCnLmJ4OoJCpeBwd9hIHCnFnyXFZkoTb5bCBvRMHQB/Rk8LAPiNToeWv/71r7rvvvv0pz/9Seeee67+/Oc/a/bs2dqxY4cGDRrUHXWEn3K6jCrqGj0XSTxaWa+DZbU6VFqng2XukFLXePJZoFKiQ5UZH67B8REaFB+uQXHhnpByWqdvOeqlurJjQaDJ3nzfIDkd7mt4tNwcdZK9xj2YvLHWvd5p996mye7ep7Ox+XHzfV2ZO7B0h4Agd6gICpWCQ6XgCCkk/FjQCA5vfhxx3H3zek+Z9sqGM2YEOJXglotL0tMCAL5mMaajcyi5TZs2TWeffbaee+45z7LRo0fruuuu08KFC0+5vc1mU0xMjKqqqhQdHd35Gp8htsoyHdq6pvmRkWQ8pyNZZDzfdXv9eo7/VRnjKWlptX17v9KWZSfat6V5qTFtn8d7fy5PuZZ/55u3PPH+vL65b738+Oc6ts7hdKqxySV7k0uOpmM/19ibVF3vULXdoRp7k4yr7XO6f26+t0gDIoKVGBGixIhAJYYHKiE8QHFhgRoQalGwxenurfAKEk73dThcTe5rdrgc7rDgdDTfGlvdt/rZ1by+ye6esaqnBIVJ4XHuU0mCwtz3waGtAke4+3FI5LGrp4dEupcFhbW6b74FhbrvA4N77jUAaOuLZ6V//Vwacr40635f1wYAzqyEEe7rmPlYR7NBp3paGhsbtXHjRj344INeyy+//HJ98cUX7W5jt9tltx8bNG2zddO30p2Uv2+zsj6/1dfV6N06+tfT2Hyr6Ma6tCcwxB0GgqzuINByHxjs7sUICHL3NgSHuy8wGBLp7pUIsrqn3A0ObbVdy35a9hHivrdGud/0XA8E6HtCwt33uavdNwDoS+b+Xpr6bV/XosM69Z9WaWmpnE6nkpOTvZYnJyersLCw3W0WLlyoxx9/vOs17CYhoZE6EDD42AKLZNT6VKRjP7debtFx/RYWi9dWpp3tjt/GvbD9ch3ah6XND8eVO/6UKounaLvrPPs4Vi2LJUCBFosCAqTAAIsCLAEKDLAoONCi4KBAhQQGKCQoQEGBAQqwtP970/HLvcJCUPPjwObHwcdCxPGhItDqXhYY7A4LgSHt/xwQfKxcZLJ71ipfj3kB0HuNuFIa8oF7em8A6Gt62fjVLn09fPw4A2PMCccePPTQQ7r//mPd6jabTRkZGV152jNq6Lhp0rgtvq4GAMBfRadJC5b6uhYAAHUytCQkJCgwMLBNr0pxcXGb3pcWVqtVVivXZAAAAADQNQGdKRwSEqLJkydr+fLlXsuXL1+umTNnntGKAQAAAIDUhdPD7r//fs2fP19TpkzRjBkz9MILL+jw4cO68847u6N+AAAAAPq5ToeWG2+8UWVlZXriiSdUUFCgcePG6aOPPlJmZmZ31A8AAABAP9fp67ScLn+5TgsAAAAA3+poNujUmBYAAAAA6GmEFgAAAAB+rccv491yNprNZuvppwYAAADgR1oywalGrPR4aKmurpYkv7jAJAAAAADfq66uVkxMzAnX9/hAfJfLpfz8fEVFRclisfTkU7dhs9mUkZGhvLw8JgXog2jfvo827tto376PNu7baN++7Uy1rzFG1dXVSktLU0DAiUeu9HhPS0BAgNLT03v6aU8qOjqaN1MfRvv2fbRx30b79n20cd9G+/ZtZ6J9T9bD0oKB+AAAAAD8GqEFAAAAgF/r16HFarXq0UcfldVq9XVV0A1o376PNu7baN++jzbu22jfvq2n27fHB+IDAAAAQGf0654WAAAAAP6P0AIAAADArxFaAAAAAPg1QgsAAAAAv0ZoAQAAAODX/Dq0rF69WldffbXS0tJksVj0wQcftFvuwgsv1PPPP68tW7bo5ptvVkZGhsLCwjR69Gj98Y9/9Cq7cuVKXXvttUpNTVVERIQmTpyoN998s939Llq0SNOnT5fD4dADDzygrKwsRUREKC0tTbfeeqvy8/O9ytvtdt1zzz1KSEhQRESErrnmGh05cuSM/C76g8cee0wWi8XrlpKS0qZcS3tL0g9/+ENNnjxZVqtVEydOPOG+V65cqdTUVBljtHDhQk2dOlVRUVFKSkrSddddp927d3uVN8boscceU1pamsLCwnThhRcqJyfnjL7e/qapqUmPPPKIhgwZorCwMA0dOlRPPPGEXC5Xm7Kt2/izzz7TzJkzFRUVpdTUVD3wwANqampqsw1t3L1OdTx+//33dcUVVyghIUEWi0WbN28+4b6GDBmiZcuWqaGhQbfddpuysrIUFBSk6667rk3Z2267rc1xwWKxaOzYsW3KPvbYY7rppptUXl6ue+65RyNHjlR4eLgGDRqke++9V1VVVV7lKyoqNH/+fMXExCgmJkbz589XZWVlF347fVNH3kctOvM5fPDgwXbbdNmyZW3229nP4RdeeEEXXnihoqOjZbFYaM8uOHr0qObNm6f4+HiFh4dr4sSJ2rhxY5tyrY/T7bVny7rWOnuc7sxxBX2fX4eW2tpaTZgwQc8+++wJy5SXl+uLL77Q1VdfrY0bNyoxMVFvvPGGcnJy9POf/1wPPfSQ1/ZffPGFxo8fr/fee09bt27VHXfcoVtvvVV///vf2+x76dKluvbaa1VXV6dNmzbpF7/4hTZt2qT3339fe/bs0TXXXONV/r777tOSJUu0ePFirVmzRjU1NbrqqqvkdDrP3C+ljxs7dqwKCgo8t23btnmtb93ekvsfzzvuuEM33njjSfe7dOlSXXPNNbJYLFq1apXuuusurV27VsuXL1dTU5Muv/xy1dbWeso/9dRTeuaZZ/Tss89q/fr1SklJ0WWXXabq6uoz/6L7id/+9rd6/vnn9eyzz2rnzp166qmn9PTTT+v//u//vMq1buOtW7dqzpw5uvLKK5Wdna3Fixdr6dKlevDBB9vsnzbuXqc6HtfW1urcc8/Vk08+edL9bN26VWVlZbrooovkdDoVFhame++9V5deemm75f/4xz96HRPy8vIUFxenb3zjG23Kthyz8/PzlZ+fr9/97nfatm2bFi1apGXLlulb3/qWV/lvfvOb2rx5s5YtW6Zly5Zp8+bNmj9/fgd/I31fR95HUuc/h1t8+umnXm178cUXtynT2c/huro6XXnllXr44YfP7C+jn6ioqNC5556r4OBgffzxx9qxY4d+//vfKzY21qvc8Z/FkvTqq696teeCBQva7L+zx+mOHlfQT5heQpJZsmRJm+Wvv/66mTJlygm3+8EPfmAuuuiik+57zpw55vbbb/daVl9fbyIiIsz27dvb3WbdunVGkjl06JAxxpjKykoTHBxsFi9e7Clz9OhRExAQYJYtW3bS54fbo48+aiZMmHDSMidq71NtO2zYMPOPf/yj3XXFxcVGklm1apUxxhiXy2VSUlLMk08+6SnT0NBgYmJizPPPP3/qF4J2zZ0719xxxx1ey66//nozb948r2Wt2/ihhx5q095LliwxoaGhxmazeS2njXvOiY7HxhiTm5trJJns7Ox21z/xxBPm61//epvlCxYsMNdee+0pn3vJkiXGYrGYgwcPei0/fPiwCQ4ONhUVFe1u97e//c2EhIQYh8NhjDFmx44dRpJZu3atp8yXX35pJJldu3adsh790fHvoxad/Rw+1d9Ii85+Dre2YsUKI+mEfw9o3wMPPGBmzZp1ynLHt/nJjgmtdeY43VpH/2bQt/l1T0tHtHwLcyJVVVWKi4s76T7aK/PZZ58pJSWl3VMQWraxWCyebx82btwoh8Ohyy+/3FMmLS1N48aN0xdffNHBV4O9e/cqLS1NQ4YM0U033aQDBw54rT9Ve7cnJydHhYWFuuSSS9pd33LKSMvfQG5urgoLC73a0mq16oILLqAtT8OsWbP02Wefac+ePZKkLVu2aM2aNZozZ45XudZtbLfbFRoa6rU+LCxMDQ0NXqcr0Ma9R1few629/PLLuvTSS5WZmdlmv+eff36bb4RbVFVVKTo6WkFBQZKkL7/8UjExMZo2bZqnzPTp0xUTE8PfwAkc/z5q0dXP4WuuuUZJSUk699xz9e6777ZZ39nPYZy+pUuXasqUKfrGN76hpKQkTZo0SS+++GK75Y5v87vvvlsJCQmaOnWqnn/++Tan/nb2OA0cr1eHFrvdrk8++eSEB8svv/xSf/vb3/S9733vhPt49913tX79et1+++1eyz/88MMT7rehoUEPPvigvvnNbyo6OlqSVFhYqJCQEA0YMMCrbHJysgoLCzvzsvqtadOm6fXXX9cnn3yiF198UYWFhZo5c6bKysoknbq9T+TDDz/UFVdc0eafX8l9etn999+vWbNmady4cZLkaa/k5GSvsrTl6XnggQd08803a9SoUQoODtakSZN033336eabb/aUOb6Nr7jiCn3xxRd6++235XQ6dfToUf3qV7+SJBUUFHi2o417h6NHj2rLli1tgmpHFRQU6OOPP9a3v/3tNutOdswuKyvTL3/5S6/PgsLCQiUlJbUpm5SUxN9AO9p7H0ld+xyOjIzUM888o3fffVcfffSRLrnkEt1444164403vLbt7OcwTt+BAwf03HPPafjw4frkk09055136t5779Xrr7/uKdNem//yl7/UO++8o08//VQ33XSTfvzjH+s3v/mN1747e5wGjhfk6wqcjs8//1zx8fHKyspqsy4nJ0fXXnut/vu//1uXXXZZu9uvXLlSt912m1588UWvb3KMMfr73/+uxYsXt9nG4XDopptuksvl0p/+9KdT1tEYI4vF0olX1X/Nnj3b83NWVpZmzJihYcOG6bXXXtP9999/0vY+mQ8//FA/+MEP2l139913a+vWrVqzZk2bdce3G215ev7617/qjTfe0FtvvaWxY8dq8+bNuu+++5SWluY59/n4Nr788sv19NNP684779T8+fNltVr1i1/8QmvWrFFgYKBn37Rx77B06VKde+65Xf4mddGiRYqNjW0zYN9ms2nVqlXtfiNss9k0d+5cjRkzRo8++qjXuvbamr+B9p3ofdSVz+GEhAT96Ec/8jyeMmWKKioq9NRTT2nevHmSzuznMDrO5XJpypQpnsAxadIk5eTk6LnnntOtt94qqf02f+SRRzw/t0yK88QTT3gt7+pxGmjRq3taTtQlvWPHDl188cX6zne+4/WGaW3VqlW6+uqr9cwzz3jeiC3WrVunxsZGzZo1y2u5w+HQf/3Xfyk3N1fLly/3+nYnJSVFjY2Nqqio8NqmuLi4zbe56JiIiAhlZWVp7969krp2WklhYaE2bdqkuXPntll3zz33aOnSpVqxYoXS09M9y1tmLDv+21ba8vT89Kc/1YMPPqibbrpJWVlZmj9/vn70ox9p4cKFnjLttfH999+vyspKHT58WKWlpZ71Q4YMkUQb9yanc2qYMUavvPKK5s+fr5CQEK91H3/8sUaPHt3mlLHq6mpdeeWVioyM1JIlSxQcHOxZl5KSoqKiojbPU1JSwt/AcU70PpJO73O4tenTp3uO9VLXPodx+lJTUzVmzBivZaNHj9bhw4c9jzvyPp4+fbpsNpvnPdaV4zRwvF4bWlq+hTl+5pCcnBxddNFFWrBggX7961+3u+3KlSs1d+5cPfnkk/rud7/bZv2HH36ouXPnen2T23Kg3Lt3rz799FPFx8d7bTN58mQFBwdr+fLlnmUFBQXavn27Zs6ceTovtd+y2+3auXOnZ3rE9tr7VJYuXaoZM2YoISHBs8wYo7vvvlvvv/++Pv/8c88/vy2GDBmilJQUr7ZsbGzUqlWraMvTUFdXp4AA70NOYGCg57znk7WxxWLxTE389ttvKyMjQ2effbYk2ri3qKmp0YoVKzr9Hm6xatUq7du3r80MYJL7mH38fm02my6//HKFhIRo6dKlbU5JmTFjhqqqqrRu3TrPsq+++kpVVVX8DTQ71fvodD6Hj5edna3U1FTP4658DuP0nXvuuW2mHd6zZ4/nC4GOfhZnZ2crNDTUM96oK8dpoI2eHfffOdXV1SY7O9tkZ2cbSeaZZ54x2dnZ5tChQ2b9+vUmNjbWMxOMMcZs377dJCYmmltuucUUFBR4bsXFxZ4yK1asMOHh4eahhx7yKlNWVuYpM3bsWPPuu+96HjscDnPNNdeY9PR0s3nzZq/t7Ha7p9ydd95p0tPTzaeffmo2bdpkLr74YjNhwgTT1NTUzb+pvuHHP/6xWblypTlw4IBZu3atueqqq0xUVJQ5ePBgu+1tjDF79+412dnZ5nvf+54ZMWKE5++lpV3mzp1rfve733lt8/3vf9/ExMSYlStXerVlXV2dp8yTTz5pYmJizPvvv2+2bdtmbr75ZpOamtpmxip03IIFC8zAgQPNP/7xD5Obm2vef/99k5CQYH72s58ZY8wJ2/ipp54yW7duNdu3bzdPPPGECQ4O9pqlhjbuGSc7HhtjTFlZmcnOzjb//Oc/jSSzePFik52dbQoKCowxxrzzzjtm3Lhxbfabk5NjsrOzzdVXX20uvPBCz3Mcb968eWbatGltljscDhMbG2s2bNjgWWaz2cy0adNMVlaW2bdvn9ffQOvj8ZVXXmnGjx9vvvzyS/Pll1+arKwsc9VVV53ur6rPONX7qKufw4sWLTJvvvmm2bFjh9m1a5d5+umnTXBwsHnmmWc8Zbr6OVxQUGCys7PNiy++aCSZ1atXm+zsbK/PeJzYunXrTFBQkPn1r39t9u7da958800THh5u3njjDWNM+22+dOlS88ILL5ht27aZffv2mRdffNFER0ebe++911Omq8fpUx1X0L/4dWhpmbLw+NuCBQvMI488Ym655Rav8o8++mi75TMzMz1lFixY0G6ZCy64wBhjzL59+4zVajXV1dWebVqm2mvvtmLFCk+5+vp6c/fdd5u4uDgTFhZmrrrqKnP48OHu/BX1KTfeeKNJTU01wcHBJi0tzVx//fUmJyfHGGPabW9jjLngggvabZfc3FxTU1NjQkNDzZ49e7y2OVFbvvrqq54yLpfLPProoyYlJcVYrVZz/vnnm23btnXr6+/rbDab+eEPf2gGDRpkQkNDzdChQ83Pf/5zzz8cJ2rjiy66yMTExJjQ0FAzbdo089FHH3nW0cY952THY2OMefXVV9td/+ijjxpj3KHj5z//eZv9ZmZmtrtda5WVlSYsLMy88MILbbb/9NNPTXp6eofq2nJsaFFWVmZuueUWExUVZaKioswtt9zCFLmtnOp91NXP4UWLFpnRo0eb8PBwExUVZSZPnmz+8pe/eNafzufwiZ6/9XsfJ/f3v//djBs3zlitVjNq1Civ9117bf7xxx+biRMnmsjISBMeHm7GjRtn/vCHP3iCzekcp091XEH/4teh5WSysrLMX//61zO+39///vdm9uzZZ3y/OD1dae/33nvPjB49uptqhDONNu67mpqaTFxcnPnqq6/O+L7vuece8/3vf/+M7xenxudw/8NxGr7UK2cPa2xs1A033OA129SZkp6eroceeuiM7xdd19X2joyM1G9/+9tuqhXOJNq4bysrK9OPfvQjTZ069Yzve9y4cZoxY8YZ3y9Ojs/h/ofjNHzNYowxvq4EAAAAAJxIr509DAAAAED/QGgBAAAA4NcILQAAAAD8GqEFAAAAgF8jtAAAAADwa4QWAAAAAH6N0AIAAADArxFaAAAAAPg1QgsAAAAAv/b/AfGTmwvAL9V/AAAAAElFTkSuQmCC", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:56.636352\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "infected.loc['US'][3:].plot()\n", "recovered.loc['US'][3:].plot()\n", @@ -161,13 +1613,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ - "infected.drop(columns=['Lat','Long'],inplace=True)\n", - "recovered.drop(columns=['Lat','Long'],inplace=True)\n", - "deaths.drop(columns=['Lat','Long'],inplace=True)" + "infected.drop(columns=['Lat','Long','Province/State'],inplace=True)\n", + "recovered.drop(columns=['Lat','Long','Province/State'],inplace=True)\n", + "deaths.drop(columns=['Lat','Long','Province/State'],inplace=True)" ] }, { @@ -181,14 +1633,134 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 133, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
infectedrecovereddeaths
2020-01-22100
2020-01-23100
2020-01-24200
2020-01-25200
2020-01-26500
............
2021-08-25382230290632272
2021-08-26383843600633564
2021-08-27387072940636720
2021-08-28387603630637254
2021-08-29387967460637531
\n", + "

586 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " infected recovered deaths\n", + "2020-01-22 1 0 0\n", + "2020-01-23 1 0 0\n", + "2020-01-24 2 0 0\n", + "2020-01-25 2 0 0\n", + "2020-01-26 5 0 0\n", + "... ... ... ...\n", + "2021-08-25 38223029 0 632272\n", + "2021-08-26 38384360 0 633564\n", + "2021-08-27 38707294 0 636720\n", + "2021-08-28 38760363 0 637254\n", + "2021-08-29 38796746 0 637531\n", + "\n", + "[586 rows x 3 columns]" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "def mkframe(country):\n", - " df = pd.DataFrame({ 'infected' : infected.loc[country][1:] ,\n", - " 'recovered' : recovered.loc[country][1:],\n", - " 'deaths' : deaths.loc[country][1:]})\n", + " df = pd.DataFrame({ 'infected' : infected.loc[country],\n", + " 'recovered' : recovered.loc[country],\n", + " 'deaths' : deaths.loc[country]})\n", " df.index = pd.to_datetime(df.index)\n", " return df\n", "\n", @@ -198,9 +1770,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 134, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAEyCAYAAAD3Dz9hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3deWDT9f3H8WeSNm3T+z5oy33fIAIqAhMFPOY9pyh4bjp0MC+mblO82O/n8Nj86byGuuFQf4pzup+KKKAiiijIWa5y9j7TM22T7++PtKEntNA2aft6uCzJ93wnAZLX9/P5fL8mwzAMREREREREfJTZ2wWIiIiIiIgcj0KLiIiIiIj4NIUWERERERHxaQotIiIiIiLi0xRaRERERETEpym0iIiIiIiIT1NoERERERERn6bQIiIiIiIiPk2hRUREREREfJpCi4iIiIiI+DSvhZZ169Zx0UUXkZSUhMlk4r333mvT+g899BAmk6nJLTg4uGMKFhERERERr/BaaCkrK2P06NE8++yzJ7X+3XffTWZmZoPbsGHDuPLKK9u5UhERERER8SavhZbZs2fz6KOPctlllzU7v6qqinvvvZdevXoRHBzMxIkTWbNmjWd+SEgICQkJnlt2djY7duzgpptu6qRXICIiIiIincHP2wW05IYbbuDAgQOsWLGCpKQkVq5cyaxZs9i6dSsDBw5ssvzLL7/MoEGDmDJliheqFRERERGRjuKTA/H37dvHP//5T95++22mTJlC//79ufvuuznrrLNYtmxZk+UdDgfLly9XK4uIiIiISDfkky0t33//PYZhMGjQoAbTHQ4H0dHRTZZ/9913KSkpYe7cuZ1VooiIiIiIdBKfDC0ulwuLxcKmTZuwWCwN5oWEhDRZ/uWXX+bCCy8kISGhs0oUEREREZFO4pOhZezYsTidTnJyck44RiU9PZ3PP/+c999/v5OqExERERGRzuS10FJaWsrevXs9z9PT09m8eTNRUVEMGjSIOXPmMHfuXJYuXcrYsWPJy8vjs88+Y+TIkZx//vme9f72t7+RmJjI7NmzvfEyRERERESkg5kMwzC8seM1a9Ywffr0JtPnzZvHq6++SnV1NY8++iivv/46R48eJTo6msmTJ7N48WJGjhwJuLuR9e7dm7lz5/LYY4919ksQEREREZFO4LXQIiIiIiIi0ho+ecpjERERERGROgotIiIiIiLi0zp9IL7L5SIjI4PQ0FBMJlNn715ERERERHyEYRiUlJSQlJSE2dxye8ophZYlS5Zw//33s2DBAp5++ulWrZORkUFKSsqp7FZERERERLqRw4cPk5yc3OL8kw4tGzdu5MUXX2TUqFFtWi80NNRTWFhY2MnuXkREREREuji73U5KSoonI7TkpEJLaWkpc+bM4aWXXuLRRx9t07p1XcLCwsIUWkRERERE5ITDRk5qIP78+fO54IILmDFjxgmXdTgc2O32BjcREREREZHWanNLy4oVK9i0aRPfffddq5ZfsmQJixcvbnNhIiIiIiIi0MaWlsOHD7NgwQKWL19OYGBgq9a57777KC4u9twOHz58UoWKiIiIiEjPZDIMw2jtwu+99x6XXnopFovFM83pdGIymTCbzTgcjgbzmmO32wkPD6e4uLjFMS0ul4uqqqrWliVdgNVqPe5p7ERERESk52lNNoA2dg8755xz2Lp1a4NpN9xwA0OGDGHRokUnDCytUVVVRXp6Oi6X65S3Jb7DbDbTt29frFart0sRERERkS6mTaElNDSUESNGNJgWHBxMdHR0k+knwzAMMjMzsVgspKSk6Mh8N1F3QdHMzExSU1N1UVERERERaZNTurhke6upqaG8vJykpCRsNpu3y5F2FBsbS0ZGBjU1Nfj7+3u7HBERERHxEsMwyClxsCPTzg97M1q1zimHljVr1pzqJjycTieAuhB1Q3WfqdPpVGgRERER6aGKy6uZu+xbthwuAsDlKG/Vej7Z/0rdh7offaYiIiIiPZthGNz19ha2HC7CbIL+scHMGh7fqnV9qnuYiIiIiIh0P5nFFfxu5TZW78rBajHzzm1nMDI5HLvdzku3nHh9n2xp6WqmTZvGwoULW738rl27mDRpEoGBgYwZM6bD6jpZJpOJ9957z9tliIiIiEgXV1nt5C+r9/CTP631BJY/Xj6SkcnhbdqOWlrawbvvvtumcRoPPvggwcHBpKWlERIS0i41mEwmVq5cySWXXNIu2xMRERERORVbjxRz2/JNHCmsAGB870iWXDaSQfGhbd6WQks7iIqKatPy+/bt44ILLqB3794dVJGIiIiISOcrrqjm2/QCdmbaeXHdfkodNSSGB/Lb2UP46eikkx7nrO5h7aB+97A+ffrw+OOPc+ONNxIaGkpqaiovvviiZ1mTycSmTZt4+OGHMZlMPPTQQwAcPXqUq666isjISKKjo7n44os5cOBAg/387W9/Y/jw4QQEBJCYmMjtt9/u2SfApZdeislk8jwH+Pe//8348eMJDAykX79+LF68mJqaGs/8PXv2cPbZZxMYGMiwYcNYtWpVu78/IiIiItL9rdudy6THV3PL69/x5KrdlDpqmNg3ik9+czYXj+l1Sidm8umWFsMwqKh2emXfQf6Wk35jly5dyiOPPML999/P//7v/3Lbbbdx9tlnM2TIEDIzM5kxYwazZs3i7rvvJiQkhPLycqZPn86UKVNYt24dfn5+PProo8yaNYsff/wRq9XK888/z5133skf//hHZs+eTXFxMV999RUAGzduJC4ujmXLljFr1iwsFgsAH3/8Mddeey1//vOfmTJlCvv27eMXv/gF4O6i5nK5uOyyy4iJiWHDhg3Y7fY2jc0REREREQE4UljOghU/UFHtJDXKxml9IhmWGMa1k3oT6G855e37dGipqHYy7A8fe2XfOx6eic16cm/P+eefz69+9SsAFi1axFNPPcWaNWsYMmQICQkJ+Pn5ERISQkJCAuBuQTGbzbz88sueoLRs2TIiIiJYs2YN5513Ho8++ih33XUXCxYs8OxnwoQJgPvCjQARERGebQI89thj/Pa3v2XevHkA9OvXj0ceeYR7772XBx98kE8//ZSdO3dy4MABkpOTAXj88ceZPXv2Sb1uEREREelZKqudvLr+AP/z+V5KKmsYlRzO27dOJsDv1INKfT4dWrqqUaNGeR6bTCYSEhLIyclpcflNmzaxd+9eQkMbDkqqrKxk37595OTkkJGRwTnnnNOmOjZt2sTGjRt57LHHPNOcTieVlZWUl5ezc+dOUlNTPYEFYPLkyW3ah4iIiIj0PC6Xwb+2HOVPH+/maJF7oP2wxDCemzOu3QML+HhoCfK3sOPhmV7b98lqfCYxk8mEy+VqcXmXy8X48eNZvnx5k3mxsbGYzSc39MjlcrF48WIuu+yyJvMCAwMxDKPJdF0EUkRERESOp9RRwx1vfM/nabkAJIYHctd5g7l0bC8s5o75LenTocVkMp10F62uZNy4cbz55pvExcURFhbW7DJ9+vRh9erVTJ8+vdn5/v7+OJ0Nx/+MGzeOtLQ0BgwY0Ow6w4YN49ChQ2RkZJCUlATA119/fQqvRERERES6o4P5Zbz8RTppWSXsyrJjr6whwM/Mr88ZyE1n9W2XcSvH0/0TQRcwZ84cnnjiCS6++GIefvhhkpOTOXToEO+++y733HMPycnJPPTQQ9x6663ExcUxe/ZsSkpK+Oqrr7jjjjuAY6HmzDPPJCAggMjISP7whz9w4YUXkpKSwpVXXonZbObHH39k69atPProo8yYMYPBgwczd+5cli5dit1u54EHHvDyuyEiIiIiviTHXsnVL24go7jSMy0+LIAXrjuNMSkRnVKDTnnsA2w2G+vWrSM1NZXLLruMoUOHcuONN1JRUeFpeZk3bx5PP/00zz33HMOHD+fCCy9kz549nm0sXbqUVatWkZKSwtixYwGYOXMmH3zwAatWrWLChAlMmjSJJ5980nN9GLPZzMqVK3E4HJx++uncfPPNDca/iIiIiEjPZRgGn2zP4ucvuQNLv9hgnvn5GD789Vmsu3d6pwUWAJPR3MCGDmS32wkPD6e4uLhJV6jKykrS09Pp27cvgYGBnVmWdDB9tiIiIiJdg9NlsGpHNs+t2cuPR4oBiAmx8r+3nkGfmOB23dfxskF96h4mIiIiIiIA7MstZf7y79mVVQKAzWrhhjP7cMuUfkTYrF6rS6FFRERERKQHe3PjId77IYOD+WVk2isxDAgP8mfOxFRuPKsvMSEB3i5RoUVEREREpCcyDIMX1u3nj/+3q8H0KQNjWPqz0cSF+k6XfoUWEREREZEexF5ZzTubjvD3DQfZn1sGwC/O7sfM4Qn0jrb5RMtKYwotIiIiIiI9QF6pg1e+TOfvXx+k1FEDQLDVwh3nDOTWqf29XN3xKbSIiIiIiHRDldVO/rp2Hz8eKSajqIL9eWVU1bgAGBgXwtwz+nDp2F6EBPh+JPD9CkVEREREpNUqqpx8uTePP6/ew9ajxQ3mjU4OZ/70AcwYGo/ZbPJShW2n0CIiIiIi0sUVlVexakc2/7cti6/25uGobVGJCraycMZA+kQHkxwZRN+YYEymrhNW6ii0iIiIiIh0IYZh8MWePN7edISs4gryS6s4VFBOjevYNeN7RQQxY2gcv5zan6SIIC9W2z4UWqRd9OnTh4ULF7Jw4UJvlyIiIiLSrRSWVfHj0WK2HC7ixyNFbDlSTG6Jo8lyQxJCmT0ikZkj4hkcH9olW1RaotAiIiIiIuJFhmFQXFHNkcIKDheU88XePDYfKqLUUUOZo4b8sqom6wT6m7n69FQm9IkiOthKr8ggkiNtXqi+cyi0dICqqiqsVqu3y2izrlq3iIiIiK8wDANHjYtSRw2llTWUOmooqb0vrqhmd3YJ2fZKHNUuKqqdZNsrOVJY4TkFcUv6xgQzKjmcUckRjEkJZ1hiOEFWSye9Ku9TaGkH06ZNY8SIEVitVl5//XWGDx/O888/z9133826desIDg7mvPPO46mnniImJgYAl8vFE088wUsvvcThw4eJj4/nl7/8JQ888AAAW7duZcGCBXz99dfYbDYuv/xynnzySUJCQvj444+5+OKLycrKIiIiwlPHr3/9a7Zs2cLatWsBWL9+Pb/97W/ZuHEjMTExXHrppSxZsoTg4GDA3aXr5ptvZu/evaxcuZJLLrmE11577YTr5eTkcNNNN/Hpp5+SkJDAo48+2onvtoiIiEj7c7oMd9Cobd2oCxru4FFNSWUNZQ4npY7qBkGkwbK1y9cfW9IWMSEBJEcGMTQxjGmDY4kJsRIc4EdiWBDhNv92fsVdi2+HFsOA6nLv7NvfBm3oB/jaa69x22238dVXX1FQUMDUqVO55ZZbePLJJ6moqGDRokX87Gc/47PPPgPgvvvu46WXXuKpp57irLPOIjMzk127dgFQXl7OrFmzmDRpEhs3biQnJ4ebb76Z22+/nVdffZUZM2YQERHBO++8w0033QSA0+nkrbfe4uGHHwbcoWfmzJk88sgjvPLKK+Tm5nL77bdz++23s2zZMk/dTzzxBL///e/53e9+1+r1rr/+eg4fPsxnn32G1Wrl17/+NTk5Oaf+nouIiIi0UVWNC3tlNfaKauyVNbX37pBR97i0soaKaiflVU4qa+/rt4SUOmoor3K2a10mEwRb/QgJ8CMk0H0fGuhHn+hgekfbCPC3EOBnJi40gORIG70ignpUy0lbmQzDOLkoeJLsdjvh4eEUFxcTFhbWYF5lZSXp6en07duXwMBAqCqDx5M6s7xj7s8Aa3CrFp02bRrFxcX88MMPAPzhD3/gm2++4eOPP/Ysc+TIEVJSUkhLSyMxMZHY2FieffZZbr755ibbe+mll1i0aBGHDx/2tG785z//4aKLLiIjI4P4+HgWLFjAtm3bWL16NQCffPIJF110EVlZWURGRjJ37lyCgoJ44YUXPNv98ssvmTp1KmVlZQQGBtKnTx/Gjh3LypUrPcucaL1Dhw4xePBgNmzYwMSJEwHYtWsXQ4cO5amnnmpxIH6Tz1ZERESkVrXTRUFZFbklDvLLqsgrcZBf5qC0soayKidlDvd9STPhpLLa1a61WC1mT8ioCxyhAX4E13tcP4g0DiUhAf6EBPph87d0qeugeMvxskF9vt3S0oWcdtppnsebNm3i888/JyQkpMly+/bto6ioCIfDwTnnnNPstnbu3Mno0aM9gQXgzDPPxOVykZaWRnx8PHPmzGHy5MlkZGSQlJTE8uXLOf/884mMjPTUsHfvXpYvX+7ZhmEYuFwu0tPTGTp0aJO6W7Pe7t278fPza7DekCFDGnRTExEREQH3FdmziivJLK4ky17hvq+9FZZXUVBWRX5ZFUXl1ae8r9AAP8KC/AkNdN+HBfoTFuRHWKA/IQF+BFktBPlbsFktBFktjUKJO2gEB1gI8FNrhy/y7dDib3O3eHhr321QP2C4XC4uuugi/uu//qvJcomJiezfv/+42zIMo8VT1NVNP/300+nfvz8rVqzgtttuY+XKlQ26fblcLn75y1/y61//usk2UlNTm627NeulpaU1qENERER6rhqniyx7JYcLKjhcWM6RgnIO154B63BhOdn2pqflbYnFbCIq2EpMSAAxIVaig62EBfljs/oREmDBZvVrNpCEBblDiUWtGt2ab4cWk6nVXbR8ybhx43jnnXfo06cPfn5N3+KBAwcSFBTE6tWrm+0eNmzYMF577TXKyso8oeKrr77CbDYzaNAgz3LXXHMNy5cvJzk5GbPZzAUXXNCghu3btzNgwIA213689YYOHUpNTQ3fffcdp59+OgBpaWkUFRW1aT8iIiLSNThqnOzLKSMt287B/HKOFlZwtMgdUjKLKk846DzQ30xSeBAJ4YEkhAeSGB5IQlgg0SEBRNqsRIe4g0pEkL+6U0mLfDu0dFHz58/npZde4uqrr+aee+4hJiaGvXv3smLFCl566SUCAwNZtGgR9957L1arlTPPPJPc3Fy2b9/OTTfdxJw5c3jwwQeZN28eDz30ELm5udxxxx1cd911xMfHe/YzZ84cFi9ezGOPPcYVV1zRYKzIokWLmDRpEvPnz+eWW24hODiYnTt3smrVKv7yl7+0WPuJ1hs8eDCzZs3illtu4cUXX8TPz4+FCxcSFNT1r7QqIiLS0xWUVbH1aDHbjhazK6uEtCw7+3PLjhtM/C0mekUEkRJlIznSRkpUECmRNlKibKREBhEVbFUPDTllCi0dICkpia+++opFixYxc+ZMHA4HvXv3ZtasWZjNZgB+//vf4+fnxx/+8AcyMjJITEzk1ltvBcBms/Hxxx+zYMECJkyY0OCUx/UNHDiQCRMmsHHjRp5++ukG80aNGsXatWt54IEHmDJlCoZh0L9/f6666qrj1t6a9ZYtW8bNN9/M1KlTiY+P59FHH+X3v/99O7xzIiIi0llySxxsqw0odUElo7iy2WXDAv0YkhBG35hgekUG0SsiiORId1CJDwtU1yzpcL599jDpNvTZioiIeIfTZXCooJw92SXsyLSz7aidbUeLybI3H1D6xQQzvFc4wxLDGJIQyuCEUBLDA9VaIh1CZw8TERER6YEqq518f7CQDfvz+Xp/PluOFFNV0/S0wCaTO6CM7BXOiNrb8KQwQgN79kUMxTcptIiIiIh0YcUV1fxwqJBNBwv5Jr2AzYeKqHI2DCkBfmYGxIUwOD6UEb3CGZkcztDEMEIC9FNQugb9SRURERHpQorLq/ksLZtv0wvZdLCAPTmlNO7snxAWyKR+UUzuH82EPlH0jg7WuBPp0hRaRERERHyYYRjsyLSzbncea3fn8N2BwiZn8+oTbWN87yhO6xPJ5H7R9I62aQyKdCsKLSIiIiI+pqCsii/25LJudx7r9uSSW9LwIo1DEkI5e1As43tHMr53JDEhAV6qVKRzKLSIiIiIeJlhGOzMLOHTndms3pXDj0eKGnT5slktnNE/mrMHxXL2wFj6xHS9i2+LnAqFFhEREREvqHa6+Da9gFU7slm1I5ujRRUN5g9JCGXq4Fim1raoBPhZvFSpiPcptIiIiIh0gspqJxsPFPDN/gL25JSwfl8+JZU1nvmB/mbOGhDLucPimDY4jvgwXddMpE6bQsvzzz/P888/z4EDBwAYPnw4f/jDH5g9e3ZH1CYiIiLSZRmGwb7cMtbtzmXt7ly+Sc+nsrrhqYijg62cMzSOc4clcNaAGIKsak0RaU6bQktycjJ//OMfGTBgAACvvfYaF198MT/88APDhw/vkAK7smnTpjFmzBiefvrpDtvHmjVrmD59OoWFhURERHTYfkREROT4DMPgSGEF244Ws25PHut25zbp8pUQFshZA2MYmhjGmJRwxqRE6lTEIq3QptBy0UUXNXj+2GOP8fzzz7NhwwaFlk7QGSFIREREWq/MUcMXe3JZk+a+ZdkrG8y3Wsyc3jeKqYNiOXtQLIPiQ3QqYpGTcNJjWpxOJ2+//TZlZWVMnjy5xeUcDgcOx7HT9Nnt9pPdpYiIiIhXOV0Ge3JK+P5gEZ/tyuaLPXk4ao51+fK3mOgfG8KkftFMHRzLpL7R6vIl0g7MbV1h69athISEEBAQwK233srKlSsZNmxYi8svWbKE8PBwzy0lJeWUCvZVZWVlzJ07l5CQEBITE1m6dGmD+VVVVdx777306tWL4OBgJk6cyJo1azzz8/Pzufrqq0lOTsZmszFy5Ej++c9/euZff/31rF27lmeeeQaTyYTJZPKMLQLYtGkTp512GjabjTPOOIO0tDTPvC1btjB9+nRCQ0MJCwtj/PjxfPfddx32XoiIiHQX+aUOVu/M5k8fp3HNSxsY9dDHzHr6C+5fuZVPd+bgqHGRGmXjhjP78NqNp7P1oZl8tPBsHvrpcKYPjlNgEWknbW5pGTx4MJs3b6aoqIh33nmHefPmsXbt2haDy3333cedd97peW6321sdXAzDoKKm4sQLdoAgv6A2Nd/ec889fP7556xcuZKEhATuv/9+Nm3axJgxYwC44YYbOHDgACtWrCApKYmVK1cya9Ystm7dysCBA6msrGT8+PEsWrSIsLAwPvzwQ6677jr69evHxIkTeeaZZ9i9ezcjRozg4YcfBiA2NtYTXB544AGWLl1KbGwst956KzfeeCNfffUVAHPmzGHs2LE8//zzWCwWNm/ejL+/f7u+XyIiIl1dtdPFrswSfjhcyPcHC/nhcBEH88ubLBdstTA6JYKJfaOZOSKewfGh6vIl0sFMhlH/0kVtN2PGDPr3788LL7zQquXtdjvh4eEUFxcTFhbWYF5lZSXp6en07duXwMBAyqvLmfjGxFMp76R9c8032PxtrVq2tLSU6OhoXn/9da666ioACgoKSE5O5he/+AV33HEHAwcO5MiRIyQlJXnWmzFjBqeffjqPP/54s9u94IILGDp0KH/605+A5se01A3E//TTTznnnHMA+M9//sMFF1xARUUFgYGBhIWF8Ze//IV58+adzFvRLhp/tiIiIt6WX+rg+0NFbDpYyPeHCvnxSFGTs3sBDIgLYWxKBON6RzI2NYKBcaEaPC/STo6XDeo75eu0GIbRYMxKT7Rv3z6qqqoajO2Jiopi8ODBAHz//fcYhsGgQYMarOdwOIiOjgbcY4T++Mc/8uabb3L06FHPWKDg4NZd8XbUqFGex4mJiQDk5OSQmprKnXfeyc0338zf//53ZsyYwZVXXkn//v1P6TWLiIh0JZXVTnZnl7DlSDE/1IaUA820ooQF+jE21R1OxqVGMjolgvAg9U4Q8bY2hZb777+f2bNnk5KSQklJCStWrGDNmjV89NFHHVJckF8Q31zzTYdsuzX7bq0TNVa5XC4sFgubNm3CYmnYtzUkJASApUuX8tRTT/H0008zcuRIgoODWbhwIVVVVa2qoX53r7omapfLfbTooYce4pprruHDDz/k//7v/3jwwQdZsWIFl156aatfo4iISFeSWVzBV3vz+WZ/Ptsy7OzJLqHG1fT7emBcCONSIxnfO5JxvSPoFxOCWa0oIj6nTaElOzub6667jszMTMLDwxk1ahQfffQR5557bocUZzKZWt1Fy5sGDBiAv78/GzZsIDU1FYDCwkJ2797N1KlTGTt2LE6nk5ycHKZMmdLsNr744gsuvvhirr32WsAdOPbs2cPQoUM9y1itVpxO50nVOGjQIAYNGsRvfvMbrr76apYtW6bQIiIi3UZxeTXfpOfz1d48vtybx77csibLRNr8GdErnLGpkYxLjWBsSiThNrWiiHQFbQotr7zySkfV0aWFhIRw0003cc899xAdHU18fDwPPPAAZrP75GyDBg1izpw5zJ07l6VLlzJ27Fjy8vL47LPPGDlyJOeffz4DBgzgnXfeYf369URGRvLkk0+SlZXVILT06dOHb775hgMHDhASEkJUVNQJa6uoqOCee+7hiiuuoG/fvhw5coSNGzdy+eWXd9j7ISIi0tGOFJazfl8+3x8sZNPBQvbklDaYbzbByOQIzugfzZiUCEb0CicpPFAD5kW6qFMe0yJuTzzxBKWlpfz0pz8lNDSUu+66i+LiYs/8ZcuW8eijj3LXXXdx9OhRoqOjmTx5Mueffz4Av//970lPT2fmzJnYbDZ+8YtfcMkllzTYxt133828efMYNmwYFRUVpKenn7Aui8VCfn4+c+fOJTs7m5iYGC677DIWL17c/m+CiIhIB3G6DDYfLmT1zhxW78whLbukyTL9YoI5c0AMZw6IYXK/aLWiiHQjp3z2sLZqy9nDpPvQZysiIm11pLCcL/fk8cUed5ev4opqzzyL2cSYlAgm9Ilyj0dJjSA6JMCL1YrIyei0s4eJiIiItIdSRw0b9uXzxZ5cvtiTx/68huNSQgP9mDY4jhlD45g6KJYIm9VLlYpIZ1NoEREREa9wugx+PFLkaU35/lBhgzN81bWmTBkYw5SBsYxODsfPYvZixSLiLQotIiIi0mmOFJbzxZ48vtiTy1d78xt0+QLoE23jrNqQMrl/NGGBGpciIgotIiIi0sHKHDW8t/kob393hM2HixrMCw3048z+MUwZFMOUAbGkRvv+pQ5EpPP5ZGjp5HMDSCfQZyoi0vPsyrLz5sbD/O+mI5RU1gDuUxGPS41kysBYpgyKYVQvdfkSkRPzqdBSd7X4qqoqgoJaf0V68X1VVVXAsc9YRES6p6LyKt7fksHb3x1h69Fjp+3vE23j2km9uXhML2JDdZYvEWkbnwotfn5+2Gw2cnNz8ff391ycUbo2l8tFbm4uNpsNPz+f+iMnIiLt5LsDBSxbf4BV27OpcroA8DObOGdoHFefnsrZA2Mxm3VhRxE5OT71C9JkMpGYmEh6ejoHDx70djnSjsxmM6mpqboSsYhIN/PN/nyeWb2H9fvyPdOGJIRy5WkpXDImSddOEZF24VOhBcBqtTJw4EBPdyLpHqxWq1rORES6ka/35fPM6t1s2F8AuFtVLh+XzHWTezM8KUwHqUSkXflcaAH3UXldNV1ERMT3bNifz5OrdvNtujus+FtM/Oy0FG6b1p/kSJ35S0Q6hk+GFhEREfEdhmHwTXoBf/lsD1/tdXcDs1rM/Pz0FG6d2p+kCJ08R0Q6lkKLiIiItOjHI0U8/O8dfHewEHC3rFw1IYX50weQGK6wIiKdQ6FFREREmqisdvLkqt289MV+DAMC/MxcMT6ZW6f2JyVK3cBEpHMptIiIiEgD244Wc+dbm9mdXQrAxWOSuG/2UBLCNd5URLxDoUVEREQAKHXU8OQnu3l1fTouA2JCrCy5bBTnDov3dmki0sMptIiIiPRwhmHwwY+ZPPbhTrLslQBcMCqRh386XNdZERGfoNAiIiLSg207Wszif29n4wH3QPve0TYevngEUwfFerkyEZFjFFpERER6IKfL4H8+38vTn+7GZUCgv5nbpg7gl1P7Eehv8XZ5IiINKLSIiIj0MNn2Shau2MzX+93XXLlgVCIPnD9U11sREZ+l0CIiItKDrNudy2/e3Ex+WRU2q4VHLh7B5eOTvV2WiMhxKbSIiIj0AE6XwTOf7uYvn+/FMGBoYhjPXjOW/rEh3i5NROSEFFpERES6uZySShb881h3sKtPT+XBi4Zp7IqIdBkKLSIiIt2Uy2Xw9w0HWfpJGvbKGmxWC0suG8nFY3p5uzQRkTZRaBEREemG8ksdLHxzM1/syQNgeFIYz/x8LAPi1B1MRLoehRYREZFu5mhRBde9/A3788oI9Ddz//lDmTOxNxazyduliYicFIUWERGRbmRvTinXvfINmcWV9IoIYtkNExgUH+rtskRETolCi4iISDex9Ugx85Z9S0FZFf1jg/nHzRNJDNe1V0Sk61NoERER6Qa+3pfPLa9/R6mjhlHJ4bx6w+lEBVu9XZaISLtQaBEREeniPt2Rza/e+J6qGheT+kXx0tzTCA3093ZZIiLtRqFFRESkC1vx7SHuX7kVlwEzhsbz7DVjdf0VEel2FFpERES6IMMweGb1Hp7+dA8AV45PZsllI/GzmL1cmYhI+1NoERER6WJqnC5+9942Vmw8DMAdPxnAnecOwmTSKY1FpHtSaBEREelCapwubn/jBz7anoXZBA9fPIJrJ/X2dlkiIh1KoUVERKSLMAyDe9/5kY+2Z2H1M/OXq8cyc3iCt8sSEelwCi0iIiJdxJ9X7+Xd749iMZv4n2vGce6weG+XJCLSKTRaT0REpAt4f0sGT326G4DHLhmhwCIiPYpCi4iIiI9btzuXu97aDMCNZ/bl56enercgEZFOptAiIiLiw344VMit/9hEtdPgwlGJ/O6Cod4uSUSk0ym0iIiI+Khv9udz/bKNlFc5mTIwhid/NgazWac1FpGeRwPxRUREfNC73x9h0Ts/Uu00GJcawV+vHY/VT8caRaRnUmgRERHxIYZh8NSq3fz5s70AnD8ygSd/NoZAf4uXKxMR8Z42HbJZsmQJEyZMIDQ0lLi4OC655BLS0tI6qjYREZEexekyuPOtLZ7Actu0/jx79TgFFhHp8doUWtauXcv8+fPZsGEDq1atoqamhvPOO4+ysrKOqk9ERKTHeHJVGit/OIqf2cR/XT6SRbOGaAyLiAhgMgzDONmVc3NziYuLY+3atZx99tmtWsdutxMeHk5xcTFhYWEnu2sREZFuo9RRw58+TuPV9QcAeOqq0Vw6Ntm7RYmIdILWZoNTGtNSXFwMQFRUVIvLOBwOHA5Hg8JERETELa/UwXWvfMvOTPf34x0/GaDAIiLSyEmfhsQwDO68807OOussRowY0eJyS5YsITw83HNLSUk52V2KiIh0K9n2Sq564Wt2ZtqJCQng9RtP567zBnu7LBERn3PS3cPmz5/Phx9+yJdffklycstHhJpraUlJSVH3MBER6dEO5JUxb9m3HMwvJzE8kOU3T6RfbIi3yxIR6VQd2j3sjjvu4P3332fdunXHDSwAAQEBBAQEnMxuREREuqXPdmXzmze3UFxRTUpUEG/cPImUKJu3yxIR8VltCi2GYXDHHXewcuVK1qxZQ9++fTuqLhERkW6npLKaRz/YyZvfHQZgbGoEL1w7nriwQC9XJiLi29oUWubPn88bb7zBv/71L0JDQ8nKygIgPDycoKCgDilQRESkO9ieUcwvXt/E0aIKTCa48cy+3DNzsK7BIiLSCm0a02IyNX+u+GXLlnH99de3ahs65bGIiPQkldVOPvgxk8Xvb6fEUUPvaBtPXDGa0/u2fOZNEZGeokPGtJzCJV1ERER6nG1Hi7n1H5s4UlgBwOl9onj5+tMIC/T3cmUiIl3LKV2nRURERJq3akc2t7/xPY4aFwlhgVw7KZWbp/RTdzARkZOg0CIiItLO3tx4iPtXbsPpMpg2OJZnfj6W8CC1roiInCyFFhERkXZSVeNi8b+3s/ybQwBcNq4X/335KPwsJ30tZxERQaFFRESkXWTbK/nV8u/ZdLAQkwl+M2MQt08fgNnc/ElsRESk9RRaRERETtF3Bwq4bfn35JY4CA30488/H8v0IXHeLktEpNtQaBERETkF//z2EL9/bxs1LoPB8aG8cN14+sQEe7ssEZFuRaFFRETkJC37Kp3F/94BwAWjEvnvy0cRHKCvVhGR9qZ/WUVERE7Ca+sPeALLbdP6c+/MwS1ehFlERE6NTmciIiLSRq9/fYAH398OKLCIiHQGhRYREZE2eG39Af7wL3dguXWqAouISGdQ9zAREZFWqHG6eOSDHbz29UEAfnl2PxbNUmAREekMCi0iIiInUFxezfw3vufLvXkA3H3eIOZPH6DAIiLSSRRaREREjiOjqIJ5f/uWPTml2KwWnrpqDDOHJ3i7LBGRHkWhRUREpAW7s0uY97dvySyuJCEskGU3TGBoYpi3yxIR6XEUWkRERJrx3YECbnx1I/bKGgbEhfDajafTKyLI22WJiPRICi0iIiKNrNqRze1vfI+jxsW41Aj+dv0EImxWb5clItJjKbSIiIjUs+LbQ9y/cisuA84ZEsez14wjyGrxdlkiIj2aQouIiAhgGAZ/+WwvT67aDcDPTkvm8UtH4mfRJc1ERLxNoUVERHo8p8vgwfe38Y8NhwC44ycDuPPcQTqlsYiIj1BoERGRHi2/1MHCNzfzxZ48TCZY/NPhzJ3cx9tliYhIPQotIiLSY206WMjtb3xPZnElQf4Wlv5sNOePTPR2WSIi0ohCi4iI9Egf/JjBb97cTLXToF9sMM/PGc/ghFBvlyUiIs1QaBERkR7n718f4A/vb8cwYObweJb+bAwhAfpKFBHxVfoXWkREegzDMHj60z08s3oPANdOSmXxT0dgMWvAvYiIL1NoERGRHqGqxsX9K7fyv5uOALDgnIEsnDFQZwgTEekCFFpERKTbKyqvYv4b3/PV3nwsZhOPXDyCayamerssERFpJYUWERHp1j7alsnv3ttOXqkDm9XC/8wZx/TBcd4uS0RE2kChRUREuqW8UgcPvr+dD3/MBGBgXAhP/3wMw5PCvVyZiIi0lUKLiIh0K4Zh8P6WDB56fzuF5dVYzCZum9qfO84ZQICfxdvliYjISVBoERGRbqOy2smid37kX5szABiSEMqfrhzNiF5qXRER6coUWkREpMszDIPVO3N46tPdbM+w42c2cftPBvCraQOw+pm9XZ6IiJwihRYREenSCsuqWPTOj3yyIxuA8CB/nr92HGf0j/FyZSIi0l4UWkREpMvasD+f37y5mcziSvwtJm48qy83ndWXuNBAb5cmIiLtSKFFRES6nGqni798tpdnP9uDy4B+McH8+eqxGrsiItJNKbSIiEiXsulgIb9950f25JQC8LPTknnwouEEB+grTUSku9K/8CIi0iUYhsGyrw7w+H92UuMyiA628uBPh/PT0UneLk1ERDqYQouIiPi8UkcNi9750XOhyAtHJfLYJSMJt/l7uTIREekMCi0iIuLTdmeX8Kvl37M3pxQ/s4kHLhjK9Wf0wWQyebs0ERHpJAotIiLik5wug1e+3M+fPtlNVY2L+LAAnpszjvG9o7xdmoiIdDKFFhER8TkH88u4++0tbDxQCMC0wbE8ccVoYkMDvFyZiIh4g0KLiIj4DEeNk9fWH+DpT/dQXuUk2Grh9xcO46oJKeoOJiLSgym0iIiIT9hyuIjfvLmZ/XllAEzqF8UTV4wmJcrm5cpERMTbFFpERMSrnC6Dv67dx1OrdlPjMogLDeDu8wZzxfhkzGa1roiICJjbusK6deu46KKLSEpKwmQy8d5773VAWSIi0hOkZZVwxV/X88THadS4DM4fmcAnvzmbn01IUWARERGPNre0lJWVMXr0aG644QYuv/zyjqhJRES6uTJHDc+v2cdf1+6jxmUQbLXw4E+Hc+X4ZI1dERGRJtocWmbPns3s2bM7ohYREenmqmpcrNh4iD+v3kteqQOAGUPjeeSS4SSGB3m5OhER8VUdPqbF4XDgcDg8z+12e0fvUkREfEyN08XKH47y58/2cLigAoDe0Tbumz2EmcMT1LoiIiLH1eGhZcmSJSxevLijdyMiIj7I6TL495YMnlm9h/Tas4LFhASw4JwBXDUhFatfm4dWiohID9ThoeW+++7jzjvv9Dy32+2kpKR09G5FRMSLapwu/m9bFn9evYc9OaUARNr8uXVqf66b3BubVSevFBGR1uvwb42AgAACAnQFYxGRniDHXsmKjYd545tDZNkrAQgL9OMXZ/fj+jP7EhKgsCIiIm2nbw8RETklhmHwbXoBr284yMfbsqhxGQBEB1u5dlJvbprSl7BAfy9XKSIiXVmbQ0tpaSl79+71PE9PT2fz5s1ERUWRmprarsWJiIjvKnXUsPKHo/zj64OkZZd4po/vHcl1k3oze2QCAX4WL1YoIiLdRZtDy3fffcf06dM9z+vGq8ybN49XX3213QoTERHfU1xezepd2Xy8PYt1u/OoqHYCEORv4ZKxSVw7qTfDk8K9XKWIiHQ3bQ4t06ZNwzCMjqhFRER8UFZxJZ/syOLj7Vls2F+A03XsO6BfTDDXTurN5eOTCQ9SFzAREekYGtMiIiJN7M0p5ePtWXyyI5sth4sazBscH8rM4fGcNzyB4UlhusaKiIh0OIUWERGhuKKajekFfL0/nzVpOezLLfPMM5lgbEoEM4cnMHN4An1igr1YqYiI9EQKLSIiPZC9sprvDhTw9b58NuwvYHtGMfV6feFvMTG5fwwzh8dz7tB44sICvVesiIj0eAotIiI9QKmjho0HCtiwL58N+/PZerRhSAH3+JSJ/aKZ3D+aaYNjdZpiERHxGQotIiLdTEWVk20ZxWw+VMTWo8VszygmPa+sSUjpE21jcv9oJvWLZmLfaBLC1ZoiIiK+SaFFRKQLq6x2siurhG1Hi9meYWfL4SLSsksanOGrTu9oG5P6ultSJvaLIjE8yAsVi4iItJ1Ci4hIF1FSWc2ODDvbMuxszyhm+1E7e3NLmw0osaEBjEmJYHRyOMN7hTM8KYy4ULWkiIhI16TQIiLiYyqrnaTnlbEvt5S9OaXsyS5le0YxB/LLm10+OtjqCSYje4UzJiWCxPBAnYpYRES6DYUWEREvMQyDI4UV7MoqYVemnV1ZJezMsnOgmfEndXpFBDEsKYwRSe6QMqJXOPFhAQooIiLSrSm0iIh0gpLKanZnl7Azs4RdWXZ2ZZaQllVCiaOm2eXDAv0YEBdC/9gQBsSFMDwpnGFJYUQFWzu5chEREe9TaBERaUeV1U4O5JexN6eU3Vkl7Mxyh5TDBRXNLu9vMTEgLpShCaEMSQxlSEIYQxJCiQ1V64mIiEgdhRYRkZNQXFHN3pxS9uWUesae7M0t5XBBeYtduxLCAj3BZGjtfb/YYPwt5s4tXkREpItRaBERaYZhGOSWOEjLLmF3dilHCyvIKKogs7iCo0UV5JVWtbhuaG3XroFxIQxNDPO0nkSqa1fXZM+EfZ9BWQ6Mmwe2KG9XJCLS4yi0iEiPZhgGuaUOT6vJnpxS0rJKSMsuoai8+rjrJoYHesac9I8LoX9sMAPiQogNUdeubsGeCZ89Aj++Ca7asUcuJ5x9t3frEhHpgRRaRKTHKCqvYldWCbuz3YPg02of2yubHwxvNkGf6GAGxofQOzqYpPBAkiKCSIoIok9MMCEB+ie02zEMyNwCW1bAD/+AqpKG88vzvVOXiEgPp29cEel2isur2Z3jDiR7skvZk+Pu4pVb4mh2eZMJUqNsDKhtNRmcEMqg+FAGxIUQ6G/p5OrFK+yZsPUtd1jJ2XFseq/xMPu/3d3DPn8Mqpu/Vo6IiHQshRYR6bIqqpzszSklLbuEtCw7adnuM3Zl2StbXCc5MojB8aEMSghlcHwoA+PdpxVWOOmB8vbAd8vg0Hp364rhck+3BMCQ82H01TDgXDCb4dDX7nnVzZ8FTkREOpZCi4h0CQVlVWw+XMjmw8WkZdnZnV3KgfwyjBbO1JUUHsjA+FAGxYcwMD6UgXHue3Xp6uEKD8KOf8GO9+DopobzUifD6J/DsEsgKKLhPP8g971aWkREvELf3iLic6qdLnZm2vnhUBE/HCrkh8NFHMxv/sdipM2fwQnu0wcPjA9hSEIoA+NDCQv07+SqxWcVHoDt77mDSsYP9WaYYPBsGHkFJJ8OESktb8Pf5r5XS4uIiFcotIiI12UWVxwLKIeK2Hq0GEeNq8ly/WODGZMSybCkMAbHhzI4IZSYEKvO1CUNlRfAnk9g76eQtRVydx2bZzJD7zNh2MUw9KcQGt+6bXpaWhRaRES8QaFFRDpVRZWTbRnFnoDyw6GiZseghAf5MzY1grEpkYxJjWBMcgThNrWeSAuyd8CG59yD6DM2g+E8Ns9khj5nubt9Db0IQuLavn1PS4u6h4mIeINCi4h0GJfLIC27hC2Hi9hypIgth4tJyy7B2eiS8RaziSEJoZ6QMjY1gr4xwWpBkeOrtLvP9rX7I9j/+bGB9ABxw92D6ZNPh17jIDjm1PallhYREa9SaBGRdlVUXsW6PXmsTctl7e5c8kqbnmY4LjSAMSkRjOsdydiUCEYmh2Oz6p8jOY6SbPdZvg6uh4NfQ16a+4KP9YPK0ItgxBWQOBqi+rbv/tXSIiLiVfqVICKnpNRRwzf78/l6Xz5f789nR6a9wRm9bFYLY1IiGJUcwejkcMakRpAYHuS9gsX3GQYUHXKfZvjAl+6gUrCv+WVjBsG4uTBgBsQN7biaPC0tLZ9OW0REOo5Ci4i0SbXTxZbDRXy5N48v9+Sx+XARNY26ew2OD2Xq4FimDYrltD5RWP3MXqpWfJrLBUUHIW+3+5azCzK+h/y94KxqtLAJ4kdA7zPct6Qx7uuphCa4rw7a0dQ9TETEqxRaROS4DMM9LuWrvfms35vHN+kFlDpqGizTO9rGGf1jmNw/mkl9o4gLC/RSteKTahzuIJK3G3J3u7t25e6G/D1Q00LLhdkPksa6A0rqGZA6qem1UzpT/e5hhtE5QUlERDwUWkSkidwSB+t257JuTy5f7c1vMi4l0ubPGQNiOKv2lhJl81Kl4jNqqqA8331NlPw97qvN5+1xB5TCAw3HntRnCYDoARA7CGIGQ+Iod4tKaCL4WTvzFRyfX20QN5zgrPat2kREegCFFhGhqsbF5sNFfLknlzW7c/nxSHGD+YH+Zk7vG82Z/aM5c0AMwxLDMJt1pLlHqSyGosNQfLj2/lDD52U5x18/IMw9/iR2cMP7yD5gtnTKSzgl/vWCeXW5QouISCdTaBHpgWqcLrYeLWb9vnw27M9n44ECKqsbHgkf0SuMaYPiOGtgDGNTIwjw6wI/LKXtnDVQlgslmVCa7b4vyT72vPiIO5Q4ik+8LZMZwpIhZgBED4SYgccCSkh81+5SZfEHk8Xd0lJd4d2uaiIiPZBCi0gP4HIZ7Mi0s2F/Puv35fNtM+NSYkKsTOoXzbTBcZw9KIa4UI1L6dKcNe7Wj8YhpPHzstyWu241FhQFESkQngIRqbX3tc/Dk93zzd30pAsmk7u1papEpz0WEfEChRaRbqiiysnOLDtbjxTz9b58NqTnU1Re3WCZ8CB/JvWL8gygHxgXoos5+jqX091Nq6LQfWsuhNQ9L8sFjBNuEnC3IITEuc/EFZLgvq+7hfU6FkoCQjr05fk8/6Da0KIziImIdDaFFpEurqi8iu0ZdrZnFNfe29mfW0qjsxATbLVwet9jIWVoYhgWjUvxPsNwBxB7hvtWkgnleVCW5w4epdnuEFKaDZVFbdu2yeLullU/hDQOJSEJ7qvFd4VxJd6m0x6LiHiNQotIF2EYBpnFlQ0Cyo4MO0eLmv8BFRNiZXhSOKf3jWJy/2hG9grH39JNu+74GsNwt4iU5riDR3m++1ZRAOUF7ml1IcWeATVt/BFsDXWPqQiOdZ9lKzTefR8S3/C5LVphpD3VP+2xiIh0KoUWER9T7XRxpLCCg/llHCoo52B+OWlZJezItFNQ1viCe24pUUEMTwxneFIYw3uFMTwpnLjQAHX3ak/Vle6w0eSW1/Bxeb773uk48Tbrs0VDWJI7bATHuVs/gmNrg0m8O5DYYtxhxeLfIS9RTkAtLSIiXqPQItKJDMOgrMpJbomDvFIHuSUODheUc7CgnEP55RwsKONoYUWTrl11LGYTA2JDGJ4UxrAkdzgZlhRGeJB+xLaZy+XuluUJHDlNA0hZbm1rSZ57LENbBYS5w4ctxh1KbNFgi3TfhyZBeK/aoJIE/jrxgc9TS4uIiNcotIicIsMwKHHUkFfiIK+0irzSY4HEfX9sWl6po8mphZsT6G8mNcpGalQwvaNt9K8NKoMTQgn0V3efFlWVN9P60UwYKc1xt4gYzrZt32Ktbf2IqW0NqXtc2ypii4HgaPd9SNyxI/PSPailRUTEaxRaRJrhdBkUlLnDRn5pFfll7kCSXxs88kuryCurIq/EQW6pg6qaVp4ytpbNaiEmJICYECvJkTZ6R9tIjbLRO9odUtS1q5Gq8tqzYmVCSZb73t7oeVkuVJW2fdtBkce6YTUJI7XTQ2q7awWEde1rjcip8YQWtbSIiHQ2hRbpMWqcLvLLqjwtIJ5WkcbPSx0UlFW12EWrJSEBfsSEWGvDSAAxoVZiQwKJCT02LbZ2us2qv3qA+4h1aba75cNzX++x/aj7iuvl+a3fpiWgNmjENgojsU3HitiidWVzaT1P9zC1tIiIdDb9cpIurarG5W4Fqe2ClVvXDatRl6y80qoWB7G3xGSCSJvVE0SiQwKIDnY/9zwOrQ0iIQEEWdVtqwFnDZRmuc+OVXwEHHZ316zcNHcIydvtDiSt5R8MYYm1Z8eqO2Vvvech8e4gEhCq1hDpGOoeJiLiNQot4pNKKqvJLK4ko6iCnBJHg4Hr9VtKiiuqT7yxeswmiAp2d8uKDQ3wdNE61jpyrDUkymbFT6cIbsrlcp+6tyTLHUpKsupdSyQLio+6g0ppVuuutG4JcJ8dKzjOHTxC6t2HJhy76npghMKIeJcG4ouIeI1Ci3S6iionmcUVnlCSWVxJZnEFGUXu+8yiSkocNa3enp/ZRHT94OHpmtXweUxIAJE2qy6o2JizpvY0vY1O21t3TZG6+/J8931pNrhaGRbN/u7WkbBe7rEjAaEQO+RYGIkf7p6uMCJdgVpaRES8RqFF2pWjxkl2sYOM4oomQSSjNpwUlbfuB29YoB9JEUHEhQUSV9sqEhsaUNtCciyUhAf5Y1YQcTMMOLoJCg+4L27oKHF3y6q0N3pce6ssdp/292TYYo51ywpNPNZCUnca37Bkd3cts1qrpJuoCy1tvRioiIicMoUWaTWXyyCvzOEOIkUVHC06FkoyiirIKK4kt6R1F9SzWS0khgeSFBFEYnggieFBJEU0vA8O6OF/PF1O9xHd6vLaW0W9+3qPq0rd40QKD0DhQchLa/u+TGb3oPS6wem2aLBFQVBUo8dR7qASHKcB7NLzaCC+iIjXnNSvwueee44nnniCzMxMhg8fztNPP82UKVPauzbpZC6XQW6p+2KHRworjt0Xuu+ziiupcp54jILVz0xSbRBJjAgkqdF9YngQYYF+Xe+UvoYBzmqoqTx2q65s+Xl1BdQ4jh84jjetrVdUr+Nvg17jITDc3R0rIAwCwxo9Djv2ODjW3UXLrBMJiByXuoedNMMwcBpOXIar4b3r2PO6W7PL1d432I7LiYGBYRh4/qt97P5f7ePa/Td+XH+9uuWBFuc13o/ntdWfZzS/jQbLN1dvo7rqttGa5RsvU/+1N95me7y+lupqy/IN6m+m3uZeX/33pMHjemf6rP8Z1n+/T7RuW5dv077qvTdN1jWa7sNouJM21Xe8fZ3Uuieor6X9GYaBy3B5lq17bBgN/5y5ase9Vpe1rgdOm0PLm2++ycKFC3nuuec488wzeeGFF5g9ezY7duwgNTW1rZuTTmQYBvllVU3CyOGCco4WVnCkqOKE1xsxmyA+LNDTSpIUEURSvceJ4YFEBVt9J5AYBjir3OHBUQJZW93jNuqHipqK5sNHdVntWI88dzeqmsrWDSzvCP429w8mz329x35BEJEKcUPdQaXfVHcIEZEW1X2punCBAS5cDb5oG/+Adt+qcfpZcFUV4yw+cPwf1O34w7y55VrcTu3yLlzHXb/Fel3OZl97c4/rXptnX41ea/17EZGWOKta92+EyWguJh3HxIkTGTduHM8//7xn2tChQ7nkkktYsmTJCde32+2Eh4dTXFxMWFhYW3YtLTAMg7IqJwWlVeSVOSiovRhiflkVWcWVnpBypLCCiurj/8GwmE0khgeSHBlESqSN5EgbKVFBJEfa6BUZRFxoAP5tOaOWYYCrxt1C4aw69riqDIoPuYNETZU7EDgdtSHCUbus033FcleNe7B4dZn7IoNVZe7Hzuram+PYNmocDbfTzIBxo97N1Xi6CQxMnvk0uj+2DOAXiGEJBL8ADD8rhl8Qhl8Ahl9A7bS6x0EYfoEY/oHudfwD3c/9At3z/OuWqz8voHZ+IIbFWrt/o9kjVc3Oq3d05mSOhnnm15/XwpHIunXqb7/JEbzjzWvNazrOUcLWHMFsXGOz0xvVWH9e4+Vaei9OdDSzrZ9Jc7Uc731qqeYmyx3ns2zuvfLMa+4Ibu32jhcADMPwTGvwmEbL1D8ax7HgAMeO1LmMRuueYDvNbbP+axXfYMKE2WTGbDJjMVmO3ZuPPW9uvslkwvNf7cGyxtNMHDuI1uw8Eydevt56zS5fO63utZxo+foH9lpcvpnX1mT5evU2+140nnec5ev27dlHS8s3qrW55evvv7Wv44TLN3pNjV9f42kN/nw1t24z0056X/U2Uf/PQWu2d1LrNnNg+Hj1mRrupE31HW9fLa1rNpk980y4/27X/7PteV67TJm9jHF9xp0wG7SppaWqqopNmzbx29/+tsH08847j/Xr17dlUzz2xjwCgvyh0ZeH+3u44RdkY3VTTNRvsjMazDu2rFFv2aZLtLSW5/+baQpsXMexCa7jz2+2smM7avmVgsswam/ux+4jZAYuF9S4XJ4LIZoavaK6P0KJZoPEaPdzP4sZfz8T/hYzVosJqxn8am8Ws4GBy72PShf5GS7yjhpswoVhuGprqPvx4F624fTaxxju6RjUhQAX4DLVhYVjwcBlOva82WVMtdPrlql97p5nwuUPhn/dMmYMUxAugo5tH1PDbXZYI1BF7a1WTe1NRLo8i8mCCbA4qzGbTFgsVsyYsGB2P8eE2WTCjPtmqX1cN71uOTNgxnxsfoN1zO7HJtzLe9atd1+7nAk8y1uaXc6M2USzNdavyb0d9/LNb+fY6zre/kye12Ju5rU3fm/MTd4jn2md7yoaH1XrsJ0o4EvHs5dVtmq5NoWWvLw8nE4n8fHxDabHx8eTlZXV7DoOhwOH41jffLvdDsC/ScNCM33oTS08lo7nomHTQ2MmTvCZmGtv0uRolHtig6NHrT3aBq08glZvnQZHxxqt09yRs5b20dz0xkdYmsw7wZG6473WJnU1es/qb7e597O5fTS7TqPprTkqedz3qBXva5PljvM+tVTDcd+T4/y5ONHRzWY/k/rvZTPT6z+uO2pmqv3RajI1fOyZRu2yjY6+NV6+bl7d0bq65Zqs28x2mntcfzsn3Ga9desf1QfgyHfw8jmIiEg7crQuHJ/UQPzGR0QMw2jxKMmSJUtYvHhxk+mTHeFYzX600DDXqLms4TyTQQszTU0nNbuFhtOar7zuC9ndXail5VrcVtMHJ3zW3HtR99xsdn+RWky1R6zMtUfjzGb8zSYsFjN+dZ+Bqfl6m2zdVJtCTCYwmTHXfjmbzJbaxxZMZjMmkwWzuXaeyQ+z2eKZZjL7YTb5YbL4YTb7YTb7u6dZ3Pd1j93T3ffu9Rv+8DCbzMd+4DT6YVH/x4Vn+WZ+3NRNb/wjpPGPE88Pk3o/lpr9UUnDH46e+a344Sgi3VDSOJj+OyhM93YlIiLdR3kV8MoJF2vTmJaqqipsNhtvv/02l156qWf6ggUL2Lx5M2vXrm2yTnMtLSkpKRrTIiIiIiLSw7V2vHub+vJYrVbGjx/PqlWrGkxftWoVZ5xxRrPrBAQEEBYW1uAmIiIiIiLSWm3uHnbnnXdy3XXXcdpppzF58mRefPFFDh06xK233toR9YmIiIiISA/X5tBy1VVXkZ+fz8MPP0xmZiYjRozgP//5D7179+6I+kREREREpIdr83VaTpWu0yIiIiIiItBBY1pEREREREQ6m0KLiIiIiIj4NIUWERERERHxaSd1cclTUTeExm63d/auRURERETEh9RlghMNs+/00JKfnw9ASkpKZ+9aRERERER8UH5+PuHh4S3O7/TQEhUVBcChQ4eOW1hjEyZMYOPGjR1V1knz1brq2O12UlJSOHz4sM+erc3X30Pw7Rq7wmcMvv0e1vHlGvU5tw9fr0+f88nzxZrq6wqfra+/h+C7NXaFz7eOr72HxcXFpKamejJCSzo9tJjN7mE04eHhbfpQLRaLT/4h8NW6GgsLC/PZOrvCe9gVavTlzxi6xnvYFWrU53xqfL2+Ovqc284Xa2qOL3+2XeE99PUaffnzreOr72FdRmhxfifVccrmz5/v7RKa5at1dSVd4T3sCjX6uq7wHnaFGn2dr7+Hvl5fV+GL76Mv1tTVdIX3sCvU6Ou66nuoi0t2c3q/uz99xj2DPueeQZ9z96XPtnvT53vyfPbikgEBATz44IMEBAR09q57JL3f3Z8+455Bn3PPoM+5+9Jn273p8z15rX3vOr2lRUREREREpC26zJgWERERERHpmRRaRERERETEpym0iIiIiIiIT1NoEemmTCYT7733nrfLEBER6bH0Xdx+FFq6uPXr12OxWJg1a5a3S5EOdv3113PJJZd4uwzpIIcPH+amm24iKSkJq9VK7969WbBgAfn5+a1af82aNZhMJoqKijq2UDlp+jvcven7uGfQ32PvUWjp4v72t79xxx138OWXX3Lo0KFT2pbT6cTlcrVTZSLSWvv37+e0005j9+7d/POf/2Tv3r389a9/ZfXq1UyePJmCggJvlygiJ6DvY5GOpdDShZWVlfHWW29x2223ceGFF/Lqq6965tUddf3www8ZPXo0gYGBTJw4ka1bt3qWefXVV4mIiOCDDz5g2LBhBAQEcPDgQS+8EmmrPn368PTTTzeYNmbMGB566CGv1COnZv78+VitVj755BOmTp1Kamoqs2fP5tNPP+Xo0aM88MADADgcDu69915SUlIICAhg4MCBvPLKKxw4cIDp06cDEBkZiclk4vrrr/fiK5IT+eijjzjrrLOIiIggOjqaCy+8kH379nnmHzhwAJPJxLvvvsv06dOx2WyMHj2ar7/+2otVS0v0fdwz6bu4cym0dGFvvvkmgwcPZvDgwVx77bUsW7aMxpfdueeee/jTn/7Exo0biYuL46c//SnV1dWe+eXl5SxZsoSXX36Z7du3ExcX19kvQ6RHKygo4OOPP+ZXv/oVQUFBDeYlJCQwZ84c3nzzTQzDYO7cuaxYsYI///nP7Ny5k7/+9a+EhISQkpLCO++8A0BaWhqZmZk888wz3ng50kplZWXceeedbNy4kdWrV2M2m7n00kubHF1/4IEHuPvuu9m8eTODBg3i6quvpqamxktVS0v0fSzS8fy8XYCcvFdeeYVrr70WgFmzZlFaWsrq1auZMWOGZ5kHH3yQc889F4DXXnuN5ORkVq5cyc9+9jMAqquree655xg9enTnvwARYc+ePRiGwdChQ5udP3ToUAoLC9m4cSNvvfUWq1at8vwd79evn2e5qKgoAOLi4oiIiOjwuuXUXH755Q2ev/LKK8TFxbFjxw5GjBjhmX733XdzwQUXALB48WKGDx/O3r17GTJkSKfWK8en72ORjqeWli4qLS2Nb7/9lp///OcA+Pn5cdVVV/G3v/2twXKTJ0/2PI6KimLw4MHs3LnTM81qtTJq1KjOKVpE2qzuaG16ejoWi4WpU6d6uSJpD/v27eOaa66hX79+hIWF0bdvX4AmYyHq//ucmJgIQE5OTucVKiek72ORzqGWli7qlVdeoaamhl69enmmGYaBv78/hYWFx13XZDJ5HgcFBTV4Ll2D2Wxu0vWgfjcD6ToGDBiAyWRix44dzZ6RZteuXURGRmKz2Tq/OOkwF110ESkpKbz00kskJSXhcrkYMWIEVVVVDZbz9/f3PK77t1oDtH2Lvo97Ln0Xdy61tHRBNTU1vP766yxdupTNmzd7blu2bKF3794sX77cs+yGDRs8jwsLC9m9e7e6FXQDsbGxZGZmep7b7XbS09O9WJGcrOjoaM4991yee+45KioqGszLyspi+fLlXHXVVYwcORKXy8XatWub3Y7VagXcZx0S35afn8/OnTv53e9+xznnnOPpAihdj76PezZ9F3cuhZYu6IMPPqCwsJCbbrqJESNGNLhdccUVvPLKK55lH374YVavXs22bdu4/vrriYmJ0fnFu4Gf/OQn/P3vf+eLL75g27ZtzJs3D4vF4u2y5CQ9++yzOBwOZs6cybp16zh8+DAfffQR5557Lr169eKxxx6jT58+zJs3jxtvvJH33nuP9PR01qxZw1tvvQVA7969MZlMfPDBB+Tm5lJaWurlVyUtiYyMJDo6mhdffJG9e/fy2Wefceedd3q7LDkJ+j7u2fRd3LkUWrqgV155hRkzZhAeHt5k3uWXX87mzZv5/vvvAfjjH//IggULGD9+PJmZmbz//vueI7LStbhcLvz83D0677vvPs4++2wuvPBCzj//fC655BL69+/v5QrlZA0cOJDvvvuO/v37c9VVV9G/f39+8YtfMH36dL7++mvPIPvnn3+eK664gl/96lcMGTKEW265hbKyMgB69erF4sWL+e1vf0t8fDy33367N1+SNKPu77DZbGbFihVs2rSJESNG8Jvf/IYnnnjC2+XJSdD3cc+j72LvMRmNO+NJt7BmzRqmT59OYWGhziTUTcyaNYsBAwbw7LPPersUETkJ+jvcM+n7uHvR32PvUUuLiI8rLCzkww8/ZM2aNQ1OnykiXYP+Dot0ffp77H06e5iIj7vxxhvZuHEjd911FxdffLG3yxGRNtLfYZGuT3+PvU/dw0RERERExKepe5iIiIiIiPg0hRYREREREfFpCi0iIiLtZMmSJUyYMIHQ0FDi4uK45JJLSEtLa7CMYRg89NBDJCUlERQUxLRp09i+fbtnfkFBAXfccQeDBw/GZrORmprKr3/9a4qLixts57HHHuOMM87AZrPprFQi0u0ptIiIiLSTtWvXMn/+fDZs2MCqVauoqanhvPPO81xPB+C///u/efLJJ3n22WfZuHEjCQkJnHvuuZSUlACQkZFBRkYGf/rTn9i6dSuvvvoqH330ETfddFODfVVVVXHllVdy2223deprFBHxBg3EFxER6SC5ubnExcWxdu1azj77bAzDICkpiYULF7Jo0SIAHA4H8fHx/Nd//Re//OUvm93O22+/zbXXXktZWZnnwnZ1Xn31VRYuXEhRUVFHvxwREa9RS4uIiEgHqevSFRUVBUB6ejpZWVmcd955nmUCAgKYOnUq69evP+52wsLCmgQWEZGeQqFFRESkAxiGwZ133slZZ53FiBEjAMjKygIgPj6+wbLx8fGeeY3l5+fzyCOPtNgKIyLSE+iQjYiISAe4/fbb+fHHH/nyyy+bzDOZTA2eG4bRZBqA3W7nggsuYNiwYTz44IMdVquIiK9TS4uIiEg7u+OOO3j//ff5/PPPSU5O9kxPSEgAaNKqkpOT06T1paSkhFmzZhESEsLKlSvx9/fv+MJFRHyUQouIiEg7MQyD22+/nXfffZfPPvuMvn37Npjft29fEhISWLVqlWdaVVUVa9eu5YwzzvBMs9vtnHfeeVitVt5//30CAwM77TWIiPgidQ8TERFpJ/Pnz+eNN97gX//6F6GhoZ4WlfDwcIKCgjCZTCxcuJDHH3+cgQMHMnDgQB5//HFsNhvXXHMN4G5hOe+88ygvL+cf//gHdrsdu90OQGxsLBaLBYBDhw5RUFDAoUOHcDqdbN68GYABAwYQEhLS+S9eRKQD6ZTHIiIi7aS5cSkAy5Yt4/rrrwfcrTGLFy/mhRdeoLCwkIkTJ/I///M/nsH6a9asYfr06c1uJz09nT59+gBw/fXX89prrzVZ5vPPP2fatGmn/FpERHyJQouIiIiIiPg0jWkRERERERGfptAiIiIiIiI+TaFFRERERER8mkKLiIiIiIj4NIUWERERERHxaQotIiIiIiLi0xRaRERERETEpym0iIiIiIiIT1NoERERERERn6bQIiIiIiIiPk2hRUREREREfJpCi4iIiIiI+LT/BxliHxrh+PCVAAAAAElFTkSuQmCC", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:57.262306\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df.plot()\n", "plt.show()" @@ -215,9 +1799,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 135, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAEiCAYAAAALexgYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkiklEQVR4nOydeXxU9bn/P2f2rJONbJCwE5YEVFA2ZVEIUIFS22JLTaW1aBW1FKyt19tb6q+C1yr2XqzWq1ZUUGxVbAWNQWQRISyBCGGHJGTfk5lkMvuc3x9nzplzzpyZTCA7z/v14mVmznfOnJmYmfM5n+f5PAzLsiwIgiAIgiAIgiCILkHV2wdAEARBEARBEAQxkCCRRRAEQRAEQRAE0YWQyCIIgiAIgiAIguhCSGQRBEEQBEEQBEF0ISSyCIIgCIIgCIIguhASWQRBEARBEARBEF0IiSyCIAiCIAiCIIguRNPbB9DX8Xg8qKqqQlRUFBiG6e3DIQiCIAiCIAiil2BZFq2trUhNTYVKFdivIpHVAVVVVUhLS+vtwyAIgiAIgiAIoo9QXl6OIUOGBNxOIqsDoqKiAHBvZHR0dC8fDUEQBEEQBEEQvYXZbEZaWpqgEQJBIqsD+BLB6OhoElkEQRAEQRAEQXTYRkTBFwRBEARBEARBEF0IiSyCIAiCIAiCIIguhEQWQRAEQRAEQRBEF0IiiyAIgiAIgiAIogshkUUQBEEQBEEQBNGFkMgiCIIgCIIgCILoQkhkEQRBEARBEARBBKDaZMW/CivhcntCfgzNySIIgiAIgiAIggjAs7vOYeepakTqNbh1cFhIjyEniyAIgiAIgiCIG5J2hwsmqzPomuZ2BwCgpT34OjEksgiCIAiCIAiCuCFZsvkg7nxhH+wud8A1bg8LAPCwbMj7JZFFEARBEARBEMQNB8uyuFJvQaPFEdTN8nj49aHvm0QWQRAEQRAEQRA3HLxDBQQXUC6vyiIniyAIgiAIgiAIIghukWgKJqDcLL8m9H2TyCIIgiAIgiAI4obDI0pkDyagPNSTRRAEQRAEQRAE0TFi0eQJorL4skKWRBZBEARBEARBEERgxOWCwfQTL8aoXJAgCIIgCIIgCCIIYvcqWCmgi8oFCYIgCIIgCIIgOsYdosjy9WSFvm8SWQRBEARBEARB3HBI0wU7XtdtPVmvvvoqJk6ciOjoaERHR2P69On4/PPPhe0sy2L9+vVITU1FWFgY5syZgzNnzkj2Ybfb8dhjjyEhIQERERFYunQpKioqJGuam5uRk5MDo9EIo9GInJwctLS0SNaUlZVhyZIliIiIQEJCAh5//HE4HA7JmtOnT2P27NkICwvD4MGD8cwzz3TqzSEIgiAIgiAIYmAiThcMphHc3V0uOGTIEDz33HM4fvw4jh8/jjvvvBPf/e53BSH1/PPPY9OmTXj55Zdx7NgxJCcnY/78+WhtbRX2sWbNGuzYsQPbt2/HwYMH0dbWhsWLF8PtdgtrVqxYgcLCQuTm5iI3NxeFhYXIycnxvVC3G3fffTcsFgsOHjyI7du346OPPsK6deuENWazGfPnz0dqaiqOHTuGzZs344UXXsCmTZs685IJgiAIgiAIghiAhOxkXUO5INjrJDY2ln3jjTdYj8fDJicns88995ywzWazsUajkf3b3/7GsizLtrS0sFqtlt2+fbuwprKyklWpVGxubi7Lsix79uxZFgCbn58vrDl8+DALgD1//jzLsiz72WefsSqViq2srBTWvP/++6xer2dNJhPLsiz7yiuvsEajkbXZbMKajRs3sqmpqazH4wn4emw2G2symYR/5eXlLABhvwRBEARB+PiiqJr90WuH2crm9t4+FIIgiE5R1mhhh/52Jzv0tzvZs1WBz/Vv/dNuduhvd7Kv7L3MmkymkLTBNfdkud1ubN++HRaLBdOnT0dJSQlqamqQnZ0trNHr9Zg9ezYOHToEACgoKIDT6ZSsSU1NRWZmprDm8OHDMBqNmDp1qrBm2rRpMBqNkjWZmZlITU0V1ixYsAB2ux0FBQXCmtmzZ0Ov10vWVFVVobS0NODr2rhxo1CmaDQakZaWdq1vEUEQBEEMeP5xvAKHixux/2J9bx8KQRBEp5DMyQoWfMH2QLrg6dOnERkZCb1ej1/+8pfYsWMHxo8fj5qaGgBAUlKSZH1SUpKwraamBjqdDrGxsUHXJCYm+j1vYmKiZI38eWJjY6HT6YKu4W/za5R46qmnYDKZhH/l5eXB3xCCIAiCuIFxeZsanG5PBysJgiD6FuJ0wWD66VqGEWs6ezAZGRkoLCxES0sLPvroI9x///3Yv3+/sJ1hGMl6lmX97pMjX6O0vivW8G9MsOPR6/US94sgCIIgiMDwJx8Ol7LIqmhux/HSZiyZlAq1Kvj5AEEQRE8SqpPl6okId51Oh1GjRmHKlCnYuHEjJk2ahP/5n/9BcnIyAH+XqK6uTnCQkpOT4XA40NzcHHRNbW2t3/PW19dL1sifp7m5GU6nM+iauro6AP5uG0EQBEEQ14bLzZ11ON3KZx93vbgfaz4oxEcnKhS3EwRB9BZiAz6YgPL0xjBilmVht9sxfPhwJCcnY/fu3cI2h8OB/fv3Y8aMGQCAyZMnQ6vVStZUV1ejqKhIWDN9+nSYTCYcPXpUWHPkyBGYTCbJmqKiIlRXVwtr8vLyoNfrMXnyZGHNgQMHJLHueXl5SE1NxbBhw673ZRMEQRAEAV86lytAuaDd63AdKW7qsWMiCIIIhVCHEbvZbnay/uM//gNff/01SktLcfr0aTz99NPYt28ffvKTn4BhGKxZswYbNmzAjh07UFRUhJUrVyI8PBwrVqwAABiNRjzwwANYt24d9uzZg5MnT+K+++5DVlYW5s2bBwAYN24cFi5ciFWrViE/Px/5+flYtWoVFi9ejIyMDABAdnY2xo8fj5ycHJw8eRJ79uzBE088gVWrViE6OhoAFwOv1+uxcuVKFBUVYceOHdiwYQPWrl3bYfkiQRAEQRChwZ+kKPVkiU9gogyd7lAgCIK4ZtweFn/bfwUFV5sDrhELq2D9Vvw8rW7ryaqtrUVOTg6qq6thNBoxceJE5ObmYv78+QCAJ598ElarFY888giam5sxdepU5OXlISoqStjHSy+9BI1Gg+XLl8NqteKuu+7Cli1boFarhTXbtm3D448/LqQQLl26FC+//LKwXa1WY9euXXjkkUcwc+ZMhIWFYcWKFXjhhReENUajEbt378bq1asxZcoUxMbGYu3atVi7dm1nXjJBEARBEEEQerIUygXrWm3Cz2E6td92giCI7uJkWTOe+/w8bk6PwY5HZiqukTpZgfflvoZ0wU6JrDfffDPodoZhsH79eqxfvz7gGoPBgM2bN2Pz5s0B18TFxWHr1q1Bnys9PR07d+4MuiYrKwsHDhwIuoYgCIIgiGuHP0lRKhesarEKP7fbXT12TARBEG3ez5x2uzvgGskw4gAqi2XZaxpGfN09WQRBEARB3LgEKxesaPaJrFYbiSyCIHqOUGZbeUJwssT392jwBUEQBEEQNy7BygUrRU6WmUQWQRA9CH/dJ/iQYfHPyutCnaUlh0QWQRAEQRDXDD+MWKlcsFLiZDl77JgIgiB8A4Q7XgMEFlmeEEoKlSCRRRAEQRDENcOfcyiVC5KTRRBEbxFSuSDbcbmgK8RwDDkksgiCIAiCuGZ4J0tpGLE4+IKcLIIgepJQwipCcbJCnaUlh0QWQRAEQRDXDD8/xiFzsliWlZULkpNFEETPEYqT5Q5hTpbH0/EaJUhkEQRBEARxzQTqyTJbXbA4fNHJrTZnp05QCIIgrgfByQpiZUnSBf0rnrn9iIVYJ56fRBZBEARBENcMr63k5YL1bdwgYp2aO9XwsJCILoIgiO6EygUJgiAIgui3uL2Xf+XlgvWtDgDAkLgwaFQMAOrLIgii5+iq4As3BV8QBEEQBNHT8Mlb8nLBhjY7ACAhUo8ogwYA9WURBNFz+OZkBV4j3haonNlNPVkEQRAEQfQ0fE+DvFyQF1mDIvWIMmgBkJNFEETPwfdSBRNGobhU0jlZoT8/iSyCIAiCIK4ZlyCyAjlZOsHJMlvJySIIomfweDpbLkg9WQRBEARB9BH4kw4/keXtyUqI1CPa62SZyckiCKKH6J7gi9Cfn0QWQRAEQRDXjKuDcsGEKOrJIgii5wlpTpak3yrAmhBmaSlBIosgCIIgiGvC42GFE5PA5YLiniwSWQRB9Ay8gAqmi6hckCAIgiCIPof4Cq+/k8WXC4p6sqhckCCIHsIdkpPl+zlg8EUIa5QgkUUQBEEQxDUhvsIrdrJYlkW9yMmKFsoFSWQRBNEz8MEX7iDKyB2Ck+USqSxysgiCIAiC6HYCiaxWuwsOF3c7IVKP6DAqFyQIomfhP5KClguGMAPLw3bct6UEiSyCIAiCIK4JVwCR1dDKuVgROjXCdGqE6zgny2J39+wBEgRxwxJKuaC0JyvAfiTlguRkEQRBEATRzXg80p4s/kqw0I8VpQcAhOvUAACrk5wsgiB6hlDmZHU+wp1EFkEQBEEQ3YxLdumXvy1OFgSAMK/IaneQk0UQxPXj8bC4UNMqudAjx+dkBdlPCE5Wj5QLbty4EbfeeiuioqKQmJiIZcuW4cKFC5I1K1euBMMwkn/Tpk2TrLHb7XjssceQkJCAiIgILF26FBUVFZI1zc3NyMnJgdFohNFoRE5ODlpaWiRrysrKsGTJEkRERCAhIQGPP/44HA6HZM3p06cxe/ZshIWFYfDgwXjmmWc6lXFPEARBEIQy8qu6fMkgL7IGRcqcLBJZBEF0AVuPXMWCvxzAu/lXA64Jpd9KXAoYaI2rJ4YR79+/H6tXr0Z+fj52794Nl8uF7OxsWCwWybqFCxeiurpa+PfZZ59Jtq9ZswY7duzA9u3bcfDgQbS1tWHx4sVwu30fvitWrEBhYSFyc3ORm5uLwsJC5OTkCNvdbjfuvvtuWCwWHDx4ENu3b8dHH32EdevWCWvMZjPmz5+P1NRUHDt2DJs3b8YLL7yATZs2deZlEwRBEMSAweNhcbXR0iUXHOVOFh/jXmu2AQASo6Uii5wsgiC6grLGdgBAeVN7wDXuEMSRxMkKsCgUsaaEJuSVAHJzcyW333rrLSQmJqKgoACzZs0S7tfr9UhOTlbch8lkwptvvol3330X8+bNAwBs3boVaWlp+PLLL7FgwQKcO3cOubm5yM/Px9SpUwEAr7/+OqZPn44LFy4gIyMDeXl5OHv2LMrLy5GamgoAePHFF7Fy5Uo8++yziI6OxrZt22Cz2bBlyxbo9XpkZmbi4sWL2LRpE9auXQuGYTrz8gmCIAii37Np90W8vPcyNnwvCyumpl/XvuQnJbyTVWfmnKxEb09WmJY73SCRRRBEV+DydFwKKI9nV8P/vD8UIdYrPVkmkwkAEBcXJ7l/3759SExMxJgxY7Bq1SrU1dUJ2woKCuB0OpGdnS3cl5qaiszMTBw6dAgAcPjwYRiNRkFgAcC0adNgNBolazIzMwWBBQALFiyA3W5HQUGBsGb27NnQ6/WSNVVVVSgtLVV8TXa7HWazWfKPIAiCIAYKL++9DAD4066z170vfyfLK7K86YKJ0QYA4nJBCr4gCOL6cYcQauHpolALdwh9W0pcs8hiWRZr167F7bffjszMTOH+RYsWYdu2bfjqq6/w4osv4tixY7jzzjtht3MfuDU1NdDpdIiNjZXsLykpCTU1NcKaxMREv+dMTEyUrElKSpJsj42NhU6nC7qGv82vkbNx40ahD8xoNCItLS3k94QgCIIg+gvpceHXvQ+3aEgnALjk5YKydMF2p5v6ogmCuG5CiWd3hxBYEUqoxbU6WZ0qFxTz6KOP4tSpUzh48KDk/nvvvVf4OTMzE1OmTMHQoUOxa9cu3HPPPQH3x7KspHxPqZSvK9bwH+6BSgWfeuoprF27VrhtNptJaBEEQRD9GqfbgzXbCzEuJUq4r2tElvS2w3tHPe9kRXFOFp8uyLKA3eWBQau+7ucmCOLGxe0OJZ5d/HPHg4ZDcbu6fRjxY489hn//+9/Yu3cvhgwZEnRtSkoKhg4dikuXLgEAkpOT4XA40NzcLFlXV1cnuEzJycmora3121d9fb1kjdyNam5uhtPpDLqGL12UO1w8er0e0dHRkn8EQRAE0Z/55nIDdp2uxgt5F4X7eHfpenDJnCyn2wOn24NGC5f06wu+8F3Tpb4sgiCuF96lkl/oERNauaBofSjhGN3Vk8WyLB599FF8/PHH+OqrrzB8+PAOH9PY2Ijy8nKkpKQAACZPngytVovdu3cLa6qrq1FUVIQZM2YAAKZPnw6TyYSjR48Ka44cOQKTySRZU1RUhOrqamFNXl4e9Ho9Jk+eLKw5cOCAJNY9Ly8PqampGDZsWGdeOkEQBEH0W5RODGzOIGcnoe5XtgunixVcLI2KQVy4DgCgVjHQabhTjnaFviy3h8WhKw2wOUmAEQTRMby7FKz8OJReqs46Wd0mslavXo2tW7fivffeQ1RUFGpqalBTUwOr1QoAaGtrwxNPPIHDhw+jtLQU+/btw5IlS5CQkIDvfe97AACj0YgHHngA69atw549e3Dy5Encd999yMrKEtIGx40bh4ULF2LVqlXIz89Hfn4+Vq1ahcWLFyMjIwMAkJ2djfHjxyMnJwcnT57Enj178MQTT2DVqlWC+7RixQro9XqsXLkSRUVF2LFjBzZs2EDJggRBEMQNRZvdX7zYXNcvaPycLI9HCL0YFKWHSuX7rg02K+vFvAtY8foRvPDFBb9tBEEQcvjQnUBlgECoc7I6XtMjc7JeffVVmEwmzJkzBykpKcK/Dz74AACgVqtx+vRpfPe738WYMWNw//33Y8yYMTh8+DCionx14C+99BKWLVuG5cuXY+bMmQgPD8enn34KtdpXurBt2zZkZWUhOzsb2dnZmDhxIt59911hu1qtxq5du2AwGDBz5kwsX74cy5YtwwsvvCCsMRqN2L17NyoqKjBlyhQ88sgjWLt2raTniiAIgiAGCkdLmvDa/it+0eptNn/3qCtcI79hxC4P6mShFzzh2sCzsl7ZdwUA8MbBkus+JoIgBj6eTke4B1gTyiytnpiT1dGOw8LC8MUXX3S4H4PBgM2bN2Pz5s0B18TFxWHr1q1B95Oeno6dO3cGXZOVlYUDBw50eEwEQRAE0d9Z+49CVDRbccvQWNw6zDdepc3u9Ftrd11/uSCfJsjjdLOolcW384QFGEhstvmObXRi5HUfE0EQAx/eRQ8efNFxmV9I5YI9HeFOEARBEETfobLFiopmrny/qsUq2cY7WSMGRWD+eC74qSt6suSlOk6PB/WBnCxv+IXVKXXVDl5qEH6Oi9Bd9zERBDHw4QMrgs7J6nS/VYD99HSEO0EQBEEQfYfjpU3Czw1tDsm2VjsnbBZMSMbcjETsPlsL+3WUC9a32vHqviuIMkhPI5wuX08WH9/OE8jJ+up8nfCzhYYVEwQRAvyMvmA9WaFEr0uEWIB9hSLElCCRRRAEQRADgOOlvtEoDW12yTaLV2RF6jXQe1P+rrUnq6rFihnPfaW4zelmfSIrWu5k+Yssu8uN3Wd9I1ssCgEdBEEQclxCumDgNdJ49gDlgiGscV1jTxaVCxIEQRBEH4dlWTy76yze+Lo44JpjIieLj1HnafOKrCiDRhgEfK09Wf+751LAbS6PR/JcYpTSBfecq4PJ6uvJ4sUgQRBEMHhBFDRdUCSIAq3rbMx7tw8jJgiCIAii5zhR1oLXvy7Bn3adg1Nh+qbJ6sSF2lbhttzJarX5nCyD9vqcrEpZv5cYh8sj7Fc+7DhMy4kusZP1YUEFAGDxRG6WJoksgiBCgQ/dCTX4ImC5YEgx76L15GQRBEEQxMDhbLVZ+LnGZPPbfrKsWXISIRdZbXaxyOLEj03ByXrj62L8x47TQUtizApx8DxONyuIKP55eHxOFvf40gYL9l+sBwD8dPowAIDF4Q7YF0EQBMHDi53rDr5QWLP2H4V4ZFuB8DnooXRBgiAIghiYnCzz9VspOUl8P1ZGEjeT0q9c0Obfk+X2sH6u2KbdF/HekTIUN1gCHkur1T8Onsfl8QjlgGEBRFa7ww2WZfFf/z4Dt4fF7DGDkDXYKKxr74L5XQRBDGxcoczJCiGwQr7G5nTj4xOV+Ox0jZDWKh5VQT1ZBEEQBDGAKCxrEX6ubPYXWXw/1sLMZABAY5tD4ggJTpaoJwuQ9mXZXW7BhTJ7hdT2o2V+PVjiuVZyxOWCYfJyQV5kOd3Yd6EeBy7WQ6dR4Y9LJ8CgVUHFcOvaqWSQIIgO4D/fQk0XDHVOlngZL+SU3K5QIJFFEARBEH2YZotD4iyJnayK5nbkFlXjZHkLAC6iHeBODsSBEm0K6YKAtC/LbPWJG76H63cfn8am3RdxvsZXrthRuaCV78nSBg6+OHSFm431g8lDMCwhAgzDIEKvkRwrQRBEIHxOVmjlgoH7raR9W0phGR6KcCcIgiCIgcfJ8mbJbbGTte4f3+JICediRek1GJcSBWOYFiarE/VtdsRG6MCyrMTJYhgGeo0KdpHrBEBRlPE0W7htNqcbjiCphE63RxBZBp30Om4YP4zY4calujYAQGaqr0wwUq9Bq81FMe4EQXSIOwSRFVq5IERrWEXXipwsgiAIghiAXKhpk9wWO1m8wAKAW4fHgWEYDIri5lM1ePuyuB4obk2UXgsAollZvjMMcRlgq80pufLLn1gEKxUEOHHGP0zek8Xfbne6camWe02jkyKF7bzTRU4WQRAd4XOZgqwR6aGQywVF+3MrlCRShDtBEARBDBBqzVya4KS0GABSkRXhFSYpRgMenDUCAJAQqQMA1HsTBnnRolYxQny7kDAYwMlqtbkkJxb8z61BSgUBXy8XEDj4oqHVLryG0Yk+kRWp5yPeSWQRBBGcUJwsSZlfADEmTw50K5QLhtLbpQSJLIIgCILow/BJgbekxwDgRJbHmwxo8QZV7Hr8DkwbEQ8ASIjUSx4nnpHFMFy6hNJAYrNMZLkURBa/RtzXJYZ3unRqFTRqebkg95x8HP2gKD1iwnXCdurJIggiVHgxFHq5YCg9WazixSUSWQRBEAQxABGcrCExYBguwa/BYpeIomiDr8WaLxeUO1m8UwRAcLTskuCLEESWV7DxQk4OL+j4/YsJlzlbYhcL8Iks6skiCKIjfMOIA68JZU6WZI1HGpDh8tpf8jWhQiKLIAiCIPowdV5HanBsGJKiDAC48IsWryiK0mskrlGc1x1q8YZVWBREll7DDyQOVC7ohNstPtlghfsBID7S50CJ4YWaPL4dAMJ10qwtP5HlfYyFnCyCIDpAyWUKtAYIdU6WNPjC6VbqySIniyAIgiD6PSzLCk5WUpQByUZOZNW12gVRFB2mlTwmJpy7zW8XygUN/k6WNPjCJ27a7C7hKi4gCr7wxrzHRwQQWd59yPuxAH/hNdo7OJlHcLKoJ4sgiA7gxVAw0RNKKqBHki4oFVT8sPZQxJoSFOFOEARBEH0Us80l9E0lRusFQdVqc0Hn7YsyykQWv6bF6gAQqFyQ78kSOVntgYMv+JMNvucqNpDI8go7g4LIEj9/lF6DuWMTFbeTk0UQREcITlaIwRcB52TJZmlJhhErOFmd6ckikUUQBEEQfZT6Vs7FijZoYNCqEeV1o1ptTmhUXIgF71zx8GESJq/r1OYVRmInSygXDBLhLu7JsnvX8eWC0QYtdBqV38wsfh/hCuWCSdF63HPLYIAFnliQgdSYMMl2X/AF9WQRBBGc0CLc/R2oVptTEgLkVy4ouu3gnSyF/YQCiSyCIAiC6KPUmrl+rMRorkyQD7gwW11QeU8S5E4Wf9vULnWyosQ9WUK5YGgR7nbeyfIKt+gwLXRqn8jSqhk43azQw6DUk8UwDDYtvyngaw2nniyCIEIktAh38c8sLtW2Yv5LBzBvXBLeuH+K3+PlEe5CuIZEWVFPFkEQBEH0C0xWJ9b/+wwKy1v8ttV5naykaC7NL8rAlws6BVHk52SFSXuyzDaFckEFJ0sisuzSdEFeTJkFJ0sDrZrx2x+PUk9WR9CcLIIgQkUp+U+OvJfq7cOlAIAvz9WK7pcNI5YEX3i8z3VtThaJLIIgCILoRf479zy2HCrFsr9+47etjneyvKmCvBvVanOhpV05+IJ3siwON5xuDyqa2wEAKaLyPCHCXdSTJS8XdIsuA/Pr+BANvlyQJyZCegxKPVkdQXOyCIIIFf7jKWi6oKzfSqPylz1ukdvFstLbvMgKJQpeCRJZBEEQBNGLXKptDbjNVy7IO1lekWX3OVmBgi8Azp262siJrKFx4cL9vAiSOFmi4Aub0yPZJjhZfGy8QQOtKDaeF4E8Sj1ZHRGh58sFqSeLIIjg8E5WMM3jkTlQfIl14DWsLPBHIfiiE1ZWp0TWxo0bceuttyIqKgqJiYlYtmwZLly4IFnDsizWr1+P1NRUhIWFYc6cOThz5oxkjd1ux2OPPYaEhARERERg6dKlqKiokKxpbm5GTk4OjEYjjEYjcnJy0NLSIllTVlaGJUuWICIiAgkJCXj88cfhcDgka06fPo3Zs2cjLCwMgwcPxjPPPNOpjHuCIAiC6E7UKv8vfh6+XFBwsgy+dEGhXDBMmvSnVjGCGGtp94msYQk+kaXXSHuyPB4WrTIHqUUkuuzycsEwqZM1SDac+FrKBSN0lC5IEETHsCwrlO0FSxeUR7hr1P6ftfI1YqeKF3JytytUOiWy9u/fj9WrVyM/Px+7d++Gy+VCdnY2LBaLsOb555/Hpk2b8PLLL+PYsWNITk7G/Pnz0drqu1K3Zs0a7NixA9u3b8fBgwfR1taGxYsXw+32Xb1asWIFCgsLkZubi9zcXBQWFiInJ0fY7na7cffdd8NiseDgwYPYvn07PvroI6xbt05YYzabMX/+fKSmpuLYsWPYvHkzXnjhBWzatKkzL5sgCIIgug2xIySHn5GVGCV1ssw2F0zeiHa5kwX4+rRKGixos7vAMMCQWH8nSygDtLuEkwe+16q53XfRkneyJOWCYicrWiqyDNfkZNGcLIIgOibUSHXxOjfLhuBkSffHf+5da7lgp9IFc3NzJbffeustJCYmoqCgALNmzQLLsvjLX/6Cp59+Gvfccw8A4O2330ZSUhLee+89PPTQQzCZTHjzzTfx7rvvYt68eQCArVu3Ii0tDV9++SUWLFiAc+fOITc3F/n5+Zg6dSoA4PXXX8f06dNx4cIFZGRkIC8vD2fPnkV5eTlSU1MBAC+++CJWrlyJZ599FtHR0di2bRtsNhu2bNkCvV6PzMxMXLx4EZs2bcLatWuF+EaCIAiC6C2COVllTZwLle4t9fPNyfJFuCuJLGOYFuWw4ltvmEZKtEHSJyX0ZDmlZYB6jQrGMC3qWu1oURBZgcoFY8J1UKsY4aTmWpysaK9LxycYEgRBKCEJoggS4S6fk6VR+KyV922JhRn/PL0SfGEymQAAcXFxAICSkhLU1NQgOztbWKPX6zF79mwcOnQIAFBQUACn0ylZk5qaiszMTGHN4cOHYTQaBYEFANOmTYPRaJSsyczMFAQWACxYsAB2ux0FBQXCmtmzZ0Ov10vWVFVVobS0VPE12e12mM1myT+CIAiCuBZMVidyi6qDNmcrNWMDXMoe35M1LD4CgKgnS1wuGK7gZHlLCE9Vct/T6fHhku1CT5bLjeL6Njz6/kkAnIgTlxry2F1ciIbF4RbWicsFdWoGseG+ssVrEVlxkdzjrU43JQwSBBGQUJ0lSSmgB1ApiSw/J8u3zck7Wdc4jPiaRRbLsli7di1uv/12ZGZmAgBqamoAAElJSZK1SUlJwraamhrodDrExsYGXZOYKJ0EDwCJiYmSNfLniY2NhU6nC7qGv82vkbNx40ahD8xoNCItLa2Dd4IgCIIglPnR/+Xjl1tP4INj5QHXaBX6BACfi2UM08LoFVLRogh3XgQFcrIA4FRFCwCfSOPx9WR58PJXlwXHKzZci0jvczSLRJbD5RHKB1UMt3/xcatUDOIjfCLrmoIvdGrhuBrbHB2sJgjiRkXsLAW7gCWZkxXAyZILKLGIcnr8gy+6rSdLzKOPPopTp07h/fff99smL8NjWbbD0jz5GqX1XbGGD70IdDxPPfUUTCaT8K+8PPAXI0EQBEEEwu5y41w1Vw3xeVF1wHWBygVLG7yBFSIXineZbE6PEEYhj3AHIIgyXogFdLKcbpz2ul1qFYNH7xwtDDwWlwvaXR40W3jnjCsN1IlmY2lUDOJEIutaItwZxifUGi0ksgjiRiZYSJ28jyoQ0lAL6WctL5zka6Tpgh6FNd3sZD322GP497//jb1792LIkCHC/cnJyQD8XaK6ujrBQUpOTobD4UBzc3PQNbW1tZBTX18vWSN/nubmZjidzqBr6urqAPi7bTx6vR7R0dGSfwRBEATRWY4UNwk/i10eOeLeJpcoxqqsiQuVGipyocQDhQHOVYrS+7dXy90tfyeLE0Et7U5cqW8DABz63Z1YOilVEHLy4Ismr/CJ9Qo4ndjJYhih3A8Awq7ByQKAeG9KYZPFLrnfZHXirW9KhGMgCGLg8nzuecx87is0ttkVt7uuIfiClQVf+GZgQbJGki7Ii6yeKBdkWRaPPvooPv74Y3z11VcYPny4ZPvw4cORnJyM3bt3C/c5HA7s378fM2bMAABMnjwZWq1Wsqa6uhpFRUXCmunTp8NkMuHo0aPCmiNHjsBkMknWFBUVobrad3UwLy8Per0ekydPFtYcOHBAEuuel5eH1NRUDBs2rDMvnSAIgiA6xZ5zvouFfG+VEuKrqzaXT2SVNvo7WRq1SlKKFx+pV+wziJGJrNGJkZLbfPDF2WozPCyQEKkTEgzDvVHqfM8XADjcHsHZ4nuvxOJQIysXvJaeLO71cPtokJULvn6gGH/89CyWvnywU3NqCILof+w5V4cqkw1FVcq5CKGIHvnnhIeFpFzQ4Vbut/JIhhErzMnqrnLB1atXY+vWrXjvvfcQFRWFmpoa1NTUwGq1AuCs/jVr1mDDhg3YsWMHioqKsHLlSoSHh2PFihUAAKPRiAceeADr1q3Dnj17cPLkSdx3333IysoS0gbHjRuHhQsXYtWqVcjPz0d+fj5WrVqFxYsXIyMjAwCQnZ2N8ePHIycnBydPnsSePXvwxBNPYNWqVYL7tGLFCuj1eqxcuRJFRUXYsWMHNmzYQMmCBEEQRLfz1YU64Wc+il0Jtej7yOrwjTK52sg5WekyF4p3mgBgRIJ0G4/YyRoWH45RMpHFCymecSnRwvciL57Ew4jtTg+aeJHlFVPi4Au1rFzwmp2sCE7oyXuy+HLLimYrth65ek37Jgiif8DPpwp0QSWU4cDy+VkelpVckOJDLeThGOLbPrdLuq9Q5+12SmS9+uqrMJlMmDNnDlJSUoR/H3zwgbDmySefxJo1a/DII49gypQpqKysRF5eHqKiooQ1L730EpYtW4bly5dj5syZCA8Px6effgq12vehvG3bNmRlZSE7OxvZ2dmYOHEi3n33XWG7Wq3Grl27YDAYMHPmTCxfvhzLli3DCy+8IKwxGo3YvXs3KioqMGXKFDzyyCNYu3Yt1q5d25mXTRAEQRCdwmJ3obzJKtyuNtkCfjE7RZdO+eHAgHJPFuAbSAwAI2XiiUecOLggM9nvwmLWYCMSROV9E1KNws98GaD4WOxuD5q9pXpxCk6WWqXqUidLXCbEsqykR+v1r4uvad8EQfQPXAqBE2JCcZbkj/WwrOQz2BGgFNCjILL899XRK+Do1JysUJQbwzBYv3491q9fH3CNwWDA5s2bsXnz5oBr4uLisHXr1qDPlZ6ejp07dwZdk5WVhQMHDgRdQxAEQRBdSbWJc660agZONwur0w2z1SUEUohxuX3frVavsLG73KgycSJt6DU4WeLgiYUTkv22h+nU+OXskfjTrnMAgPGpvv5jjVc8WUUii+vJ4soHeSdLKrIAY5hvXMq1O1n+wReVLVZJnHxViw0eD6tYJkkQRP+H/0yUu1E8IZULKjhZklALF/ezdJaW9LZLoVww2HPKua45WQRBEARB+FPjFVnD4iMEV6kmQMmgUxR2wZcL1rfawbKATq2SOE5AaE6WuDxw0pAYxTU/mTrUO1SYweShvrEqvnJBkZPlcgtBGHER3PPrNVInK65LnCxvuaBIZJ3x9mWMSYoEw3AnPJQ+SBADl47KBUOJcPcTRrJSQIeb+3yTJweKH6fkdgGhx7h3yskiCIIgCKJjeBcqJSYMahWDlnYnqk1WZCRH+a11KjhZvHMTE671K/WL1PsEzKhByiJrSGw4Pn30dsRH6gI6PmE6NfJ+PQst7U4MjgkT7ufnX/k7WfLgC99+NSpGKPUDurZckBdZE4fEoLndifpWO2rNNgyK0ivugyCI/g0valwhCChe8NicbhwpacK0EXHQa9SSAAuAD7UQCSjByRLtl2UlpYCBHLVQnSwSWQRBEATRxVS3cK5VSrQBKgY4X9PqF37xyr7L8HhYqZMlE1m8oBFjtrqEn1NF4khO1hBjwG08KcYwpBil+9CoFIIvRMOI4xSCL1QqRlLGqNdcm8hKUAi+OFvFzfGakBqN8zVm1LfaUddqA9Dx6yMIov/BX3gKJGbEIosXQE/881vsPFWNH9+Wjo33ZPkJI5YF3JLkQKUZWFDsyZI7aqE6WVQuSBAEQRBdTI2Zd7IMSDEaAPj6tAAuOfD53At4Ie+iJCrd5i0X5AWNUg8XJzA4Ag0yvh60Gv99SpwshZ4sjYpBcrQB88YlYt64JESHXds1XH7WVqPFzs2s8bA4UdYCAMgcbERSFPdeBovEJwiif+PuVPAF9/POU1wC6ftHyxQf62FZWbmgf3IgK+/bUhhYLH9MMMjJIgiCIIhr4M2DJbhS34Y/fTfTrySvineyvAIL8PVpAUB+caPwc5vd50z5nCzp4F8xabHhuFjb1gWvQBmtyv/6q8Pl8XPXxCJLxTBgGAZv3H/rdT03H3zhdLMw21woabCgyeJApF6Dm9JikBjNi6zAkfgEQfRvAqX68bglwkg5mM8/+AJwi2oDnS4PWJaVuFJ+6YJ8zLubRBZBEARB9AgeD4vnc8/D7vLgx7em+5Xm8YJKXIpXLRFZTcLPFkWRFbhc8I/fnYBwvQYP3D68C16JP+JeK/lxAb4Id3HwhaaLHDWDVo1IvQZtdheaLA7sPc/NGrtjdAK0ahWSorlyQnKyCGLgwourwOWC0oYrJS2m6GSJHmZ3exTDMcTPyQdw+DtZwY+fh0QWQRAEQXSSulY77N6rnJfqWv1EFh98kRpjgMO7jnenWJbFN5cbhLUSJ0soF+REllK54JDYcGz+8c1d9VL80KgDdxKoRb1X0gj3ritbjI/Uoc3uQkObHfu8A53nZiQCAJK8TlYdOVkEMSBhWVYIvAgcfCG/7b/OPxHQ36VSKgMU6zeHEOHuf4yhQD1ZBEEQBNFJyprahZ8v1UlL99rsLrTaOOGUbAxDdBgnlMze+87XtKKu1efEtDt8LhEfm95ilSb59SS6ICIrNlwrlEZ2l8iK8b5fJQ0WfFvBhV7MzhgEAD4nq5VEFkEMRCT9VgEj3OVOVqjlguJQC9YvgZBlpa6VS6Fvi99XKJDIIgiCIIhOUi4WWbL+qBqvixVl0CBSrxFCIMxWJ74tb8FP3jgiWS/+4vcvF/R3srobjUK5II9Y9Ok03SOy+DlgZ73R7SlGg+BgJVLwBUEMaK5pBpaCyFIuF5TOyVJ2svzTBV0yK4ucLIIgCILoJsqbfSLrcl2rZFulLPQi2sA7WU68su8ymiwOjEuJBqOgS6wO7stcSBcM63knK1i5oHjgsLh3q2tFFidKK5o5sWoM8wlNXmw1tNn9TnwIguj/SERWAC3jL6D818jvc3vk5YKsohBTmpMl31eowRcksgiCIAiik4jLBcua2oUyP8DnwIz0DgrmywWdbhZXG7nH/equ0YqDhHkny9SLTpYuiJMlTkvsjuALwCeyKls4kRUtElnxETpoVAxYFqhvIzeLIAYa4osn8oAL3/1s0NuAvxBiZeWCdrdHcf6VUsy7f39XsFfgg0QWQRAEQXSSiiar8LOH5fqHeE6WNQMAbkmPBQBE6NTgNQgvzmLDtZJyOx5erPFOVkwv9GRpFCLceZJFaYmSCPduKBes9LqFvBPIP8+gKK4vq06hZLCqxSoRvARB9C+k5YLKa5RCLTpaoxTP3lG5IO9kXeucLBJZBEEQBNFJ+HLBMK0agC/8gmVZnCxvAQDcnB4DAGAYRnBj+JCL2AidxAnisTrc8HhYYUBxbzhZWoXj4kmN8TlZ8mHEXQXvZPFBIfLBxvx2cSojAJQ2WHDH83vxnf/9Gg3kchFEv8QlqhEMHOHesZOlVFIo7cnyKAZaSIQYH3wRQnmiEiSyCIIgCKIT2F1u1HgjxKePjAcAXPU6WZUtVtS32qFRMcgc7It1F7sxABcgoeRkWZ1utNpcwpe4UoR7d6MNIpiSo30iS3z8KqUGs2tE/l7Jb0folUVWYXkL3B4WxfUW/HzLsYBN8wRB9F3EyYGB/obl0e4eFpB/bPkLKOmcLKfL45cuKA/HEIIv/OZpkZNFEARBEF1OZbMVLMu5WKMSub4q3nk6UdYCABifGg2D1+UC/N2YmHAtdBo15FidbiG+PVynhl5hTXcTLPgiNUa5XDBYImFn4Z0qHnFPFgBEekWWRSay+H43ADhVYcKFGmkgCUEQfR+xkxVoTpaSgJKH73Q4J8vtXy7I+jlZrKKgCvXyDYksgiAIgugEfOpdWlyYkHxntjlRY7Lh3cOlAICb02IkjxG7MVF6DbRqlWK5oM3pFgYR98aMLECaGignOUDwhboLnawoPydLKroidIFElkVyu9FCJYME0d8QC6uAc7Lc/iJL7qZ3NCdLKfjCL13Q4y/EAIANUWZpOl5CEARBEARPtXcOVmqMb9CwyerEqneO43SlCVo1g2U3D5Y8RiyyYiK4nxXLBR1uUehFz5cKAlKHSk68JMK9e+ZkyUWVn5Ml9GRJAy6uihIfAaCxzdFlx0QQRM8gKRcM1JOlIKA0Kgbiyyry0AwPy0oeFyjCXT6wWHxbxfB9W6G9FnKyCIIgCKITVAlzsMIEQdBkceB0pQkA8NHDM3CzN1mQR1wuGOd1qPQKYsbqdAvx7X1RZDGiq8XdNycreE9WpNCT5ZTcz5cLDk+IAAA0WkhkEUR/QxJ8EeowYk/H5YIeVro/5WHE/s/JhxUBvs9GShckCIIgiG5AcLKMBqFckD/BVzHAhFSj32PEA3X5WHa9VrlckBcHvVUuGGp/ldiJ61InK0zuZMnKBfVcn5pF5GRZ7C4hUZAv1WykhEGC6HdII9xDDb7wF1l+5YIemUvl8u+3YmXlggBQXM8lx8aGaxGuUwvrQoFEFkEQBEF0gmqT18kSlQvWtXIn9DHhOkXBIXZj+Fh2nZKT5XCjzptcmCRK8utJlI6ro3U96WQppQvy88diwrUY5nWymsjJIoh+h3gAccDgC4UI946drI6DLzysfynieW+AzshBkULfFw0jJgiCIIhuoKrF38niCTTXKlrByQoU4V4jiCx9lxxvZwnkZPFlejzBygqvB3m6oPw9VkoX5J3EoXHhiI/k3t8G6skiiH6HM4Q5WUoR7n4iK6TgC8jW+Ltb52vMADiRxZdLd1u54IEDB7BkyRKkpqaCYRh88sknku0rV64EwzCSf9OmTZOssdvteOyxx5CQkICIiAgsXboUFRUVkjXNzc3IycmB0WiE0WhETk4OWlpaJGvKysqwZMkSREREICEhAY8//jgcDumH6unTpzF79myEhYVh8ODBeOaZZ0K2+QiCIAhCDMuygpOVbDQozr9SQlzyxq9Rimf3sEBxPZeS11tOlkYlPTXg27B+uzBDuk4kxrpyJpVWrYJBVErp52TplJws7j1Lj49AfAQnTpsoXZAg+h3uEMoFlVIBxZ9bLoXkQJZlIQ4ldLoUhhF7WL/7+FEQIxMjhFlccnEWiE6nC1osFkyaNAk/+9nP8P3vf19xzcKFC/HWW28Jt3U66ZfOmjVr8Omnn2L79u2Ij4/HunXrsHjxYhQUFECt5r50VqxYgYqKCuTm5gIAHnzwQeTk5ODTTz8FALjdbtx9990YNGgQDh48iMbGRtx///1gWRabN28GAJjNZsyfPx9z587FsWPHcPHiRaxcuRIRERFYt25dZ186QRAEcYNjtrqERugUYxhkegSxEQFElkgoxCmkC0bqNdBpVGiyOHC2mrtymhjVN8oF//ueiZiYZkRGUpTkfrFIlLtc10uUQQubkxNJkTJny5cu6BJOpM5Uce/Z8Hifk0XBFwTR/3CKYgFDd7JYyWexPBWQXyMNvvAozNJSKBes9i8XDNXJ6vSn4qJFi7Bo0aKga/R6PZKTkxW3mUwmvPnmm3j33Xcxb948AMDWrVuRlpaGL7/8EgsWLMC5c+eQm5uL/Px8TJ06FQDw+uuvY/r06bhw4QIyMjKQl5eHs2fPory8HKmpqQCAF198EStXrsSzzz6L6OhobNu2DTabDVu2bIFer0dmZiYuXryITZs2Ye3atZKUJIIgCILoiCpv6EVsuBZh3iZog1YFm5M7MYgL6GQFLxfUqBmkxYWjyeIQvvj7SrmgXqvC2ORov3U6jQpbfnYrnG5WeE1dRbRBg/pWOyL1Gr8yIF7QlTdZMeXZL3FLeiyOFDcCAGZnDBKcQopwJ4j+h1j4yOdh+dZ4ZLdZyaw+h5JLJSsXVO7J8i8XbPU65pzI4u7r1Z6sffv2ITExEWPGjMGqVatQV1cnbCsoKIDT6UR2drZwX2pqKjIzM3Ho0CEAwOHDh2E0GgWBBQDTpk2D0WiUrMnMzBQEFgAsWLAAdrsdBQUFwprZs2dDr9dL1lRVVaG0tFTx2O12O8xms+QfQRAEQQC+ZMEUY5hwn7hnKBQny1cu6PsK1qpVSI8LlzwmsZfKBeW9VsFCLeZkJGL++KQuPwY+/EI+MwvwBV80tNnRZHHgy3O1aLW7MChKj5vTYoVywTa7Czan2+/xBEH0XSTpgoHmZMnK9VgWkmHEdrc7pDlZvKDSqHiHSnkGlk6twpDYsO7vyeqIRYsWYdu2bfjqq6/w4osv4tixY7jzzjtht3O2f01NDXQ6HWJjpTNEkpKSUFNTI6xJTEz023diYqJkTVKS9IM9NjYWOp0u6Br+Nr9GzsaNG4U+MKPRiLS0tM6+BQRBEMQAhZ+RlRrjE0BKpYByxD1Z/PwrsZOlVTFIj/MJt0i9pstL8EJFK3OyNF2YHBgqfPiFfBAxAETq/XvZAGDBhCSoVAyiwzTCMVPCIEH0L0Kbk+XvZEkElJv1E2isbAaWXVQuyLv38mHEPMMSwqFRq4SSxF4TWffeey/uvvtuZGZmYsmSJfj8889x8eJF7Nq1K+jjWJaVlO8plfJ1xRo+9CJQqeBTTz0Fk8kk/CsvLw963ARBEMSNQ4dOVqByQYkQ85YLihwjrUbqZCX2UqkgwH0/it0rtbzxrAeIFpwsf5EVEUB8LspMAcAdP/8ek8giiP6FSySgAlQLKpb5icWZw+UffOHvZPnKBbXezziWVRZQIwdFAoCoJyu019Ltn5wpKSkYOnQoLl26BABITk6Gw+FAc3OzZF1dXZ3gMiUnJ6O2ttZvX/X19ZI1cjequbkZTqcz6Bq+dFHucPHo9XpER0dL/hEEQRAEABwr5b67Rg6KEO4Tuy1xAcoFw3Vq3DosFmOTo5AYxQkovdbnyGhUXE8WT1IvhV7wiN2s3nWy/AWV3OHLHByN3y8ejxkj44X74iO597iBBhITRL8iFCdLKfhCLI4cLv9QC6XgC17PiZ2sUERWnxlG3NjYiPLycqSkcFeYJk+eDK1Wi927dwtrqqurUVRUhBkzZgAApk+fDpPJhKNHjwprjhw5ApPJJFlTVFSE6upqYU1eXh70ej0mT54srDlw4IAk1j0vLw+pqakYNmxYt71mgiAIYuBR32rHsdImAMD8Cb5wJ6NCqIUchmHwj4em47PH74DG62BJnCxZT1ZvhV7waFXdM2g4VHjhquhk6aQi695b0/HA7cMlFSoJkeRkEUR/RBJ8ESAr3e2WCyjp4xwu/1ALtweykkLfGv4zmSsX9H++kYncRTX+I6bbnKy2tjYUFhaisLAQAFBSUoLCwkKUlZWhra0NTzzxBA4fPozS0lLs27cPS5YsQUJCAr73ve8BAIxGIx544AGsW7cOe/bswcmTJ3HfffchKytLSBscN24cFi5ciFWrViE/Px/5+flYtWoVFi9ejIwMbk5HdnY2xo8fj5ycHJw8eRJ79uzBE088gVWrVgnu04oVK6DX67Fy5UoUFRVhx44d2LBhAyULEgRBEJ3mizM1YFlg0hAjBsf4ygXF4QyBnCyAE1oqkWDRa6UiK8UYJrhGvTUjSzgecfJhL4isMd64+DHJUX7bVCoG4TqfC8g7g2L43wMlDBJE/8IpLhcMMI/KX0DJnKxAc7JE+xMnEEqCLxQUlNzJQogiq9NdtcePH8fcuXOF22vXrgUA3H///Xj11Vdx+vRpvPPOO2hpaUFKSgrmzp2LDz74AFFRvg/Kl156CRqNBsuXL4fVasVdd92FLVu2CDOyAGDbtm14/PHHhRTCpUuX4uWXXxa2q9Vq7Nq1C4888ghmzpyJsLAwrFixAi+88IKwxmg0Yvfu3Vi9ejWmTJmC2NhYrF27VjhmgiAIggiV3CKu/HxRVorkfrGTFSjCXQm9xMni+qCGxIahtLG915IFeTSSnqyeF1nfv2UwpgyN9Utc5InQa4R5ZUqClO+Na24nkUUQ/QmxIxUoYEKpFNDVgZMlLxd0ioSYZLC6wnOOEEQWv69QXsk1iKw5c+YErUX84osvOtyHwWDA5s2bhaHBSsTFxWHr1q1B95Oeno6dO3cGXZOVlYUDBw50eEwEQRAEEYzC8hYAwJyMQZL7+dI2tYoReolCQToni/t5QqoRpY3tGJ0YeZ1He32IY9zlc7N6AoZhMCwhIuD2CJ0a9d6flZwsXviarM7uODyCILoJp6gUUCnpT+l+j0dWLqjgZHlkg4YdLo/Qsykuj3bJ7LPkaIPQB8qgcz1ZvZMPSxAEQRD9iDa7C23eoZRDYqXuCi+yYsO1knLAjtBrfNUbfNDEn5Zl4idT0zFdFOLQG4iDL3ojXbAjxCdiCZEksghioOCWlAuG7mR55E6WUrqg6D6zzYXffnQagDSx1Cl7HN+PBYh6skJ5IeiB4AuCIAiC6O/Umbn5WBE6tV+6HR/OECj0IhA62TBigBtmPGNUQq/3DWvUvduT1REWh0v4Wfw+8ohFVqvNibpWW48dG0EQ1861OFluWTx7SUMbTnorD3hYVnl/00bE4alFY4XbcieL78cCxBHufSRdkCAIgiD6O7VmrqxEqf/ntuFxyEiKwvdvGdKpfUrKBfuYWyQuF+yNnqyOsNhdQbeLRdYPXj2MuX/eJ3G18s7UYNlfv8GV+rZuPU6CIDqHWAgp9UfJ1wB8qIXvvg2fnce/CqskawINGt60/CZMSosRbrtkyYXi0u3ODiOmckGCIAiC6ADeCVEaEhwXocMXv57V6X3qRSJLp+lbQqa352R1hDPQlFIvxnBOZDW02lFl4n53JQ0W3OQ9mXrw3QIAwHOfn8frP53SfQdKEESnEDtJIc/J8gR2vYQ1CoOGY8O1SI0Jg9UboiPe9/dvGYIogwbfvXmwsM03JyuEFwISWQRBEATRIbXecsGujFYnJ6v7iPE6WbzAAny/Q1bW/E4QRN/BFYqTJY9wZ9kOE/+UnKyJQ2IA+HqtuOfnPhNuSo9BzrShkvUMlQsSBEEQxLVRZ7Zh0+6LuFDTKrs/cLngtaLUk9VXELtXfU0AAsBDs0dw/501QnG7OFafhxdZFc1W4b7eHvpMEIQUicgK1JMlc7LlJX5KsCzrJ44mDjECEM2/gs8lVyv0xXZ7hDtBEARBDDRMVifCdWq8c/gqXt57Gf+75xJ+fFsavpOVgjtGD0JtKyeylOLCrxW9Rjonqy/R2xHuHfGb7AzcnZWC8SnRitujg4isokqTcJ9FVCZEEETv41IIvthzrhb5xY343aJxUKsYPyfLGWhqsQi3x9/JmjIsDoBPPImfU+m6V2eDL0hkEQRBEDc0jW12TP7TlxibHIUJqUbh/vePluP9o+X4cu3s7ikXVPddJ6uv92Rp1Cqh1EcJg1YNvUYFu6gcsMbECeWiKp/IMlPEO0H0KVwKEe4PvH0cADcU+Me3pfuJJUcQkaVVM3C6uXJC/nHfu3kwwnVq3DEqAYDUyeJ7wpQSXvmPQpqTRRAEQRAh8M2VRgDA+ZpWpBg5EXX3xBScrTKjpMGCM1UmIcK9K0UWwzDQqVVwuD19zi3S9POeLACICdcKqZCAL7ykqNIs3EdztAiibyEuF5Q7RueqzX5rgODlghqVCk6321suyN33+F2jMTzBf/4VELxckOlk8EXfunRGEARBED1MmNY3FLisqR0A8N1JqcJA4Iu1raII967t4eFLBnV9zMnSqftuKEeoyPuyakw2NLbZUSian0MiiyD6FuJ0QbmYam7n/l7lqYPBygV5V17sZMkFFMMwgtDylQsG68mi4AuCIAiC6BDxF2ZpIyey4iN1wnyUE1dbYHVyvTuJUV3nZAG+8Iu+52T5jkfdx44tVOQiq6ypHQ+8fVwirFraSWQRRF9C4mTJxFRLu8O7Riqqgoksfhce0cBipetGfMmg08OXCwZeE2rwBYksgiAI4oam3eEbbMtfxYyP0GN0YhQA4HAxV04YbdAgTKf238F1wDtZfa8nS+xkDQyRZXd5UFjeAmOYFtsfnAYAMNucAWfxEATR80iCL2SOUZOFE1kyjRW0J6vNO7jcw/pEWzCXin9+5TV8uSA5WQRBEATRIW12/4S5uEgdRidFSu4bGh/ht+560fVZkSVysvqpyFJKGASAn80chpvTYwBwvRWtdpfiOoIguhaPh8VP/34Uv/6gMOAat8TJkm7jnWe5kxVqhDsv2oL1WwUqKeTW8Pvq8OkAkMgiCIIgbnDaZSfZWjWDKL0GiVF6RBt8+VDfvSm1y5/bJ7L6lpAR92EpnWz0B2LCdIr3L5iQDL1GDYOWe40mKhkkiB6hvs2OAxfrseNkZUAH2SnpyZKKKd7J4oUQ77KHGuHOiyNVECfLGSRdkIYREwRBEEQnsMhEVlyEztsIzUiuqn7v5sFd/tx6DVd+2NfCJXhnTcUon5D0B5QGEgPA2OQoyXYKvyCInsHm9FUNOOU2lRfxZ65cO/G9sbwjxX9OBSsX5BG7XUoXjvj7XCEFX3T4dNz60JYRBEEQxMBEPpA2LsKXIMjPYkqM0iM+smuTBQGRk6XpW1/HvLPW18RfZzCGcS4kwwCZg7mhxTNGxgtXo3mni0QWQfQM4rl1zgAlfk5ZhLu8/8nucguCif+ccrr89/WbBRm4fVQC1swb7d2v77mVnSyvyPIKNhpGTBAEQRDXidzJio/wlZltuCcLf917Gb+6a3S3PDcfla7tY24Rf4W4v/ZjAYAxnHOq4sJ1ePnHt+CfBeV4aPZI33ZysgiiRxE7Wa4A7pNbNoxYLsYa2hyCyOEvUsnLCgHgrnGJWD13FD4/XQ1AWlKo9LnGm1u8k0XDiAmCIAjiOvF3snwia3hCBF744aRue+5BUZw71h0u2fWgEZys/iuy4r2OZGK0AcMSIvCbBWMl2/lgjBaro8ePjSBuRMROVqASP7Go8nhYPwFV32oXhBB/MUipJys2nPscZwSHKni5IO9uuUIYRhxquSCJLIIgCOKGRh58IRZZ3c1/3j0OCyYkY27GoB57zlAQnKw+FsjRGaaNiMfPZw7HrDEJittjwsnJIoiexO7suFxQ3JPl8rB+pYB1ZpuwRujJUigX5J1qeaAFEHxOFi/qgvZkgZwsgiAIguiQtiDlgt1NYrQBd09M6bHnCxXtAHCydBoV/mvJ+IDbqVyQIHqWUMoFxfe7WdYvIKO+zY42G/eZHaHnZIySk2XQcqFCKlmgBRDAyZKFWgQbRkwR7gRBEAQRAu3ycsHInhNZfRU+8KI/92R1BC+yzAoiy+5yo6K5vacPiSAGNNLgiwAiyyMrF5Q5XmVN7Wj0RrmnxYZ5HxM4XVCtUigXVOzJkt6nLMRoGDFBEARBdMhX52vx7K6zfk5GTzpZfRU+7bA/pwt2BC+yWhTmZG387Dxu/++92HehrqcPiyAGLHaX74KWUokfIItwZ1k/MXa8tBkAEKnXCH1X/L548TRjZLywnpGVCzJM8FALnmDhGIFmfPntM6RVIg4cOIAlS5YgNTUVDMPgk08+kWxnWRbr169HamoqwsLCMGfOHJw5c0ayxm6347HHHkNCQgIiIiKwdOlSVFRUSNY0NzcjJycHRqMRRqMROTk5aGlpkawpKyvDkiVLEBERgYSEBDz++ONwOKQNrKdPn8bs2bMRFhaGwYMH45lnnglZgRIEQRADl/+38xxe/7oEZU1SxyIx2tBLR9R34NMOB7KTxfdkKYmsvV5x9cGx8h49JoIYyNicHTtZ4vtZ1n/dt+UtAIDUGIMQVsGvGRIbhlPrs7H1ganCenm5YKDh6irZ/cpCrHPBF50WWRaLBZMmTcLLL7+suP3555/Hpk2b8PLLL+PYsWNITk7G/Pnz0draKqxZs2YNduzYge3bt+PgwYNoa2vD4sWL4Xb7FO6KFStQWFiI3Nxc5ObmorCwEDk5OcJ2t9uNu+++GxaLBQcPHsT27dvx0UcfYd26dcIas9mM+fPnIzU1FceOHcPmzZvxwgsvYNOmTZ192QRBEMQAwuX2oFwmrp757gT8et4Y3OSdjXUjwzeU9+eerI5I9orpKpNVcr/Z5sTVRu7/jb0X6vwi/gmCuDbETlagEj+3TMGISwy5x3HbB8eECe6TOKwi2qCVzMHihREvxAINV5eLrODDiLsp+GLRokVYtGiR4jaWZfGXv/wFTz/9NO655x4AwNtvv42kpCS89957eOihh2AymfDmm2/i3Xffxbx58wAAW7duRVpaGr788kssWLAA586dQ25uLvLz8zF1KqdGX3/9dUyfPh0XLlxARkYG8vLycPbsWZSXlyM1NRUA8OKLL2LlypV49tlnER0djW3btsFms2HLli3Q6/XIzMzExYsXsWnTJqxdu1ZRpRIEQRADn2qTTVL7DwALJySTi+VFiHDvx+mCHTEsIQIAUNFshdPtEYTl2SqzsMbm9OCr83VYMim1V46RIAYSYicrULmgPHWQF1kGrUry+NSYMEEI8QmEwQItgkWzA/5BF8F7shR34b8+tGWhUVJSgpqaGmRnZwv36fV6zJ49G4cOHQIAFBQUwOl0StakpqYiMzNTWHP48GEYjUZBYAHAtGnTYDQaJWsyMzMFgQUACxYsgN1uR0FBgbBm9uzZ0Ov1kjVVVVUoLS1VfA12ux1ms1nyjyAIghgYHC9twpQ/fYlX9l3x28YnVRHiYcQDtycrMUoPg1YFt4dFRbPPzSqqNEnWfXGmpqcPjSAGJGInK1C5oJ+T5U0kjA3XIUEUSjQ4NkwQPfzMrWCBFsGi2QGlckH/Nb45Wb0QfFFTw30QJSUlSe5PSkoSttXU1ECn0yE2NjbomsTERL/9JyYmStbInyc2NhY6nS7oGv42v0bOxo0bhT4wo9GItLS0jl84QRAE0S9470gZGtrseP9omd+2MG/kLyEWWb18IN0IwzAYFs+5WaWNFuF+3smaMpQ7TzlXTRdbCaIrEJf+BSoXlN9v8z5Go2Yw3Os+A1y5oDzUQi6UuPv4NazkdqB1PEGDL3ozwl1ehseybIelefI1Suu7Yg0fehHoeJ566imYTCbhX3k5Nb0SBEEMFI6UNCneH65TB6zVvxG5OT0GIwdF4O6sgV0mNzQ+HABwtcECj4fFzlNV+PhkJQBg2c2DuW2N7XC4AkdEEwQRGuI5WYHKBeVl3LyTpVWp/EQWX9LHlwIqlTfLP9dDdbKCCTY2xGHEXSqykpOTAfi7RHV1dYKDlJycDIfDgebm5qBramtr/fZfX18vWSN/nubmZjidzqBr6uq4xCC5w8Wj1+sRHR0t+UcQBEH0f8qb2lHZYlXcRqWCUhIi9dizbg4enjOytw+lW/E5We348EQFHn3vpLBt3rgkROo1cHlYXBU5XQRBXBshzckK0JOlUTNCHyXA9WTJ0wWDCSOeQCLLrydLQSH1ak/W8OHDkZycjN27dwv3ORwO7N+/HzNmzAAATJ48GVqtVrKmuroaRUVFwprp06fDZDLh6NGjwpojR47AZDJJ1hQVFaG6ulpYk5eXB71ej8mTJwtrDhw4IIl1z8vLQ2pqKoYNG9aVL50gCILo4wRysQCuqZq48RgqKhd865tSAJyL9593j0Oy0YBRiZEAgEt1bb11iAQxYLCHEOEuLxfkRZZWrcIIr8hSqxgkRRs61ZPFcz1OltCTFaKx3elvlba2NhQWFqKwsBAAF3ZRWFiIsrIyMAyDNWvWYMOGDdixYweKioqwcuVKhIeHY8WKFQAAo9GIBx54AOvWrcOePXtw8uRJ3HfffcjKyhLSBseNG4eFCxdi1apVyM/PR35+PlatWoXFixcjIyMDAJCdnY3x48cjJycHJ0+exJ49e/DEE09g1apVgvu0YsUK6PV6rFy5EkVFRdixYwc2bNhAyYIEQRA3IEeKGwEAWoWSEquDysFuRIZ5ywX3XajHuWozDFoV3lp5K35xxwgAwGheZNWSyCKI68UmjnB3BygXlN3Plxhq1CpMSDVCxQAZSVFQqxhRv5VXZCmc28vvC3VOVtBywRCdrE7XRxw/fhxz584Vbq9duxYAcP/992PLli148sknYbVa8cgjj6C5uRlTp05FXl4eoqKihMe89NJL0Gg0WL58OaxWK+666y5s2bIFarWv6Xjbtm14/PHHhRTCpUuXSmZzqdVq7Nq1C4888ghmzpyJsLAwrFixAi+88IKwxmg0Yvfu3Vi9ejWmTJmC2NhYrF27VjhmgiAI4sbhRBlXpr500mB8dKJCsq3N7j+Qlhj4DBWVHwHAspsGIybcl2A2Ool3slpBEMT1IXayePfpw4IKxEfoMHdsIliW9evJsgk9WQzS4sKx87E7kBDF/Y3yrpQQz64420omnkIuFww2jLib5mTNmTNHCI9QgmEYrF+/HuvXrw+4xmAwYPPmzdi8eXPANXFxcdi6dWvQY0lPT8fOnTuDrsnKysKBAweCriEIgiAGNjanGyUNXF/Nz2YOQ97ZGowYFIlvy1u828nJuhFJiTYgPS4cZU3tyBpsxON3jZZsH53IXSC+TOWCBHHdyCPcK5rb8cQ/vwUAFG/4jqJ4EfdkAcD4VF9WAhNSuaD0dsjlgkGGEQfTQWKo05cgCIIY8Fyua4OHBWLCtZiQGo0962bDoFVj4vq83j40ohdRqRj8a/VMtNldSIsL99vO92QV11vg9rABT9D6C5dqW3Hfm0eweu4o/HT6sN4+HOIGQ+xkudwsrA6f6Gq0OBBl8MkShuHK8sQ9WXL40j8h+CIEJytguaBs90p/6r45WYq78N9naMsIgiAIov9yvoYr98pIigLDMEiMMiDaoO3loyL6ArEROkWBBXgTzBjuSnmjxd7DR9b1HC5uRK3Zjl2nqjteTBBdjNjJcrg9ErFSY7JJSgV1XlHFP0YTxFniZ2AptNv6i6cQnSwlMdbZckESWQRBEMSAwen24HyNWfJlDgAXariBsmOToyT3/3HpBADAbxZk9MwBEv0KtYpBXIQeAFDf2v9FltnK9R7Wmm1dut9qkxVtdleX7pMYeNhk6YLi+XPVJivcotALvcYrspx8uaC/ZOEFk9vD92QprAnRyZIH4gUrFwy1uJzKBQmCIIgBwd7zdVj3z2/RZHFg9dyR+M2CscI2wclKls4+/On0ociekITkaEOPHivRf0iI1KGhzY6GNkfHi/s4rTZOCNWYbWBZtkuSlvOLG/HTN48ia4gRHz0847r3Rwxc7LJ0QYfbd7vGbINTlI2u06gBuITHKKXC+gkoxdlWstsBnazg+xY/NtSeLHKyCIIgiH6P28PiqY9Po8nCnQgXegMteC54RdbYFKmTxTAMUoxhNNaDCMigqAHkZNk4J8vm9MBsvX7nydTuxI9fz4fD7UHB1Wa4Asw+AoCTZc34/DSVKQ5kOhIfcifLLnGybCJHihHKAwUnS8Glkouq0OZkKR9bKI4XfxeVCxIEQRA3DEeKG1EjKoGqM/tOiK/Ut6HOe4I8JinK77EEEQxeZDW0+Yssu8uN7796CL94+3jIV7d7E7GwqumgZPDdw6VY/tphNFsCO3ibv7okmRkk3qfT7RGJOje+98ohPLztBEq9KZ/EwOJyXRtu/n+78bf9VwKukfdkOUXlgTUmmxBgoVExgmCSpwuK8Xeyrr1c0N/xUlpDwRcEQRDEDcbHJysBALcNiwMAQVS1O1x4ZOsJAMDMUfGI1FOVPNE5BkUGdrJOVZhQcLUZX56rRWlju9/2VpsT9//9KBa8dACPvX9SmPnTW/CiBwD+cbwcv/6gMGAv1f99XYyjJU34rMjnPl2ua8PPtxzDibJmWB1u/ON4ueQxFc1W4eefvnkU0zfswcmyZuw5Vyfc35G4I/onJ642o6XdiQMX6wOuETtXSj1ZgqBSMYLI8c3JCkVA+T9nqOWCfj1ZQYYRk5NFEMQNwd8PluA3//y2109eiN7D7nIjt6gGAPDQ7BEAAJPVCZvTjfePluNCbSsGRemxaflNvXiURH8lWLlgYVmL8PPBS9KTS5Zl8fSOIuy/WI8Lta349NsqHLzU0K3H2hFmm09QvXmwBDtOVmLXqSq/de0OlyCYTope47p/fouvztfhnlcO4V+FlTDbXEiPC8eMkfEAgPImTmjWt9pxuLgRFocbP/37UWz+6pKwj5Z2Gvw9ELF6v4PFQkoMy7KS72mXm5WIrBqTTSjrHpYQIThOwZ0s2e3riXAPYZ4WA35QluIu/PcZ2jKCIIi+h9XhxjM7z+KfBRV4Ze/lDte3O1zwhOrzE/2G4noL2uwuRBs0mJuRKKRS1bfacby0CQDw85nDkUThFsQ1kBAZuFzwZHmz8PPXMgG17UgZ/v1tFdQqBmOSuHlbV+p7d6hxq9Vf4Cg5cMX1FqEM8ESZ7zVWt/icqn8WVAAA7puWjqHxXAQ+L8wOFzf6ntPmEoJnAKClvf8HiBD+tHtnXjkCiCyXh5WU2TncHknwRbXJhpPe/9duSosRlQvywRdKPVkhxK7L1gRysuT7IieLIIgbmmPeE2gA+Ps3pUEb04sqTbjl/+3G058U+W1zuT1dHmlM9Bz8ieuoxEioVAwSo7mT4rpWG771BmDcnB7TS0dH9HeCOVlil+fwlUYh+CG/uBHr/30GADce4DtZKQB6X2SJywV5rjb690hdqvOJouJ6iyCMYsN1wv3nqrmxCHeOTcKQWKnIOnSZE5wLJyQLLhdPMzlZAxKfk6VcVSJ3uJwyJ8vu8mDvBc4Nvjk91q8nSyldUF7iF4rbFdjJkoss/zX884XafkkiiyCIfss3V3xXjtvsLrx3pMxvzdVGC4oqTfi/A8WwOT3Y+W2VkGDE86dd5zBt4x7sPlvb7cdMdD1X6riTxJGDOLcgKYpzrE5XmFBlskHFAFmDjb12fET/RhBZMifraqMF1d7/v6L0GrTaXThVaQIAPJ97Hi4PiyWTUvHQrBHC/5uX63pbZPn3X5U2+DtZF2ulx3nSe7EiJtw3wLvd4YaKAdLjwjEkNgwAUN7M7evQFc7JuvfWNGz7xVTs/vUs/HDyEADkZA1UbB2UC8pL+l2ynizA9/dxU1qMIHr4xynNyQrNfZKHY4TWk6W0joYREwRxw/CN92rpLV6XQly6A3BlC99/9TCWvHwQu7zRwa12l3AFFuDE2QfHysGywEu7L8LmdMPqoP6uvkZRpQmnKloUt/HuwMhE7kSWd7LyvKJ5TFIUIijwgrhG+HLBlnancFK44bNzmP3nfQC42Ws3D40FAFyq5Rwg/mTx0bmjwDCMILKu1Ft6LYXQ5nQrlnJdbeSO6XJdG7YduQqPh8Ulr8ji3YOTV7nP1nCdWvLYwbFh0GlUgpNV2WxFZYsVZU3tUKsY3Do8DgzDYHRSlFBS2Ewia0DCf2/ancoiy9/J8sDh9v9bCNepMSIhwt/JCjIcmEc5wl32mBDmZDGMv+gSr6F0QYIgBgS7TlXj2V1nJfNXLtW24qF3j+NMFSeWHp4zCgDwbXmL5ATm4OV6NLTZwbKQuFdHSnxlhp+frhbKHM5WmzH297mY/9J+IUqW6H2qWqxYvPkgfvDqYSEJ7fCVRhz1/h4FkeU9kU30Oln81fSb0mJ6+IiJgURMmFaY2dNoscPjYfFPUape9vgkDPMKiNLGdpisTsEx4h2eEYMiwDBcIEujLBK9ssWK/849j6c+Ph00Lv16USoVBACLw42GNgd+8kY+nt5RhDcPluCyt1xwYSZX5njA229mlbkRw+IjAABpcdzrrDZZBaE5IiFCkuYZ4y015MsFPzhWhudzzwt9sq02Z7e+fqJ74XuyApULyp0sh6hcMCHSV4Y6ITUaKtGcrGBOln+JXyjBF8rHL16ntB+AhhETBDGAaHe48JsPv8XrX5cItdoA8NqBYnxxphYsy5WBzRqTAK2aQXO7E+VNvsbsXadqhJ8ZBpg2gov3Plria8r+0Nu8HR/h+5CvaLYq9ikQvcP/HSgGwDVKX6ptRZvdhR+/no/lrx1GrdmG4nq+XJA74eOdLJ5JJLKI60ClYhDvPQlsaHXgfE0rmtudYBjg6yfnYs280RjqFRtXGy2o9PYlxUXoBAfVoFULguuKqGSw2mTFXS/uw6v7ruD9o2VY+teDQkJfV9PqFX7iq/3RBo1w3LXe2XJvHixBmfcYHprFpXUWlregzmwTTqR5eHdqUKQeeo0KHpYr0wV8ZZY8fD8XXy74249O45V9V5B3thZ2lxtLX/4Gc1/cNyCGPt+IdFQuKHe4nC5fueD88cl462e3YkJqNB6aNRKAT9B0Zk6WJkiJH0+gckHx3YH6tmgYMUEQA4YvztQIX+qHr/iE0Qlv6crjd43GmyunQK9RY3xKNACg0FtS5nB5sPssJ7I+eHAazv5xIX6zYCwA4GhJE1iWhandKbha7zxwm9AzAEAol7lWCq42Yfaf91Kf13XS0GbH9mO+XrtLdW2oEiWcvX6gGFanG1o1g7Q47oSPd7IA7ktx1phBPXfAxIDE15dlwyFvL+jsMYOQFhcOhmF8TlZDu9CXxIsqHqEvSxR+caS4CTanB6lGA9LjwlHeZMVrBwIPc70ezN5kweRoA55aNBbrl4xH1hCuV1GcMFhjtsHDAknRekxIjRYuUuw5X+c3U4t3shiGweAY7vV+6xVZ8ZFykcX1czW3OyUl2YeuNOBfJ6tQ0mBBS7sT24/699YSfZ+OItzlDpfL40sX1GtUmJuRiF2P34F545MA+IQOL86U5mT5pQuGUFIYyKUSlwcqDSIWP5bKBQmC6Pd8fKJS+JmPBG62OFDcwDkXP585TDih5k8ETnkbtP+2/wrMNhcGRekxZVgcwnRqZA02Qq9RobndieIGC05VcmuHxodjQqoRf/7hJNxzy2AA19+gvvNUNa42tuPTb/1n0BChs/1oGWyiK6CXZSLrjYMlAICh8RFCxG+i6Ar6nDGDhJM/grhWkqO5/4euNrYj3/tZJE7NEztZvBOV5u1T4hH6sup8LvkpryDJnpCMp+8eBwDIL25CIK5nBAVfwhgdpsVDs0di5czhwnGXNPh/3n3v5iFgGAbZ3pPe3Wdr0W5XLhcEIIxI4HtexdUBgK9csKXdgUaLz606WtIkEZbvHS2TlIcT/QNeOLs9rOLvzyZzssTlgjqNQikgXy7o4ssFr63fKpRAC0AqxgKWC5KTRRDEQKCo0oSDl33pgeeqzWi2OIRwixGDIoQvbQCYNCQGAPDV+Tq88XUxNu2+CABYN3+M8KGq06gwPjVa2D8f780/FgBGJ0YB4ByT66HUKwRrTBQNf614PCzeP8r1vkwWBQsovafi9EBxueCPb0vv5qMkbgTGp3CfC6crTTjiFUHTRyQI29PiwsAwXH8T7+QEcrLEMe5F3jTCzMFGTB0eB4bhLiQolcy9fagUI/7jMzyw5Zjw+aKEy+3Bvwor/Vz0Vm9PFl8iCEBw4HixJ+aHUzhnf25GIgBODFkcMicrwSckk7x/d5XeiyDiPhsAiI3gnKyWdieaRL1X52tacaXegiiDBnEROlSbbNhzvi7g6yP6Ju2iniuHgsiSO1nickGdUnKgLC49lJ4sxTlZIQdf+O7vKOadItwJguiXvH6gGAteOoD7/34ULAvMH5+E0d7UuCMljThxtQUAcEt6rORxszMGITZci+IGC/606xwA4MFZI/Aj2Un2RO/J+OkKEwrLuRMLcc8O/1yBnCyPh4XF7vKLgZfDl99Um61B1xGB+fpyAypbrIg2aPCru0YD4KKlq2Uia9qIOPxu0Vjh9rD4CCRHGzA2OQp3jk3s0WMmBib8xZncohq0egdf8/cBgF6jRqqRE1UHL3H9o0PipE7WqESpyHJ7WBRVcZ9BE4cYEROuQ0YSJ+aOlkjdLJvTjb98yV042nO+Dms+KFQ8zsNXGrF480H8anshHnz3uKS31GzlBFKUwRfDnup1efkQIZ7JQ2MFUcg7wW12l6RckGEgpAoCQKJs2Ld/uSAnulweVuj5EvP0d8Zh6aRUAMBB2WBnou9jE5WAKiUMyssIuXLBwE6W3LlSShcMpVwwlIHFABCu8118CCTEGKFckJwsgiD6IW99U4ILta1otDgwOjESLy6fJJTl/P5fZ/Bvb/kd72zwJETq8e4DUxFt0IBhuAGgT4lOvHkyvSLrVKUJhV4n66Y0nwsiPhHihdTx0ib8aedZ1LfaMW/Tfkz4wxe4+Zk8IYFLjsvtEUqGaky26yrxGciUN7Xjr3svS65qi+FDSe65ZYjgVFW2WIWT1F/OHol/rZ6J934xTShVAriQgf1PzsEnq2cqXv0kiM4yPoX7/4/vEZ02It7v5I13dfj0PH8niyutq2yxoqHNjoOXG9DucCNMqxYEzbQR3GcdX5LI82FBhWSI77cVLTBZpWmBb31Tgh+/no/zNdznEssCn532hf/w6YLRYb6TSf7vhv8bjA3XYuWMYdjwvSxhTZRBI7gB/LmligGmDI2FQeuLdE+UBV3IywUNWjUMWu7vsaTeJ/6SovV48YeT8KPb0nHbcC6cqOCqdByH+DXsOVeLi7WtvRaFTygjTp5U6svigzF414obRsz9DhXLBf0GDSutkd4ONtsq2BpAOgMuwBK/v4OOoMEhBEH0OCzL4kyVGWOSoiQfri63BzVmzqVYOWMYHp4zEtEGLR6ZOwr5xU244I0GZhhg+oh4v/1mDjZiz7o5MFmdgliSM9FbGshfKdaoGExI9YmstLhw6DQq2F0eVDS3Y2h8BH659QQa2uzYcqgULq9gMttceOubUjwrOhnhqWi2CuucbhaNFodf0hYBPPf5eew6XY1t+VeR++tZiBZdYXd7WHztdQQWT0xBbIQOCZE6NLQ5hDLSkYMiAiYH6jVqxfsJ4loYEhsmDBwGpP1YPOlxEfgGPnEk78mKi9AhJlyLlnYn7npxvyCSMgdHCyd+00bEY8uhUhwr5T6fGtvsuOfVQ7jqdcb/8+5x2HakDCUNFpy42oy5YxNR2WJFfIQOf93L9TX9cPIQDB8UgedzL+Cz09V4eA6X1sYHX4j/zpJl7tOwhAisXzpBcp9KxcAYppWIvJP/le03MyupAycLAGLCdKhx2oS+2sUTU/DyiluE7fzFs/M1ZrTZXZIIeLeHxQNbjuFYKSfAHpw1Av/xnXF+z0H0DlKR5R/jzguvSIMGTRYHHC6fk6UNYdCwNoR0wZDmZAVwsmLCfH8Xgfu2yMkiCKKP8/7RcizefBAbPjsnub+21Q4Py32Y/tfi8cKXdlK0ATtWz8DvFo3Fr+eNwaeP3o5hCRFKu8agKH1AgQVwJ+bi+u+xKVGSq7FqlW9wKJ8w2NDG9UfwwokvQftXYRXaRT0KDpcHv3j7OFa+dVTynDdqXxbLsqgzK792t4cVBkRXmWy497V8Yb4OAJypMqGl3YlIvUYQUvzvtcV7spdKgRZED6FSMRiX4isPnD4ywW/NmCTp547cyRIPJRa7UFOGxfnto6ypHSzL4psrjYLAGpschXtvTcOtwzghcqSkCWerzJj53Fe44/m9aGizIyFShw33ZOHeKWlQqxicrjShzPt4PsJd3JMlv/gTFy51n3hiRfeHadUwhmn9TozlIkvekwX43IJirxsdJ3O7kqINGBIbBg8LFJa1SLa9c7hUEFgAsF801oPofcSJkUpOVq33e5D//8/p9sDhFWOhOFlKQuya5mQFUD5SJyt48EWvzclav349GIaR/EtOTha2syyL9evXIzU1FWFhYZgzZw7OnDkj2Yfdbsdjjz2GhIQEREREYOnSpaioqJCsaW5uRk5ODoxGI4xGI3JyctDS0iJZU1ZWhiVLliAiIgIJCQl4/PHH4XDQoDuC6E1YlsXfv+ES4T4qqJB8MFd7G6aTjQa/muhwnQa/nD0Sv5o3Wij5uxY0ahXS431XmB+/c7Tfmgzvic75GrNfKZteo8KLP5yEofHhaLO7sPNUtbDtaEkTvjxXK4lDBoAq043Zl/XO4au4bcMeoexPzClv1D4AGMO0OFdtxvLXDgvN+V97ezKmj4wXvlynDI2T7CPZKD2pI4juhO/Bio/Q+QkqgAtZeWTOSETo1LhtWJzk4g3PqEG+x6UYDXj++xPx6NxRwn38hYN2hxsmq1PoDf3h5CHIXTMLUQYtbhvOuWhHSxqFkmc+KON7Nw+GVq1CfKReEGO88+srF/SdTBq0aiFaHQBiI5RFllG0JkKvXASVJJtPp+Rk8WKNn20XqyDqpnjdrONXfX1pzRYH/vzFBQDAQ7O52V3FDW2UQthHYFlW6mTJerLcHhYfeAd43zWOS6t0eXzpgnoF5SOfeaU0A0vuOF3PnCyj6P/FQCILgpOlvNnvuUNb1jkmTJiA6upq4d/p06eFbc8//zw2bdqEl19+GceOHUNycjLmz5+P1lbfFcw1a9Zgx44d2L59Ow4ePIi2tjYsXrwYbrfvF7hixQoUFhYiNzcXubm5KCwsRE5OjrDd7Xbj7rvvhsViwcGDB7F9+3Z89NFHWLduXXe8ZIIgQuT41WbhxKHV7kLeWV/PAJ9KxTeQdxcPzhqBwTFh+Nt9k5E9IdlvO38ydabKLEkCA4CfTB2K2Agdlk9JAwB8ftonsg4XKzdr93cnq9nikIjhUPm8iHtv3leYe8M3ti+ckIzdv56FFKMBze1OoReD337HaJ9jIJ93lUIii+hBZo7i/l/MnpDsFwsNcILlyYVjUfiHbLy3aqriPkYm+hz4n88cjuW3pklEi0GrFhygyharMLh4tEjU3eZ1vk5XmlAqG5p+761pws8jvIKurtWGxja78LdlFIksQOpAyZ0lHrEYitArl+KK59MZtCpE6PzX8QmDfNml0vPxJYMnRE7WW4dK0e5wY0JqNJ5cMBZhWjWcbuUADaLncbpZSRiUw+2Gx8Miv7gRZpsTe8/XoaLZiphwLX7gnUfpdAUPvvAvF/RfE0qEe6hzskIrF+T+G2q5YLf0ZGk0Gol7xcOyLP7yl7/g6aefxj333AMAePvtt5GUlIT33nsPDz30EEwmE9588028++67mDdvHgBg69atSEtLw5dffokFCxbg3LlzyM3NRX5+PqZO5T7IXn/9dUyfPh0XLlxARkYG8vLycPbsWZSXlyM1lUurefHFF7Fy5Uo8++yziI6O9js+giC6n/ePcCfc4To12h1ufFhQgUWZKdh5qkqITe/uMrDlU9IEkaQE36N1psoslLXcMToBf/7BJKG8ZvaYQfjzFxdwvLQZbg8LtYqRDEwGuLJHp5v1S8PrDvh+tiGyPpDrxdTuxB3P78WwhHDsfOyOTh0PHwtdcLUZdWabJH3sa+/V9dtHJyAx2oAZIxPw0YkKnLjajOkj44UTwttH+UTWzekxkucQp0ERRHczf3wSPn309qDlyIDyySDP4Bjf3yc/dFVOakwYGtocqGy2ChekxM+ZFheGuAgdmiwO4WLEzFHxeOD24RjlHUEBAIO8TlJdqx0Pbz2BimYrBseEYd446fMmRRuEsAwlZwmQllIF+rsL06kRbdDAbHMhPkKvKEQT5ImDCiJrpPe18vPw2uwuvH2oFADwyJxRXEl3YgSKKs24VNeG4Qncz6MSIxGmIOyI7kfsYgGck/VZUTUefe8kJg4xCgL83lvTEOUtF3S4PSHNyeJRmpPlnxzof2yhzskSX3wINIyY7xHkkzo7olucrEuXLiE1NRXDhw/Hj370IxQXFwMASkpKUFNTg+zsbGGtXq/H7NmzcejQIQBAQUEBnE6nZE1qaioyMzOFNYcPH4bRaBQEFgBMmzYNRqNRsiYzM1MQWACwYMEC2O12FBQUBDx2u90Os9ks+UcQRNfQ0u7ATq/zs/EeLjDi4OUG/O7jU1j7j2/x6j6ucTs1pncdigleJ6usqV0oxxk5KBLJRoPwAT0uJRqR3kb4c9VmWOwuQVRkJEVBo2Lw/Vu4K3bVQcoF68w2SV/XtfLc5+dx+3/vxVfnazte3AG7z9biuLfxvqjKhDa7C0WVZr80s2BcrG0TktgA4AvRzJ4miwMnvCJq1mjOneKvXheUNeNSbRscbg9iwrUYLuq906pV0Ct8GRNET5E1xHhdJ/LTRsTBGKbF9BHxkv+3xfCR6eXNVpR4AyJGDfKJJ4ZhMNRb8nyuhjtH+d7NQ3DnWKl44i8IXahpxdHSJjAM8PbPb/MTNuIyv7gIqcvFExPme0xkACcL8MW4K/VjAcDYZOkFbqUeMD6lkO/nfHXfZZisTgxPiMDCTO4CPj/P8HJdG744U4slLx/EY++fCHhcRPcir3Swuzz4zPtdf6rCJJR+ficzReiJdnlYONzedEHFOVnS2xoF5eNXChjgAodYV4WWLqi8hv/bDLUFoMu/raZOnYp33nkHX3zxBV5//XXU1NRgxowZaGxsRE0NVxaUlCS7ipKUJGyrqamBTqdDbGxs0DWJif6zTxITEyVr5M8TGxsLnU4nrFFi48aNQp+X0WhEWlrgq90EQXSOHScr4XB5MC4lGksnpeK2YXFgWeDjE5WSdb0daBATrhM+THd+y31RjBgkPSFSqxhM8fY8fFhQgec+Pw+Xh8WQ2DB8snomDjw5FzO8LozcyXK4PKhrteFSbStm/XkvVv792HUdr8PlwT+89e6fnKwKuM7l9mBr/lXhCrESx0ubsOqd47j/70dhc7oFJw+AEExRa7bhdx+dwsq3jqI5QPw6PzSaJ++M73P3s9PVcHlYZA6OFvrjeJFVWNYiCNvMVKPfVcgHZ3H9GONTqBqB6H/ER+px+Kk78dbPbg24hv/8O1LcCIfbA71GhcGyEI2h3hlcfNVSqkLpLC+y+IHHiQFCgcQJg4GcrNgQnCzAJ9iU+rEALklRsl8FUTcokjses82F0xUmvLafu1D/24VjhRPkUaJ5hu/mlwIAvjzHDTB2e1j883g5Hn3vBN74ujjgsRKh883lBvzkjXxB9Mvxc7JcbslFhJZ2J/QaFcalRAtR7G4PC7szSPDFtaQLdjBEONga8YUEl1u5HJD/O6w1+w8LV6LLay0WLVok/JyVlYXp06dj5MiRePvttzFt2jQA/tYdy7KKtnKwNUrrr2WNnKeeegpr164VbpvNZhJaBNFJWJbF15cacHN6jDD4kmVZoTdnxW1pYBgGP5g8BEdLm/we3909WaEwITUalS1WoXdgRIL/ycnU4fHYd6EeW7ylLADXNxSmUyNMF4ZUr5gRO1n1rXYsf+0wqk1WZA02wub04GhpEy7UtCIjOUr+FKg12/DMp2dhcbjwyk9uUTzB+eZKA8ze5LCvL9UL5YtyPj5Zif/8pAizxgzCOz+/TfF1/+9XlwEAFocb+cWNQtQyAFyobcWoxEjc/b8HhcTF/9lzyS/yGQBOevsp7hqbiD3n63CqwiR8/vKzzvjBowA3BJqPyP74BBeUMWGwv5D69bwxSIsLV4zQJoj+QEdlrvwFngPeEQYjBkX6/T0PjZde9FEKgeFFFp/0lhLgczXJ2HFPVowk+CKwk5XkLQuTz8jiGZMUBbWKEfp34iP8xVh0mAY6jQoOlwf/b9dZuDws5o1LElwsQCqyRouEY2ObHa/uu4I3DnLhSrtOV+O+aUMVQ0iI0Hn/aBm+udyI3KIaYSSAGCUnS55JkjnYCJ1GBa3L9/8yP9xaqcTWL/gipDlZysfPiSzWu0ZZA0SJUjf5ACY5iVEGaNUM7PY+EuEeERGBrKwsXLp0SejTkjtJdXV1guuUnJwMh8OB5ubmoGtqa/1LYurr6yVr5M/T3NwMp9Pp53CJ0ev1iI6OlvwjCKJz/PN4BX7696NY949vhftOlDXjYm0bDFoVvnvzYADAoqxkYTilmN52sgBIZmcB0oZ1Hn5wJgBMGmLEH5aMx28X+gYg81fyypusaGyzw+n24IG3j6GkwQKb0yOJI/5XodTNO3ipAfM27ccdz+/FrtPV2HehHtvy/QMkAOAzUcJhc7sTp71XruWc9pYzHrrcICSNiSksb8GBi75Y5H0X6oUUMICLtN9/sR4NbXahfv3d/KtC34gYvhzw+5OHgGG4yOpGiwNVLVZhBtDiiT6RpVIxuFnW8C7/HfDrlk9J6/LeM4LoK/CffzZvQpuS+zQ0Xvr/v5KAGiRzkwYH+FxNEgVWBEoXjBEHXwQRiaO8AR3DBymXQhq0aklgjVi88TAMIxz7yTLuc4QPS+AZLRJZ4rLkv+71CSyAc/ooHOP64cdmtNmVxYdST5bFLi2Dv9k7ikMsqPjfXSjBF6GkCwaMXleJfw60xl/8KT1foIsVivsMeeU1Yrfbce7cOaSkpGD48OFITk7G7t27he0OhwP79+/HjBkzAACTJ0+GVquVrKmurkZRUZGwZvr06TCZTDh61DeL5siRIzCZTJI1RUVFqK72nXzk5eVBr9dj8uTJ3fqaCeJGh49qzTtbK5QXvHeEu2/JxFRhGGaUQYt18zNw27A4/EiUitXbPVkAsDAzWbiqe9vwOL+hnQBwU1oMlkxKxb1T0vDBQ9Pxs5nDJc2z8ZF6jPW6U4euNOLwlUacqjAh2qARTi74HqN/FVYJszdYlsWGz87hcl0bHC6PUILz2oErfv1bTRYHcr2lePxJ1L4LdYqv6YK3ud3lYRVnzPAlh/x+9l6oQ3FDm+Tx+cVcuMcPJw/BvHGJcHtYvOWN5K9qseLZXWdx8FIDihss0KoZzByVIMwLulLXhp2nqsCy3HsqF9NiZwsAMlPpIhdx4yEXQ2MVHG6xyIoJ1yr2iclnYAX6XBW7YIHmZMWEEOEOcImJb//8Nvx85vCAa8R/94EcpkTvZ57TW7YlF5XpceFQqxhYnW6crfb1zvPjQXKmDUWWd9RHaYASNyJ0mtu5snCLXTll1qZQLugnstK5i2hikcWLGaVe21DmZMkr05TCMeT7ClQuKCZYRHugixWKzxvyyhB54oknsH//fpSUlODIkSP4wQ9+ALPZjPvvvx8Mw2DNmjXYsGEDduzYgaKiIqxcuRLh4eFYsWIFAMBoNOKBBx7AunXrsGfPHpw8eRL33XcfsrKyhLTBcePGYeHChVi1ahXy8/ORn5+PVatWYfHixcjIyAAAZGdnY/z48cjJycHJkyexZ88ePPHEE1i1ahW5UwTRjZQ1tgvJcADw2v4rqDZZsfMUVyL246npkvWrZo3AP345Hd+9abBwH19i2JtkJEfhxO/n49Kzi/DBg9MUy4zVKgabf3wz/vsHEwOeLPCxz4euNOBoCefgzBuXhOfuyUJStB4v3XsTInRqVLZYUVTJnSwUXG3G2Woz9BoV8n49C18/eSfS48LR0OYQ+tcu1LTiPz85jV9/UIhWmwtjk6PwyFyujEOecghwwu2CaNjvl+ek1QAutwe5RZxY+/3i8dCqGVxtbEd5k6/U8VJdq7Dv6SPj8ZOpQwFwjhfLsnju8/N4/esS3PfmEeG1G8O0wmygy/VtiqWCPN+9SXrfsHjlq+EEMZAR919p1Ywklp1HXC4Y6Mq6QauWlEAFWjc4JgxqFYMInVoyQ0uMuFcrPEjwh0Grxuwxg4KW54Vykip34dLipCJLo1YJjpjcqYqP0OF3i8YKA+uvNgZ2sl7afRFLXz4IU3vooT43Ij4nS9nhaVcoF5Sv5dNh1SpGKPMLli7o52QpCCjxYG0gsJMlFlaBnKxQkQ8ZD0aXi6yKigr8+Mc/RkZGBu655x7odDrk5+dj6FDuy/jJJ5/EmjVr8Mgjj2DKlCmorKxEXl4eoqJ8V2peeuklLFu2DMuXL8fMmTMRHh6OTz/9FGq1749227ZtyMrKQnZ2NrKzszFx4kS8++67wna1Wo1du3bBYDBg5syZWL58OZYtW4YXXnihq18yQRAiPvGWvfHuy/Zj5Zi+8SvYXR6MTY4SSgbkTB8Zjxd/OAnv/UJ5vkxvoVWrOuwZDcbMUVzv0MHLPpE1dUQcFmam4Mh/zMN3slKEskO+P43v8Vp202CMSYqCTqMSTrS+8UafP7PzDLbml2H/xXowDLDhnixMGhIDALhY2+o3kb7WbJekA+49Xwent2je5nRjz/k6NFkciA3XYt64REl0erhODYYBGtocKG1sh4oBbh0eh2kj4qHTqFDZwkVN8z0kPN/JTAHgK3fKO1OLokozNCoG38lK8XuvtGoV/uM7XLnl7aMSrvvLkCD6I+KQiR9MTvOLPQc4IcHPoVIKveARu1mByrBjI3T4232T8fpPp4QUbx3MyQqFX9zBuVzzxvkHmPGIjzs+QidEZ4tJC1Ay/PCckYjQazDM637JZ4nxFNe34X/2XMKpChP2dEEq60CmxetktdmURZZ/8IVPZMWGa7HqjuGSMlG5K6WYLigPvlBIF0yUVZgE+v/3lqG+ML1QnKxgyENogtHlwRfbt28Pup1hGKxfvx7r168PuMZgMGDz5s3YvHlzwDVxcXHYunVr0OdKT0/Hzp07g64hCKLrcLo92O4Nt/jNgrEoaWjD1vwymKxOjE6MxMZ7soIKlu/L6u4HArcNj4dGxaC8ySq4QrcNl4Y2TBkWh70X6lFwtQmzxwwSom9zpg8V1kzlhVhJE5otDuQXc4KMYbgwiFvSY2FzusEwXF9WfZtdMhyUd7FGJESgxepEk8WB46XNGJ8ajeyX9gtpSQszk6FRq7Bm3hjs9ZYUujws0mLDhSvGWYONQsnntBHxOHCxHnlnayXlIWoVg/neOUAjvU7Wfm+/1+2jEwI22K+6YwTS4yKQNcS/H4sgbgQYhsFjd47CqQqTcNFBaU16fATOVZsVQy94BkXqhb7KYA7S/AAzu3jEvVpKQ4Y7w4RUI7753Z0BY94B6WBjuYvFI3cUBkXpYQzT4r5p3Ocm7/YFcrL+uveK8HNFc2iR3DciDpcHFq9TZQkwbsSm4GTx3wd//sEkv5lwOrVKCGQBAjhZIZQCRhs0CNOqBZEXSECtnjtK+P7hQ5uUiNCphdcaiM6UC9IkR4IgrhuHy4N3DpfiSn0bqkw2JETqsXhiCgxaNX49bwza7C5J4/SNRKReg1ljBuGr83XC7WGy/gI+vvx4aTM27b4AD8uVFGYO9gmNiUNioNeo0Ghx4PWvi+H2sBibHIXcNbOENQatGsPiI1DSYMHFmjapyPLO0xmXEo0wnRofFlTgy3O1uFjbKggshuGunAPApLQYZCRF4UJtK+7MSMSSSanY8Nk5VLZYsURU6jdnzCAcuFiPv+2/IvRPjE+JxoyR8cKJmbxx/94gg6AZhpGkiBHEjci67IwO1wxPCMe5anPQoCCxI5RyHb2uETo1NCoGLg+L8Ot0soCOT1TFx50eQGSJxVekXoPDv7sTbpaFXsOJQP5zlu8LPlXRgigDN3vvm8sNQtUFAMmoCkJKi9U3piNQuaBShDu/Vsn5lAumUMoFA/VkJUXrUeoV0oGcLHFIVbCLElEGbcciqzedLILoKT47XY1/HC/HY3eOFk5SuxuWZWG2umBUSES6kXn962L8+YsLwu2fzRwm1ORr1KobVmDxbLwnC1M37AHAOVJyN2/SkBhoVAzqWu347HQNGAb4zQLpSZZOo8It6bE4XNyIV7xDm7MVrj6PSYrkRFZtK24fzZX8sSyL494kw4zkKIxJisKHBRXYfbYWYd7f0+q5I3HvlHRhbhUAbH9wGt76pgQ/mJyG9PhwLMpMRpXJKonYnzcuCc/sPItWbxnJHaMT8O4D0pJP3skCuCZ+ElEEcf08NGskDFq1MPRcCV6s6DSqgLHqocAwDGLCdWhosyuW7nU1iSKRlRanfFIrdrISo/TQqFWSk1reyaoyWVFtsuIHrx6Gw+3Bqz+5BU/881u4PSwMWhVsTo9kVAUhRdyvxpcLuj0sypraMSw+HAzD+PdkOT1CSIbS/y9+5YLXOCcL4EoGOxJZAHD4qTvxUUGF4HQqEWXQoMYccDOAwGWqSnR7uiBBdAdWhxtPfXwa+y7U4/uvHhLKq66Vy3VtwnT5YLx5sASTnsm77ucbSLg9LN474osWj4vQ4b6pgT/EbkSSog349NHbMW9cEn49f4zf9jCdWiJucqYNVZyZNXVEnOR29gR/sTImiXvcRVHIxQt5F5B3lus5mDEyHneMToBOrUJZUzsu1LbCoFXhwVkjJccAcCVCa7MzhPtVKgZDYsMlX37p8eFYKDqOiQplfrEROiHOfv3SCdfV40YQBMektBhsWn5T8HJBr1gZHBN23X93vEjrCZHVWSdLnqQIAAmRXN8aywJfna+Dw9uD+vC2E7A43Jg5Kh4f/pJLpC6pt/j1sRIczSKRxZcAPv/Fecx9YZ8QZKTUk2URnCz/8tKQerL8ygWVJYs4+TdYH2+KMQyP3jla0l8oJ1Dwi+T5jIagYk4MiSyiT+HxsPjH8XK8su8y/rr3MjbvuYT/3XMJZbKa6k8KKyVN/M/nng/4AdnS7sCyv36DX39QqLj9bJUZi/7nAO54fi9e2XcZngDZnR4Pi7e+KQUAfFRQ0fkXN4CoMdnw8YkK1Jhs2Hu+DpUtVsSGa7H3iTn4/Fd3kNOnQNYQI964f4qkBFDMYm8QxJ1jE/Ffi8crrpk/PgkaFYNIvQZPLRqruC9eZPE9WFUtVqH34I9LJ2DKsDhE6DWSHowfTB4S9IunI1bPHSX8PD5F+fW98/Pb8Omjt2PaCBoiTBA9Be86dyYRLRCr7xyF796UKim96i4GSZysACJL5CjIAxAAzn3j3Szx/D+Am2v4Ws4UjE6KhIoBWu0u1Afp1bmR4ePbAV+54Gv7iwEAaz4ohNXhFvqceF1kd7qF/i1lJ0tWLhhC8IXSnCzAF7IFXH+ohXxUgBJatQpHn74rpP1RuSDRp/j3t1V48sNTfve/c/gqfjB5CPKLGzEuJRr7vXOA1s4fg9f2X0FpYzuOlTYrfvg/8+lZFJa3oLC8BQ/cPtzvxPTv35R4e0lYPJ97ASX1Fjz3/Yl+f+DHrzajsoVrjs0vboTT7VGsER7ovH6gGM9+dg4AVxrG178vn5ImuBVE53lk7ihMGxGPW4fHBbxiNyHViANPzkWUQRMw5p53wC7VtoFlWezx9oJNGRqL+2cME9a98MNJyJk+FDqNSpgnc61kDTHi/ulDUVjeglljEhTXpMWFI637z80IghCRPSEJj84d1SUluksnpSqOXugOEiL1UKsYuD2sJK5eTGKUHjq1Cg63xy/ynWdkYiTOVptx8BKXypocbcD88VxFAX/yP8Qb6lNcb5H0sQLcxVWH2xM0kn6gIy4XtDjckgvaLAss+p8DQrmeMUyLlnYnTFanMGtKqSdLfO6kUTGKDpTcVQp0vpUkEtiBhFioPP2dcahvteNHt6YHXcef93QEiSyiT/EvbyPq5KGxGDkoAmoVgyMlTSiut+Bv+7mr8YXlLQC42tn7ZwxDZbMVHxwvxwfHygWRZbG7wDDAsdJmfHzS19y6/VgZnh40Hr/+oBAjEyPws5nD8e9Czu6+d0oaPjxRgX8WVGBwbBjWzJOWde0Q7cficONkWUuPXNHrSxSWt+C53PPC7cNXGoUGVvGcK6LzGLRqzBilLFDEBGtyB4DhCRHQaVRos7twua4NX3nnYd0pi0sO06m71FX643czu2xfBEF0DeE6DZ5Y0HGIRl9Dp1HhvxaPh8nqDBiSoVIxGBwbhpIGizC8WM4Yb+gOH2awcuYw/HL2SMmaEYMiBJHFfya63B689U0p3jxYAovDhbd/fhtuSe+Z3u+e5vnc8/i2ogVvrbxNsTdK7GS5PSxsTg/iInRosnD3l4oqjXiR1ejdxjDKc9XEgknpOQFfoi5PoBK9pBDLBUMhPlLv11N8PZDIIvoMzRYHvvZebXr+BxOFZvnypnZ8/9VDsDrdePzO0ahrtSHZGIY7xybCGKbF8luH4IPj5fhXYSWmjYhDTLgOj79/EslGg1ACdUt6DE6UteBfJ6sQqdci90wNcAY4XWmGw+3BpLQY/PcPJmLKsFj85sNT+L8Dxbhv2lBhPsnlujZ84hVZg2PCUNlixcFL9X4iy+5y49tyE8anRvdI3XpPcqbKhMfePwG3h8WSSakoqjShpMECl4dFcrQB41L8e4iInkerVuG2YXE4eLkBu8/V4hvv8OB544JHNBMEQfQlxM57IEYO4oJ+AvVtjU6Sfi8prRuREIl9F+pxpb4NT318Cp+crEJKjEGIvgeAn285hk8emSkMOBbjcnvwbUULbk6L7Xez/ViWxd+/KYHN6cG5ajMmKcyxbLFKBzW32V3wBGjP4IcB8wIsQqdR7AXUajoWWeNTokN6DWKRFWqvVE9x49U6EX2WL87UwOVhMS4lWpJGlhYXjr1PzMHR/5iHVbNG4Om7x+OB24cLpWm3pMfiezcPhsvD4jcfnsKqd47D6nSjpMGCwvIWaFQM/vqTWzAsPhytdpfgiAG+Ou0180YD4HpTsgYb0e5w4697LwMAWm1OPPreCVidXKPsY3dy/Se7TlcL08oB7sPq4a0nsPy1w7j5mTz88dMzwrBXMWWN7fjO/3wtOQ4lWtodsHYQJdpTnCxrxvdeOYTyJisGx4ThmaUTMHvMIGH73LGDKMygDzHT64g9n3sBDpcHQ2LDMFoWo04QBNHf+cOS8XjunqyAc75GJ0k/95REFj9i4mJtKz4qqITV6UZxvQVReg2e/V4mJqXFoKXdide/5vqQ3B4WxfVtQtnc7z4+je+/elgYIt+fqG+1w+bkzlN4YSSnpV16f6vNKemJB7iLeCoGuGtsomRfSqEXAKAXi6wAZYAqFaMYpCRH3JOl6mPnISSyiD4By7J4zzvEdsmkFL/tEXoNwgIMQGQYBi/+cBJWzx2JKL0GDANME6WwLZ6YghRjGP7yo5sR4w1kGDkoQvjDvndKGuZmJAr74qOz3z5Uik9OVmLF60dwvqYVCZE6vHTvTVgwIRmx4Vpcqbfg+dzzOFtlxocFFfivf50RZiE53VxIxs+3HINbFqSx9chVnK0247nPz+OZT88KMzzElDZYMPvP+3D7f38lSYlTwu5yI+9MTdB0xFqzDdkv7cfvPykKuIZlWfzzeDl+9tZRfPev3wjP6/aw+M9PiuBweXDH6AR8+tjtiI3QYU6GSGRlJAbaLdEL3DFaWnZ4zy1DSAQTBDHgSIsLx49uSw/YrzM0LlxyEq8UopGRzImsIyVNQgLhr+4ajV2P34GfTB2K1XO48sL8Yq4q4M2Dxbjzxf3YtPsiCq424UNvENb7R8u6JKGwuL4Nbx8qlVzE7S74AfMAhBI/gDsfKGtsB8uyaGmXCqpqkw3ilzllaCxe/+lkFP1xAaZ6yy2DzcgCgCGiEtBAThbgXzKohNjJag8wLLm3GFj1TES/5etLDThVYUKYVh10UGkgVCoGv1kwFk9kZ8Dm9CBMp8aa7SeRd7YWD8/hnKeb0mLw0cMz8N6RMtw3bSiOlTbhaEkT/nPxOMm+Zo0ZhO/fMgQfnajAGm8iYVyEDm+tvE1oiv1/yzLx6Hsn8cbBErxxsETy+D8unYDUmDA89v4JfH2pASfKmnHrsDhcqm2Fw+3BF2dqhLV//6YEbx0qwbZfTMWMkdyJscfD4skPTwlXin7yxhF8/PAMxS8Hu8uNVe8U4MDFemhUDB67czR+5XXlxGzKu4iLtW24WNuGH92Whgmp0qtDTrcHT+84jX8c96UmvvF1MZ7/wSS8d7QMZ6rMiDZo8Jd7b0KcN8Z32oh4JEcb4PKwgnNC9A3kZRYPzRrRS0dCEATRe2jUKowYFIHzNa0whmkVU1RHJXIlhbyoGZcSLRm1cdvwODAMcKXegrpWG7YfKwcAbP7qMj4+4evVvlTXhjNVZkm4VmmDBTaXG2OTQyt9A4A//PsMvr7UgIRIPe6e6H/ROVRsTjdWvXMcN6fFYG2A4dZikdUsEll/3XsZL+RdxIyR8ZI1AFDZzAWAhWnV+N8f34xJQ4xgGAbhOo3EoQICx/2Lw0wCOVkA8JOpQ/H61yXISArcjiAOJekJYdoZSGQRvQ7Lsnj5K64078e3pSM+QEpQKDAMIzhem5bfBDfLSq5wjRwUid9747GHJ0RgeQBB98x3J+B0ZQsu1rZh9phB+MOS8RghKmFcPDEVJfUWfHiiAs0WB8amRCMp2oDJ6TH46fShYBgG38lMwccnK5FbVIPUmDAsffkbYZaETqPCM0sn4O3DV3Gu2owt35Ti+dwLcLo9GJ4QgaOlTQjXqTEkNgwXa9vw0LsF+OjhGX5u3tM7inDgYj3UKgYuD4u/7LmIpTelChPtB0XpwbLAPwvKhce8su8K/rriFuG20+3B4++fxOdFNVAxXOjIsdJm7D5bC5PVib/svggAWJedIfndGLRq7Hz8drBs4KtVRO+gUjH4ydR0bDtShhd/OIl+PwRB3LCMTorC+ZrWgH1bxjAtUowGVJu4apCxshmFMeE6jEuOxtlqM44UN0mqUypbrEgxGjByUCQOXm7ARycqBJHFsiyWbD6IVrsL+38zJ2BKohiPh8XJshYAnKN1PRwvbcbXlxpQcLUZv54/RrGaobzJKvwsdrL4Yzjk7ekVU+FNWY4N1/qVacpFVoRO+btnWILvdxHMyRqWEIGvvYm6wfjtwrE4XtqEWaI2hr4AffMSvYbd5UZFsxUny1pwtLQJOo0Kq2YN77L9q1QMVLi2EqkIvQb/Wn07Wu1Ov0hXnsfuGo3H7vJ3jXgWZCYLIquhzS4Z1jdjZDx+dFs6xqZEY9lfvxEGxQLAmSozVAyw4XtZuG14HJZsPoiz1Wbc/b9f4zcLMpA9IRnnqs2wOt34sKACDAO8tfJWvPVNCfZeqMfbh0px59hE/PTvR6FRMYgO08LDckNiT1WY8NnpapypMglu1h/+fQafF9VAp1bh1ftuwewxg3Dbhj1osjjwi7ePodHiwLD4cKyY6h9pmnAdgpjoXn6/eDx+fvtwSX8jQRDEjcbY5Ch8+m3wGUijk6IEkTVGwTWZNiIeZ6vN2H+xHuVeZ+fm9Bjckh6Lx+8ajaMlTTh4uQFfna/DH5ZMAMCJllZv2dzOU9WSeYKBKG20CKV2Fc3WgOvKm9rx249O4bE7R2P6SOWU2LPVJgBAu8ONlnYnYr1VKGLELlWTxTcnrK7Vf2ZYlF6DVrsLFc3euPZw//3pZVH3gS7wiQVvMJEFBJ6TJubhOSMBjOxwXU9DIovocepb7dh25Cq25pcJA+wArgY6xXj9AxO7ijCdOmAfWCjMGj0IYVo1KlusqCy0gmE496y43oLv3zIEADcQcWh8OK56I1AnDTGioc2BPy3LxFxvA+nfcibjwXeOo7jBgoe3ncCgKD3qW+3C0L97bh6CWWMGQcUw2HuhHv84Xo5jpU0AAJeHRZPFgbHJUXjjp1Pwx51nsetUNf7j49P45y9n4MOCCrx3pAwMA7zyk1twlzeBLnt8ErYfK8ex0mYAwNrsjBtyJlh/xqBVk8AiCOKGZ/mUNFS2WPEThQuFPBlJkUIQltzJArg+779/UyL0X0UZNPj44RmCO3TrMC7e/WpjO1raHYgJ16GqxSeS/rr3Mr6+VI9545Lwizv8y7dtTjfe+LpYCKEAIMzlVGJr/lUcutKIcJ06sMiqMgs/VzRbFUVWuURk+XqveMH5x6UT8Id/nwHARd1/W2ESygVjFEov/csFlc+hholcvUBJhQMBEllEj1LaYMHSlw/CbOOu1DAMN8xufEo0HhxgfSNhOjWyJyThX945XL+4fTh+PX8MiirNwgcywzD47k2D8b97LmFofDg+fHiGn5i5dVgcvv7tnXht/xW8su8K6r1XmFiWuwK0NpurHZ85Kh4TUqNxpsqMM1Vm6DUqrJk3BrVmG9Zmj0G0QYs/LB6PAxfr8W2FCWN//7kwLPDRuaMwT2T733MLF4uvUTH4ydShWJx17XXhBEEQBNFbDIrSY8P3soKuEbtXY5RE1sh4aLxl+QDXeiAuv4sJ1wkXTE9VmDBrzCBBjACcm5Rf3IT84iaoVQx+NlNatbPlUCleyLsouY93jJQ4Xcm5VBdrA5cUnq0Wi6x2ZCkk9Sk5WQ6XR7gAvmRSKtLjwtFideDAxQZOZHnFHx8kJkbuSgVyssSPrTH5u2YDBRJZRI/y/rEymG0ujEiIwJr5YzBvXCJOVZgwNjlqQDolzyzNxKLMZIxJihJ6uuSztVbdMRytNifuuXlIwPcgUq/BuuwMLJiQjFMVJswbl4i8s7UYkRAhDGpkGAZv3n8rHn3vBI5fbcbPZg73Wug+EqMNeP77E/GbD0+hze5ClEGDH9+Wjl/Jyh5vGx6HL9bMQmy4DoOiqCSQIAiCGLiM84YFGcO0SDX6twhEG7S4dVgcDnsTBkcpjMSYOCTGK7JaOJElc6LUKgZuD4tndp7FhFQjbhseh73n62B3ufHxiQq//VW12ODxsH6zt1iWFURWeXM72h0uhMt6n2xON66I5nzxpYflTe0whmsRbdDC5nSjRpRKzMeu13rv02lUiA3XClU1BVe5ypZgIivU4AuxQBVXNA00SGQRPYbHw+JTr6vz5MIMLMzk3BF+wvpAxBiuFV5nIKIMWqGGuyMyBxuFptr7pg31255sNGD7g9NwsbYt4HDgRVkpyJ6QjBqzDfEROkkyjxilunSCIAiCGGhkDjbiD0vGY1h8RMBxF3eOTRREllIp9qQhRnz6bRW+reAEUFWLTXjc2OQo/GzmcGz8/Bw+PlGJtf8oxD9/OR2r3jkuuGNyHG4P6tvskohygCtJbPVWA7EscLmuDROHxEjWXKpt8wvoKG9qx10v7kd6fDg+/9Udwmvh4YMveOGVYjRI3otIvVZ4TgAwhin0ZGlC68m6UbixXz3RoxwrbUKVyYYovQZzaK5St6FRqzA+NXhcrFrFCA4YQRAEQdzoyEv45Nw5LhHPfnYOADA41v/7kxc6p70iq7KFK8WbPWYQ7p8xDADX43SkuAkVzVY88+lZicDi49K1ahWsDs5lqmhuR1GlCf8qrMKDs0bgdKUJR2Ti6GJtG0YOisQnhZWYk5GI0gYL/rb/imRNRXM7jnrngF2ua8PKt44KyYG3pMfgRFkLWm0uON0eoR9LLu7k/VWxSk6WNrRyQYAbjRNoAPJAgUQW0a00WRz4r38VIVKvwZESLoxhYWZyQPeEIAiCIAiirzEiIQKZg6NRUm/BNIUhuRNSo6FiOCeovKldcLJSRRc0owxarJiajj9/cQG5opmZDAM8euco3JwWC5UK+OmbR70iy4rNX13G5bo2/PvbKsXjulTbihqT1a+nC+BGshRcbUZFsxUXaluF+7+5zAmse24ZjN/fPR6T/7QbHpablVVj4soBU2Rlk3LBpFQuGKHTIDnaILhhwaLX37h/Cn6+5RieWjQ24Jr+DoksotuwOd148J3jOO6t4wW4P9pHQogxJQiCIAiC6CswDIP3Vk2DzeFGYrR/31aEXoPbhschv7gJO05WCr1L8qqRW4dxAo0vu/vNggysuC1dkv43JDYcR0qacLKsBZfrfOEWUQaNUCrIj2W5WNsqSSUEgHunpGFBZhIGx4RjwV8OoKLZinOiIAwVw7lqOdOHAQBiw3VotDjQaHEITlayUe5kSSWDUrmgWsXg08duxzuHS3G+phVzMgLPrbolPRYnfz8/YHnmQIBEFtFt/PHTszh+tRlRBg2W3TQYEXoNfjl7BGIUZisQBEEQBEH0ZaINXGhEIO69NQ35xU1453CpUAonF1kThxihU6vgcHuE2/J4db4c8R/HywEAmYOj8dw9EzFyUCT+/k0Jvr5Uj5/PHI4H3y3AmSozzDYufv3hOSNx+6gEzByVAIC72A0AbXYXjhRz1UTvrZqKMUlRkjmXcRGcyGqyOFDjFVkpMiEZJXvdSk4WwKU5rsvOCPgeiRnIAgsgkUV0MTanG1vzr6K00YL3j/rmL90xum9N4SYIgiAIguhKFmWm4L/+dQYNbZzA0mtUiA6TnmobtGpMSjMKcyizBvtHq/OzutodnEiaMTJBCL1aPXcUVs8dhTa7C2FatTA4OC5ChycXZEiEi0GrRkKkHg1tdjjcHjAMcFNajF8aYZxX5DVZHEKpX7Jsbun0kfHCnE4gsMgifAy8zGyi1zDbnLj/70fxp13nsDW/DADw4KwRJLAIgiAIghjwGLRqrBANPU6PC1d0a/iSwbS4MMXqngUTkoVYeQCKA4cj9Rr8YPIQ0T5jFZ/rzrG+c7ChceF+AgsA4iO5YyiqNKHYG/0u78kyhmnxwg8nCbfFThihzA0hsl555RUMHz4cBoMBkydPxtdff93bhzTgqDPbcO9r+ThS0oQovQb33DwYK2cMw7r5oVnGBEEQBEEQ/Z3fZGfguXuycHN6jJAqKGfJpFToNCosnZSquF2tYvDHpdxoF42KEUSZnJUzffsPtOY3C3zBEoHS/hKjOEH12oFimKxOpBoNyFAYyjx7zCC8vOJmPP/9iSSyQoBhWVY5oH+A8MEHHyAnJwevvPIKZs6ciddeew1vvPEGzp49i/T09A4fbzabYTQaYTKZEB0dPBb7RsPU7sSOkxUoLG/BF2dqYXW6kRCpx9s/vxUTUv3tb4IgCIIgCAKKg4blfHW+FmFajaKTxfPbD0/hs6JqfPb4HUiLC1dc81FBBZ7+5DRe/OFNuHui/+zOGpMNv/9XEXafrcXwhAi88/PbAu6LCF0bDHiRNXXqVNxyyy149dVXhfvGjRuHZcuWYePGjR0+nn8jX9x5EoYIbvic/B3j30L+fla4n7+tvB0sG/Ja+Xb4be/cMfgde4D1bg/QanPCZHWipd2JFqsDpnYnko0GNLQ5JDMOxqVE42/33YKh8REgCIIgCIIguhf+PK6jEIlQRF1FczsSIvU0ZqcDQhVZAzr4wuFwoKCgAL/73e8k92dnZ+PQoUOKj7Hb7bDb7cJts5mLvPzLl5eg0pOq5zHbuEjR0YmR+E5WCmaOSghYD0wQBEEQBEF0PaGed3UksAAuOp7oOga0yGpoaIDb7UZSUpLk/qSkJNTU1Cg+ZuPGjfjjH//od/+ym1KhD48E//8yA+4H4bbw/67sfkB2O9B23//8Ha+VPkb21B0/LsB2yPbHMNzaKIMGMeFaxIRrYQzTIdqgweW6NnhYIHtCErTqG6K1jyAIgiAIgiBCYkCLLB65ymdZNqDyf+qpp7B27VrhttlsRlpaGv70vSzqyRIxOsm/IZIgCIIgCIIgiAEushISEqBWq/1cq7q6Oj93i0ev10Ovp8QUgiAIgiAIgiCujQFd56XT6TB58mTs3r1bcv/u3bsxY8aMXjoqgiAIgiAIgiAGMgPayQKAtWvXIicnB1OmTMH06dPxf//3fygrK8Mvf/nL3j40giAIgiAIgiAGIANeZN17771obGzEM888g+rqamRmZuKzzz7D0KFDe/vQCIIgCIIgCIIYgAz4OVnXCw0jJgiCIAiCIAgCCF0bDOieLIIgCIIgCIIgiJ6GRBZBEARBEARBEEQXMuB7sq4XvprSbDb38pEQBEEQBEEQBNGb8Jqgo44rElkd0NjYCABIS0vr5SMhCIIgCIIgCKIv0NjYCKPRGHA7iawOiIuLAwCUlZUFfSPl3HrrrTh27Fh3HdZ10ZePDeCuEKSlpaG8vLxPho309fePp68eZ1///fL01fdPTF8+Rvo9dw19/fjo93zt9MVjEtMffrd9/T0E+vYx9offMdD33kOTyYT09HRBIwSCRFYHqFRc25rRaOzU/4BqtbrP/g/bl49NTHR0dJ88zv7y/vX14+yrv1+evv7+Af3jGOn3fH309ePjod9z5+mLx6REX/7d9of3sD8cY1/+HQN99z3kNULA7T10HDccq1ev7u1DCEhfPrb+QH95//rLcfZV+sP71x+Osa/T19/Dvn58/YW++D72xWPqb/SH97A/HGNfp7++hzQnqwNoTlbPQ+/5wIZ+vzcG9Hu+MaDf88CFfrcDH/odXxs0J6uL0Ov1+MMf/gC9Xt/bh3LDQO/5wIZ+vzcG9Hu+MaDf88CFfrcDH/odXxuhvm/kZBEEQRAEQRAEQXQh5GQRBEEQBEEQBEF0ISSyCIIgCIIgCIIguhASWQRBEARBEARBEF0IiSyCIAiCIAiCIIguhEQWQRB9AoZh8Mknn/T2YRAEQRDEDQ19H3cNJLKIHufQoUNQq9VYuHBhbx8K0Y2sXLkSy5Yt6+3DILqJ8vJyPPDAA0hNTYVOp8PQoUPxq1/9Co2NjSE9ft++fWAYBi0tLd17oMR1QX/HAxf6Lr5xoL/j3oFEFtHj/P3vf8djjz2GgwcPoqys7Lr25Xa74fF4uujICIIIheLiYkyZMgUXL17E+++/j8uXL+Nvf/sb9uzZg+nTp6Opqam3D5EgiA6g72KC6F5IZBE9isViwT/+8Q88/PDDWLx4MbZs2SJs469s79q1C5MmTYLBYMDUqVNx+vRpYc2WLVsQExODnTt3Yvz48dDr9bh69WovvBKiMwwbNgx/+ctfJPfddNNNWL9+fa8cD3F9rF69GjqdDnl5eZg9ezbS09OxaNEifPnll6isrMTTTz8NALDb7XjyySeRlpYGvV6P0aNH4/+3d6cxUV1vHMe/A0JlggugA4JWERC10/qiMY3GqNMKJWpbjQsupBJN21SxRarRpk0sbdQuatKGunbqVhuXuBFNMAQFbdQ42lA3SqsZYxMhGhkdRSNS7v+F8aZTqPlrhxno/D7JJPfec7g858WZk+eeM+c6nU4uX76Mw+EAICYmBovFQm5ubhBbJP+PkpIShg0bRteuXYmLi2Ps2LFcunTJLL98+TIWi4Xdu3fjcDiwWq0MGjSI48ePBzFqaYnG4tCl8ThwlGRJQG3fvp309HTS09PJyclhw4YN/P192AsWLGD58uW4XC5sNhuvv/46Dx48MMvv3r3LsmXL+O677zh//jw2my3QzRAJWXV1dRw8eJDZs2cTFRXlU5aQkMD06dPZvn07hmHw5ptvsm3bNr755huqqqpYs2YN0dHR9OrVi127dgFQXV1NTU0NX3/9dTCaI0+gvr6egoICXC4XZWVlhIWFMX78+GYzGB999BHz58+nsrKSfv36MXXqVBobG4MUtbREY7FI6+sQ7AAktDidTnJycgDIysrizp07lJWVMWrUKLPO4sWLycjIAGDTpk307NmTPXv2MHnyZAAePHjAqlWrGDRoUOAbIBLifv/9dwzDYMCAAS2WDxgwAI/Hg8vlYseOHZSWlpr9u2/fvma92NhYAGw2G127dm31uOXfmzBhgs+50+nEZrNx4cIF7Ha7eX3+/PmMGTMGgMLCQp577jkuXrxI//79Axqv/DONxSKtTzNZEjDV1dWcPHmSKVOmANChQweys7P5/vvvfeoNGTLEPI6NjSU9PZ2qqirzWmRkJC+88EJgghaRJ/Loabjb7SY8PJwRI0YEOSLxl0uXLjFt2jT69u1L586dSU5OBmj2e56/fj/36NEDgGvXrgUuUHksjcUigaGZLAkYp9NJY2MjSUlJ5jXDMIiIiMDj8Tz2by0Wi3kcFRXlcy5tX1hYWLOlKH9ddiLtR2pqKhaLhQsXLrS4W9Wvv/5KTEwMVqs18MFJq3rttdfo1asX69evJzExkaamJux2Ow0NDT71IiIizONH39XaFKHt0Fgc2jQeB45msiQgGhsb2bx5MytWrKCystL8/PLLL/Tu3ZutW7eadU+cOGEeezwefvvtNy0zaee6d+9OTU2Nee71enG73UGMSJ5WXFwcGRkZrFq1inv37vmU1dbWsnXrVrKzs3n++edpamqioqKixftERkYCD3clk7bvxo0bVFVV8fHHH/PKK6+Yy0KlfdFYLBqPA0dJlgTE/v378Xg8zJo1C7vd7vOZOHEiTqfTrPvpp59SVlbGuXPnyM3NpVu3bnq/Qzv38ssvs2XLFo4ePcq5c+eYMWMG4eHhwQ5LnlJRURH379/n1Vdf5ciRI/zxxx+UlJSQkZFBUlISS5YsoU+fPsyYMYOZM2eyd+9e3G435eXl7NixA4DevXtjsVjYv38/169f586dO0FulTxOTEwMcXFxrFu3josXL3Lo0CEKCgqCHZY8IY3FovE4cJRkSUA4nU5GjRpFly5dmpVNmDCByspKfv75ZwA+//xz3n//fV588UVqamooLi42n3pL+9HU1ESHDg9XJH/44YcMHz6csWPHMnr0aMaNG0dKSkqQI5SnlZaWxqlTp0hJSSE7O5uUlBTefvttHA4Hx48fNze1WL16NRMnTmT27Nn079+ft956i/r6egCSkpIoLCxk0aJFxMfHk5eXF8wmyT941I/DwsLYtm0bp0+fxm63M2/ePL766qtghydPSGNxaNJ4HBwW4+8LM0WCpLy8HIfDgcfj0W5j/wFZWVmkpqZSVFQU7FBE5CmpH4cejcX/PerHwaGZLBHxK4/Hw4EDBygvL/fZDlhE2g/1Y5H2T/04uLS7oIj41cyZM3G5XHzwwQe88cYbwQ5HRJ6C+rFI+6d+HFxaLigiIiIiIuJHWi4oIiIiIiLiR0qyRERERERE/EhJloiISIhatmwZgwcPplOnTthsNsaNG0d1dbVPHcMw+OSTT0hMTCQqKoqRI0dy/vx5s7yuro65c+eSnp6O1Wrl2Wef5b333uPWrVs+91myZAlDhw7FarVq1zoR+c9TkiUiIhKiKioqmDNnDidOnKC0tJTGxkYyMzPN95kBfPnll6xcuZKioiJcLhcJCQlkZGRw+/ZtAK5evcrVq1dZvnw5Z8+eZePGjZSUlDBr1iyf/9XQ0MCkSZN49913A9pGEZFg0MYXIiIiAsD169ex2WxUVFQwfPhwDMMgMTGR/Px8Fi5cCMD9+/eJj4/niy++4J133mnxPjt37iQnJ4f6+nrzJaiPbNy4kfz8fG7evNnazRERCRrNZImIiAiAucQvNjYWALfbTW1tLZmZmWadZ555hhEjRnDs2LHH3qdz587NEiwRkVChJEtEREQwDIOCggKGDRuG3W4HoLa2FoD4+HifuvHx8WbZ3924cYPPPvvsH2e5RERCgR4xiYiICHl5eZw5c4affvqpWZnFYvE5Nwyj2TUAr9fLmDFjGDhwIIsXL261WEVE2jrNZImIiIS4uXPnUlxczOHDh+nZs6d5PSEhAaDZrNW1a9eazW7dvn2brKwsoqOj2bNnDxEREa0fuIhIG6UkS0REJEQZhkFeXh67d+/m0KFDJCcn+5QnJyeTkJBAaWmpea2hoYGKigqGDh1qXvN6vWRmZhIZGUlxcTEdO3YMWBtERNoiLRcUEREJUXPmzOHHH39k3759dOrUyZyx6tKlC1FRUVgsFvLz81m6dClpaWmkpaWxdOlSrFYr06ZNAx7OYGVmZnL37l1++OEHvF4vXq8XgO7duxMeHg7AlStXqKur48qVK/z5559UVlYCkJqaSnR0dOAbLyLSirSFu4iISIhq6XdVABs2bCA3Nxd4ONtVWFjI2rVr8Xg8vPTSS3z77bfm5hjl5eU4HI4W7+N2u+nTpw8Aubm5bNq0qVmdw4cPM3LkyH/dFhGRtkRJloiIiIiIiB/pN1kiIiIiIiJ+pCRLRERERETEj5RkiYiIiIiI+JGSLBERERERET9SkiUiIiIiIuJHSrJERERERET8SEmWiIiIiIiIHynJEhERERER8SMlWSIiIiIiIn6kJEtERERERMSPlGSJiIiIiIj40f8Ans40WKItuBgAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:57.765311\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df['ninfected'] = df['infected'].diff()\n", "df['ninfected'].plot()\n", @@ -233,9 +1829,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 136, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAFDCAYAAADbBIQTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7M0lEQVR4nO3deVzU5fr/8dcw7AgDiIAo7oIirrhbuaRouWSLpibpyaxOpcfS6nTO9/xOZ8vTYnXKVo+nxbXFrMwyt7RMcUFRcd8BWUUYNllnfn+gU7ijwLC8n4/HPLL53PP5XIMIc32u+75ug9VqtSIiIiIiIiLXxcHeAYiIiIiIiNQmSqJEREREREQqQEmUiIiIiIhIBSiJEhERERERqQAlUSIiIiIiIhWgJEpERERERKQClESJiIiIiIhUgJIoERERERGRCnC0dwD2ZLFYSEpKwtPTE4PBYO9wRERERETETqxWKzk5OQQFBeHgcPVaU71OopKSkggODrZ3GCIiIiIiUkMkJCTQtGnTq46p10mUp6cnUPaF8vLysnM0IiIiIiJiL9nZ2QQHB9tyhKup10nUhSl8Xl5eSqJEREREROS6lvmosYSIiIiIiEgFKIkSERERERGpACVRIiIiIiIiFaAkSkREREREpAKURImIiIiIiFSAkigREREREZEKUBIlIiL12pHUHCbMi+bT7fH2DkVERGqJer1PlIiI1G9Wq5W/fB1H9PGzbD6WQWLmOZ4eEnJde4SIiEj9pUqUiIjUW78czSD6+FkczudMb60/yh+X7aWk1GLfwEREpEarUBLVokULDAbDJY8nnngCgMmTJ19yrHfv3uXOUVhYyLRp0/Dz88PDw4NRo0aRmJhYbkxmZiZRUVGYTCZMJhNRUVFkZWWVGxMfH8/IkSPx8PDAz8+P6dOnU1RUdANfAhERqY+sViuvrj4EwIN9WvDi3R1xMMCnOxJ4bGEM54pK7RyhiIjUVBVKorZv305ycrLtsWbNGgDGjBljGzNs2LByY7777rty55gxYwbLly9n6dKlbNq0idzcXEaMGEFp6a+/rCZMmEBsbCyrVq1i1apVxMbGEhUVZTteWlrK8OHDycvLY9OmTSxdupRly5Yxc+bMG/oiiIhI/bPuQBqxCVm4Ojnw+MDWTOjVjHcnRuDi6MDaA2k88N9oMvN0c05ERC5lsFqt1ht98YwZM/j22285cuQIBoOByZMnk5WVxVdffXXZ8WazmUaNGrFgwQLuv/9+AJKSkggODua7775j6NChHDhwgLCwMKKjo+nVqxcA0dHR9OnTh4MHDxIaGsr333/PiBEjSEhIICgoCIClS5cyefJk0tLS8PLyuq74s7OzMZlMmM3m636NiIjUfhaLlTvf/JmDKTk81r81f7yjne3Y9pNnmfLRdrILSmjj34CPH+pJE283O0YrIiLVoSK5wQ2viSoqKmLhwoU89NBD5RbgbtiwAX9/f0JCQpg6dSppaWm2YzExMRQXFxMZGWl7LigoiPDwcDZv3gzAli1bMJlMtgQKoHfv3phMpnJjwsPDbQkUwNChQyksLCQmJuaKMRcWFpKdnV3uISIi9c93cckcTMnB08WRx/q3KnesRwtfvvh9XxqbXDmalss97/zCwRT9vhARkV/dcBL11VdfkZWVxeTJk23P3XHHHSxatIj169czZ84ctm/fzqBBgygsLAQgJSUFZ2dnfHx8yp0rICCAlJQU2xh/f/9Lrufv719uTEBAQLnjPj4+ODs728ZczuzZs23rrEwmE8HBwTf03kVEpPYqKbXw2prDAEy5tSXe7s6XjAkJ8GTZ7/vS1r8BqdmFjHlvC1uPZ1R3qCIiUkPdcBI1f/587rjjjnLVoPvvv5/hw4cTHh7OyJEj+f777zl8+DArV6686rmsVmu5atblWsveyJiLPf/885jNZtsjISHhqnGJiEjds3zXaY6n5+Hj7sSUW1pecVyQtxufP9aH7s19yCkoIep/21gVd+UbdSIiUn/cUBJ16tQp1q5dy8MPP3zVcY0bN6Z58+YcOXIEgMDAQIqKisjMzCw3Li0tzVZZCgwMJDU19ZJzpaenlxtzccUpMzOT4uLiSypUv+Xi4oKXl1e5h4iI1B9FJRb+s67sd9Jj/Vvj6ep01fHe7s4sfLgXg9sHUFRi4fFFMSyMPlUdoYqISA12Q0nUhx9+iL+/P8OHD7/quIyMDBISEmjcuDEAERERODk52br6ASQnJxMXF0ffvn0B6NOnD2azmW3bttnGbN26FbPZXG5MXFwcycnJtjGrV6/GxcWFiIiIG3lLIiJSD3y6I4HEzHM08nThwT4trus1rk5G3pvYjfE9g7FY4f++iuO1NYe5ib5MIiJSy1U4ibJYLHz44YdMmjQJR0dH2/O5ubnMmjWLLVu2cPLkSTZs2MDIkSPx8/Pj7rvvBsBkMjFlyhRmzpzJunXr2LVrFxMnTqRjx44MHjwYgPbt2zNs2DCmTp1KdHQ00dHRTJ06lREjRhAaGgpAZGQkYWFhREVFsWvXLtatW8esWbOYOnWqqksiInJZBcWlzF1fVoV6cmAb3JyN1/1aR6MDL97dkT/c3haAN9cd4U/LtSmviEh9VeEkau3atcTHx/PQQw+Ve95oNLJ3717uuusuQkJCmDRpEiEhIWzZsgVPT0/buNdff53Ro0czduxY+vXrh7u7OytWrMBo/PWX2aJFi+jYsSORkZFERkbSqVMnFixYUO5aK1euxNXVlX79+jF27FhGjx7Nq6++eiNfAxERqQcWRp8iNbuQJt5ujOtZ8cZCBoOBp4aE8M/R4TgYYMm2BB5buJOCYm3KKyJS39zUPlG1nfaJEhGpH3ILS7jt5R85m1fEy/d2YmyPm+vOuiouhelLd1FUYiGiuQ/zJ3W/bJc/ERGpPaplnygREZHa4sNNJzibV0RLPw/u6dbkps83LDyQhVN64eXqSMypTMa8t4WkrHOVEKmIiNQGSqJERKROM+cX88HPxwGYMbgtjsbK+dXXs6Uvnz/Wl0AvV46k5XLPO5s5nJpTKecWEZGaTUmUiIjUaR/8fIycghJCAzwZ2Sno2i+ogNBAT5Y93pc2/g1IyS7gvnc3s/3k2Uq9hkhNtS/JzEe/nKDUUm9Xhkg9piRKRETqrDO5hXz4y0kAno4MwcHhyhuy36gm3m588VgfujXzJrughIn/3coP+7Qpr9Rtx9JzGfdBNC+s2K+906ReUhIlIiJ11rsbjpFfVErnpiYiw668GfvN8nZ3ZtHDvRnc3p/CEgu/XxjDoq36YCl1kzm/mIc/3kFOQQkA7288RlGJ2v1L/aIkSkRE6qRk8zkWnL9DPjMyFIOh8qtQv+XmbOS9iRGM61G2Ke+fl8fxujbllTqmpNTCE4t3cuJMHk283Wjk6UKSuYCvdp22d2gi1UpJlIiI1ElvrT9KUYmFni18ubWtX7Vc09HowOx7OjJ9UBsA/rPuCH9aHqc1I1Jn/HPlATYdPYObk5F5D3Zn6q0tAXh34zF9n0u9oiRKRETqnPiMfD7bngDArKFVX4X6LYPBwNORofxjdDgGAyzZFs/vF8ZoU16p9RZvjeejzScBeP3+LoQFefFAr+Z4uztx4kweK/cm2zdAkWqkJEpEROqcN9YdpsRi5baQRvRs6WuXGKJ6N+fdB7rh7OjA6v2pTPzvVrLyi+wSi8jNij6ewf/7Og6AmUNCGBYeCICHiyMP9SurRr29/igWVaOknlASJSIidcrRtBzb+oyZQ0LsGsuw8MYseKgnnq6O7Di/KW96TqFdYxKpqISz+fx+YQwlFisjOwfx5PnpqhdM6tOCBi6OHErNYe2BVDtFKVK9lESJiEid8vqaI1isEBkWQOdgb3uHQ69WDfn8sT4EeLlwJC2Xt9YfsXdIItctp6CYKR9vJzO/mI5NTLx8b6dLpsea3J2I6tMcgLd/PKpmKlIvKIkSEZE6I+60mZV7kzEYyvaFqinaBXoxZ0wXAL7ceZrcwhL7BiRyHUotVp76NJbDqbn4e7ow78HuuDkbLzt2yi0tcXVyYHeimZ+PnKnmSMVerFYrx9Jz62XirCRKRETqjNfWHAZgZKcg2gV62Tma8vq1aUirRh7kFpawXO2gpRZ4dfUh1h5Iw9nRgQ8e7E6gyfWKY/0auDC+ZzMA5v54tLpCFDuyWq38YWkst8/ZyP99FVfvEiklUSIiUifEnMpk/cE0jA4GnrLzWqjLMRgMRPUum/K0cMupeveBQ2qX5bsSeXfDMQBeua8TXa5jauwjt7XCyWhg24mzbDtxtoojFHtbvC2eb3YnAbBoazyvr61fU5WVRImISJ0wZ/UhAO7r1pSWfh52juby7unWFDcnI4dSc9h+MtPe4Yhc1q74TJ5btheAxwe05q4uTa7rdY1NbtwXEQyoGlXXHUzJ5u8r9gPQP6QRAG+uO8LH51vg1wdKokREpNbbfPQMm49l4Gx0YPrgtvYO54pMbk6M7hoEwCdbTto3GJHLSDaf45EFMRSVWBgSFsCsyNAKvf73/VtjdDDw0+F09iRmVU2QYlf5RSU8sWgnhSUWBoY24sPJPXj6fPX/hRX7bNWpuk5JlIiI1GpWq5VXz1ehxvcMpom3m50jurqJ56f0rYpLIS2nwM7RiPzqXFEpUz/ZQXpOIaEBnrx+fxccHCq2UXWzhu6M6lx2o+BtVaPqpL9+vY9j6XkEeLkwZ2zZ98i0QW2Y1Kc5VivM/CyWnw6n2zvMKqckSkREarUfD6WxMz4LVycHnrho/5qaqEOQiYjmPpRYrHy6LcHe4YgAZTcjZn2xm7jT2fh6OPPfSd1p4OJ4Q+d6fEBrDAb4YV8qh1NzKjlSsaevdp3m85hEHAzwn3Fd8fVwBsrWfP51ZAdGdg6iuNTKYwtj2BVft6csK4kSEZFay2Kx8uoPZR35JvVtgb/nlbuH1SQXGkws3hZPSanFztGIwFvrj7JyTzJORgPvPtCNYF/3Gz5X2wBPhnUIBFSNqktOnMnjz8vL1spNv70tvVs1LHfcwcHAnDGdubWtH/lFpTz00XaOptXdJFpJlIiI1Fqr9qWwPzmbBi6OPHZba3uHc93u6BhIQw9nks0FrD2QZu9wpJ77fm+ybXuAf9wVTq+LPhzfiCcGllWFV+xO4uSZvJs+n9hXYUkpTy7eSV5RKb1b+TJt0OXXnjo7OvDexAg6B3uTmV/Mg/O3kZR1rpqjrR5KokREpFYqtVhtH/ym3NISn/PTSmoDF0cj9/co62K2MPqUnaOR6rLlWAb9/r2epz+NJeFsvr3DAWBfkpmnP9sNwO/6tWDc+b2eblZ4ExMDQxthscJ7G49VyjnFfmZ/d5B9SWVTPf8zrivGq6yV83Bx5MPJPWjVyIMkcwEP/m8bmXlF1Rht9ahQEtWiRQsMBsMljyeeeAIom0/7wgsvEBQUhJubGwMGDGDfvn3lzlFYWMi0adPw8/PDw8ODUaNGkZiYWG5MZmYmUVFRmEwmTCYTUVFRZGVllRsTHx/PyJEj8fDwwM/Pj+nTp1NUVPf+gkRE5PK+2nWao2m5eLs7MeXWlvYOp8Im9GqGgwE2HT3DsfRce4cjVSynoJinP4vldNY5vtx1mkFzNvDXr+NIzym0W0zpOYVM/XgH54pLubWtH3++s32lnv/J82sUl+1MrLPViPpg9b4UPjrfunzOmM4EeF172rSvhzMLpvQi0MuVo2m5/O6j7eQXlVRxpNWrQknU9u3bSU5Otj3WrFkDwJgxYwB4+eWXee2115g7dy7bt28nMDCQIUOGkJPz63zIGTNmsHz5cpYuXcqmTZvIzc1lxIgRlJaW2sZMmDCB2NhYVq1axapVq4iNjSUqKsp2vLS0lOHDh5OXl8emTZtYunQpy5YtY+bMmTf1xRARkdqhuNTCG+vKqlCP3tYaL1cnO0dUcU193BnULgBQNao+ePG7gySbCwj2dePWtn4Ul1r5eMspbnv5R1794RDZBcXVGk9hSSmPLthBkrmAVn4ezJ3QDUdj5U5QimjuS+9WvhSXWvngp+OVem6pHqezzvHMF3sAmHprSwa287/u1zbxdmPBlJ6Y3JyITcjisYU7KSqpO2tADdab2DJ9xowZfPvttxw5UrZDcVBQEDNmzOC5554DyqpOAQEBvPTSSzz66KOYzWYaNWrEggULuP/++wFISkoiODiY7777jqFDh3LgwAHCwsKIjo6mV69eAERHR9OnTx8OHjxIaGgo33//PSNGjCAhIYGgoLI2mkuXLmXy5MmkpaXh5eV1XfFnZ2djMpkwm83X/RoREbG/RVtP8eflcfg1cOGnZwfg7nxjXcTsbePhdCb9bxuero5s/dPttfZ9yNX9cvQMD/x3KwBLpvamT+uGbD56hpd+OMTuhCygbA+xxwe0ZlLfFrg6Gas0HqvVyszPd/PlztN4uTry1RP9aNWoQZVc68J7d3F0YNNzg2jk6VIl15HKV1JqYdwH0ew4lUnnYG8+f7QPzo4VT7R3xmfywLytnCsu5a4uQbw+tuKt86tLRXKDG77lUFRUxMKFC3nooYcwGAycOHGClJQUIiMjbWNcXFzo378/mzdvBiAmJobi4uJyY4KCgggPD7eN2bJlCyaTyZZAAfTu3RuTyVRuTHh4uC2BAhg6dCiFhYXExMRcMebCwkKys7PLPUREpHYpKC7lrXVlHb+eHNi6Vicet7bxo0VDd3IKSvg6tn5sUFnf5BWW8Nyysjv5Ub2b06d1WdOGvm38+Orxvrw3MYI2/g0wnytm9vcH6f/KjyzeGk9xFXZtnPfzcb7ceRqjg4G3H+hWZQkUQN/WDekS7E1hiYX/blI1qjZ5fe1hdpzKxNPFkbfGdb2hBAqgWzMf3p3YDUcHA1/HJvH3b/dzEzWcGuOGk6ivvvqKrKwsJk+eDEBKSgoAAQEB5cYFBATYjqWkpODs7IyPj89Vx/j7X1oq9Pf3Lzfm4uv4+Pjg7OxsG3M5s2fPtq2zMplMBAcHV+Adi4hITbBoazwp2QUEmVwZ36tyFsHbi4ODwbb57oItp+rEBwsp7+VVB0nMPEcTbzeeu6NduWMGg4Fh4YH8MOM2XrmvE0283UjNLuRPy/cS+fpPrNidhMVSud8TPx5MY/b3BwH4y/D23Nq2UaWe/2IGg4Enz3fqW7jlFFn5Wr9eG2w6coZ3NpQ1BPn3vZ1o1vDGW94DDAj1Z87YzgB8tPmk7dy12Q0nUfPnz+eOO+4oVw2Csn8sv2W1Wi957mIXj7nc+BsZc7Hnn38es9lseyQkaJNDEZHaJK+whHfO7zsz/fa2uDhW7bSn6nBfRFNcHB3Yn5zNzjq+OWV9s+3EWT7eUrbe7d/3drzi5rVGBwNjugezflZ//t+IMHw9nDlxJo9pS3Yxcu4mNhxKq5QE+0hqDtOW7MJqhfE9g5nUt8VNn/N63N7en/aNvcgrKrU1KJCaKz2nkBmfxmK1ljXAGd6pcaWc964uTfjryDAAXvnhEIu3xlfKee3lhpKoU6dOsXbtWh5++GHbc4GBZZuqXVwJSktLs1WNAgMDKSoqIjMz86pjUlNTL7lmenp6uTEXXyczM5Pi4uJLKlS/5eLigpeXV7mHiIjUHh9tPklGXhEtGrpzb0RTe4dTKbzdnRnVueyG5IItajBRV5wrKuXZL8pah4/rEXxdFR8XRyMP3dKSn54dyFODQ2jg4si+pGwmf7idcR9EE3PqxpPszLwipny8g9zCEnq29OVvo8KveZO7shgMBp4YWLaP24e/nCS3sG51aatLLBYrT38Wy5ncQtoFevL/RoRV6vl/16+lrTL5f1/t5fu9yZV6/up0Q0nUhx9+iL+/P8OHD7c917JlSwIDA20d+6Bs3dTGjRvp27cvABERETg5OZUbk5ycTFxcnG1Mnz59MJvNbNu2zTZm69atmM3mcmPi4uJITv71C7969WpcXFyIiIi4kbckIiI1nPlcMe+f329mxuAQnCq5k5g9PdinBQDf7U3hTK79Wl5L5XltzSFOZuQT6OXKn4ZXrHV4AxdH/jC4LT89O5CHb2mJs6MDW0+c5d53N/Pwxzs4lJJz7ZP8RnGphccX7ST+bD5Nfdx4b2LEDa9vuVF3hDemVSMPzOeK1Y2yBnt34zF+PnIGNycjcyd0rZImJzMjQxjfMxiLFf6wNJbNx85U+jWqQ4X/BVksFj788EMmTZqEo+OvZWmDwcCMGTN48cUXWb58OXFxcUyePBl3d3cmTJgAgMlkYsqUKcycOZN169axa9cuJk6cSMeOHRk8eDAA7du3Z9iwYUydOpXo6Giio6OZOnUqI0aMIDQ0FIDIyEjCwsKIiopi165drFu3jlmzZjF16lRVl0RE6qj//nyc7IISQgIaMLJz0LVfUIt0bGqic7A3RaUWPt2uqea13c74TOZvOgHAi/eE33ALfl8PZ/5vRBgbZg3g/u7BOBhg7YFUhv3npwpt2Pu3FfvYcjwDD2cj8yf1wNcOG1MbHQw8PqCsAvHfn09QUFx6jVdIddtx8qxtA/O/3dWBNv6eVXIdg8HAP0d3ZFiHQIpKLTzySQxxp81Vcq2qVOEkau3atcTHx/PQQw9dcuzZZ59lxowZPP7443Tv3p3Tp0+zevVqPD1//Ut4/fXXGT16NGPHjqVfv364u7uzYsUKjMZfM91FixbRsWNHIiMjiYyMpFOnTixYsMB23Gg0snLlSlxdXenXrx9jx45l9OjRvPrqqxV9OyIiUgtk5Bbyv/MfSp8eEoqxhrbHvRkPnm8wsXhrPKWV3ExAqk9BcSnPfL4bixXu6drEthfYzQjyduOl+zqx+qn+3NkxEKuV696wd8GWkyyMjsdggDfGdSU0sGo+GF+Pu7oE0dTHjTO5hbpZUMNk5RcxfckuSi1WRncJYkwVT5c2Ohh4Y1wXerfyJbewhEn/28aJM3lVes3KdlP7RNV22idKRKR2+NfK/cz7+QQdm5j45sl+1baWozoVFJfSe/Y6svKL+e+D3RkcdvMfvqX6vbzqIO9sOEYjTxfWPHUb3u6VX/XZnZDFKz8cYtPRsmlQ7s5GHurXkkf6typX9dp89AxR/9tGqcXKc8Pa8fsBrSs9lopaEH2Kv3wVR2OTKxufGVjt0wrlUlarlUcXxLB6fyot/TxYMe2WKzZBqWw5BcWM+yCafUnZNPVxY9nv+xLg5Vot174cs9mMt7d31e4TJSIiUh1Sswv45HzDhZmRIXUygQJwdTJyf/eyrTc+0ZqRWmlvopn3fyrbC+mfo8OrJIEC6BzszcKHe7H44V50DvYmv6iUuT8e5baXf+T9jccoKC7l5Jk8fr9oJ6UWK3d3bcJj/VtVSSwVNSaiKf6eLiSbC1i+K9He4Qjw8eaTrN6firPRgbfGd622BArA09WJj37XkxYN3UnMPMek/23DfK642q4PZZsKbz52hr+t2MfQN3667tcpiRIRkRrtrfVHKCyx0KOFD/1DqnZPG3t7oFdzDAb46XA6J2vZ1Jb6rqjEwjNf7KbUYmVEp8YM7RBY5de8eMPerPyyDXsHvLKBB89/GO0c7M3sezrWmJsPrk5GHrmtLKF7d8MxSqpwU2G5trjTZl78rmzfsD/d2Y7wJqZqj6GRpwsLpvSikacLB1NyePjj7VW+Zi63sITv9ibz1KexRPxzLRPmbeXDX06SlFVw3edQEiUiIjVWwtl829qJWZGhNeaDYFVp1tCdAecTxUVbVY2qTd7+8SgHU3Jo6OHM30Z1qLbrXm7D3pTsAuLPlnUGnBcVUSUd1m7GhF7N8HF34mRGPitrcYvr2i63sIQnF++kqNTCkLCAats37HKCfd355KGeeLo6sv1kJk8u3lnpCXZadgGLtp5i8ofb6Pb3NTy+aCfLd53GfK4YXw9n7otoyhvjulz3+aqvXiciInKdrFYrViv8Z90Rikut3NrWj16tGto7rGoR1ac5Px5K57MdiTw9JBQ355r1AVgutT8pm7fPbwL9t7s60LCBS7XHcGHD3lFdglgUHc8vR88wMzIUfzuuL7kSd2dHptzSkldXH+btH48yslMQDnWwWUxNZrVa+b/lezmZkU+QyZVX7utk95tU7Rt7MX9SD6Lmb2XtgTT++OXem4rLarVyNC2X1ftTWbM/ldiErHLHWzR0Z0hYAEPCAolo7oPRwUB2dvZ1n19JlIjUSIdTc/jnygNMvbXldW1SKdWn1GLlr9/EsS8pG4vFisVa9pzlfOJTai3782+PWa3W889z/nnr+ecp+/NFxy5uTjczMtQ+b9YO+of4E+zrRsLZc6zYk8TY8+ukpGYqLi2bxldisTK0QwDDOza2azwXNux96JaWdo3jWqL6tOD9jcc5nJrLmgOp1TL9UX71eUwiX8UmYXQw8Ob4rlW2fq+ierb05e0J3Xh0YQxfxCTS0MOZ5++8/n3WSi1WYk5lsmZ/Cmv2p3Iyo/w2AJ2DvYkMCyAyLIA2/g1uKnFUEiUiNU5+UQmPLYzheHoex9NzWT9zgDo41SBrD6SyMDq+2q53T7cmdAn2rrbr2ZvRwcADvZrz7+8PsmDLKcZENLX7HWK5sg9+Os6+pGy83Z34x+hw/V1dJ5ObEw/2bc7bPx5j7vqjRIYF6GtXTY6m5fDXr/cB8PSQELq38LVzROUNDgvg3/d05Jkv9vD+T8fx9XDm0f5X7ix5rqiUn4+ks2Z/KusPppGRV2Q75mx0oG+bhgwJC2Bw+4BK7fynJEpEapy/fbOf4+lli+oTM8+xbGci43s2s3NUcsGFTUTv6daEO8MbY3QwYDCUffh3MFx4cP55w/nn+fWYAxgNlznmYMB4/rUO589ldDBgcruxjUprs7Hdg3ltzWH2njazO9Fcr5LI2uRwag7/WXsEgL+ODMPfs+ZNnavJHurXkv9tOsne02Z+OnKmzjeOqQkKikt5YtEuzhWXcksbP35/leTEnsZ0D+ZsXhGzvz/I7O8P4uvhzJjfVOUzcgtZdyCN1ftT2XQ0nYLiX9dPebk6cnv7AIaEBXBbSKMq6zaoJEpEapQVu5P4dEcCBgOM6BTEit1JzF1/lHu7NVU1qgbYm2hm24mzODoYeHZoOwJN+tBYFXw9nBnRqTFf7jzNgi2nlETVQKUWK898sYeiUguD2vkzuksTe4dU6zRs4MKEXs2Yv+kEb68/qiSqGvz92/0cSs3Br4Ezr93fuUavRXu0f2sy8or44Kfj/PHLvVitkHWuiDX7U9lxKpPf7nTbxNuNIeen6fVo6YuTseo/LyiJEpEaI+FsPn/6ci8ATw5swxMD2xB9PIPTWapG1RTzN5XtgTO8U2MlUFUsqndzvtx5mhV7kvjz8Pb4etSMNQtSZv6m4+xOyMLTxZEX7645LcRrm0dua8WCLafYdvIsW49n1JsGMvawck8yi7fGYzDA6/d3qRWV0z8Oa0dGbhHLdiby7LI95Y51CPIiMiyQIWEBtG/sWe3/BnVbV0RqhOJSC9OX7iKnsIRuzbz5w+1tcXUy2qYazF1/lKIS7SdiTynmAr7dU9aOeEoNX7ReF3QJ9ia8iRdFJRY+35Fg73DkN46n5zJn9WEA/m9Ee91QuAkBXq6M6d4UgLnnOxxK5Us4m88fzychv+/futY0bHJwMPDveztyR3ggjg4Gbmnjx99GdeCXPw5i5fRb+cPgtoQFednlJoaSKBGpEf6z9gi74rPwdHXkP+O64ni+FD+hVzP8PV04nXWOL2K0u709fbLlJCUWKz1a+NCpqbe9w6nzDAYDD/ZuAcDCraewXNyyUOzCYrHy7Bd7KCyxcGtbP3VPrASP9W+N0cHAz0fOsPuiNtRy84pKLDy5pOwmZURzH54eEmLvkCrEyejAOw904+A/hrHw4V5M6tuCJt5u9g5LSZSI2N/mY2d4e0PZHch/39OJYF932zFXJyO/H1BWjXr7R1Wj7OVcUSmLt5V15FMVqvqM7ByEl6sjCWfPsfFwur3DEeDjLSfZcSoTD2cjs+/RNL7KEOzrzl1dggBs+21J5Xl19SF2J2RhcnPizfG/3qSsTQwGQ42Lu2ZFIyL1ztm8Ip76NBarFcb1CGZ4p0v3WBnf89dq1OcxmtZkD8t2JpKVX0ywrxtDwrSfS3VxczbaOlItiD5l52gkPiOfl1cdAuCPd7anqY/7NV4h1+vxAW0wGGD1/lQOplz/hqdydT8eSuODn8rWsr58X6caUcGpK5REiYjdWK1Wnv1iN6nZhbRu5MH/Gxl22XHlqlFaG1XtLBYr//ulrK355L4tMdbgbk510cTezYGyD0MJZ/OvMVqqisVi5bllezhXXErvVr48oEY3laqNfwPuDC+7ifbOj8fsHE3dkGIuYOZnuwGY3LeFNjSuZEqiRMRuPtlyirUH0nA2OvDW+G64O1+5YeiFalSSuUDVqGq28XA6x9Pz8HRxZOz5BeBSfVr6eXBrWz+s1rK1UWIfi7fFs+V4Bm5ORl66t1ONbg1dWz0+sOxm2bd7kjhxJs/O0dRupRYrMz7dxdm8IjoEefH8ne3sHVKdoyRKROxif1I2//ruAAB/urMdYUFeVx3v6mTk8d9UowpLSqs8RilzYXPd+3sE4+la/za+rQmizlejPtueQEGxvver2+msc8w+//PqmaGhNG/oYeeI6qYOQSZub+ePxQrvbtDaqJuxZFs80cfP4u5s5K3xXXFxNNo7pDpHSZSIVLv8ohKmLdlJUYmF29v5M6lvi+t63biezQjwOl+N2qFOfdXhYEo2m46ewcHAdf89SeW7vX0ATbzdyMwvZuX5NvNSPaxWK39ctoe8olK6N/dhsv4dVKknBrUB4Mudpzmddc7O0dROVquVjzafBGBmZCitGjWwb0B1lJIoEal2//h2P8fS8/D3dOGVMZ2vu7tVWTWq7BfsOz+qGlUd5v9cVoUaFh5YrmuiVC+jg4EJvcrW4KjBRPX6fEciPx85g4ujAy/fp2l8Va1bMx/6tm5IicXKBxu1NupGbDmewdG0XDycjZqCXYWURIlItVq5J5kl2xIwGOCN+7vg6+Fcodff3yPYVo36TNWoKpWeU8jXsUmA2prXBPf3CMbJaCA2IYu9iWZ7h1MvpJgL+MfK/QA8PSREd/SryZPnq1FLtieQllNg52hqnwVbym603N2tiaZgVyElUSJSbRIz8/njl2U7pj8+oDV92/hV+ByqRlWfhdGnKCq10DnYm27NfOwdTr3n18CFOzuWdS9bEH3SvsHUA1arlT8v30tOQQmdg715+NZW9g6p3ujTqiHdmnlTVGKxVcPl+iSbz7F6fyoAD/ZpYd9g6jglUSJSLUpKLfxhaSw5BSV0bebNjME3vmP6/T2CCfRyJVnVqCpTUFzKwvPTxqbc0lIbitYQFxpMfB2bhDm/2M7R1G1fxyax7mBZ99BX7uuk1v7VyGAw2KpRC6NPkZVfZOeIao/FW+MptVjp1dKXkABPe4dTp1U4iTp9+jQTJ06kYcOGuLu706VLF2JiYmzHJ0+ejMFgKPfo3bt3uXMUFhYybdo0/Pz88PDwYNSoUSQmlv8glJmZSVRUFCaTCZPJRFRUFFlZWeXGxMfHM3LkSDw8PPDz82P69OkUFekfmkhN9Oa6I8ScysTTxZE3x3XF6SZ2Hnd1Mtpa4aoaVTW+iU0iI6+IxiZX7gjX3iI1RURzH9o39qKwxKJW/1UoLaeAF1bsA2D67W30YdQOBob6E9bYi7yiUj785aS9w6kVikosLNlW9nNBVaiqV6FPMZmZmfTr1w8nJye+//579u/fz5w5c/D29i43btiwYSQnJ9se3333XbnjM2bMYPny5SxdupRNmzaRm5vLiBEjKC399YPQhAkTiI2NZdWqVaxatYrY2FiioqJsx0tLSxk+fDh5eXls2rSJpUuXsmzZMmbOnHkDXwYRqUpbjmXw1o9l7WpfvKdjpTQoGNv9N9Wo7fowWZms1l83153Ut8VNJbxSuQwGg60atTD6FBaL1c4R1T1Wq5X/99U+svKL6RDkxaP9W9s7pHrpt9WoD385QU6BKq/X8n1cMmdyCwnwciGyQ4C9w6nzrryz5WW89NJLBAcH8+GHH9qea9GixSXjXFxcCAy8/J1Ls9nM/PnzWbBgAYMHDwZg4cKFBAcHs3btWoYOHcqBAwdYtWoV0dHR9OrVC4B58+bRp08fDh06RGhoKKtXr2b//v0kJCQQFBQEwJw5c5g8eTL/+te/8PK6+p4zIlI9MvOKeOrTWKxWGNu9KSM7B1XKeV2djDwxsDV/+Xofb/94jLE9grUPRiX55WgGB1NycHc2Mr5HM3uHIxe5q0sQs787wMmMfDYdPcNtIY3sHVKd8t3eFFbtS8HRwcAr93XWTQQ7GtYhkNaNPDiWnsfC6Hh+P0AJ7dVcaCgxoWdzfd9Wgwp9hb/55hu6d+/OmDFj8Pf3p2vXrsybN++ScRs2bMDf35+QkBCmTp1KWlqa7VhMTAzFxcVERkbangsKCiI8PJzNmzcDsGXLFkwmky2BAujduzcmk6ncmPDwcFsCBTB06FAKCwvLTS/8rcLCQrKzs8s9RKTqWK1Wnl22h5TsAlo18uCFUR0q9fxjz6+NSsku4FNVoyrN/E3HARgT0RSTuzo71TQeLo7cG1HWtljtzitXRm4h/+/rOAAeH9jmmpuAS9VycDDwxMCyatT8Tce10fRV7E/KZsepTBwdDIzvGWzvcOqFCiVRx48f591336Vt27b88MMPPPbYY0yfPp1PPvnENuaOO+5g0aJFrF+/njlz5rB9+3YGDRpEYWEhACkpKTg7O+PjU77TU0BAACkpKbYx/v7+l1zf39+/3JiAgPKlSh8fH5ydnW1jLjZ79mzbGiuTyURwsL7JRKrSwuhTrNmfirPRgTfHdcXduULF72tycSyrRgG88+Mx/YKtBEfTcvnxUDoGA/yun9qa11QTz0/pW3cgVRuSVqIXVuwnI6+I0ABPnjz/4V3sa1TnIJp4u3Emt4jv9mqj6Su50LFzWHgg/l6u9g2mnqhQEmWxWOjWrRsvvvgiXbt25dFHH2Xq1Km8++67tjH3338/w4cPJzw8nJEjR/L9999z+PBhVq5cedVzW63Wct2fLtcJ6kbG/Nbzzz+P2Wy2PRISdOdapKocTMnmHysPAPDHO9oR3sRUJdcZ2yOYxqayatRnO/Rv+mZ9eH4t1O3tAmjh52HnaORK2vg3oG/rhlissHirqlGV4Yd9KazYnYTRwcArYzrh7KjpUDWBo9HBVllZuk0/4y/HnF/M8l2nATWUqE4V+gnRuHFjwsLCyj3Xvn174uPjr/qa5s2bc+TIEQACAwMpKioiMzOz3Li0tDRbZSkwMJDU1NRLzpWenl5uzMUVp8zMTIqLiy+pUF3g4uKCl5dXuYeIVL5zRaVMW7yLohILA0Mb8bt+LarsWi6ORh4feGHfKFWjbkZmXhHLdpZ1StXmujXfg33KqlGfbk9Qh8qbFHfazP99VTaN75HbWtGpqbd9A5JyxnQPxuhgYNvJsxxNy7F3ODXO5zEJFBRbaBfoSY8W2tOvulQoierXrx+HDh0q99zhw4dp3rz5FV+TkZFBQkICjRuXbRAYERGBk5MTa9assY1JTk4mLi6Ovn37AtCnTx/MZjPbtm2zjdm6dStms7ncmLi4OJKTfy3trl69GhcXFyIiIirytkSkkv1j5X6OpOXSyNOFV8Z0rvI9hsZ2b2qrRmlt1I1bvC2egmILYY296N3K197hyDUMbh9AgJcLZ3KLWBV3+WnscnUZuYU8/+UeRs7dRHpOIW38G/CH29vaOyy5SICXK4PalS3zWKJqVDkWi9W2p19Un+ba068aVSiJeuqpp4iOjubFF1/k6NGjLF68mA8++IAnnngCgNzcXGbNmsWWLVs4efIkGzZsYOTIkfj5+XH33XcDYDKZmDJlCjNnzmTdunXs2rWLiRMn0rFjR1u3vvbt2zNs2DCmTp1KdHQ00dHRTJ06lREjRhAaGgpAZGQkYWFhREVFsWvXLtatW8esWbOYOnWqKkwidvT93mQWb43HYIDXx3bBr4FLlV+zXDVqw1FVo25AUYmFjzefBLS5bm3haHRgQs+ym5gXunLJ9SkutfC/TScY8OoGlmxLwGotW3uz+OFeuDqpy2dNNKFnWafQZTsT9TP+N34+eoaTGfl4ujgyuksTe4dTr1QoierRowfLly9nyZIlhIeH849//IM33niDBx54AACj0cjevXu56667CAkJYdKkSYSEhLBlyxY8PX/dqO71119n9OjRjB07ln79+uHu7s6KFSswGn/9wbVo0SI6duxIZGQkkZGRdOrUiQULFtiOG41GVq5ciaurK/369WPs2LGMHj2aV1999Wa/JiJyg05nneO5ZXsAePS21tzS1q/arj22e1OCTK6kZheqGnUDVu5NIi2nkEaeLpXWhl6q3viewTg6GNhxKpP9Seo4ez02HTnDnf/5mb9/u5+cghI6BHnx+WN9eHN8Vy3Ir8FuC2lEkMmVrPxiftinyusFC7acBOC+7k3xcKnc5k1ydQar1Vpvd+rLzs7GZDJhNptVvRK5SSWlFsbPi2b7yUw6B3vzxWN9qn2fioXRp/i/r+II8HJh4zMDdUf5OlmtVkbO3UTc6WxmDglhmqYz1SpPLN7Jyj3JjO/ZjNn3dLR3ODVWwtl8/rlyPz/sK1tz7ePuxDND23F/j7L1NlLz/WftEV5fe5jerXxZ+kgfe4djdwln87ntlR+xWmH9zP60atTA3iHVehXJDdR6RkQqxVvrj7L9ZCYNXBx5c1wXu2z0N+Y31ail267c8EbK23biLHGns3FxdOCB3lde4yo1U9T5v7Ovdp0mu6DYztHUPPlFJcxZfYjbX9vID/tSMToYmNy3BRtmDWRCr2ZKoGqRsT2a4mCA6ONnOZ6ea+9w7G7R1nisVri1rZ8SKDtQEiUiN23bibO8tb6sA+e/7g6neUP7tMZ2cTTyxKALa6PUqe96zd9U1tb8nm5N8fVwtnM0UlG9WvoSEtCAc8WlLItJtHc4NYbVauWb3UncPmcjb60/SlGJhX5tGvLd9Ft5YVQHbSRdCzU2uTEwtKzBxNJ6Pm27oLiUT7eX3SyM0s0vu1ASJSI3JSu/iBlLd2Gxwr3dmnKXnRe2jokIJsjkSlpOIUtUjbqmUxl5rDlQNr1pyi0t7BuM3BCDwWD7ELUg+hT1eJa+zb4kM/e/H830JbtINhfQ1MeN9yZ2Y+GUXoQGel77BFJjjT/fYOKLmMR63dr/2z3JZOYX08TbjdvbX35rH6laSqJE5IZZrVb+uGwvSeYCWvp58Le7Otg7JJwdHWzVqHdVjbqmD385idUK/UMa0cZfHy5rq9Fdm+DhbOR4eh5bjmXYOxy7OZtXxJ+X72XkW5vYdvIsrk4OPD0khLVP92dYeGN1nawDBoQ2ItDLlbN5RazZf+meovXFhYYSmpJqP0qiROSGLd4Wz6p9KTgZDbw5risNakhnoDERwTTxdlM16hrM54r5fEfZlBhtrlu7ebo6cU+3pgB8Ug/bnZeUlrXoH/DKjyzaGo/FCiM6NWbdzAFMv72tmszUIY5GB8b2CAaotz/fdydksTvRjLPRgXHnvxZS/ZREicgNOZyaw99X7AfguWHt6NjUZOeIfuXs6MATA7U26lo+3R5PXlEpIQENuLUa29FL1YjqUzalb82BVJLN5+wcTfXZfPQMw9/cxF+/2Ud2QQntG3ux9JHezJ3QjSbebvYOT6rA2O5NMRjgl6MZnDyTZ+9wqt2FGyXDOzWmYTXsxSiXpyRKRCqsoLiUaYt3UVhioX9IIx7qV/OqGPdFNKWJtxvpOYUs3lo/71ZeTdmd+7JfxA/10+a6dUFIgCe9WvpSarGyZFvdX3SfmJnP44timPDfrRxKzcHb3Yl/jg7n22m30LtVQ3uHJ1WoqY87/UMaAfWvwcTZvCJW7EkC4ME+aihhT0qiRKTC/rXyAIdSc/Br4MKrYzrjUAPnYzs7OvDkhbVRG1WNutiqfSmczjqHr4czo7tql/u64kI1asm2+Dr7PX+uqJTX1hzm9jkb+W5vCg6Gsg+TG2YNYGLv5lofUk/82mAigaISi52jqT6f7Sh7vx2bmOgS7G3vcOo1JVEict1OZ53j8UUxLIguq2C8NrYzjTxr7lSCe7v9Wo1apGpUORfamk/s1UzrReqQyLBAGnm6kJ5TyKBXN7BkWzzFpXXjA6bVamXlnmRun7OBN9cdobDEQu9Wvqycfit/vyscb3e1569PBrXzx9/ThTO5Raw7UD8aTJRarCw4P5Uvqk9zzSCwMyVRInJNBcWlzF1/hNvnbLDd+X1uWDtuOz+doqb6bTXqPVWjbHbGZ7IrPgtnowMTNR2kTnF2dGDOmM4EermSZC7g+S/3Mvi1jSzflUippfa2Pj+QnM24D6J5YvFOkswFNPF2450HurFkam/aN/ayd3hiB05GB8Z0L2umsrieNJj48WAap7PO4e3uxKjOQfYOp95TEiUiV7X+YCpD3/iJV1cfpqDYQs8Wvnw77VZ+P6C1vUO7Lvd2a0pTH1WjfutCFWpUlyD8PV3tHI1UtttCGrHhmQH8ZUQYfg2cOZWRz1Of7mboGz/x3d5kLLUomTqcmsPzX+5l+Js/s/XEWVwcHfjD7W1Z+3R/7uyoluX13bgeZVP6fj5yhoSz+XaOpup9cn4WyNjuwZpBUAPUjH7EIlLjnDyTx9+/3c/6g2kA+Hu68Ofh7RnVOahWfXBxdnTgyYFt+OOXe3l3wzEm9GyGm3P9/eVzOuscq+JSAGpkQxCpHK5ORqbc0pJxPYL5eMtJ3t94nKNpuTy+aCdhjb2YGRnCoHb+NfLfcmFJKaviUlgUHc+2k2dtzw/v2Jjn72xHUx93O0YnNUmwrzu3tvXj5yNnWLo9nmeGtrN3SFXmxJk8fjqcjsEAE3tpBkFNoCRKRMrJLyrhnR+P8cFPxykqteDoYGDKLS2ZdnvbGrMPVEXdG9GUuT8eJTHzHIu2nuLhW1vZOyS7+XjzSUotVvq2bkhYkKZB1XUeLo48PqANE3s3Z/7PJ5i/6QT7k7OZ8vEOugR7MysylH5tGtaIZCrhbD6Lt8Xz2fYEMvKKADA6GBjSPoCHbmlJz5a+do5QaqIJPZvx85EzfL4jkRmDQ3Ay1s1JVgvPV6EGhDSiWUPdSKgJaucnIhGpdFarle/jUvjnt/tJMhcAcGtbP/46sgNt/BvYObqb42R0YNqgNjy3bC/vbTzOA72a18tqVF5hiW1zSm2uW794uTrx1JAQJvdtwfs/HeejzSeITchi4vyt9Grpy6yhofRoUf1JSqnFyo8H01i49RQbD6djPT/TMNDLlXE9gxnXoxmBJk05lSu7vX0Afg2cScspZP3BNIZ2CLR3SJUuv6jEtjH6g31a2DcYsVESJSIcSc3hhRX7+OVoBgBNvN34y4gwhnYIqBF3qCvDPd2a8tb6+l2N+nxHAjkFJbTy82BgqL+9wxE78PFw5o93tOOhW1rwzo/HWLw1nq0nzjLmvS30D2nEzMgQOjX1rvI40nIK+Gx7Aku2JXA669eNgW9t68cDvZozuL0/jnW0oiCVy9nRgfsignlv4zGWbIuvk0nU17FJZBeU0Mz31/2xxP6URInUYzkFxfxn7RE+2nySEosVZ0cHft+/NY/1b13nKjXlq1HH6l01qtRi5X+/nATgd/1a1Mi9vaT6+Hu68sKoDjxyWyveWn+Uz3cksPFwOhsPpxMZFsDTkSG0C6zc6Z5Wq5Xo42dZuPUUP8SlUHK+wYW3uxNjuwczoWczWvh5VOo1pX4Y16Msidp4OJ3EzPw6tW7OarXyyYW25r2b62d3DaIkSqQeslqtLN91mtnfHyQ9pxCAIWEB/GV4WJ2ea31Pt7K1UQln6181au2BVOLP5mNyc+LeiKb2DkdqiCBvN2bf05HH+rfiP+uO8NWu06zen8qaA6mM6BTEjMFtad3o5qbzms8VsywmkUVbT3EsPc/2fLdm3kzs3Zw7OzZWpzG5KS38POjXpiG/HM3gs+0JPB0Zau+QKk3MqUwOJGfj4vhrS3epGZREidQzcafNvPDNPnacygSgpZ8H/29kWL2Y3uVkdGDawLY8u2wP7208xoRezXB3rh8/Bi+0NR/fs/68Z7l+zRt68NrYLjw+oDWvrz3Cyj3JrNidxMo9SdzbrSnTb29LsG/FbrDsScxiYfQpvtmdREFx2Ya/Hs5GRndtwgO9mquxiVSqcT2alSVROxKZfnvbOjMd9EIV6q4uQdpQuobRb1KReiIrv4hXVx9i8dZ4LFZwczIy7fY2TLmlJS6O9ecu8N3dmjD3x6PEn81nUXQ8U2+r+9WouNNmtp04i6ODgUl91RpXrqyNvydvT+jG4wPMvL7mMGsPpPF5TCJfxZ7m/h7BPDmw7VUbPZwrKmXF7iQWbj3FnkSz7fl2gZ480Ls5o7sE4enqVB1vReqZyA4B+Ho4k5JdwIZD6QwOC7B3SDctPaeQ7+OSATWUqImURIlUg2PpuexLyqapjxvNfN1p6OFcbQ0bSi1WPt2ewCs/HCQzvxiAkZ2D+NOd7WhscquWGGoSJ6MDTw5qw7Nf7OH9n47xQO+6X5m5UIUa3qlxvfw7l4rrEGTiv5N6sCs+k9fWHObnI2dYGB3PZzsSierdnN8PaI1fAxfb+KNpOSyMjmfZzkRyCkoAcDY6cGfHQCb2bk5Ec58606RGaiYXRyP3RTTlg5+Os2RbfJ1IopZui6e41ErXZt6ENzHZOxy5SN3+5CBSA1gsVibMiyY1u9D2nIezkWBfd5o3dKeZ7/lHQw+a+brTxNsNZ8fKmYawMz6Tv369j72ny+4IhwZ48sKoDvRp3bBSzl9b3d21CXPXl1WjFkaf4pHbWts7pCqTml3Ait1JgNqaS8V1bebDgim9iD6ewZzVh9h+MpP5m06wZFs8k/u2oF1jLxZvPUX08V83xW3m686EXs0YE9GUhr9JtESq2rgewXzw03F+PJRGsvlcrb5pVFJqYdHWsi0pHuyjGQQ1UYU/qZ0+fZqJEyfSsGFD3N3d6dKlCzExMbbjVquVF154gaCgINzc3BgwYAD79u0rd47CwkKmTZuGn58fHh4ejBo1isTExHJjMjMziYqKwmQyYTKZiIqKIisrq9yY+Ph4Ro4ciYeHB35+fkyfPp2ioqKKviWRKnUkLZfU7EKcjAYam1wxGCCvqJSDKTn8sC+VeT+f4C9f72PS/7Yx8NUNtPvL9/T793omzIvmj8v28PaPR/l2TxJ7ErMwn68kXUt6TiHPfL6be97ZzN7TZjxdHPnryDBWTr+l3idQ8Gs1CuD9jcfJLyqxc0RV55MtZZ0Xe7TwqZbW1VI39W7VkM8e7cMnD/Wkc1MT+UWlvLPhGNOX7CL6+FkcDGXNaT76XQ82zBrAY/1bK4GSateqUQN6tfTFYoXPtide+wU12Jr9qaRkF9DQw5k7Oza2dzhyGRWqRGVmZtKvXz8GDhzI999/j7+/P8eOHcPb29s25uWXX+a1117jo48+IiQkhH/+858MGTKEQ4cO4enpCcCMGTNYsWIFS5cupWHDhsycOZMRI0YQExOD0Vi2NmPChAkkJiayatUqAB555BGioqJYsWIFAKWlpQwfPpxGjRqxadMmMjIymDRpElarlbfeeqsyvjYilSLmfAOHHi18WTy1NwXFpZzOOkd8Rj7xZ/M5df6/CWfzOXU2j4JiC6ezznE66xybj2Vccj4vV0ean69aXVzNauTpwuKt8by+5jA5hWWJwZiIpjw7rB2NPPWB5rfqQzXqXFGp7U6mqlByswwGA7eFNOLWtn6sPZDG3PVHyMwvZnSXIMb1bEaQd+296y91x4Rezdh64iyfbo/nyUFtMNbSluAXGkqM6xlcr9Yt1yYGq/XC/uDX9sc//pFffvmFn3/++bLHrVYrQUFBzJgxg+eeew4oqzoFBATw0ksv8eijj2I2m2nUqBELFizg/vvvByApKYng4GC+++47hg4dyoEDBwgLCyM6OppevXoBEB0dTZ8+fTh48CChoaF8//33jBgxgoSEBIKCggBYunQpkydPJi0tDS+va3f9yc7OxmQyYTabr2u8yI14+rNYvtx5mumD2lyz7arVaiU9t7BcgpVw9vyfz+bb2pFfj45NTPztrg50a+Zzs2+hzvp8RwLPfLGHhh7O/PTsQDxc6tYM50VbT/Hn5XEE+7qxYdbAWvthQkTkehUUl9J79jqy8ov5cHIPBrarfZ1nj6TmMOT1n3AwwM/PDaKJblBUm4rkBhX6xPDNN98wdOhQxowZw8aNG2nSpAmPP/44U6dOBeDEiROkpKQQGRlpe42Liwv9+/dn8+bNPProo8TExFBcXFxuTFBQEOHh4WzevJmhQ4eyZcsWTCaTLYEC6N27NyaTic2bNxMaGsqWLVsIDw+3JVAAQ4cOpbCwkJiYGAYOHHhJ/IWFhRQW/vohNDs7uyJvX+SGXKhERbTwveZYg8GAv6cr/p6udL/M+PyiEhLOnjufYOWVS7ASz56jqNSCj7sTzwxtx/09gvWh+Rru7lrWqe9URj79X9nAfRFNGdcjuE5s+GmxWG0NJSb3banvBRGpF1ydjNzbrSnzN51g8bb4WplELYguq0INbh+gBKoGq1ASdfz4cd59912efvpp/vSnP7Ft2zamT5+Oi4sLDz74ICkpKQAEBJTviBIQEMCpU2XfECkpKTg7O+Pj43PJmAuvT0lJwd//0m96f3//cmMuvo6Pjw/Ozs62MRebPXs2f/vb3yrylkVuSnpOIacy8jEYoGsz75s+n7uzI6GBnoQGel5yzGKxkpZTiLe7kzauvE6ORgdm39OR6UtiOZNbyHsbj/HexmP0bd2QcT2bMbRDQK2dRrHxcDrH0/No4OLIWG3QKCL1yPiewczfdIL1B9NIzS4gwOvKbflrmtzCEr7ceRpQW/OarkKNJSwWC926dePFF1+ka9euPProo0ydOpV333233LiL25hardZrtja9eMzlxt/ImN96/vnnMZvNtkdCQsJVYxK5WTGnyjpWhQZ44lXFe6M4OBgINLkqgaqgvq392PL8IN6bGMGA0EYYDLD5WAbTl+yi94vr+Me3+zmalmPvMCvsQhXq/h7B2pdHROqVNv6e9GjhQ6nFyuc7atdnveU7E8ktLKFVIw/6tVEjqJqsQklU48aNCQsLK/dc+/btiY8vW7gcGBgIcEklKC0tzVY1CgwMpKioiMzMzKuOSU1NveT66enp5cZcfJ3MzEyKi4svqVBd4OLigpeXV7mHSFWyTeVrrnVJNZmT0YFh4YF89Lue/PzsQKbf3pbGJlcy84uZv+kEg1/7iTHvbWZZTCLnikrtHe41HUzJZtPRMzgYYHLfFvYOR0Sk2o3v2QyAJdsSsFiue/m/XVmtVltDiajezbW3Wg1XoSSqX79+HDp0qNxzhw8fpnnzsv71LVu2JDAwkDVr1tiOFxUVsXHjRvr27QtAREQETk5O5cYkJycTFxdnG9OnTx/MZjPbtm2zjdm6dStms7ncmLi4OJKTk21jVq9ejYuLCxERERV5WyJVZsf5JKp7CyVRtUVTH3eeHhLCpucG8b/J3RkSFoDRwcD2k5nM/Hw3PV9cy//7Oo79STV3TeX/zlehhoUHEuzrbudoRESq350dG+Pl6sjprHP8fPSMvcO5LluOZ3AkLRd3ZyP3Rmgadk1XoTVRTz31FH379uXFF19k7NixbNu2jQ8++IAPPvgAKJteN2PGDF588UXatm1L27ZtefHFF3F3d2fChAkAmEwmpkyZwsyZM2nYsCG+vr7MmjWLjh07MnjwYKCsujVs2DCmTp3K+++/D5S1OB8xYgShoWXdzSIjIwkLCyMqKopXXnmFs2fPMmvWLKZOnaoKk9QIBcWlxJ3f5Dai2bWbSkjNYnQwMKhdAIPaBZCaXcDnOxJYuj2BxMxzfLLlFJ9sOUXnpibG92zGyM5BNaaz35ncQr6K1ea6IlK/uToZuadbUz7afJIlW+PpH9LI3iFd04LzVai7uzap8iUAcvMq9Fu/R48eLF++nOeff56///3vtGzZkjfeeIMHHnjANubZZ5/l3LlzPP7442RmZtKrVy9Wr15t2yMK4PXXX8fR0ZGxY8dy7tw5br/9dj766CPbHlEAixYtYvr06bYufqNGjWLu3Lm240ajkZUrV/L444/Tr18/3NzcmDBhAq+++uoNfzFEKtOeRDPFpVYaeboQ7KvuOrVZgJcrTw5qy+MD2vDLsTMs3ZbA6v0p7E40sztxL//4dj+jugQxrkczOjU12WUKRqnFSlpOAfN+OkFRiYXOwd5qby8i9dq4nsF8tPkkaw+kkpZTgL9nzW0wkWw+x+r9ZUtZ1FCidqjQPlF1jfaJkqr07oZjvLTqIHeEB/LuRE0xrWvO5Bby5c5Elm5L4PiZPNvz7Rt7MaFnMHdV8p3EC90XEzPzScw8R8LZsv8mZpX9NynrHMWlv/44f3N8V0Z1DrrKGUVE6r573vmFnfFZPDsslMcHtLF3OFf02upDvLn+KD1b+vLZo33sHU69VWX7RInI9bvQmU9NJeomvwYuPHJba6be2oqtJ86ydFs838WlcCA5m798vY9/fXeA4R2DGN8zmIjmPtesTlksZRstX0iSyiVKmfkkZRVQVGq56jmMDgaCvF3p0cKXO8IDK/PtiojUSuN7NmNnfBZLtyXw2G2tcaiBe+YVlVhYvK2si+CDfZrbORq5XkqiRKqA1WpVZ756wmAw0LtVQ3q3asgL+UUs33WaJdviOZyay7KdiSzbmUhb/wbc3yOYwe0DyMgrKpcoXfjz6cxz15UkNTa50tTHjaY+7jT1cSP4/H+b+roT4OmCo7FC/YJEROq04Z0a8/cV+4k/m8/mYxnc0tbP3iFdYtW+FM7kFuLv6cLQDroBVlsoiRKpAsfS88jML8bF0YEOQSZ7hyPVxNvdmd/1a8nkvi3O3/mM59s9yRxJy+WfKw/wz5UHrvp6BwM0NrmVT5J8zydJPm4EerkqSRIRqQB3Z0dGd23CguhTLNkWXyOTqAVbTgJlVTMn/YyvNZREiVSBC1P5Ogd74+yoH4j1jcFgIKK5DxHNffjLyDC+iU1i6fZ4DiTnEOjlShOfXxOl4N8kTIEmV/0CFRGpZON7NmNB9ClW7y+r+Pg1cLF3SDb7k7LZfjITRwcDE3o1s3c4UgFKokSqwIWpfN01la/e83J1YmLv5kzs3Ryr1arNE0VEqllYkBedg73ZnZDFsphEHu3f2t4h2SyIPgnA0A6BBHjV3O6Bcind8hSpAtpkVy5HCZSIiH2M7xEMwJJt8dSUxtTmc8V8tatsXz81lKh9lESJVLKzeUUcTy9rea19ekREROxvZOcgPJyNnMzIZ8vxDHuHA8AXMYmcKy4lNMCTni197R2OVJCSKJFKdmEqXxv/Bni7O9s5GhEREfFwceSurk0AWHK+nbg9WSxWFkafAiCqT3PNVKiFlESJVDKthxIREal5JvQsa9zwQ1wKZ/OK7BrLpqNnOHEmD08XR+4+n9xJ7aIkSqSSaZNdERGRmie8iYmOTUwUlVr4cmeiXWP55Hxb83sjmuLhoj5vtZGSKJFKVFhSyu5EM6AkSkREpKYZ17OswcRiOzaYSDibz7qDaQBM7K2GErWVkiiRShR3OpuiEgsNPZxp6edh73BERETkN0Z1DsLd2cjx9Dy2nThrlxgWbY3HaoV+bRrSxr+BXWKQm6ckSqQS7Ty/Hqpbcx8tEhUREalhPF2dGNU5CChrd17dzuQW8tmOssYWUb1bVPv1pfIoiapiVquVz7YnsHZ/qr1DkWqw4/x6KDWVEBERqZnGn28w8V1cCln51dNgIi27gH98u59bXlrP2bwigkyuDG7vXy3XlqqhlWxV7J0Nx3jlh0MAfPi7HgwM1T+Yuspqtdo682k9lIiISM3UqamJ9o29OJCczZc7T/PQLS2r7FpJWed4b+Mxlm5PoKjEYrv+P0eH42hULaM2099eFVoVl2xLoACe+jSW01nn7BiRVKVTGfmcyS3C2ehAeBOTvcMRERGRyzAYDEw432BiSRU1mEg4m8/zX+6h/ys/8smWUxSVWIho7sNHv+vB10/0o1NT70q/plQvJVFVJO60mac+3Q3AA72a0bmpiaz8Yp5YtNN2J0Lqlh3nq1Adm5pwdTLaORoRERG5kru6NsHVyYEjabm2WSSV4Xh6LjM/282AVzewZFsCxaVWerfyZfHDvfjisT4MCPXXmuk6QtP5qkBadgEPf7yDc8Wl3NrWj7+N6kCyuYARb20iNiGLF787wAujOtg7TKlk2mRXRESkdvBydWJkpyA+j0lkybYEurfwvanzHU7NYe76o3y7JwnL+cLWrW39mH57W3rc5LmlZlIlqpIVFJcy9ZMdpGQX0LqRB3MndMPR6ECwrzuvje0MwEebT7JyT7KdI5XKpk12RUREao9x5xtMfLsnCXN+8Q2dY1+Smd8vjCHy9Z/4ZndZAjW4vT9fPdGPBVN6KYGqw1SJqkRWq5VZn+9md6IZb3cn5k/qgcnNyXb89vYB/H5Aa97dcIznlu2hfWNPWjXS/gB1gTm/mMOpuUBZe3MRERGp2bo18yY0wJNDqTl8FXuaSX1bXPdrYxOymLv+CGsPpNmeuyM8kCcHtaFDkNZF1weqRFWi/6w7wrd7knF0MPDuAxG0uMxmqzOHhNCrpS+5hSU8vmgn54pK7RCpVLad8WVT+Vr6eeDXwMXO0YiIiMi1GAwGxlewwcT2k2eJmr+V0W//wtoDaTgYyjbwXf3Ubbw7MUIJVD1SoSTqhRdewGAwlHsEBgbajk+ePPmS47179y53jsLCQqZNm4afnx8eHh6MGjWKxMTEcmMyMzOJiorCZDJhMpmIiooiKyur3Jj4+HhGjhyJh4cHfn5+TJ8+naKi6un1fzkrdifxxtojAPzr7nD6tG542XGORgfeGt8VvwYuHEzJ4f99HVedYUoVUWtzERGR2ufurk1xcXTgYEoOuxKyLjvGarWy+egZxn2whTHvbeHnI2cwOhi4t1tT1j7dnzfHdyUkwLN6Axe7q3AlqkOHDiQnJ9see/fuLXd82LBh5Y5/99135Y7PmDGD5cuXs3TpUjZt2kRubi4jRoygtPTXisyECROIjY1l1apVrFq1itjYWKKiomzHS0tLGT58OHl5eWzatImlS5eybNkyZs6cWdG3Uyl2J2Qx6/OyTnwP39KS+3s0u+p4fy9X3hzfBQcDfB6TaNu5WmovbbIrIiJS+5jcnRjesTEAS7fFlztmtVrZcCiN+97bwoT/biX6+FmcjGXVqx9nDmDO2M5allGPVXhNlKOjY7nq08VcXFyueNxsNjN//nwWLFjA4MGDAVi4cCHBwcGsXbuWoUOHcuDAAVatWkV0dDS9evUCYN68efTp04dDhw4RGhrK6tWr2b9/PwkJCQQFBQEwZ84cJk+ezL/+9S+8vLwq+rZuWLL5HFM/2UFhiYWBoY14/s721/W6vq39eHpICK+uPsxfvoojPMhEWFD1xS2Vp7jUQuz5u1eqRImIiNQu43s148tdp1mxO5n/GxGGp4sjaw+kMXf9EXYnmgFwdnRgXI9gHu3fmibebnaOWGqCCleijhw5QlBQEC1btmTcuHEcP3683PENGzbg7+9PSEgIU6dOJS3t1wV3MTExFBcXExkZaXsuKCiI8PBwNm/eDMCWLVswmUy2BAqgd+/emEymcmPCw8NtCRTA0KFDKSwsJCYm5oqxFxYWkp2dXe5xM/KLSnj44x2k5RQSGuDJm+O7YnS4/t7/jw9ow4DQRhSWWHhi8U5yCm6sM4zY1/6kbAqKLZjcnGitO1IiIiK1SvfmPrTxb8C54lL+vmI/d765iamf7GB3ohlXJwem3NKSn58dyN/vClcCJTYVSqJ69erFJ598wg8//MC8efNISUmhb9++ZGRkAHDHHXewaNEi1q9fz5w5c9i+fTuDBg2isLAQgJSUFJydnfHxKX+3PiAggJSUFNsYf3//S67t7+9fbkxAQEC54z4+Pjg7O9vGXM7s2bNt66xMJhPBwcEVefvlWCxWnv50N/uSsmno4cx/J3XH09Xp2i/8DQcHA6+P7UITbzdOnMnjuWV7qmTXbKlaO36zHsqhAkm0iIiI2F9Zg4mypRhfxCRyIDkbD2cjj/VvzabnBvGXEWEEeLnaOUqpaSqURN1xxx3ce++9dOzYkcGDB7Ny5UoAPv74YwDuv/9+hg8fTnh4OCNHjuT777/n8OHDtnFXYrVay+3efLmdnG9kzMWef/55zGaz7ZGQcONrkV5bc5hV+1JwNjrwXlQEwb7uN3QeHw9n5k7oipPRwHd7U/ho88kbjknsY6eaSoiIiNRq93ZrQoCXC56ujkwf1IZNzw3ij3e0U8dduaKb2ifKw8ODjh07cuTIkcseb9y4Mc2bN7cdDwwMpKioiMzMzHLVqLS0NPr27Wsbk5qaesm50tPTbdWnwMBAtm7dWu54ZmYmxcXFl1SofsvFxQUXl5v/x/DVrtPM/fEoALPv6XjTG6l1bebDn+5sz99W7OfF7w7QJdibrs30gbw2sFqttqYSSqJERERqJ293ZzbMGoiDA7g4Gu0djtQCN7VPVGFhIQcOHKBx48aXPZ6RkUFCQoLteEREBE5OTqxZs8Y2Jjk5mbi4OFsS1adPH8xmM9u2bbON2bp1K2azudyYuLg4kpOTbWNWr16Ni4sLERERN/OWrinmVCbPLtsDwO8HtObeiKaVct7JfVswvGNjikutPLFoJ5l59mvXLtcvMfMcqdmFODoY6NzU297hiIiIyA1yczYqgZLrVqEkatasWWzcuJETJ06wdetW7rvvPrKzs5k0aRK5ubnMmjWLLVu2cPLkSTZs2MDIkSPx8/Pj7rvvBsBkMjFlyhRmzpzJunXr2LVrFxMnTrRNDwRo3749w4YNY+rUqURHRxMdHc3UqVMZMWIEoaGhAERGRhIWFkZUVBS7du1i3bp1zJo1i6lTp1ZpZ77EzHweXbCDohILkWEBPBMZWmnnNhgM/PvejrT08yDJXMBTn8VisWh9VE13YX+oDk1MuDnrB6+IiIhIfVChJCoxMZHx48cTGhrKPffcg7OzM9HR0TRv3hyj0cjevXu56667CAkJYdKkSYSEhLBlyxY8PX/dgOz1119n9OjRjB07ln79+uHu7s6KFSswGn/9ALpo0SI6duxIZGQkkZGRdOrUiQULFtiOG41GVq5ciaurK/369WPs2LGMHj2aV199tRK+JJeXW1jWie9MbhHtG3vx+v1dKr2JgKerE+880A0XRwc2HErnnQ1HK/X8UvkuJFHaH0pERESk/jBY63E7uOzsbEwmE2az+aoVrFKLlUcXxLD2QCp+DVz4+sl+Vdri8rMdCTz7xR4cDLDw4V70be1XZdeSm3PHf37mQHI27z7QjTs6Xn5aq4iIiIjUfNebG8BNromqL17+4SBrD6Ti7OjAvAcjqnyPgLHdgxkT0RSLFaYviSUtu6BKryc3JqegmEMpZXuNqamEiIiISP2hJOoaPt+RwPsbyzYUfuW+TtXWNe/vd4XTLtCTM7mFPLlkFyWllmq5rly/XfFZWKwQ7OuGv/aPEBEREak3lERdxbYTZ/nT8r0ATB/Uhru6NKm2a7s5G3l3YgQNXBzZduIsr64+XG3Xluvz63qom2txLyIiIiK1i5KoK4jPKOvEV1xq5c6OgcwYHFLtMbT08+Dl+zoB8N7GY6w7cOn+WWI/MdpkV0RERKReUhJ1GTkFxUz5eDuZ+cV0bGJizpjK78R3ve7s2JjJfVsA8PRnu0k4m2+XOKS8klILu+KVRImIiIjUR0qiLlJqsTJtyS6OpOUS4OXCvAe7233/nz/d2Z4uwd6YzxXzxOKdFJaU2jUegYMpOeQVleLp4khIgOe1XyAiIiIidYaSqIv8a+UBNhxKx9XJgXkPdifQZP+GAc6ODrz9QDe83Z3Yk2jmn98esHdI9d6FqXxdm/tgtFOVUkRERETsQ0nUbyzeGs//fjkBwGtju9Cpqbd9A/qNJt5uvH5/FwAWRJ/im91J9g2ontMmuyIiIiL1l5Ko8zYfO8P/+zoOgJlDQrizBm6cOjDUnycHtgHgj8v2cDQt184R1V9qKiEiIiJSfymJAk5m5PH7hTspsVgZ1TmIJwe1sXdIV/TUkBD6tGpIflEpjy+KIb+oxN4h1TvJ5nOczjqH0cFAl2Bve4cjIiIiItVMSRTw5OKdmM8V0yXYm5fv64TBUHPXuBgdDPxnfBf8PV04nJrL/y2Pw2q12jusemXHybIqVPvGnni4ONo5GhERERGpbkqigJNn8gkyufLBgxG4Otm3E9/18Pd05a3xXTE6GPhy12mWbk+wd0j1ijbZFREREanflEQBbs4O/HdSD/w97d+J73r1atWQWZGhAPz1m33EnTbbOaL6Q+uhREREROo3JVHA7Hs6ERbkZe8wKuzR21pxezt/ikosPLF4J9kFxfYOqc7LKyxhf3I2oCRKREREpL5SEgUMbh9g7xBuiIODgTljO9PE241TGfk88/lurY+qYrsTsii1WAkyuRLk7WbvcERERETEDpRE1XLe7s68O7EbzkYHftiXyvxNJ+wdUp1mm8rXQuuhREREROorJVF1QKem3vxlRHsAXlp1UOujqtAObbIrIiIiUu8piaojJvZuztAOARSXWvnD0l2cKyq1d0h1jsViZWe8mkqIiIiI1HdKouoIg8HAv+/pRICXC8fS8/jnyv32DqnOOZyWQ05BCe7ORtoFeto7HBERERGxEyVRdYiPhzOvje0CwKKt8azZn2rfgG7Cmv2p3PvuZvYnZds7FJsLm+x2beaNo1H/dERERETqK30SrGP6tfHjkdtaAfDcsj2kZRfYOaKK25dkZtqSncScyuQvX8fVmI6DO237Q6mphIiIiEh9VqEk6oUXXsBgMJR7BAYG2o5brVZeeOEFgoKCcHNzY8CAAezbt6/cOQoLC5k2bRp+fn54eHgwatQoEhMTy43JzMwkKioKk8mEyWQiKiqKrKyscmPi4+MZOXIkHh4e+Pn5MX36dIqKiir49uummZEhdAjy4mxeETM/343FUjOSkOuRmVfEowtiKCi2AGXd8NYfTLNzVGV2aJNdEREREeEGKlEdOnQgOTnZ9ti7d6/t2Msvv8xrr73G3Llz2b59O4GBgQwZMoScnBzbmBkzZrB8+XKWLl3Kpk2byM3NZcSIEZSW/toIYcKECcTGxrJq1SpWrVpFbGwsUVFRtuOlpaUMHz6cvLw8Nm3axNKlS1m2bBkzZ8680a9DneLiaOQ/47rg6uTAz0fO8OHmk/YO6bqUlFqYtmQXiZnnaObrzoRezQB45YdDdk8E03IKiD+bj8FQNp1PREREROqvCidRjo6OBAYG2h6NGjUCyqpQb7zxBn/+85+55557CA8P5+OPPyY/P5/FixcDYDabmT9/PnPmzGHw4MF07dqVhQsXsnfvXtauXQvAgQMHWLVqFf/973/p06cPffr0Yd68eXz77bccOnQIgNWrV7N//34WLlxI165dGTx4MHPmzGHevHlkZ9ecNTT21Mbfk/8bHgbAS98frFFri67klR8OsenoGdycjHzwYATPDg3F09WRgyk5rNiTZNfYYs6vhwoN8MTL1cmusYiIiIiIfVU4iTpy5AhBQUG0bNmScePGcfz4cQBOnDhBSkoKkZGRtrEuLi7079+fzZs3AxATE0NxcXG5MUFBQYSHh9vGbNmyBZPJRK9evWxjevfujclkKjcmPDycoKAg25ihQ4dSWFhITEzMFWMvLCwkOzu73KMue6BXMwa3D6Co1MIflu6ioLjmtj1fsTuJ938q+156ZUwn2gV64e3uzKPn13e9tuYwxaUWu8V3YZPd7i00lU9ERESkvqtQEtWrVy8++eQTfvjhB+bNm0dKSgp9+/YlIyODlJQUAAICAsq9JiAgwHYsJSUFZ2dnfHx8rjrG39//kmv7+/uXG3PxdXx8fHB2draNuZzZs2fb1lmZTCaCg4Mr8vZrHYPBwEv3dqSRpwtH0nKZ/d0Be4d0WQeSs3n2iz0APNa/NSM6/Zoc/65fS/waOHMqI59PtyfYK8TfbLKrphIiIiIi9V2Fkqg77riDe++9l44dOzJ48GBWrlwJwMcff2wbYzAYyr3GarVe8tzFLh5zufE3MuZizz//PGaz2fZISLDfh/Lq0rCBC3PGdAbg4y2nWH+wZrU9z8ovayRxrriUW9v68czQ0HLHPVwceXJgGwDeXHfELpsIFxSXsi/JDKiphIiIiIjcZItzDw8POnbsyJEjR2xd+i6uBKWlpdmqRoGBgRQVFZGZmXnVMampl37QT09PLzfm4utkZmZSXFx8SYXqt1xcXPDy8ir3qA9uC2nElFtaAvDM53tIzym0c0RlSi1Wpi+NJf5sPsG+brw1vitGh0uT4PG9mtHE2420nEI+3nKy2uPcnZBFcakVf08Xmvq4Vfv1RURERKRmuakkqrCwkAMHDtC4cWNatmxJYGAga9assR0vKipi48aN9O3bF4CIiAicnJzKjUlOTiYuLs42pk+fPpjNZrZt22Ybs3XrVsxmc7kxcXFxJCcn28asXr0aFxcXIiIibuYt1VnPDA2lXaAnGXlFPPPF7hqx99Kc1Yf46XA6rk4OvD+xO97uzpcd5+Jo5KkhIQC8u+EY5nPF1Rnmr1P5Wvhcs6oqIiIiInVfhZKoWbNmsXHjRk6cOMHWrVu57777yM7OZtKkSRgMBmbMmMGLL77I8uXLiYuLY/Lkybi7uzNhwgQATCYTU6ZMYebMmaxbt45du3YxceJE2/RAgPbt2zNs2DCmTp1KdHQ00dHRTJ06lREjRhAaWjbVKzIykrCwMKKioti1axfr1q1j1qxZTJ06td5UlyrK1cnIm+O74uLowIZD6Xxs57bn3+1N5p0NxwB46d5OhAVd/e/t7q5NaOvfAPO5Yuadb0BRXbTJroiIiIj8VoWSqMTERMaPH09oaCj33HMPzs7OREdH07x5cwCeffZZZsyYweOPP0737t05ffo0q1evxtPT03aO119/ndGjRzN27Fj69euHu7s7K1aswGg02sYsWrSIjh07EhkZSWRkJJ06dWLBggW240ajkZUrV+Lq6kq/fv0YO3Yso0eP5tVXX73Zr0edFhLgyZ+Htwfgxe8Pcigl5xqvqBqHUnKY9fluAKbe2pK7ujS55muMDgZmRpYl0f/75US1TUm0WKzExGuTXRERERH5lcFaE+Z12Ul2djYmkwmz2VxvKlhWq5WHPtrOj4fSCQ3w5Osn++HqZLz2CyuJOb+YUW9v4lRGPv3aNOTj3/XE0Xh9ubzVamX0O5vZnZDF5L4teGFUhyqOFo6m5TD4tZ9wdXJg7wtDcbrOWEVERESkdqlIbqBPhPWMwWDglTGd8WvgzKHUHF5adbDarl1qsfKHT3dxKiOfJt5uvDW+23UnUFAW+7Pnu/ct2nqKhLP5VRWqzY7zm+x2buqtBEpEREREACVR9ZJfAxdeOd/2/MNfTrLhUFq1XPeNtYfZcCgdF0cH3o+KwNfj8o0krqZfGz/6tWlIcamVN9YeqYIoy9MmuyIiIiJyMSVR9dTAUH8m920BwKzP93Amt2rXGK2KS+Gt9UcB+Pe9HQlvYrrhcz07tB0Ay3clciS1atd1xZzSeigRERERKU9JVD32xzvaERrgyZncQp77Yk+VtT0/mpbDzM9iAXioX0vu7tr0ps7XOdibYR0CsVjh1dWHKiHCy8vILeT4mTwAujVTEiUiIiIiZZRE1WOuTkb+M74Lzo4OrDuYxsKt8ZV+jeyCYh75JIa8olJ6t/Ll+TvbVcp5Zw0NwcEAP+xLJTYhq1LOebELVai2/g2uuIeViIiIiNQ/SqLquXaBXvxxWFli889v91fq9DiLxcpTS2M5fiaPIJMrb0/oVmnNGdr4e3JPt7KK1is/VE1zjAutzbUeSkRERER+S0mUMLlvC24LaURhiYXpS2MpLCmtlPP+Z90R1h1Mw9nRgfejutOwgUulnPeCGYPb4mx04JejGfxy9Eylnhsg5qQ22RURERGRSymJEhwcDLw6phO+Hs4cSM7mlVU3v85ozf5U/rOurHve7Ls70rHpjTeSuJKmPu5M6NUMgJd/OFSpa7oKS0rZc9oMqKmEiIiIiJSnJEoA8Pd05eV7OwHw300n+PlI+g2f62haLk99GguUVbnujbi5RhJX8+SgNrg7G9mdkMUP+1Ir7bxxp80UlVho6OFMi4bulXZeEREREan9lESJzeCwACb2LqvszPxsN2fziip8jpyCYh5dsIPcwhJ6tvDlz8PbV3aY5fg1cGHKLS0BmLP6EKWWyqlG7Tj5a2tzg8FQKecUERERkbpBSZSU8+c7w2jj34C0nEKeW1axtucWi5WZn+3mWHoegV6uvP1A5TWSuJqpt7XC292JI2m5LN91ulLOqU12RURERORKlERJOW7ORv4zrgtORgNr9qeyZFvCdb/27R+Psnp/Ks6ODrwXFUEjz8ptJHElXq5O/L5/awBeX3P4phtjWK1WbbIrIiIiIlekJEou0SHIxLNDy9qe//3bfRxNy73ma9YfTOW1tYcB+OfocLoEe1dliJeY1LcFAV4unM46x5Kb3O/qZEY+GXlFODs6EN6k8htiiIiIiEjtpiRKLmvKLS25pY0fBcUWZny6i6ISyxXHHk/P5Q9LYrFaIap3c8Z2D67GSMu4OhmZfntbAOb+eJS8wpIbPteOk2cB6NTEhIujsVLiExEREZG6Q0mUXJaDg4E5Yzvj7e5E3Ols5qy5fNvz3MISHl0QQ05hCd2b+/CXEWHVHOmvxnYPpkVDd87kFvHhLydu+Dw7z2+yG6H1UCIiIiJyGUqi5IoCvFx56Xzb8w9+Os7miza0tVqtzPpsN0fScgnwcuGdid1wdrTft5ST0YGnhoQA8P5Px8nKr3h3QfhNZ75mSqJERERE5FJKouSqhnYIZHzPZlit8PRnu8n8TdvzdzYcY9W+FJyMBt6dGIG/p6sdIy0zslMQ7Rt7kVNQwrsbj1X49Vn5RRw5vwZMTSVERERE5HKURMk1/WVEe1r5eZCSXcCflu/FarWy4VAar64um+L397vC6VZDqjYODgaeGVpWjfrol5OkZhdU6PUXpvK18vOgYYPq6S4oIiIiIrWLkii5JndnR/4zritORgPfx6Xw+prDTF+yC6sVJvRqxviezewdYjkDQ/3p3tyHwhILb647UqHX/naTXRERERGRy1ESJdelY1MTMyNDAXhz/VGyC0ro1sybv460XyOJKzEYDDw7rKxF+6fbEziVkXfdr9UmuyIiIiJyLUqi5Lo9cmsr+rRqCEAjTxfenRhRY1uA92zpy4DQRpRYrLy25vB1vaa41MLuxCxAlSgRERERubKbSqJmz56NwWBgxowZtucmT56MwWAo9+jdu3e51xUWFjJt2jT8/Pzw8PBg1KhRJCYmlhuTmZlJVFQUJpMJk8lEVFQUWVlZ5cbEx8czcuRIPDw88PPzY/r06RQV3VhHNrk2BwcDcyd0ZfqgNix+uBcBXvZvJHE1s85Xzr7ZncSB5Oxrjt+XlE1BsQVvdyda+TWo6vBEREREpJa64SRq+/btfPDBB3Tq1OmSY8OGDSM5Odn2+O6778odnzFjBsuXL2fp0qVs2rSJ3NxcRowYQWlpqW3MhAkTiI2NZdWqVaxatYrY2FiioqJsx0tLSxk+fDh5eXls2rSJpUuXsmzZMmbOnHmjb0muQ8MGLjwdGUrbAE97h3JN4U1MjOjUGKsVXv3h8vtc/daFTXYjmvng4GCo6vBEREREpJZyvJEX5ebm8sADDzBv3jz++c9/XnLcxcWFwMDAy77WbDYzf/58FixYwODBgwFYuHAhwcHBrF27lqFDh3LgwAFWrVpFdHQ0vXr1AmDevHn06dOHQ4cOERoayurVq9m/fz8JCQkEBQUBMGfOHCZPnsy//vUvvLy8buStSR0zMzKU7+NSWHcwjR0nz9K9he8Vx2qTXRERERG5HjdUiXriiScYPny4LQm62IYNG/D39yckJISpU6eSlpZmOxYTE0NxcTGRkZG254KCgggPD2fz5s0AbNmyBZPJZEugAHr37o3JZCo3Jjw83JZAAQwdOpTCwkJiYmIuG1dhYSHZ2dnlHlK3tfTzYGz3pgC8/MMhrFbrZcdZrVZtsisiIiIi16XCSdTSpUuJiYlh9uzZlz1+xx13sGjRItavX8+cOXPYvn07gwYNorCwEICUlBScnZ3x8Sn/QTUgIICUlBTbGH9//0vO7e/vX25MQEBAueM+Pj44Ozvbxlxs9uzZtjVWJpOJ4ODgir15qZWm394WZ0cHtp04y8bD6Zcdk5h5jrScQpyMBjoHe1dvgCIiIiJSq1QoiUpISOAPf/gDixYtwtX18k0F7r//foYPH054eDgjR47k+++/5/Dhw6xcufKq57ZarRgMv65D+e2fb2bMbz3//POYzWbbIyEh4aoxSd3Q2OTGpD7NAXjlh0NYLJdWo3acKlsP1SHIhKtTzew4KCIiIiI1Q4WSqJiYGNLS0oiIiMDR0RFHR0c2btzIm2++iaOjY7nGEBc0btyY5s2bc+RI2aangYGBFBUVkZmZWW5cWlqarbIUGBhIamrqJedKT08vN+biilNmZibFxcWXVKgucHFxwcvLq9xD6offD2hDAxdH9iVl811c8iXHbftDqbW5iIiIiFxDhZKo22+/nb179xIbG2t7dO/enQceeIDY2FiMxkvv4GdkZJCQkEDjxo0BiIiIwMnJiTVr1tjGJCcnExcXR9++fQHo06cPZrOZbdu22cZs3boVs9lcbkxcXBzJyb9+IF69ejUuLi5ERERU5G1JPeDr4czUW1sB8Nrqw5SUWsodt62HUhIlIiIiItdQoe58np6ehIeHl3vOw8ODhg0bEh4eTm5uLi+88AL33nsvjRs35uTJk/zpT3/Cz8+Pu+++GwCTycSUKVOYOXMmDRs2xNfXl1mzZtGxY0dbo4r27dszbNgwpk6dyvvvvw/AI488wogRIwgNLdv7JzIykrCwMKKionjllVc4e/Yss2bNYurUqaowyWVNubUln2w5yfEzeXwRk8i4ns0AyC4o5lBqDqDOfCIiIiJybTe12e7FjEYje/fu5a677iIkJIRJkyYREhLCli1b8PT8dV+h119/ndGjRzN27Fj69euHu7s7K1asKFfJWrRoER07diQyMpLIyEg6derEggULyl1r5cqVuLq60q9fP8aOHcvo0aN59dVXK/MtSR3SwMWRxwe2AeA/645QUFw2/XRXfBZWKzTzdcffs2ZvICwiIiIi9mewXqnncz2QnZ2NyWTCbDarelVPFBSXMujVDSSZC/i/4e15+NZWvLb6EG+uP8o9XZvw2v1d7B2iiIiIiNhBRXKDSq1EidR0rk5GZgwOAeDtH4+SU1BMjDbZFREREZEKUBIl9c493ZrQupEHmfnFfPDTcXbFZwFqKiEiIiIi10dJlNQ7jkYHZkaWNSh5Z8Mx8otK8XR1JMTf8xqvFBERERFREiX11B3hgXRsYqL0/Ma73Zr54OBw+U2aRURERER+S0mU1EsGg4Fnhoba/l+b7IqIiIjI9VISJfXWrW39GNTOH6ODgUHt/e0djoiIiIjUEhXabFekLjEYDLw7sRtZ+cUEeGl/KBERERG5PkqipF5zcTQS4GW89kARERERkfM0nU9ERERERKQClESJiIiIiIhUgJIoERERERGRClASJSIiIiIiUgFKokRERERERCpASZSIiIiIiEgFKIkSERERERGpgHq9T5TVagUgOzvbzpGIiIiIiIg9XcgJLuQIV1Ovk6iMjAwAgoOD7RyJiIiIiIjUBBkZGZhMpquOqddJlK+vLwDx8fHX/ELdrB49erB9+/YqvUZdu05dei+6Ts2+Tl16L7pOzb5OXXovuk7Nvk5dei+6Ts2+Tl16L2azmWbNmtlyhKup10mUg0PZkjCTyYSXl1eVXstoNFb5NeraderSe9F1avZ16tJ70XVq9nXq0nvRdWr2derSe9F1avZ16tJ7ueBCjnDVMdUQhwBPPPGErlMDr6Hr6DrVdQ1dR9eprmvoOrpOdV1D19F1qusa1Xmd62WwXs/KqToqOzsbk8mE2WyutsxWRERERERqnorkBvW6EuXi4sJf//pXXFxc7B2KiIiIiIjYUUVyg3pdiRIREREREamoel2JEhERERERqSglUSIiIiIiIhWgJErqjXfeeYeWLVvi6upKREQEP//8c7njBw4cYNSoUZhMJjw9Penduzfx8fF2ilbk6n766SdGjhxJUFAQBoOBr776qtzxF154gXbt2uHh4YGPjw+DBw9m69at9glW5Bpmz55Njx498PT0xN/fn9GjR3Po0KFyY6xWKy+88AJBQUG4ubkxYMAA9u3bZ6eIRa7uer6nDQbDZR+vvPKKnaKWilASJfXCp59+yowZM/jzn//Mrl27uPXWW7njjjtsSdKxY8e45ZZbaNeuHRs2bGD37t385S9/wdXV1c6Ri1xeXl4enTt3Zu7cuZc9HhISwty5c9m7dy+bNm2iRYsWREZGkp6eXs2Rilzbxo0beeKJJ4iOjmbNmjWUlJQQGRlJXl6ebczLL7/Ma6+9xty5c9m+fTuBgYEMGTKEnJwcO0YucnnX8z2dnJxc7vG///0Pg8HAvffea8fI5XqpsYTUC7169aJbt268++67tufat2/P6NGjmT17NuPGjcPJyYkFCxbYMUqRG2MwGFi+fDmjR4++4pgLbVvXrl3L7bffXn3BidyA9PR0/P392bhxI7fddhtWq5WgoCBmzJjBc889B0BhYSEBAQG89NJLPProo3aOWOTqLv6evpzRo0eTk5PDunXrqjk6uRGqREmdV1RURExMDJGRkeWej4yMZPPmzVgsFlauXElISAhDhw7F39+fXr16XTI9SqS2Kioq4oMPPsBkMtG5c2d7hyNyTWazGQBfX18ATpw4QUpKSrmf4y4uLvTv35/NmzfbJUaRirj4e/piqamprFy5kilTplRnWHITlERJnXfmzBlKS0sJCAgo93xAQAApKSmkpaWRm5vLv//9b4YNG8bq1au5++67ueeee9i4caOdoha5ed9++y0NGjTA1dWV119/nTVr1uDn52fvsESuymq18vTTT3PLLbcQHh4OQEpKCsAVf46L1GSX+56+2Mcff4ynpyf33HNPNUcnN8rR3gGIVBeDwVDu/61WKwaDAYvFAsBdd93FU089BUCXLl3YvHkz7733Hv3796/2WEUqw8CBA4mNjeXMmTPMmzePsWPHsnXrVvz9/e0dmsgVPfnkk+zZs4dNmzZdcuxKP8dFarKrfU9f8L///Y8HHnhAa7FrEVWipM7z8/PDaDRecrcyLS2NgIAA/Pz8cHR0JCwsrNzx9u3bqzuf1GoeHh60adOG3r17M3/+fBwdHZk/f769wxK5omnTpvHNN9/w448/0rRpU9vzgYGBAFf8OS5SU13pe/q3fv75Zw4dOsTDDz9czdHJzVASJXWes7MzERERrFmzptzza9asoW/fvjg7O9OjR49LWo8ePnyY5s2bV2eoIlXKarVSWFho7zBELmG1WnnyySf58ssvWb9+PS1btix3vGXLlgQGBpb7OV5UVMTGjRvp27dvdYcrck3X+p7+rfnz5xMREaE1q7WMpvNJvfD0008TFRVF9+7d6dOnDx988AHx8fE89thjADzzzDPcf//93HbbbQwcOJBVq1axYsUKNmzYYN/ARa4gNzeXo0eP2v7/xIkTxMbG4uvrS8OGDfnXv/7FqFGjaNy4MRkZGbzzzjskJiYyZswYO0YtcnlPPPEEixcv5uuvv8bT09NWcTKZTLi5uWEwGJgxYwYvvvgibdu2pW3btrz44ou4u7szYcIEO0cvcqlrfU9fkJ2dzeeff86cOXPsFarcKKtIPfH2229bmzdvbnV2drZ269bNunHjxnLH58+fb23Tpo3V1dXV2rlzZ+tXX31lp0hFru3HH3+0Apc8Jk2aZD137pz17rvvtgYFBVmdnZ2tjRs3to4aNcq6bds2e4ctclmX+14GrB9++KFtjMVisf71r3+1BgYGWl1cXKy33Xabde/evfYLWuQqrud72mq1Wt9//32rm5ubNSsryz6Byg3TPlEiIiIiIiIVoDVRIiIiIiIiFaAkSkREREREpAKURImIiIiIiFSAkigREREREZEKUBIlIiIiIiJSAUqiREREREREKkBJlIiIiIiISAUoiRIREREREakAJVEiIiIiIiIVoCRKRERERESkApREiYiIiIiIVICSKBERERERkQpQEiUiIiIiIlIBSqJEREREREQqQEmUiIiIiIhIBSiJEhERERERqQAlUSIiIiIiIhWgJEpERERERKQClESJiIiIiIhUgJIoERERERGRClASJSIiIiIiUgFKokRERERERCpASdRlGAwGvvrqK3uHISIiIiIiNVC9SKImT57M6NGj7R2GiIiIiIjUAfUiiRIREREREaks9S6JatGiBW+88Ua557p06cILL7xgl3hERERERKR2qXdJlIiIiIiIyM1QEiUiIiIiIlIBSqJEREREREQqoN4lUQ4ODlit1nLPFRcX2ykaERERERGpbepdEtWoUSOSk5Nt/5+dnc2JEyfsGJGIiIiIiNQm9S6JGjRoEAsWLODnn38mLi6OSZMmYTQa7R2WiIiIiIjUEo72DqA6WCwWHB3L3urzzz/P8ePHGTFiBCaTiX/84x+qRImIiIiIyHUzWC9eIFQHDRs2jDZt2jB37lx7hyIiIiIiIrVcnZ7Ol5mZycqVK9mwYQODBw+2dzgiIiIiIlIH1OnpfA899BDbt29n5syZ3HXXXfYOR0RERERE6oB6MZ1PRERERESkstTp6XwiIiIiIiKVTUmUiIiIiIhIBdTqJGr27Nn06NEDT09P/P39GT16NIcOHSo3xmq18sILLxAUFISbmxsDBgxg3759tuNnz55l2rRphIaG4u7uTrNmzZg+fTpms7nceTIzM4mKisJkMmEymYiKiiIrK6s63qaIiIiIiNQgtTqJ2rhxI0888QTR0dGsWbOGkpISIiMjycvLs415+eWXee2115g7dy7bt28nMDCQIUOGkJOTA0BSUhJJSUm8+uqr7N27l48++ohVq1YxZcqUcteaMGECsbGxrFq1ilWrVhEbG0tUVFS1vl8REREREbG/OtVYIj09HX9/fzZu3Mhtt92G1WolKCiIGTNm8NxzzwFQWFhIQEAAL730Eo8++uhlz/P5558zceJE8vLycHR05MCBA4SFhREdHU2vXr0AiI6Opk+fPhw8eJDQ0NBqe48iIiIiImJftboSdbELU/B8fX0BOHHiBCkpKURGRtrGuLi40L9/fzZv3nzV83h5eeHoWNYBfsuWLZhMJlsCBdC7d29MJtNVzyMiIiIiInVPnUmirFYrTz/9NLfccgvh4eEApKSkABAQEFBubEBAgO3YxTIyMvjHP/5RrkqVkpKCv7//JWP9/f2veB4REREREamb6sxmu08++SR79uxh06ZNlxwzGAzl/t9qtV7yHEB2djbDhw8nLCyMv/71r1c9x9XOIyIiIiIidVedqERNmzaNb775hh9//JGmTZvang8MDAS4pFqUlpZ2SXUqJyeHYcOG0aBBA5YvX46Tk1O586Smpl5y3fT09EvOIyIiIiIidVutTqKsVitPPvkkX375JevXr6dly5bljrds2ZLAwEDWrFlje66oqIiNGzfSt29f23PZ2dlERkbi7OzMN998g6ura7nz9OnTB7PZzLZt22zPbd26FbPZXO48IiIiIiJS99Xq7nyPP/44ixcv5uuvvy7XIc9kMuHm5gbASy+9xOzZs/nwww9p27YtL774Ihs2bODQoUN4enqSk5PDkCFDyM/PZ/ny5Xh4eNjO06hRI4xGIwB33HEHSUlJvP/++wA88sgjNG/enBUrVlTjOxYREREREXur1UnUldYjffjhh0yePBkoq1b97W9/4/333yczM5NevXrx9ttv25pPbNiwgYEDB172PCdOnKBFixZA2aa806dP55tvvgFg1KhRzJ07F29v70p9TyIiIiIiUrPV6iRKRERERESkutXqNVEiIiIiIiLVTUmUiIiIiIhIBSiJEhERERERqQAlUSIiIiIiIhWgJEpERERERKQClESJiIiIiIhUgJIoERERERGRClASJSIiIiIiUgFKokRERERERCpASZSIiIiIiEgFKIkSERERERGpACVRIiIiIiIiFfD/AVb9C2SxoTDTAAAAAElFTkSuQmCC", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:58.275352\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df[(df.index.year==2020) & (df.index.month==7)]['ninfected'].plot()\n", "plt.show()" @@ -250,9 +1858,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 137, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAEiCAYAAAALexgYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpp0lEQVR4nO3deXiU5fn28e9kkkwWkiEhGwkh7GvYZF8UUAlYQFErVipKa6mtiqVobW1/b6tWxbaobbXuKC4orriBCKKASMISiRD2PQlJSMgy2SfJzPP+ETIa2RKYZLKcn+PIIZnnnplrJiYz59z3c90mwzAMRERERERExC28PF2AiIiIiIhIa6KQJSIiIiIi4kYKWSIiIiIiIm6kkCUiIiIiIuJGClkiIiIiIiJupJAlIiIiIiLiRgpZIiIiIiIibuTt6QKaO6fTSWZmJkFBQZhMJk+XIyIiIiIiHmIYBsXFxURHR+Pldfb5KoWs88jMzCQ2NtbTZYiIiIiISDORnp5Op06dznpcIes8goKCgJonMjg42MPViIiIiIiIpxQVFREbG+vKCGejkHUetUsEg4ODFbJEREREROS8pxGp8YWIiIiIiIgbKWSJiIiIiIi4kUKWiIiIiIiIGylkiYiIiIiIuJFCloiIiIiIiBs1KGQtXLiQ4cOHExQUREREBDNmzGDfvn11xsyZMweTyVTna9SoUXXG2O125s2bR1hYGIGBgVx99dVkZGTUGVNQUMDs2bOxWq1YrVZmz55NYWFhnTFpaWlMnz6dwMBAwsLCuPvuu6msrKwzZufOnYwfPx5/f39iYmJ46KGHMAyjIQ9bRERERESk3hoUstavX8+dd95JUlISa9asobq6moSEBEpLS+uMmzJlCllZWa6vlStX1jk+f/58li9fzrJly9i4cSMlJSVMmzYNh8PhGjNr1ixSUlJYtWoVq1atIiUlhdmzZ7uOOxwOpk6dSmlpKRs3bmTZsmW8//773HPPPa4xRUVFTJo0iejoaLZu3cpTTz3FokWLeOKJJxr0JImIiMiFySwsZ1Vqtj7gFJE2xWRcxF+93NxcIiIiWL9+PZdddhlQM5NVWFjIhx9+eMbr2Gw2wsPDef3117nxxhsByMzMJDY2lpUrVzJ58mT27NlDv379SEpKYuTIkQAkJSUxevRo9u7dS+/evfnss8+YNm0a6enpREdHA7Bs2TLmzJlDTk4OwcHBPPvss9x///2cOHECi8UCwGOPPcZTTz1FRkbGGfvb2+127Ha76/vaDcdsNpv2yRIREWmgqf/9ml2ZRfx1Wj9+Oa4rL319mPeSM1gwqRcJ/aM8XZ6ISIMUFRVhtVrPmw0u6pwsm80GQGhoaJ3L161bR0REBL169WLu3Lnk5OS4jiUnJ1NVVUVCQoLrsujoaOLj49m0aRMAiYmJWK1WV8ACGDVqFFartc6Y+Ph4V8ACmDx5Mna7neTkZNeY8ePHuwJW7ZjMzEyOHj16xse0cOFC1xJFq9VKbGzshTw1IiIiAuzKLALgmXWHKK908OjKPezNLubXryfzetIxD1cnItI4LjhkGYbBggULGDduHPHx8a7Lr7rqKpYuXcqXX37J448/ztatW7n88stds0PZ2dn4+voSEhJS5/YiIyPJzs52jYmIiDjtPiMiIuqMiYyMrHM8JCQEX1/fc46p/b52zI/df//92Gw211d6enq9nxMRERE5s5Mldj7flY3zB+tn/rv2APZqx9mvJCLSQnlf6BXvuusuduzYwcaNG+tcXrsEECA+Pp5hw4YRFxfHihUruO666856e4Zh1Fm+d6alfO4YU7s68kzXBbBYLHVmvkREROTC/PiMhIdX7Abgjgndef/bDE4U2VmxI4vrLunkifJERBrNBc1kzZs3j48//pivvvqKTp3O/YexY8eOxMXFceDAAQCioqKorKykoKCgzricnBzXLFNUVBQnTpw47bZyc3PrjPnxbFRBQQFVVVXnHFO7dPHHM1wiIiLiXsX26jrfnyyp6QB8w7BYbhndBYBXvjnaxFWJiDS+BoUswzC46667+OCDD/jyyy/p2rXrea+Tl5dHeno6HTt2BGDo0KH4+PiwZs0a15isrCxSU1MZM2YMAKNHj8Zms7FlyxbXmM2bN2Oz2eqMSU1NJSsryzVm9erVWCwWhg4d6hqzYcOGOm3dV69eTXR0NF26dGnIQxcREZEGKiitu62Kj9nEvMt70DUskJtGdMbLBDuP28iylXuoQhGRxtGgkHXnnXfyxhtv8OabbxIUFER2djbZ2dmUl9f8cSwpKeHee+8lMTGRo0ePsm7dOqZPn05YWBjXXnstAFarldtuu4177rmHtWvXsn37dm6++WYGDBjAlVdeCUDfvn2ZMmUKc+fOJSkpiaSkJObOncu0adPo3bs3AAkJCfTr14/Zs2ezfft21q5dy7333svcuXNdnT5mzZqFxWJhzpw5pKamsnz5ch599FEWLFhw1uWCIiIi4h75p0JWTHt/3vvNaDb96QruSah5HQ8N9GVAjBWATQfzPFajiEhjaFDIevbZZ7HZbEyYMIGOHTu6vt5++20AzGYzO3fu5JprrqFXr17ceuut9OrVi8TERIKCgly38+STTzJjxgxmzpzJ2LFjCQgI4JNPPsFsNrvGLF26lAEDBpCQkEBCQgIDBw7k9ddfdx03m82sWLECPz8/xo4dy8yZM5kxYwaLFi1yjbFaraxZs4aMjAyGDRvGHXfcwYIFC1iwYMEFP2EiIiJSPwVlNSErNNCXYV1CCQ+qe87zmB5hAHxz6GST1yYi0pguap+stqC+vfBFRESkrveSM7j33e+4rFc4r/1yxGnHvz6Qy+zFW4gK9iPx/su1ykREmr0m2SdLRERE5Gxqz8kKDfA54/FhcaH4mr3ILqrg8MnSpixNRKRRKWSJiIhIo8g/tVwwJND3jMf9fc0Mjm0PQPKxgjOOERFpiRSyREREpFF8P5N15pAFMKRzewC+Sy9sgopERJqGQpaIiIg0itrugmebyQIYdGomK0UhS0RaEYUsERERaRQ/7C54NrUha292MRVVjqYoS0Sk0SlkiYiISKNwzWSdY7lgtNWPsHYWHE6DXZm2pipNRKRRKWSJiIhIo6gNWeeayTKZTK7mFynpClki0jooZImIiIjbOZwGheVVAIQEnrmFe61BnawA7MgobOyyRESahEKWiIiIuF2WrRzDALOX6ZzLBQHiY2pC1p6soqYoTUSk0SlkiYiIiNslHsoDYGAnKz7mc7/d6BcdDMCh3FI1vxCRVkEhS0RERNyuNmSN6d7hvGMjgix0CPTF4TTYf6K4sUsTEWl0ClkiIiLiVoZh8M2hkwCM6R523vEmk4m+HWtms3ZnasmgiLR8ClkiIiLiVodPlnKiyI6vtxdD40LqdZ3aJYO7dV6WiLQCClkiIiLiVp9+lwXA0M4h+PmY63WdfprJEpFWRCFLRERE3MZWXsXijYcB+NmI2Hpfr/+pmazUTJuaX4hIi6eQJSIi0oZUVDlYvz+XKoezUW5/yTdHKaqopmdEO6YNjK739XpEtCPa6kdFlZNvDp5slNpERJqKQpaIiEgbUVHl4NaXt3Dry1v4zxcH3H77hmHwbnI6AHdd3gOzl6ne1zWZTCT0jwJg9a4Tbq9NRKQpKWSJiIi0AfmllfxyyVY2H8kH4I3NxyivdO+yvF2ZRWQUlOPn40VCv6gGX39Sv0gAvthzAofTcGttIiJNydvTBYiIiEjjyi+tZPpTGzleWI6/j5l2ft7kFtv575cH8DJB8rECFkzqzYiuoRd1P5/vygZgQq8I/H3r1/Dih0Z0DSXYz5u80kq+yyjkks7160woItLcKGSJiIi0Ik6nwVf7cvjX5/vIslXQKcSfgZ3ac7ywnE4h/rx06zA2HjjJwyv28Oy6Q67r3fLyZl6eM7xe+1qdSZXDycqdNV0Fp8Q3fBYLwMfsxeDOIWzYn8v+7GKFLBFpsRSyREREWoGiiioe+XQPH3+XSfkPuvPZyqvYdaot+p9/0pc+UcHEhgSw9Wg+WbYKIoIslNodJB7O486l3/LFgvF0aGdp0H3bqx3MfS2ZQ7ml+PuYmdgn4oIfR/fwQDbsz+VQbskF34aIiKcpZImIiLRwiYfyuPfd7zheWA6Av4+Z2aPjmNA7nF8u2UpFlZMuHQKYfKqxRKDFm+dnD3Nd317t4Jqnv2FvdjEPfLKbp24a0qD7/yglkw37c/H3MfO/nw/B6u9zwY+le3g7AA7lll7wbYiIeJoaX4iIiLRgK3dmMeulJI4XltM5NIA3544k9cHJ/PknfRnTPYyF1w3A6u/DH6f0OWu3P4u3mX/+dCBeJvjku0wON3AWaXtaAQC3junC5X0iL+rxfB+yNJMlIi2XZrJERERaqPJKBw99shvDgBmDo3nk2gEEWuq+tF87pBPXDul03tsa2Kk9I7qGknQ4n6TD+XQ7FXbqIyXdBsDgWGvDHsAZdI8IBCA9v4yKKgd+Pg1voCEi4mmayRIREWmhXvz6MNlFFcS09+ex6weeFrAaakTXDgBsOZJX7+uUVzrYf6IYgEGx7S/q/gHC21kI8vPGacCxvLKLvj0REU9QyBIREWmBHE6D1xKPAXDflN5umfEZeaqF++Yj+RhG/fap2pVpw+E0CA+yEBXsd9E1mEwmLRkUkRZPIUtERKQF2p5WwMkSO0F+3lwV39Ettzmkc3u8vUxk2SrIKCiv13W+y6hZKjioU3tMpjOf89VQrpCVo5AlIi2TQpaIiEgLVLvx7+V9IvD1ds/LeYCvNwM61ZxXteVIfr2uszOjEIBBnS7+fKxaPSNrQlZt63kRkZZGIUtERKSFMQyDz3edAHC1ZXeXvh2DATiWX7/zoQ6cmm3qc+p67lC7CXFyWkG9ly2KiDQnClkiIiItzL4TxaTll+Hr7cX4XuFuve2QgJo9rmxllecdaxgGR07W7GfVLTzQbTUM7GTF28tEbrG93ssWRUSaE4UsERGRFubz1JpZrMt6hl10R8EfCwnwBaCgrOq8Y08U2SmrdGD2MhEbEuC2Gvx8zPSPqVl+mHyswG23KyLSVBoUshYuXMjw4cMJCgoiIiKCGTNmsG/fvjpjDMPggQceIDo6Gn9/fyZMmMCuXbvqjLHb7cybN4+wsDACAwO5+uqrycjIqDOmoKCA2bNnY7VasVqtzJ49m8LCwjpj0tLSmD59OoGBgYSFhXH33XdTWVn3k7edO3cyfvx4/P39iYmJ4aGHHtLSAxERadFqz8dKcPNSQQCrf81MVmH5+UPW4ZM1SwVjQ/zddl5YraG1SwYVskSkBWrQX8T169dz5513kpSUxJo1a6iuriYhIYHS0lLXmH/+85888cQTPP3002zdupWoqCgmTZpEcXGxa8z8+fNZvnw5y5YtY+PGjZSUlDBt2jQcDodrzKxZs0hJSWHVqlWsWrWKlJQUZs+e7TrucDiYOnUqpaWlbNy4kWXLlvH+++9zzz33uMYUFRUxadIkoqOj2bp1K0899RSLFi3iiSeeuKAnS0RExNPS88vYnVWElwmu6BPh9tuvnckqrMdywcO5tUsF679xcX0NjVPIEpGWq0FrDFatWlXn+1deeYWIiAiSk5O57LLLMAyDf//73/zlL3/huuuuA+DVV18lMjKSN998k9tvvx2bzcbixYt5/fXXufLKKwF44403iI2N5YsvvmDy5Mns2bOHVatWkZSUxMiRIwF48cUXGT16NPv27aN3796sXr2a3bt3k56eTnR0NACPP/44c+bM4ZFHHiE4OJilS5dSUVHBkiVLsFgsxMfHs3//fp544gkWLFhwxlazdrsdu93u+r6oSJ2NRESk+Vizu2ap4PAuoXRoZ3H77bc/dU5WYT2WC9aej9U1zH3nY9W6JK49AHuziyixV9POzcsiRUQa00XN7dtsNXtjhIbWbF545MgRsrOzSUhIcI2xWCyMHz+eTZs2AZCcnExVVVWdMdHR0cTHx7vGJCYmYrVaXQELYNSoUVit1jpj4uPjXQELYPLkydjtdpKTk11jxo8fj8ViqTMmMzOTo0ePnvExLVy40LVE0Wq1Ehsbe8HPj4iIiLttOJALwBV93T+LBdC+ATNZjdH0olZHqz8x7f1xGvBdeqHbb19EpDFdcMgyDIMFCxYwbtw44uPjAcjOrlkjHhkZWWdsZGSk61h2dja+vr6EhIScc0xExOkvHhEREXXG/Ph+QkJC8PX1PeeY2u9rx/zY/fffj81mc32lp6ef55kQERFpGvZqB5sP1+xfdWlP93YVrFU7k1VUUU21w3nOsYdza87JaoyZLNCSQRFpuS547v2uu+5ix44dbNy48bRjP16GZxjGeXeB//GYM413x5japhdnq8disdSZ+RIREWkuvj1WSHmVg7B2FvpEBTXKfbQ/1fgCaoJWaKDvGcfZqx2kn2qv3i3M/edkQU3I+vi7TIUsEWlxLmgma968eXz88cd89dVXdOrUyXV5VFRNl6MfzxLl5OS4ZpCioqKorKykoKDgnGNOnDhx2v3m5ubWGfPj+ykoKKCqquqcY3JycoDTZ9tERESau40Ha5YKXtoz7LwfXl4ob7MXQafOfyo4x5LBfdnFOJwG7QN8iAxunA8na2eyvk0rwOlUZ2ARaTkaFLIMw+Cuu+7igw8+4Msvv6Rr1651jnft2pWoqCjWrFnjuqyyspL169czZswYAIYOHYqPj0+dMVlZWaSmprrGjB49GpvNxpYtW1xjNm/ejM1mqzMmNTWVrKws15jVq1djsVgYOnSoa8yGDRvqtHVfvXo10dHRdOnSpSEPXURExOM2HcoDYFyPsEa9n/aB529+kXq8pjHUgBhrowW+PlFB+PuYKa6o5kBOSaPch4hIY2hQyLrzzjt54403ePPNNwkKCiI7O5vs7GzKy2uWC5hMJubPn8+jjz7K8uXLSU1NZc6cOQQEBDBr1iwArFYrt912G/fccw9r165l+/bt3HzzzQwYMMDVbbBv375MmTKFuXPnkpSURFJSEnPnzmXatGn07t0bgISEBPr168fs2bPZvn07a9eu5d5772Xu3LkEBwcDNW3gLRYLc+bMITU1leXLl/Poo4+etbOgiIhIc+VwGuzJqgk2gzu3b9T7au9//uYXO4/XNL/qH21ttDq8zV6u2azEQycb7X5ERNytQSHr2WefxWazMWHCBDp27Oj6evvtt11j7rvvPubPn88dd9zBsGHDOH78OKtXryYo6Pu1408++SQzZsxg5syZjB07loCAAD755BPMZrNrzNKlSxkwYAAJCQkkJCQwcOBAXn/9dddxs9nMihUr8PPzY+zYscycOZMZM2awaNEi1xir1cqaNWvIyMhg2LBh3HHHHSxYsIAFCxZc0JMlIiLiKUfzSqmocuLn40WXDo3TaKJWfdq4p54KWQNiGi9kAYw9NWu38WBeo96PiIg7mYzaThByRkVFRVitVmw2m2uGTEREpKl9uiOTu97czqDY9nx059hGva95b23nk+8y6R4eyPRB0fzuip51VoBUVjuJ/9vnVDqcbPjDRDp3CGi0WnZkFHL1098QZPFm+18n4W2+qN1nREQuSn2zgf5SiYiItAC1SwX7dWz8D/xqOwweyi3l318cYNuPuvvtP1FMpcNJsJ83saH+jVpL/2grVn8fiu3V7Dg1eyYi0twpZImIiLQAe7KKAejXsXFat/9QSIBPne8/Tsms8/32tJrQNaBT4zW9qGX2MjG6WwcAvjmg87JEpGVQyBIREWkBamey+jbBTJY1oO7eWCt3ZtXZmHjjwZqwUxt+GtvIbqFATSt3EZGWQCFLRESkmcu2VZBlqwCgTxOErB/OTQX4mskrrXS1j692OL9vJd8zvNFrARgc2x6A7zJs6FRyEWkJFLJERESaudeTjgIwvEsI7U5tFNyY+vxgSeJPh3YC4LXEY0BN6/biimqC/bwbvbNgrX7RwfiYTeSXVpKeX94k9ykicjEa/y+1iIiIXLCyymreSEoD4LZx3ZrkPsd0D+OF2UPpFx2MvdrJa4nH+GLPCTYeOMl7yemuMWavptlz0uJtpl/HYL7LsJGSUdio3QxFRNxBM1kiIiLN2Mqd2djKq4jrEMCkfpFNdr8J/aPoFBJA9/B2XNm35n5vXryZD081wZjYp2mWCtaqXTKYklbYpPcrInIhFLJERESasSMnSwC4rGd4k80c/dhdl/fAx2zCx2xiRJdQHrtuANdf0qlJaxjcuT0AKelqfiEizZ+WC4qIiDRjJ4rsAERZ/TxWw+DY9iT/v0lYvL2weJs9UsOwuJoOgynpheQUVxAR5LnnQ0TkfDSTJSIi0sSqHE4eX72P/3118Lxjc4prQlZ4kKWxyzqnYD8fjwUsgNjQAAbHtsdpwKffZXmsDhGR+lDIEhERaUIVVQ5+/do2nvryIP/6fB95JfZzjs8pqmndHhmsmZtrh8QA8FHKcQ9XIiJybgpZIiIiTaSiysHc17bx1b5c12VH88rOeZ3amawID89kNQdTB3bE7GXiuwwbR0+WerocEZGzUsgSERFpAvZqB7e/nszXB04S4GvGx1zTxOJY3tnDQmW1k/zSSkAzWQBh7SwMjQsBIPFwnoerERE5O4UsERGRRlZZ7eSON75l/f5c/Hy8eHnOcH46NBY490xW7qmlhD5mEyEBPk1Sa3M3oktNA4ytR/M9XImIyNkpZImIiDSiKoeTu978lrV7c7B4e/HyrcMZ1a0DXU5tqHuumawTp87Higjyw2TyTPv25mZ4V4UsEWn+FLJEREQaSbXDye+WbWf17hP4envx4i3DGNMjDIC4DoHAuWeyck61b48I1vlYtS7p3B4vE6Tnl/Ovz/eSkl7o6ZJERE6jkCUiItJIHl6xh5U7s/E1e/H87KFc1ivcdaxL2PlnsnKKa2eyFLJqBfn50DsqGID/fXWIX7yyBXu1w8NViYjUpZAlIiLSCFLSC3k18SgAT80awsTeEXWOdw6tCVmFZVW8sy0dW3nVabdxQu3bz+jSnmGufxeUVbF2T44HqxEROZ1CloiIiJsZhsH/fbgTw4DrhsQwuX/UaWMCfL2xeNe8DN/33g5+/dq208bULhdUyKrrzgk9WHjdAG4cVtM85J1t6R6uSESkLoUsERERN0s8nEfq8SICfM38eWrfs46Lj7G6/r35SD7JxwrqHD9eWA5AuJYL1mEN8OGmEZ35zYTuAGzYn0uWrdzDVYmIfE8hS0RExM1eTzwGwLVDYghrd/aAdOfE7lzZN5Lxp87V+s/aA1RWOwHYmWFj06GavaAGdrKe9Tbasq5hgYzoEorTgA++Pe7pckREXBSyRERE3CjbVsHq3ScAuGV0l3OOvbxPJC/dOoz/N60fJlPNjMxV/9nAsbxSHvp0F1AT1PqcavQgp5s5/Pslg4ZheLgaEZEaClkiIiJu9OaWNBxOgxFdQ+kdFVSv6/SIaMfTN11CWDtfDuWWMvW/G9l6tAA/Hy/um9K7kStu2X4yIIpAXzPH8srYfER7Z4lI86CQJSIi4iZVDidvbUkDYPaouAZdd+rAjnwybxxh7XwpsVcD8M+fDqKj1d/tdbYmAb7eTB8UDcDrScc8XI2ISA2FLBERETf5fFc2ucV2woMsZ+woeD4drf48P3sYA2Ks/H1GPFefCg9ybreO6QLAZzuzSM8/++bOIiJNRSFLRETEDQzD4KWvjwBw04jO+Hpf2Evs0LgQPpk3rsEzYW1Z347BXNozDKcBL39zxNPliIgoZImIiLhD4uE8UtILsXh7KSB5wNxLuwHwztYzb+wsItKUFLJERETc4Nl1hwCYOSxW+1p5wKU9w+gTFURppcN1XpyIiDtUO5wUllU26DoKWSIiIhcpv7SSrw+cBL6fUZGmZTKZuG1cVwBe+eaIa78xEZELZRgG/117gOGPfMElf1/Dc+sPsbWeXUwVskRERC5S4qlNg3tFtqNzhwAPV9N2XT04mvAgCyeK7Hyx54SnyxGRFi7pcD5PrNlPQVkVTgMe+2wvv1iytV7XVcgSERG5SN8cqpnFGtsjzMOVtG0WbzM3DO0EwLKt6R6uRkRauqe/OgDAjcNi+b+pffH2MtEh0Lde121wyNqwYQPTp08nOjoak8nEhx9+WOf4nDlzMJlMdb5GjRpVZ4zdbmfevHmEhYURGBjI1VdfTUZGRp0xBQUFzJ49G6vVitVqZfbs2RQWFtYZk5aWxvTp0wkMDCQsLIy7776bysq66yV37tzJ+PHj8ff3JyYmhoceekg7wouIiFttOngqZHVXyPK0G4fHAvD1gVwyCtTOXUQuzKrULL45mIe3l4m7r+zJry7txo4HElj3hwn1un6DQ1ZpaSmDBg3i6aefPuuYKVOmkJWV5fpauXJlnePz589n+fLlLFu2jI0bN1JSUsK0adNwOByuMbNmzSIlJYVVq1axatUqUlJSmD17tuu4w+Fg6tSplJaWsnHjRpYtW8b777/PPffc4xpTVFTEpEmTiI6OZuvWrTz11FMsWrSIJ554oqEPW0RE5IwyCso4mleG2cvEyG6hni6nzYvrEMiY7h0wDFwt9UVE6qvK4eTFDYe5883tAPx8ZGdi2tdsCh/g643JZKrX7Xg39I6vuuoqrrrqqnOOsVgsREWdeRNGm83G4sWLef3117nyyisBeOONN4iNjeWLL75g8uTJ7Nmzh1WrVpGUlMTIkSMBePHFFxk9ejT79u2jd+/erF69mt27d5Oenk50dM1mjY8//jhz5szhkUceITg4mKVLl1JRUcGSJUuwWCzEx8ezf/9+nnjiCRYsWHDGJ8lut2O3213fFxUVNfQpEhGRNuT1xGMADO0cQpCfj4erEYA7JvRg06E8Xk86xs9HdqZnZJCnSxKRFqCy2snM5xNJSS8E4PpLOvH/pvW7oNtqlHOy1q1bR0REBL169WLu3Lnk5OS4jiUnJ1NVVUVCQoLrsujoaOLj49m0aRMAiYmJWK1WV8ACGDVqFFartc6Y+Ph4V8ACmDx5Mna7neTkZNeY8ePHY7FY6ozJzMzk6NGjZ6x94cKFriWKVquV2NjYi39CRESkVTpRVMGSTUcB+O2E7p4tRlzG9QxjUr9IHE6Dv360S6cJiMg5VTmc7D9RzGuJR0lJLyTIz5uF1w3gXz8diLf5wuKS20PWVVddxdKlS/nyyy95/PHH2bp1K5dffrlrdig7OxtfX19CQkLqXC8yMpLs7GzXmIiIiNNuOyIios6YyMjIOsdDQkLw9fU955ja72vH/Nj999+PzWZzfaWn68RZERE5s8Ubj2CvdjI0LoQJvcM9XY78wP+b2g8/Hy8SD+fx1ha9lovI2f3xvR0kPLmBh1fsAeDPP+nLTSM64+VVv6WBZ9Lg5YLnc+ONN7r+HR8fz7Bhw4iLi2PFihVcd911Z72eYRh1lu+daSmfO8bUfpp1tvWUFoulzsyXiIjI2aw91Sb8tnFd671OX5pG5w4B/GFyH/7+6W4eWbGbnwyIon1A/bqCiUjbkXysgA+2H3d93ycqiJnDLn4lW6O3cO/YsSNxcXEcOFDTAjEqKorKykoKCgrqjMvJyXHNMkVFRXHixOn7W+Tm5tYZ8+PZqIKCAqqqqs45pnbp4o9nuERERBrieGE5h3JL8TKpdXtzNWdMF3pFtqO00sGq1DOvYBGRtu2xz2pmr64ZHM3/Zl3Ca78cgfkiZrBqNXrIysvLIz09nY4dOwIwdOhQfHx8WLNmjWtMVlYWqampjBkzBoDRo0djs9nYsmWLa8zmzZux2Wx1xqSmppKVleUas3r1aiwWC0OHDnWN2bBhQ5227qtXryY6OpouXbo02mMWEZHWb+OBXAAGx7bH6q+GF82R2cvEjCExAHyyI9PD1YhIc5N63MbWowX4mr24/6q+TB3YkYhgP7fcdoNDVklJCSkpKaSkpABw5MgRUlJSSEtLo6SkhHvvvZfExESOHj3KunXrmD59OmFhYVx77bUAWK1WbrvtNu655x7Wrl3L9u3bufnmmxkwYICr22Dfvn2ZMmUKc+fOJSkpiaSkJObOncu0adPo3bs3AAkJCfTr14/Zs2ezfft21q5dy7333svcuXMJDg4GatrAWywW5syZQ2pqKsuXL+fRRx89a2dBERGR+tpwoGZvrEt76lys5mz6wJoGWYmH8sgprvBwNSLSnLx9atPyhP6RRFndE65qNThkbdu2jSFDhjBkyBAAFixYwJAhQ/jrX/+K2Wxm586dXHPNNfTq1Ytbb72VXr16kZiYSFDQ9+1Tn3zySWbMmMHMmTMZO3YsAQEBfPLJJ5jNZteYpUuXMmDAABISEkhISGDgwIG8/vrrruNms5kVK1bg5+fH2LFjmTlzJjNmzGDRokWuMVarlTVr1pCRkcGwYcO44447WLBgAQsWLLigJ0tERARqzu+t3YD4sl5aKticxYYGMDi2PU4DPtupJYMiUqOiysGHKTXnYtVuYu5OJkN9Tc+pqKgIq9WKzWZzzZCJiEjbdvRkKRMWrcPX24vUBybj693oq+/lIizeeIS/f7qbYXEhvPfbMZ4uR0SagTc3p/Hn5TuJae/P1/dNrHcnwfpmA70qiIiINFDtRpX9o4MVsFqAqQM6YjLBtmMFZBaWe7ocEfGwymon//vqIAC/HNf1olq1n41eGURERBqoNmQN6tTeo3VI/URZ/RjeJRSAFTuyzjNaRFqzbUfz+c0byRwvLCciyMLPR3ZulPtRyBIREWmg7zIKgZrOgtIyTB9U0wBjZapClkhblWUrZ9ZLm/lyb82WTgsm9cLPx3yea10Yt29GLCIi0ppVVjvZlVkEKGS1JBN713SB3JFho9ReTaBFb4FE2ppn1x2istrJgBgrf53ezzXD3Rg0kyUiItIAu7OKqKx2YvX3Ia5DgKfLkXrqFBJATHt/HE6D5GMFni5HRJpYlq2cZVtqWrbf/5M+jRqwQCFLRESkQWqXmYzsGqo9F1uYUd06AJB0OM/DlYhIU3st8RiVDicjuoQypnvjb72hkCUiItIAq3fV7LU0uX+UhyuRhhrZreaT681H8j1ciYg0pYoqB29tSQPgtku7Nsl9KmSJiIjUU1peGXuzizF7mbi8T4Sny5EGGtW1ZiZrR0YhpfZqD1cjIk3l/W8zKCyrIqa9P1f2jWyS+1TIEhERqafVu2tmsUZ0CSUk0NfD1UhDxYb6E9chgCqH4Vr2KSKt17G8UjYdPMnClXsB+MXYLpgbYU+sM1HIEhERqaf1+3MBuKKvZrFaIpPJxPSBNa3cP/4u08PViEhj2pVpY+Kidcx6aTMl9mpGdAnl1jFdmuz+FbJERETqwV7tYOvRmnN5Lu0Z7uFq5ELV7pe1fl8utvIqD1cjIo3l4+8ycRo1/+4WHsjTs4bgY2666KOQJSIiUg/b0wqpqHIS1s5Cr8h2ni5HLlDvqCB6Rbaj0uFkze4Tni5HRBpJ7e/307OG8OU9E4gI9mvS+1fIEhERqYdNB08CMKZ7B7Vub+GmxHcE4CudlyXSKh3KLeFwbik+ZhPje3lm5YFCloiIyHk4nQZf7as5H2tcj8bfX0UaV21nyA37c6lyOD1cjYi4U1FFFf/+4gAAo7uHEeTn45E6FLJERETO499f7GfncRu+Zi8u89CnouI+A2OsdAj0pdheTfKxAk+XIyJudNuSrXxyqrHNTcNjPVaHQpaIiMg57Mq08d8vDwLwyLXxRFmbdl2/uJ+X1/dLiL7apyWDIq3F8cJyth4twMsEr982gqsGdPRYLQpZIiIi57ByZxYACf0iuWGY5z4VFfeaeGrJ4Ifbj1NR5fBwNSLiDrXnzg7s1N7jXWAVskRERM7h8101HaqmDvTcJ6Lifgn9I+lo9eNEkZ13t6V7uhwRcYNNh/IAGNujg4crUcgSERE5q0O5JRzMKcHHbHLNfEjrYPE2c8eE7gA8s+4Q1WqAIdKilVc62HSoZiZrbHfPNyhSyBIRETkDp9PghfWHARjVrQPBHupQJY1n5vBYrP4+ZNkq2Hnc5ulyROQCfZRynPgHPudEkR2LtxeXxIV4uiSFLBERkTN5ZOUe3j61jOzmUXEerkYag8XbzMiuoQAkHc73cDUicqE++S4Lh9MA4KYRnfHzMXu4IoUsERGR05TYq3kt8SgA//zpQCb3j/JsQdJoRnWrOXcj6XCehysRkQu1K7NmJnrZr0fxwNX9PVxNDYUsERGRH9l44CRVDoO4DgHcMLSTp8uRRlQbsrYdzdd5WSIt0MkSO1m2CgDiY6weruZ7ClkiIiI/8tXemr2TJvaOwGQyebgaaUx9ooKw+vtQWukgNbPI0+WISAPtOvV72y0skHYWbw9X8z2FLBERkR8wDMO1Qe3l6ijY6nl5mRjVrea8rLc2p3m4GhFpqNRTTWv6N6NZLFDIEhERqSMlvZCcYjsBvmZGnnrzLa3bry/rBsC7yensyy72cDUiUh+GYfDNwZP86/N9AMRHB3u4oroUskRERH7g3eQMACb1i8Ti7fkOVdL4hsaFclV8FE4DFq3e5+lyROQ8DMNg0ep9/Pylza7LBmgmS0REpHkqr3TwSUomADcOi/VwNdKU7knoBcAXe06Qnl/m4WpE5Fw+TDnO/746BMDIrqHcOCyWEV2b18oDhSwREZFTPkvNotheTWyov6vrnLQNPSKCGNcjDMOApTo3S6RZ+2JPzXmzt43rytu3j+YfPx2It7l5xZrmVY2IiIgHfb4rG4DrhnTCy0tdBdua2aNrNp1+e2saxRVVHq5GRM5mT1ZNR8FLe4Z5uJKza3DI2rBhA9OnTyc6OhqTycSHH35Y57hhGDzwwANER0fj7+/PhAkT2LVrV50xdrudefPmERYWRmBgIFdffTUZGRl1xhQUFDB79mysVitWq5XZs2dTWFhYZ0xaWhrTp08nMDCQsLAw7r77biorK+uM2blzJ+PHj8ff35+YmBgeeughDMNo6MMWEZFWzl7tYOOBkwBc2TfSw9WIJ1zRJ4JuYYEUlFXx5JoDni5HRM6gvNLB0ZOlAPTr2LyaXfxQg0NWaWkpgwYN4umnnz7j8X/+85888cQTPP3002zdupWoqCgmTZpEcfH33Xrmz5/P8uXLWbZsGRs3bqSkpIRp06bhcDhcY2bNmkVKSgqrVq1i1apVpKSkMHv2bNdxh8PB1KlTKS0tZePGjSxbtoz333+fe+65xzWmqKiISZMmER0dzdatW3nqqadYtGgRTzzxREMftoiItHLbjhZQWukgrJ2F/s2sS5U0DW+zFw9c3R+AJZuOqNOgSDO070QxTgM6BPoSHmTxdDlnZ1wEwFi+fLnre6fTaURFRRmPPfaY67KKigrDarUazz33nGEYhlFYWGj4+PgYy5Ytc405fvy44eXlZaxatcowDMPYvXu3ARhJSUmuMYmJiQZg7N271zAMw1i5cqXh5eVlHD9+3DXmrbfeMiwWi2Gz2QzDMIxnnnnGsFqtRkVFhWvMwoULjejoaMPpdNbrMdpsNgNw3aaIiLROf/9klxH3x0+Ne95J8XQp4mG/enWrEffHT42HP93l6VJE5Efe3HzMiPvjp8bPX0w6/+BGUN9s4NZzso4cOUJ2djYJCQmuyywWC+PHj2fTpk0AJCcnU1VVVWdMdHQ08fHxrjGJiYlYrVZGjhzpGjNq1CisVmudMfHx8URHR7vGTJ48GbvdTnJysmvM+PHjsVgsdcZkZmZy9OjRMz4Gu91OUVFRnS8REWndnE6D1btPADCxtzYgbuuuvyQGgM93ndApBiLNTO35WH07Bnm4knNza8jKzq45YTgysu5a9sjISNex7OxsfH19CQkJOeeYiIjTX+QiIiLqjPnx/YSEhODr63vOMbXf1475sYULF7rOA7NarcTGqoWviEhrt3ZvDmn5ZQT5eTOhd7inyxEPu6xXOBZvL9Lyy9iTpSWDIs3J9yGreS/rbpTugiZT3Y5MhmGcdtmP/XjMmca7Y0ztJ1Jnq+f+++/HZrO5vtLT089Zt4iItHyLNx4GYNaIzgRavD1cjXhagK8343vVhO1VqVkerkZEahWWVZKSXgjAoNj2Hq3lfNwasqKiooDTZ4lycnJcM0hRUVFUVlZSUFBwzjEnTpw47fZzc3PrjPnx/RQUFFBVVXXOMTk5NX31fzzDVctisRAcHFznS0REWq8jJ0tJOpyP2cvErWO6eLocaSamDuwIwCvfHCXbVuHhakQEYFVqNlUOgz5RQXQPb+fpcs7JrSGra9euREVFsWbNGtdllZWVrF+/njFjxgAwdOhQfHx86ozJysoiNTXVNWb06NHYbDa2bNniGrN582ZsNludMampqWRlff8J0+rVq7FYLAwdOtQ1ZsOGDXXauq9evZro6Gi6dOnizocuIiIt1Naj+QAM7RxCdHt/D1cjzcW0gdEMim1Psb2a//sw1dPliAjwUUomANcMjvFwJefX4JBVUlJCSkoKKSkpQE2zi5SUFNLS0jCZTMyfP59HH32U5cuXk5qaypw5cwgICGDWrFkAWK1WbrvtNu655x7Wrl3L9u3bufnmmxkwYABXXnklAH379mXKlCnMnTuXpKQkkpKSmDt3LtOmTaN3794AJCQk0K9fP2bPns327dtZu3Yt9957L3PnznXNPs2aNQuLxcKcOXNITU1l+fLlPProoyxYsOC8yxdFRKRt2J5Ws7JiSFx7zxYizYrZy8S/fjoQH7OJL/accP1/IiKekVlYTtKRPACmD+ro4WrOr8Eha9u2bQwZMoQhQ4YAsGDBAoYMGcJf//pXAO677z7mz5/PHXfcwbBhwzh+/DirV68mKOj7DiBPPvkkM2bMYObMmYwdO5aAgAA++eQTzGaza8zSpUsZMGAACQkJJCQkMHDgQF5//XXXcbPZzIoVK/Dz82Ps2LHMnDmTGTNmsGjRItcYq9XKmjVryMjIYNiwYdxxxx0sWLCABQsWNPyZEhGRVml7WiEAl3QOOfdAaXN6RQZx9aCaT8xf+vqIh6sRadte+eYIhgGju3WgU0iAp8s5L5Oh3qTnVFRUhNVqxWaz6fwsEZFWpsRezYAHPscwYMufryAi2M/TJUkzsyeriKv+8zVeJlj/h4nEhjb/N3cirY2trIoxj62ltNLBK78Y7tGtNuqbDRqlu6CIiEhL8F16IYYBMe39FbDkjPp2DGZsjw44Dfj4u0xPlyPSJr2zLZ3SSgd9ooKY0KtlbLOhkCUiIm3WmlMbEA/p3N6zhUizNnVANPD9/y8i0rRW767pFj5rZOcW01dBIUtERNqk3ZlFvJ50DIAbhmnjeTm7K/rWLE1KSS8kp0jt3EWaUkFpJcnHahrPXNH3zFswNUcKWSIi0iY9unIPDqfB1AEdXRvPipxJZLCfa+PTtXtzPFuMSBuzbn8OTgP6RAUR04K22VDIEhGRNqfEXk3S4ZpWwH+Y3NvD1UhLkNCv5hP0z3dle7gSkbZl7Z6aDzaubEGzWKCQJSIibdCWI3lUOw06hwbQJSzQ0+VICzAlPgqAjQdOUlhW6eFqRNqGKoeT9ftzAbi8r+c6Cl4IhSwREWlzNh2smcUa072DhyuRlqJ7eDv6dgym2mloNkukiWw9mk9xRTUdAn0Z1Km9p8tpEIUsERFpc745dCpk9QjzcCXSkkwb2BGAT3dkebgSkbbhy1NLBSf2icDs1TK6CtZSyBIRkTbDMAze3prGnqwiAEZ300yW1F9tyPrm4EkyCso8XI1I6/flqUYzV/RpWUsFQSFLRETakGfXH+KP7+8EYHL/SMKDLB6uSFqSuA6Bro2JX9101NPliLRqy7dncPhkKT5mE+N6trxVBwpZIiLSJhzMKeHfaw4A8Psre/G/WZd4uCJpiW4b1xWAZVvSKbFXe7gakdYnr8TOY5/t5d53dwDwy7FdCfLz8XBVDaeQJSIirV61w8kf399BpcPJ+F7h3H1FD7zNegmUhpvQK4Ju4YEU26tZqXOzRNxu3lvbeW79IRxOg+uGxPDHKX08XdIF0SuMiIi0ev/98iDJxwoIsnjzyLXxmEwt6wRqaT68vExcMygGgNW7T3i4GpHWxTAMdh63AfCvnw5k0Q2D8GphDS9qKWSJiEirlnQ4j6e/rFkm+PC18XQKCfBwRdLSTTq1MfHGg7mUVzo8XI1I65FXWklxRTUmE0wfFN1iAxYoZImISCtWUFrJ/GUpOA24YWgnrhkc4+mSpBXo2zGImPb+VFQ5+fpArqfLEWk1jp4sBSDa6o+fj9nD1VwchSwREWmVDMPgvvd3kF1UQbfwQB68pr+nS5JWwmQyuWazPkrJ9HA1zZNhGOSV2MkvrfR0KdKCHD4VsrqFB3q4kovn7ekCRERE3Kmy2snja/ax9Ug+36YV4mv24r8/G0KAr17yxH1mDotlyaajrNiZxW8ybAzoZPV0Sc2Gw2kwe/FmNp3a9PvSnmH8fGQco7t3wOrf8rrESdM5cipkdQ1TyBIREWk2DMPgz8t38l5yhuuyP13Vh/gYvQEW9+oXHcyMwdF8mJLJIyt389bcUac1VNmXXczCz/ZgK69iSGwId0zsTli71rs32+pd2Tz91UGirf6ugAXw9YGTfH3gJFZ/H965fTS9o4I8WKU0Z7XLBbt0UMgSERFpNpZvP857yRmYvUz8aUofukcEMrF3hKfLklbqnoTerEzNJulwPq8lHuPWMV2Amk/jn1t3iOXbj1PpcAKwPa2QD7ZnMP+KnvSLtuJjNjGkc4gHq3cfW1kVH393nAc/2U2102BHRk13uL/PiGdCr3AWbzzCF3tOkFFQzm/eSOb120aoAY2ckWsmqxUsFzQZhmF4uojmrKioCKvVis1mIzg42NPliMg5GIbB8cJyth0t4FheGcO6hFBW6SDYz5sRXUPVtruVMwyDqf/dyO6sIn5/ZS9+d2VPT5ckbcAr3xzhwU924+vtxRMzB+Hnbeb3b6dQfGqj4iv6RHD14GieX3+Y3VlFda77v1mXMHVgR0+UfUYl9mq+2H2Cib0jsAbUb1nfzgwbP38piaKKmsc7smsoe7KKGN4llBdvGebqDpdfWsn0pzZyvLAckwn6RgVzZb9IfndFT8wtuIOcuI/TadD3r6uwVztZd+8EujTTJYP1zQaayRKRFs1e7WDtnhxW7sxi29ECsosqzjhufK9wrP4+pGbaCPT15leXdmXawGjXi7vTabToVrEC244VsDurCD8fL24dE+fpcqSNmDOmC98cPMkXe3K4683trsuHxoXwp6v6MCwuBJPJxE8GdOTtreks3niEwrJKCsqq+NMHO+jbMYhu4e08+Ahq7Mgo5M43vyU9v5xR3UJZdMMgUo/buLJv5Bk37t6RUcgXu0/w1tZ0iiqq6dIhgBuGxXL7Zd3wOvWB1g//poYG+vLKL4bzt492kXg4j91ZRezOKqK9vw+/HNe1yR6nNF/7c4qxVzvx9jLRKcTf0+VcNM1knYdmskSarxJ7NTc+n8iuzO8/Hfb2MtE/xkqnEH+2HsknyM+bY3llVDtP/1PXNSyQsHa+HDlZxskSOyEBPozrGc6vxnVlUGz7JnwkcrGqHU5ufWUL3xzM42fDY3ns+oGeLknakCqHkyfW7GfxxiME+Jq5Kr4jf5ve76wtqKscTmY+n8j2tEICfc08dE081w/t1MRVf6+4ooorn1jPiSK767IAXzNllQ4GdrJySecQLokLYUhse97ckkZBaSXvJmfgOPV3tU9UEO/+ZjRBfvWb/cosLOftren8Z+0B/H3MfPa7S5vtrIU0nTvf/JYVO7KY1C+SF28Z5ulyzqq+2UAh6zwUskSaJ3u1gzuXfssXe3JoH+DDTSM6c1nPcAbHtsfft+4bmz1ZRazcmUU7ize9IoPYlWnjpY1HKCyrOuNte5ngzz/py23jumqJYQtgGAb/76NU3khKw8/Hi0/njaNHhE6sl6ZX7XBi9jLV6+/GiaIK5r25nS1H8wH4zfju/HFKb4/8zXng410s2XSUuA4BjO8VzmuJx844zsdsosrx/dvGK/tGMKRzCD8bHkuHBjb0cDoNZr2URNLhfLqHB/L+b8fQPsD3oh6HtFypx21Me2ojJhOsvPtS+nZsvu+5FbLcRCFLpPnZk1XE799OYW92Mb7eXrz961ENPoG8xF7NqtRsfMwmuoW1IzLYQnpBOS9vPMKKnVkAXHdJDI9eO6DFb4jYmjmdBv/8fB/PrT+EyQTP/nwoU+KjPF2WSL04nAb/WXuA/649AMDPR3bm79fEN9nSZcOouf9/f1Fz/6/fNoKBndpz7f++Icjfh39cP4DPU09wssTOW1vSqHYaDOncnks6hzAsLoQp8VEXFQqzbRVc+8w3ZNlq9rL75/UDGdYl1F0PT1qIaoeT657dxI4MG9MHRfPUTUM8XdI5KWS5iUKWSPOydPMxHvh4F1UOgw6Bvjw+cxAT3Ng9zjAMXvnmKI+s3IPDaTCqWyivzBlx2uyYeN7Szcf4zxcHyCmuWeL08Ix4bh6lc7Gk5XlnWzp/fH8HhgHD4kJ46Jp4+kU37nuO44Xl/OHd71yt1u+c2J0/TO4D1PwdBOoEqL3ZRezNKmbawI5nPEfrQu3LLubmxZvJLbbjYzbx8V3jmvUshrjfc+sP8dhnewn282bNgvFEBvt5uqRzUshyE4UskeYj+Vg+NzyXiNOAK/tG8tj1Axptz5mNB07ymzeSKbFXM6JrKP/92RCirM37D39b8o9Ve3l23SEAgize/PGqPgpY0qJ9lHKcP72/k/IqBwG+Zl68ZRhje4Q1yn2VVzqY9tTXHMotxc/Hiwev7s+Nwzs3yn3Vh62sirve+pavD5xkUGx77pnUi0viQmhnUX+21s5e7WDUo2spKKvin9cPZObwWE+XdF71zQbu+yhCRKQRHTlZyvy3U3AacN2QGF68ZWijbuo5rmcYr/5yOIG+ZrYcyWfyvzew/0Rxo92f1N+uTJsrYN2b0Ivk/zdJAUtavGsGx/DlveMZ26MDZZUOfvHKVradOl/LnZxOg4c+3c2h3FIigiys+t1lHg1YANYAH/7100G0s3jzXXoht7y8hclPbuBgTolH65LG9/muExSUVREV7Md1l8R4uhy3UsgSkWbvq305/OQ/X5OeX06nEH8euKZ/k5wcPjQulI/uGkv/6GBs5VX84b0drm5a4jmvbjoKwNSBHbnr8p74euulTFqHjlZ/Xp4znCv7RlDpcPLr15O5881v+SjluFtu31ZWxc9eSOKtLWkALLphULPp6hdl9eORa+PpGhZIh0BfjheW87MXEiksq/R0adKIlp36f3Hm8Fi3LkNtDlrXoxGRVudYXil3v7Wd8ioHY7p34J3bRxNczzbB7tAjIoiX5wwn6NQnrP/6fJ+ClodUVjvZejSfj1IyAfjl2C6eLUikEVi8zfz3piHExwSTX1rJih1Z/G5ZCv/34U4KSi8ucLzw9SG2HM0nwNfMY9cN4LJe4W6q2j2uGRzDV/dOYPXvL6N7eCAnSyp55tSstbQ+mYXlbDqUh8kEM4d5bguDxqLFriLSbFU5nNz15naKK6oZGhfCkl+M8MisRWSwH3+e2pf7P9jJc+sPsSvTxtM3XYI1oOnCXltWXung7mXb+XJvjivgDoip2btHpDUK8PVm6a9G8emOTA7llPLyN0d4IymND749zk0jOjP30m5EWf3IKarg4RV7CA+y0CuyHcUV1XQLDyTQ15tj+WXkFtuZEh9F9/B2VDmcvLMtA4B//XQQUwd29PCjPLsO7Sz837R+/OKVrSzZdJRZIzo3mxk3cZ+1e3OAmmYvnUICPFyN+ylkiUiz9fz6Q+w8bqN9gA//m3WJR5eF/Wx4LGYvE3/7aBdfHzjJ9Kc3cnmfCHy9vUjLK6PS4eSha/q3yhcKT6qsdvK7ZdtZs/sEAFZ/Hy7rFc59kz2zn5BIU7H6+/DzkTXnGl7aK4xFn+9jV2YRizce4bXEo1wV35HdWUXnPW/pX5/vY3yvcHpGtCO32E5YOwsJ/SOb4iFclAm9whndrQOJh/P42QtJvPKL4eo62Mp8uafm7/rlfZr//48Xwu3vWB544AFMJlOdr6io7/csMQyDBx54gOjoaPz9/ZkwYQK7du2qcxt2u5158+YRFhZGYGAgV199NRkZGXXGFBQUMHv2bKxWK1arldmzZ1NYWFhnTFpaGtOnTycwMJCwsDDuvvtuKiu1tlekuSsoreQvy3fy5Km9Wx6Y3t/jnf1MJhMzh8Xy/m/H0NHqR1p+GUs2HeWFDYdZtSubL/fmcOPzScxftp0XNxzmRFEFy7akkW2r8GjdLVnioTwm/3sDq3efwNfsxZu/GknKXyfx1E1DiA1VmJW2Y2LvCD6dN44lvxjOiK6hVDkMPv4uk4M5JUQF+3HtkBgu6xXOTwZE0ScqiG5hgYzoEsplvcIxmWD9/lxe2ngEqFmW5dMCzn0xmUw8eeNgeka0I7uogmv+9w0vbzyCmmK3DmWV1XxzavuAK/u6bxuW5sTtLdwfeOAB3nvvPb744gvXZWazmfDwmnW///jHP3jkkUdYsmQJvXr14uGHH2bDhg3s27ePoKAgAH7729/yySefsGTJEjp06MA999xDfn4+ycnJmM01e9VcddVVZGRk8MILLwDw61//mi5duvDJJ58A4HA4GDx4MOHh4Tz++OPk5eVx6623ct111/HUU0/V+/GohbtI09qeVsCdS78l81Q4uXFYLI9dP6BZzVoUllWyevcJDuWU4DQMwoMsLNuSzuGTpa4xJhMYBgT6mlmQ0JtbR8e1upN6G0u1w8nzGw7z+Op9OA0Ia+fLY9cN5Mp+rfPTTpGG2p5WwOrdJ0jPL2PBpF50C2931rHH8kpZujmNQzklBFq8eeDq/oQG+jZhtRensKyS+W+nsG5fLgAzBkfz55/0JaKZ76UkZ/fh9uP898sDHM4tJTbUnw1/mNisXuPPx2P7ZD3wwAN8+OGHpKSknHbMMAyio6OZP38+f/zjH4GaWavIyEj+8Y9/cPvtt2Oz2QgPD+f111/nxhtvBCAzM5PY2FhWrlzJ5MmT2bNnD/369SMpKYmRI0cCkJSUxOjRo9m7dy+9e/fms88+Y9q0aaSnpxMdHQ3AsmXLmDNnDjk5OfUOTApZIk0nLa+MaU99TVFFNd3CAll43QBGduvg6bLq5WSJnbe3plNe6eDVTUcptlfTPsCHwrIqoOYcohdvGebxGbnmLLOwnDeSjvHFnhPsP1GzBOr6SzrxwNX9CGrCZici0rwYhsGSTUd5eEXNJvHeXiZmj47jj1P64OejjeJbkq1H8/nZC0mu82t/d0VPfj+pl4erapj6ZoNGOSfrwIEDREdHY7FYGDlyJI8++ijdunXjyJEjZGdnk5CQ4BprsVgYP348mzZt4vbbbyc5OZmqqqo6Y6Kjo4mPj2fTpk1MnjyZxMRErFarK2ABjBo1CqvVyqZNm+jduzeJiYnEx8e7AhbA5MmTsdvtJCcnM3HixDPWbrfbsdvtru+Liorc+dSIyBnkFFfw0tdHWJWaTVFFNYNj2/PGr0a2qI0ow9pZuHNiDwBmj47jcG4pI7qG8s62dBau3MPO4zZ+9kIif7u6P6O7ddAbgx/Zk1XELS9vIbe45u+v1d+Hv0ztyw1DO7WoTzhFxP1MJhO/GNuVfh2D+dfn+9h2rIBXvjnKqtRsuoYFsieriBuGxfKnKX3w8tLfi+bKXu3gd29tx+E0mDawI7+f1IturbihidvfwYwcOZLXXnuNXr16ceLECR5++GHGjBnDrl27yM7OBiAysu6Sj8jISI4dOwZAdnY2vr6+hISEnDam9vrZ2dlERJy+fjMiIqLOmB/fT0hICL6+vq4xZ7Jw4UIefPDBBj5qEblQe7OL+NWr28goKAdqloY9e/MlLSpg/VhksB+Rp5ay3DSiM+N6hHHTi0kczSvjF69spXNoAM/dPJR+0W17dtxe7WDtnhy+PVbAa0nHqKx20jsyiF+M7cKkfpF0aMTNpkWk5RnZrQPv/XYMX+3N4d53vyPLVkHWqaXlL2w4TG6xnX/+dGCLOOesLdp2tIBMW0XNEvDrB7bo1/n6cPuju+qqq1z/HjBgAKNHj6Z79+68+uqrjBo1CuC0TyUNwzjvJ5U/HnOm8Rcy5sfuv/9+FixY4Pq+qKiI2NjYc9YmIg33zcGTLN54hC9PtXDt0iGAOyb0YGKfCMKDWteb69jQAN79zWj+u/Yga3afIC2/jGuf+YZ7E3rzy3FdMbfBT14rqhzcsngLW47muy67tGeYWuOLyHlN7BPB13+cyOYj+WQWllNV7eTvK/awfPtxisqr+N/PL9FqgWZo/f6a8+om9I5o9QELmqCFe2BgIAMGDODAgQPMmDEDqJll6tjx+/0ZcnJyXLNOUVFRVFZWUlBQUGc2KycnhzFjxrjGnDhx4rT7ys3NrXM7mzdvrnO8oKCAqqqq02a4fshisWCxtK43eCLNzSvfHOHBT3YDNQ0iJvWN5NHrBhDWimcuOlr9WXjdAP44pbfrJO5HVu7hRFEF/zetn6fLa1IOp8Hdb21ny9F8gizeTOofyZT+UUzqF6mlgSJSLwG+3kzs/f2qptjQAO5Y+i1r9+Zwy+ItvDRnWJNuXC/nt+FUyGpum2A3lkafT7Xb7ezZs4eOHTvStWtXoqKiWLNmjet4ZWUl69evdwWooUOH4uPjU2dMVlYWqamprjGjR4/GZrOxZcsW15jNmzdjs9nqjElNTSUrK8s1ZvXq1VgsFoYOHdqoj1lEzm7/iWIWfrYXqGkl/OU9E3jhlmGtOmD9UPsAX16ZM5y/X9MfgMXfHCHxVBvblqCiykHqcRupx20kH8vnrS1pfJRynBNF529VbxgGe7OL+OP7O2rasnt78eKtw3hi5mAS+kcpYInIBbuibySv/XIEQRZvthzN52fPJ7nO8RTPO1FUwd7sYkwmuLRHmKfLaRJu7y547733Mn36dDp37kxOTg4PP/ww69evZ+fOncTFxfGPf/yDhQsX8sorr9CzZ08effRR1q1bd1oL908//ZQlS5YQGhrKvffeS15e3mkt3DMzM3n++eeBmhbucXFxp7Vwj4yM5F//+hf5+fnMmTOHGTNmqIW7iIdUVju59plv2JVZxMTe4bw8Z3ibfmN933vf8c62DEwmGNW1A7eMjiM2NIBu4YEE+DaPpRS2sipuejGJAznFVDsNzvaKEdPeny8WjMff9/slOoZhkHQ4n9W7s/Exe7HlSD4p6YUAeJngmZ9fwpT4jme+QRGRC7Ar08atL2/hZEkl3cICefv20a1uCXpL9NaWNO7/YCeDYtvz0Z1jPV3ORfFYd8GMjAxuuukmTp48SXh4OKNGjSIpKYm4uJpdy++77z7Ky8u54447KCgoYOTIkaxevdoVsACefPJJvL29mTlzJuXl5VxxxRUsWbLEFbAAli5dyt133+3qQnj11Vfz9NNPu46bzWZWrFjBHXfcwdixY/H392fWrFksWrTI3Q9ZROrp6S8PsCuziPYBPvzj+oFtOmAB/N+0fuQU21m3L5fEw3kkHq6Z0QqyeDN1YEd6RwVRUFpJSKAvXToE4u9rxt/HjJ+PmbLKaoorqhneJRR/XzOGYZBlq6C8ykGnEH8s3u45H+HRlXvYnVW3y2pIgI/rxPK+HYNJPW7jeGE5f/0olZgQf8oqHVj9ffhqbw7bjhXUua6fjxcDY9ozZ2wXBSwRcbv+0Vbe/c0Ybn5pM4dPljJ78WaW/GKEts/wsHe3pQMwuX/b2e/Q7TNZrY1mskQunmEYPLv+EP/6fB+GAf+bdQlTB+oNdq2MgjLeSErj813Z2MqryC+trPd121m86dcxmPSCMleXrQBfM1cPiubBa/o3OGzZyqtIzy8js7CcxMN5vPLNUQBe+cVw+kcHYzGbCfb3rhOQV6Vm85s3ks94e/4+ZqYP6kiArzeBFjO3julCRJDe7IhI4zp6spQbnk8kt9hO+wAfnvn5JYzp3jaWqTU3+08Uk/DkBsxeJhLvv7zFvwZ4bDPi1kYhS+TiVFQ5+PMHO/lg+3EAfjWua5tr9NAQTqfBN4dOsvHASY7mldKhnYWcIjtZtnIqqhxUVDmpqHLgY/bCZMIVrAC8vUz4mL0or3IAcFV8FE/dNATverQzNgyDp788yH/WHqDaWfdlYc6YLjxwdf9zXvfed3fw9YFcxnTvQHiQhfzSKtpZzPxmQnc6Wv0v8NkQEblwR0+WMu+t7ew8biPIz5uP7hxLt/B2ni6rzXnok928/M0RJvWL5MVbhnm6nIumkOUmClkiF84wDOa+to0v9uRg9jLxwNX9mT0qztNltRpOp0Fqpo2jeWUE+XkzulsHfM1erN2bw51Lv6XS4eT28d24/6q+57ydjQdO8p+1+9l6tGZpX1g7X2La+9M1LJBpA6O5vE+ENvgUkRbJXu1g1oubST5WQEz7mi6vbaW7XXOQbatgwqKvqKhy8sovhtfpCNlSKWS5iUKWyIV7LfEof/1oF77eXrx863DG9dRSjabyyXeZzHtrOwD/vnEwM4bEnHXc3cu2Yxjga/bioWv687MRnZuyVBGRRpVTXMENzyVyLK8MgHmX9+D3V/bSh0dNoLbB07C4EN79zehWcS52fbOBtsQWkUaxbEsaf/+0Zi+sP1/VRwGriU0fFM2cMV0AmP92CncsTcZWVlVnzLp9OSx4JwXDgGuHxLD+vgkKWCLS6kQE+bHy7ku5dXTNSoqnvjzIHUu/payy2sOVtW7Jx/J5NzkDgD9P7dsqAlZDaCbrPDSTJdJwbyQd4/8+TAXgmsHR/PvGwW3uj2tzUOVw8vjq/bz49WEcToPIYAuX94lkcKyVkyWV/OeLA1Q6nEwd2JH//mwIZn2qKyKt3PvJGdz/wU4qHU46hwZwx4TuXHdJJ3y9Ne/gThVVDn7yn685fLKUnw7txKIbBnm6JLfRckE3UcgSaZjv0gu54blEKh1O7pzYnXsTeitgedjODBt3vfWta6nMD00d0JF//2ywqyW7iEhrl3ysgN++kUzOqc2KO1r9uGV0F342PJaQQF8PV9c6PLpyDy9sOExksIXV88djDfDxdEluo5DlJgpZzVepvZptxwo4nFtC9/B2jOgaip+Pe/YGkgtzOLeEmc8ncbLEzuT+kTx381AFrGaivNLB+v05pKTb2JFRiJ+PmSv6RnDjsNh6dR8UEWlNyiqreXNzGi9sOOwKW6GBvjx+wyAm9mn5zRk8KfFQHj9/KQmnAS/PGcblfVrX3lgKWW6ikNV85BbbWbLpCJ+lZmM2mUjLL8Ne7XQd9/PxYmTXDlzWK5zxvcLpHh6oN/hNaEdGIb9+LZnsogr6dgzm7dtHEezXej65EhGR1qeiysHH32Xy4obDHMgpAWBK/yj+dFUfuoQFeri6luXrA7m8tSWNz1KzMQy47pIYnpg52NNluZ1ClpsoZDUPqcdt3PbqVk4U2etc3inEn96RQaRm2k471icqiD9M7s3lfSLqHbYqqhwczCmhvMpBr4igVjW93Zg27M/lV69to7LaSY+Idiz79SjC2lk8XZaIiEi9VFQ5eOyzvbyWeBSnAT5mE7+6tBvzr+zZ4E3d26K1e05w26vbXN9PG9iRR68b0Co/bFXIchOFLM/bciSfOa9soazSQffwQH4/qRdWfx/C2lnoExWEyWTCMAz2nyhh/f4cNuw/yZaj+VSemuUaGhfCZT3D6Wj1o2N7P4L8fNh53Eagr5kgPx9W78rmy705lFU6qHY6qXLU/Eq0s3jz85Gd6R0VxIAYK93D26nd6xnszS7ip88mUmKvZmLvcP5z05BW+UdVRERav33ZxTyycg8b9ucCEB8TzNLbRulD1/O4bclW1u7N4fI+Edyb0Jt+0a33PbNClpsoZHnWt2kF3PzSZsoqHYzp3oHnZg+t1xt4W1kVz204xCvfHKGiynne8T8UEuCDr7fXaTNjsaH+9O9oJS2/jN5RQQzrEkKP8HY4DXAaBpHBfsR1CGhTDQRyiiqY8b9vyLRVMKJrKK/fNkKf+ImISIu3KjWb+z/YQUFZFZf3ieClW4bpg9azyC+tZMQjX1DtNFjz+8voGRnk6ZIalUKWmyhkeU5aXhnXPvMNeaWVXNozjBdvGdbgxhYniip4LzmDjIIyMgsryLZVkFdaSZ+oIIoqqrCVVzGhVziT+0cRE+KP2ctETHt/DANWpmaxYX8uR0+WseN4Yb3Cmo/ZRK/ImmWKE1rBrubn8l16IX947zv2nyihW3ggH/x2DO0D1JVJRERah12ZNq57ZhP2aiczh3Xi4RkD1Or9DF755ggPfrKb/tHBrLj7Uk+X0+gUstxEIcszSu3VzPjfNxzIKSE+Jpi3fz2aQIu3x+opr3TwWWoWJ4rsdA0LYHdmEVuPFnCiqAIvLxMm4HhhOWWVDtd1xnTvwOhuHfj5qDhCW1FL2PzSSv71+V6WbU3HMCCsnS/v/3YMcR10grCIiLQuH3ybwT3vfodhQOfQAK4ZHM24HmEM7xLa5me2DMPgtcRj/P3T3VQ7Df5val9+dWk3T5fV6BSy3EQhq+kZhsGdb37Lyp3ZRARZ+GTeOCKD/Txd1nk5nQbHC8t56evDvJp4zHW5n48XNw6L5cp+kfTrGEyHFtoQorLaydtb03h8zX4Ky6qAms5Bf7qqDxFBzf/nIyIiciG+2pfD/GUp2MqrXJd1Dw/k9vHdmTE4ps3NbtmrHXy9/yTLU46zYkcWULPn4hM3DmoTpwwoZLmJQlbTe279IR77bC8+ZhPLfj2aoXEhni6pwfafKGbr0XyWbUln53Gb63Kzl4lR3UKJCvana1gAcR0Csfr7YPH2IiW9kCqHk/YBvhzMKcHf10xEkIVOIQEMiwuhxF5NsL8PVv+mPfm2strJu8npPPPVIY4XlgM1nRsfuiaeEV1Dm7QWERERTyi1V7N6dzZf7c3lq305FFdUAzXncY/pHsYvx3VhaFzbeE28/4MdvLUlHah5X3P/VX24bVzXNrNtjkKWmyhkNa3kYwXc8NwmnAY8PCOem0fFebqki2IYBomH8li6OY092UUczi29qNvz9jIxvEsoXcMDGdcjjMv7RLjOU7NXOzBhcn2iZhgGJ0sqKaqowt/HTHFFNeFBlvMuXXQ4DfZlF5NdVM6u40W8tSWNTFsFABFBFu6c2IOfj+ysDWxFRKRNKq6o4q0tabz09RHXRsYA1w6J4YGr+zf5h6FNqcRezfCHv6C8ysH0QdHMGdOlRX4YfjEUstxEIavpGIbB9c9u4tu0QmYMjubJGwe3uk9FDuWWsPlwPgVllRw4UUymrYKi8ipK7NX0iQom2M+b/LJKeka0o8phkFtsZ292EYdyS/Exm1zt5WsF+pq5JC6EgrJK9mYVU+00CGvnS/sAX7JtFZTYq0+rIdrq51qy2C08kG5h7cgsLCfTVjNLtS+7uM6LBtSEqzsmdOdnIzo3uPmIiIhIa1TlcLIjo5C3t6bzXnIGTgOigv24b0pvrh0S0+rewwC8sy2d+97bQbfwQNYuGN8qH+P51DcbeK6TgMiPfJaazbdphfj7mPnzT/q2yl/c7uHt6B7ersHXK6qoItDXm6N5pSQfK2B/djGfpWZzvLCcrw+crDP2ZEklJ0sqATCZoJ2vN+VVDoL8vCkoqyLTVuGamfrhUsYfCrJ40yk0gB4R7RjdrQPXXRKjcCUiIvIDPmYvhsaFMjQulBuHd2bBOykcyytjwTvfUVBWxW3junq6RLcpLKtkxc4sFn99BICfDu3UKt+nuZNmss5DM1lNI6/EzpT/fE1usZ27L+/BgoTeni6p2TMMg2/TCjmYU0z7AF/6dQwmwNdMdlEFBaVVRFlrzuf6YTgqLKvk8MlSCkorcRqQkl7AyeJKYkL8iW7vj5cJQgJ8GdsjrM2dyCsiInIxKqocPPnFfp5ff5hgP2823DexVWxt8sG3Gfzpg51UVtdsZeNr9mL9fRPoaPX3cGWeoeWCbqKQ1fiqHE5ufz2ZL/fm0COiHZ/OG6dZExEREWlxHE6Dqf/9mr3ZxYQE+NC3YzB/mdqX/tFWT5d2QU4UVXDF4+spsVfTt2MwCf0iuaJvBAM7tfd0aR5T32ygj6rFoyqqHPz2jZqA5Wv24t83DlbAEhERkRbJ7GXi/03rh8kEBWVVbDqUx9VPf8P/vjqI0/n9vIbDafD8+kP876uDVDucrssNw6CiynGmm25yJ4oquO+9HZTYqxkc254V88bx+0m92nTAagjNZJ2HZrIaT6m9mrmvbWPToTws3l48e/MlXN4n0tNliYiIiFyUY3mlnCypZPHGw6zcmQ1AfEwwI7t2ILfYTk5xBUmH8wEY2TWUiGA/BsQEs25fLpuP5HPtkBhGdetA59AABsVam3z/qVWp2fz+7RTKqxyYvUx8dOdY4mNa5mycu2m5oJsoZDWOKoeTX7yylY0HTxLoa2bxnOGM6tbB02WJiIiIuI1hGLy7LYO/fbyL8h/NUNWe+1x7rtPZ+JhNdOkQyPVDOzFnTBe3rfjJKCjjf18d5HBuKf2ig7H6+3Bl30j2Zhfzh/e+wzBgSOf2/GlKH0bqPZqLQpabKGS5n2EY/OXDVN7cnEaAr5k3545icGx7T5clIiIi0ijySuy8vS2dnCI7Ha1+FFdUMyU+CsOAlalZBPiYWbPnBIG+3swZ24XVu06QU1zBnqxiTpZ8v61KWDtfrhkcw7VDYghrZ8HHbCLIz6dOs6pSezXJxwrYdjQfh2EQEuBLWaWDlPRCThRVUGqvxlZeRUFZ1Wl1+pq9cBoG1U6Dm0Z05u/X9Ne+mD+ikOUmClnu99LXh3l4xR5MJnhx9jCu7KclgiIiIiI/ZhgGmbYKvjl4kifX7Cfr1BYsP+br7YWv2Quzl4lSezXVzvq9vR/VLZSrB8Vw5GQJu7OK+OZgHkCr3a/UHbRPljRLX+w+wSMr9wDwl5/0VcASEREROQuTyURMe39mDovl2iExbNify3vJGazdm4PDaeA4FaYqq511lh3GtPdnZLdQ2lm8KSyrwttsIj7aStfwQNpZvGln8SY2NIB2lu+jgNNp8NLGw+QU2fnDlN4KWBdJM1nnoZks99mZYePGFxIpq3Rw04hYHr12gH6BRURERBrIMAxMJhMOp0FJRTXF9iqqHTXL/AJ8zUS3b5t7WDUFzWRJs/LZziwWvPMd5VUOxnTvwEPXxCtgiYiIiFyA2vdQZi8T1gAfrAE+Hq5IfkwhSxqV02nw3y8P8O8vDgBwac8wnp51CT46iVJEREREWimFLGk05ZUO7n33O1bszALgl2O78uef9FGXGhERERFp1RSypFFk2cqZ+9o2Uo8X4WM28fCMeG4c3tnTZYmIiIiINLo2MaXwzDPP0LVrV/z8/Bg6dChff/21p0tqtfJK7Cz8bA9XPL6e1ONFhAb6svRXoxSwRERERKTNaPUzWW+//Tbz58/nmWeeYezYsTz//PNcddVV7N69m86d9cb/YjmdBllFFaQet/HF7hN8uiPLtaP5oE5Wnp51CbGhAR6uUkRERESk6bT6Fu4jR47kkksu4dlnn3Vd1rdvX2bMmMHChQvPe/36tGl8LzmD3GI7Bt8/lWd6Vmuf6h8eM84wvvZ2zjTuhxc29LpnGseZ7uMHtToNsFc7qKhyUlFV89+a7x3kl1aSXlBeZ18GgIGdrNx9eU+u6BuhDoIiIiIi0mqohTtQWVlJcnIyf/rTn+pcnpCQwKZNm854Hbvdjt1ud31fVFR03vt5ddNRdh63XVyxLZi3l4keEe0YGhfCNYNjGN4lROFKRERERNqsVh2yTp48icPhIDIyss7lkZGRZGdnn/E6Cxcu5MEHH2zQ/VzZN5I+UUEA/DBbmDCdfpnp+6M/vuyHseT7y8437vQwU//rnn47dW7t1Dd+3mb8fMz4+Xh9/19vM8H+PnQODaCj1U8dA0VERERETmnVIavWj4NI7S7ZZ3L//fezYMEC1/dFRUXExsae8/Z/d2XPiy9SRERERERahVYdssLCwjCbzafNWuXk5Jw2u1XLYrFgsViaojwREREREWmFWvUaL19fX4YOHcqaNWvqXL5mzRrGjBnjoapERERERKQ1a9UzWQALFixg9uzZDBs2jNGjR/PCCy+QlpbGb37zG0+XJiIiIiIirVCrD1k33ngjeXl5PPTQQ2RlZREfH8/KlSuJi4vzdGkiIiIiItIKtfp9si5WfXvhi4iIiIhI61bfbNCqz8kSERERERFpagpZIiIiIiIibtTqz8m6WLWrKYuKijxciYiIiIiIeFJtJjjfGVcKWeeRl5cHcN4NiUVEREREpG3Iy8vDarWe9bhC1nmEhoYCkJaWds4n8seGDx/O1q1bG6usi9Kca4OaTwhiY2NJT09vls1GmvvzV6u51tncf761muvz90PNuUb9nN2judenn/OFa441/VBL+Nk29+cQmneNLeFnDM3vObTZbHTu3NmVEc5GIes8vLxqTluzWq0N+h/QbDY32/9hm3NtPxQcHNws62wpz19zr7O5/nxrNffnD1pGjfo5X5zmXl8t/ZwbrjnWdCbN+WfbEp7DllBjc/4ZQ/N9DmszwlmPN1Edbc6dd97p6RLOqjnX1hK0lOevpdTZXLWE568l1NjcNffnsLnX11I0x+exOdbU0rSE57Al1NjctdTnUPtknYf2yWp6es5bN/182wb9nNsG/ZxbL/1sWz/9jC+M9slyE4vFwt/+9jcsFounS2kz9Jy3bvr5tg36ObcN+jm3XvrZtn76GV+Y+j5vmskSERERERFxI81kiYiIiIiIuJFCloiIiIiIiBspZImIiIiIiLiRQpaIiIiIiIgbKWSJSLNgMpn48MMPPV2GiIhIm6bXY/dQyJImt2nTJsxmM1OmTPF0KdKI5syZw4wZMzxdhjSS9PR0brvtNqKjo/H19SUuLo7f/e535OXl1ev669atw2QyUVhY2LiFykXR73HrpdfitkO/x56hkCVN7uWXX2bevHls3LiRtLS0i7oth8OB0+l0U2UiUh+HDx9m2LBh7N+/n7feeouDBw/y3HPPsXbtWkaPHk1+fr6nSxSR89BrsUjjUsiSJlVaWso777zDb3/7W6ZNm8aSJUtcx2o/2V6xYgWDBg3Cz8+PkSNHsnPnTteYJUuW0L59ez799FP69euHxWLh2LFjHngk0hBdunTh3//+d53LBg8ezAMPPOCReuTi3Hnnnfj6+rJ69WrGjx9P586dueqqq/jiiy84fvw4f/nLXwCw2+3cd999xMbGYrFY6NmzJ4sXL+bo0aNMnDgRgJCQEEwmE3PmzPHgI5L6WLVqFePGjaN9+/Z06NCBadOmcejQIdfxo0ePYjKZ+OCDD5g4cSIBAQEMGjSIxMRED1YtZ6LX4rZLr8dNRyFLmtTbb79N79696d27NzfffDOvvPIKP94P+w9/+AOLFi1i69atREREcPXVV1NVVeU6XlZWxsKFC3nppZfYtWsXERERTf0wRNqs/Px8Pv/8c+644w78/f3rHIuKiuLnP/85b7/9NoZhcMstt7Bs2TL++9//smfPHp577jnatWtHbGws77//PgD79u0jKyuL//znP554ONIApaWlLFiwgK1bt7J27Vq8vLy49tprT5vB+Mtf/sK9995LSkoKvXr14qabbqK6utpDVcuZ6LVYpPF5e7oAaVsWL17MzTffDMCUKVMoKSlh7dq1XHnlla4xf/vb35g0aRIAr776Kp06dWL58uXMnDkTgKqqKp555hkGDRrU9A9ApI07cOAAhmHQt2/fMx7v27cvBQUFbN26lXfeeYc1a9a4fr+7devmGhcaGgpAREQE7du3b/S65eJdf/31db5fvHgxERER7N69m/j4eNfl9957L1OnTgXgwQcfpH///hw8eJA+ffo0ab1ydnotFml8msmSJrNv3z62bNnCz372MwC8vb258cYbefnll+uMGz16tOvfoaGh9O7dmz179rgu8/X1ZeDAgU1TtIg0SO2n4UeOHMFsNjN+/HgPVyTucujQIWbNmkW3bt0IDg6ma9euAKedz/PDv88dO3YEICcnp+kKlXPSa7FI09BMljSZxYsXU11dTUxMjOsywzDw8fGhoKDgnNc1mUyuf/v7+9f5Xpo/Ly+v05ai/HDZibQcPXr0wGQysXv37jN2q9q7dy8hISEEBAQ0fXHSqKZPn05sbCwvvvgi0dHROJ1O4uPjqaysrDPOx8fH9e/av9VqitB86LW4bdPrcdPRTJY0ierqal577TUef/xxUlJSXF/fffcdcXFxLF261DU2KSnJ9e+CggL279+vZSYtXHh4OFlZWa7vi4qKOHLkiAcrkgvVoUMHJk2axDPPPEN5eXmdY9nZ2SxdupQbb7yRAQMG4HQ6Wb9+/Rlvx9fXF6jpSibNX15eHnv27OH//u//uOKKK1zLQqVl0Wux6PW46ShkSZP49NNPKSgo4LbbbiM+Pr7O109/+lMWL17sGvvQQw+xdu1aUlNTmTNnDmFhYdrfoYW7/PLLef311/n6669JTU3l1ltvxWw2e7osuUBPP/00drudyZMns2HDBtLT01m1ahWTJk0iJiaGRx55hC5dunDrrbfyy1/+kg8//JAjR46wbt063nnnHQDi4uIwmUx8+umn5ObmUlJS4uFHJecSEhJChw4deOGFFzh48CBffvklCxYs8HRZ0kB6LRa9HjcdhSxpEosXL+bKK6/EarWeduz6668nJSWFb7/9FoDHHnuM3/3udwwdOpSsrCw+/vhj16fe0nI4nU68vWtWJN9///1cdtllTJs2jZ/85CfMmDGD7t27e7hCuVA9e/Zk27ZtdO/enRtvvJHu3bvz61//mokTJ5KYmOhqavHss8/y05/+lDvuuIM+ffowd+5cSktLAYiJieHBBx/kT3/6E5GRkdx1112efEhyFrW/x15eXixbtozk5GTi4+P5/e9/z7/+9S9PlycNpNfitkmvx55hMn68MFPEQ9atW8fEiRMpKChQt7FWYMqUKfTo0YOnn37a06WIyAXS73Hbo9fi1ke/x56hmSwRcauCggJWrFjBunXr6rQDFpGWQ7/HIi2ffo89S90FRcStfvnLX7J161buuecerrnmGk+XIyIXQL/HIi2ffo89S8sFRURERERE3EjLBUVERERERNxIIUtERERERMSNFLJERETaqIULFzJ8+HCCgoKIiIhgxowZ7Nu3r84YwzB44IEHiI6Oxt/fnwkTJrBr1y7X8fz8fObNm0fv3r0JCAigc+fO3H333dhstjq388gjjzBmzBgCAgLUtU5EWj2FLBERkTZq/fr13HnnnSQlJbFmzRqqq6tJSEhw7WcG8M9//pMnnniCp59+mq1btxIVFcWkSZMoLi4GIDMzk8zMTBYtWsTOnTtZsmQJq1at4rbbbqtzX5WVldxwww389re/bdLHKCLiCWp8ISIiIgDk5uYSERHB+vXrueyyyzAMg+joaObPn88f//hHAOx2O5GRkfzjH//g9ttvP+PtvPvuu9x8882Ulpa6NkGttWTJEubPn09hYWFjPxwREY/RTJaIiIgAuJb4hYaGAnDkyBGys7NJSEhwjbFYLIwfP55Nmzad83aCg4NPC1giIm2FQpaIiIhgGAYLFixg3LhxxMfHA5CdnQ1AZGRknbGRkZGuYz+Wl5fH3//+97POcomItAX6iElERES466672LFjBxs3bjztmMlkqvO9YRinXQZQVFTE1KlT6devH3/7298arVYRkeZOM1kiIiJt3Lx58/j444/56quv6NSpk+vyqKgogNNmrXJyck6b3SouLmbKlCm0a9eO5cuX4+Pj0/iFi4g0UwpZIiIibZRhGNx111188MEHfPnll3Tt2rXO8a5duxIVFcWaNWtcl1VWVrJ+/XrGjBnjuqyoqIiEhAR8fX35+OOP8fPza7LHICLSHGm5oIiISBt155138uabb/LRRx8RFBTkmrGyWq34+/tjMpmYP38+jz76KD179qRnz548+uijBAQEMGvWLKBmBishIYGysjLeeOMNioqKKCoqAiA8PByz2QxAWloa+fn5pKWl4XA4SElJAaBHjx60a9eu6R+8iEgjUgt3ERGRNupM51UBvPLKK8yZMweome168MEHef755ykoKGDkyJH873//czXHWLduHRMnTjzj7Rw5coQuXboAMGfOHF599dXTxnz11VdMmDDhoh+LiEhzopAlIiIiIiLiRjonS0RERERExI0UskRERERERNxIIUtERERERMSNFLJERERERETcSCFLRERERETEjRSyRERERERE3EghS0RERERExI0UskRERERERNxIIUtERERERMSNFLJERERERETcSCFLRERERETEjf4/9IyvOKKGpGcAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:16:58.738817\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df['ninfav'] = df['ninfected'].rolling(window=7).mean()\n", "df['ninfav'].plot()\n", @@ -268,9 +1888,263 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 138, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UIDiso2iso3code3FIPSAdmin2Province_StateCountry_RegionLatLong_Combined_KeyPopulation
04AFAFG4.0NaNNaNNaNAfghanistan33.93911067.709953Afghanistan38928341.0
18ALALB8.0NaNNaNNaNAlbania41.15330020.168300Albania2877800.0
212DZDZA12.0NaNNaNNaNAlgeria28.0339001.659600Algeria43851043.0
320ADAND20.0NaNNaNNaNAndorra42.5063001.521800Andorra77265.0
424AOAGO24.0NaNNaNNaNAngola-11.20270017.873900Angola32866268.0
.......................................
419184056037USUSA840.056037.0SweetwaterWyomingUS41.659439-108.882788Sweetwater, Wyoming, US42343.0
419284056039USUSA840.056039.0TetonWyomingUS43.935225-110.589080Teton, Wyoming, US23464.0
419384056041USUSA840.056041.0UintaWyomingUS41.287818-110.547578Uinta, Wyoming, US20226.0
419484056043USUSA840.056043.0WashakieWyomingUS43.904516-107.680187Washakie, Wyoming, US7805.0
419584056045USUSA840.056045.0WestonWyomingUS43.839612-104.567488Weston, Wyoming, US6927.0
\n", + "

4196 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " UID iso2 iso3 code3 FIPS Admin2 Province_State \\\n", + "0 4 AF AFG 4.0 NaN NaN NaN \n", + "1 8 AL ALB 8.0 NaN NaN NaN \n", + "2 12 DZ DZA 12.0 NaN NaN NaN \n", + "3 20 AD AND 20.0 NaN NaN NaN \n", + "4 24 AO AGO 24.0 NaN NaN NaN \n", + "... ... ... ... ... ... ... ... \n", + "4191 84056037 US USA 840.0 56037.0 Sweetwater Wyoming \n", + "4192 84056039 US USA 840.0 56039.0 Teton Wyoming \n", + "4193 84056041 US USA 840.0 56041.0 Uinta Wyoming \n", + "4194 84056043 US USA 840.0 56043.0 Washakie Wyoming \n", + "4195 84056045 US USA 840.0 56045.0 Weston Wyoming \n", + "\n", + " Country_Region Lat Long_ Combined_Key \\\n", + "0 Afghanistan 33.939110 67.709953 Afghanistan \n", + "1 Albania 41.153300 20.168300 Albania \n", + "2 Algeria 28.033900 1.659600 Algeria \n", + "3 Andorra 42.506300 1.521800 Andorra \n", + "4 Angola -11.202700 17.873900 Angola \n", + "... ... ... ... ... \n", + "4191 US 41.659439 -108.882788 Sweetwater, Wyoming, US \n", + "4192 US 43.935225 -110.589080 Teton, Wyoming, US \n", + "4193 US 41.287818 -110.547578 Uinta, Wyoming, US \n", + "4194 US 43.904516 -107.680187 Washakie, Wyoming, US \n", + "4195 US 43.839612 -104.567488 Weston, Wyoming, US \n", + "\n", + " Population \n", + "0 38928341.0 \n", + "1 2877800.0 \n", + "2 43851043.0 \n", + "3 77265.0 \n", + "4 32866268.0 \n", + "... ... \n", + "4191 42343.0 \n", + "4192 23464.0 \n", + "4193 20226.0 \n", + "4194 7805.0 \n", + "4195 6927.0 \n", + "\n", + "[4196 rows x 12 columns]" + ] + }, + "execution_count": 138, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "countries = pd.read_csv(countries_dataset_url)\n", "countries" @@ -285,18 +2159,98 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 139, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UIDiso2iso3code3FIPSAdmin2Province_StateCountry_RegionLatLong_Combined_KeyPopulation
790840USUSA840.0NaNNaNNaNUS40.0-100.0US329466283.0
\n", + "
" + ], + "text/plain": [ + " UID iso2 iso3 code3 FIPS Admin2 Province_State Country_Region Lat \\\n", + "790 840 US USA 840.0 NaN NaN NaN US 40.0 \n", + "\n", + " Long_ Combined_Key Population \n", + "790 -100.0 US 329466283.0 " + ] + }, + "execution_count": 139, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "countries[(countries['Country_Region']=='US') & countries['Province_State'].isna()]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 140, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEiCAYAAAArl0flAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA68ElEQVR4nO3deXxU9b3/8fdkmclkmcm+kYUtEAiriAKiSBWqVSted6WCenut4oK0t8rPeituVG2t9bqVuraKS2/FWm1VXACpoOyyhz2B7NtM1klm5vz+CEQiYQlMMjPJ6/l45DGZc75zzmdmHId3vssxGYZhCAAAAACCWIi/CwAAAACAU0WwAQAAABD0CDYAAAAAgh7BBgAAAEDQI9gAAAAACHoEGwAAAABBj2ADAAAAIOiF+buA7/N6vSoqKlJMTIxMJpO/ywEAAADgJ4ZhqLa2Vunp6QoJOXafTMAFm6KiImVmZvq7DAAAAAABorCwUBkZGcdsE3DBJiYmRlJr8Tabzc/VAAAAAPAXp9OpzMzMtoxwLAEXbA4NP7PZbAQbAAAAACc0RaXTiwcsW7ZMl1xyidLT02UymfTee++17WtpadE999yj4cOHKyoqSunp6brhhhtUVFTU2dMAAAAAwAnrdLCpr6/XyJEj9cwzzxyxr6GhQWvXrtX999+vtWvX6t1331V+fr5+/OMf+6RYAAAAAOiIyTAM46QfbDJp0aJFmjZt2lHbrFq1SmeccYb27dunrKys4x7T6XTKbrfL4XAwFA0AAADoxTqTDbp8jo3D4ZDJZFJsbGyH+10ul1wuV9t9p9PZ1SUBAAAA6GG69AKdTU1Nuvfee3XdddcdNWHNnz9fdru97YelngEAAAB0VpcFm5aWFl1zzTXyer167rnnjtpu7ty5cjgcbT+FhYVdVRIAAACAHqpLhqK1tLToqquu0p49e/T5558fczycxWKRxWLpijIAAAAABCHDMLS/ulFrdpad8GN8HmwOhZodO3boiy++UEJCgq9PAQAAAKCHKqxq0A0vf6M9FfXyuhpO+HGdDjZ1dXXauXNn2/09e/Zo/fr1io+PV3p6uq644gqtXbtWH3zwgTwej0pKSiRJ8fHxMpvNnT0dAAAAgF7C5fZo1sK12lNRr/BQk7JTonWiE1U6vdzzkiVLNHny5CO2z5gxQw888ID69evX4eO++OILnXvuucc9Pss9AwAAAL3PzrJa/fL/vtXaghrFRobrwzvPVkxIS9ct93zuuefqWFnoFC6LAwAAAKCXcTS26OnPdui1r/bK7TUUbQnT/147Wn1irXI6W074OF1+HRsAAAAA6MjS/HLd/fZ6VdU3S5LOH5KsBy8dpvRYa6ePRbABAAAA0G0q6lz6eneVNh5w6KXlu9XiMTQwOVr3XzxUkwYlnfRxCTYAAAAAusX/rdmve//2rdze76avXDwiTU9eNUrmsFO7xCbBBgAAAECX27jfof+3aKPcXkODU2I0KjNWo7JiddXpmQoNMZ3y8Qk2AAAAALqMs6lFz32xSy//e4+a3V6dPyRFC34yRiE+CDOHI9gAAAAA8Llmt1cLv96nP3y2Q9UNraubTRiQoN9dOdLnoUYi2AAAAADwsbLaJv30tdXasN8hSRqQFKW5Fw7ReUOSZTL5PtRIBBsAAAAAPrDpgEN/XrFX+aV1yi+tVUOzR7GR4frF1MG6ZmymwkJPbXGA4yHYAAAAADglO0prde2Clap1udu2DUiK0oszxqpfYlS31ECwAQAAAHBS3B6v3ltfpCc+3qZal1unZcXq5on9lZMSrf6JUV3eS3M4gg0AAACATnG5PfrHhmI998VO7a6olyT1T2ztoYmPMvulJoINAAAAgBO2tqBadyxcpwM1jZKkuMhw3XruAP1kXF9ZzaF+q4tgAwAAAOCovF5Df1y2W59vK9W+ygaV1bokSSk2i2ZO6KefjM9WtMX/scL/FQAAAAAISG6PVw99sEWvrdjXbvuPR6brkcuGKSYi3E+VHYlgAwAAAKCd8lqX3vqmQAu/KVCxo0kmk/TLH+ZqwoAE9U2Ikj0ycALNIQQbAAAAAJKkwqoG/XHZLr2zer+a3V5JUnyUWff9aIguH5Ph5+qOjWADAAAA9FI1Dc16bskubSupVVFNo/ZU1MvjNSRJozJjNXNCX104PFWWMP8tCnCiCDYAAABAL+NobNHS/HL99uPtKqhqaLfv7JxE3XbuQI3rHy+TyeSnCjuPYAMAAAD0AmXOJn28uUT/2lSib/ZUyX2wZyYz3qrbJw9URlyksuIjlRkf6edKTw7BBgAAAOhhPF5DH20q0T82FKmstklV9c3aV9Ugw/iuzcDkaE0ZmqJbzumv2Ej/XFTTlwg2AAAAQJArczZpw36Hvt1fo/WFNdp4wKGahpYj2o3OitWPhqVpal6KshOi/FBp1yHYAAAAAAHOMAxV1jdrf3Wj9lXWa2l+ubYUOVXncqvO5e4wxNit4bphfLby0u1KiDYrOz5SybYIP1TfPQg2AAAAQDcyDENNLV7VulpU19QaTA7dVjc0a2txrarqm+Vye9TQ7FGxo0n7qxvU1OI96jFDTFJOcoxGZNg1IjNWIzPsyk21yRwW0o3PzL8INgAAAMAJcHu8bT0kh8JI7cHb+oPbar8XVA5v27q/RfXNnrYllTvDZJJSYiLUJ86qkRmxOjsnUfbIcEVbwtQn1qooS+/+p33vfvYAAADo8ZpaPHI2tcjZ6D5426LaJne7bXVNbjW2eNTY4lFTs0f1zW7VuzyHhZWWY/aYnAyTSYq2hCnGEqboiDBFW8IUHRGugUnRSo+NUER4qCLCQ5Vqi1BGnFVpsRFBcT0Zf+l0sFm2bJmeeOIJrVmzRsXFxVq0aJGmTZvWtt8wDM2bN08LFixQdXW1zjzzTD377LPKy8vzZd0AAADoRVxujyrrmlVR51JlXbPK61yqqm9u7S1pdqvB5VFdc2sIcTa2tAstzW7fBhJLWIhi2oJImKLMYe3uR1vC2+5HWVpvD98fc3B7pDk0qK4TE+g6HWzq6+s1cuRI3Xjjjbr88suP2P/444/rySef1KuvvqpBgwbp4Ycf1pQpU7R9+3bFxMT4pGgAAAD0DI3NHhU5GlXiaFKxo0kljkYVO5pU6nSpqt6l6oYWVdS5VNvkPqXzmExSjCVMNmu4bBHhslnDDt62hpAYS5is5jBZw0NkNbf2lNgiwr/rSbF8F1R607yVYNLpYHPhhRfqwgsv7HCfYRh66qmndN999+k//uM/JEmvvfaaUlJStHDhQt1yyy1HPMblcsnlcrXddzqdnS0JAAAAAarZ7VVRTaMKqxu0v7pRhVUNKjx4u7+6QRV1zSd8rPBQkxKiLEqINisxuvXWFhGuSHNoWw/IobBiizgYYg7+HmUOU0gIvSM9mU/n2OzZs0clJSWaOnVq2zaLxaJJkybpq6++6jDYzJ8/X/PmzfNlGQAAAOhGjc0e5ZfWantprQqrGnSgulH7axq1v6pBJc4mHW+efLQlTGn2CKXaIw7eWpVisyghyqz4KIvio8xKirbIZg1j6BaOyqfBpqSkRJKUkpLSbntKSor27dvX4WPmzp2rOXPmtN13Op3KzMz0ZVkAAADwAcMwVOp0adMBhzYXObWtxKltJbXaW1nf7or232cJC1FGnFWZ8ZHKjItUZrz14G3rfXtkePc9CfRYXbIq2veTtGEYR03XFotFFoulK8oAAADASTIMQ8WOJm084NCmgz8bDzhVUefqsH1ClFm5aTHqmxCl9Fir+sRa2wJMUoyFnhZ0OZ8Gm9TUVEmtPTdpaWlt28vKyo7oxQEAAEBgaHZ7ta+yXjvK6rS5qDXAbD7gUGX9kfNfDl0IMq+PTUPTbMpNtWlwaoySYvhDNfzLp8GmX79+Sk1N1eLFizV69GhJUnNzs5YuXarHHnvMl6cCAADASaptatHqvdVaubtSK3ZXakuRU+4OJsKEhpiUkxyt4X3sGp5h17A+dg1Jtclq5loqCDydDjZ1dXXauXNn2/09e/Zo/fr1io+PV1ZWlmbPnq1HH31UOTk5ysnJ0aOPPqrIyEhdd911Pi0cAAAAJ6aizqU1+6q1dl+1Vu6p0qYDjiOufB9lDtXAlBjlpsRoWIZdw/vYlZsao4hwQgyCQ6eDzerVqzV58uS2+4cm/s+YMUOvvvqqfvnLX6qxsVG33XZb2wU6P/nkE65hAwAA0E3Kapv0+dYyrdpbrTX7qrS3suGINtkJkRrXL0HjByRoTHacMuKszINBUDMZxrHWsOh+TqdTdrtdDodDNpvN3+UAAAAEPI/X0PrCGi3LL9fS/HJt2F/TbpUyk0kalByj07LjNLZvnMb1T1B6rNV/BQMnqDPZoEtWRQMAAEDXKnE0tQaZHeVavqNCjsaWdvtHZcbq7JxEjcmO0+isONmtLKmMno1gAwAAEAS8XkPr99do8ZZSfbGtTNtKatvtt1vDNTEnUZNyknTOoCSl2iP8VCngHwQbAACAANXU4tHyHRX6dGupPt1a1u4aMiaTNDIjVpMGJWnS4CSNzIhVaAhzZNB7EWwAAAACRJ3LrRW7KrV6b5XyS2u1Ynelmlq8bftjLGE6NzdZ5w9J1jk5SYqLMvuxWiCwEGwAAAD8xOs1tKXYqWU7yrV0e7nWFlSrxdN+Xac+sVadPyRZU4am6ox+8TKHhfipWiCwEWwAAAC6iddraG9lvb7d79Cy/HIt21HRbniZ1LoM88SBiRqUEqPT+8ZpaJqNZZiBE0CwAQAA6EI1Dc1asr1cX2wv07L8clU3tF+9LNIcqgkDEjRpUOuk/+yEKD9VCgQ3gg0AAIAPtXi82lrs1Oq91fpsW6lW7q6Sx/vd8DJLWIhyU2M0fkCizhmUqNOzGV4G+ALBBgAA4BSUOJq0rqBa6wprtHZftTYecMjl9rZrMzglRj8YkqxzByXptOw4hYcSZABfI9gAAACcoKYWjzYXObR2X43WFVZrXUGNih1NR7SzW8M1OitWEwYkaOrQVPVNZHgZ0NUINgAAAEdR7GjU2n01WrOvWmsLqrW5yHHEqmUhJik31abRWbE6LStOo7Ni1S8xign/QDcj2AAAAEhqaHZra7FTGwodWlNQrXX7qlXUQW9MYrRZow8GmNOy4jS8j11RFv5JBfgbn0IAANDrGIahfZUNWr6zQqv3VmlTkVO7yutktO+MUWiISbmpMTotK05jsuN0WlacMuOt9MYAAYhgAwAAeoXyWpdW7K7Uv3dUaPnOCh2oaTyiTXKMRcP72HVadmuPzMiMWHpjgCDBJxUAAPQ4hmFoV3m9Vu6u1Np91VpTUK19lQ3t2oSHmnRaVpzGD0jQyIxY5aXblGyL8FPFAE4VwQYAAPQIzW6vVu2t0qdbS/X5trIjgozp4CT/iQMTdNbARJ3RL16RZv4pBPQUfJoBAEBQMgxDuyvq9WV+ub7cUaGVuytV3+xp228ODdHYfnEakx2vMdlxGpUZK7s13I8VA+hKBBsAABA0quub9e9dFfoyv0Jf7ig/YtWyxGizfpCbrB/kpujsnETmxwC9CJ92AAAQsJrdXq0tqNaXO1p7ZTYecLRbuexQr8zZOUmaODBRQ9NsCglhxTKgNyLYAACAgHFo0v+hILNyd6UaDhteJkmDU2J0dk6izh6UpDP6xstqDvVTtQACCcEGAAD4XU1Ds/66er/+uqZQ+aV17fYlRps1cWBia69MTqJSWLkMQAcINgAAwC8Mw9Daghq99U2B3t9QJJfbK6l1eNkZ/eJbe2VykpSbGsPwMgDHRbABAADdqtTZpHfXHtD/rSnUrvL6tu1D02yaPi5bF41IY/UyAJ1GsAEAAF3OMAwt2V6uP6/Yq6X55fIeXAAgIjxEPxqWpuvHZem0rDiZTPTMADg5Pg82brdbDzzwgN544w2VlJQoLS1NM2fO1K9+9SuFhIT4+nQAACCAGYahT7eW6enPdmjjAUfb9jHZcbpyTIYuGpGmmAh6ZwCcOp8Hm8cee0wvvPCCXnvtNeXl5Wn16tW68cYbZbfbddddd/n6dAAAIAAZhqFPtpTq6c92aHORU5JkDQ/V9Wdm6dozszQgKdrPFQLoaXwebFasWKFLL71UF110kSSpb9++evPNN7V69WpfnwoAAAQYwzC0eEupfv/pDm0tbg00UeZQ3TChr/5zYj8lRFv8XCGAnsrnwWbixIl64YUXlJ+fr0GDBmnDhg1avny5nnrqqQ7bu1wuuVyutvtOp9PXJQEAgC7m9Rr6fFuZnv58h77d3zrkLNoSppkT+urmif0UF2X2c4UAejqfB5t77rlHDodDubm5Cg0Nlcfj0SOPPKJrr722w/bz58/XvHnzfF0GAADoJst3VOihD7Zoe2mtJCnSHKqZE/rqv87pr9hIAg2A7uHzYPP222/r9ddf18KFC5WXl6f169dr9uzZSk9P14wZM45oP3fuXM2ZM6ftvtPpVGZmpq/LAgAAPuZobNG8f2zWu2sPSJJiLGG6blyW/uvs/gw5A9DtTIZhGL48YGZmpu69917NmjWrbdvDDz+s119/Xdu2bTvu451Op+x2uxwOh2w2my9LAwAAPrJ8R4V++X8bVORoUohJumF8X919/iDZI1nhDIDvdCYb+LzHpqGh4YhlnUNDQ+X1en19KgAA0M3Ka1169J9btWhday9NdkKkfnflSJ3eN97PlQHo7XwebC655BI98sgjysrKUl5entatW6cnn3xSN910k69PBQAAuonb49Wb3xToiY+3y9nklskk/WRctu65IFdRFq73DcD/fD4Urba2Vvfff78WLVqksrIypaen69prr9X//M//yGw+/gRChqIBABBYvtpZoXn/+G5xgLx0mx65bLhGZcb6tzAAPV5nsoHPg82pItgAABAYmlo8euTDrfrLyn2SJLs1XD+fOkjXnZGlsNCQ4zwaAE6dX+fYAACA4LezrE63L1yrbSWtvTQ/GZetOVMGcT0aAAGLYAMAANpZtG6/7lu0SQ3NHiVEmfW7q0bq3MHJ/i4LAI6JYAMAACS1Dj2b94/NevObQknS+P4J+sM1o5Rsi/BzZQBwfAQbAACg3eV1mrVwnbYWO2UySXf8IEd3nZej0BCTv0sDgBNCsAEAoBdrdnv17Bc79cLSXXK5vUqIMuupa0bp7Jwkf5cGAJ1CsAEAoJcqqGzQbQvXaNMBpyTprIEJevKqUUph6BmAIESwAQCgF9pS5NQNL3+jijqXYiPD9dClw3TxiDSZTAw9AxCcCDYAAPQyq/dW6cZXV6m2ya2haTa9NPN0pdmt/i4LAE4JwQYAgF5kyfYy/ez1NWpq8Wps3zi9OGOs7NZwf5cFAKeMYAMAQC/xjw1Fuvvt9XJ7DZ07OEnPXz9GVnOov8sCAJ8g2AAA0Au88fU+/eq9TTIM6ZKR6frdlSNlDgvxd1kA4DMEGwAAejDDMPT7T3fo6c92SJKmj8vSvB8P4/o0AHocgg0AAD2U2+PVfYs26e3VhZKkO38wUHdPGcTKZwB6JIINAAA9UEOzW7cvXKfPt5UpxCQ9NG2Yrj8z299lAUCXIdgAANDD1LvcuuHlb7RmX7UsYSH632tHa2peqr/LAoAuRbABAKAHcbk9uuUva7RmX7Xs1nC9PHOsxmTH+bssAOhyBBsAAHoIwzD0q0WbtHxnhaLMoXrtpjM0KjPW32UBQLdgnUcAAHqIF5bu1l/X7FeISXr2+tMINQB6FYINAAA9wDurC/XYR9skSb+6aKjOHZzs54oAoHsRbAAACHKLt5Tq3r99K0m65Zz+umliPz9XBADdj2ADAEAQ++fGYs1auFZeQ7pyTIbuvTDX3yUBgF+weAAAAEHIMAw9v3SXHv9ouyTpgrxUzf+P4Vx8E0CvRbABACDINLu9uv+9TXp7daEkaeaEvrr/4qEKDSHUAOi9CDYAAASRphaPbn5tlf69s1IhJunXl+RpxoS+/i4LAPyOYAMAQJAwDEP3/O1b/XtnpaLMofrf60brB7kp/i4LAAJClywecODAAU2fPl0JCQmKjIzUqFGjtGbNmq44FQAAvUJFnUt3vrVef19fpLAQk16cMZZQAwCH8XmPTXV1tc466yxNnjxZ//rXv5ScnKxdu3YpNjbW16cCAKBX2FtRr+tf/FoHahoVYpIevHSYxg9I8HdZABBQfB5sHnvsMWVmZuqVV15p29a3b19fnwYAgF5hR2mtrn/xa5XVutQvMUp/uGaURmTE+rssAAg4Ph+K9v777+v000/XlVdeqeTkZI0ePVp/+tOfjtre5XLJ6XS2+wEAANKGwhpdvWClympdyk2N0Tu3jCfUAMBR+DzY7N69W88//7xycnL08ccf62c/+5nuvPNO/fnPf+6w/fz582W329t+MjMzfV0SAABBxTAMvbO6UFf+cYWq6ps1IsOuN386TkkxFn+XBgABy2QYhuHLA5rNZp1++un66quv2rbdeeedWrVqlVasWHFEe5fLJZfL1Xbf6XQqMzNTDodDNpvNl6UBABDwymqb9P/e3ahPt5ZJks4fkqzfXz1KMRHhfq4MALqf0+mU3W4/oWzg8zk2aWlpGjp0aLttQ4YM0d/+9rcO21ssFlks/AUKAIDlOyp0+5trVdPQInNoiGZPydHPzhmgEC68CQDH5fNgc9ZZZ2n79u3ttuXn5ys7O9vXpwIAoEeobWrRO6v36zf/2qoWj6FhfWz63ZWjNDg1xt+lAUDQ8HmwufvuuzVhwgQ9+uijuuqqq/TNN99owYIFWrBgga9PBQBA0PtyR7nufHOdqhtaJEkXDU/Tk1ePlCUs1M+VAUBw8fkcG0n64IMPNHfuXO3YsUP9+vXTnDlz9NOf/vSEHtuZcXQAAASz11fu0//8fZO8htQvMUozJ/TV9HHZCmXoGQBI6lw26JJgcyoINgCAns7rNfS/n+/U7z/NlyRdOSZDD00bpohwemkA4HB+XTwAAAAcXW1Ti37+zgZ9sqVUknT75IH6+dRBMpnopQGAU0GwAQCgm+wsq9Mtf1mtXeX1MoeG6MFL83TNGVn+LgsAegSCDQAA3eDjzSX6+TsbVOdyK9UWoeenn6bRWXH+LgsAegyCDQAAXcgwDP3+0x16+rMdkqQz+sXr2etOU1IM13ADAF8i2AAA0EUMw9AjH27Vi8v3SJJuPKuv/t+Phig8NMTPlQFAz0OwAQCgCxiGoUf/+V2oeXjaME0fx8WqAaCr8CcjAAB8zDAM/eZf2/SnLwk1ANBd6LEBAMCHvF5Dj320TX9ctluS9BChBgC6BcEGAAAfaWh26+fvbNC/NpVIkh68NE8/IdQAQLcg2AAA4AMHahr109dWa0uxU+GhJj1y2XBddXqmv8sCgF6DYAMAwCnaVuLUjJe/UanTpcRos16YPkan9433d1kA0KsQbAAAOAVf767Uf/55tWqb3BqUEq1XbjxDfWKt/i4LAHodgg0AACfpo03FuvOt9Wp2ezW2b5xevGGs7JHh/i4LAHolgg0AACfh9ZX79D9/3ySvIU0dmqKnrx2tiPBQf5cFAL0WwQYAgE4wDEO//3SHnv5shyTp2jOy9PC0YQoNMfm5MgDo3Qg2AACcILfHq/v/vllvflMgSbrrvBzNPj9HJhOhBgD8jWADAMAJaGrx6I4312nxllKFmKQHL+XCmwAQSAg2AAAcR2FVg259Y402HXDKHBaip68ZrQuGpfq7LADAYQg2AAAcw6dbSjXnnfVyNrkVFxmuF6aP0Zn9E/xdFgDgewg2AAAcxYtf7tbDH26VJI3OitWz152mdK5RAwABiWADAMD3GIahxz/erueX7JIk/WRctu6/eKjMYSF+rgwAcDQEGwAADtPi8epXizbp7dWFkqRfXjBYt04awMpnABDgCDYAABxU53LrtjfWall+uUJM0qOXDdc1Z2T5uywAwAkg2AAAIOlATaP+87XV2lrslDU8VE9fO1pThqb4uywAwAki2AAAejXDMLTwmwLN/+c21bncSow26+WZYzUiI9bfpQEAOqHLZ0HOnz9fJpNJs2fP7upTAQDQKQWVDbr+xa9136JNqnO5NSY7TotuO4tQAwBBqEt7bFatWqUFCxZoxIgRXXkaAAA6xes19NqKvXr8o+1qbPEoIjxEv/xhrmZM6KvQEBYJAIBg1GXBpq6uTtdff73+9Kc/6eGHHz5qO5fLJZfL1Xbf6XR2VUkAAMjR0KLbFq7Rv3dWSpLO7Bevx68YoeyEKD9XBgA4FV02FG3WrFm66KKLdP755x+z3fz582W329t+MjMzu6okAEAv5vZ4tWjdfv342eX6985KRZpD9dCleXrzp+MINQDQA3RJj81bb72lNWvWaPXq1cdtO3fuXM2ZM6ftvtPpJNwAAHxqf3WDZr+1Xqv3VUuS0u0RemnmWA1Js/m5MgCAr/g82BQWFuquu+7SJ598ooiIiOO2t1gsslgsvi4DAABJ0r82Fuuev30rZ5Nb0ZYw3XruAE0fly27NdzfpQEAfMhkGIbhywO+9957uuyyyxQaGtq2zePxyGQyKSQkRC6Xq92+73M6nbLb7XI4HLLZ+EsaAODkNDS79dAHW/XmNwWSpFGZsXr6mtHKSoj0c2UAgBPVmWzg8x6b8847Txs3bmy37cYbb1Rubq7uueeeY4YaAAB84bOtpbr/vU0qcjTJZJJunTRAd08ZpPDQLr/KAQDAT3webGJiYjRs2LB226KiopSQkHDEdgAAfMnt8eq3n+TrhaW7JEkZcVY9dvkInTUw0c+VAQC6WpdexwYAgO5SXuvSnW+u04rdrcs433hWX91zQa4iwhkpAAC9QbcEmyVLlnTHaQAAvdSqvVW6feFalTpdijSH6vErRujiEen+LgsA0I3osQEABK2mFo9+/2m+FizbLcOQBiZH64Xpp2lgcoy/SwMAdDOCDQAgKG064NCcd9Yrv7ROknT5aRl68NI8RVn4agOA3oj/+wMAgkptU4ueX7JLC5btlttrKDHarEcvG66pean+Lg0A4EcEGwBA0FiaX65f/HWDymtdkqQfDU/Vw9OGKz7K7OfKAAD+RrABAAS8phaPHv9ou17+9x5JUr/EKM29MFdThqbIZDL5uToAQCAg2AAAAtqqvVWa++5G7SxrnUszY3y25v5oCMs4AwDaIdgAAAJSVX2zfvvJdi38ukCSlBht1uNXjNAPclP8XBkAIBARbAAAAaXe5dbLy/dowbLdqnW5JUnXjM3UvRfmKjaSuTQAgI4RbAAAAaGpxaPXV+7TC0t3qaKuWZI0NM2m+y8eqvEDEvxcHQAg0BFsAAB+5XJ79PaqQj37xU6VOltXO8uKj9TPpw7SJSPSFRLC4gAAgOMj2AAA/KKpxaN31x7QM5/vUJGjSZKUbo/QHefl6IoxGQoPDfFzhQCAYEKwAQB0q4LKBr3+9T69s7pQNQ0tkqQUm0W3Tx6oq8ZmyhLGamcAgM4j2AAAupzHa2hpfpn+vGKfluaXyzBat/eJteqmif10/ZlZLN8MADglBBsAQJepqm/WO6sL9cbX+1RY1di2/ZxBSbphXLYm5yYrlDk0AAAfINgAAHyqzNmkxVtL9fHmUq3YVaEWT2v3jN0arivHZGj6uGz1TYzyc5UAgJ6GYAMAOGV7K+r18eYSfby5ROsKa9qGmknSsD423TCury4ZmS6rmeFmAICuQbABAHSaYRjaXOTUx5tL9MnmUm0vrW23f2RmrH6Yl6KpQ1M1MDnaT1UCAHoTgg0A4IRU1Ln09e4qrdhdoS+2letAzXdzZsJCTBrXP0FT81I0ZWiK0uxWP1YKAOiNCDYAgA5V1Tfr692VWrG7Uit3Vyq/tK7d/ojwEE0alKQf5qXqvNwU2SPD/VQpAAAEGwDAQdX1zfp6T5VWHgwy20pqj2iTmxqjcf0TNGFAgs7OSWLODAAgYBBsAKAXqm1q0bf7HVpfWKNNBxzaXORUQVXDEe0Gp8RoXP94jR+QoDP6JSg+yuyHagEAOD6CDQD0cHUut7YWO7XpgEObDjj17f4a7Syva7dy2SE5ydEa1z/hYJCJV2K0pfsLBgDgJBBsAKAHqa5v1uYipzYVObTpgENbipzaU1nfYYjpE2vVqKxYjcywKy/drqFpNsXRIwMACFIEGwAIQg3Nbu0qq9eu8jrtLKvT9tJabSlytlup7HCptggN62PT0HS7RvSxa2RmrJJi6I0BAPQcPg828+fP17vvvqtt27bJarVqwoQJeuyxxzR48GBfnwoAejyP19C+ynptK6nVtmKntpbUaluJU4VVHQcYSeqbEKm8dLvy+thab9NtDCkDAPR4Pg82S5cu1axZszR27Fi53W7dd999mjp1qrZs2aKoqChfnw4Aeozq+ubWAFPi1Lbi1tvtpbVqavF22D4hyqwBydEamBytgUnRyku3aUi6TbYIll0GAPQ+JsPoaOS175SXlys5OVlLly7VOeecc9z2TqdTdrtdDodDNputK0sDAL9oaHZrd3m9dpbVtQsyJc6mDttHhIdocEqMclNtyk1rvR2cGsMKZQCAHq8z2aDL59g4HA5JUnx8fIf7XS6XXC5X232n09nVJQFAlzMMQ1X1zdpZVqedB+fB7Cqv166yuqPOg5GkzHirclNtGpIao9w0m3JTY5SdEKXQEFM3Vg8AQPDp0mBjGIbmzJmjiRMnatiwYR22mT9/vubNm9eVZQBAlzAMQwdqGpVfWqudZXU6UN2oIkeTimoadaCmUTUNLUd9bEKUWQOSojUoNbo1yKTFaFBKjGIYRgYAwEnp0qFos2bN0ocffqjly5crIyOjwzYd9dhkZmYyFA1AwDAMQ8WOptbel7I67Sir0/YSp/JL61Tnch/1cSaTlBFn1YCk1jkwA5OjW+fEJEWzrDIAACcgIIai3XHHHXr//fe1bNmyo4YaSbJYLLJYWK0HgP8ZhqHyOpfyS1qXT95e4tT20jrtLK1VfbOnw8eEhZhag0tKtLLiI5Uea1W6PULpsVb1TYiS1Rzazc8CAIDeyefBxjAM3XHHHVq0aJGWLFmifv36+foUAHDKKutc2l5aqx2ldcovrdWOsjrtKK1V9VGGj4WFmJSdEKmBydHKSY7RoNQYDU6JUb/EKJnDQrq5egAA8H0+DzazZs3SwoUL9fe//10xMTEqKSmRJNntdlmtVl+fDgCOqc7l1vaSWuWX1rbd5pfWqqKuucP2JpPUNyFKg1KiNTjVpsEpMRqUEq3sBAIMAACBzOdzbEymjlfueeWVVzRz5szjPp7lngGcrBJHk9YXVmvDfofyS2q1raT2qCuQmUxSVnxka+9LSrRyUlp7YgYkRTN8DACAAOHXOTZdfFkcAJAkNbV4tOmAQ+sKarSusFrrCmpU7Oj4OjDJMRYNPjh0bFBqjHJTYzQwOVqR5i5f8R4AAHQTvtUBBDzDMFRQ1dAaYgqqta6wRluKnHJ72/8hJcQkDU61aVSmXUPSDg0ji2EFMgAAegGCDYCA42xq0cb9jtYQU1CjdYU1qqo/ck5MYrRFp2XFanRWnEZlxmpEhl1RFv63BgBAb8S/AAD4ldvj1eYipzbsr9GGQoc27K/RrvI6fX9Uqzk0RHl9bBqdGafRWbEanRWrPrHWo87rAwAAvQvBBkC3K3M2aUl+uZbml+vL/HI5m468yGVmvFUjM2J1WlZrkBmabpMljEn9AACgYwQbAF2uur5ZK3ZXasWuSq3YXamdZXXt9tut4RqdFasRGbEamWHXyMxYJUZz4V4AAHDiCDYAfK6pxaPVe6u1fGeF/r2zQpuKHO2GlplM0og+dk0anKxJg5I0KjNWoSEMKQMAACePYAPglHm8hjYdcOjfu1qDzOq91XK5ve3aDEqJ1oQBiRo/IEFn9I1npTIAAOBTBBsAJ+VATaOWbC/TsvxyrdhVecQ8mRSbRWcNTNTZOYk6a0Cikm0RfqoUAAD0BgQbACekodndNrxsyfYy5Ze2nycTExGmcf0TdNaABJ01MFEDk6NZsQwAAHQbgg2ADrncHq0rqNFXuyq1clel1hVWq8Xz3USZEJM0JjtOkwYl6ayBiRrex66w0BA/VgwAAHozgg0ASVKLx6tv9zu0cnelvtrV8TyZPrFWjR+QoHMHJ+nsgUmyR4b7qVoAAID2CDZAL1Xb1KItBy+M+dWuSq3aU6X6Zk+7NkkxFo3vn6AJAxI0YUCiMuO5ICYAAAhMBBugFyirbdLmIqe2FDm1ucihzUVO7atsOKJdbGS4xvdP0PgBrWFmQBLzZAAAQHAg2AA9iGEYKqhq0ObDAszmIqfKa10dtk+zRygv3a5x/eM1fkCChqTaFML1ZAAAQBAi2ABBqKnFo/3VDdpXeeinXltLarW1yKlal/uI9iaT1C8xSnnpduWl2w7+2BXPtWQAAEAPQbABAoxhGHI2uVVe61JFnUtltS4VVrWGl32VDSqoalCJs0mG0fHjzaEhGpQarbw0u/L6tIaY3FSboix83AEAQM/Fv3SAbmAYhhyNLaqoc6m8tlkVda62n9YAc3Dbwd+bPd7jHjPKHKqshChlx0cqOyFSA5OjlZduV05KtMJZdhkAAPQyBBvgJLk9XlXWHwopzaqsc6myrlkV9a23lXWHBZY6V7trwJyIGEuYEmMsSoq2KCPeqqyDASYrPkrZCZFKiDIzsR8AAOAggg1wmGa3V5X1LlUc7FUp/36vSu13PS3VDS2dPr4tojWsJEa3BpbEaHPr7we3te5r3RYRHtoFzxAAAKBnItigx2tq8bT1qhweTCrqmluDS+139x2NnQsrISYpPuq7MJIYbVZCtEUJ0WYlRh28PRhYEqLMhBUAAIAuQrBBUDo0Z6WopkklzkaVOV1tk+1bw8p3oaWjVcKOJSzE9F0gOfQTYz7Yw/Ld/cRoi+IizQpleWQAAAC/I9ggINW53CquaVSRo6ndbbGjSUWORpU4mtTQ7Dnh45lDQ1p7VQ4N+To8uBwc/nUouNit4VzLBQAAIMgQbNDtmlo8Kv5eYClyNKnY0ajimtbgUtt0Yr0s8VFmpdoilGKzKDkmoq1nJSkmol2QsUWEMdEeAACgByPYwKc8XkNltU0qqmlSUU2jig72shw47Peq+uYTOlZMRJjS7ValxUYozW5Vuj1CabHf3abZI5izAgAAAEkEG3SSx2uoxNmkwqoG7a9u/O62ukEHqhtV4mySx3v8ZY0jzaFKs0coPdaqVFv7wHLoNpoLSgIAAOAEddm/HJ977jk98cQTKi4uVl5enp566imdffbZXXU6+IjXa6i8ztVhcNlf3drr4j5OcAkLMSnFFqE+sValxx4MK4cCi92qPrFW2awMDQMAAIDvdEmwefvttzV79mw999xzOuuss/THP/5RF154obZs2aKsrKyuOCWOwzAM1brcqqxrVlV969LGVfWtF5EscrT2wByobtT+mkY1u4991fvwUJP6xFqVERepzPjW24y41ts+sVYlxVhYKQwAAADdymQYRucuh34CzjzzTJ122ml6/vnn27YNGTJE06ZN0/z584/5WKfTKbvdrt9+sFYRkTEdtjm85EO/Gu32H/a7jt328MYdHaOjx59I26P82lb78Y51rHN//1iS5DEMNTZ71dTiUWOLR43NHjW0eNTU7JGjsUWV9Sd+5fvQEJPS7BHKiLMqMy6yXYDJjLcqOSaC4AIAAIAudygbOBwO2Wy2Y7b1eY9Nc3Oz1qxZo3vvvbfd9qlTp+qrr746or3L5ZLL5Wq773Q6JUl/+HSnQiyRvi6v14syhyo+2qyEqNYLRsZHmQ+GmEhlxLcGmVR7hMJDQ/xdKgAAAHDCfB5sKioq5PF4lJKS0m57SkqKSkpKjmg/f/58zZs374jt00alyxIZrcOnYZj03Z12203ftehwv45se9RjtWt7ZK/E8erp6FzfP1YH5Z5gPcc4r8kka3ioIs2hsoaHKuLgrTU8VDZrmBKiW4MMq4gBAACgJ+qyxQO+HwoMw+gwKMydO1dz5sxpu+90OpWZmamHLxt+3O4mAAAAAJC6INgkJiYqNDT0iN6ZsrKyI3pxJMlischisfi6DAAAAAC9iM8nUpjNZo0ZM0aLFy9ut33x4sWaMGGCr08HAAAAAF0zFG3OnDn6yU9+otNPP13jx4/XggULVFBQoJ/97GddcToAAAAAvVyXBJurr75alZWVevDBB1VcXKxhw4bpn//8p7Kzs7vidAAAAAB6uS65js2p6Mxa1QAAAAB6rs5kAy5WAgAAACDoEWwAAAAABL0uu47NyTo0Ms7pdPq5EgAAAAD+dCgTnMjsmYALNpWVlZKkzMxMP1cCAAAAIBBUVlbKbrcfs03ABZv4+HhJUkFBwXGL/76xY8dq1apVXVHWKQnUug5xOp3KzMxUYWFhwC7YEOivoRTYNQbDeywF9mt4SCDXyPt86gK5tkN4n09eINZ0uEB/bwP99TskUOsM9Pf3kEB7/RwOh7KystoywrEEXLAJCWmd9mO32zv9poeGhgbkfyiBWtf32Wy2gK0zGF7DYKgxkN9jKThew2Cokff55AVybd/H+9x5gVhTRwL1vQ2W1y/Q6wzU9/eQQH39DmWEY7bphjq6zaxZs/xdQocCta5gEgyvYTDUGOiC4TUMhhoDXSC/hoFcW7AJxNcyEGsKJsHy+gVLnYEqmF8/rmMDXvNegPe4d+B97h14n3su3tuejff35AT1dWwsFot+/etfy2Kx+LuUXoPXvOfjPe4deJ97B97nnov3tmfj/T05nXndAq7HBgAAAAA6K+B6bAAAAACgswg2AAAAAIIewQYAAABA0CPYAAAAAAh6BBugFzOZTHrvvff8XQYAAL0W38W+Q7DpBb766iuFhobqggsu8Hcp6GIzZ87UtGnT/F0GukBhYaFuvvlmpaeny2w2Kzs7W3fddZcqKytP6PFLliyRyWRSTU1N1xaKU8JnuGfj+7h34HPsPwSbXuDll1/WHXfcoeXLl6ugoOCUjuXxeOT1en1UGYATsXv3bp1++unKz8/Xm2++qZ07d+qFF17QZ599pvHjx6uqqsrfJQI4AXwfA12LYNPD1dfX65133tGtt96qiy++WK+++mrbvkN/wf3www81cuRIRURE6Mwzz9TGjRvb2rz66quKjY3VBx98oKFDh8pisWjfvn1+eCborL59++qpp55qt23UqFF64IEH/FIPTt6sWbNkNpv1ySefaNKkScrKytKFF16oTz/9VAcOHNB9990nSXK5XPrlL3+pzMxMWSwW5eTk6KWXXtLevXs1efJkSVJcXJxMJpNmzpzpx2eEE/HRRx9p4sSJio2NVUJCgi6++GLt2rWrbf/evXtlMpn07rvvavLkyYqMjNTIkSO1YsUKP1aNo+H7uHfiu7h7EWx6uLfffluDBw/W4MGDNX36dL3yyiv6/jVZ//u//1u//e1vtWrVKiUnJ+vHP/6xWlpa2vY3NDRo/vz5evHFF7V582YlJyd399MAeq2qqip9/PHHuu2222S1WtvtS01N1fXXX6+3335bhmHohhtu0FtvvaWnn35aW7du1QsvvKDo6GhlZmbqb3/7myRp+/btKi4u1h/+8Ad/PB10Qn19vebMmaNVq1bps88+U0hIiC677LIj/kp/33336Re/+IXWr1+vQYMG6dprr5Xb7fZT1Tgavo+Brhfm7wLQtV566SVNnz5dknTBBReorq5On332mc4///y2Nr/+9a81ZcoUSdJrr72mjIwMLVq0SFdddZUkqaWlRc8995xGjhzZ/U8A6OV27NghwzA0ZMiQDvcPGTJE1dXVWrVqld555x0tXry47fPdv3//tnbx8fGSpOTkZMXGxnZ53Th1l19+ebv7L730kpKTk7VlyxYNGzasbfsvfvELXXTRRZKkefPmKS8vTzt37lRubm631otj4/sY6Hr02PRg27dv1zfffKNrrrlGkhQWFqarr75aL7/8crt248ePb/s9Pj5egwcP1tatW9u2mc1mjRgxonuKBtAph/7iu2fPHoWGhmrSpEl+rgi+smvXLl133XXq37+/bDab+vXrJ0lHzM04/P/PaWlpkqSysrLuKxTHxfcx0D3osenBXnrpJbndbvXp06dtm2EYCg8PV3V19TEfazKZ2n63Wq3t7iM4hISEHDHM4fAhDQgOAwcOlMlk0pYtWzpcZWfbtm2Ki4tTZGRk9xeHLnXJJZcoMzNTf/rTn5Seni6v16thw4apubm5Xbvw8PC23w/9v5pJ5YGF7+Pei+/i7kWPTQ/ldrv15z//Wb/73e+0fv36tp8NGzYoOztbb7zxRlvblStXtv1eXV2t/Px8hjD0AElJSSouLm6773Q6tWfPHj9WhJORkJCgKVOm6LnnnlNjY2O7fSUlJXrjjTd09dVXa/jw4fJ6vVq6dGmHxzGbzZJaV1JC4KusrNTWrVv1q1/9Suedd17bkEMEH76Peze+i7sXwaaH+uCDD1RdXa2bb75Zw4YNa/dzxRVX6KWXXmpr++CDD+qzzz7Tpk2bNHPmTCUmJrL+eg/wgx/8QH/5y1/05ZdfatOmTZoxY4ZCQ0P9XRZOwjPPPCOXy6Uf/vCHWrZsmQoLC/XRRx9pypQp6tOnjx555BH17dtXM2bM0E033aT33ntPe/bs0ZIlS/TOO+9IkrKzs2UymfTBBx+ovLxcdXV1fn5WOJa4uDglJCRowYIF2rlzpz7//HPNmTPH32XhJPB93LvxXdy9CDY91EsvvaTzzz9fdrv9iH2XX3651q9fr7Vr10qSfvOb3+iuu+7SmDFjVFxcrPfff7/tr7sILl6vV2FhrSNM586dq3POOUcXX3yxfvSjH2natGkaMGCAnyvEycjJydHq1as1YMAAXX311RowYID+67/+S5MnT9aKFSvaFgZ4/vnndcUVV+i2225Tbm6ufvrTn6q+vl6S1KdPH82bN0/33nuvUlJSdPvtt/vzKeEoDn2GQ0JC9NZbb2nNmjUaNmyY7r77bj3xxBP+Lg8nge/j3ofvYv8xGd8f+IdeY8mSJZo8ebKqq6tZJamHuOCCCzRw4EA988wz/i4FwEngM9w78X3cs/A59h96bIAeoLq6Wh9++KGWLFnSbulQAMGBzzAQ/Pgc+x+rogE9wE033aRVq1bp5z//uS699FJ/lwOgk/gMA8GPz7H/MRQNAAAAQNBjKBoAAACAoEewAQAAABD0CDYAAHSj+fPna+zYsYqJiVFycrKmTZum7du3t2tjGIYeeOABpaeny2q16txzz9XmzZvb9ldVVemOO+7Q4MGDFRkZqaysLN15551yOBztjvPII49owoQJioyMZLUtAD0ewQYAgG60dOlSzZo1SytXrtTixYvldrs1derUtmsOSdLjjz+uJ598Us8884xWrVql1NRUTZkyRbW1tZKkoqIiFRUV6be//a02btyoV199VR999JFuvvnmdudqbm7WlVdeqVtvvbVbnyMA+AOLBwAA4Efl5eVKTk7W0qVLdc4558gwDKWnp2v27Nm65557JEkul0spKSl67LHHdMstt3R4nL/+9a+aPn266uvr2y4OeMirr76q2bNnq6ampqufDgD4DT02AAD40aHhY/Hx8ZKkPXv2qKSkRFOnTm1rY7FYNGnSJH311VfHPI7NZjsi1ABAb0GwAQDATwzD0Jw5czRx4kQNGzZMklRSUiJJSklJadc2JSWlbd/3VVZW6qGHHjpqbw4A9Ab8WQcAAD+5/fbb9e2332r58uVH7DOZTO3uG4ZxxDZJcjqduuiiizR06FD9+te/7rJaASDQ0WMDAIAf3HHHHXr//ff1xRdfKCMjo217amqqJB3RO1NWVnZEL05tba0uuOACRUdHa9GiRQoPD+/6wgEgQBFsAADoRoZh6Pbbb9e7776rzz//XP369Wu3v1+/fkpNTdXixYvbtjU3N2vp0qWaMGFC2zan06mpU6fKbDbr/fffV0RERLc9BwAIRAxFAwCgG82aNUsLFy7U3//+d8XExLT1zNjtdlmtVplMJs2ePVuPPvqocnJylJOTo0cffVSRkZG67rrrJLX21EydOlUNDQ16/fXX5XQ65XQ6JUlJSUkKDQ2VJBUUFKiqqkoFBQXyeDxav369JGngwIGKjo7u/icPAF2I5Z4BAOhGHc2TkaRXXnlFM2fOlNTaqzNv3jz98Y9/VHV1tc4880w9++yzbQsMLFmyRJMnT+7wOHv27FHfvn0lSTNnztRrr712RJsvvvhC55577ik/FwAIJAQbAAAAAEGPOTYAAAAAgh7BBgAAAEDQI9gAAAAACHoEGwAAAABBj2ADAAAAIOgRbAAAAAAEPYINAAAAgKBHsAEAAAAQ9Ag2AAAAAIIewQYAAABA0CPYAAAAAAh6/x+yGap45etoPAAAAABJRU5ErkJggg==", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:00.226979\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pop = countries[(countries['Country_Region']=='US') & countries['Province_State'].isna()]['Population'].iloc[0]\n", "df['pinfected'] = df['infected']*100 / pop\n", @@ -321,9 +2275,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 141, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEiCAYAAAArl0flAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGg0lEQVR4nO3deXxU9b3/8fdMlkkm+76QEAKEfXFBEUQBBdyrYqsVtVptq4JW6vXSWnt/ovcKrW292Eu1al2wda9rXRBcCCoiAWTfIUAC2bfJOpOZOb8/QgaGCWggM8mE1/PxmMcjOedk8pk5s5z3+S7HZBiGIQAAAAAIYubuLgAAAAAAThbBBgAAAEDQI9gAAAAACHoEGwAAAABBj2ADAAAAIOgRbAAAAAAEPYINAAAAgKAX2t0FHM3tduvgwYOKiYmRyWTq7nIAAAAAdBPDMFRfX6/MzEyZzcdvk+lxwebgwYPKzs7u7jIAAAAA9BBFRUXKyso67jY9LtjExMRIais+Nja2m6sBAAAA0F1sNpuys7M9GeF4elywae9+FhsbS7ABAAAA8L2GqDB5AAAAAICgR7ABAAAAEPQINgAAAACCHsEGAAAAQNAj2AAAAAAIegQbAAAAAEGPYBMghmHow40l2lPR0N2lAAAAAL1Oj7uOTW/12bZyzXxprSRp7+8v6+ZqAAAAgN6FFpsAWbOvprtLAAAAAHotgk2AuAyju0sAAAAAei2CTYC43QQbAAAAwF8INgHicnd3BQAAAEDvRbAJEDdd0QAAAAC/IdgEiIuuaAAAAIDfEGwChMkDAAAAAP8h2ASIQbABAAAA/IZgEyB0RQMAAAD8h2ATIMyKBgAAAPgPwSZAmBUNAAAA8B+CTYA46YoGAAAA+A3BJkDcBBsAAADAbwg2AUJXNAAAAMB/CDYBwqxoAAAAgP8QbAKEFhsAAADAfwg2AUKLDQAAAOA/BJsAcZFrAAAAAL8h2AQIs6IBAAAA/kOwCRDG2AAAAAD+Q7AJEMbYAAAAAP5DsAkQWmwAAAAA/+lUsJk7d65MJpPXLT093bPeMAzNnTtXmZmZioyM1KRJk7R58+YuLzoYHdliYxByAAAAgC7V6Rab4cOHq6SkxHPbuHGjZ92jjz6qxx57TAsXLlRBQYHS09M1depU1dfXd2nRwejIYEOvNAAAAKBrhXb6D0JDvVpp2hmGoQULFuiBBx7Q9OnTJUmLFi1SWlqaXn75Zd1+++0d3p/dbpfdbvf8brPZOltSUHAZR7fYmLqvGAAAAKCX6XSLzc6dO5WZmanc3Fz9+Mc/1p49eyRJhYWFKi0t1bRp0zzbWiwWTZw4UStWrDjm/c2fP19xcXGeW3Z29gk8jJ7P5T78My02AAAAQNfqVLAZO3asXnzxRX388cd65plnVFpaqvHjx6uqqkqlpaWSpLS0NK+/SUtL86zryP3336+6ujrPraio6AQeRs935LgaJhIAAAAAulanuqJdcsklnp9HjhypcePGacCAAVq0aJHOOeccSZLJ5N3FyjAMn2VHslgsslgsnSkjKHlPHtCNhQAAAAC90ElN9xwVFaWRI0dq586dnnE3R7fOlJeX+7TinIpctNgAAAAAfnNSwcZut2vr1q3KyMhQbm6u0tPTtXTpUs96h8Oh/Px8jR8//qQLDXZuN8EGAAAA8JdOdUW77777dMUVV6hv374qLy/X//zP/8hms+nmm2+WyWTS7NmzNW/ePOXl5SkvL0/z5s2T1WrVjBkz/FV/0PBusenGQgAAAIBeqFPBpri4WNdff70qKyuVkpKic845RytXrlROTo4kac6cOWpubtbMmTNVU1OjsWPHasmSJYqJifFL8cHEfcSsaFygEwAAAOhaJqOHHWXbbDbFxcWprq5OsbGx3V1Olxk3/1OV1LVIktb+11QlRoV3c0UAAABAz9aZbHBSY2zw/bkYYwMAAAD4DcEmQJwEGwAAAMBvCDYB0uo6PMiGXAMAAAB0LYJNgDhdXKATAAAA8BeCTYA4j5gWja5oAAAAQNci2AQIY2wAAAAA/yHYBIDLbXh1PyPXAAAAAF2LYBMAR04cINFiAwAAAHQ1gk0AHNkNTZLc5BoAAACgSxFsAsBJiw0AAADgVwSbAGh1eQcZg2ADAAAAdCmCTQAcOdWzRFc0AAAAoKsRbALA6Tp6jA3JBgAAAOhKBJsA8Jk8wH2MDQEAAACcEIJNADB5AAAAAOBfBJsA8J08oJsKAQAAAHopgk0AHD15gCGSDQAAANCVCDYBcHSLDbOiAQAAAF2LYBMArqMnD6AvGgAAANClCDYBcPTkAVygEwAAAOhaBJsAaPVpsemmQgAAAIBeimATAD7TPZNsAAAAgC5FsAkAJg8AAAAA/ItgEwA+0z0zxgYAAADoUgSbAPCdFa2bCgEAAAB6KYJNAPh2RSPZAAAAAF3ppILN/PnzZTKZNHv2bM8ywzA0d+5cZWZmKjIyUpMmTdLmzZtPts6g5jN5AMEGAAAA6FInHGwKCgr09NNPa9SoUV7LH330UT322GNauHChCgoKlJ6erqlTp6q+vv6kiw1WR0/3TK4BAAAAutYJBZuGhgbdcMMNeuaZZ5SQkOBZbhiGFixYoAceeEDTp0/XiBEjtGjRIjU1Nenll1/u8L7sdrtsNpvXrbehxQYAAADwrxMKNrNmzdJll12mKVOmeC0vLCxUaWmppk2b5llmsVg0ceJErVixosP7mj9/vuLi4jy37OzsEympR3O6aLEBAAAA/KnTwebVV1/VmjVrNH/+fJ91paWlkqS0tDSv5WlpaZ51R7v//vtVV1fnuRUVFXW2pB6v1U2LDQAAAOBPoZ3ZuKioSPfcc4+WLFmiiIiIY25nMpm8fjcMw2dZO4vFIovF0pkygo6LC3QCAAAAftWpFps1a9aovLxcZ555pkJDQxUaGqr8/Hz95S9/UWhoqKel5ujWmfLycp9WnFOJ7+QBJBsAAACgK3Uq2Fx44YXauHGj1q1b57mNGTNGN9xwg9atW6f+/fsrPT1dS5cu9fyNw+FQfn6+xo8f3+XFBwvfyQO6qRAAAACgl+pUV7SYmBiNGDHCa1lUVJSSkpI8y2fPnq158+YpLy9PeXl5mjdvnqxWq2bMmNF1VQcZp5sLdAIAAAD+1Klg833MmTNHzc3NmjlzpmpqajR27FgtWbJEMTExXf2vgkYr0z0DAAAAfnXSwWbZsmVev5tMJs2dO1dz58492bvuNZjuGQAAAPCvE7qODTrnjJx4/fDMLM/vtNgAAAAAXavLu6LB19WnZ+nq07NUUW9X/o4KJg8AAAAAuhgtNgFkPnQpH1psAAAAgK5FsAmg9ouUch0bAAAAoGsRbALocItN99YBAAAA9DYEmwA63GLTzYUAAAAAvQzBJoAYYwMAAAD4B8EmgMyMsQEAAAD8gmATQO3BhjE2AAAAQNci2ASQia5oAAAAgF8QbAKIFhsAAADAPwg2AdQ+eQBjbAAAAICuRbAJoMMtNgQbAAAAoCsRbALIRFc0AAAAwC8INgHEdWwAAAAA/yDYBNDh69h0cyEAAABAL0OwCSDPdM/0RQMAAAC6FMEmgNrH2BBrAAAAgK5FsAkgxtgAAAAA/kGwCSAu0AkAAAD4B8EmgLhAJwAAAOAfBJsAMnGBTgAAAMAvCDYBRFc0AAAAwD8INgHE5AEAAACAfxBsAshs5gKdAAAAgD90Ktg8+eSTGjVqlGJjYxUbG6tx48bpo48+8qw3DENz585VZmamIiMjNWnSJG3evLnLiw5WXKATAAAA8I9OBZusrCz9/ve/1+rVq7V69WpdcMEFuvLKKz3h5dFHH9Vjjz2mhQsXqqCgQOnp6Zo6darq6+v9UnywYYwNAAAA4B+dCjZXXHGFLr30Ug0aNEiDBg3SI488oujoaK1cuVKGYWjBggV64IEHNH36dI0YMUKLFi1SU1OTXn75ZX/VH1QYYwMAAAD4xwmPsXG5XHr11VfV2NiocePGqbCwUKWlpZo2bZpnG4vFookTJ2rFihXHvB+73S6bzeZ1663aW2y4jg0AAADQtTodbDZu3Kjo6GhZLBbdcccdevvttzVs2DCVlpZKktLS0ry2T0tL86zryPz58xUXF+e5ZWdnd7akoHGowYauaAAAAEAX63SwGTx4sNatW6eVK1fqzjvv1M0336wtW7Z41rdfhLKdYRg+y450//33q66uznMrKirqbElBo/15MESyAQAAALpSaGf/IDw8XAMHDpQkjRkzRgUFBXr88cf161//WpJUWlqqjIwMz/bl5eU+rThHslgsslgsnS0jKDF5AAAAAOAfJ30dG8MwZLfblZubq/T0dC1dutSzzuFwKD8/X+PHjz/Zf9MrtE8ewBgbAAAAoGt1qsXmt7/9rS655BJlZ2ervr5er776qpYtW6bFixfLZDJp9uzZmjdvnvLy8pSXl6d58+bJarVqxowZ/qo/qLRfoNPt7uZCAAAAgF6mU8GmrKxMN910k0pKShQXF6dRo0Zp8eLFmjp1qiRpzpw5am5u1syZM1VTU6OxY8dqyZIliomJ8UvxwcbEdM8AAACAX3Qq2Dz77LPHXW8ymTR37lzNnTv3ZGrqtRhjAwAAAPjHSY+xwffHGBsAAADAPwg2AXS4xYZgAwAAAHQlgk0AmeiKBgAAAPgFwSaAzEweAAAAAPgFwSaA2ruikWsAAACArkWwCSCmewYAAAD8g2ATQCYmDwAAAAD8gmATQIene+7eOgAAAIDehmATQFygEwAAAPAPgk0AcYFOAAAAwD8INgHEGBsAAADAPwg2AURXNAAAAMA/CDYBxAU6AQAAAP8g2AQQF+gEAAAA/INgE0BcoBMAAADwD4JNAJmZPAAAAADwC4JNADF5AAAAAOAfBJsA4jo2AAAAgH8QbALo8Bib7q0DAAAA6G0INgHEBToBAAAA/yDYBBDTPQMAAAD+QbAJIMbYAAAAAP5BsAkgZkUDAAAA/INgE0BcoBMAAADwD4JNANFiAwAAAPgHwSaADk8eQLIBAAAAulKngs38+fN11llnKSYmRqmpqbrqqqu0fft2r20Mw9DcuXOVmZmpyMhITZo0SZs3b+7SooOVma5oAAAAgF90Ktjk5+dr1qxZWrlypZYuXSqn06lp06apsbHRs82jjz6qxx57TAsXLlRBQYHS09M1depU1dfXd3nxwcZEVzQAAADAL0I7s/HixYu9fn/++eeVmpqqNWvW6Pzzz5dhGFqwYIEeeOABTZ8+XZK0aNEipaWl6eWXX9btt9/edZUHIVpsAAAAAP84qTE2dXV1kqTExERJUmFhoUpLSzVt2jTPNhaLRRMnTtSKFSs6vA+73S6bzeZ1663MZi7QCQAAAPjDCQcbwzB07733asKECRoxYoQkqbS0VJKUlpbmtW1aWppn3dHmz5+vuLg4zy07O/tES+rxaLEBAAAA/OOEg81dd92lDRs26JVXXvFZ1z6WpJ1hGD7L2t1///2qq6vz3IqKik60pCDQPsaGYAMAAAB0pU6NsWl3991367333tPy5cuVlZXlWZ6eni6preUmIyPDs7y8vNynFaedxWKRxWI5kTKCTnuLDbkGAAAA6FqdarExDEN33XWX3nrrLX322WfKzc31Wp+bm6v09HQtXbrUs8zhcCg/P1/jx4/vmoqD2OHr2HRzIQAAAEAv06kWm1mzZunll1/Wu+++q5iYGM+4mbi4OEVGRspkMmn27NmaN2+e8vLylJeXp3nz5slqtWrGjBl+eQDBxGyiKxoAAADgD50KNk8++aQkadKkSV7Ln3/+ed1yyy2SpDlz5qi5uVkzZ85UTU2Nxo4dqyVLligmJqZLCg5mJiYPAAAAAPyiU8HG+B4H5CaTSXPnztXcuXNPtKZey8wFOgEAAAC/OKnr2KBzzIee7e8TEAEAAAB8fwSbAKLFBgAAAPAPgk0AcYFOAAAAwD8INgHUfpFSN002AAAAQJci2AQQ17EBAAAA/INgE0B0RQMAAAD8g2ATQEweAAAAAPgHwaYb0GIDAAAAdC2CTQCZD/VFI9YAAAAAXYtgE0DtY2y4QCcAAADQtQg2AcQYGwAAAMA/CDYBZGJWNAAAAMAvCDYBdOR1bOiOBgAAAHQdgk0AtQcbiYt0AgAAAF2JYBNA5sO5hu5oAAAAQBci2ASQ6YgWGyYQAAAAALoOwSaAaLEBAAAA/INgE0CMsQEAAAD8g2ATQGavrmgkGwAAAKCrEGwCyERXNAAAAMAvCDYB5B1suq8OAAAAoLch2ATQkV3RRLABAAAAugzBJoAYYwMAAAD4B8EmgJjuGQAAAPAPgk0AcYFOAAAAwD8INgHW3mpj0GIDAAAAdJlOB5vly5friiuuUGZmpkwmk9555x2v9YZhaO7cucrMzFRkZKQmTZqkzZs3d1W9Qa99nA0tNgAAAEDX6XSwaWxs1OjRo7Vw4cIO1z/66KN67LHHtHDhQhUUFCg9PV1Tp05VfX39SRfbGxwONiQbAAAAoKuEdvYPLrnkEl1yySUdrjMMQwsWLNADDzyg6dOnS5IWLVqktLQ0vfzyy7r99ttPrtpeoH2YDcEGAAAA6DpdOsamsLBQpaWlmjZtmmeZxWLRxIkTtWLFig7/xm63y2azed16s/YWG3INAAAA0HW6NNiUlpZKktLS0ryWp6WledYdbf78+YqLi/PcsrOzu7KkHqd98oB/rSlWs8PVvcUAAAAAvYRfZkU7clpjqa2L2tHL2t1///2qq6vz3IqKivxRUo/ReCjMPP7pTr1WsL+bqwEAAAB6h06PsTme9PR0SW0tNxkZGZ7l5eXlPq047SwWiywWS1eWETR2VzR2dwkAAABAr9ClLTa5ublKT0/X0qVLPcscDofy8/M1fvz4rvxXQeuyUYcDX6PD2Y2VAAAAAL1Hp1tsGhoatGvXLs/vhYWFWrdunRITE9W3b1/Nnj1b8+bNU15envLy8jRv3jxZrVbNmDGjSwsPVn+dcYYmDNyv+9/aqNqm1u4uBwAAAOgVOh1sVq9ercmTJ3t+v/feeyVJN998s1544QXNmTNHzc3NmjlzpmpqajR27FgtWbJEMTExXVd1kEuMCpckVTc6urkSAAAAoHcwGUbPmnjYZrMpLi5OdXV1io2N7e5y/KJgb7V+9Lev1S/JqmX/Ofm7/wAAAAA4BXUmG/hlVjQcX4I1TBItNgAAAEBXIdh0gwRrW1c0W4tTTpe7m6sBAAAAgh/BphvERYZ5fq5tZgIBAAAA4GQRbLpBaIjZE25q6I4GAAAAnDSCTTdpnxmthimfAQAAgJNGsOkm8UwgAAAAAHQZgk03STw0gUBtE8EGAAAAOFkEm24SfyjY/N9nu/To4m1yuXvU5YQAAACAoEKw6SaJUW1d0Q7UNuuJZbv10aaSbq4IAAAACF4Em27S3mLT7q+f75ZhdL7Vxu02ZHe6uqosAAAAICj1umCzeFOJrvzrV9pb2djdpRxXwlHBZmuJTct2VHTqPlpdbl20YLlGPrhEP31+lUrqmruyRAAAACBo9Lpg8/rqYq0vqtUnW8u6u5TjCjnimb9sZIYk6Zs91Z26j72VjdpZ3iCHy63Pt1fo5udWqY4LfgIAAOAU1OuCTdWh6ZMrGuzdXMnxXTQ8XUMzYvWrKYN0dm6iJGl3RUOn7mNXedv2llCz0mIt2lHWoF+8uFotrXRNAwAAwKml1wWbmkPBprK+Z0+jHG8N10f3nKd7puSpf0qUJGlPB8HG6XJre2m91uyr8RmD0x5sLh+VqRd+erZiLKH6prBav35zg/8fAAAAANCD9Lpg037By8oe3mJzpAEp0ZKkfVVNanW5PcvdbkNXP7FCFy1YrmueXKEPN5Z6/d2uQ0FoYGq0hmbE6qmbzlSI2aR31x3s8WOMAAAAgK7Uq4KN3elSg90pKbiCTXpshCLDQuR0GyqqbvIs31Zar40H6jy/f7jRe0ro9habgaltwWj8wGSdOzBZkvT+hoP+LhsAAADoMXpVsKlpPDxwPpiCjdls8nRH211xuKVlxe5KSVJcZNs1b5bvrJDzUIuO2214xuS0BxtJunxU20QE/17PdXEAAABw6uhVwaa9G5okVTU45HZ3/row3aX/oe5or67ary92tk37/NWutmBz56QBSrCGqb7FqS93VarJ4dSB2ma1tLoVHmJWdkKk534uGp6usBCTtpfVa1upLfAPBAAAAOgGvTbYON1GUE19POBQi82n28p107OrtGZfjVYVtk3/PGFgss4flCJJuuX5Ao3//Wf6v892SpJyk6MUesTc0XGRYbpwSJok6an8PYF8CAAAAOgC9S2t2lXeoLqm4DmW7Ql6V7Bp8p4JLZi6ox3ZnUySZr/2rRodLiVYwzQsI1YXD0/3rKttatXrq4slSWfkJPjc16zJAyVJ76474BmHAwAAgJ6vtsmhCX/4XFMey9dZ8z7hWK4TelWwqWn0Djbf91o2brchh9P93Rv60ZShabplfD/97rKhMpmkoupmSdIPRmfKbDbp4hHpWnTr2frglxN01+SBGpoRqwevGKYHrxjmc18js+I0ZWia3Ib046dXatGKvd3++AAAAPDdPt9e7ul15HC69e66Ayd9n+uLalUVRCf8T1SvCjZVjUe32Di0dEuZbn5ulcrrW475d6v31WjsvE/0+4+2+bvEY4oIC9HcHwzXz87rrx+dmSVJuvr0Pvrd5W3BxWQyaeKgFA3PjNN9Fw3WR/ecp5+em6uIsJAO7+93lw1V30SrKhvsevC9zbrgz8v0ekGR8ndUaGuJzeeaOAAAAOh+y7a3jbXOiIuQJC3ZXHbMbfN3VOgXL67W5oN1x9zm+a8KdeVfv9JNz6467vjzouomFQb55UJ6VbDxabGpt+uhf29W/o4Kvbnm2Gn37W8PqKaptcck2fnTR2npr87XY9eOVljIie2ifslR+uTeifrvq0YoJcai4ppmzXlzg25+bpUuefwLnf/Hz/XhxhKvF7jd6VJhZWNQdeEDACCYGIbBycUAaWl16fWCIh2obQ7Y/zQMQ9tKbWppdR1zG7fb0JtrirV0i29gcbkNLd/RFmwevnKEQs1tE0IdfX1Cl9vQU/m79dPnV2nJljLd+9p6uY4KLS2tLi38bKcefn+LJGlLiU2fby/3+Z+Ndqce+WCLJv1pmS763+XaUFzbYd1Ol1vPfVmomS+tOe5z2uxw6d11B75zfFBlg11NDudxt+ms0C69t27WPnlAWIhJrS5DH28uVXFN2xO/6UDHSdbudOmDQ9d8ufr0PoEp9DuEmE3KS4s56fsJDzXrpnNy9MMzsrTo6716fXWRwsxm7a9uUlF1s2a+tFZR4SFKibGopdWtsvoWtX/W9kuy6j8vGqJLR6bLZDKddC04PofTLYfLrajwkA6f72aHS/k7KlRc06S+iVaNzo5XWmyEZ32ry61tJfUqs7XIEmaWJTREg9KiFW8N73QtbrehdcW1irGEakBKtMxm9v/JMgxDmw/a9PXuKkWGh+ic/okamHry7/GT0dLq0obiOsVbw9T/qElIjtymuKZJiVEWJUYd+7VU3ehQma1FmfGRnunpO1JU3aQ1+2o0MDVaI/rEea1rdrh0oLZJ/ZI6rkVqP2CoV2WDXXGRYRqUFnPMVuuT5XIbKqlrVkW9XVtKbMpJjNI5/ROPWVsgGIahmqZWudyGEqxhx63F6XLLZDIphPdvj1FY2ainl+/RJ1vLZJL08s/HntTngMPp1oHaZvWJj1R4aK86T91lHnx3s15bXSRreIj+6/Jhuv7svj7bOJxuvba6SEXVTeqfHKVrx2Qf83tv04E6vb+hRDePz1FGXKTP+upGhx54e6M+2lSqoRmxeuXnY32+h8ttLfrV6+v01a4qSdLjPz5NV552+PhzQ3GtappaFRMRqsmDU3RO/yR9uatSv3tnk+6/dIiGZ8aprrlVNz+3SuuKaiW1HTduL6vX/322UzPG9lVqTIRaWl364d9WaNOBthlyM+MidLCuRf/32S6NyUlUnLXts3rNvhr98pVvPUHFJUO/fOVbPfOTMZ5jUcMw9N76g3py2W5tK62XJB2sbdEbd4zzOgHf6nLrQE2z7ntjvVbvq9Ho7Hi9ecc4n8+q6kaHPtlapt++tVF9EiL13qwJnnqOZGtp1e/e3qTCgxUd7o+OmIwedtrAZrMpLi5OdXV1io2N/d5/12B36meLCrRyT7UGp8Voe1m91/rsxEh9MecCr2VNDqfe+fagfvv2RqXHRuir31ygUluL7K0uhYWYlZUQ2SsP6psdLj25bJee+aJQzUedUYgMC1GL0+UJOEPSY3TdWdk6Ly9ZmfGR2lfVpNK6FjW3umQJNSsiLESD02OUHG3xuh+321BhVaMO1DSrpK5ZDpehtBiLzhmQpNiIMNU1taqopknl9S36cmeVapsdyoqP1FWn9/FMfd3uQG2zPt1apk0H6tTocGlAcpSmDEvTqKx4r+3qW1q18UCdIsNCNDA1WjER3m+S2iaH8ndUaE9Fo/ZVNSosxKwfjcnWmJwEz4dYVYNduysataeiQfUtTsVFhmnqsDQlHHVQV17fos+3lWvtvlqV2lqUmxylCQOTNbZ/ouf/lte3aFVhtSrr7apqdCguMkzn9E/yOqCrbnTopZX79PTyPaq3OxUbEapJg1N10fB0ndM/UU0Ol15ZtV//+Hqf6u3eZzX6Jlp1et94RYaF6IONJapv8V4fYjbp7H6JmpCXrJpGh/ZVN2lvZaNK61pkNpvUL8mq8QOTdf1ZfRUfFaY9FY3afLBOr68u1vpDH5YxllCNzo7XadnxGj8wSX0Trdpf3aSNxXXaeKBOTQ6XkqLCNTg9RucPStGgIwJ5k8OpNftqtPmgTbVNrcpLjdbZuYle76uWVpdWFVZrXVGtTJKG94nVeXkpPi2VTQ6nlm4p0/6qJrkMQ+mxEZqQl6ysBKvXa25lYZXW7qtRdWOrzsiJ17kDkn32nSTtLKvXV7sqlREfqbP6JXodtBuGoa0l9fpka5k2FNfKEhqisf0TdcmIDKXEHH6dl9ta9MaaYm0taTszl3voC/HokxL1La369Zsb9OHGUs8yk0n61ZRB+vl5/WXI0Lf7a/X17ioV7K1WbVOrQkNMyk6w6srTMjVuQJIcLreqGx3KiI3Uvuq2fRgWatY5uUmKDD98YN/S6tI/V+7Tl7sqta+qSfZWl4ZmxOrSkRm68rRMhZhNWru/Vm+uLdb76w/Kdug1k50Yqf++coTOz0uR2WxSXVOrHlu6XS99s1/OQ2cAB6VFa2xukq46vY9GZ8Xpq91VWrypRLvKG7RmX43aTxROHpyiH5yWqdOyE5QRF6GVe6r0rzXF+qawWhX1h1uDU2Msio4IlTU8RJFhIdpaUq8Gu1PWQydbMuIidFp2gkZlxcnudLXtky1l2nPEWcvwULMmD07R5aMyNbZ/oprsLn1TWKWdZQ3aXdGgBrtTfROjdF5esiYOSvF6LRiGoUaHS2aTZA0PVZmtRVUNDvVJiNSy7eV6dPF2nzOSabEW3TYhV5eOzFBWglXVjQ4V7K3Wt/tr1eRwKsoSqv7JURqbm6TsxLbXudPl1rdFtVq2vVz7qppkMpk0YWCSLhiS5vV6Oha706WVe6rV7HBq4ee7PAcpIWaT0mIsGpQeo6tO66Nd5Q3qk9D2ev7XmmI9/1WhQs0m9U2KUqjZpMtGZej6s/v6BM+WVpeqGx2KiQj1+cxsV1LXrI3FdYqOCFVeakyHddc2ObTpgE1Ot1v9kqKUk2Q94e/PJodTeyoalR4X4fPd0q7B7tSHG0t0sLZZEWEhGpUVpzE5iQoPNaul1aVl28v1ydZyNbQ4lRJj0cRBKTp/UIpPANhT0aD8HRUqtbVoYl6KxvZP8gqDDqdbb64t1vIdFWqwOzU0I1aTB6dqbG6i53tje2m9lm0vV2Flo/ZXNyknKUozzu6rkVltn/Uut6EFn+zQE8t2e51R7xMfqcd/fJrOzEmQyWRSS6tLrxUUqaLeroN1zTpY26wLh6TpmjOzPJ9R9S2tevjfW7Rid5Uq6u1yuNzKjIvQ7CmDNP2MPp4DyJ1l9Xpv/UFtL61XZnykzh+UrEmDUr0O2J0ut1btrVZ9i1Nltha53YauOr2Pz4F4bZNDr68u0qrCatmanTovL1nXnpXtdXJNaju2KK9v0d6qtoCQnWjV0WoaHfpqd6W+2lWpULNZ15/dV8MyfY/1Wlpd2lFWr/oWp87ql+i13wzD0L83lGjzgbpDJ4KjNXVYuqIt3ufqd1c0aOpj+TqyEePXFw/RHRP7e16b+6oaNfOltdp88PDlMW4el6O5Pxju9fo1DEMfbCzRfW+sV0urW1kJkfrL9adrdFa85/Xy0jf79IePtnk+VyUpLzVav7lkiC4c2jZb7Zc7K/XLV79VdaNDJpNkGG2fY6/8fKzOzEmUy23oludX6YudlbpsZIb+esMZWrypRHf8c60kKSYiVMv/c7LmvLlBS7eUKSYiVL+9dKgaWpx65MOtkqSo8BC9dvs4vVZQpH+s3KcEa5h+d9kwTchL1nl/+FwOl1uRYSH66w2na1hGnC77yxeqanQoKyFSv754iH7/0TbPZ9+t5+bqvy4fqoff36Lnv9rrqUGS6lucykqI1A/PzNI9F+ZpV3mDbnm+wOdz89oxWbp4RLomD05Vc6tLt/9jjb7YWem1zaTBKbpxbI4mDU5RaIhZ73x7QH/8eLtsza2qtzvltjepaMG13ysbBH2wcTjd+t9Pduip/N2eF+/lozL0/gbfC1Su+39TPW/YRrtTF/x5mcpsbV+0t5/fX/dfOlTTn/hKa/fXSpJmT8nT7CmDuuaB9UCtLrf2VTWqrrlVIea26+EkRoWrwe7U378o1NPL9/gEn46YTdLo7HgNSY9RTESYKuvtWrG7SqU233FNoWaTLKFmNTqOfb95qdEamRWnnMQo7Siv10cbS9RRl9DzB6UoLzVapbYWFVY0amd5vVpdbRuGhZh0Zk6CBqfFqG9SlNbsq9YnW8rlcPlOopAUFa4BqdGqbLBrT4Vv39LIsBCdkROvzLi2s9G7Kxq0fGelT5Ov1HawMTorTqFms9bur/EcFB7pzJwE5aVGa09lo77dX+Op+btkJURqZJ847a1q0rZSm45+58ZFhiknySqH060Gu9PTWnkiIg+dBf8++/9IfeIjlRkfoeKaZpXUdTyuLSXGooEp0bI7Xdp00OYzsUVydLiuGJ2pc/onyRJq1vIdlXpjTZFPcJOk4ZmxGp4Zq8oGh7YctPm85kwm6ax+ibphbF9FhoVofXGtlmwu086jZpjJS43WmH4JMptM+np3ldfBc7sQs0kjMmM1ICVaFQ12fb27ymf/mk3Sj8/uq9lT8pQaE6FtpTbN/Oda7alsVKi5bZxco8OplXvapnIPDzGr1e322ZffV1R4iNLjIpR0qEVlfXHtMZ/35GiLwkJMXuuTosLV0uryvB8TrGFKibFoT0Wj57FZw0PUdJz3a7t4a5hqj+p20P7F3S7EbNLQjBjtKG3o8L0YHmLucPmRIsNC1DfRqooGu9cU/99HemyEoiwhsoSGqKimyfOaSomxeIWudmEhJsVbwzU4LUabD9ap5ojHFx5qPu6kLH3iI5UeF6GdZfVeBzrtTCbp9Ox4jcqK196qRu0qb1BEWIhiI0K1rbRep2XH69yByfpgQ4m2lHTNNcmiwkN06cgMZcRHan9Vo9bur9X+6ibP+v7JUZo6LE3n5aXIEmbWrvIG/WtNsdbsq/G6n9zkKE0Zmqq+SVHafKBOX+2u9Ex40y4nyaoLh6RpdHacDEPaVlqv7aU2bSutV0W9XfHWcI3oE6uz+iVqSHqMWlrd+nZ/jQr2VmvTQZvn83VEn1j94vwBmjI0VdbwUDU5nHruy0I9tXyPz2dCTESo+iVFqbCyUQ123+c8MSpcV53WR2fkxGtHWYMWbyrRjjLvz4KcJKuuOq2P+qdEqbrRob9/Udhhl5u0WIvG5iaputGhL3dV+qxvr310VrxW763xnGy9YEiqZpzdV498uNUzlmFgarSmDkvTV7sqtaHYt3dJeIhZ4wYkKcEapm+LarWv6vA+CzGbPM9VVkKkBqREy+F065vCKp/vzezESF04JE0TBiar0eH0OvveLio8RDeek6NLR2YoIixEX+6q1GNLtvt8Z4eYTbpgSKquOSNLhmHoyfzdXrWbTG2XqrjurGyd3S9RLa1u/d9nO/Xm2mKfusb1T9KtE3J1/qBkfbKlXP/32U7tKKv3bJcSY9GMs/vqslEZMptMenLZbr25ttjrPrISIrXgutM0pl+ipLYTAj9btFpf7KzUhUNSNbxPnP7yadtlMi4flaEHrxiu4pom/fzFNapssCvBGqaLhqfrtdVFMoy2mu6/dEjb+7OyUXP+tUGr9h7+3G7/nOqbaNUTN5yhpVvK9Pih+x+SHqM7Jw3Qw//e4hn7fd+0QRqcHqtZL62Vw+XWsIxYPf7j0/Tox9u1dEuZEqPC9ead4/XmmmIt/HyXIsLMenfWBA1ObztRtrG4Tve+vk47yxvUPyVKeyoaFR5i1r/uHKdRWfFyON3689Lt+nBjiYqqm5UcHa7Khrb/vejWszXx0CVDPtlSpj9+vF3by+oVGxGqzPhIbSut19CMWL155zhZw0O1s6xef1i8XZ9uK5NhtIWO9jE/v7xgoH56bq5W76vRXS+vlf3QZ+Dt5/fXv9YUq6rRofAQs/qnROn8QSl6evnhy478bEKutpbaPC1V4SFmXXlapt5Zd8BzHDR5cIouG5WpOf9a79n/6bERamqwaeP86d0bbJ544gn98Y9/VElJiYYPH64FCxbovPPO+86/60ywMQxDd7/yrU+IeeYnYzT/o62qrLfrjJwE7Sxr0IHaZv3ztrGakJcsSXr722L96rX1CjWblJ1o1Yu3nq3sRKtuevYbfbu/Vg32trM8X//mgk51PSivb9H6orY3d78ka5d0KesudU2t+tfaYi3ZXKoNxXVqbnUpJiJUfROtsoaHyO50q77FecyBZhFhZvVNtCojLlKWULN2VTR4BYeUGIsSreEanR2nfslRWr23Rp9vL+/wIO/sfokaNyBJ0ZZQrSuuPWbY6RMfKafb7QmsRxuSHqPTsuOVkxSlfVWN+vf6g14f2CZT2330T4lWUlS4tpXWa+sxDipGZ8XpvLwUZcZHavPBOn21q1J7j/jCkdoOvHOSrEqMCldJbYu+2Fnpc+A2sk+cfnZerqYMTdO2UpuWbC7T0kNnps0madyAJN08rp+mDE3znG2ztbRq7b4abSmxqarBoUmDU3TugGSvs3H7q5q0ZEup1hXVKi02QjlJVuUkRalPfKTchqGtJTa9VlCkFbvbPmSSo8M1LDNOo7PidNM5OUqMCtf2snqtK6rVmr01Wr6zQrZmp9LiLBqRGaeRWXFKtIar1Nai9UW1+mpXlc9jS4+N0Fm5iYqPDNOmg3XaWFznEwYy4iJ0Tv8kmU0m5e8o93wYH61volXj+ifJbDZpd3mDVu+r9nkNxFhCdcHQVMVHhmnlnmqfltt2YSEmjc1NUnl9i8+BjdR20DppUIrGDUhSo92pT7aWe5r8jzQmJ0EXDU9XRHiIlu+o8PSXNpmkBGu458A7My5CC284Q2f0bZue/V9rivW/S3d4DpjSYyM0bkCSxvVPUp+ESNmdLq3ZV6M31xxQqa1FZpMUExGmuuZWxUWGKTc5ShX19g4PuNJjI/SL8/trWGasQs0mfbWrSou+3uupJTIsRJeMSNf0M7I0bkCSmltd+tPH2/XG6iKv98KQ9Bj97rJhOndg0qGWiRot3VKmf284KIfTrWhLqK45o49GZcXrzJwE9UtuO6B8ddV+z8Gpw+lWaoxFF49I1w9GZ2poRqyiLKGqa2rVvupGNTtcamp1qdnhUlpshE7LjldhZaNqmxzaXdGgdUW12nLQpihLqPolR2lMToKmDW87M9vesvb+hoP6aFOp9lY1KsRk0hl9EzS8T6yn1XZbiU2fbC3rcD8fLcYSqnp721nIH52ZrV+c39/TIuZwuvXOtwf02uoifbv/cAtVWyhOVEp0uGqbW7XloE3rimq9Xufx1jBNHJSiUVnxqm9p1Wfbyjs8gD2WuMgwZcRFaFRWnOZcPEQJ1nBVNrTt/w82lGjZ9nINyYjVt/tqVF5v15h+CfrZhP7KSoxUaV2LSuta9NxXhcd8Do48OO6I2SQNTo9VS6tLe6sajxnEc5KsigwL0Z6Kxu8MqN8l3tr2em//X6FmkxKjwlXV6PDU2j85SucMSFJdU6u+Kaz2Gh+aGRehy0ZlqG9SlHaU1mvx5tJjhtexuUlKi43Q0i2lHYbQlBiLbh6Xo5QYiwr21ujjzaU+oar94DkrPlIrdlfqw42lXs9BVHiI5k0f6elyVFLXrD8v2aH3NxxUS+vh7eKtYfrB6EzFW8OVYA3Tm2uLPa107dJiLZo/faSn9ewfX+/TE8t2eQVvSZoyNFXjBiRrb2Wj3l13oMPHFhcZpv4pUUqKCteB2pZjft8NSY/RtWOyFRkeorfWFqtgb02H21lCzeoTH9nhyaF2g9NiNCEvWaW2Fi3eVHrM115iVLjMJnX4nRBiNunaMdkKMUufb6vQgdpmhYeY9fCVwxUdEapFK/aqYG+NwkPM+vfdbQHh71/s0fyPtsnlNjxDFiRpWEasnv/pWUqLjdBL3+zT3Pc2q9VlKDzErKtP76MPN5ao3u6UJdSs2ybk6oZzcvTwvzfrq11VPgH63qmDNGvyQIWYTapssOuvn+/ytHS0u3h4uh6//jRZQkPU5HDq2qe+1qYDNllCzZ6g8OcfjdY1hyaSavfJljL97MXVnt//cM1IXXeWd9e68voWTflzvmdf3zdtkO66IM9rG4fTrWuf+trznRZvDdM7M89Vv+Qor+3+5/0t+vuXhZ7fH75yuH4yrp/n95pGh/7+5R799fPdnmXDM2P10s/aut8ZhqGnl+/R2v01+viIyQ+s4SH6x21jdVp2W2vX59vL9eqq/Vq2vcLz+KW2lp4bz8lRXmqMvtpSpKmn53ZfsHnttdd000036YknntC5556rp556Sn//+9+1ZcsW9e3r27/xSJ0JNq8XFGnOmxsUajZp+hl9PNd2+ea3F3o1kc56aa0+2NgWfqYMTVNKTLjW7qvV9rL6DltlWl1unf3IJ6ppatWLt57tuTjmd6ltcujSx7/QwUNnRO+YOEC/uWTI9/rbns7tNmRraTuoOrp7QVF1k9bur9GeikY12p1KiArX0IwYjR+Q7NP/vbimSS63ocSo8A67PVTU27WhuFYbiutUUtes1JgIXTwi3ac//q7yBn2+rVzl9S1Ki41QbnKUBqXFeJq+d1c0aM3eGu2ubNDeykZlJVh1zRlZPk3eDqdbGw/U6mBtiyLDQnR2/0TFHlGXYRhaX1yn3eUNKqlrVm1TqzLiI3VeXrJXt6sjn4s1+2pkNps0JD3GZ5syW4v+vf6g50BuTL8En6537ZodLrW63V71+IPd6ZLb3RZEj9d1pP2j4ljbtHcFrKi3KzvRqn5JUUqwer9emh0ubSmxaV9VoyLDQpSXFq0BKdGebVpdbn2xs0IfbyrT5pI6udxSTqJV152drYmHukm1q2qw69Nt5Sqra1FCVLgGpETrtOx4r65ZB2ub9eLX+/TlrgqZ1NZlYcLAZF04NM3TJae60aHVe6u1obhOZrNJA1KidMGQVJ/XZ3FN274trWtRWIhZEwenaMBR++6bPVWa99E2T1c+qe2A548/Gu0zRsUwDO2vbpI1PPS4XZLsTpdMMik81NzWVSssRGazyXNgX9fcqvL6FlU3OtQ30arxA5K9ngOprWvP1hKbHE5DI7PifLpsSG3vhW2lNtU1tyorwarco77k2rW0utTS6lKUJfS4k5s4nG5VNtiVERcRkC69TpdbLsOQJbTjMTc1jQ7tr25SS6tLza0upcRY1D+57ez2rooG9YmPVGqMRbXNrT6v26M1OZyqanAo2hLaYVfHJodTq/fWqOFQSBqeGecz1qWkrlmfbC3XvspG9Tv0+dVgb1VtU6sGpkbri52V2lPRqGhLiGZNHqjUo7r9dMQwjLYDsg7GWxiGoS93VbZ1j21o63Yyok+cRvWJU7w1TLYWp77Y2RbO1xfVylDbSZ72Fs/2/1/X3KoVuyqVv6NC1Y0OpcVG6MKhqTo9O8HTR77B7tSXOyv02bZyFVU3y2UYGpQWrcHpsRqaHqOM+EhV1tsPtdDUaH91k0LMJg3LjNXZ/RJ1Vm6i+sRHqrrRoRdW7NU73x7walnqm2jVf0wbpCtGZXo+E1xuQ5sPtn3+JESF67SseJ9uV8t3VujNtQdUbmv73rhgSKrXZ0F79/TV+6p1sLZZJpl04dBU3XhOjtd3WUurSwV7q7W+qFZx1nCdk5vocxKzqsGuT7eWa29V2/fPpSPTOxzzaGtp1fvrS7SttO3A9ifj+vl04dp0oE4biutU39KqlBiLJg9O9Xnd1be0avXeGlU22GU2mTQkI0bDMw9/bzY5nFq+o0Jf7KzU17urFB5q1oVDU/WzCf0992UYhj7fXq5nvyzU7vJG2Z0upcZE6MZxObrh7L5ez+fOsnq9sqpI+TvKFRZi1vgBybpjYn+lxFhkMpm0v6pJr63er8WbSrWnsu2kw8isOP3usmE684jr7x2obdaLX+/VK9/sl62lrSvqz8/rf2iciEVOt6HFm0r10jf7tPmgTfZWt87IidfdF+Tp3IHJnsc+518b9NGmw919pbYD6KdvGuM5oS1J64pqNfe9zVpXVKsQs0mXjczQ/1w9wut79kBtsx56b7OWHDGw/6x+CXr8x6crM/7wuJraJod+8Y81WlVYraSocN0zJc/rwL/dHxZv05PLdis8xKxrz8rSg1cM9/rsLLe16PZ/rtG3h3oL3X/JEN0+cYDP/RiGoZ++UKAVu6o0b/pI/fCo4NNu8aZSPbp4m3526HnsSHFNk/7j9fXqnxKl2VMG+XQrlNpe5zc/t0p1za36f5cP0/iByT7buNyGrn9mpVYVVusHozP1yNUjOjy2e3TxNj2xbLeGpMfoTz8a7XNM1173zJfWKDzUrJ9N6K9fTR3k+dzsTDbwS7AZO3aszjjjDD355JOeZUOHDtVVV12l+fPnH/dvv2/x+6oadfGCL9Tc6vL0mfzfpTvkcBk+YeLJZbv1h8UdT+W87L5JPilVkv7fu5v04tf7dFa/BF0wJM2zPPxQYj/Syj1V+nZ/rb7YWaEVu6uUGBWunCSrpp/eRzd18CIH0HsZhqGqRodK61qUnWg97mB6AN/NMAyV1LWossGulBiL0mMDE5bRNVoOjVs+3kQW7V2o4yLDjrudYRgd7nuX29Cji7fpg40lireGafyAtm5wR598ar+PXeUNio0M6/CAXmo7mfvcV4XaWdag8wYl66Lh6R2eyHG63Npb1ajc5Ohj1m0YhtYV1SonKeqYk7A4XW69WlCkpKhwXTIy45iP3+lyy+50K6qDk1Pdxe50aX9VkwamRh/3fbmvqlF94iOP2wtqb2WjYiJClXTU2LpuDTYOh0NWq1VvvPGGrr76as/ye+65R+vWrVN+fr7X9na7XXb74eZhm82m7Ozs7yy+fWzNxuI6vXjr2ceduanM1qK7Xl6rzPhInZ2bqP9dulOVDXad3jdeb888t8O/Wbu/RtOfWOGzPDYiVBvmXuS1rD2NS23N2m/dea5n0CAAAACAE9OZYNPlka+yslIul0tpaWley9PS0lRaWuqz/fz58/XQQw91+v+Eh5r164uHyOlyf+d0tGmxEXrjjvGe3y8anq7nvizU5aMyj/k3p2fH678uH+bT3zSyg6lFR/aJ8zQJTh2WRqgBAAAAAsxvbVlHN0cdq/nw/vvv17333uv5vb3F5vs6kWsKJEdbNOfi4499MZlMPl3OjuXSkRm69DhNhwAAAAD8q8uDTXJyskJCQnxaZ8rLy31acSTJYrHIYvnuufwBAAAA4Fi6/FK14eHhOvPMM7V06VKv5UuXLtX48eOP8VcAAAAAcOL80hXt3nvv1U033aQxY8Zo3Lhxevrpp7V//37dcccd/vh3AAAAAE5xfgk21113naqqqvTwww+rpKREI0aM0IcffqicnBx//DsAAAAApzi/XMfmZHRmSjcAAAAAvVdnskGXj7EBAAAAgEAj2AAAAAAIen67js2Jau8ZZ7PZvmNLAAAAAL1Zeyb4PqNnelywqaqqkqROXaQTAAAAQO9VVVWluLi4427T44JNYmKiJGn//v3fWfzRzjrrLBUUFPijrJPSU+tqZ7PZlJ2draKioh47YUNPfw6lnl1jMOxjqWc/h+16co3s55PXk2trx34+cT2xpiP19H3b05+/dj21zp6+f9v1tOevrq5Offv29WSE4+lxwcZsbhv2ExcX1+mdHhIS0iNfKD21rqPFxsb22DqD4TkMhhp78j6WguM5DIYa2c8nrifXdjT2c+f1xJo60lP3bbA8fz29zp66f9v11OevPSMcd5sA1BEws2bN6u4SOtRT6womwfAcBkONPV0wPIfBUGNP15Ofw55cW7Dpic9lT6wpmATL8xcsdfZUwfz8cR0b8JyfAtjHpwb286mB/dx7sW97N/bviQnq69hYLBY9+OCDslgs3V3KKYPnvPdjH58a2M+nBvZz78W+7d3YvyemM89bj2uxAQAAAIDO6nEtNgAAAADQWQQbAAAAAEGPYAMAAAAg6BFsAAAAAAQ9gg1wCjOZTHrnnXe6uwwAAE5ZfBd3HYLNKWDFihUKCQnRxRdf3N2lwM9uueUWXXXVVd1dBvygqKhIt912mzIzMxUeHq6cnBzdc889qqqq+l5/v2zZMplMJtXW1vq3UJwU3sO9G9/Hpwbex92HYHMKeO6553T33Xfryy+/1P79+0/qvlwul9xudxdVBuD72LNnj8aMGaMdO3bolVde0a5du/S3v/1Nn376qcaNG6fq6uruLhHA98D3MeBfBJterrGxUa+//rruvPNOXX755XrhhRc869rP4H7wwQcaPXq0IiIiNHbsWG3cuNGzzQsvvKD4+Hi9//77GjZsmCwWi/bt29cNjwSd1a9fPy1YsMBr2Wmnnaa5c+d2Sz04cbNmzVJ4eLiWLFmiiRMnqm/fvrrkkkv0ySef6MCBA3rggQckSXa7XXPmzFF2drYsFovy8vL07LPPau/evZo8ebIkKSEhQSaTSbfccks3PiJ8H4sXL9aECRMUHx+vpKQkXX755dq9e7dn/d69e2UymfTWW29p8uTJslqtGj16tL7++uturBrHwvfxqYnv4sAi2PRyr732mgYPHqzBgwfrxhtv1PPPP6+jr8n6n//5n/rTn/6kgoICpaam6gc/+IFaW1s965uamjR//nz9/e9/1+bNm5WamhrohwGcsqqrq/Xxxx9r5syZioyM9FqXnp6uG264Qa+99poMw9BPfvITvfrqq/rLX/6irVu36m9/+5uio6OVnZ2tN998U5K0fft2lZSU6PHHH++Oh4NOaGxs1L333quCggJ9+umnMpvNuvrqq33O0j/wwAO67777tG7dOg0aNEjXX3+9nE5nN1WNY+H7GPC/0O4uAP717LPP6sYbb5QkXXzxxWpoaNCnn36qKVOmeLZ58MEHNXXqVEnSokWLlJWVpbffflvXXnutJKm1tVVPPPGERo8eHfgHAJzidu7cKcMwNHTo0A7XDx06VDU1NSooKNDrr7+upUuXet7f/fv392yXmJgoSUpNTVV8fLzf68bJu+aaa7x+f/bZZ5WamqotW7ZoxIgRnuX33XefLrvsMknSQw89pOHDh2vXrl0aMmRIQOvF8fF9DPgfLTa92Pbt27Vq1Sr9+Mc/liSFhobquuuu03PPPee13bhx4zw/JyYmavDgwdq6datnWXh4uEaNGhWYogF0SvsZ38LCQoWEhGjixIndXBG6yu7duzVjxgz1799fsbGxys3NlSSfsRlHfj5nZGRIksrLywNXKL4T38dAYNBi04s9++yzcjqd6tOnj2eZYRgKCwtTTU3Ncf/WZDJ5fo6MjPT6HcHBbDb7dHM4sksDgsPAgQNlMpm0ZcuWDmfZ2bZtmxISEmS1WgNfHPzqiiuuUHZ2tp555hllZmbK7XZrxIgRcjgcXtuFhYV5fm7/rGZQec/C9/Gpi+/iwKLFppdyOp168cUX9ec//1nr1q3z3NavX6+cnBy99NJLnm1Xrlzp+bmmpkY7duygC0MvkJKSopKSEs/vNptNhYWF3VgRTkRSUpKmTp2qJ554Qs3NzV7rSktL9dJLL+m6667TyJEj5Xa7lZ+f3+H9hIeHS2qbSQk9X1VVlbZu3arf/e53uvDCCz1dDhF8+D4+tfFdHFgEm17q/fffV01NjW677TaNGDHC6/bDH/5Qzz77rGfbhx9+WJ9++qk2bdqkW265RcnJycy/3gtccMEF+sc//qEvvvhCmzZt0s0336yQkJDuLgsnYOHChbLb7brooou0fPlyFRUVafHixZo6dar69OmjRx55RP369dPNN9+sW2+9Ve+8844KCwu1bNkyvf7665KknJwcmUwmvf/++6qoqFBDQ0M3PyocT0JCgpKSkvT0009r165d+uyzz3Tvvfd2d1k4AXwfn9r4Lg4sgk0v9eyzz2rKlCmKi4vzWXfNNddo3bp1Wrt2rSTp97//ve655x6deeaZKikp0Xvvvec5u4vg4na7FRra1sP0/vvv1/nnn6/LL79cl156qa666ioNGDCgmyvEicjLy9Pq1as1YMAAXXfddRowYIB+8YtfaPLkyfr66689EwM8+eST+uEPf6iZM2dqyJAh+vnPf67GxkZJUp8+ffTQQw/pN7/5jdLS0nTXXXd150PCMbS/h81ms1599VWtWbNGI0aM0K9+9Sv98Y9/7O7ycAL4Pj718F3cfUzG0R3/cMpYtmyZJk+erJqaGmZJ6iUuvvhiDRw4UAsXLuzuUgCcAN7Dpya+j3sX3sfdhxYboBeoqanRBx98oGXLlnlNHQogOPAeBoIf7+Pux6xoQC9w6623qqCgQP/xH/+hK6+8srvLAdBJvIeB4Mf7uPvRFQ0AAABA0KMrGgAAAICgR7ABAAAAEPQINgAABND8+fN11llnKSYmRqmpqbrqqqu0fft2r20Mw9DcuXOVmZmpyMhITZo0SZs3b/asr66u1t13363BgwfLarWqb9+++uUvf6m6ujqv+3nkkUc0fvx4Wa1WZtsC0OsRbAAACKD8/HzNmjVLK1eu1NKlS+V0OjVt2jTPNYck6dFHH9Vjjz2mhQsXqqCgQOnp6Zo6darq6+slSQcPHtTBgwf1pz/9SRs3btQLL7ygxYsX67bbbvP6Xw6HQz/60Y905513BvQxAkB3YPIAAAC6UUVFhVJTU5Wfn6/zzz9fhmEoMzNTs2fP1q9//WtJkt1uV1pamv7whz/o9ttv7/B+3njjDd14441qbGz0XByw3QsvvKDZs2ertrbW3w8HALoNLTYAAHSj9u5jiYmJkqTCwkKVlpZq2rRpnm0sFosmTpyoFStWHPd+YmNjfUINAJwqCDYAAHQTwzB07733asKECRoxYoQkqbS0VJKUlpbmtW1aWppn3dGqqqr03//938dszQGAUwGndQAA6CZ33XWXNmzYoC+//NJnnclk8vrdMAyfZZJks9l02WWXadiwYXrwwQf9VisA9HS02AAA0A3uvvtuvffee/r888+VlZXlWZ6eni5JPq0z5eXlPq049fX1uvjiixUdHa23335bYWFh/i8cAHoogg0AAAFkGIbuuusuvfXWW/rss8+Um5vrtT43N1fp6elaunSpZ5nD4VB+fr7Gjx/vWWaz2TRt2jSFh4frvffeU0RERMAeAwD0RHRFAwAggGbNmqWXX35Z7777rmJiYjwtM3FxcYqMjJTJZNLs2bM1b9485eXlKS8vT/PmzZPVatWMGTMktbXUTJs2TU1NTfrnP/8pm80mm80mSUpJSVFISIgkaf/+/aqurtb+/fvlcrm0bt06SdLAgQMVHR0d+AcPAH7EdM8AAARQR+NkJOn555/XLbfcIqmtVeehhx7SU089pZqaGo0dO1Z//etfPRMMLFu2TJMnT+7wfgoLC9WvXz9J0i233KJFixb5bPP5559r0qRJJ/1YAKAnIdgAAAAACHqMsQEAAAAQ9Ag2AAAAAIIewQYAAABA0CPYAAAAAAh6BBsAAAAAQY9gAwAAACDoEWwAAAAABD2CDQAAAICgR7ABAAAAEPQINgAAAACCHsEGAAAAQND7/x0Ugwfc8wVYAAAAAElFTkSuQmCC", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:00.882137\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df['Rt'] = df['ninfected'].rolling(8).apply(lambda x: x[4:].sum()/x[:4].sum())\n", "df['Rt'].plot()\n", @@ -341,9 +2307,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 142, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAEoCAYAAABVQh6cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh5UlEQVR4nO3dd3hb5fk38K+2bNmW9x5xEmc6DmQSCBAKBMIupIMmlNmyR2l7AV2UrkAHpb9SIKywCfACLQ1NaFKSQAiZkMTZy4njvWVbtjXP+4d0juR4StY4Ov5+rssX2H4kP3Js+dy6x6MSBEEAERERERGRTKmjvQEiIiIiIqLBMGghIiIiIiJZY9BCRERERESyxqCFiIiIiIhkjUELERERERHJGoMWIiIiIiKSNQYtREREREQkawxaiIiIiIhI1hi0EBERERGRrDFoISIiIiIiWQs4aKmursbSpUuRlpaG+Ph4nHHGGdi5c2c49kZERERERARtIItbW1txzjnn4IILLsDq1auRmZmJY8eOITk5OUzbIyIiIiKi0U4lCIIw3MUPP/wwvvjiC3z++efh3BMREREREZEkoKBlypQpuOSSS1BVVYWNGzciLy8Pd911F37wgx8MeBubzQabzSa973a70dLSgrS0NKhUqpHtnoiIiIiIYpYgCOjo6EBubi7U6kE6V4QAGAwGwWAwCI888ojw1VdfCc8995xgNBqFV199dcDbPProowIAvvGNb3zjG9/4xje+8Y1vfOv37dSpU4PGIQFlWvR6PWbNmoXNmzdLH7vvvvuwfft2fPnll/3e5vRMi8ViQWFhIU6dOoWkpKThfmkiIlkQBAHTfv1fAMBnP12A1ARDlHcEzP79WnTb3fjP/fNRmGqK9naIiIiGrb29HQUFBWhra4PZbB5wXUCN+Dk5OZgyZUqvj02ePBnvv//+gLcxGAwwGPr+UU9KSmLQQkQxx+0WoDbEAwDMZjOSTPoo7whITEyCrdMOjcHE51UiIopJQ7WNBDTy+JxzzsGhQ4d6fezw4cMoKioKfGdERDHI7ZeclktbXpxeAwDosruivBMiIqLwCCho+dGPfoQtW7bgD3/4A44ePYq33noLzz//PO6+++5w7Y+ISFb862lVkEfUEq/zJM27GbQQEZFCBRS0zJ49Gx9++CHefvttlJaW4re//S2eeuopLFmyJFz7IyKSFf8uQFXAx/OGhy/T4ozyToiIiMIjoJ4WALjiiitwxRVXhGMvRESy16s8LIr78BfvDVq6Hcy0EBGRMsnkdUIiotijlklTS/wwe1o6bU70MLAhIqIYxKCFiCgA8mzE9yTNBwtamjttmP/Ep7jx5W2R2hYREVHIMGghIgpAr54WmRSIxeu85WGD9LRsrWhBW5cDWytacKqlK1JbIyIiCgkGLUREAeg1PUweMcuwRh7vrmqT/n/T0aZwb4mIiCikGLQQEQVAjuVhw+lp2XPKIv3/50caw74nIiKiUGLQQkQUAP/yMLk14g90TovbLWBvtS9o+eJoM1xuod+1REREcsSghYgoAIIMRx5LjfgDTAY73mRFh80Jo06NRKMWlm4Hyv2CGCIiIrlj0EJEFIBejfiyy7T034i/x9vPUpprxjnj0gEAm1giRkREMYRBCxFRAPyLqtTyiFmG7GnZU+XJqpTlJ2N+iSdo+ewIm/GJiCh2aKO9ASKiWNK7EV8eUUucbvCgRZwcNr3AjDMLUgAAX51sRafNiQQD/wwQEZH8MdNCRBQAQYb96/Henpb+GvEdLjf217QD8GRaCtPiUZQWD6dbwNbjzRHdJxERUbAYtBARBUBsxJdLaRjgd06Lo29Py6G6DticbiQZtRiTFg8AmD/eUyL2OUvEiIgoRjBoISIKgJhokUtpGODX02Lrm2nx72cR93xuSQYA4DM24xMRUYxg0EJEFACxPExOmZbBGvHFyWFl+WbpY/PGpUGtAo43WlHd1h2RPRIREY0EgxYiogCIjfgq2ZzS4isP63a44D7t0MjdfpkWkTlOhzMKPO9z9DEREcUCBi1ERAGQQgL5xCxSIz4A9Dh92ZZuuwuH6zsAeCaH+fOViLGvhYiI5I9BCxFRAGTZiO8deQz0LhHbX2uByy0gI9GA7CRjr9uc6z2v5YujTXC5ZTgSjYiIyA+DFiKiAIg9LXIqD9OoVTDqPE/n/mOPd5/ylIZNzzf3GRwwvSAZiQYt2roc2FdjidxmiYiIgsCghYgoAHJsxAd8JWL+mRZfE35yn/U6jRrzxqUB4OhjIiKSPwYtREQBkBrxZTTyGPCViHXZfWe1+MYdm/u9jVgi9jmb8YmISOYYtBARBUA6pyWqu+hLHHsslodZuh043mQF0H+mBfA14+882Qqrre/BlERERHLBoIWIKACClGmJ8kZOc/pZLXurPVmWgtQ4pJr0/d6mKC0e+SlxcLgEbKtoicxGiYiIgsCghYgoAOKgLdmVh4lBi8MTtOwepJ9FpFKp/EYfs0SMiIjki0ELEVFA5DfyGPA14nd7e1r2eCeHleX1388iOk/qa2EzPhERyReDFiKiAMg+0+ItDxtscpi/s8elQ60CjjZ0otbSHc4tEhERBY1BCxFRAHzntMhLvM4XtDR22FBj6YFKBUwbYHKYyByvkwIbZluIiEiuGLQQEQVAgDxHHvtPDxOzLOMyEpBg0A55W7FEbBODFiIikikGLUREAXC7Pf+VWcyCOL/DJXcPcT7L6eZ7m/E3HW2CW6x/IyIikpGAgpZf//rXUKlUvd6ys7PDtTciItmRMi1R3sfppEyLwyllWqYP0c8iOrMwGSa9Bi1WO/bXtodph6NTj8OF21/fgV/8sxyVzV3R3g4RUcwaum7gNFOnTsW6deuk9zUaTUg3REQkZ2JPi1pmqRYxaLHaXNgTYKZFp1Fj3rg0rDvQgM+PNKF0iIljNHw7T7bik331AIC3t53CVdNzcdeCcSjJSozyzoiIYkvA5WFarRbZ2dnSW0ZGRjj2RSFktTnx/s4qWLoc0d4KUcyTGvHlFbNI08OONHSixWqHVq3C5JykYd9+/nhPX8vWiuaw7G+0auywAQD0WjVcbgEffl2NhU99hjvf2CkdAEpEREMLOGg5cuQIcnNzUVxcjO9+97s4fvz4oOttNhva29t7vVFkvbW1Ej9+bzeWf3Ys2lshinmCdE6LvKIWMdNysM7zHDspJxFG3fAz4WMzEgAAdZae0G9uFGvq9AQtl07Nxkf3nIOFU7IgCMDqvXW44u+bcNOKbdh5siXKuyQikr+Agpa5c+fitddewyeffIIXXngBdXV1OPvss9HcPPArc8uWLYPZbJbeCgoKRrxpCkx9u+cipK6dFyNEIyXXPvU4nafaV8wEDXU+y+nSEvQAgGarPZTbGvUavUFLeoIBZfnJeP77s/DJA+fh6jNyoVYBGw414rpnv8TTnx6J8k6JiOQtoKBl0aJFuO666zBt2jRcdNFF+PjjjwEAr7766oC3eeSRR2CxWKS3U6dOjWzHFLAuh+ewOavNGeWdEMU+QRBHHkd5I6cRMy2i6cPsZxGlJxgAAC1WOyeIhVBThycITE/USx+bmJ2Iv333THz64wVYPDMfAPD0+qNo9gY4RETU14hGHptMJkybNg1Hjgz8CpHBYEBSUlKvN4qsLm+wYrW5orwTotgnXs7LtTxMFGimJdXkuah2uQW0dbP/LVTETEuGNyj0NybdhD8tLkNZvhk9Djde3FQR6e0REcWMEQUtNpsNBw4cQE5OTqj2Q2FgtXuClU5mWohGTK6Zlji/oMWoU6MkMyGg2+s0aiTH6wD4+jBo5Jq8jfjpiX2DFsBzSOm93ygBALy2+QTaulieR0TUn4CClp/85CfYuHEjKioqsHXrVixevBjt7e248cYbw7U/CoFuO8vDiEJFviOPfRPsS3PN0GoCf00qzZttYdASOk2DZFpEF03OxKTsRFjtLqz44kSEdkZEFFsC+qtWVVWF66+/HhMnTsS1114LvV6PLVu2oKioKFz7oxCw2sXyMAYtRCMltnvIK2TpXR4WaGmYSOxrae7kq/2h4HYL0mCD9EGCFv9sy4ovKtDRw/I8IqLTBXS45MqVK8O1DwqjbpaHEYWMIMgzavEvD5teENzhkOKFNTMtodHW7YDLG+WK09kGsqg0G+MzE3C0oROvfXkSd18wPhJbJCKKGSPqaaHYIGVa7C7fBRcRBUW2jfg6DTRqz56CzbRIY4+ZaQkJ8WDJlHgddEOU66nVKtx9wTgAwEubKtBl54tMRET+GLSMAmKmxeUWYHO6o7wbotjmFhvxo7yP02k1ajyyaBJ+dNEEFKebgroPqTzMykxLKDT5ndEyHFeW5aIoLR4tVjve2loZzq0REcUcBi2jgP+oY5aIEY2QTBvxAeC2c8fi/otKgr69mGlp7GCmJRQCDVq0GjXuWuDJtiz/7Dh6HBxTT0QkYtCicG63gG6/P3xsxicaGakRX34xy4gx0xJajUOMO+7PN8/MR15yHBo7bHh3Bw9jJiISMWhRuO7TXqljpoVoZAQoty8sPYEjj0OpUcq0DN6E70+vVeOO88cCAJ7bcAx2lvQSEQFg0KJ41tOaOf1LxYgocHI9pyUU0kwceRxKTd4yu4wAMi0A8K1ZBchMNKDG0oMPvqoKx9aIiGIOgxaFE5vwRSwPIxoZqRFfeTGLVMbUZXdxelUIBNrTIjLqNLj9fE9vyzMbjsHpYraFiIhBi8KdnllheRjRyIjFYUoMWkx6DQxaz58FZltGTgxaMgIMWgDge3MKkWbSo7KlC//aVRPqrRERxRwGLQrX7Ti9PIxBC9FIiGcdKbE8TKVS8YDJEAo20wJ4Dgu97VxPb8s/NhyVDqkkIhqtGLQoHDMtRKEl9rQoL2TxSOcBkyHhdgto6gyup0V0w7wimON0ON5oxcfltaHcHhFRzGHQonCn16WzEZ9oZKSgRYGZFgBIY6YlJNq6HVJ2JC2A6WH+Egxa3Dq/GADw1LrD7G0holGNQYvCdZ3eiM/mWqIRUXIjPuCXabEy0zISYtCXHK+DThP8n9qbzxmDlHhPtuWDr6tDtT0iopjDoEXhrHaWhxGFktSIH9VdhI+YaREPRqTgNHUE38/iL9Gow10LxgMA/rbuCGxOZsuJaHRi0KJw3X3Kwxi0EI2EkhvxASDNxExLKARzsORAbphXhKwkA6rburFy26kR3x8RUSxi0KJwYg+LTqPyvs+ghWgkfD0t0d1HuIhN483saRkRMVOVkWgc8X0ZdRrc+40SAMDfPz3KM3SIaFRi0KJw3Q5P0CKeE8DyMKKR8Z3TosyoJc3ERvxQECeHhSLTAgDfnlWAwtR4NHXa8MrmEyG5TyKiWMKgReHEzIr46imnhxGNjNSIH+V9hEsaRx6HxEjOaOmPXqvGAxd5si3LNx6HpdsRkvslIooVDFoUTpweJpYosDyMaGSUXh4mXmS3dNl5oOEISOVhIQpaAODqM/JQkpkAS7cDL35+PGT3S0QUCxi0KJxY+yxmWlgeRjQy4mW8UhvxU+J1UKk8wVkLm/GDJmZagj1Ysj8atQo/XjgRAPDSpgqW8BHRqMKgReHETEumVB7GoIVoJASFn9Oi1aiREi9OEONFcbBCXR4mumRqFsryzeiyu/DM+mMhvW8iIjlj0KJwvvIwb9Bid8HNkg+ioEnlYYrtavE1jzd1MNMSDLdbkHqC0hND04gvUqlU+Ik32/LG1pOoaesO6f0TEckVgxaFEzMrmX4lCl0ONuMTBcut8EwL4JsgxkxLcCzdDji9Lw6J38tQOrckHXOLU2F3uvH3T4+E/P6JiOSIQYvCiSOP0xL0UHsvslgiRhQ8XyO+cqOW9ERx7DEzLcEQD5Y0x+mg14b+z6xKpcJPL/FkW97dUYWKJmvIvwYRkdwwaFE4ccRxvF4Lk0ELgM34RCPha8SP6jbCKs3kLQ9jo3dQmjpC34R/ulljUnHBxAy43AKeWnc4bF+HiEguGLQoXLd3eli8XoMEb9DCTAtR8JR+Tgvg62lpZtASlEapCT+0/SynEyeJfbS7BkfqO8L6tYiIoo1Bi4K53YLUv8JMC1GIjIbyMO/EKx4wGRyxrC7Uk8NOV5pnxnkTMiAIwGdHmsL6tYiIoo1Bi4L1OF1S/X28XiMFLWLJGBEFTsy0KLo8LEHsaWGmJRjiwZLhDloAYGZhCgBgX40l7F+LiCiaRhS0LFu2DCqVCg888ECItkOhJI47BoA4nQYJBg0AlocRjYRvYLhyo5Y0ceQxMy1BCcfBkgOZmpsEANhX3R72r0VEFE1BBy3bt2/H888/j7KyslDuh0KoS2rC10CtVsGkZ3kY0UiJ2UslZ1oy/DIt4mGacueS0flTUtASgUxLaZ4ZAHC0sRM9HGdPRAoWVNDS2dmJJUuW4IUXXkBKSkqo90Qh0uXwNeEDYCM+UQiMinNavJkWm9MNq12+F8KnWrrwwmfHce0zX2D8z/+D//ufPM4sEYOWUB8s2Z+sJAPSE/RwuQUcrGMzPhEpV1BBy913343LL78cF1100ZBrbTYb2tvbe71RZPiPOwbg19PCoIUoWOLr+SoFl4fF67XSix1ymyB2rLET/1h/FFf8/XOc+8f1+P1/DuCryjYIArB6b120twcAaOqITCM+4BkIMSXXk23ZW82+FiJSLm2gN1i5ciV27tyJHTt2DGv9smXL8NhjjwW8MRq5bruvPAyA3/Qw+b5ySiR3YrmUWuFjTNIS9Ohq6UZTpw1Faaao7kUQBLzw+XG8v7Mah/xG+6pVwJziVMwpTsP//e8Ijjd2wuUWoIli7Z7bLfgyLREIWgCgNDcJnx1uxL4avihIRMoVUNBy6tQp3H///fjvf/8Lo9E4rNs88sgjePDBB6X329vbUVBQENguKShW++nlYWzEJxopscVDyZkWAEgzGXCqpVsWzfjl1Rb84T8HAQBatQpnj0/HotJsXDwlC+kJBrjcApZvPAab042q1q6oBlmWbgec3v6atDCf0yKa6s20cIIYESlZQEHLzp070dDQgJkzZ0ofc7lc+Oyzz/D000/DZrNBo9H0uo3BYIDBEJlXm6i3Lilo6V0e1mln0EIULGEU9LQAviyBHMYeH6nvBACU5Zvx+i1zYY7X9fq8Rq3C2IwEHKhtx9GGzqgGLeL3yxyng0GrGWJ1aJTmeSaIHaztgMPlhk6j8DQgEY1KAT2zXXjhhSgvL8euXbukt1mzZmHJkiXYtWtXn4CFoqtrgPIwZlqIguceBYdLAr7T3OVwwGRFkxWAZ1LW6QGLqCQzAQBwpKEzYvvqT6NUGhaZLAsAFKbGI9Gohd3lxtEoP34ionAJKNOSmJiI0tLSXh8zmUxIS0vr83GKPv+RxwCnhxGFgq8RX9nSpKAl+pkWMWgZmz5wBmW8N2iJ9kV7JA+WFKlUKkzJScLWihbsrbZgck5SxL42EVGkMIesYFKmxXBaeRgb8YmCJjXiKzxq8ZWHySfTUjxI0CKXTIv4/UqPwMGS/sTzWtiMT0RKFfD0sNNt2LAhBNugcBB7WkxsxCcKGWGUlIelyaSnRRAEKWgZM4xMy7GGTgiCELV/n0geLOlP7GthMz4RKRUzLQomZlrieE4LUcgI3gIxZYcsQLrJWx5mjW6mpb7dhm6HCxq1CgUp8QOuK0ozQatWodPmRF17TwR32FuTtzwsI8KZFnGC2P6adrjFxisiIgVh0KJg1tMyLSa9WB7GoIUoWKOmET9RHpmW402ecq+ClDjotQP/ydJr1ShK8wQ10exraYpCIz7g6fcx6tSw2l040WyN6NcmIooEBi0KNlAjvs3phtPljtq+iGKZrzwsuvsItzRvpqWtywFHFJ8vhtPPIirJTATgG5EcDY0RPlhSpNWopQb8vexrISIFYtCiYF0OMWjpXR4GAFY24xMFRSwPU3ojfkq8XnqMLVEsEatoFIOWhCHXShPEGqOYaenwNuJHOGgBgKm53r6Wava1EJHyMGhRsC6beLikJ9Oi16qh9x46xgMmiYIjZVoU3tWiVquQaop+iZiUackYRqYlyxu0RCnTIggCmq3R6WkBgNJcThAjIuVi0KJgp488BgATJ4gRjYg48ljp5WGAPA6YHM4ZLaJxGdHNtFi6HXC4PD8faRHuaQF8Y4/31likn1MiIqVg0KJgp488BvzPamHQQhSM0dKID/if1RKdTIvD5UZlSxeA4fW0jMtIgErlKWeLxqGY4sGSSUYtDFrNEKtDryQrAVq1Cm1dDlS3dUf86xMRhRODFgXzjTz2/fFM4NhjohEZLY34gC9bEK1MS1VrN5xuAUadGtlJxiHXx+k1yE+JAxCdCWJSE34USsMAwKDVYEKWZxgBS8SISGkYtCiYGLSIo44BntVCNFKjpREfANLEnhZrdDItJ8RDJdNMUA/zGy5NEItC0NLkDe4ifbCkPzbjE5FSMWhRKEEQpHNa4vstD+P0MKJguEdJIz4ApCd6Mi3iRKxIOx7AuGORNEEsGkFLR3QzLYB/XwszLUSkLAxaFMrmdEtlLP6N+AlsxCcamdHUiO/NtDRHKdNS4T1YMlaCFrE8LJqZltI8b6alhpkWIlIWBi0K5R+UxOn8Mi16NuITjYSYaVGPgqhFyrREqRE/kIMlRWLQcqShIyx7GoyUaYnC5DDRpOwkqFRAfbtNGgxARKQEDFoUSuxnMerU0PjVgrOnhWhkxJ6W0UDsaYlWI754sOTYYZzRIhKDlvp2G9p7HGHZ10DE4C4aB0uKTAatNB6a2RYiUhIGLQrVXxM+wOlhRCMljKJMi//0sEif+9Ftd6HG0gMAKE5PGPbtkow6ZCV5goZIl4hJjfhR7GkBfH0tnCBGRErCoEWhxDNa/McdA2zEJxop9ygaeSxmDOwuN9p7IvtCx4lmT5bFHKdDSrwuoNuKE8QiH7REP9MC+CaI7eUEMSJSEAYtCjVwpoWN+EQjIZaHjYKYBUadRsrORvqwRv9+lkAP8oxGM74gCL6gJdqZllxmWohIeRi0KFR/B0sCfj0tdgYtRMGQysNGw0Et8CsRs0a2r0UMWsYG0IQvikbQYul2wOHy/HCkmaLXiA8AU71BS2VLFyxdke3rISIKFwYtCiWWh5kMA5WHMWghCobY2zE6QhZfqVNThCdRHW8MfHKYKBoTxMQsS6JRC6NOM8Tq8DLH65CfEgcA2FfLEjEiUgYGLQpl9fasxOnYiE8USlI/+iiJWsSsQVOEMy1iT0txAJPDRCXeoKWqtRvd9sj07zV2yKMJXySWiO1niRgRKQSDFoUaKtNiZSM+UVBG0zktAJAWpUyLWB42Ji3woCUtwYCUeB0EATjWGJkSsUaZNOGLxEMm2YxPRErBoEWhxJ6W+NN6WsRGfJaHEQVnNDXiA0CG1NMSuaClrcuOFm9mJ5jyMMA3QSxSQYsY1GXIJGgR+1r2MtNCRArBoEWhfEFL7/Iw/8MlI33uApESjKZzWgBfpiWSB0yKWZasJIP0nBWocWJfS32EghYp0xLdJnzRVG+m5Xhjp5R5JyKKZQxaFEoqDxtgepjTLcDmdEd8X0SxTmrEHx0xi68RP4Ijj/3HHQerJMITxMTvj1x6WjITjchINMAtAAdqIzeQgIgoXBi0KJRv5PFpmRa/91kiRhS4UdaH7xt5HIVMS3F6QtD3EekJYk3e749celoAoNR7yOT+Gva1EFHsY9CiUAM14mvUKsTpeMAkUbDcUqZldIQtYrlTJDMtx0dwRouoJMsTtJxs7oI9Alnlxg55NeIDQGmet6+lmn0tRBT7GLQolG/kcd/zAnhWC1HwxJ6WURKzSBfh7T1O2JyRmTpYMYIzWkTZSUYkGLRwugWc9I5PDiepp0Um5WEAMNWbadnLTAsRKQCDFoUSzybor4lVnCDGscdEgRPLw0ZLI36SUQet2vNYWyJwVosgCCM6o0WkUqmkZvxw97UIgiCVz8mlER/wTRA7XN8RkWwTEVE4BRS0PPvssygrK0NSUhKSkpIwb948rF69Olx7oxGwesvD4vQDZ1pYHkYUOKkRP8r7iBS1WoVU8YDJjvAHLQ0dNnTZXdCoVShIiR/RfY3PEPtawhu0tHc7YXd5ggI5lYflp8QhOV4Hh0tAOc9rIaIYF1DQkp+fj8cffxw7duzAjh078I1vfANXX3019u3bF679UZCkTIu+b6aF5WFEwRtt5WGA3wSxCJzVctxbGlaQEge9dmTFAGJfS7gzLY2dPQCARKMWxn5KcqNFpVLhnHHpAICNhxujvBsiopEJ6C/ClVdeicsuuwwTJkzAhAkT8Pvf/x4JCQnYsmVLuPZHQRIzLacfLgkACcy0EAVttDXiA5GdICZODhszgn4WUaQyLY3eDJRcDpb0d/7EDADAxkMNUd4JEdHIBP0ylsvlwsqVK2G1WjFv3rxQ7olCwHe4JBvxiUJpNGZaMoZxVovT5Q5JRqOiyXMfI2nCF4mZluONnXC5w3eYru9gSRkGLRM8QcueaguaIzgBjogo1AIOWsrLy5GQkACDwYA77rgDH374IaZMmTLgepvNhvb29l5vFF6CIEhBCxvxiULLd07L6IlafJmW/i96BUHAHW/sxEVPbsSnB+tH9LUqQjDuWJSfEg+9Vg2b042q1q4R399A5HawpL+sJCMm5yRBEIDPjzRFeztEREELOGiZOHEidu3ahS1btuDOO+/EjTfeiP379w+4ftmyZTCbzdJbQUHBiDZMQ7M53dKriv024nv7XMQSMiIaPrE8TD16YhakSZmW/svD3t52CusOeMqPVu2uHdHXOh6CgyVFGrUK4zLC39fiO6NFPpPD/C3wlohtYIkYEcWwgIMWvV6P8ePHY9asWVi2bBmmT5+Ov/3tbwOuf+SRR2CxWKS3U6dOjWjDNDSxCR8A4nlOC1FojcLysPRBysMqm7vwu499L1x9dqQJ7iBLsZwuNyqbPRmRkYw79jc+M/x9LXIuDwOABd4SsZH82xARRduIz2kRBAE228B1sgaDQRqRLL5ReIkZFL1WDa2m7z8xG/GJgufLtIyeqGWgRnyXW8BP3tuNLrsLs8ekIF6vQVOnDQfqgisDrmrthtMtwKBVIyfJOOJ9A0CJGLTUDxy0bD3ejOUbj6EryOyzmIGS08GS/mYUpSDRoEWL1Y49HH1MRDEqoKDlZz/7GT7//HOcOHEC5eXl+PnPf44NGzZgyZIl4dofBcE37rj/0Zs8p4UoeKPxdep0U/+Zlpc3VWDbiRaY9Bo8+e0zcNbYNADAZ4eD652okErDTFCHqP5OzLQcbewbtDS09+D+lV/jO89vwbLVB/GT93ZL5/AEQu6ZFp1GjXPGe0cfH+LoYyKKTQEFLfX19bjhhhswceJEXHjhhdi6dSvWrFmDiy++OFz7oyBYpclhfZvwAcDkbcRneRhR4HzTw0ZPpiU90ZNpabHapfKiw/Ud+NN/DwEAfnHFFBSkxuO8Es+F8WdBngly3C9oCRUx03KsoVMKSJwuN17eVIEL/7IR/9pVA5UK0KpV+E95HZ7beDzgr9HUId9GfJHU13KYfS1EFJv6v6odwEsvvRSufVAIdQ1yRgvgXx7G6WFEgRqNjfipJk/Q4nQLaO9xwGTQ4sF3d8HudOOCiRn47mzPgJXzvL0TO062wGpz9ju9cDAnwhC0FKWZoFGr0Glzoq69BzVtPfjFP/fiQK2nhG16vhm/vaYUe6os+MU/9+JPnxxEaV4Szi3JGNb9C4LgKw+TaSM+4DuvZdepNrRa7UgxyXevRET9GXFPC8lPlzcYiR/ggoHlYUTB8408Hj0MWg0SjZ7njaZOG/7+6VHsrW5HcrwOT1xXJmWditNNyE+Jg8MlYMvx5oC/TigPlhTptWqMSYsHANz/9i5c9+xmHKhthzlOh99/sxQf3HUOyvKTsWRuIb49Kx9uAbj37a9xqmXoEckut4DfrjoAu8sNvUYt2/IwAMgxx2FSdiIEAfjsCEvEiCj2MGhRILERv7/JYYAv08LyMKIgeKOWUPVcxArxgMlPDzbgH+uPAgB+e3UpMv0a5lUqlZRtCaZELJRntPgT+1q2nWgBAHx7Vj4+/fH5WDK3CBrvv6NKpcJvri5FWb4ZbV0O3PHGTvQ4Bs5G9zhcuPvNr/DyFxUAgIcXTYJxgOdcuRCzLexrIaJYxKBFgaRGfAMb8YlCTSwPG10hi2+C2B/XHILLLeCKshxcOT23z7rzSnzjdQPR43Chuq0bQGjLwwBg9phUAMCk7ES8f+c8/HHxdOnsGX9GnQbPLp2JVJMe+2ra8bMPyvttzG/utOH6F7Zgzb466DVq/N/1Z+KW+cUh3XM4nC+NPm7k6GMiijkMWhRIbMSPG6IR32p38Q8XUYCka9hR1IgP+CZjOd0CMhIN+O3Vpf2uO3t8GjRqFSqarMMqsRKdaPZkWZKMWqmHJlRuOacYq+8/F6vunY+ZRamDrs1LjsPT3zsTahXwwdfVeO3Lk70+f7yxE9c+uxlfV7bBHKfD67fOwVX9BG9yNKsoFSa9Bk2dduyrCW4sNRFRtDBoUaBub3nYQCOPE/x6XboGKX8gor5GYyM+4Mu0AMAfrysbsJE7yajDzMIUAMDGAErEKhq9TfgZCSGfzKZWqzA5J6nfc6v6c/a4dDyyaDIA4Ler9mNbhaesbOfJFlz37GacbO5CQWoc3r/zbMz1jnmOBXqtb/TxhkOcIkZEsYVBiwL5Mi39By1xOo10wcUSMaLA+BrxR1fUMjXXDABYMrcQF0zKHHTteRMCH318PEz9LMG67dxiXDk9F063gLve/Aqvf3kC17+wFa1dDkzPN+ODO8+RemViyYKJnn+7DUGOpSYiipbA5lFSTPAdLtn/P69KpYJJr0WHzYlOmxNZkdwcUYwTy8NGW6blO7MKMKsoZVgX6udNyMCf/3sYm481w+FyQzeMDEdFGMYdj4RKpcIT103D4boOHKrvwC//tQ8AcNHkLPzf9WcMeA6W3InntXxd2Yq2LjuS4zn6mIhiAzMtCiRmT+IHaMQHgAQjm/GJgiE2Zo+ylhao1SqUZCUOq3SrNNeMVJMenTYnvq5sG9b9yy1oATwH9C6/YSaSvM+XN509BstvmBmzAQsA5CbHYUJWAtwCsOloYMMSiIiiiUGLAol9KgONPAZ8E8Q49pgoMKO1PCwQarUK88cHViIWjoMlQ2FMugkf33cu3vrBXDx65RRpRHIsE6eIbeDoYyKKIQxaFKhLyrQM/Gqgb+wxG/GJAuEepZmWQJ3nN153KP87UI9mqx06jUp2QQsAFKTG4+xx6SEfEBAtYl/LxsMcfUxEsYNBiwKJjfjxAzTiA0CCOPaYmRaigIg9LUq5gA2X80o8mZbyagtarPYB13XZnfiVt1/klvnF0gsqFD6zxqQgXq9BY4cN+2s5+piIYgODFgUaqhHf/3MsDyMKjK88jAaTmWTEpOxECALw+SDZlr/97wiq27qRlxyH+y8sieAORy+DVoOzx3mCykDGUhMRRRODFgWyes9pGWjkMeA7q4WZFqLAiI34aj57Dkk6gf1w/w3fB+va8dLnFQCAx66aGtMN7rFGnCK2kX0tRBQj+GdXgYaVaWHQQhQUqTyMuZYhiX0tnx9plII9kdst4Ocf7oXTLeCSqVm4aAqHr0eSGFDurGyFpdsR5d0QEQ2NQYsCDWfksW96GBvxiQLBRvzhmzUmBXE6DRo6bDhY19Hrc+/sOIWdJ1th0mvw6JVTo7TD0asgNR7jMkxwuQV8wdHHRBQDGLQoULeDjfhE4cJG/OEzaDU4a2wqgN6jj5s6bXh89UEAwI8unoDc5Lio7G+0E6eIbTjUEOWdEBENjUGLwtidbjhcnquqwerDpUyLnUELUSAEbys+Q5bh6W/08R8+PgBLtwNTcpJw09ljorQzEvta1h1oQK2lO8q7ISIaHIMWhenyC0IGy7Swp4UoOOKxFmpmWoZFDFq2V7Siy+7E5mNN+ODraqhUwO+/WQqthn+GomVOcSrGpMWjxWrHd5ZvQVVrV7S3REQ0IP61UJgubxO+XqOGbpCLAU4PIwqSVB4W3W3EirHpJuQlx8HucuOzw034xYd7AQBL5hbizMKUKO9udDNoNXjjtrkoTI1HZUsXvrN8CyqbGbgQkTwxaFGYrmGMOwbYiE8ULLE8TM2gZVhUKpWUbfn5h+U43mRFeoIBP71kUpR3RgCQnxKPd2+fh7HpJlS3dePby79ERZM12tsiIuqDQYvCdEnjjgcPWtiITxQctzS5l1HLcJ0/wXOQYbPVDgD45RWTYY7TRXNL5CfbbMTKH56FkswE1LX34NvLv8TRho6hb0hEFEEMWhTG6s2cxBsGP6SNPS1EwRE48jhgZ49Ph8abmjq3JB1XTc+N8o7odJlJRrz9w7MwKTsRjR02fGf5Fhysa4/2toiIJAxaFKbb4T2jZajyML1YHsaghSgQbMQPXJJRh2+emYesJAN+e3Upx0XLVHqCAW//4CxMzU1Cs9WO65/fgr3Vlmhvi4gIAIMWxZEyLUOWh3mCFpvTDafLHfZ9ESmFWB3Gy+7A/Plb07HlkQsxJt0U7a3QIFJMerx121mYXpCM1i4HvvfCFuw+1RbtbRERMWhRGrERf7AzWgBfeRjgC3SIaBi85WFqPnsGjBmW2GCO1+H1W+dgZlEK2nuc+N4LW7DR73BQIqJo4J9dhREb8YfKtOi1aui9I5F5wCTR8InlYSrmWkjBkow6vHrLHJwzPg1Wuwu3vrId/29nVbS3RUSjGIMWhRlu0AIAJk4QIwqYIB3UEt19EIVbgkGLFTfNwTVn5MLpFvCT93bjH+uPSsMoiIgiiUGLwgy3PAzwP6uFQQvRcLm9LWBsxKfRQK9V48lvn4Hbzx8LAPjTJ4fwi3/uhcvNwIWIIiugoGXZsmWYPXs2EhMTkZmZiWuuuQaHDh0K194oCMNtxAd8zfjMtBANHxvxabRRq1V4ZNFk/PrKKVCpgDe3VuKON3ai285+SCKKnICClo0bN+Luu+/Gli1bsHbtWjidTixcuBBWK0/PlQvxj4hpiHNa/NcwaCEaPp7TQqPVTecU45nvzYBeq8ba/fVY8uIWtHoPDCUiCrehr2z9rFmzptf7K1asQGZmJnbu3InzzjsvpBuj4FjtwzunBfAvD+OrZUTDJfCcFhrFFk3LQVqCAbe9uh1fVbbhumc349Vb5qAgNT7aWyMihQsoaDmdxeI5dCo1NXXANTabDTabTXq/vZ0n7IZTII34CSFoxBcEAT94bSdsThdevXkO1GrlXMhZuh1Y/OxmVLZ0DbhGp1HjkcsmYcncogjujKJJbMRXzk86UWDmFKfi/TvPxo0vb8PxJisWP7cZr986FxOyEqO9NSJSsKAb8QVBwIMPPoj58+ejtLR0wHXLli2D2WyW3goKCoL9kjQMATXi60feiF/V2o11B+rx+ZEm1Lb3BH0/crTpSBOONHTC5nQP+NZpc+Kd7aeivVWKIGnkMTMtNIqVZCXig7vOwYSsBNS32/Dt5V/i68rWaG+LiBQs6EzLPffcgz179mDTpk2DrnvkkUfw4IMPSu+3t7czcAmjwEYej7ynZU+VRfr/Oks38pLjgr4vudlT3QYAuPbMPDy4cEKfz9e323Dds5txoLYdNqcLBu3Q33OKfexpIfLINhvx7u3zcPMr2/F1ZRuWvLgVz98wC/NL0qO9NSJSoKAyLffeey8++ugjrF+/Hvn5+YOuNRgMSEpK6vVG4eMLWoaOR0MxPUy8sAeAmjZlZVrKvQHZnOJU5KfE93mbUZiM5HgdHC4Bh+s6o7xbihRODyPySY7X441b5+LcknR02V245ZXtWF1eG+1tEZECBRS0CIKAe+65Bx988AE+/fRTFBcXh2tfFKQuW2Qb8cv9Mi21lu6g70du3G4B5dWexzYt39zvGpVKhWl5ns/5B2+kbFIjvoL6t4hGwmTQ4sUbZ+Gyadmwu9y4+62v8M72ymhvi4gUJqCg5e6778Ybb7yBt956C4mJiairq0NdXR26u5VzsRrruhziyOPwN+L7X9gDysq0nGzpQkePE3qtetDm0jJvQLPnlGXANaQsUnlYlPdBJCcGrQZ/v34Gvju7AG4BeOj9cizfeKzftS1WO7Ycb8brX57Ay5sqODaZiIYloJ6WZ599FgCwYMGCXh9fsWIFbrrpplDtiUagyzb88jCpp8UeXNAiXtiLlJRp2VPVBgCYkpMEnWbg2H5aXrJnfTWDltGCjfhE/dOoVVh27TQkx+vx3MZjWLb6IOrbbRiXacKR+k4cquvAkYYONHX2DlKeXHsYt84vxq3nFiPJqIvS7olI7gIKWsRXGEmeHC437C43gEDLw4ILWsQLe5XKUzJTa1FOpkUse5s+QGmYaHqB5/OH6zvQ43DBqGMzvtJJI48ZsxD1oVKp8PCiSUiO1+Hx1Qfx8hcV/a7LS47DhKwE1Fp6cLCuA3/73xG8+uUJ3H7eONx4dtGwXngjotGFzwoKIjbhA5FpxBcnh80sTMGOk62KKg8TH9u0/ORB12UnGZGeYEBTpw37a9sxozAlArujaBJfu2HMQjSwO84fh/QEA17dfAKpJj0mZCWgJCsRE7ISUZKZIL1o5nYLWL23Dk+uPYRjjVY8seYgXtpUgbsvGIfr5xTyhSAikjBoURDxjBatWgW9duh2Jd/I4+Aa8cVsxCVTs7HjZCuaOm2KGP3rcgvYW+N5bGVDZFpUKhXK8s349GADyqssDFpGAakRn6kWokEtnpmPxTMHnzCqVqtweVkOLi3Nxr92VeOpdUdQ2dKFx/69H89/dhw/XjhxyPsgotEh6MMlSX4COaMF8DXiB1Me5n9hf96EDBi8QVK9xRbwfcnN8cZOdNldiNNpMC4jYcj10gSxKva1jAY8p4Uo9DRqFa6dkY///fh8LLt2GnLMRtRaevCT93bjxc+PR3t7RCQDDFoUJJAmfKD34ZKB9iv5X9iPz0xAjtkIAKhRQDO+GHyU5iVBM4yxtmI2ppxjj0cF8TeFmRai0NNp1Lh+TiHW/2QB7r5gHADgdx8fwAdfVUV5Z0QUbQxaFEQsD4sfxrhjwBe0ON0CbE53QF/r9Av7HHMcAGVMEJPOZ/FOBhuKmGk52tA5ooM6KTa4OZCEKOyMOg1+snAibpvvOQ/up/9vDz49WB/lXRFRNDFoURCxPMw03EyL37pAL7bFC/syb6N6TrI306KAZnxxKtpQ/SyizCQjspOMcAvA/tr2MO6M5EBqxGeihSisVCoVfnbZZFx7Zh5cbgF3vfkVdp5sifa2iChKGLQoiBi0xA2zp0WjViFOJx4wGVgz/ukX9rkKybQ4XW7sq/EEHtOGGbT4r2Vfi/K52YhPFDFqtQpPLC7DBRMz0ONw45ZXduBwfUe0t0VEUcCgRUHEQyJNwwxagODOaul1Ye8tjRIzLbUxnmk50tAJm9ONBIMWxWmmYd+uzPt9KPcGc6RkbMQniiSdRo1/LJmBGYXJsHQ78P2XtqGqtSva2yKiCGPQoiBd3sAjkEO5xAliYsAzHOKFfaJBizHeC3tfpiW2g5Zyv14d9TCa8EVSpqWamRal853TwqiFKFLi9Vq8fNNslGQmoK69B99/aRuaO2N/WiURDR+DFgXpcgQ28hgILtPiu7A3Sxf2UqYlxsvD9ngngJUNcajk6cSM0/FGKzp6HCHeFcmJ2IgfQExLRCGQHK/Ha7fOQa7ZiONNVtz8yvagRvaPRFVrFz74qgqPfLAHd76xEyu3VaLFao/oHohGKx4uqSC+kceBBy2BNOL7Lux9PR/i9LDWLge67a5h99XIjRiQiUHIcKUlGJCXHIfqtm7srW7HvHFp4dgeyYA4O4zlYUSRl2OOw2u3zsW3ntuMPVUWXPfMZnxzRh4WTsnC2GGcqxUIQRBwrNGKbRUt2H6iBdsqWlDd1vuFudV76/Dzf+7F3OJULJqWg0umZiEz0RjSfRCRB4MWBZEOlzQEUh4WeNAiXdj7BS1JRi1Meg2sdhdqLd0h/+MRCXanGwdqPQ2ew50c5q8s34zqtm6UV7cxaFEwt1vsaWHUQhQN4zMTsOLmOVj64lYcqu/A46sP4vHVB1GSmYCFU7NwydRsTMszB/w72mV3Yk+VBV9XtuGrylZ8XdmKps7eWRStWoXSPDPmFqfCZNDiv/vrsLe6HZuPNWPzsWb86l97MbsoFZeWZuOKshxkJjGAIQoVBi0KIp3TogumPGx408N6Xdj7nWOiUqmQkxyHow2dqLX0xGTQcri+A3aXG0lGLQpT4wO+/bR8M1bvrcNuThBTNCnTEtVdEI1uZxQkY/1PFmDNvjr8d18dvjzWjCMNnTjS0Il/rD+GHLMRC6dkYVxmAuJ0GsTpNX3+q4IK+2st+OqkJ0g5WNcBl7v3OUwGrRpnFiZjTnEa5han4szC5F59o/ddWILK5i6s3luL1XvrsOtUG7adaMG2Ey34y38P4bVb52JmUUqkvz1EisSgRUGCy7SII4+Hl2kRL+zNcToUpMb1+lyO2YijDZ2oaYvNvhZxXHFZfnJQr6KLQVw5gxZlk85pYdhCFE0ZiQbccFYRbjirCJZuBzYcasAn++qw4VAjai09ePXLkwHfZ3aSETOKkjGjMAVnFiajNM8Mg3bwFwIL0+Jx+/njcPv541DT1o01e+vw7o5TOFjXgZtWbMPbPzgLpQGWHBNRXwxaFKQrmJHH+sDKw3wX9n1T77E+Qay8n16dQIh9MJUtXWjrsiM5Xh+qrZGMsBGfSH7McTpcfUYerj4jDz0OFzYfa8L6g41ottrQZXeh2+5Cj8Pl+X+H5327y42SzAScWZiCGYUpmFGULPVnBis3OQ63zC/Gd+cU4PsvbcOOk634/svb8M4Pz0JJVmKIHi3R6MSgRUHEAyIDaYIPdHqYeGHfX6N6rE8Q8w/IgmGO12FMWjxONHehvNqCc0syQrk9kglfeRijFiI5Muo0+MakLHxjUlbU9hCv1+Llm2dj6YtbsafKgiUvbsW7t8/DmPThn/9FRL1x5LGCiCOPTQGd0xJ8puV0OWZP0FITgwdM9jhcOFTn6dWZFuC4Y3/ibfewREyxxEwLq8OIaDBJRh1evXkOJmYloqHDhiUvbu0zfYyIho9Bi4L4DpcMTyP+UBf2OVJ5WOw9KR+s64DTLSDNpEeuOfhpL2XeDBT7WpRLOlySQQsRDSHFpMfrt83B2HQTqtu6sfTFrWjoiL0X9ojkgEGLggTTiG8KoBF/qAv7XLE8LAYzLeVVbQA8E8BG0mAtjoEur2bQolS+c1oYtRDR0DITjXjjtrnIS45DRZMVS1/cilYeSEkUMAYtCiKNPA4g0yKVh9mHDlqGurAXMy0dNmfMnQovlb2NcMLL1NwkqFRAdVs3mjptodgayYzARnwiClBuchze+sFcZCUZcLi+E99/eRvaY+zvJFG0MWhRECnTEqZG/KEu7E0GLZKMnvuLtQliYmZkJP0sAJBo1GGst9GS2RZlksrD2IhPRAEoSjPhzdvmItWkR3m1BUtf3BqzRwQQRQODFoVwutywOd0AwteIP5wL+9xkT7Yllp6Iu+0uHK73HpgZ5OQwf2Xe7w/7WpTJVx4W1W0QUQwan5mI12+dA3OcDnuqLLji75vwxdGmaG+LKCYwaFEIcXIYENzIY+sQjfjDvbAXJ4jVxVCmZX+tBW4ByEw0ICsp+CZ8kTgOmhPElInTw4hoJKbmmvHve+ZjSk4SWqx23PDSVvxj/VG43cLQNyYaxRi0KES3tzRMo1bBoB3+P6vUiG93SrX6/RnuhX2OmGmJoaBlpOeznK5MasZvC8n9kbywPIyIRqowLR4f3HU2vjUzH24B+NMnh/DD13fA0s0+F6KBMGhRCLG8K16nCWiqkVgeJgi+npj+DPfCXpwqVhtD5WFiGde0vOSQ3N+U3CSoVUB9uw317bETvNHQ/AN7NuIT0UgYdRr86VvT8fi106DXqrHuQAOu/Psm7Kthlp6oP8NvfiBZ8407Hn5pGADE6TRQqwC34Al8TAOMSx7uhb3vrJbYuVjfUx3aTEu8XouSzEQcqu9AeZUFWVNGXnJG8uCfjOTIYyIKhe/OKcTUXDPufHMnKlu6cO0zm/H7b07D4pn50d4aKUCr1Y7nNh7DJ/vqkJloxLjMBIzLMGF8ZgLGZSQgLzkO6hh5FY5Bi0L4JocF9k+qUqlg0mvRYXOi0+ZE5gDrdnvHHQ91YZ/jPaulJkYOmOy0OXGssRMAUDrCccf+puWbcai+A3uqLbhoSlbI7peiy7+AMjae4okoFkzLN2PVvfPxwDu7sOFQI37y3m6sP9iABxdOwLiMhGhvj2KQ1ebEii8qsHzjcXR4q3FONHdh24mWXuuMOjXGpiegLN+MH108ISS9veHCoEUhgjmjRWQy+IKW/nT0OHC8yQrAd3jiQHLFTEtbDwRBkP2r0XurLRAET1lbRqIhZPdblm/G/9tZhT3eYI+Uwd2rPEzeP9tEFFuS4/V4+cbZeHr9Ufx13WF8XF6L1Xtrcd2MfNx3YQkKUuOjvcVRye0WcLKlC3uq2nCiqQuZSQYUpcWjKM2EnCSj7LIUdqcbb2+rxN8/PSqdFzc5Jwn3XDAeTrcbRxs6cayxE0cbOlHRZEWPw439te3YX9uOdQfq8bfvnolzxqdH+VH0L+Cg5bPPPsOf/vQn7Ny5E7W1tfjwww9xzTXXhGFrFAgx0xLIuGOR2Iw/UNCyr6YdggDkJcchPWHwC/tsb09Lt8MFS7cDyfH6gPcTSVLZW4hKw0TiBLHyKktMBG80PAJTLUQURmq1CvddWIILJ2fir2sPY92BBry3swr/3FWN78wuwL3fKAnbK+GdNicqGq043tSJdnEggMozckSl8gwf8fwXMMfpkJMchxyzEekJBmhkduEeLEEQUNXajT1VFuypbkN5lQXl1RZ09PR/faTXqlGQEocxaSYUpsVjUnYirj4jD0Zd4C8gj5TLLeCj3dV4cu1hnGrxVLsUpsbjxwsn4Mqy3H6DK6fLjVOt3Thc34G/rj2Mg3UdWPrSVjxw4QTc843xsvt3DfgK12q1Yvr06bj55ptx3XXXhWNPFASxET+QcceihCHGHvv6WYa+sDfqNEgz6dFstaOmrUf2QYuvnyU5pPc7OScJWrXK832w9CDPO1WNYpubjfhEFAFTc8148cbZ+LqyFU+uPYzPjzThjS2VeG9HFW44qwh3LhiHtCFeRBxIi9WOXadacbzRiuNNVhxv7MTxRisaOmxB3Z9GrUJWogHZZiNykuOQazbi8rJcnFGQHNT9RYogCKhr78HuUxaUV7dhjzdAaevqO8HNoFVjSm4SxmckoLHThsrmLlS2dMHudONYoxXHGq3S2r+tO4KHL5uMK8tyQv6CpSAIaOtyoMbSjdq2HtRaulFr6UGtpQd7qtqkfWQkGnDfhSX4zqwC6AeZKKvVqFGcbkJxugnnT8jArz/ah5XbT+Gv6w5jx8kWPPWdM4L+OQuHgIOWRYsWYdGiRSP/ylYroOnnAlujAYzG3usGolYDcXHBre3qOu1lUz8qFRAfH9za7m7A7R54HyZTUGs//fokshJ0mJrbf+DQ7T2nxWTQAD09gGuQc1fi432HTNhsSIUDcfYefLL1GE6cbOi11GmMw5p9dQCA6ZnGwb/HcXGAWo1ssxHt7VbU1zZhinmAIMq7FgBgtwOOQcY8Go2+n5VA1jocOHSqCZ8fbur3n8+l12Pr8WbPY8uKH/yxGQyA1vvr4nQCtkGe3PV6GHU6TMxOxMGqVjyzajfGpJn6XZqcYsK1c4o9r2a4XJ5/u4HodIDeGwQGstbt9vyshWKtVuv5XgDekXNdoVkbyO99NJ8jHC7E2XsgqE5rxJfBc8SQv/eBrD3tOQLOQQ6fDWRtIL/3EXqOgN0+8Fr/3/tA1g7jOQI6XeBr+Rzhe1+uzxGiEF1HnJmmx+vfLcW2imb8bd0RfFXZhhc3VeCtbZW4cHIWFhQkYP641IGzL97f+/r2Hqz96iTWlddg+4kW9HskjN6I9AQ9xqYnIEsvQO12QwAgQIAgeHr6BMFz4VzvVKOu3Yb6Dhs0djtaG7vR2ggc8N7VG/87gKun53p6JHJSZfEcIajV2HK8BdsO1eLAqRbsrbagubPv77TRYMCEvGRMyzNjenY8pmXEY3xmAnSa3hf/TpcbtT0CTlrsONFsRWVdG/63pwo1jW146NUv8XaBGQ8vmoTpBSmeGwTxHOFwubHzWCM27a3CpqPNqGzukq73RA6NFk6N537NehXuOisfN8wr8vQ427oB/y8zyHOEEcDjl47D3CwjfvPvfdhysBaX/18n/v69MzG7MDm8zxGD/d75E0YAgPDhhx8Ouqanp0ewWCzS26lTpwQAgkX82T/97bLLet9BfHz/6wBBOP/83mvT0wdeO2tW77VFRQOvnTKl99opUwZeW1TUe+2sWQOvTU/vvfb88wdeGx8vLXv9yxPC/8YOcr+A8Mz6o0LRQ6uEB9/ZJQiLFw+6Vujs9O3hxhsHXXvmvW8KRQ+tEooeWiVUf+/mwe+3okIQBEG49ZXtwnNzrh187d69vj08+ujga7dt86394x8HX7t+vW/t008PuvamxY8KRQ+tEoofXiV0PvfC4Pf77ru++3333cHXrlghCIIgPPLBHuGmxYM/tl9cfIfwnz01nvtdv37w+/3jH3172LZt8LWPPupbu3fv4Gt/8hPf2oqKwdfedZdvbUPD4GtvvNG3trNz8LWLF/f+3RhsrQyeIw6lFQqdPQ7f2ig/RwiC4Pm+DPZ98xfC5wihocG39q67Bl/rfY4QBMHzczfYWhk8RwirVvnWrlgx+NogniMEQfB8jcHWPv20by2fI3wGWyuD54hwXUfYUtKEK/7vc+nv8pcFpQOudcXHC89vPCZc+8wXQtFDq4a8jmjrsvv2MMznCKfLLXRdv3TQtS9+sEXotjs99xul54jKNeuFpS9uEYoeWiX8fsHg1zK2det89xul54itv/qLcNcbO4XSR9cMeR2x6oc/E57dcFT4165qoWP12sH3EMBzxCsX3ygUPbRKGPvIx8K7r/xn8Psd4XOEBZ6Y2GKxCIMJeyP+smXL8Nhjj4X7yyjWtooW/PqjfXh+iHXd3kZ8U4Ajj4dy5fQcWJNSUZASj5wPhldHm5ssj8kTHT0OJA7y+fnj05A2Ix9njU2Dqbwx5F//rgXjsH7nQPPYfHaebMWiaTkh//oUXmzEJ6JI02tU+Oiec/BVZSs2HmqE6f2BL+N6HC78/j8HpPfNcbpB73uoz/dHo1YNWZb+j/XHsOKwFb+4fDIuEYSotAPe9/YufJ1dAr1Gjam5SYOu1fdXBRQCq/bU4PwrHbA53XC0dWOwv/rv7jiFj221AIDEAY6iEF1elgucP87zTuvhEO0WuH5OIXZOzcVHu2vw/Gcn8K2Q3XPwVIIgCEHfWKUashHfZrPB5pcCa29vR0FBASw1NUhK6ucHR0Fp3X4FUPpR7VDjqr9vQrPVjlyDCq0d3ZiWb8a7t8/rs/a360/ipU0VuP38sXjkguKoln48u+EYnvy4HNeWZuGJxWWDrgUQttKP9eVVuGvFVozLMGHVfef2XRvl0o8Pv67GT/91ADPGZ3r+TVn64XtfpqUfnTYnZv9uHQQVsOvxa3zNliwPG95alod5sDws8LUx8hwhieB1REtHD7483owvjjThi2ONaGj3/JyqVUDZxDxcWpqNS6ZmI9uAiD5HCIKAj8tr8btPT6LO2y9zbkEifn5pCSZlDxA4hOg5wu0W8OHX1fjrukNo7nTAptXhwtJc/OLyyShK1EXsOWJvtQVPrD6IHSdbYdfq4FJ77lfjdkHvHHgPEwpTcf6UXCyYlInp2QnQOAbZQxifIwSdDm9srcTvPtoLtXfthKwEfHdOIa6cniv1RI/0OaK9vR3m3FxYLJb+YwPxpgPfa2gYDAYYxM35M5l6/4IMZDhrglnr/wQRyrX+T2gjWNttd+GHL21Gs9WOqblJeG7pTHzjLxuwrcGGvW3OPmeK9JoeZgwg02Ew+H54QrQ2N9kIh0aHEz0Y3r+JXu/7YQ/h2t31XejWGzFhbPbQ+9DpfL/0Q9FqfU9SI1g7tSQHTs0R7Ku2wOUWoNFohv8zHMhatTo8a1Wq8KwF5LG2n997t8aBbr3n96tXoiUKzxF9BPJ7H+XnCABh+70PaG0gv/dReI7og88RPnJYK5PriNS4OFyemYLLzxoPQRBwqL4DJ5q6MHtMSvBN1CF4jlABuGJeCb4xsxjPbTiG5Z8dx+enOnDZi1/hrLFpuHhKFi6ekoX8lAG+N0H+3n9d2Ypff7QPu6ssADQYm5eER6+civMnZPRePxwjfI4onWDCayU5WLO3Dn9YfUCa6pWYYESqKQmp8XqkmPTSf8dmmLBgQgYyT+9R0g9zDyF+jlABuOGsIswtTsVLn1fgX7ursbvVid2fHMfvN1Tim2fmYelZRZiY7ff9DOY5YrAA2Q/PaZEhQRDw0/+3G/tq2pFm0uP5789CXnIcLi3Nwb931+DNrZVYdu20XrcZyTktoZYjntViGSSCj4BwjTMOlXEZCYjTaWC1u3C8sRMlWYMVs5Ec+L9QquLMYyKSGZVKhUnZSQNnMqIgXq/Fgwsn4luzCrBs9QH8p7wOm481Y/OxZjz27/2YnJOEi6dkYeGULEzNTQp44pbLLeBAbTt2nGjBF8easXZ/PQDPZNQHLirB9+eNGXSCVripVCosmpaDS6Zmo63bgSSjFlpN9PYTjAlZiXhicRl+dtlk/L+vqvDmlpM43mTF61tO4vUtJzGnOBXfnlWACydlIsUUvqmxAQctnZ2dOHr0qPR+RUUFdu3ahdTUVBQWFoZ0c6PVsxuPYdWeWmjVKjyzZIY0LnfJ3EL8e3cN/rWrGj+7bBISjb7IW8y0xAdxTkuo5XjPaqmzRO+ASUEQ/MYZyzNo0ahVKM1LwvYTrdhTZWHQEgv8gxbGLEREw1aQGo9nlszEyWYr1u6vx3/31WPHyRYcqG3Hgdp2/N//jiAvOQ7nTchAXrIRaQkGpJr0SE/QI9VkQFqCHokGLXocbnx9qhU7TrRi+4kWfF3Z1uecuW/NzMdPL52IzER59NgCnjN4UsN4QR8J5ngdbp1fjFvOGYPNx5rx+pcnsfZAPbZVtGBbRQs0ahVmFaXg4ilZuGhyFsakD5xxsTs9B13ur23HV0drhvX1A77C3bFjBy644ALp/QcffBAAcOONN+KVV14J9O7oNJ8erMefPjkEAPj1VVMxd2ya9Lm5xakYl2HCsUYr/rmrBjecVSR9ritMjfjByDYboVIBdpcbzVb7kAdShkN9uw2NHTZo1CpMyZFn0AIA0/KSsf1EK8qrLbhuZn60t0ND6H1OC6MWIqJAFaWZcNu5Y3HbuWPR3GnDpwcbsHZ/PT470ojqtm68va1ywNvqNWq4BQHO02Y2Jxq0mFGUgtljUvCNSVmYMkSzPY2MSqXCOePTcc74dNRZevDO9lNYvbcWB+s6sLWiBVsrWvC7jw+gJDMBF03JwkWTM+FwCdhf0479te3YX9OOIw0dcLg8/45u2yD9bH4CDloWLFiAEfTu0yCONnTi/rd3QRA8WZWlfkEJ4PkhWTK3CL9ZtR9vbjmJpXMLpSyGeDBkXBROYT2dTqNGRoIBDR021Lb1RCVo2VPVBgAoyUwI6sDNSJle4AmoxP2SvPk/8zFkISIambQEA741qwDfmlWAbrsLm4424avKVjR32tDcaUez1Y5mqw0tnXZY7S7YXZ4BBdlJRswuTsXsMSmYVZSKidmJsju9fbTINhtx/0UluP+iEpxq6cK6A/VYd6AeW4+34EhDJ440dOLZDcf6vW2iUYspOUkYa07H48P4WtGvJSIAgKXbgR++tgMdNifmjEnFo1dO7XfddTPy8cdPDuJgXQe+qmzFzKJUAJ7GfQAwDTEaL1JykuPQ0GFDjaU7Kj0le6rkXRommuYdqLCvph1Olzvm6lxHG/9MCxMtREShE6fXSM35/elxuNBstUOt8gQt0Sg9p8EVpMbj5nOKcfM5xbB0O7DhUAPWHWjA50caYdJrMSU3CVNykqT/5qfEQaVSob29nUFLLPnxu7twvMmKvOQ4PLN0xoBNY+Z4Ha4sy8V7O6vw5pZKKWixesvD5JJVyDUbsfsUUNs2yNi7MBL7WablJ0fl6w/XmDQTEg1adNicONLQick5TGnLWa9GfP7BJCKKGKNOI/X4kvyZ43S4+ow8XH1GXsjuky/rykB5lQXrDjRAp1Fh+Q0zhyynWuItG1tVXotWq2d2d7f/yGMZiOYEMUEQUO4ttyrLk3emRa1WSeOrxWlnJF+Ct0CM8QoREVFkMWiRgTe3ngQAXDYtp8/5K/2Znm/G1Nwk2J1uvP9VFQBfpkUOI48Bz1ktAFAThaClqrUbrV0O6DQqTMqR/0QusYRtT3VbdDdCQxIzLWzCJyIiiiwGLVHW3uPAv3Z5Rr0tmVs0xGoPsSEfAN7cWgmny40eh6c5TS5Bi5RpiUJ5WLm3NGxidiIMWnl8PwYj9vww0yJ/YtDCkIWIiCiyGLRE2T+/rka3w4WSzATMHpMy7NtddUYuEgxaVDRZ8enBBunjcmnEz/ae1RKN8jCxCX9aXnLEv3Ywyrz7PFDbAbvTHd3N0KBYHkZERBQdDFqiSBAEvLnFM498id/44uFIMGhxzZm5AIAXPj8OwHMhZYjiqa/+xPKwuvYeuNyRHZFd7i2zkvvkMFFBahzMcTrYXW4cru+I9nZoEOKPMpvwiYiIIkseV7ij1M6TrThU3wGjTo1vzgj8YMHvzfGUiG0/0QrA04Qvl4upzEQjNGoVXG4BjR22iH1dQRD8Mi2xEbSoVCpfXwtLxGRNPKNKHr9lREREoweDlih6c6sny3LV9FyY43QB335KbhJmFCZL78tl3DEAaNQqZCV6pqDVWCLX13KyuQsdPU7otWpMyJJ/E75IDLDK2Ywva2zEJyIiig4GLVHSYrXj4/JaAMNvwO+P/21NMgpaAM8BkwBQ2xa5vhbxfJbJOUkDnnUjR8y0xAapEZ8xCxERUUTJo2t7FHp/ZxXsTjdK85JG1HtxeVkOfvvxfrR1ORAnkzNaRDlSM37kMi2xcj7L6cRDMA/VdaDH4YJRJ68ANJa43AIO1LbD4Qr9UIM672AJxixERESRJa+r3FHC7Rbw1jaxAb9oRH0oRp0Gi2fk48VNFbLLtOQmR/6ASamfJUaa8EW5ZiPSTHo0W+04WNeBMwqSo72lmPXEmoN4/rPjYf0aajXDFiIiokhi0BIFXx5vRkWTFQkGLa6anjvi+/vheWNxqL4Di2cG3swfTpHOtLjdAvZ6y8NiZXKYSKVSYVq+GRsONWJPVRuDliBZbU685e0VyzUbwxZcfPPMvLDcLxEREfWPQUsUvLn1JADg2hl5ITlXJTPJiNdvnTvi+wk18YDJmgj1tBxvssJqd8GoU2N8RkJEvmYoleWJQQv7WoL10e4adNqcGJMWj09/vIAZESIiIoWInU5lhWho78F/99UDAL43tzDKuwkv8ayWSGVaxMlbU3PN0Gpi70db7GspZ9ASFEEQ8MYWzwsC35tbyICFiIhIQWLvyi7GvbP9FJxuAbOKUjApOyna2wkrMdPS0GELS1P06cQMRayVhonEfR9p6ECX3Rnl3cSePVUW7Ktph16jxuKZBdHeDhEREYUQg5YIcrkFvC024J+l7CwLAKSZ9NBr1BAEoL49/CVi5TEetGQlGZGVZIBbAPbXtEd7OzFHLLu8bFo2Uk36KO+GiIiIQok9LRG04VADaiw9SI7XYVFpTrS3E3ZqtQrZZiMqW7pQa+lBfkp8nzXbKlrw90+PoK3LMeD96LVq/OyyyZhZlDLgGqfLjX3eC/1peckj3nu0TMtLRn17PfZUWTBrTGq0txMzLN0OfLS7BgCw5Kzgzz0iIiIieWLQEkFveqcafWtm/qg5hyPHG7TUtPXua7HanHhizUG89uXJYd3Pj9/dhTUPnDfg9+1YoxXdDhdMeg3GpptGvO9oKcs3Y92BepRXs68lEB9+VYUehxsTsxIxa5DgloiIiGITg5YIqWrtwvpDDQCA6+covzRM5Bt77CsP23SkCQ+9vwfV3kDmu7MLcElpdr+3FwQBD79fjhPNXXj+s+O478KSftft8R4qWZpnjukGbPF8GfHx0NAEQZBeEFhyVuGIzj0iIiIieWLQEiErt52CIADnjE/D2BgcxxusHPGAybZuWLod+MPHB/DOjlMAgPyUODx+bRnml6QPeh+/vMKFe9/+Gk+vP4qrz8hFUVrfTEp5jJ7PcrppeZ79H2+yoqPHgUSjLso7kr/tJ1pxpKETcToNruH5KURERIrERvwIcLjcWLndc6G+ZO7oqrfP9WZavjjWjIV/3SgFLDedPQafPHDekAELAFxRloP549Nhd7rxq3/tgyAIfdaIk8PEscGxKj3BgLzkOAgCpB4dGpzYgH/1GblIYpBHRESkSAxaIkCjUuEv356Oa2fk4eIpWdHeTkSJY4+PNnSivt2G4nQT3r19Hn591dRhH6ypUqnwm6unQq9RY+PhRnyyr67X5x0uN/bXei7wy/JiO9MC+LItPK9laM2dNqwu9/w8jLYXBIiIiEYTBi0RoFarcP6EDDz57TOgi8FDD0difKanFE6tAm4/byxW338u5hQHPhVrbEYCbj9/LADgsX/vh9XmO8fkcH0H7E43Eo1aFKX1nVAWa6S+FjbjD+n/7ayC3eVGWb5Z+r4RERGR8rCnhcJqTLoJr986BxmJhhEfpnn3BePxz13VONXSjb/97wh+dtlkAL3PZ1FCE7bYl1POZvxBud0C3hLPPZo7eoZbEBERjUaj62V/iopzSzJGHLAAgFGnwW+uKgUAvLSpAofqOgD4MhKxfD6LP7E87ERzFyyDnF8z2m062oSTzV1INGpx5fTcaG+HiIiIwohBC8WUCyZl4pKpWXC5Bfzin+UQBKFXpkUJkuP1KEz1lLntrWGJ2EDEBvzrZuQjXs+kMRERkZIFFbQ888wzKC4uhtFoxMyZM/H555+Hel9EA/rVlVMRp9Ng+4lWvL3tFA7WeZrwpymgCV8k9mfsZolYv+osPVh3wHPu0fdYGkZERKR4AQct77zzDh544AH8/Oc/x9dff41zzz0XixYtQmVlZTj2R9RHXnIc7r/Ic8jkrz/aB4dLQEq8DvkpcVHeWeiUcYLYoN7Zfgout4A5Y1IxISsx2tshIiKiMAs4aHnyySdx66234rbbbsPkyZPx1FNPoaCgAM8++2w49kfUr1vOKUZJZgLsLjcAz/ksSmjCF0kTxBi09OF0ubFyu7cB/yxmWYiIiEaDgArB7XY7du7ciYcffrjXxxcuXIjNmzf3exubzQabzSa9b7F4LsLa23lwHo3MwxcW4eZXtgMAJiRrFPUzVZiogtvWhVP1XRj/0/ejvR1ZEQA4nG6kxOtwdmG8ov7diYiIRhvx73h/h4f7CyhoaWpqgsvlQlZW7wMSs7KyUFdX1+9tli1bhscee6zPxwsKCgL50kSD+uVTwC+jvQmKqFMAMv8Q7V0QERFRKDQ3N8NsHrg/OaiRO6eX4QiCMGBpziOPPIIHH3xQer+trQ1FRUWorKwcdGPRMnv2bGzfvj3a2+ijvb0dBQUFOHXqFJKSghsfLNfHNlJKfVwAH5scDed3MVYf23Ao9bEp9XEBfGwDCcXf1XDiv1vsUerjAsL72CwWCwoLC5GaOvjh4wEFLenp6dBoNH2yKg0NDX2yLyKDwQCDwdDn42azWZZPEhqNRpb7EiUlJQW9P7k/tmAp9XEBfGxyNtjvYqw/tsEo9bEp9XEBfGxDGcnf1XDiv1vsUerjAiLz2NTqwVvtA2rE1+v1mDlzJtauXdvr42vXrsXZZ58d+O5k6O677472FsJGqY9NqY8L4GOLVXxssUepjwvgY4tVfGyxR6mPC5DHY1MJQ3W9nOadd97BDTfcgOeeew7z5s3D888/jxdeeAH79u1DUVHRkLdvb2+H2WyGxWJRbDQaDvy+EckDfxeJlIG/y0TyMNzfxYB7Wr7zne+gubkZv/nNb1BbW4vS0lL85z//GVbAAnjKxR599NF+S8ZoYPy+EckDfxeJlIG/y0TyMNzfxYAzLURERERERJEU8OGSREREREREkcSghYiIiIiIZI1BCxERERERyRqDlhimUqnwz3/+M9rbICIiIiIKKwYtUXbTTTdBpVL1eTt69Gi0t0Y0aoi/h3fccUefz911111QqVS46aabIr8xIgra5s2bodFocOmll0Z7K0QUAgxaZODSSy9FbW1tr7fi4uJob4toVCkoKMDKlSvR3d0tfaynpwdvv/02CgsLR3TfDodjpNsjogC9/PLLuPfee7Fp0yZUVlaO6L5cLhfcbneIdkZEwWDQIgMGgwHZ2dm93jQaDf79739j5syZMBqNGDt2LB577DE4nc5et62trcWiRYsQFxeH4uJivPfee1F6FESxbcaMGSgsLMQHH3wgfeyDDz5AQUEBzjzzTOlja9aswfz585GcnIy0tDRcccUVOHbsmPT5EydOQKVS4d1338WCBQtgNBrxxhtvRPSxEI12VqsV7777Lu68805cccUVeOWVV6TPbdiwASqVCh9//DGmT58Oo9GIuXPnory8XFrzyiuvIDk5GatWrcKUKVNgMBhw8uTJKDwSIhIxaJGpTz75BEuXLsV9992H/fv3Y/ny5XjllVfw+9//vte6X/7yl7juuuuwe/duLF26FNdffz0OHDgQpV0Txbabb74ZK1askN5/+eWXccstt/RaY7Va8eCDD2L79u343//+B7VajW9+85t9XoV96KGHcN999+HAgQO45JJLIrJ/IvJ45513MHHiREycOBFLly7FihUrcPqxdD/96U/x5z//Gdu3b0dmZiauuuqqXlnRrq4uLFu2DC+++CL27duHzMzMSD8MIvInUFTdeOONgkajEUwmk/S2ePFi4dxzzxX+8Ic/9Fr7+uuvCzk5OdL7AIQ77rij15q5c+cKd955Z0T2TqQUN954o3D11VcLjY2NgsFgECoqKoQTJ04IRqNRaGxsFK6++mrhxhtv7Pe2DQ0NAgChvLxcEARBqKioEAAITz31VAQfARH5O/vss6XfQYfDIaSnpwtr164VBEEQ1q9fLwAQVq5cKa1vbm4W4uLihHfeeUcQBEFYsWKFAEDYtWtX5DdPRP3SRjViIgDABRdcgGeffVZ632QyYfz48di+fXuvzIrL5UJPTw+6uroQHx8PAJg3b16v+5o3bx527doVkX0TKU16ejouv/xyvPrqqxAEAZdffjnS09N7rTl27Bh++ctfYsuWLWhqapIyLJWVlSgtLZXWzZo1K6J7JyKPQ4cOYdu2bVKpp1arxXe+8x28/PLLuOiii6R1/n8/U1NTMXHixF6VCnq9HmVlZZHbOBENikGLDIhBij+3243HHnsM1157bZ/1RqNx0PtTqVQh3R/RaHLLLbfgnnvuAQD84x//6PP5K6+8EgUFBXjhhReQm5sLt9uN0tJS2O32XutMJlNE9ktEvb300ktwOp3Iy8uTPiYIAnQ6HVpbWwe9rf/fz7i4OP49JZIRBi0yNWPGDBw6dKhPMHO6LVu24Pvf/36v9/2bhokoMJdeeqkUgJzei9Lc3IwDBw5g+fLlOPfccwEAmzZtivgeiah/TqcTr732Gv7yl79g4cKFvT533XXX4c0335Qyolu2bJEmA7a2tuLw4cOYNGlSxPdMRMPDoEWmfvWrX+GKK65AQUEBvvWtb0GtVmPPnj0oLy/H7373O2nde++9h1mzZmH+/Pl48803sW3bNrz00ktR3DlRbNNoNFKJiEaj6fW5lJQUpKWl4fnnn0dOTg4qKyvx8MMPR2ObRNSPVatWobW1FbfeeivMZnOvzy1evBgvvfQS/vrXvwIAfvOb3yAtLQ1ZWVn4+c9/jvT0dFxzzTVR2DURDQenh8nUJZdcglWrVmHt2rWYPXs2zjrrLDz55JMoKirqte6xxx7DypUrUVZWhldffRVvvvkmpkyZEqVdEylDUlISkpKS+nxcrVZj5cqV2LlzJ0pLS/GjH/0If/rTn6KwQyLqz0svvYSLLrqoT8ACeDItu3btwldffQUAePzxx3H//fdj5syZqK2txUcffQS9Xh/pLRPRMKkE4bQZgEREREQKtWHDBlxwwQVobW1FcnJytLdDRMPETAsREREREckagxYiIiIiIpI1locREREREZGsMdNCRERERESyxqCFiIiIiIhkjUFLhCxbtgyzZ89GYmIiMjMzcc011+DQoUO91giCgF//+tfIzc1FXFwcFixYgH379kmfb2lpwb333ouJEyciPj4ehYWFuO+++2CxWHrdT2trK2644QaYzWaYzWbccMMNaGtri8TDJCIiIiIKOQYtEbJx40bcfffd2LJlC9auXQun04mFCxfCarVKa/74xz/iySefxNNPP43t27cjOzsbF198MTo6OgAANTU1qKmpwZ///GeUl5fjlVdewZo1a3Drrbf2+lrf+973sGvXLqxZswZr1qzBrl27cMMNN0T08RIRERERhQob8aOksbERmZmZ2LhxI8477zwIgoDc3Fw88MADeOihhwAANpsNWVlZeOKJJ3D77bf3ez/vvfceli5dCqvVCq1WiwMHDmDKlCnYsmUL5s6dCwDYsmUL5s2bh4MHD2LixIkRe4xERERERKHATEuUiCVdqampAICKigrU1dVh4cKF0hqDwYDzzz8fmzdvHvR+kpKSoNVqAQBffvklzGazFLAAwFlnnQWz2Tzo/RARERERyRWDligQBAEPPvgg5s+fj9LSUgBAXV0dACArK6vX2qysLOlzp2tubsZvf/vbXlmYuro6ZGZm9lmbmZk54P0QEREREcmZNtobGI3uuece7NmzB5s2berzOZVK1et9QRD6fAwA2tvbcfnll2PKlCl49NFHB72Pwe6HiIiIiEjumGmJsHvvvRcfffQR1q9fj/z8fOnj2dnZANAnG9LQ0NAn+9LR0YFLL70UCQkJ+PDDD6HT6XrdT319fZ+v29jY2Od+iIiIiIhiAYOWCBEEAffccw8++OADfPrppyguLu71+eLiYmRnZ2Pt2rXSx+x2OzZu3Iizzz5b+lh7ezsWLlwIvV6Pjz76CEajsdf9zJs3DxaLBdu2bZM+tnXrVlgsll73Q0REREQUKzg9LELuuusuvPXWW/jXv/7Va4KX2WxGXFwcAOCJJ57AsmXLsGLFCpSUlOAPf/gDNmzYgEOHDiExMREdHR24+OKL0dXVhQ8//BAmk0m6n4yMDGg0GgDAokWLUFNTg+XLlwMAfvjDH6KoqAj//ve/I/iIiYiIiIhCg0FLhAzUT7JixQrcdNNNADzZmMceewzLly9Ha2sr5s6di3/84x9Ss/6GDRtwwQUX9Hs/FRUVGDNmDADPIZT33XcfPvroIwDAVVddhaeffhrJyckhfUxERERERJHAoIWIiIiIiGSNPS1ERERERCRrDFqIiIiIiEjWGLQQEREREZGsMWghIiIiIiJZY9BCRERERESyxqCFiIiIiIhkjUELERERERHJGoMWIiIiIiKSNQYtREREREQkawxaiIiIiIhI1hi0EBERERGRrDFoISIiIiIiWfv/DZayguPXu70AAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:01.320930\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax = df[df.index<\"2020-05-01\"]['Rt'].replace(np.inf,np.nan).fillna(method='pad').plot(figsize=(10,3))\n", "ax.set_ylim([0,6])\n", @@ -360,9 +2338,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 143, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAEiCAYAAAB5tHquAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACN10lEQVR4nO3dd3wUdfoH8M+W7KaQbBpJCITeDc3QUQHp9rOhnJzYPVDEqHeW8yfqKRZETiycJ4odvENsKFWKSEdC7wQSSEJ6b1vm98fuzM7Mzmw2tCTweb9eviS73+zOluzO832e7/M1CIIggIiIiIiIiBqEsaEPgIiIiIiI6FLGoIyIiIiIiKgBMSgjIiIiIiJqQAzKiIiIiIiIGhCDMiIiIiIiogbEoIyIiIiIiKgBMSgjIiIiIiJqQOaGPoCLjcvlQlZWFsLDw2EwGBr6cIiIiIiIqIEIgoCysjIkJibCaNTPhzEoO8eysrKQlJTU0IdBRERERESNRGZmJlq1aqV7PYOycyw8PByA+4mPiIho4KMhIiIiIqKGUlpaiqSkJClG0MOg7BwTSxYjIiIYlBERERERUZ3Lmtjog4iIiIiIqAExKCMiIiIiImpA5zUomzFjBvr164fw8HDExcXhpptuwsGDBxVjBEHA9OnTkZiYiJCQEAwbNgx79+5VjKmpqcGjjz6K2NhYhIWF4YYbbsDJkycVY4qKijBx4kTYbDbYbDZMnDgRxcXFijEZGRm4/vrrERYWhtjYWEydOhW1tbWKMbt378bQoUMREhKCli1b4qWXXoIgCOfuSSEiIiIiIpI5r0HZ2rVrMWXKFGzatAkrVqyAw+HA6NGjUVFRIY154403MGvWLLz77rvYunUrEhISMGrUKJSVlUljpk2bhsWLF2PBggVYv349ysvLcd1118HpdEpjJkyYgLS0NCxduhRLly5FWloaJk6cKF3vdDpx7bXXoqKiAuvXr8eCBQuwaNEiPPHEE9KY0tJSjBo1ComJidi6dSvmzJmDmTNnYtasWefzaSIiIiIiokuZcAHl5uYKAIS1a9cKgiAILpdLSEhIEF577TVpTHV1tWCz2YS5c+cKgiAIxcXFQlBQkLBgwQJpzKlTpwSj0SgsXbpUEARB2LdvnwBA2LRpkzRm48aNAgDhwIEDgiAIws8//ywYjUbh1KlT0pivv/5asFqtQklJiSAIgvD+++8LNptNqK6ulsbMmDFDSExMFFwuV0CPsaSkRAAg3SYREREREV2aAo0NLuiaspKSEgBAdHQ0ACA9PR05OTkYPXq0NMZqtWLo0KHYsGEDAGD79u2w2+2KMYmJiUhOTpbGbNy4ETabDQMGDJDGDBw4EDabTTEmOTkZiYmJ0pgxY8agpqYG27dvl8YMHToUVqtVMSYrKwvHjx/XfEw1NTUoLS1V/EdERERERBSoCxaUCYKA1NRUXHHFFUhOTgYA5OTkAADi4+MVY+Pj46XrcnJyYLFYEBUV5XdMXFycz33GxcUpxqjvJyoqChaLxe8Y8WdxjNqMGTOkdWw2m40bRxMRERERXQJqHS58t+MUckurz/q2LlhQ9sgjj2DXrl34+uuvfa5T9+0XBKHOXv7qMVrjz8UYwdPkQ+94nnnmGZSUlEj/ZWZm+j1uIiIiIiJq+lbsO41pC9Pw+tKDdQ+uwwUJyh599FH88MMPWL16NVq1aiVdnpCQAMA3C5WbmytlqBISElBbW4uioiK/Y06fPu1zv3l5eYox6vspKiqC3W73OyY3NxeAbzZPZLVapY2iuWE0EREREdGlobDS3cW9uLK2jpF1O69BmSAIeOSRR/Dtt9/i119/Rbt27RTXt2vXDgkJCVixYoV0WW1tLdauXYvBgwcDAFJSUhAUFKQYk52djT179khjBg0ahJKSEmzZskUas3nzZpSUlCjG7NmzB9nZ2dKY5cuXw2q1IiUlRRqzbt06RZv85cuXIzExEW3btj1HzwoRERERETV1Lpe7os55DrbPOq9B2ZQpU/DFF1/gq6++Qnh4OHJycpCTk4OqqioA7pLAadOm4dVXX8XixYuxZ88eTJo0CaGhoZgwYQIAwGaz4b777sMTTzyBVatWYceOHbjrrrvQo0cPjBw5EgDQrVs3jB07Fg888AA2bdqETZs24YEHHsB1112HLl26AABGjx6N7t27Y+LEidixYwdWrVqFJ598Eg888ICU3ZowYQKsVismTZqEPXv2YPHixXj11VeRmppaZzklERERERFdOhyeoMx1DrY0Np/9Tej74IMPAADDhg1TXP7JJ59g0qRJAIC//e1vqKqqwuTJk1FUVIQBAwZg+fLlCA8Pl8a//fbbMJvNuP3221FVVYURI0Zg/vz5MJlM0pgvv/wSU6dOlbo03nDDDXj33Xel600mE5YsWYLJkydjyJAhCAkJwYQJEzBz5kxpjM1mw4oVKzBlyhT07dsXUVFRSE1NRWpq6rl+aoiIiIiIqAkTM2WucxCVGQThHOTbSFJaWgqbzYaSkhKuLyMiIiIiukjNXXsUr/1yAIPax+DrBwdqjgk0Nrig+5QRERERERE1RdV2J+atT8fRvHIAgFMqX2zka8qIiIiIiIguBu+vPoKXf9qHEW+tBcCgjIiIiIiI6ILanF6o+Nl5Dht9MCgjIiIiIqJLWlZxFT75PR0VNQ7dMeqEmJghc56DqOy8dl8kIiIiIiJq7G5493fkl9fg0OkyzLi5J0qr7diZWYxB7WNgNrnzWOoyRbEl/rnom8hMGRERERERXdLyy2sAAL8dzgcAvLn0ICbO24Ll+05LY9SbRDeZzaOJiIiIiIiaCqPBAAA4XVoNAMj1/B/w3Y9MLFt0us7B/Z79TRARERERETV9RndMJpUmOmVxmHrpGMsXiYiIiIiIzjExUyYGXPLsmLqhx7ls9MGgjIiIiIiILhm1DhfKqu2a13liMjhd7ppE+XoxdaMPrX3KBEHAc4t3Y9byg/U6JgZlRERERER0ybjjw4244vXVmu3vTZ76RYfTNwumrlLU2qfsSG45vtycgXd+PVKvY2JQRkREREREl4wDOWUoqbIjR9bEQ+SvfFEvUyYP3CpqnWd0TAzKiIiIiIjokqEVcIkMqqBMXr6obn0v/iwP1pSZtcDXmjEoIyIiIiKiS4bTz/5iRtWaMkWmTKclvl4zkPo0ZWRQRkRERERElwRBEDTLDkVS+aLTN3BTD9daU+b0U+7oD4MyIiIiumAEQTgne/oQEZ0Jp58W94DGPmWyjaF1W+LrdGisT6d8BmVERER0QbhcAm56fwP+/NFmBmZEdMEcyyvH5mMFALzBFqAdlIlryvTa3cuJ2TS98sX6ZMrMAY8kIiIiOgvFVXbszCwGANidAixmQ8MeEBFdEq5+ay0AYGXqULSwBUuXawVN3kyZZ58yl37my1VHo4/6YKaMiIiILogznUEmIjoXjuSWqTJlvmN81pTJxwfQEp9ryoiIiKhROxezyUREZ8poMMAhi8Q015QZVfuUydeIqcaLY+Sxl7/GIH6PLfChRERERGfO34wzEdH5ZjYZ6sxkeVvi+2bB1OM1G30wU0ZERESNmeLkhpkyIroA5J81JqNRUb7o0MqUSeWLnn3KAmqJr32b3KeMiIiIGp26WlETEZ1rdpe3XNFsNNQ5OSQFZVqZMnVLfJfy/4D/bo3+MCgjIiKiC0Je4sPyRSK6EOxOeabMEEBLfPf/NfcpU7fEFzs06qyX5ZoyIiIiuqBySqpxzb9+w4ItGbpjmCkjogvN7vBGVSajAU5ZWktrcsjoZ58y9RoxMd7TK1/kmjIiIiK6oDanF2Bfdim+SzulO4ZBGRFdaHZZqssAVdCkWb7oLjvUbvShHCv+viB4SxXl98c1ZURERHRBaZ3A6I0BlGswiIjOl1pZkOQSvPuPAfqZMkWJYwAt8cXbBpS3zzVlREREdEGJAZdWNzP1GIBryojowpCvKXO6hDoz9gaDfjMQn5b4GrdlVwWBgWJQRkRERGdNPFnx1+pebzE8EdH5oiwnFDQbfSjb5kO3GYhPS3yN9WZcU0ZEREQNxhFApuxMN1UlItKzbG8O9mWV6l5f61BmrrQyZfLPLaPBIO1R5v6dAEuyxaBMHgQG8gA8zPUYS0RERKRJDLj8ZcAUm7Y6GZQR0dlJyyzGQ59vBwAcf+1azTHqzJXD5RtwOdVBWYBNibQCPHm5pMslBJwCY1BGREREZy2QNWXMlBHRueQvQyayq7Jein3HPP+WB2oGg3r9q/5ta5U2ym+L3ReJiIjognIEkCnjmjIiOpecAbRxle9TJgjQ7KzoL1Pmd52sxjh5FUB9Jp+YKSMiIqKzplUGpMbui0R0LvnLzItqVZkyQZ4p81wnvx2DQbkuLOCJJmmfMllL/DqPzuu8ZsrWrVuH66+/HomJiTAYDPjuu+8U1wuCgOnTpyMxMREhISEYNmwY9u7dqxhTU1ODRx99FLGxsQgLC8MNN9yAkydPKsYUFRVh4sSJsNlssNlsmDhxIoqLixVjMjIycP311yMsLAyxsbGYOnUqamtrFWN2796NoUOHIiQkBC1btsRLL71Ur/0FiIiILlXiOUzg+5Tx+5WIzk4ga1MVa7x8MmWe/8su08umadEqydZasxaI8xqUVVRUoFevXnj33Xc1r3/jjTcwa9YsvPvuu9i6dSsSEhIwatQolJWVSWOmTZuGxYsXY8GCBVi/fj3Ky8tx3XXXwel0SmMmTJiAtLQ0LF26FEuXLkVaWhomTpwoXe90OnHttdeioqIC69evx4IFC7Bo0SI88cQT0pjS0lKMGjUKiYmJ2Lp1K+bMmYOZM2di1qxZ5+GZISIiuriIZUQOP+VEde0PRERUH1qZsl0ni5FbVi39bFdlvTRLDlXBVaATSMoyR/H+zmzz6PNavjhu3DiMGzdO8zpBEDB79mw899xzuPnmmwEAn376KeLj4/HVV1/hoYceQklJCebNm4fPP/8cI0eOBAB88cUXSEpKwsqVKzFmzBjs378fS5cuxaZNmzBgwAAAwH/+8x8MGjQIBw8eRJcuXbB8+XLs27cPmZmZSExMBAC89dZbmDRpEl555RVERETgyy+/RHV1NebPnw+r1Yrk5GQcOnQIs2bNQmpqKgwGw/l8qoiIiJq0QDJlLq4pI6JzSL2mLLOwEje8+zsubx2JbycPAaC1T5ksSNPYX1EQVIFcfTNlTW3z6PT0dOTk5GD06NHSZVarFUOHDsWGDRsAANu3b4fdbleMSUxMRHJysjRm48aNsNlsUkAGAAMHDoTNZlOMSU5OlgIyABgzZgxqamqwfft2aczQoUNhtVoVY7KysnD8+HHdx1FTU4PS0lLFf0RERJcarQXzaoGWBBERBUKdKcsqrvL835spq+8+ZQICz5RpNS9yqAK8QDVYUJaTkwMAiI+PV1weHx8vXZeTkwOLxYKoqCi/Y+Li4nxuPy4uTjFGfT9RUVGwWCx+x4g/i2O0zJgxQ1rLZrPZkJSU5P+BExERXYS85Yv129OHiOhMqdeUiaWD8kyX7z5lvgGXPOPmcgU+gaRei6a+70azpiwQ6rJAQRDqLBVUj9Eafy7GiHWg/o7nmWeeQUlJifRfZmam32MnIiI6Gx+sOYrBM1bhlGdGuLGob/ki9ykjorOlngSq9fSckHdcVAdJ8kDOEcCaMqefrvtaHWWbXFCWkJAAwDcLlZubK2WoEhISUFtbi6KiIr9jTp8+7XP7eXl5ijHq+ykqKoLdbvc7Jjc3F4BvNk/OarUiIiJC8R8REdH5smJfDrJKqpGWUdzQh6IQSKZMfjLk70SHiCgQTpdyvZhYqigPjGpV+5Q5NbojOlQdGhWBlct33Zl0/1rli07f7FkgGiwoa9euHRISErBixQrpstraWqxduxaDBw8GAKSkpCAoKEgxJjs7G3v27JHGDBo0CCUlJdiyZYs0ZvPmzSgpKVGM2bNnD7Kzs6Uxy5cvh9VqRUpKijRm3bp1ijb5y5cvR2JiItq2bXvunwAiIqIz4F230LiiGjb6IKILza4KgGqkoEzQHKMuX3RK5YvKjolaGTD1hJPLJSiCLrHCzt4Y15SVl5cjLS0NaWlpANzNPdLS0pCRkQGDwYBp06bh1VdfxeLFi7Fnzx5MmjQJoaGhmDBhAgDAZrPhvvvuwxNPPIFVq1Zhx44duOuuu9CjRw+pG2O3bt0wduxYPPDAA9i0aRM2bdqEBx54ANdddx26dOkCABg9ejS6d++OiRMnYseOHVi1ahWefPJJPPDAA1Jma8KECbBarZg0aRL27NmDxYsX49VXX2XnRSIialTEEwz57G9jIN88Wq8NtDw7xqCMiM6WOngSPxflre/tTj+NPjQCLgHqVvfaTYzUa82k2zrD8sXz2hJ/27ZtGD58uPRzamoqAODuu+/G/Pnz8be//Q1VVVWYPHkyioqKMGDAACxfvhzh4eHS77z99tswm824/fbbUVVVhREjRmD+/PkwmUzSmC+//BJTp06VujTecMMNir3RTCYTlixZgsmTJ2PIkCEICQnBhAkTMHPmTGmMzWbDihUrMGXKFPTt2xdRUVFITU2VjpmIiKgx0Orw1RgoN0wFTBrzmU6NVtRERGdKnfVSZshcMBlNvmvK6gi41OvOvIGbciJMHaSJVztUmblAndegbNiwYX43TTMYDJg+fTqmT5+uOyY4OBhz5szBnDlzdMdER0fjiy++8HssrVu3xk8//eR3TI8ePbBu3Tq/Y4iIiBqSXVy71cgWZckPx+Fynwz5jgmszTQRUSDU68NqHU7pZ7vTheAgk6Lph8ul3cRDPamkmEDSy5SpgzKpfFG2hq0ej6XBuy8SERFR4BxSy+fGFdS4VDPWWuSHzPJFIjpb6gYdyq6Lns9Kh3KMsuGQt9xRJOhk09TVCep2/NqNPppA90UiIiKqv8ba6ENr8byaInBj+SIRnSX15458ra1YtuhQZdO0yqjV5YvKn+EzBlBmxMTfk9+v/HcDwaCMiIioCRG/8BtdpiyAzopas89ERIFwugRsP1GIGlmJorokWh6UabXHV2fBtLrGCoLy81Vr/zHAN1Pm0mgaUp/POQZlRERETYhWiUxjID+p0WtCogjcmCkjonr43/ZM3PLBRsxdc0y6TN3Eo1bV6AMAalXli1prW303j/bdp8wnU+ZUZ8rc/5ev9+WaMiIioouUVklOY+AMoHwxkDFERFoyC6sAACeLKqXL5GvI5C3xAdmaMj/dF7XLF6E5xmdNmU7jD/W+aIFiUEZERNSEaH3xNwaBZMoCWXdGRKSl2u4uW6zRKFEE3C3pa53K7ovy/wOBZcp8No/WyZSpO+C6NFrnN5rNo4mIiOjcskvli40sUyb4nuioBdKhkYhIixiMydeUyYMydaasViMoc68p8/7skAIuZSClyHbplIzXqoOys9ynjEEZERFRE+LNlDWyoCyATJkicOOaMiKqBzEYq9EIvADfRh92z79rncrJIKdWaaIqkNLq0KguGfdpia/REISZMiIioouQvKzG3sgyTcpyH+2AUWvTViIiPfIgq9ruyZTZdcoXBUFnnzJl+aJDIwvmb02ZlAHzWVOm1xKfmTIiIqKLmvykoNGVLwaSKXMxU0ZEgVlzMBddnv8Fn286AUCeKdMpX3QJik6L4voydaMPrfVi6jVlDo2W+L7dF1Ut8TX2kGSmjIiI6CIkP1Fo1C3xdY4tkDFERADwyFc7IAjA89/tASBfU+YNempUWTB5pkwM0OzqgEtjcshv90WdNWW++5S5b5+ZMiIiooucfAa20ZUvBrBeTGstBxGRFrHbokgsW9RdUyYIqHVodF9UBW51dVYUIPiUYLtUa9EA3/JF9Xo1gJkyIiKii5IyU9YEyxcD6NBIRAT4fo5UB1S+KF9TptUSX6/7onINmc8eZKrfA7QyZYLP7zFTRkREdBGSf+E35n3K9NrduzQyZQIzZkQUgJp6N/oIYJ8yjY2hXao1ZYD7d9SXqTvgugRB47IAHpgHgzIiIqImQjnD27gyZfIZ4UDWlInlQDe+9zvum7/1vB8fETUen286gRFvrcHJosqAf0erJb48a+ZyAXZFow/fbojqNV/e8kVlcw71xJJWFkxdQq4VuNVn0olBGRERURPRmBt9BLJhqjqblp5fjl0nS7DqQC6qap2av0NEF5/nv9uDo3kVeGv5oYB/R2qJ7wnEHE6XIhPlVGfKpH3KlCWO6lJFQNV9Eb6lilrrxdQl5IIA2FW/V59PaQZlRERETYSyfLERZ8oCWFPmHmOQfs4tqz5vx0ZEjVN9Psfk3RcFVQAGBLqmTFlloNXuXr2XGSCuM6tj82iNTBnXlBEREV2EnBoL1BuL+m4e7RIERXe1vLKa83dw1GD01hcSAYDVbAp4rJghEwR3SaI8AHNfLihKG7W6LwoB7FOmVaroFHwzZeqsmFNjLRrXlBEREZ0nvx/Jx4i31mBLeuEFv2/5WojGlimr7z5lTpcyKMtlUHbReeq/OzHg1VUorqxt6EOhRspi9oYieh1lxTHyBh81DqdPUObOlMk6M4pryvwEXJot8TXWlDldvoGa1voxn/JFZsqIiIjOj2V7c3A0rwIr9uVc8Pt2KIKyxpWBkJcm6mVH1JmyKnlQVsryxYvNb4fzkV9egwM5ZQ19KNSIyAMVqyfgemPpAfR5aQWO51f4jLeajXC5BNXG0C5FVgxwfwapJ64EVUdEvX3K1GtitVrb19V90enSCtR8Ho4uBmVERET1UFHjDiQqG6AxhaL74nnMlC3dk42Br67C5mMFAf9OIBtDu1SBm7y5BzNlF5/KWgcAoKLG0cBHQo2JPJgSg7K1h/JQVuNAWmYxAOXnidVs8lk/VuNw+VwmCPBp9OF0CYrASB1cuaQ1Zcrui+rPV3ejD9WaMo3ATatNfqAYlBEREdWDeKLZMEFZ3c00zoWHv/gDOaXVeHxhWsC/E8g+ZcqyISgyZVxT1jidzT5yYre8cgZlJCN/PwSZ3KFIcaUdAFBW7f5/Ra13jNVsVJQuAp6gTJUpq3W6FJ89dqfLp6JAXZoolS8K/jNl2uWLvgGYb6CGgDEoIyIiqgfxhKIhZv8dF3hNWW0dJZJZxVXScWitKbM7XRj/742YOG+ztC+ZyOlyndM1ZUfzyvHENzuRrlH+RGfmvdVHMPi1X+u1l5TI4fRmMsTsMhEAlFd7PzvFIKakyh2MlVb7fr6ajAZUO5TvIa01ZTV25Zhap2+HRnfg5L/7ot4+ZT6NPnw6NDJTRkREdMGIGbIqe0OXL9Y/g/HV5gxsqkdJYkSIWfe6bccLMfi1X/HQ59sBaM8+/7InB5vTC/Hb4XwUVtYqyxcFnNPyxYc/345Ff5zEXR9tPqvbIa+fdmUju6Qa208U1ft3K2V/H5W1zJRdygRBUGRc5ZmyWk/GS7ysVMyUycY4XYJvpszuW76o/kx2Z8r87zfmCnBNmWamzKf7osZkGTNlRERE50fFBcyU5ZXVoLDC27lOWb7o/fIvrqzFjJ/3+80SbTiSj2cX78YdH27ye5/yxxUeHKQ77qPf0gEAvx7IBaBq9OH59xebTigei+LExyWgSnailXeW+5Qdzi0HAJwqrjqr2yEvsaT0TMoPq2UBN8sXLy0fr0/HnFWHAbgDsjs+3ITb/71RCoDKZJkyu9MlZcnk15XLsqt2p0tqhy/SKl+sVgVuWkGZe58y7+dQabUDD3++HYt3nJKNETRLE303j/bNlHGfMiIiogtEzJRV1jpRbXeioLz+GZ788hrc+eEmLN5xUndMjcOJfq+sxOUvr5BOEPS6L85eeRj/XncMM5cd1L09ebbD395RJ4tkQY2fE4oKVfZDUb7oEnAwp0yxbUBeWY1vow/ZzHZBRe1ZNS8JtQS+3xHVzeF0oaDC/d6Wn0QD7hPt6T/sxfzf03V/X77m8mwnMCprHfjb/3Zi9cHcs7odOv+q7U689NM+vLXiEHJLq1FQUYvN6YXYerwIBZ4JJnWmTL5lQplG+aLDJfgEXFrli1W1Gpkyh2/bevlnVWFFLZbuzVEEaoLgu2bX6fLNgtVVGum+DAFjUEZERFQP8kYfN733O1L+uRKn69nOfe6ao9h4rACPL9ypO0aeIRNL+5wa3RftThd+2JkFAPgjQ7/MLF8WPBb52TdKvn5IPoOtpj7RVpQvOl34Zlum4vq8shqfDo3yNWWC4A4cXfU5i5GJCrWc0e/JCYKAPadKmNmB+/0nxtDlqqDseEEl5m84jteWHtBtBFKpyJTpl/oez6/AK0v2IddPpnTNwTx8s+0k3vFkX6jxkjfsqXG4FD+Lnzvyzw6704ViRabM/e9y1RifTJndtyW+et1ZrUNvTZn/zxh123zAt+xRvEzxs6olv3h/gWJQRkREVA/iyUJlrUPaf0ks4QtUIOvR5LO+2SXuE1bFHjyeE4K1B/OkAC67pBpHcss19/o5mue9LN9Pdi+zMLCgTN19Un6CUu1w4fs0dzmQLcRdAplXXgP5+YpL1RIfAMZ/uAkv/LBX9z79Ee8HgCLYk9/fkdxyv90E/8goxnVz1uPpRbvO6BguJvI1fuogVTy5rra7dAPYqgDXlE356g/857d0TP7iD90x4vs1t/TsO3QePl2Gzzed8JstpjMnf99U1joVQZn4OVUme8/UOF1S50VAJ1PmFHwCMK2W+NW16kYfLs3MVV2vvaBTvqgO5rQ6O/rsU+b3npQYlBER0UVNzH6oZ1rPhFNWRlMqyx6os0ZZxVXo98pK/POnfQC8s78irQAis7BSEUzIO9ZledZJKTscuo9jcZp3LQQAjJy1FiNmrcXerBLF5fINfP21n8+UlS+WVjt0gxh1+aJ8Rnj1gVzkl9ciJsyCW1NaSffpVHU90wpOv9qScUYdFC1m7ylNTolv1uX1ZQcwctZafPz7cd3bEO9XHsBeTOxOF47m+Q9MRfL3SKnq/SsP1gvKtbOuVQGWL+7NKgUAbPPTTES8j/zymrNq0Q8A03/ci+e/24PfDued1e2Q166TxdhwJB+A8n1TWetQZujF8kX5mjKHS5G5L63ybfThUHVqBbTLF6tVP9sdvuWLWuvF1PQaffiuKfNtIqIOAuvzfmVQRkRNVmWtAze99zte++VAQx8KNWK/7MnBdXPW442l+uutAiWf8ZefEKjX3Kw6kIu8shp8sy0T760+gh7Tl+Pln/ZJX+Jmo0Eam11SjfWH83HVm6sxXZYlkgc92SXuQEm+pkGc8T3kCbbaxoRK1zldAlbsOy39XFBeozg58heUycsXnS5BNxMiDxodTpfiJGazZy3ZDb0T0cIWLN2n/BzGHeC6b6N/u2iMvSwBfdtEwekSzqhMTR4EZJX4Nvv499pjAICXPYGylnJP8FHip7zzfDhVXKVYV3O+vLJkP0a8tRZrDukHJAdzyjD0zdV4f80R6TJ1+WKpPCir0H4vyf9W/JWDhgWwFlDMsNQ4XKg4y/0Bs4rdAbt88qExKKm049GvdzS5dXMOpwt3fbQZf/l4CwrKa5An+5ypUmfKKsU1Zd73j93pQolGpqxMUb6otabMt9GH1poyrQ2m68yUQbs0UZ0F0+rsqNUmP1AMyoioydqRUYy0zGJ8tvH4Wc+eNrTcsmrsOlnc0IdxTpxNs4bzYc8pd8Zo96mSOkbqq3E4cf+nW/GvldrBgrqd+56T7vsqrXbg3V/dJ7fz1qfjlZ/3A1CusTlVVIVvtmVCENwBpHgyIJ8pFk8kfffJcUknrCO6xSuu23DU2/r+4OkyxXX+yxeVJ6t6JYzy46uodWr2BElOtKF5uBWAp9GHqm2+GJTd3Kcl5k5MwbPXdgMA/LInW/f49FTafZ8vfw7mlOHpRbsUjVrEE8JiP2Wb51pOSTVGvrUWd3+85bzf175sd1bqDz9ZqbeWH8SJgkpsPe4dow6q5EFZvl6mTJX1XbnvNA6r3ocAEO8J2gHorisrlAWs+ToTCoIg4O6Pt2DSJ1v8ngiLr7e/iYntJwox7M3VWCmb2DjfluzOxo87s/Der0fqHtxAckurMezN1YrPweMFFSitdsDhKQ/O81O+qJUpq3W6UFwlb/Thmylz35by5xq7E7Wq6gd1Ns3udPkEagGtKdNof+/SyIKpx2iXPfq9KwUGZUTUZImtrytrncjSKFdqCDUOJ27/90ZM/XpHvX7vgU+34YZ3f9dcC9RQymscOJLrexLlz9I92ej+wjJpPVFjIK7HOuWZGT+SW44b3/sdq+tYB3aquEo6Qdh+oggr9+fio/Xa3eZyVJkZeQAoPzn97bC7xEd+wpGeX45V+90nfyVVduz3nDiXK4IyT6ZM9Q1f6/SW/oxNTlBctyOjSDqROZSjfB31TkjLaxw4mleuuCwtsxjbjhcqLqu2OxVrPNTlmSJrkNEblJXXKDdtlXVfDPFkSzo0b+a5feXC/t0nS/DFphN+J18Ua/ACaIs/ZvY6LNiaiRmyTLt3vaBvadT5siOjCFV2J3aeLPEbLAd6W1O+/EO38Yx4+8cL9DeDNhh8L/MJymQn1QXltRAEAQu3ZkglbIDy9dh9qgT3f7YNo95e5xMwyZ/nfZ5SRrVCWeCn9xwVVNRi7aE8rDmYpyjVlbM7XdKx+9uCYemeHBwvqFS0SddyNK9c0ZBHyxtLD2Dyl9vrnKw67PmszTyDjbovlJnLD+J4QSXeXnlIukz+XKfnVyie10q7U5E5K6xwf04osmAOAUWyTFlFrRNOl+Cz4bg6SNNcU6b6m611CsgrV77OWmWIau61YVqlif5b4n+/MwtPf7tbeVt+70mJQRkRNVlZshOvI7nluuMcGp2bzoQgCFh/OF/3BBQA0jKKsSW9ED/szPLbJEGu1uHCHs/JiPqEuCE9+Nk2jJy1DjsziwP+neV7T6PW4cJaP+VRou0nCvHTrizp54oaR50nOFqKK2vx+MI0RbmenBi855RWw+F04fONx7EzsxgvL9nnc5JfVFGLvVklyCysxNUz12DM2+uQU1JdZ+YlWzYpUG134pAqIyBWK572jCuXzfou2JqpKMnacNR9Ylup0ejDqTpRKCivlWZieydFYt7dfbF48mC0jAyB3SlgmyfboZ600MtuLNuTgxqHC+2bh6FjnDtAeuSrHbh17kZpnda/Vh7Gg54No0V65WnBZhPi5JkyeaMPwdvoIzjIHZQ1s3o3q5aXhE5dsAP/+G4Plu3N0bwfQFlO+daKQ0j9Jk1RXiS/bXnQclB2Uik/WZT//X7yezo+1gnIBUHA2ysO4aPfjukem9yJggrFCZ88i5mWUez3d/PKavDe6iO6n0GvLNmPJbuz8YnOujkxy3SiQH/yJzLEt4tlWbUD6w/nS9n8EkWmrAbL9ubg74t2Y4Js4251IxjRLlXGWn5bYiZPTf65oPfeLZKN2X6iUHOMvKGEv0xZjqehiL/vleP5FRjx1lrc+N563TG1Dhfmrj2Kn3fnSJ/xesT7Ol1ao9moptbhwofrjioa8QDAgi0Z+GW3/8zy9hOF+Oi3Y34nNTYfK8DY2euww9PBdcmubPR4YRl+lwXaWsHuIZ+gTJYpq1GuKSv0lLrKM2U1qvJFAMgorJRKtkXqstVAyxfVr3Ng3Rc11pQJApx1lC+e0Jjs4JoyImq0yqrtPh+cZypbdqKsVRYDuD8QJ/xnM654fTUKK2rx322ZPifMgVr0xyncNW8z7pq3xefDWLRDFsDoHZMor6wGryzZh43HCqSZO/kX2J5TJbjnky04kOP/y/xcE2v8xfK3umaL5Q55ZnvFgDm7pAov/7TPp/GCyyXg/k+34ZGvduDQ6TIcz6/A1W+twdA3Vvt8QYvSMoux+6RvCeKiP05h8Y5TeOCzbZr7folf7k6XgJzSamw85n5cx/IqFPtoVdU6ccsHG3DdnPV48ce9qHG4kFVSjXvmb60zgymfIDh0usznC/3G3i0BuE/6Kzz/icRGB2LzD/F5l485nl+BeevTcUx1HLme4CIi2IwgkxEjusWjT+soDOoQAwDSYxXLzdrHhgFwv6Y9py9DjxeW4a3l3rV233ta69/Yq6WiGQngDmTKqu14e+UhrFMF3eo1RyJrkBHNm7nL00qqlH/7Ttnm0SGeoMxkNEjBk3ibGQWVUgOOJbvdQVm13ak4UXe5fJuGfPvHKWw+5n195Y9nwRZvu3758yx/HGKwcPh0GV78cR9e+mmf5nvzQE4Z/rXqMP65ZL/P9bml1Zi2YAem/7AX244X4ts/TmLom2vwoSyAk38e7cjULysE3FmXN5cdxNsrfMtoc0qqpWYZ6swm4M7ii1mi9PwK3ZNFdVMPwB3E3f3JFtz98RYIgqBcU1Zegy83Z0g/i2vj9DqMLpcF1k6XoAi+dTNllXVnyuTvh83p2kGZvKGEuuRYTpw8Sc+v0M2qrPcEK5mFVYqAUC6jsFKaiNivE3CK5AFglkam93/bT+LVnw8oupMePl2Gp7/djb9++Yd0nN9szcSvB5QTVLd8sBH/XLIfy/a6L/9i0wlM/XqH4u9x/IebcCCnDH/73y7P/WWirMah+PyXBx3i+8c3U+an+6Ln70O+XtbuUJYvAsDwmWukYxWpJ35qHE6fwF8MZk2eWTC70yV17AwOcoc86uyWFq0OjXd/vAULVdt86AV306/vjpv7tPTcFoOys/L++++jXbt2CA4ORkpKCn777beGPqRL1v7sUrz6837NBdBOl7tc4tnFuwNaIF1Z66gzWyIIQp2zGoIgBLwR5pJd2ViwJaPugX4s2JKBm9//3WfWqCmqtjtx9VtrMXDGKvzsmdmrcTjxfdopzFufrvgQFAQBaw/lYf7v6Vi846Si+UBxZS3S8ysUi/mP5pVL7wn5ifverFJsOV6IvLIaPPr1H3jqf7t0SwtzSqox5cs/8MvubDhdgs8X45ebTwAAdmYW6zYikK/VOHS6HCcKKnTXN8z4ZT/+81s6nvgmTbpMPgv83uojWH0wD89+u1t6b+qtuSiurNX9O3C6BDz42Tbc88kWKWv4wvd78PpS3wYp32zNRK8Xl+Om93+XLpN/cQuCgO0nilDraXn++MI0Kfh0ugQcPu0+sRAzO28sPYh569Px4o/KNufH8iukkpVfD+Tizx9txunSGpTVOJAmW1u37lAeHv16Byb8ZxNueu933Dp3gxSIiORr8R5fuBOzVx6SMgkul6AICHefLMGh096Tn69lf59vLjuIY/kVEARg5X5vaeP+7FJ8+4f+Js+Au5xL/FwQSxfljTdGdouXGhrklFZrfob8bWwXAMCW9EI4nC5F5qesxoGXf9qHzzaeUPzOac8JT0wzq+Ly5MQIAEC6p4ugeKLd3lMeKB5zWY1Deg7yy2ukWfEbeyf6BGVOQZACSDV1oxNRcJAJESFmWExG6bF7b897EhUia/YgBmXiba6XzdSv3HcaH647isGv/YqBr66SsqDq/YlEabIgR/7ZPnftUenfxwsqpOOQn/h9vSUDN767Hm/KNuSWBwcOpwvZJVWKrLB67d7XWzLxXVoW5m84jkmfbMWnntfvt0PexyTP1KVpZKWLK2sx7M3VeObb3Vjn6Ri4bG+Oz3fVUtk6vF0nS1BZ6/DZJFdUVu3AxqMF0npLOa097MST1KJKO/LLaxXZrbSTJYrXSDxx15t8k2e0S1XVBDsyiiEIAuxOFz5YcxQ7MoogCIIi6BGDMvXjlz++LemFmt/l8k6R/jJl2aXu91Wt0+WTmRLJ1zht11mjJ+8i6i8oK6u2K7LtWk1IxN/fml6IAzml+Hh9OnbJvuvyy2twMKcMf1u0Cw9/8Yf0GSj/7swsrITLJeD1Xw7gh51ZWLrX/Z6RZ+ZqnS4IgiB9jonvkcpah+J1FzNX8kkFdVBWZVcGZQXlNfg+7RSO53uPye50oaii7qoSn/JFuws7VeuwxYkA8bPW7nBJ5ZMJEcHS46uLAG/DDrGcV93AA4DPGjNRu+bNYPD8IteUnYWFCxdi2rRpeO6557Bjxw5ceeWVGDduHDIyzu7EmuqWWViJDUfypUW4pdV23Dd/Kz5cd0wxM+RwujBvfTrGzF6Hvy/aja82Z+DtFYf0bhaA+0PpqjdW44Y5v+tmOAAg9Zud6Pr8Urz80z7pC+VoXjlSF6bhWF45juWV488fbcZlLyzDN1szdW/H6RIwd+1RTPnqDzz97W4c0ylJyy6pUnxginLLqjH9h73YfqIQM5cfxB8ZxfhcdjJ2oqACf/5okzRbXVJpx9I9OX73gqlxOPHyT/swZ9VhnxmnDUfyceN7v0tlC78eOI1nvt2tuS6huLIWh0+Xac4eOpwuvLJkH+7/dBtmLjuI/PIa/JFRpGi0kFdWg5IqOyZ/+QeW7MrGNf/6DY8tSMPLP+1TlLK9tvQA7v54C6b/uA+PL9yJoW+ukdY33f/pNox+e620Pgdwn9j8fdEu/H3Rbkxd4A26ftzpvc3fj7izBgdyynyCmxqHE3d8uBFLdmdj2sI0/N/3ezD4tV+x3nMfh0+XYUdGsfQB/cGaoz5BkCAIikzZW8sPYuiba/CSRre30mq7FJjma5woOF2ClDH5I6MY6w7n48N1x9D/lVWK9Vrbjhdi4rzNuPzlFbjyjdXI0CifWLzjFJbvO43VB/Pwy54cPPz5dny68QQ+WHNU8f5bue80nv52FyprnYqTiSOy9++cX4/glg824LEFO/D0ot1YvOMURr29DmsP5SGjsFJaZ5RdXI1qu1M6AVu2N0c6gQaUgdR7vx5RXCfOln/02zHc/ckW/LgzS3ouahwurFKtBRPfX2IWaPbKw7j85RVYsCUD+RU1ii/TRZ7gSgw4ftqVjUOny3C6tBqfbFCWpxkNQL+2UQB8y/+0iBMne065j39scgt0iQ9HZGgQBneIkRoanC6t9tlMt31sGO7o1xpBJgMqa53uwM3P37NIDFCjQpUBVIvIEMUxiQFOh+ZhPrdRUFELh9OFfVmlcLoEdGgehraxYT5BWXWtU/MkHtDOrgCA1WyEwWCQ1pXJOV3eRfhipgwAwoPFoMx9m/LyqSq7E6/+fACFFbWodbqk7IJ8xnxwhxhYPe3x5UGOvPxJnsVxCd4shTxTNm99OnaeLMFyWRAh/s27XAIe+nw7Br/2q6L7qzqrLf/bKa9xSKXA4olstd2pWN/1+5EC7DpZrJjIWXsoD8cLKvH1lgyc9sz6nyqukt5nop93ezNQtU4Xuv/fMgx905t5zi9Tfl5N+Ggzbnrvd58GQ8U6mWrRqeIqxeu9M7NY0eTlhCeI0StfPJxbjreWH4TD6VKc5FtMRpwqrkJ6fgXeXHYQr3u+A0qrHIqMRH55DX7enY2+/1yJ2bK1TYWqLFi7Z37GPZ9sUWTD1Zmy5xbvxqNf71AE1oIgSM8z4H5vOF0CNh0rwE3v/S5NZp2UBU5bdcol0/O9r//+7FIIgoDFO04qJoMA3y0YtM4LxNL2shoHxv97E176aZ9iwiC7pFoKjuUl5PLHn19Rg8O55VKZ7irP5NM2WVOXiOAg5JRWS99Lh3PLUW13+kzIFFXUorLWIb3egDsgPy3fSqHKrlgvtjerFI8tSFN83teq3gd6fNc12qXj7hIfDsAbXIoTO7VOQfpOjfMEZf7OAUXuSQj3OHFCSYu63b7IYjJKJev16UFmrnvIpWXWrFm47777cP/99wMAZs+ejWXLluGDDz7AjBkzAr6dWodyDUugL4rWOEFjmaB6nNbNa80SaY+re1AgxyD/Vfl9m41GhAeb8fOebKTnVaBnUiSyi6uwfN9pHM0rR6jFjD/1ScScVUdQVuOAyWjAM+O6YufJEulE6Pu0LLSJCUPvJBvWHy7Ax7+7T55Cgkyosjvx9dZMPDS0AyJDg2A2GmE2GvDu6iMwGQ24d0g7PPHNTuSX1yK/vBY/7szCzZe3ko7vh51Z+GzDcdzWt5WUphezNi9c3x1//98ubDtRhOIqOw7mlEkfJm8uP4gbeidKayEA98nkF5tPYPne04oSi+0niqQZ6pIqOzIKKnGyqBLTFqZBAPDV/QPQt200APeX/sSPtuDg6TL8d5t3rcmPu7Lw1JguMBgMmLc+Hb8fKcDh0+W4e3BbvPvrEVTZnRjdPR4f/qWv4jXZm1WCQ6fLcKKgEvM8ayI+33QCn93XH10TImB3uvD0t7uRUViJf3y3B72TIqVSFKfLhTdu7QXAPev59ZYMvLnsIKrsToRaTGgTE4ahnZtj0uC2aB5uxbSFafhplzvQWLn/NP7z2zHUOFwwGIBpIzojzKpsfTxt4Q7FCfPqA7m4sXdLpGUW4z/r3OU9I7vFY392KU4VV+GX3Tm4rW+Q5n42f2QU4w/Pegxxti62mUU6HrWNRwtwY++WEAQBby0/hAVbM6XXrMbhkp6Dj39PxxWdYvHf7Sel4zlRUIFDp8uxdE8OCipqcU2PFmgXG4aTRVXKWUHPzO2nG4/j1pRWSG5pQ63Dhb/9bye+S8uCFnFWb/epEsUX1awVh6QT8G//OIUbe7fEf7dl4qn/eTe5Lat2IPWbNHRrEYGxyQkY0jEWNQ6nYtLiyf/uVDRoSMssRquoUOk+XAIQGRqkODETN9w9WVSF91a7O4P9ske5tufj9em4s39r6edapwuLd5ySvkhdAvD5xhN4elxXAFDM8IonCM2sZpTXOLAvuxTVdideX3oAggDcmtIK3VpEIC2zGD/uzMKq/ael+yqvcUglfQsfGoTVB3Mx59fDyCyswv+2n0S3FhGK4xQzYH/q0xKniquwYt9p/OO7PZg2ohMEAWgXG4b4CCs2HStE/3bR6N82WtGFzp/skmp0jAuXMofdWoRj8vAOqHW4EBVmQUJEMI7lVeC0Rqbspj4tYTIakGALRmZhFbJLqv22EReJEyfRYcqgJ9EmBmXu66XyRVlQZgsJQmm1HYLgzjKImYZ4z8mLOiirrHXqdrD0lykDgNhwq+JEDACcLm9wFKwVlNU44HIJ+N2zxq5P60jsUK25EgO3yhpvcPfVAwOx/UQhbvlgI9Iyi6XvI/Vz3qOlDaEWEzanF+JgThmSW9p0g0uR+Hcxf8Nxn8kBwHfNjTgh1yspUrE2s6CiFnllNZ5tAgREBJthd7pLMG9493eM7BaP9/7cB1azSXc949K92ejRygbAfaL5h2dSLbllhBSwnSyqwtx1R/H3sV01y/4cLgGPfLUDV3eNw/h+SejWIkIzUyZ3qqjK70l0hme9WpXd9z0RHmxGWbUDc349grhwK3q2igQAtLAFo33zMPx+pACrD+bhQ8/nf2m1QxFsAcAXmzLwxSb35/PslYfxyPCOMJuMimYgotUH8/Db4Xx8em9/DOkYq8imOV2C9Dn/484s3JbSCi/flOzT5OX+z7YpbnPnyWI8NbqL1DgIcG+3UFBei/gIK265vJX0fS+f3Np5sgRTvvpDCp77tI5E1wT355O61P3FH/ZhzqojeO/PfZDSxn1uIC9vFJ9/eeY5u7gKG496JzAWbMlEbmmNlF0F3JPf8qzeL3ty8Px3e/D5Ju+k7+nSasXns9Ml4IHPtikmQcVjOFlUBUEAosMsKK92+GShAmlaYnd4g7LoMIviNerXNkr6/FWXSG88VoAahwtx4VZ0TgjHwdNlUlAW5gnK7E6XVKYqZsr0Aik5QbamzGo2+mxcLR27TqbMYjbCKGXKAo/KGJTJ1NbWYvv27Xj66acVl48ePRobNmzQ/J2amhrU1MhmBUrdH4R3fbQZBwoDK3G7FEQEmxXdmtTEtLz4gf3PJe620QYDMKBdNDYdK/QpF3v2mq4Y36817p2/FdtPFGHwa78CcJ/YXdExFks9dev/WnVY8QH7wZqjuKl3S2QUVuKtFYekTIr6RP/7tFMY1CFGuvxXzxdwbDMLrGYTThVX4V+rDuOBK9sjOsyCfVmluOWDDdJJhvhYAHfAMDY5AY8v3IlVB077BLQPfr4dj4/qjFsvb4VnF++WSmDkM7uZhVUY96/fcH2vRGl2K7esRjFTtnzfaWw4ko/YcCt+3JmFGocLn/yergh8YptZkVtWgz//ZzMWPjQIW48XIsMz07U3q1QxG/bz7hy8eEMyvk87hX8u2S+dJFpMRlTWOrE/uxT7s0vxv+2ZePCq9vhpVzaCTAZMHtYRy/bm4EBOGUxGA5wuAW+vPISYMPcC8kmD2+LrLRnSB91fBrXBZxtPYNWBXDzxzU58n3YKLgG4oVci3rmzD77ekoFnvt2NXw/mKtoniwwG9ySBweB+/cuqHdicXoDNxwpxqrgKYRYT4m3uE2LRpmPuoOyj39LxrifQCLeaERESpDh5FIMssVPfn/q0xC5PCZzYZem3w3lY8OAg6aRInCwQCQLwwg978b+HB+G3w3m6ARngXYi/3vNF2q9tFHafKlGc0G1OL0C13YkvPCcU1/ZsgT/3b4175m/FthNF2HaiCD/tysK6vw3Hin2ncaq4SvqyE5/zlpEhOFVchT9OFOO6nokoKK+RFtl/ef8A3PPJVoRYTDhRUImSKnfJ0utLD0hBtvgefuiq9vj3umPYkl6IXp4TRNF/POtmusS7vzA/33gckwa3RYItWLP9/+ThHfDG0oPYl1WCI7nlsDsFRIYG4c1be8JgMGBfVil+3JmFlftz8cPOLAzpEOMJGN0ndc3Drbi9bxJ6trJh7OzfFJMoaoM7xOCyljasP5yPLemF+N7zmrSMDMGTY7rg+e/2YOrVnZBfj8YjE+dtwVu39ZKyIJ3jwxER7A1sxGAnp6TGJ0C4sXciAKCFLQSZhVXIKq5CZUBBmad8MUzZnKFFpGdvsPIa1Dq8HedaR3uDsp6tbDiQU4a8shrkltVIkwjRntuKUAdldv2gTC+AFDNW6kweoFwHJi9fDPc8Z2XV7ln44ko7goOM+HBiX3yzLRPjkhMw45cDWLHvNEqrPN0SPQFAqOd2Lku0wWw0IL+8FieLqtA83Oqz/mNYl+YoqbJjc3qh9JrVFQgXV7mzA28s094bUV6K6HIJ0mfOU6O7YOLHmxWf/YdOl0mfL10TItCvXRS+2XYSxZW1WLnfXa0w6/beimyL+7FFYG9WKT75/ThS2kTh6q7xyCqugsMlIDjIiOt7JiqyaJ/8no5Jg9squuCJjAb3uqf5G45j24lC/PjIFVJmIyLYjO6JEdiZWaL4PDtVXCk973Kju8dj+b7TfssX37qtF7afKMK/1x3D1uNFaBPjfj/aQoIwtHNz/H6kwGcfuYI6OlJuSS/E4I6xUvA2slscerSMRM8kG77anIEV+07j4S+2Y+m0q3QbCRkNwH+3n0RchBXX9Gjh9/4EwZ0tPKkqMfyfZ+Lus40nsPDBQeieGKH4zql1uBTZzJ9350hBmZhRtZiMqPXsrZVTWo3Ub3bil8euhMMl+F0DB7gDcPkayvVH8hVlpYD7tRa/pwB3wCUPyAD3Z4Z8DACfgAwA/sgoks7LBraPxqHT5T6NUcT3QpjFpLu/XHmNQ7ouKTpUeo3+eVMy7hrYBj2mL0NZtUOqHAi3mlFW45C27hjsWT8LQNrLTB6UiX9jCbbAyxfla8osZhMA7c8FvfVp7goB97/Z6OMM5efnw+l0Ij5euddLfHw8cnK0Oz7NmDEDNptN+i8pKelCHGqTU1rtQKjFhJHd4tE2JhQD20fjsRGdsPDBgXhoaHsAQLcWEVj/96vx8NAOANyz9XPvSsG/J/bFnf2TMC45QSpxeeDKdnjwqg6whQThqTFdEGTy9vAtr3FIAVmoxYRahwsRwWa8cUtPhFvNOJxbjuk/7sW4f/2GH3dmwWDwzswCwOu39EDzcCuKKu14yNNhTN4ieMKANvjrMPcxfrDmKAbNWIVXf96PBz7bhiq7E/3aRuGze/tj+z9GYe5dKQDc62Lu+mgzVu53B2QxYRZYTEbcmtIKPVraUFhRi+e/24M7/rMJSz0ZiOt6er8YWkW5Z70P5JThzWUHfU40Hx/ZGXcPagMA+MvHWzBm9jrM+fUIPlx3DHanIC16Hdg+GqtShyK5ZQQKKmpx/6db8YanFEM+g/76LT2QFB2C8hoHrnnnNzz97W6U1ziQFB2Cl29Kxr6XxmBl6lDMubMPkqJDkF9eK5XwPD6qMx4f1Rk/PHIF5t51OdY+NQwPXuV+jcWTvqu7xkmZjm4tIvCPa7u7P2irHVj0x0k4XAIGtIvG9BsuAwAM7xIHwJ3VUbdaj21mRc+W7mDg9Zt7YpynLfgjX+2QvmymjeyMycM6opnVjPuuaAfA3Uxhb1YJZvzingB4elxXbP3HSLx1ey/F7YtZusOeL5uB7WMwslucYsymY+71Cxs9JXbX9/K+draQIIRaTNh+ogjfp2UpNgYd2rk5ru2pPAEQZ7PXedac3NArEX8Z1FYxptruwqr9udjtCWz+cW03DO4YixdvuAyJtmDEhFlQVGnHf9Ydk95Pdw1sg6s6NwcA3HdFOzw5pjMAb2MBsSFE14RwXJZow5qnhmHF40PROtqdRVt7KE8qt5xzZx8EBxnRJiYUqaM7IybMgiq702cRtHhC8s8/JaNP60hU1Drx8pJ9sDtdUvBv8Zy0x4VbcWuKO4N9LL9CKqXtmhAu1eZ3axGORM8X69Svd2DawjQpSEhu6Q0I28c2Q5DJgLIahzQrbJJt1hwTZsHQLs3RMjJE+kIXS31a2ILROykSPz56BQZ3jEXneO8arEA8991ulFY7YDS4s25yYlDmLl90f8l/8OfLseivg6WT05aR3gyXWOL45OjO0meOmjhTHt1MGZTFhFlgMRshCO77EzNlUWHe4GhAu2hFZ0Rx3Y4Y4KkzZfllNdLM/6D2MYrr9LoBihmwYLPvBsF2l7d7mrx8sZmsfFEsF4wJs6J5uBVThndE++bNpGBXzGyJpXJicBccZJKypGmZxZqldEM7N0dnT9mTmOHSCsr2vzRW+jwuqrBjf3YZqu0uNA+34ov7BiDMYpIW9R/MKZNOwnJKq1Fld8JsNGBA+2hc26MFgoOM6JrgvU9xQrJzQjM8NaYrtj43Eh9OdFc7/LQzG9V2ZSkxALzypx64omMsKmudeOjz7UjPr5BKINtEh+GmPi3RMa4ZHhvRCSltolBtd+HTDcc1M2Vf3j8QD13VHhaTEXtOlWJLeqH0mmx4ZgS+fmCg9HqItDJlQSYDxlzm/uz1V77YPNwqVYUczSuX9oNzB2VxPuMBb7ZJ/j0cZDLgmh7u+xM7coon8wPaxeCxkZ0wvEsc3p3QB8ktI1BW7cDPu7I1g7LHRnTCi57vmg1HCzTL9v88oDUOvDxWeu0OnS7zKTEc2S0OPVvZUFbtwF8+3iKtfVYTv6PENYAVNQ4s8VR0DOqg/Ls6UVCJMbPX4VlVm3XA29FVtGLfaZTVOBARbJb+rtUyCiqldc+JsgnOq7vGYXgX9/eDIAC/7hcnob23M7JbPN68tSd6J0UCcK8Xzi+vRfcWEfjnTT3QKc73s1Isp2+r+iyUEyeMDAagZaT3mMTtMYI85YPi56F6smhwh1gpK6UuX6ysdUrvVfE5CaR8UZBtFC1OLIn+1Kel9Nzp3ZbFU7YN1G9NGTNlGgyqTToEQfC5TPTMM88gNTVV+rm0tBRJSUn45J5+aBYe7vd2AUDrVrXuyqAxUueQzsltaR9X/Y5fHF9R48DB02VoEx3qsxgdAAa0j8Hdg9oitpkVFrMRfx/bBaMvi1eMn3FzTwDu9RP7sktxVafm0u8PbB+DnS+Mht0hIMhswDurjmDu2qO4+fKWeO6abtifXYZ+7aJgNZtQWm3HP5fslxbL920Thek3XIZj+RWY+vUOhASZcG3PRBzMKZdKJFvYgvGXQW3x+tIDMBsNuGtAa0SHWZBb5q5rP5JbLpVatIkJxX/+0heRoe6TmstbRwJwz6qJ2YpPJvVDr6RIuFwCjEYDyqrtWLAlEzOXH5SyIVd2isUrN/XAtuNFCA4yYvYdfTD5i+0IMhulmacRXeNwWUsbIkOCcM+QtiiudM/4iicXI7rGoVmwGX3bRmNY5+b4eXc2bklpBVtoEObf0x/XvbNe+iLv1cqGjyf1w/Pf70FKm2iM79cap4qr8c6qw9KXykNXtcfT47pKr2vHuGboGNcMtQ4XnvjvTrgE9wfRnf3cwZbFbMTYZPeJzMSBbaTnCHDP0F/eJgoRIUG4qXciLGYjereOlGbj5tzZB9f3SpTGJ9iC0b1FBPZll0rrwkSCIOCTe/qjsKIGHePC4RQEfLPN25RBflu3prRCeY0D8zccx4mCSrz04z64BGBU93g8dFV7GAwG9G8bjSs6xqK8xoHjBRUorrRj3m/u90Ln+GaIDrPAFhKFqNAgRa18ZmGVtMbvmh4tpGO4olMsureIwJvLDmLGL/ul2eOPJ/XF1V3jsWj7SekLGXCvL9t8rABbjhfCaACGdYlDiMWEzzeeQJXdKWWdXl96AC7BvUaohadU7Y7+rXFH/9ZYuicbD3/xB+asPiLNzI+5LB4TB7bBtuOFGNU9Xgrs954qRY3DKT2vgzvEAgBCLWbpdc4orMT/fb8HLsH93ryuZyL6tI5CSJAJVrMJgzrE4Kdd2VLWRp4ZDw824/LWUfjnTcm4fs56LNmVjZAgE2ocLoQHmzGofQyW7zuN4V3iEBfuznblldVImStxJhlwf6ZMGtIWr/7sngD47XC+9IXbQxaUWcxGdGjeDAdyyqQMZ/cWEVIAd3u/JFg9QUJrTzMOMbgR12KJ2sWGSdlePX8d1gGlVXZ8uTlDmqltGxOmKMkDgIQI9+fZyaIqKWM5sH0MomRZrhaeL/vs4ippjWhSdChaRYXggzVHoSaWtKozZQaDAS1swThRUInskmopax8RHIQXru+OTccKcO8V7aRKgDxFpsx9nPLJLgDYnlEkZSXn39sP+7PL8OmG41i845Ru+aJ4QiN2PpOTZwvlQVmEFJQ5pNsNVwUG4s9isCn+XYXKMm69kmzYfaoEu0+VSCeScr2TIqXs2fECdzdCdYlUVGgQQiwmRHoyfcVVduzLcr+PLkuMwBWdYrF7+hg4BQE/7spCeY0DJ4uqkBQdKq0BahMTiiCTEW+P740ahwsfrj2KAzllOJRThnRPqV+vVt7jG9alOWKbWZFfXoPdp0qQ7mmK8OqfeiCmmQW9kyLxyT39cPfHW7DhaAHmrT8mBZdtYkIRHxGMlalDAQBdEsKx/UQR/rf9pJQBGtg+GpvTC3Fn/9YY1CEGgzrEILukGj/szMIHngYoFpMRYRYTDAYDwoPNirLsk0VVPkF4UlSoNLGXUVCp2Q0TcAdlYrB/LK8CJZ6g2xYShM7xzZDcMgL7skpxU++W+M5TMSFOiLWJDpW+s67oGItbLm+Fn3fnYNne0/jHdd2lgCta9rdgNZtwQy935nBzeqFPCT0A9G4dKU0+uSfh3H9THZqHSWu9Ukd1RnCQCZ3iw3EgpwxbjhdK2Z2fHr0CuWXVGN4lDqXVDtz8/u84mleBf606LGW3buiViB92ZmHMZfF47eaeWLHvNA6dLsfRvHJ8uuE4ThZVoVVUCKYM7yhNEPVrG4W9WaXILKySskJ9Wkcit7QGwUFG9G0TrZgI2+LpuDmwfQxu75uENYdycXvfJDy9aDfaNQ/Dkl3ZKK12SJ/Ncyem4OstGZg4sC26exoDDXntV8Uk5M2Xt5S+u/95UzISbMFSpY44gTF5eAdEh1nwxOgu2H2qRJFBFEvTtdaUqoUGmRSTNx3i3O8ns9F7LgnAp5rl8jZR0mMX33PyzwHA/X6O8pyXBbqmTGziYZEFZS1swXh7fG+M+9dvyCqp1u2+yDVl50BsbCxMJpNPViw3N9cneyayWq2wWn3fbGFWs1SCcakLs7pPyvxJlJ0IGQwG3fFxEcHSYk25UIsZ8HwOPz2uKx68qj2iQoNgMBhwRSfv63PfFe2w/UQRftmTg64J4Zh/b380s5pxWWIESqrsaB0dimZWM25JaYlPNqSjmdWMT+/tj6SoUBzMKUXvpEjp/lNHdcbjIzth4dZMfLvjFK7sGIsJA1pLAZl4vHLv//ly9PKcHBg9f7HhwUF44Kr2qHW6pFLESYPbwhYahJVPDIXR4H58G54ZgZJKO4bOXI3iSjtGdY/HHbI1PFFhFvw89Urp5DJRdXL50FDvTHtsMyve+/PlmPTxFrSJDcWn9/ZHZKgF7/85RRozoX9r/LI7G2FWMyYMaI3bUlppBubX90rEa0sPIK+sBtf1aKE4wRQlRbuzo5uOFaJtTKj0HKWO6iyN+cugtvjtcD4mDW6rCMhEI7vHS+V18tLQgopaRIdZpC9i+clX9xYRiowj4J5BG3tZApbszpbaJt8zpK302IxGA764fwAA4OHPt2Pp3hwpQB/Qzj2LaTIacPfgtvhs4wmUVtnhcAn43/ZMZJVUw2I2YkC7GDwxqjO+SzuF567phugwC77ZlqloJzyovTv4ubJzLGwhQWgbE4qdJ93ryMTGNnf0b40kz8nCZ/f1R1ZxFYwGAx79eodUcnpFx1if52rMZQno3zZa+qJqGRmC7i0iYDAYMM5zYtY6OlQqadxzqlTaG2tIR+VMbce4Zvj1QK40633PkLbSbYqGdIyV1u51jm+GQe1jpC5zA9vHwGQ04LJEG6aO6ITZKw9LZT439k7ErSlJcLgEKRPUvUUE1pblScGCODMtevCqDnjgyva4Z/5WrDmYh10nS2AwACNU2csuCe6TJ3G92cD20VJQNkH2d9MmOlTxe/KZWsB9UtcmJlRRhqSWnGjDtT1b4HhBhRTcdtLIsInlM8dk5WhhVuXXsBgUnir2rjsLs5ilIFJNPOmL1vi7S4hwB2Xp+eVSyU54sBn3DGmHe4a4M8bi7HFuWbW0h5CYdVMHWmIXulZRIbCaTeidFIn/ek5+9Frii4FpiMX3+OXdJeWz0eJ3Z3mNQ8qEqWfHxZ/FY6yUgjLv8ylmyg7mlEmlT8FBRvRvF4NR3eJgNhmlk/FTRVWoqHX6nGQleCY8xBO64spaKRC+zHMiazQaYIRBmgj4I6MISdHe90x72Yx/kMmILp6Jhn3ZpVK5Vx/PBB7g/g7s1zYKv+zJwa8HcqUM1w29E6UMQJDJiEev7oQNRwvwv+0nMc4zAdYmRvl+HtktXppEFP/uRnSNx3sTLldkQu/on4QfdmZhzUF3QBAVFiR9Joar3qMHT5f5zP63jgmVsr05pdXo+vxSzTKx5uFWGA0GBJkMqLI7sd8ziWgLcd/fwgcHSWsw0zKLcSy/Qiot7RQfLgVlV3eLx5COsYgMdTelmL3ykLQWTv230M+Tmdt6vFAxeSPq1SoSkSFBUomduAH2wPYxeP667oiPCJYmiDt7skHiZE/zcKsnS2+THsdTY7ri4S+2S3vFxYRZ8OINl2FU93iMuSwBFrMRQzrGYu2hPDz1353SWujXb+mJLrLPu2ev6Yb2zZvhpR/3SQ2KkhNtePb+bgDcTXwO5JSibWyYNIkFAP3bRWNk93iM7O4+b/35sSsBAJuPrZTeS91aRKBnq0hpTZ8owRYsBTwWsxGPjeiEyloHBrSLkT6/IlWlyOKa5I5xzbD2qeHYdKwAR/PK8X/fexu0yV+TUIsJr9/SE8WVtXheNibEYlaUizdvJk4OeTJl0sSS9/1oMRvRNiYUJnWmTDWJ0zzcKlVLiJngIJNBs6OiSHyPyz+bxH+LAZe436B64u5M15SxfFHGYrEgJSUFK1asUFy+YsUKDB48uIGOis5EdJhFO7NnMODt8b3x3oTLseDBgdIXnMFgwMSBbTDUU951WaIN/31oEJY8eiU6x4cjxGLC7Dv6YJLnREZ+e3f0b41vHhqER0d00swEiiVZ1/dKxEBVyY/cA1e2x8hu8Rh7WQKGecr1mlnNipMMW2gQPpzYF5OHdVA0KxEZjQYkRob4BGRaUtpEYeOzI/DDlCsUgaQowRaMFalD8d2UIbi9b5JutthiNuKF67ujT+tIPDqik+793e0pwRMfm9qo7vHY8fwovHB9d83rH7qqPV668TLcO6Qd5tzZB6M9Xzg3X95SMU6cMQaAuwe30TzuKcM7Sv9uHR2Kge20X5fL20Qqfu7fLlr697SRnfHH86Pw5wHuE/x3fnWvSxvQLhohFhMeHdEJq54YhsTIEAQHmfD+ny9X3I54khoXHoz1fx+OhQ8NkjITB3LK0MxqVgSt/dpG48beLTH6snjFCdwQjaDMYDDgzdt6Sj8P69Lc53kwGAwY2N79eJ76706cKKhEkMmgeIyAu6xFnCns1cqGYRolRsO6NEdwkNGdQbmnv6JUZYisHGfq1Z2kcs1reiTghesvQ++kSHw8qZ/0O1d2Uj6erqpGHeKx39HPWyp+14A2uCxRebLVRRXMDe4Qi3/elIx/3dFbCnQBSCeSIjHrKCeW5ci7cMlLhyJC3H+j8veR/H0oEidpxJN1i8momIUFvCVF2SVV0kx0mNWsGdQA3mBEazJE/BwQs+dGgzvAk2suK1+UMg2ez4ObL2+p2HBZzJbILxNnpMt01mKJz5lWUCk+vuAgozRJJb/9smq7LMOnPG7xZ2/5onJNGeDtyHbodJkU4MaFB+Oze/tjoufzKCEiGBaTEQ6XoLmvoPh6iAFMcaVdmhxSv+dGdnN/Jn3y+3EIgiBlytqrOl52a+E+rt2n3Gu1woPNaB+rDOLFEr//ejLuzcOtiucdcE80JLeMQLXdJTWpUr+fLWYjbvF8RorPd2y4BTHNrDDL3s8D28Uogq8o2XeC+gRXzITI37sjusUr1g3qrduxmk0IMhml4xRL6cTnN8xqlt7LYumcuDlx25hQKYgel5yA4CATXv1TDwDA+2uOSuvo1EFZcksbQoJMnvWDykoLcbzRM3EEuJtUAe73xrAucYpmQeJki7ithri0QG5093jF7/RrG42oMAuu75UoPWdTR3SC0QApILuzf2sM6eieoPv72K6YOqITeidFun8e10W6rQRbMEIsJoRYTGjfvBm+f+QKn/L2y9toT2onRXuP9fa+vucP4mMW9WplQ5jVjH/e1EMxUao+X5BP0JmMBgzpGKu4HUCZye/ZyobreyXiup7Kydcwq0mx3Yn4nWXSyJSJOsU1g9lkhNHzVhTjIvXfSmy41ae1vb+uinJBsnHiJJMYcIm3pa4qsJzhmjJmylRSU1MxceJE9O3bF4MGDcKHH36IjIwMPPzwww19aHSOBAeZfNbxaBG/FM/WM+O64oqOsXUuHraYjfjo7r5+xwDuE3r1ifOZUn9wnanrevp+wKqN69ECq54YqvgAV9M6sRSFWc2KL58B7WLww85TPs+ryWjAB3++HEdyy3FrivYaz+6JERjVPR4r9p3GHf2TFCeEcrdc3gpfbc6QZme1nvferSOlrBAARWmt3GWJNiz66yDMWnEIU69WBq9iZiAmzCplOkd3j1fU84usZhPm39MfD362DfnlNZpBGeA+OfvPX/ris43HddcjPT6yM1bsOy1lkx66qoNPhn9g+xjsemE0KmociAq1aD5XLWwh+PWJYQgPdlcIyCcn5MdnNBow544+eGxEJ3SKa6YZMI/vlyQ1+gGgu6br6q7x6BzfDHangCfHdPG5Xp5h694iAld1bq5YVyZSZxYSI30z8Ze3jsKyvafRv120tHA+OswqzTqL65sGdogBPHN6nTSCMvWJilYpVaJsTZk4KxtmNSnK+7SoyxcBbymk2HwiPDjI5/UTZ6Pzyn0bfbSwheCP50fhreUH8e91x6THK8/uhViU7evlLCZvsKUu5ZRTXyeVJlY7pPJE9ftSWlNWpVxTJg/KOnveA9kl1VIHQ3VZk9FoQKvoEBzLq9Dcg01smCIGKfnlNVKQ2101YXD34Lb48LdjSMssxtbjRVJQ1qG58j3cLjYMPVvZpA53vZMifV4XcSsG8TlXr08E3Cetd/ZvjecW75EuaxvjO27CgDb4aH26VEal9bliNBrQrUWElF2XZ0O01gMC7kBq7l2XY3N6ISb0bw2DwYBhXZpL2TZ/OjQPw5Hccum5VGdfACDGk7EVuzDHNLNi8eTBsDsF6TFc06MFxiUnKLrBqoOyIJMRKW2isP5IvnQSPbJbPFbuP43klt7X8LKW7scvjtFqKqX+u9b6PjMaDZh5W0/8e+0xXNkpVrPyI6VNFP46rAPeW30UibZgPHtNV+k69ed1XHgw3ri1J77ekoHbUnyDKflnVpDJIGVw1eQbm/+pT0vNMQmyx6wX3MlfK6vZiNhmvp89oarJn6gwC964pSc+Wn8Mr9/injAMUk1IhQSZcN8V7fDU/3bhWtn3utkT8JR7Jl7kGV6xvN2o+i5RT2I1b2aVxogTBkFmI6DTfEROHnCJn8ni3YkljkEmo1S6DqgzZXXehYRBmcr48eNRUFCAl156CdnZ2UhOTsbPP/+MNm3aNPShURMV08yKm3Q+AC816pOTsxFiMWF8v9aa142rIwAGgLdu74V1h/Iw1rM4XUtMMyuWTrsKX2w6gTCrWWrUINcnyfvF1TYm1CdzJ5fSJhpf3j9Q9/rYcIsUlIlNObTYQoKw4EH37ehlMAF39nFUd+3Sa8B9gvHw0A6Y8+sRdE0Ix1SdTGdwkMnvSTWgLJeVB1IdVYu/jUaDZhZJFB4chLGXJcia9Wh/TVnMRix97Co4BUExkymSz1S/eONlmgEZ4C69MRq8X5xambJ7hrRDz1aRaGY1Y/276wG4MxdSUOY5SejZyt1ivbLWie4tfB+ju3TLe1/q0kXA28q+sKJWmskNs5rrfP61yhfFUkix/EvM6MmJ2bvcUm+mLEZ2kmUxG6UTHPFkVb6+S9ykVWtNmTVIPsOsPyutDjil8kXZmjKfTFmIcoNpb6MP77iI4CCpy6jYSl9rIqq1p9RQMyjzvB7iiejOzGLUOlxoZjVLWRtRc0+zmq82Z2De+mPSfapPkg0GA/4yqC2e/O9OANAsqeveIkJ6LwHePfjURndPUARl6kkGwB3QXZPcAks8jXpiwrTX93RP9AZl8kyZfG2YLSRIWscZEWxGSptoqWU7APx7Ygo2Hi3ApE+2at6HyP1d4N3/Td1UBvANHtvGhGlWowzvGuc3KAOgmFABgKfHdcE1PRIUn7PJqsyn+vUFfMud2+t8p12WaMM7d/bRvE70+MjOSIoKRb920XUud7m9bxJu76s9ydhc9pwk2IJ1S52v69kC7/x6BL2SIjWrYwDvRA4ApOgsI5FnRFtGhmh+B4WqJpxiwiy4vV8SbpdVOKizS2FWM25NaYWuCRGK8u8gTxpMnFSQd7QVJ9/Un+9Ws0nxWRsXYZVlt9zBk9loqHO9sPs45eWL7sclPmaHlClTfr5ZTLJMmeZmVNoYlGmYPHkyJk+e3NCHQUTnUURwUJ3ZPcAdkNx/ZXvd69vGhuGJUZ3hEoAHr2qvW2YWCHkTnis6aWfApLGBdPoJwLSRndExrhkGd4j1KaU7U10TIvDZvf2RGBl8Rsf5yp+S4XAJUpcyPeJaHi0tbCF47eYeMJuM0poSLRazES1s7hN3W0iQZqBkMRsxqEOMontdtKyLoRikWM3uMtUcz35lakEmI1pGhUiL9rUChIgQs3QyLs7oNrOaA8iU+Z6siqV34iawERonfmL5YnZJtbQHl/qkVn3f8hJIMfOk1bVQfnLoL6hU376yfLGOTFm12OhDXH+nvK3O8c3cWz94unmGajzn4om2WJYoP1ETsxDiSazY3KF7iwjNrPH4vkn4anMGlu11BxzRYRZ0S/DNXFzXs4UUlPXROPk1m4x4akwXzN9wHMWVdt2JpubhViRFe99TeqXrDw/tIAVlcRH6QZlIftIu76LYJiZUyvCp1/kB7tc8kCoT9QSd1m3FqDIw6pJkUX/V/amzoYA7qJm79qj0WFrYQnz+RnsleYOy21JaYYBGZYTZZMRNvROxbO9pjO+XhPuvbOczJlBmk1GxLvxsbkeUqDGpJHp4WAckRob4rRSSf3/pZ8q8r0tLjfJNwPc1UO+jCPiWD4Z6Gsv0UG2tYlYFb/LJJfE9oc6UBRkNCDJ59xdrHR0qlZzbHd51YCaDAc46gib596I40STdltO7Pk392MRj2nq8CLWV+muS5RiUERGdJX9r6erjQI53pl6rxOh8MBkNuLH3uc/k+sv01SWmmTWgUt66BHrC0yYmFKeKqxSzxFrk2QOT0ftFLc8c6a2ZFHVo3kw6gdYKAA0G97pQ+X4/oRaTT1tmuZAgk+ZkgPoEXSsoExt9iIv7DQYgUnWCrD7Bkq8x8pYv+gZl8uxYsJ/jVwds8u6LYqc4dZYvXCpfdF9foWqJL+qSEIHVB/OQ5uls20yjZFRcYyh2VWxhC5bWTakzZaLuOiViPVraEBdulRqwDOoQoxm8BQeZ8N+HB2FHRpHPFhsieUMWf0Z2i5eaSuhlhHu0suGlGy9TlP6pycsx5dkQ+X5jt/dNkoIyvQRDM6sZsc0s0mRA6+hQZBRWKvYx7Kk68a4rU2Y1GzUzV4BvdlBrIijB5l5LeMeHm5AYGaIZuHWMC8eMm3sgKjRI6hysZfYd/jNgDUHs1nmLxlpzUajFXOdnorzbrd77RP75oLWmDgBCg5R/r/JJLJHB0/BFzMBrvSaAMugElJ8XXXWCMrNJueHzdT1bSGsOxfszGz1r0eqoYNTMlHl+dkh7mRll4w0wGr1TrNtPFGHTgcCCMjb6ICJqJP42xr2uYNLgtg17IJcY9R5heuQnvOLJfXCQUbdcSIu8oYNWUAb4BlNhFjOMRoNuYKZVrgW4y73k5yrqtvKA74mXLSTI70kQoN3oQ6v7ovx4/WbKLNrli+6W+DqZshBvNg3QbokPAF0SlBkZdaMTwFumJp6syd8HiaruiyK9oMxoNGBEN2/J8JAO+hnvfm2j8eBVHc466/3k6C64uU9LvDvBf7Dwl0FtpX0atcjLiuXZMfmapTtlJ/VOl35rcfl7+KO7+2LayE748C/eiZZO8eGYONC7LKSuoKxjXDPdgNNgMPhkSLX0bRuNDU9fjR8eGaL7nN/Zv7XfgKyx+t/Dg/DWbb1wm04Dj0CltInCvyemSFsqaJGv/db7zFT/TWtlygBltkyvVD1I9bonRXmDcDHTr65gl2euEiKC0Soq1Nt9UdYx0WysOwwyy+7fmylTlS/Kbkd8TOJkTF3lkXIMyoiIGolJQ9pi0V8H4fnrtDtQ0vkhztp30+j0qPbI8I5IaROFm/u4T360sk/+iHvvANpZG0C5BinUYqqzWYZeUBZiMSlOYLRKxMKsZsUJrdZtqU+WtIIyrW578uOtT/miGDyW1zikTJg6oBSf94paJ7JLqqTOkOpj7aQqUdMKhNUdC2ObWXFbSiuM6h4vZQLUa9r0mikAUGS+1FtMnA9hVjNmje8dUDm2P1plWgDw8k3JGNktHgseHAiT0YAfH7kCfVpH4qkxXbVuBgAUmxe3iQnFtJGdfdbkPntNN/RoaUNkaBA6aGw8LG8g0cXPOlQA0mM36wRu0nFFBOuup2rK2saG4RadbWvqa8xlCT5rgeXkmbLAyxe1n3N5sw/9TJnyMXVJCMen9/bH0mlXKraykZMH8Pde0dY9RvXUmI0GxWVv3dYLH0/yrdBQdF80q7ovyhp9iCyqZiD1wfJFIqJGwt0l7Nx01qTA3d43CZ3jm/m0ONcidnrMLKyE0aC9H5k/ikyZzsywfK89eZAhtvVW0zvhAdwto8U97fQCyM4J4VJTCq0ujiEW5fytvHxRb3YbUGfKAi9fbCYLyoqrtNfDyYO0QTN+lR2P8rbUXQu1Ol7KW4UD7qDz9Vt7Ki4zm4zSpuhBJoNPsCc3pGMs+raJQmwzq27JXWM1584++GZbJh6QraNtFRWqKCfu0cqGxZOH+L2d5uHeAEyv9XiIxYRvJw+G0yVoBu3yTFlnnfVkouev747gICNuOA+l2KQkD2pbRWm/v9UTLepJDZEyU6YdlKmbaAQHGaXti0Ra5Ytz77oc+7JKca+nBFg9xuRp9CHq0zrS5/EYDcqAT5ys8La79xyj2TvGYlZm0+qDQRkREV3STEZDvYPhpOhQrHlyuE8zgrrIM2XqltCiPrKgTE6viYxWICXqFB+OVZ6NbrW6LwLuvRTFoEwrwAtRrQ8J08iUaZGfaFvrVb7ovf1sTzt0dabMbDIquhPqHU+Y1YyEiGCpq6lWEBlqMaNXKxt2etZKqfflEkWGWlBa7UCnuHC/TXGCg0z431+b5t6m1/dK1GzhXl/NZZkyf9kb94ba2tfJ/7bqCm6bWc148cbk+h0knRGL2YhEWzDyymt0u4KqM1d674GgAMoX1dlPraZHJo1GH2OTWyhKUdWHoA7K3G3s1fdthDxRp26Jr/U4pEyZ5qPxj+WLREREZ6B1TKjuujA98vbV+WU1mmPiZGVe8o6P9V1TBng3vgb0M2Xyk/ATnj355HyCJsU+ZfrBliJT5mfdXajqJMtqNkknNlJLfI3SS63HE6JxYiffvFlvb8aHh2rv5ScnNr/wV7pIbnWVGwZC/lqp29VTw/ri/gH45qFBmlsUqPlLGFkCKl9U7WemMU4dBKp/B9DKphkUl7k3fFaOMRqVt63ePFqkCMpMzJQRERE1evIv/dM6QRkAxR47IvnJSHCQd7PSaD/ZOnnzBq1GH4A7uBE3M9ba104r+yT920/5onJNmZ/ukRonWeFWMwoctX6PPSLEDFnDUvexasyit4sNw4ajBe7rdU78xsj2K9QL3MQT0GSNfcVIaVxyAiYNbqu5B1ugDAYDvpsyBKVVdrTW2H+NGo7e/mxa/G3noShf1Pm7U2fKtCZ41BkudYt69xh1+aJR8RlrNZl8bsdkMCiycFad0kSLIlMmBm4+h1AnBmVEREQX0LU93Bv53jukre6Ya3q0wE+7shUnJMGqfb/EoMxf+aK8XNJfF7CvHxiIJbuycY3GHkZ6+4gB9ciU+Tkx01rnFR5sRkGFNyjTyoppbbirVRIqP4HUC7iMRgN+evQKfLk5A3frdD995OqOaBkZgj/52SCe3IxGA6bfcNlZ305vnVJeajr8/e3L12JpTagAyqyX1WzU3GJCXb6o1VVRq9GHvIOodqZMWeLo3Txa9ThMyoybewwzZURERI3arPG98OiIjn5LvF75Uw+EBwfh1hRvi2t5ABQSZEIx3E0/1O3a5eTrNKL8BG9hVjNu75ekeZ2/NV+Brinzd2KmtZbEFmoBPKWUFpNRs3RTq9NetMZzIV/3ojcbD7gzYDNu7qF7/eWto3C5xkbPRKQv0EyZ1uQMoGyJr/c54lu+6PvZoA6SzEaDtM8YIG/Q4a1SMBkNqvJF7YBLsZeZid0XiYiImgSr2aTYpFWLLSTIJ0BQbMYsOzmpq9nIV/cPwNbjRRjVzbc0MRDqkyp5+WKQyQiLyajZEj/Q7otaJ22XJUZgp2fD5/Bgs+asc56s/PP7KUNw6HQZklv6Pq/yNWX+gkgiOvf8/e3Lgxmt9aCAMsDSC/DUe9hply/63q5LFpSJt2E0GODytFX0LV/ULk2UZ+jPpvsiG30QERE1AXqZJ72NWUWDO8bisZGdNMt+AiE/EbKajT4tqkNlM9wmnVlteeml+jC0ZsjlGSmtJh8AkFVSJf27V1IkbuubpBm8yTe4ddVjI1ciOnv+1mDKG33obQBuVgRuOpkyn86KvuGNOnAzGY2KTJlI/hHiW74YyJoyb8atvhiUERERNQF6jTP8dV88F4xGg3QyorUmS97sw6Ja/yGSH7tvAxPf27y8daTm7chd79kweFB7/xs0m01GPDK8I67uGoeUNiw/JLoQFv11EG7v2wovXK+/ttASQEv8gMoXNVriq2mVL2qts5WPMxmUHRrF+1ffumJNmYlryoiIiC5q8oyV+O8gk0F3Y9ZzKdRiQo3DpbmHlzzTZTEbUWV37x1mVWXYdG9bp2Oi6FRRlc/1gHvD4MvbRGFccoLm9XLipt9EdGGktImuc//HoAA2j1ZkynRKIdVZMO2W+L6/o5Upk49z72Xm/dmq08RDc58yrikjIiK6OGkFZVGhljOakT2T+y6CXbMFvnyNmbwcSR6I+Sud1DoZkz+mshqH5u9FBAfhzv6t/R84ETVa8rVYoTqNPuRrygLNlGk1+vAZo/OZJB+n3qfMGqRdmqgVlHFNGRER0UVK0ejDE8ic79JFkbiWQzNTplO+6K/jovx8Ra8joth5ckTXuHodKxE1DWJDDcBf+aI8UxZY98UgzZb46jVldQdl6kYfUvliAC3xuU8ZERHRRSpYI1N2oYOycI0ASp7psgZpZ8rUTAYDHJ4TMr2ypZdvTEa/tlEYcYZdI4mocXPIurbqBVyKTJnOZ4XPPmWaLfFVt6sTNckvNQXa6EPefdF05pkyBmVERERNgDwoi/R0JEyICL4g9x0a5D5dCNMIyuTNPwLNlBllmwHpnYyFWEwY34/liUQXK4fTtyW9mjx40m+Jr/xZuyW+b/dFLfJhJqOy0Ye3Jb7+ZtX+JqPqwqCMiIioCZCfkNzUpyXCrGbc2Dvxgtx3sJ/yRflaEKvOmjI1+SkN9w4jujRp7W+opmz0of1Z4dtZUaN8UXWR7poy2eVGg0G1zYd2Ew/LOdqnjEEZERFRE6DeMPrxUZ0v2H2LHRI1W+LrNPrwlymTn4xpZd+I6OInz5TpMWsERWqBlC/6ZMo0xqjH+ZYvimvK9Der9pYvat68X2z0QURE1ASEWLxf2XqlPufvvt0nI5rdFy11d19Uk63vP6tyHyJquhyuujNlQQFkynxa4gfQ6CPQNWVyVp0mHprdF8/gM5qfhERERE2AxeQ9IdHqLnY+jbksHq2jQzGsS3Of68J01pRZ/WTK5C5ES38ianzsgWTKAmj04dPEQzNTpvxZb2JL/nlkNBhgl2X1xey/z2bVWvuUad66f6wZICIiagLkJxp6pTfny9jkFhib3ELzujB590Wz99/qmeggkyGgkzAiujQElCkLoCW+OsAKpCW+/j5lytuVB2V6AZdFc/NoZsqIiIguSvJ1Cxc6U+ZPqM6aMvVsdZC6RRoRXdLErq7+yD9HdIOyM1lTpvMZqt6nTKtDpM+aMrPWmjIGZURERBcl+ToJrZOOhtJM1n1REZSpTnoYlBGR3Ks3J6NjXDPMHt9bd4w5gG02fLovnsU+ZfKLjUbtEstA1pSdSVU2yxeJiIiaAHnAo54ZbkihskYfQYoTKHVQVvc6DyK6dHSMC8fK1KF+xwQpui+eRfmiUZ0pk68d815uUHVftGu07fe3pkyvGUggGJQRERE1AV3iwzGgXTSiwyxn1NnrfJG3yQ8JMuG+K9qhstaJVlGhinFamTL5GjQiIjXFPmU6jT7kHy1Gg3bnQ9/slvcCeVZfHm8ZDQbNdW/qOTFFS/yzWFPGoIyIiKgJMBoNWPjQoIY+DB/yzZ9NRuC5a7trjtMMynT2HSIiApRlhnpryuSZK7NOmbS/NWXKrJk6U+Zbvui7T5msfNGk3aExEPw0JCIiojMmb4nvL4Ontc6De5QRkT+BNPpQBGW6a8X0uy/KS63lv27WLV9U/qzZfVHzKPzjpyERERGdMXlQ5vTT8t7C8kUiqid5aaF6napInukKpIGH+Dvv3NkHsc2s+OjuvtLl6n3KHJqNPtSNRbQ2j9Y8DL9YvkhERERnLFQ2e11ld+qOS7AF40BOmeIyZsqIyB/5ei29Rh/yIEmvy6tvIGXADb0ScX3PFopATD7MZDSgbaxybax6DKDKlLElPhERETUEeclijUN/M9hX/9QDg9rH4D9/8c5K651kEREByiyYXqMPRcmhznYhvmvKtPcck48zGg2YPKwj7hnSFv99eJDmGEC1TxkbfRAREVFDq/aTKUuMDMHXDw5UXMZMGRH543R5ywd1N49WlC9qf6YYVBcHUuZoMhgQZjXjhesvU96Wn33KrFxTRkRERA3NX1Cmhd0Xicgfhywo0y1fNMrLFwPNlNVd5qje/0xkUIVcWo0+WL5IREREDabarl++qIWNPojIH3mjDb0gKbCW+Mqf9TJlerfr77bkQaF3TVmdN+97u/X/lcC98sorGDx4MEJDQxEZGak5JiMjA9dffz3CwsIQGxuLqVOnora2VjFm9+7dGDp0KEJCQtCyZUu89NJLEARlN5S1a9ciJSUFwcHBaN++PebOnetzX4sWLUL37t1htVrRvXt3LF682GfM+++/j3bt2iE4OBgpKSn47bffzvwJICIiuoQEminrmhAOALg1pdX5PBwiauJ6tLQBACKC9Vdcmc6gJX4gAZ5OfOez9Yc8Jgk6izVl5zUoq62txW233Ya//vWvmtc7nU5ce+21qKiowPr167FgwQIsWrQITzzxhDSmtLQUo0aNQmJiIrZu3Yo5c+Zg5syZmDVrljQmPT0d11xzDa688krs2LEDzz77LKZOnYpFixZJYzZu3Ijx48dj4sSJ2LlzJyZOnIjbb78dmzdvlsYsXLgQ06ZNw3PPPYcdO3bgyiuvxLhx45CRkXEenh0iIqKLS7UjsKDsf38djO+nDMG45ITzfERE1JTZQoOw4/lR2PzsSN0x8kpEve6L6hhJN3iT/bpu+aLsYqNBWVYpZsrOICY7v40+XnzxRQDA/PnzNa9fvnw59u3bh8zMTCQmJgIA3nrrLUyaNAmvvPIKIiIi8OWXX6K6uhrz58+H1WpFcnIyDh06hFmzZiE1NRUGgwFz585F69atMXv2bABAt27dsG3bNsycORO33HILAGD27NkYNWoUnnnmGQDAM888g7Vr12L27Nn4+uuvAQCzZs3Cfffdh/vvv1/6nWXLluGDDz7AjBkzztfTRERE1KR1aB6Go3kVGJfcIqDxzaxm9EqKPL8HRUQXhagwi9/r5cGTXiBlOoNMmV75onxNmcloQGwzK6Zf3x0hFlPTXVO2ceNGJCcnSwEZAIwZMwY1NTXYvn27NGbo0KGwWq2KMVlZWTh+/Lg0ZvTo0YrbHjNmDLZt2wa73e53zIYNGwC4s3rbt2/3GTN69GhpjJaamhqUlpYq/iMiIrqU/PfhwZh71+V48Kr2DX0oRHSJUe5TFlj5ol7rfPml+oGb7+1OGtIO4/u11hwTqAYNynJychAfH6+4LCoqChaLBTk5ObpjxJ/rGuNwOJCfn+93jHgb+fn5cDqdfsdomTFjBmw2m/RfUlJSQI+diIjoYhEdZsHY5Ba6pUNEROeLotGHXkt8VZCk133REECmzHgGa9gCUe9Pz+nTp8NgMPj9b9u2bQHfntZCOEEQVLtray+oOxdj1JcFMkbumWeeQUlJifRfZmam7lgiIiIiIjp3FPuU6WXADAZFYBbIPmV6YxRryvRSYhdiTdkjjzyCO+64w++Ytm3bBnRbCQkJikYbAFBUVAS73S5lrBISEnwyVbm5uQBQ5xiz2YyYmBi/Y8TbiI2Nhclk8jtGi9VqVZRWEhERERHRhSGPi/xl640GA5yepE1g3Rf1A7y6xlyQTFlsbCy6du3q97/g4OCAbmvQoEHYs2cPsrOzpcuWL18Oq9WKlJQUacy6desUbfKXL1+OxMREKfgbNGgQVqxYobjt5cuXo2/fvggKCvI7ZvDgwQAAi8WClJQUnzErVqyQxhARERERUeMRSDmhe5z334GsPdPLggWSTWt0a8oyMjKQlpaGjIwMOJ1OpKWlIS0tDeXl5QDcTTS6d++OiRMnYseOHVi1ahWefPJJPPDAA4iIiAAATJgwAVarFZMmTcKePXuwePFivPrqq1LnRQB4+OGHceLECaSmpmL//v34+OOPMW/ePDz55JPSsTz22GNYvnw5Xn/9dRw4cACvv/46Vq5ciWnTpkljUlNT8dFHH+Hjjz/G/v378fjjjyMjIwMPP/zw+XyaiIiIiIjoDMizVf4yZcoMl844WTCl7tgoCqRD45lkys5rS/z/+7//w6effir93KdPHwDA6tWrMWzYMJhMJixZsgSTJ0/GkCFDEBISggkTJmDmzJnS79hsNqxYsQJTpkxB3759ERUVhdTUVKSmpkpj2rVrh59//hmPP/443nvvPSQmJuKdd96R2uEDwODBg7FgwQL84x//wPPPP48OHTpg4cKFGDBggDRm/PjxKCgowEsvvYTs7GwkJyfj559/Rps2bc7n00RERERERGcgkDVlQP0zXHqZskA6NJ5Bouz8BmXz58/X3aNM1Lp1a/z0009+x/To0QPr1q3zO2bo0KH4448//I659dZbceutt/odM3nyZEyePNnvGCIiIiIianjypJRekAQEtl5MMUYvCxbAvmj+mgTqHl+9f4OIiIiIiKgRMAW4piyQccrATft2AgkCG92aMiIiIiIiovPFFEDmCggsmAqk3b0B9cumBYpBGRERERERNUmBbPgMKAMl/U2mAwi4AgnudI9CH4MyIiIiIiJqkuSBkd+gTB5w6bbE175d3dvhmjIiIiIiIrrUmRSZMv1xgXVfrDvAU5Q4BpBNCxSDMiIiIiIiapLkcZG/DJUhoO6LqHOM/Hb0WvCfyT5lDMqIiIiIiKhJCrTRRyCZMvlqsEACt0CyaYFiUEZERERERE2SvHzRXywU2D5lCGBM/fY7CxSDMiIiIiIiapLkXRX9taI3KvYp0w6BAto8up6t9QPFoIyIiIiIiJo8/y3xvf/WzXAZ5f/Wua2AAjdmyoiIiIiI6BLkv/uiPFNWdxMPk06UxEwZERERERGRjkD2KTMY9LNgBo3x/u5D73aMAbbpV/xOYMOIiIiIiIgaL39rysQ4Sb/zYoAbQ8v+rb/fmfff/jpCKn4noFFERERERESNWCDli3pNPtS/H8h6Mf2W+AbNf/vDoIyIiIiIiJo8/+WL7v8HminTLXFUZMG0b0f+m3pjfO47sGFERERERESNVyCZMpPJz6B6ZsrOprW+z+8ENIqIiIiIiKgR81cqaJDKF89yTZns4sAafTAoIyIiIiKiS0Qg5Yv+Gm8E0qBDmQXTvh1DALfjc7sBjSIiIiIiImrE/MU/YnDkv9FH/TJlJp3bUmTTmCkjIiIiIqJLhb+slFi+GMgYILDOivobTNc9xud3AhtGRERERETUeFnNdbe797emLJCyw/qWODJTRkREREREF72pV3dEr1Y23JqSpDvGGECmTBlw+b8df7cVSDMQNXNAo4iIiIiIiBqh1NFdkDq6i98xgTX6qDvDFcgG02z0QUREREREpCK1xPezT1kgWTD5ZmaBtMTnPmVERERERESQZ8r0w59AuibK4zC99WmKjBszZURERERERN5AyW+jD9SdKQsk4JJfykwZERERERERvEHW2W4ebQhgTRkzZURERERERCqGADJl8gBKv3zRe7nebRlkEVaAMRmDMiIiIiIiurgF0n0xkK6JgbS7Z6MPIiIiIiIiFTFQCtLbgAzKNWWBNPHQbYkvH8/yRSIiIiIiokD3KZP9O5A1ZTrt9ZkpIyIiIiIiUgloTVkAwVRAmbIAWuv73G5Ao4iIiIiIiJqo+mfKtMcEsu5M2X0xwOMLbBgREREREVHTFNA+ZQGtF6t7L7NAAjef4wtoFBERERERURMlBmUmP6mrwLJggYzxXm5o6PLF48eP47777kO7du0QEhKCDh064IUXXkBtba1iXEZGBq6//nqEhYUhNjYWU6dO9Rmze/duDB06FCEhIWjZsiVeeuklCIKgGLN27VqkpKQgODgY7du3x9y5c32OadGiRejevTusViu6d++OxYsX+4x5//330a5dOwQHByMlJQW//fbbOXg2iIiIiIiooYiNOwJdU6bb7j6gvcy8//bT7FH5O4ENq78DBw7A5XLh3//+N/bu3Yu3334bc+fOxbPPPiuNcTqduPbaa1FRUYH169djwYIFWLRoEZ544glpTGlpKUaNGoXExERs3boVc+bMwcyZMzFr1ixpTHp6Oq655hpceeWV2LFjB5599llMnToVixYtksZs3LgR48ePx8SJE7Fz505MnDgRt99+OzZv3iyNWbhwIaZNm4bnnnsOO3bswJVXXolx48YhIyPjfD1NRERERER0nklrynQ6JsrHAP4afXj/rbt59Bl0XzQHNOoMjB07FmPHjpV+bt++PQ4ePIgPPvgAM2fOBAAsX74c+/btQ2ZmJhITEwEAb731FiZNmoRXXnkFERER+PLLL1FdXY358+fDarUiOTkZhw4dwqxZs5CamgqDwYC5c+eidevWmD17NgCgW7du2LZtG2bOnIlbbrkFADB79myMGjUKzzzzDADgmWeewdq1azF79mx8/fXXAIBZs2bhvvvuw/333y/9zrJly/DBBx9gxowZmo+zpqYGNTU10s+lpaXn8FkkIiIiIqKzVe81Zbrj6s6muW8LEIRGuk9ZSUkJoqOjpZ83btyI5ORkKSADgDFjxqCmpgbbt2+XxgwdOhRWq1UxJisrC8ePH5fGjB49WnFfY8aMwbZt22C32/2O2bBhAwCgtrYW27dv9xkzevRoaYyWGTNmwGazSf8lJSUF+nQQEREREdEFIMZb/hpvBNLKPpBsmvz3G90+ZUePHsWcOXPw8MMPS5fl5OQgPj5eMS4qKgoWiwU5OTm6Y8Sf6xrjcDiQn5/vd4x4G/n5+XA6nX7HaHnmmWdQUlIi/ZeZmen/iSAiIiIiogsqkEyZMYBMmXyMOYBSyPMWlE2fPh0Gg8Hvf9u2bVP8TlZWFsaOHYvbbrtNKg0UaXUkEQRBcbl6jNjk41yMUV8WyBg5q9WKiIgIxX9ERERERNR4ePcp0w9/FPuU6Zz+K5qB+IkRxPgh0PLFeq8pe+SRR3DHHXf4HdO2bVvp31lZWRg+fDgGDRqEDz/8UDEuISFB0WgDAIqKimC326WMVUJCgk+mKjc3FwDqHGM2mxETE+N3jHgbsbGxMJlMfscQEREREVHTU59Mmclo0E3KBLoHmXhNgDFZ/TNlsbGx6Nq1q9//goODAQCnTp3CsGHDcPnll+OTTz6BURWZDho0CHv27EF2drZ02fLly2G1WpGSkiKNWbdunaJN/vLly5GYmCgFf4MGDcKKFSsUt718+XL07dsXQUFBfscMHjwYAGCxWJCSkuIzZsWKFdIYIiIiIiJqegyygKvOMX4zYN5/+7stYz0zZedtTVlWVhaGDRuGpKQkzJw5E3l5ecjJyVFkokaPHo3u3btj4sSJ2LFjB1atWoUnn3wSDzzwgFQGOGHCBFitVkyaNAl79uzB4sWL8eqrr0qdFwHg4YcfxokTJ5Camor9+/fj448/xrx58/Dkk09K9/XYY49h+fLleP3113HgwAG8/vrrWLlyJaZNmyaNSU1NxUcffYSPP/4Y+/fvx+OPP46MjAzFOjgiIiIiImpaBraPRpjFhL5to3THSNktPxGSYt2Z30YfdY+RO28t8ZcvX44jR47gyJEjaNWqleI6cb2XyWTCkiVLMHnyZAwZMgQhISGYMGGC1DIfAGw2G1asWIEpU6agb9++iIqKQmpqKlJTU6Ux7dq1w88//4zHH38c7733HhITE/HOO+9I7fABYPDgwViwYAH+8Y9/4Pnnn0eHDh2wcOFCDBgwQBozfvx4FBQU4KWXXkJ2djaSk5Px888/o02bNufraSIiIiIiovPsxt4tcV3PxDqyW+7/n8tMmb8xitsVxAiJzonS0lLYbDaUlJSw6QcRERERURPx2cbj+L/v9yI82Izd08dojjl0ugyj317nHn9vf1zVubnmuB7Tl6Gs2oFbekRj1l2D64wNLug+ZURERERERI1RIOvOjPXNlDW2fcqIiIiIiIgaKzF88l++GFhLfG8LfgZlREREREREAQmkY6L8Gv+bR7uv87ffsWJ8QKOIiIiIiIguYoE0+gh882jPbQUYbTEoIyIiIiKiS14gHRMVLfED2POswfcpIyIiIiIiairEeMvfPmXy5Jg5kPb6YFBGREREREQUEDG7ZfYTlcmDMv+NPuq3TxmDMiIiIiIiuuSJ8ZO/OCrg8kWN8X7vO6BRREREREREF7HzsaaMmTIiIiIiIqIASWvKAuiqCNQRvBmV/68LgzIiIiIiIrrkBZIpUwRlAawpY/kiERERERFRgLx7iwVYvuhn82jxGu5TRkREREREFKBAslvya5gpIyIiIiIiOofEDFmQnwyYPMgKZD+zQBt9mAMaRUREREREdBEb2C4Gw7s0x019WuqOkQdl/vYzq+8+ZQzKiIiIiIjokmcLDcIn9/T3O8Ygi8P8lS8G0slRjuWLREREREREAZCHWP7KF+u7poyZMiIiIiIiogAEmYxSFizIT2tFafNoBmVERERERETnTnCQCc9d0036tx5xKZmRa8qIiIiIiIjOrfuvbF/nGG/3xcBuk2vKiIiIiIiIziHuU0ZERERERNSADPVsic+gjIiIiIiI6BwSQ7FAG30wKCMiIiIiIjqHQi3uJiDBFv1mIHJs9EFERERERHQOPTWmC9YeysOAdjEBjWdQRkREREREdA71aR2FPq2jUFpaGtB4li8SERERERE1IAZlREREREREDYhBGRERERERUQNiUEZERERERNSAGJQRERERERE1IAZlREREREREDYhBGRERERERUQPiPmXnmCAIABDwngRERERERHRxEmMCMUbQw6DsHCsoKAAAJCUlNfCREBERERFRY1BQUACbzaZ7PYOycyw6OhoAkJGR4feJV+vXrx+2bt16vg7rjDXW4xKVlpYiKSkJmZmZiIiIaOjD0dTYn0OgcR9jU3iNgcb9HIoa8zHydT43Gvvx8XU+c43xmOSawmvb2J9DoPEeY1N4fUWN7TksKSlB69atpRhBD4Oyc8xodC/Ts9ls9XrTmkymRvkmb6zHpRYREdFoj7MpPIdN4Rgb82sMNI3nsCkcI1/ns9PYj0/E17n+GuMxaWnMr21TeA4b+zE25tdX1FifQzFG0L3+Ah0H1WHKlCkNfQiaGutxNSVN4TlsCsfY2DWF57ApHGNj19ifw8Z+fE1FY3weG+MxNTVN4TlsCsfY2DXV59Ag1LXqjOqltLQUNpsNJSUljTJKv9jw+b748TW+NPB1vjTwdb548bW9uPH1PXOBPnfMlJ1jVqsVL7zwAqxWa0MfyiWBz/fFj6/xpYGv86WBr/PFi6/txY2v75kL9LljpoyIiIiIiKgBMVNGRERERETUgBiUERERERERNSAGZURERERERA2IQRkREREREVEDYlBGRE2SwWDAd99919CHQUREdMnid/G5w6CMGrUNGzbAZDJh7NixDX0odJ5NmjQJN910U0MfBp0nmZmZuO+++5CYmAiLxYI2bdrgscceQ0FBQUC/v2bNGhgMBhQXF5/fA6Uzxr/hixu/jy8N/DtuOAzKqFH7+OOP8eijj2L9+vXIyMg4q9tyOp1wuVzn6MiIKFDHjh1D3759cejQIXz99dc4cuQI5s6di1WrVmHQoEEoLCxs6EMkojrw+5jo/GJQRo1WRUUFvvnmG/z1r3/Fddddh/nz50vXibPmS5YsQa9evRAcHIwBAwZg9+7d0pj58+cjMjISP/30E7p37w6r1YoTJ040wCOh+mrbti1mz56tuKx3796YPn16gxwPnZ0pU6bAYrFg+fLlGDp0KFq3bo1x48Zh5cqVOHXqFJ577jkAQE1NDf72t78hKSkJVqsVnTp1wrx583D8+HEMHz4cABAVFQWDwYBJkyY14COiuixduhRXXHEFIiMjERMTg+uuuw5Hjx6Vrj9+/DgMBgO+/fZbDB8+HKGhoejVqxc2btzYgEdNevh9fGnid/GFxaCMGq2FCxeiS5cu6NKlC+666y588sknUO91/tRTT2HmzJnYunUr4uLicMMNN8But0vXV1ZWYsaMGfjoo4+wd+9exMXFXeiHQXRJKywsxLJlyzB58mSEhIQorktISMCf//xnLFy4EIIg4C9/+QsWLFiAd955B/v378fcuXPRrFkzJCUlYdGiRQCAgwcPIjs7G//6178a4uFQgCoqKpCamoqtW7di1apVMBqN+NOf/uSTHXnuuefw5JNPIi0tDZ07d8add94Jh8PRQEdNevh9THT+mRv6AIj0zJs3D3fddRcAYOzYsSgvL8eqVaswcuRIacwLL7yAUaNGAQA+/fRTtGrVCosXL8btt98OALDb7Xj//ffRq1evC/8AiAiHDx+GIAjo1q2b5vXdunVDUVERtm7dim+++QYrVqyQ/sbbt28vjYuOjgYAxMXFITIy8rwfN52dW265RfHzvHnzEBcXh3379iE5OVm6/Mknn8S1114LAHjxxRdx2WWX4ciRI+jatesFPV7yj9/HROcfM2XUKB08eBBbtmzBHXfcAQAwm80YP348Pv74Y8W4QYMGSf+Ojo5Gly5dsH//fukyi8WCnj17XpiDJqJ6E2fb09PTYTKZMHTo0AY+IjoXjh49igkTJqB9+/aIiIhAu3btAMBnLZL887lFixYAgNzc3At3oFQnfh8TXRjMlFGjNG/ePDgcDrRs2VK6TBAEBAUFoaioyO/vGgwG6d8hISGKn6lpMBqNPqUx8jIYajo6duwIg8GAffv2aXb0OnDgAKKiohAaGnrhD47Om+uvvx5JSUn4z3/+g8TERLhcLiQnJ6O2tlYxLigoSPq3+FnNBhCNC7+PL138Lr6wmCmjRsfhcOCzzz7DW2+9hbS0NOm/nTt3ok2bNvjyyy+lsZs2bZL+XVRUhEOHDrHs5SLQvHlzZGdnSz+XlpYiPT29AY+IzlRMTAxGjRqF999/H1VVVYrrcnJy8OWXX2L8+PHo0aMHXC4X1q5dq3k7FosFgLtrGzVuBQUF2L9/P/7xj39gxIgRUokqNT38Pr608bv4wmJQRo3OTz/9hKKiItx3331ITk5W/Hfrrbdi3rx50tiXXnoJq1atwp49ezBp0iTExsZyf42LwNVXX43PP/8cv/32G/bs2YO7774bJpOpoQ+LztC7776LmpoajBkzBuvWrUNmZiaWLl2KUaNGoWXLlnjllVfQtm1b3H333bj33nvx3XffIT09HWvWrME333wDAGjTpg0MBgN++ukn5OXloby8vIEfFemJiopCTEwMPvzwQxw5cgS//vorUlNTG/qw6Azw+/jSxu/iC4tBGTU68+bNw8iRI2Gz2Xyuu+WWW5CWloY//vgDAPDaa6/hscceQ0pKCrKzs/HDDz9IM+rUtLhcLpjN7orqZ555BldddRWuu+46XHPNNbjpppvQoUOHBj5COlOdOnXCtm3b0KFDB4wfPx4dOnTAgw8+iOHDh2Pjxo1SE48PPvgAt956KyZPnoyuXbvigQceQEVFBQCgZcuWePHFF/H0008jPj4ejzzySEM+JNIg/g0bjUYsWLAA27dvR3JyMh5//HG8+eabDX14dAb4fXzp4XdxwzEI6mJRoiZgzZo1GD58OIqKitiJ7SIxduxYdOzYEe+++25DHwoRnQH+DV+a+H18ceHfccNhpoyIGlRRURGWLFmCNWvWKNorE1HTwL9hoqaPf8cNj90XiahB3Xvvvdi6dSueeOIJ3HjjjQ19OERUT/wbJmr6+Hfc8Fi+SERERERE1IBYvkhERERERNSAGJQRERERERE1IAZlREREFJAZM2agX79+CA8PR1xcHG666SYcPHhQMUYQBEyfPh2JiYkICQnBsGHDsHfvXun6wsJCPProo+jSpQtCQ0PRunVrTJ06FSUlJYrbeeWVVzB48GCEhoayqx8RXfQYlBEREVFA1q5diylTpmDTpk1YsWIFHA4HRo8eLe0nBwBvvPEGZs2ahXfffRdbt25FQkICRo0ahbKyMgBAVlYWsrKyMHPmTOzevRvz58/H0qVLcd999ynuq7a2Frfddhv++te/XtDHSETUENjog4iIiM5IXl4e4uLisHbtWlx11VUQBAGJiYmYNm0a/v73vwMAampqEB8fj9dffx0PPfSQ5u3897//xV133YWKigpp41rR/PnzMW3aNBQXF5/vh0NE1GCYKSMiIqIzIpYcRkdHAwDS09ORk5OD0aNHS2OsViuGDh2KDRs2+L2diIgIn4CMiOhSwaCMiIiI6k0QBKSmpuKKK65AcnIyACAnJwcAEB8frxgbHx8vXadWUFCAl19+WTeLRkR0KeCUFBEREdXbI488gl27dmH9+vU+1xkMBsXPgiD4XAYApaWluPbaa9G9e3e88MIL5+1YiYgaO2bKiIiIqF4effRR/PDDD1i9ejVatWolXZ6QkAAAPlmx3Nxcn+xZWVkZxo4di2bNmmHx4sUICgo6/wdORNRIMSgjIiKigAiCgEceeQTffvstfv31V7Rr105xfbt27ZCQkIAVK1ZIl9XW1mLt2rUYPHiwdFlpaSlGjx4Ni8WCH374AcHBwRfsMRARNUYsXyQiIqKATJkyBV999RW+//57hIeHSxkxm82GkJAQGAwGTJs2Da+++io6deqETp064dVXX0VoaCgmTJgAwJ0hGz16NCorK/HFF1+gtLQUpaWlAIDmzZvDZDIBADIyMlBYWIiMjAw4nU6kpaUBADp27IhmzZpd+AdPRHQesSU+ERERBURrXRgAfPLJJ5g0aRIAdzbtxRdfxL///W8UFRVhwIABeO+996RmIGvWrMHw4cM1byc9PR1t27YFAEyaNAmffvqpz5jVq1dj2LBhZ/1YiIgaEwZlREREREREDYhryoiIiIiIiBoQgzIiIiIiIqIGxKCMiIiIiIioATEoIyIiIiIiakAMyoiIiIiIiBoQgzIiIiIiIqIGxKCMiIiIiIioATEoIyIiIiIiakAMyoiIiIiIiBoQgzIiIiIiIqIGxKCMiIiIiIioAf0/FlJ1aTAmxOoAAAAASUVORK5CYII=", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:17:01.769624\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df['ninfected'].diff().plot()\n", "plt.show()" @@ -377,9 +2367,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 150, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAEjCAYAAADXBVt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsx0lEQVR4nO3dd3hb5dkG8PtIsiRPedux45XEcSbZJM4gCSMkhbJK4SMkhbIJkKaBAm2/llWSj0KBlhlmKCtAy4YGUghhJM52dpzllXgveWue74+jcyzZki3ZluVx/67LF+To6OiVdHysR8/zPq8giqIIIiIiIiIi8okq0AMgIiIiIiIaiBhMERERERERdQODKSIiIiIiom5gMEVERERERNQNDKaIiIiIiIi6gcEUERERERFRNzCYIiIiIiIi6gYGU0RERERERN2gCfQA+gu73Y6SkhKEh4dDEIRAD4eIiIiIiAJEFEU0NDQgKSkJKpXn/BODKYeSkhKkpKQEehhERERERNRPFBcXY/jw4R5v92sw9cILL+CFF15AQUEBAGD8+PH485//jCVLlgCQIr6HHnoIL730EmprazFz5kw899xzGD9+vHIMk8mEe+65B++++y5aWlpw3nnn4fnnn3d5UrW1tVi5ciU+/fRTAMAll1yCZ555BpGRkV6PNTw8HID0gkVERPTwmRMRERER0UBVX1+PlJQUJUbwRBBFUfTXID777DOo1WqMGjUKAPDGG2/g8ccfx969ezF+/Hg89thjePTRR7F+/XqMHj0af/nLX/D9998jLy9PGfjtt9+Ozz77DOvXr0dMTAzuvvtu1NTUYPfu3VCr1QCAJUuW4PTp03jppZcAALfccgvS09Px2WefeT3W+vp6GAwGGI1GBlNEREREREOYt7GBX4Mpd6Kjo/H444/jhhtuQFJSElatWoX77rsPgJSFSkhIwGOPPYZbb70VRqMRcXFxePPNN3H11VcDaCvH+/LLL3HhhRfiyJEjGDduHHJycjBz5kwAQE5ODrKzs3H06FFkZWV5NS4GU0REREREBHgfG/RZNz+bzYYNGzagqakJ2dnZyM/PR1lZGRYtWqTso9PpMH/+fGzduhUAsHv3blgsFpd9kpKSMGHCBGWfbdu2wWAwKIEUAMyaNQsGg0HZxx2TyYT6+nqXHyIiIiIiIm/5PZg6cOAAwsLCoNPpcNttt+Gjjz7CuHHjUFZWBgBISEhw2T8hIUG5raysDFqtFlFRUZ3uEx8f3+Fx4+PjlX3cWbt2LQwGg/LD5hNEREREROQLvwdTWVlZyM3NRU5ODm6//XZcd911OHz4sHJ7+zbkoih22Zq8/T7u9u/qOL///e9hNBqVn+LiYm+fEhERERERkf+DKa1Wi1GjRmH69OlYu3YtJk2ahL///e9ITEwEgA7Zo4qKCiVblZiYCLPZjNra2k73KS8v7/C4lZWVHbJeznQ6HSIiIlx+iIiIiIiIvNVnc6ZkoijCZDIhIyMDiYmJ2LRpk3Kb2WzGli1bMHv2bADAtGnTEBQU5LJPaWkpDh48qOyTnZ0No9GIHTt2KPts374dRqNR2YeIiIiIiKi3+XWdqT/84Q9YsmQJUlJS0NDQgA0bNuC7777Dxo0bIQgCVq1ahTVr1iAzMxOZmZlYs2YNQkJCsHTpUgCAwWDAjTfeiLvvvhsxMTGIjo7GPffcg4kTJ+L8888HAIwdOxaLFy/GzTffjHXr1gGQWqNffPHFXnfyIyIiCqSjZfUorG7GheMTAz0UIiLygV+DqfLycixfvhylpaUwGAw466yzsHHjRlxwwQUAgHvvvRctLS1YsWKFsmjv119/7bI41lNPPQWNRoOrrrpKWbR3/fr1yhpTAPD2229j5cqVSte/Sy65BM8++6w/nxoREVGvufXN3SisbsZ/V5+DUfGdLxBJRET9R5+vM9VfcZ0pIiIKhNomM6Y8IpWzP7d0Ki46a1iAR0RERP1unSkiIiLq6GhZg/L/BdVNARwJERH5isEUERFRAOWVtS0aX1TdHMCREBGRrxhMERERBZBzZqqwhpkpIqKBhMEUERFRADkHU8xMERENLAymiIiIAsRuF3GsvC2YKq1vRavFFsARERGRLxhMERERBUhxbTOazTZoNSqEatUQReB0LbNTREQDBYMpIiKiADlSKmWlRieEIS0mFABQyFI/IqIBg8EUERFRgBx1dPLLSohAWkwIAAZTREQDiSbQAyAiIhqq8hzNJ8YOC0dlowkAUFTDYIqIaKBgMEVERBQgcie/MYkRCHEEUYVcuJeIaMBgMEVERBQALWYbChyBU1ZiOFSCtJ1lfkREAweDKSIiogA4Vt4AUQRiw7SIC9fBZJVaohfXNsNmF6GWoysiIuq32ICCiIgoAOT5UlmJ4QCAYYZgBKkFWGwiSo0tgRwaERF5icEUERFRABxxdPIbkxgBAFCrBKRESR39iljqR0Q0IDCYIiIiCoCjpXLziXBlW6rcHp0d/YiIBgQGU0RERH1MFEVljSk5MwUA6Y6FewvY0Y+IaEBgMEVERNTHKhtMqG22QCUAmQlhyvbUaJb5ERENJAymiIiI+pi8vlR6bCj0QWple5pc5sdgiohoQGAwRURE1MfkEr+xTiV+QFswVVTTDFEU+3xcRETkGwZTREREfUzOTDk3nwCA4VEhEASg0WRFTZM5EEMjIiIfMJgiIiLqY3Inv6x2wZQ+SI1hEXoAQAFL/YiI+j0GU0RERH3IYrPjREUjAGDssIgOt6cqpX7s6EdE1N8xmCIiIupDBVVNMNvsCNWqkRwZ3OH2tGipPTqbUBAR9X8MpoiIiPrQkbK2Ej+VSuhwu5KZYjBFRNTvMZgiIiLqQ3nyYr1uSvwAp/boNQymiIj6OwZTREREfUhuPtG+k58sPUYu8+OcKSKi/o7BFBERUR9qa4vuPjMll/lVNZrRaLL22biIiMh3DKaIiIj6SH2rBWfqWgAAWQnuM1MR+iBEhQQB4LwpIqL+jsEUERFRH8lzZKWSDHoYHAGTO6mOUj+2Ryci6t8YTBEREfURpcTPQ/MJWbrchIKZKSKifo3BFBERUR85Wip18svy0HxClhYtBVMFDKaIiPo1BlNERER9JK+s805+Mpb5ERENDAymiIiI+oAoisgrb1uwtzNpLPMjIhoQGEwRERH1gYoGExparVCrBGTEhna6r1zmV1LXArPV3hfDIyKibmAwRURE1AeOlzcCkLJOOo26033jwnUIDlLDLkJppU5ERP0PgykiIqI+cMxR4jc6vvMSPwAQBEEp9Suo5rwpIqL+isEUERFRHzheIWWmMhPCvNo/1VHqx4V7iYj6LwZTREREfeBEhZSZGhXvXTDFJhRERP0fgykiIiI/E0URxxxzpjK9KPMD2B6diGggYDBFRETkZ5WNJhhbLFAJwIi4zjv5ydKZmSIi6vcYTBEREfnZCaWTXyj0QZ138pOlRUtBV2FNM+x20W9jIyKi7vNrMLV27VrMmDED4eHhiI+Px2WXXYa8vDyXfURRxIMPPoikpCQEBwdjwYIFOHTokMs+JpMJd911F2JjYxEaGopLLrkEp0+fdtmntrYWy5cvh8FggMFgwPLly1FXV+fPp0dEROQVuZOft/OlACApUg+NSoDZasdPJ6v8NTQiIuoBvwZTW7ZswR133IGcnBxs2rQJVqsVixYtQlNTW/33X//6Vzz55JN49tlnsXPnTiQmJuKCCy5AQ0ODss+qVavw0UcfYcOGDfjxxx/R2NiIiy++GDabTdln6dKlyM3NxcaNG7Fx40bk5uZi+fLl/nx6REREXpE7+Y32spMfAGjUKlw4PhEAcNMbu/Dt0XK/jI2IiLpPEEWxz2oHKisrER8fjy1btuCcc86BKIpISkrCqlWrcN999wGQslAJCQl47LHHcOutt8JoNCIuLg5vvvkmrr76agBASUkJUlJS8OWXX+LCCy/EkSNHMG7cOOTk5GDmzJkAgJycHGRnZ+Po0aPIysrqcmz19fUwGAwwGo2IiIjw34tARERDzlXrtmFHfg2evnoyLpuS7PX9Wi023PnOHvz3SAU0KgF/u2oSLp3s/f2JiKh7vI0N+nTOlNFoBABER0cDAPLz81FWVoZFixYp++h0OsyfPx9bt24FAOzevRsWi8Vln6SkJEyYMEHZZ9u2bTAYDEogBQCzZs2CwWBQ9mnPZDKhvr7e5YeIiKi3iaKI490o8wMAfZAaLyybhsunJMNqF7HqvVy8mVPoj2ESEVE39FkwJYoiVq9ejblz52LChAkAgLKyMgBAQkKCy74JCQnKbWVlZdBqtYiKiup0n/j4+A6PGR8fr+zT3tq1a5X5VQaDASkpKT17gkRERG5UN5lR22yBIPgeTAFAkFqFv/1yEn6VnQZRBP708UE8t/kE+rCwhIiIPOizYOrOO+/E/v378e6773a4TRAEl3+LothhW3vt93G3f2fH+f3vfw+j0aj8FBcXe/M0iIhoCNp+qhoPfHIQLWZb1zu3c9zRyS81OsTrTn7tqVQCHrpkPO46dxQA4PGv8vB//znKgIqIKMD6JJi666678Omnn2Lz5s0YPny4sj0xUZpY2z57VFFRoWSrEhMTYTabUVtb2+k+5eUdJ+ZWVlZ2yHrJdDodIiIiXH6IiIjaq2ky49a3duONbYX4cO/pru/QzvEKqcQvsxtZKWeCIODuRVn434vGAgDWfX8KT2461qNjEhFRz/g1mBJFEXfeeSc+/PBDfPvtt8jIyHC5PSMjA4mJidi0aZOyzWw2Y8uWLZg9ezYAYNq0aQgKCnLZp7S0FAcPHlT2yc7OhtFoxI4dO5R9tm/fDqPRqOxDREQkO1Jaj0c+P4yKhtYu9/2//xxBXbMFALC7sLaLvTuSM1OZCeE+39edm+aNwCOXjgcAPPPtCbzyw6leOS4REflO48+D33HHHXjnnXfwySefIDw8XMlAGQwGBAcHQxAErFq1CmvWrEFmZiYyMzOxZs0ahISEYOnSpcq+N954I+6++27ExMQgOjoa99xzDyZOnIjzzz8fADB27FgsXrwYN998M9atWwcAuOWWW3DxxRd71cmPiIiGlie+ysM3Ryuwt6gWG27Jhlbj/rvFXQU1eH9XWzZqb1Gdz4/VW5kpZ8uz01HfasXjX+XhL18cQYQ+CFfN4NxfIqK+5tfM1AsvvACj0YgFCxZg2LBhys97772n7HPvvfdi1apVWLFiBaZPn44zZ87g66+/Rnh42zd4Tz31FC677DJcddVVmDNnDkJCQvDZZ59BrW6rPX/77bcxceJELFq0CIsWLcJZZ52FN998059Pj4iIBiBRFLHvdB0AYE9RHdb+54jb/Sw2O/740UEAwM8mSmXp+VVNqGky+/R4JxxrTGXG905mSrZiwUjccs4IAMD9H+7Hfw6U9urxiYioa326zlR/xnWmiIiGhpK6Fsz+v28hCID8F/CZa6bg55OSXPZ76fuTWPPlUUSHavHN6vm48sWtOFnZhFevm47zxrqfj9teTZMZUx+RytQPP3whQrS9WxAiiiJ+/+EBbNhZDK1ahVevn455mXG9+hhERENRv1xnioiIKND2n5bWPByTGIEVC0YCAO77936ccJTjAVLA9fR/jwMA7l8yBlGhWkxNlZbo2FPk/bwpeX2plOjgXg+kAKkpxaOXT8RFE4fBbLPjln/u7ta8LiIi6h4GU0RENKQcOFMHADgr2YDVF4zG7JExaDbbcNtbe9BksgIAHv7sMJrNNkxPi8KVU6UutFPTHMFUYZ3Xj3XcTyV+ztQqAU9dPRnnjI5Di8WGG9/YCaOjYQYREfkXgykiIhpS5MzUxOEGaNQq/OOaKUiI0OFERSPu//AANh+twMZDZVCrBPzl8glQqaT1CuXM1L7TdbDa7F49lpyZ6s3mE+5oNSq8uGwqRsWHoa7Zgrd3FPr18YiISMJgioiIhgxRFHHgjBRMTRoeCQCIDdPh+WunQqMS8Nm+Etzxzh4AwI1zMzAmsa1OPjM+DOE6DZrNNuSVN3Q4tjtKZqqX2qJ3JkSrwe3zpbLF9T8VwGT1fYFhIiLyDYMpIiIaMoprWlDXbIFWrcLoxLZs0bS0aPzhZ9JiuM1mG4YZ9PjNeZku91WpBExOjQQgdQH0RluZn38zU7KfT0pCYoQeFQ0mfJJb0iePSUQ0lDGYIiKiIWO/Y77UmGHh0GnULrf9ek46rpiSDLVKwCOXTkCormPDiCmOUr+9XjR5qGs2o7LBBAAY1UfBlFajwq/npAMAXv7+FOx2NuwlIvInBlNERDRkHJDnSyUbOtwmCAL+dtUk7PnfC3D+OPetz6c6MlN7i+u6fCw5K5UcGew2MPOXa2amIkynwfGKRnx3rKLPHpeIaChiMEVEREOG3HzirOEdgylACqgMIUEe7z8lRcpMebN47/Fyeb5U32SlZBH6ICydmQoAeOn7U3362EREQw2DKSIiGhLsdhEHz8jBVGS3jmEICVJK9vZ2sd7UsT7q5OfO9bPToVEJyDlVg/2n6/r88YmIhgoGU0RENCTkVzehwWSFTqPqUYAzJSUSQNeL957ow05+7SVFBuOSSUkAgHXMThER+Q2DKSIiGhLk+VLjkyKgUXf/z5+3i/cerwhcZgoAbj5nBADgPwdKUVTdHJAxEBENdgymiIhoSGibLxXZo+N4s3ivscWC8vq+7eTX3thhEThndBzsIvDaT/kBGQMR0WDHYIqIiIaEA4626O46+fnCm8V7TziyUkkGPcL1nhta+NutjuzUezuLUdtFwwwiIvIdgykiIhr0bHYRB8/UAwAmpfQsmPJm8V65k9+oAMyXcjZ7ZAzGDYtAi8WGt3IKAzoWIqLBiMEUERENeicqGtFisSFUq0ZGbM/L7rpavPeY3BY9QCV+MkEQcOt8KTv1xrYCtFpsAR0PEdFgw2CKiIgGPbk9+PhkA9QqocfHm6pkpjoGU3a7iNxiaXuggykA+NnEYUiODEZVoxkf7CoO9HCIiAYVBlNERDToHZDXl+rhfCmZvHhvQXUzqhtNyna7XcQfPz6IPUV1UAnAjIzoXnm8nghSq3CbIzv14pZTsHhomkFERL5jMEVERIOe0snPsUZUT7ku3lsHABBFEX/65CDe3VEElQA8edVkjIwLfGYKAH45PQWxYTqcqWvBJ7klgR4OEdGgwWCKiIgGNYvNjsOlUvOJ3spMAa6lfqIo4s+fHMLb24sgCMATv5yEy6Yk99pj9ZQ+SI2b52UAAJ7/7gRsdjHAIyIiGhwYTBER0aB2rLwBZqsd4XoN0mJCeu248npTuwtr8dBnh/FmTiEEAXj8ykm4YurwXnuc3nLtrDRE6DU4VdmErw6VBXo4RESDAoMpIiIa1NoW6zVAEHrefEI2NU0Kprbn12D91gIIAvDYL87CldP6XyAFAGE6Da6fI2Wnntt8AqLI7BQRUU8xmCIiokFNDqYmJkf26nFHxYUhXK9R/v1/V0zEVdNTevUxetuvZ6cjRKvGoZJ6bDlWGejhEBENeAymiIhoUDtwpg4AMGl4782XAqTFe88bEw+VAKy5fCKunpHaq8f3h6hQLa6dKY3z+c0nAzwaIqKBj8EUERENGJ/vL8Hcx77Fh3tOe7V/q8WGvLIGAMDEXg6mAKnRxPY/nI+lM/t/ICW7ad4IaNUq7CiowY78mkAPh4hoQGMwRUREA8Kpykb87oP9OF3bgnv/td+rQCCvrAEWm4joUC2SI4N7fUwatQpx4bpeP64/JUToceV0aV7Xc5tPBHg0REQDG4MpIiLq9yw2O377Xi5aLDbog1Sw2kXc/tZunKlr6fR++8/I86V6t/nEQHfbOSOhVgnYcqwSBx2vERER+Y7BFBER9Xt//+9x7DtthCE4CF+unIdxwyJQ3WTGLf/chRazze199hbV4rlvpcxLb8+XGuhSY0JwyaQkAMxOERH1BIMpIiLq13bk1+C576QP/GuvmIgRcWF4+brpiAnV4lBJPX73r30d2ny/t7MIV6/LQVl9K0bGhWJZdloght6v3TZ/JADgq0NlHgNSIiLqHIMpIiLqt4wtFvz2vVyIInDltOH42cRhAIDkyGC8sGwaNCoBn+8vxfPfSZ3pTFYb/vDRAdz37wMw2+y4cHwCPr5jDuLD9YF8Gv1SVmI4okO1sIvAycrGQA+HiGhAYjBFRET91p8/OYgzdS1IjQ7Bg5eMd7nt7IxoPHSptO2Jr/OwYUcRrnkpB+9sL4IgAL+7MAsvXDsN4fqgQAx9QBgVHwYAOF7REOCREBENTAymiIioX/p47xl8klsCtUrA0/8zGWE6TYd9rp2ZhmWzUiGKwP0fHsCeojpE6DV47foZuGPhKKhUbDrRmdEJUjB1rJyZKSKi7mAwRURE/c7p2mb86eODAICV52ZiamqUx30f+Pl4nJ0RDQAYkxiOz+6ai4VZ8X0yzoEuMz4cAHCcwRQRUbd0/JqPiIgowN7cVogGkxVTUyNxx8KRne4bpFbhjV+fjR9PVGHOqBiEaPmnzVuZjszUCZb5ERF1C//iEBFRv7OjQFqQd9msNGjUXRdRBGvVuGBcgr+HNejImanCmma0WmzQB6kDPCIiooGFZX5ERNSvtJhtOHBaWkh2Rnp0gEczuMWGaREZEgSRHf2IiLqFwRQREfUrucV1sNpFJEboMTwqONDDGdQEQcBoR3bqRAWDKSIiXzGYIiKifmWno8RvenoUBIHd+PxtlNLRj/OmiIh8xWCKiIj6FTmYkjv0kX9lymtNsaMfEZHPGEwREVG/YbXZsaewFgAwPY3BVF8YneBoj84yPyIinzGYIiKifuNoWQOazDaE6zTISgwP9HCGBDkzVVjdhFaLLcCjISIaWBhMERFRvyGX+E1Lj4JaxflSfSEuXIcIvQZ2Ecivagr0cIiIBhS/BlPff/89fv7znyMpKQmCIODjjz92uV0URTz44INISkpCcHAwFixYgEOHDrnsYzKZcNdddyE2NhahoaG45JJLcPr0aZd9amtrsXz5chgMBhgMBixfvhx1dXX+fGpEROQHuwqkEj+2RO87giAopX5sQkFE5Bu/BlNNTU2YNGkSnn32Wbe3//Wvf8WTTz6JZ599Fjt37kRiYiIuuOACNDS0XcxXrVqFjz76CBs2bMCPP/6IxsZGXHzxxbDZ2koRli5ditzcXGzcuBEbN25Ebm4uli9f7s+nRkREvUwURWWxXgZTfSvT0dGP7dGJiHyj8efBlyxZgiVLlri9TRRFPP300/jjH/+IK664AgDwxhtvICEhAe+88w5uvfVWGI1GvPrqq3jzzTdx/vnnAwDeeustpKSk4L///S8uvPBCHDlyBBs3bkROTg5mzpwJAHj55ZeRnZ2NvLw8ZGVl+fMpEhFRLymqaUZlgwlatQpnDTcEejhDyijHWlPs6EdE5JuAzZnKz89HWVkZFi1apGzT6XSYP38+tm7dCgDYvXs3LBaLyz5JSUmYMGGCss+2bdtgMBiUQAoAZs2aBYPBoOzjjslkQn19vcsPEREFzo58KSs1cbgB+iB1gEcztIyW15qqYJkfEZEvAhZMlZWVAQASEhJctickJCi3lZWVQavVIioqqtN94uPjOxw/Pj5e2cedtWvXKnOsDAYDUlJSevR8iIioZzhfKnAyHZmpwupmmKzs6EdE5K2Ad/Nrv7q9KIpdrnjffh93+3d1nN///vcwGo3KT3FxsY8jJyKi3rSzUJ4vFdXFntTbEiJ0CNdrYLOLKKhqDvRwiIgGjIAFU4mJiQDQIXtUUVGhZKsSExNhNptRW1vb6T7l5eUdjl9ZWdkh6+VMp9MhIiLC5YeIiAKjqtGEU5VSW24u1tv3BEFQ1ptiRz8iIu8FLJjKyMhAYmIiNm3apGwzm83YsmULZs+eDQCYNm0agoKCXPYpLS3FwYMHlX2ys7NhNBqxY8cOZZ/t27fDaDQq+xARUf8ml/hlJYTDEBIU4NEMTXKp33F29CMi8ppfu/k1NjbixIkTyr/z8/ORm5uL6OhopKamYtWqVVizZg0yMzORmZmJNWvWICQkBEuXLgUAGAwG3Hjjjbj77rsRExOD6Oho3HPPPZg4caLS3W/s2LFYvHgxbr75Zqxbtw4AcMstt+Diiy9mJz8iogFCXqx3Okv8AkZuj36cmSkiIq/5NZjatWsXFi5cqPx79erVAIDrrrsO69evx7333ouWlhasWLECtbW1mDlzJr7++muEh4cr93nqqaeg0Whw1VVXoaWlBeeddx7Wr18Ptbqt09Pbb7+NlStXKl3/LrnkEo9rWxERUf+zyxFMnZ3BEr9AyUxgZoqIyFeCKIpioAfRH9TX18NgMMBoNHL+FBFRH2o2WzHxwa9hs4v46f5zkRwZHOghDUkldS2Y/X/fQqMScPjhxdBqAt6jiogoYLyNDXilJCKigNpbVAebXURyZDADqQAaZtAjTKeB1S6ioLop0MMhIhoQGEwREZHf7SqowYxH/4uV7+5FRX2ry22cL9U/CIKAUfHyvCmW+hEReYPBFBER+ZUoiljz5RFUNpjw6b4SnPe3LXhzWwFsdqnKvC2Y4nypQJPbox+vYBMKIiJvMJgiIiK/2p5fgz1FddBqVJiYbECDyYo/fXIIV7ywFfuK67C3qA4AcDaDqYAbLTehYGaKiMgrDKaIiMivntssLZFx1fTh+PiOOXjokvEI02mwr7gOlz73E5rNNkToNUpWhAJnVAIzU0REvmAwRUREfrOvuA4/HK+CWiXg1nNGQq0ScN3sdHxz93xcNHGYst/09GioVEIAR0pAW2Yqv6oJFps9wKMhIur/GEwREZHfyFmpSycnISU6RNmeEKHHc9dOxeu/noELxiXgjoUjAzVEcpJk0CNUq4bFJqKQHf2IiLrk10V7iYho6DpW3oCvD5dDEIAVC9wHSwuz4rEwK76PR0aeyB399p024nh5I0bFhwd6SERE/RozU0RE5BcvfHcSALB4fCI/lA8gmY5Sv2NsQkFE1CUGU0RE1OuKqpvx6b4SAMCKBaMCPBryBdujExF5j8EUERH1uhe/PwmbXcQ5o+Mwcbgh0MMhH2Q6OvqdqGBmioioKwymiIioV5UZW/GvXacBAHcuZFZqoMl0lGSeqmxSFlYmIiL3GEwREVGveuWHUzDb7JiRHoWzM7gQ70CTFBkMrVoFs82OkrqWQA+HiKhfYzBFRES9prbJjLe3FwEA7mBWakBSqwSkxUht7POr2B6diKgzDKaIiKjXvLGtAC0WG8YnRWD+6LhAD4e6KT02FACDKSKirjCYIiKiXtFituGf2woBALfNHwlBEAI8IuquDB+DKVEUIYqcX0VEQw+DKSIi6hX/3nMaNU1mDI8KxpIJiYEeDvVAeowUTBVUdx1MGZstmPvYZtz+1h4GVD1kstpwsrIRpyrZSZFooNAEegBERDTw2ewiXvnhFADgxrkZ0Kj5Xd1AJmemCrzITO0sqMGZuhacqWvBTyeqMTcz1t/DGxTK61vxr92nUVDVhKKaZhTXNKO0vhVyPPrBbdmYkc4GLkT9HYMpIiLqsU2Hy1FQ3QxDcBCump4S6OFQD8nBVHFtCyw2O4I6CY6POS3u+/dvjmHOqBiWeHrhkc8P4/P9pR5v/+lEFYMpogGAwRQREfXYS9+fBAAsn5WGUB3/tAx0CRE6BAep0WKxobimGSPiwjzue7y8rSRtZ0Ettp2qxuyRzE51RV4U+X9mpCB7ZAxSokOQGh2Cj/eewV++OIIjpfUBHiEReYN1GERE1CO7Cmqwp6gOWrUKv5qdFujhUC8QhLb26F3NmzpWLmWm5GzWP7457t/BDQKiKOJ0rbSG103zRuDSycmYmhqF2DAdxiVFAAAOM5iiXmJsseCnE1Wc0+gnDKaIiKhHXvpemit1xdRkxIfrAzwa6i0j4uSOfs0e97HZRSXDsubyidCqVcg5VYPtp6r7ZIwDlbHFgkaTFQAwPCrY5bZxw6RgqrimBQ2tlj4fGw0+D3xyENe+sh1fHy4P9FAGJQZTRETUbacqG7HpiPQH+qZ5GQEeDfUmuaNffpXnznLFNc0wWe3QaVQ4OyMav5w+HADw9yGYndp6ogrXvJSjBJedkbNSsWE66IPULrdFhmgxzCB9KXG0rKHDfYl8IYoivj9eBQDYU1Qb4NEMTgymiIio2175MR+iCJw/Nh6j4sMDPRzqRelKRz/PmSm5xG9UfBjUKgErFo5CkFrA1pPV2FlQ0yfj7C9e/TEf205V46O9p7vct7hGek1TooPd3i5npzhvinoqv6oJNU1mAMBJLwJ98h2DKSIi6paqRhP+tVv64HjzvBEBHg31thFeLNx73PHhbHSCFEgnRwbjymlSdmqozZ06WGIEABRWew4+ZXJmanhUiNvbxzqCqcMlAy+Y+njvGXy890ygh0EOuwvbslHeZE2HovL6VtT3oKSWwRQREXXLP7cWwGy1Y1JKJM7OYAvnwUbOTJUYW9BqsbndR85MZSa0dftbsWAUNCoBPxyvcvkgN5hVNLSivN4EACiq8SaYkvZpP19KNtaHzNRHe09j5bt7+8X8qoZWC+7+YB/u/mBfjz6cUu9x/h0sqmn2+Ls8VBVUNeHcJ77DNS/ldPsYDKaIiMhnzWYr/plTCAC49ZwRXFdoEIoJ1SJcp4Eoeg4Q8hxzekY7lXimRIfgiqnJAIZOdurQmbagx5uFjtsyU56CKen1zCtvgM3uuQObKIp49Iuj+HRfCd7dUeTLkP2ipK4VNrsIm1306nUg/9vlFEzZxa67cwLAmboWfH2ozJ/D6jfWfX8STWYbDpXUo9TY0q1jMJgiIiKfVNS3Ytkr21HXbEFqdAguHJ8Y6CGRHwiCoGSn3JX6WW12nKqUtstlfrI7Fo6CWiVgy7FK5BbX+X2sgXbwjFH5//pWK+qazZ3u31WZX1pMKEK0arRa7J2WWZ6sbEJVo5QR27CzOOCtr0vq2j6MFnhR7kj+VddsVkr70h1LHZys6DqYuvdf+3DLm7uxOa/Cr+MLtPL6Vvx7d1tJ6t6ium4dh8EUERF5bW9RLS5+5kfsKapDhF6Dv155FtQqZqUGqwylCUXHD2CFNc0w2+wIDlJ3yLCkxYTisslSduq5zSf8P9AAO+AUTAGdBxLSGlOdl/mpVQKyEqUAtbP1pnKcWtCfqmzCzoLAllWWOH2zz8xU4Mnd+0bEhmJ6ulSK3dW8KZtdxJ7COgDAD8eq/Dq+QHv1x3yYbXbl33u6WZbMYIqIiLzy/q5iXL0uBxUNJmTGh+GTO+di1oiYQA+L/KizzNRxp05+KjcB9XWOBZy3n6oOeMbE3w45GkXog6SPVYWdlFLVNVvQZJbmrSRHug+mAO/mTcnBlE4jPe6GnYEt9XPJTDGYCjh5vtS0tCiMipfmNZ6o7DyYyq9qQotjXtWOgsG7Xpyx2YK3HaXqP5+UBKD7reMZTBERUacsNjse+OQg7v3Xfphtdiwal4CP7pijZC1o8MqIlUqD3AVTx8qlD2XOzSecZTrmUdW3WlHbPHibEdQ0mXHGEUQszIoH0HlHP7nELz684xpTzroKpkRRRM4pqf386gtGAwC+PFAKY0vgXuvSulbl/72Zm0P+tavAKZiKcwRTXWSmnDOhh0vq+0VjE3/457YCNJltGJMYjt+enwkAOFhSD5PV9wYdDKaIiMitZrMVGw+WYunLOXhjm/QN3m/PH40Xl01DmE4T4NFRX5AX7nX3wVju5Nd+vpQsWKtGkmPx2c4W/h3o5PlSGbGhmJBsANB5IFHcRYmfrKu1puT5UjqNCtfPSUdWQjhaLXZ8mhu4tuQuZX6cMxVQFpsd+07XAQCmp7dlpk5VNnba1ORQSVvJql2EXzpy/u6DfbjoHz8ErLNgi9mG17cWAABuXzASGbGhiA7Vwmy1d2s5AgZTRESkqG0y44NdxbjpjV2Y8vAm3PbWHuwsqEWoVo2Xlk/Db87PdFvSRYOTnH0srzehyWR1ue14ubzGlPvMFABkxEn3lxtVDEbyfKkJyQakRkuZvKJOM1NyMOW++YRsTGI4BEF67asdTSacbXOU+E1Li4JOo8bVM1IASI0oAqXEKTNV02QOaJZsqDtcUo9Wix2G4CCMiA1DSnQItGoVTFa7Szmmu/sBQLAja9rbi2+3Wmz4957TOFRS32GuYV/ZsLMINU1mpEaH4KKJwyAIAqakRAIA9nSjCQWDKSIigrHZgpve2Inpj/4Xv/vXfvz3SDlMVjtSooNx09wMfLFyHhaxa9+QExmiRVRIEADXbIvFZscpR7YpM959ZgpoC8Y660g30Mnf5E9IinDK5HVd5tdVZipUp0GaIzg7UtrQ4XZ5vpQ8b/GKqcnQalTSh9TTff8h1W4XUWaUgimN4wuXzuaOkX/tcpovpVIJUKsE5ffRU6mfKIpKMCUvb7Ajv3eDqZOVjZATY/kB+JLFYrPj5e9PAQBunT8CGrUUCk1JjQQgNVnyFYMpIiLCmi+P4L9HKmCzixg7LAKrzs/Ef34zD9//biH+9+JxSiMCGnrSlY5+bQFCYXUTLDYRIVp1p00UMmKlrNVgDqYOOtaYmphsQKqj/XRVowmN7TJ5sq7aojvzNG9KFEVsbxdMRYZosdjxhUcgGlFUNZlgttkhCMDE4VK542B+3/u7PU7BlExpQuEhmKpoMKG6yQy1SsDybKmBzL5iY6+W48kZbQA4FYDz45PcEpQYWxEXrsMvpg5Xtk9NlV6n7rRHZzBFRDTE5Zyqxnu7pNKgd26aif/8Zh5WnT8aY4dFcDFeamuP7pRlUJpPeOjkJxsRN7gzU8Zmi7Kg8fgkAwzBQUomz1OpX1dt0Z15mjd1srIRVY1m6DQqTEoxKNv/x1Hq90luCZrN7oM5f5GbT8SH65RmB5014iD/EUURuwqljJJzMDWyi2BKzrKOjAtFVkI44sJ1MNvs2NeLa8XllbdlWft6LqXdLuLFLScBADfOzXBpAHNWSiRUgrRgcXl9q6dDuMVgiohoCDNZbfjDRwcAAEtnpmL2qNgAj4j6m4yYjgFRV80nZCOcyvzsnUx6H6jkD58p0cEwOIKoNMfr5a7ETVpjyrsyP6AtM9V+raltp9o+KOs0bR8IZ42IQVpMCBpNVnyxv9TXp9Mj8jycpMhgp2zm4Ayi+zspIDBBoxIwaXiksr2r9uhyid84xxdpZ2dIa1P1ZqnfcZdgqm/Pj01HynGiohHheg2unZnqcluYTqNcz3wt9WMwRUQ0hD2/+SROVTYhLlyH+xaPCfRwqB9yt9ZUW/OJzoOp5MhgBKkFmKx2lPr4be9AIE+gn5jclh1Kc5T6FdZ0zMrUNlvQLK8x5U0wlSQFUycqGl1aNrefLyVTqQRcNV3KTr3Xx40oShzzpZIMwcrcsXzOmQoIuQPf+KQIBGvbgm3n9uju1n6T10sbnySdz2c7Fvrd0YtNKJwzUwXVzZ12FuxNoiji+e+krNSvstMQrg/qsM9URxbP1yYUDKaIiIaoExUNeP67EwCAB34+Dobgjn9ciDLcZBnkzJSnNaZkGrVK6XAXiMnm/naw3YdPoPPMVLEjwEqI0LlklDxJMuhhCA6C1S4qpVnu5ks5++W04VCrBOwqrHXJAvhbqZKZ0iPdsT4Zy/wCo219qWiX7SPiQiEIgLHFguomc4f7yRnQcY4gXs5M7SmshdVm7/G4ms1WFNdI54lKAMxddBbsTQXVzdhXXAetWoVfz8lwu488b2qPj+3guVAIEdEAJIoiCqub8cOJKmw9UYXqRjOsdjusdhFWmwibXYRNFDE9LQqrF41GfLje5f52u4g/fHgQFpuIc8fE46KJwwL0TKi/kzNT1Y5W18FBaiVL1VVmCpCaUJysbEJ+VSPmZg6uMtKDbjJT6Y7MlHPDDpkvzScAQBAEjB0WjpxTNThS2oDxSQaP86Vk8RF6nDsmHpsOl+O9ncX434vH+fy8ukNeY2qYU2ZKbo/OL2r61m43zScAQB+kxvCoYBTXtOBERSNiw3TKbfWtFiX4lefqZSWEI0KvQX2rFYdL63GWU8lgd8gZ7dgwLSJDtDhR0Yj8qiakRHv3+9ATcknuuKQIl+ftTO7od+CMEWar98Ejgykion7MbhdhstrRYrGh2WzFgdNG/HCiCj8cr1S+4evMiYpGfL6/FKvOz8R1s9MR5GgD+/6uYuwoqEFwkBoPXzqejSbIozCdBnHhOlQ2mFBQ1QR9kBpWu4hwnQbDDPou7z8iLhQ4EpjOXf7U0GpRgsoJbsr8ityU+fnSfEI2dlgEck7VSPNZpnmeL+Xsf2akYNPhcvx7z2n8bnGWV1mwnpLXmEqK1CO03TkzybGGD/lfo8mKo2VShml6elSH20fFhSnBlHNm86ij/X6SQY+oUC0AqWx0Rno0vjlagR35NT0OppznWobqNEowdc7ouB4d1xvKfDBH1s2dEbGhiAwJQl2zBUdK65Fh8K6Ab1AFU88//zwef/xxlJaWYvz48Xj66acxb968QA+LiKhTLWYbDpcasf+0EQfOGHHgtBGVjSa0mG0wdfLtWJBawNTUKMzLjMWIuDBoVAI0agFqlQoalYBmsw3Pfnsc+04b8ZcvjmDDzmI8+PPxGJ0YhjVfHgEA3L1otNffktPQlRETKn0wrm6CyhF4j0oI8yoIl8sEB9vCvfL8kuTIYEQ7PnwCbWV+JcYWmKw2l0DGl+YTsvbt0T3Nl3I2f3ScEszsLarrdN/e4tyAAnA9Z3wNpowtFlz23E8AgNvnj8TlU5OVL4Koc7lFdbCL0jmWENHxy45R8WHYnFfZoaPfYafMjbMZGVIwtT2/BjfNG9GjsTkHUzqN9H72VRMKpYRxmOdgSl68d3NeJfYU1SJjone/N4MmmHrvvfewatUqPP/885gzZw7WrVuHJUuW4PDhw0hNTe36AEQ0pImi6PGDYavFhjN1LSiqacbpmmYU1TSj2WxDRHAQDO1+IvRt/x+u17i0jW5otaCgqhn51U3Ir2xCQXUTjpTW41h5A7yZgxukFpAWE4p5mbGYlxmLmRkxCNV1fhk/b0w8PthdjMc25uFERSOWvbodiRF61LdaMSE5AtfPTvflZaIhKj02BDsKaly68o3uZLFeZ4N14V65xG98uw+fMaFahGrVaDLbUFzTonRQA5wzU95/gaG0Ry+r73K+lEyjVmFMYjgqG0xKAOdPZqsdlY0mAFKZHyBl6HYU1Lgtd+zK14fKlPPl3n/vxzObj+OuhZkMqrzgriW6M/l8PNmuo98hJXPjWjoqz5vaVVADu13sdCmErhxzalwjH6bPgikvMlMAMCU1CpvzKrG3qA6/GGrB1JNPPokbb7wRN910EwDg6aefxldffYUXXngBa9eu9f5ATU2A2od0uE4HaBwvo9UKmEyASgUEO33r1NSNE0WrBYIcNcY2G9DaCggCEOJ0AW5uBkQRe4tqvV4DwK7RwB7k+AbNbofGJKXlrcFtx1WbWiHYfZtoaFerYdc6alBFEZrWFjfHNUGw+7bwm6hSw6Zrq23VtEgXZas+WHo9AKjMJqhsvh5XBZuu7Rsb5bg6vfT+AVBZzFBZO67T4aYBTtttggCrvu246tYWCKIIm1YH0XFeCRYLVBaL52N42G4NDlEeW36PbFotRLV0/gk2K1Rmk+fBeRi7y3tkNkGw2WAPCoJdE+Q4rg1qx3Hddf/xdGzX98gMwWb1eP55GpszuyjCJtrRotbBIgqw2u2wt5oBixl2tQaiTgtAgAARWpN0/tnsImx2wGpzzCWyizDb7GhqtaLRZEWT2fFfkw0NUEOjDYJOrUKIYEeoYIMmKAj10KDM0YUs2OxbNzJBAHShwQgL06PFbEdtfTO0VgvsggBTUNt5HWxuRUyYFhOTDRifFIEJyREYHhmCYK0auiA1goPU0AepoXb+I6bVAkGOa08n1wiVKOLqcTFYnD4Dz24+jne2F8FY1YpQAXhs8RTld1URFCQd2/EeocVxe6jTor0tLdJtvtBopOslIL3Zzc0dj9vaKj0XX6jVgNPvnHK9DQlRzj+YTNL12ReeruPBwco1AmYz0MnvslseruPQ69v+9lgs0rF95e49cvc3qhvHlRffPV1SA7PZCo3N2tZ8Qj7/PBgRLJ3j1eWtMBnr2zI17t4jT+efL9y9R57OP1+0e4+OnyqHzmp2mS+FpiYIAEaHqXC0rAnFxRUYFdr2e1tVVoNgcytSdfa2c6qLzxGZCWEIt5pgqmvFT/sK0VRTj0iNCpOiNZ1+vkgJk455ura5y88RPnHzHlXUNEMUAa1GhZhQLdDSglGhAoLNrSg9UwU0JXV9XKf36KuDZQg2t+LsjCgcMkpB6b3/3o91Xx/C7fPScelkH4KqIXaNOHisBMHmVsyK13U8P0JDMdLR0a/4TLV0u+P8O1xaD7XdhokG1/NqgkGDaNGClrpWnCwoR6a7eZLuruNuPscWFVcg2GzCmHABNrsonR8lVZ7P4166RlQ2mNBQbUSIAIwJV0n383CNmJoaBYgiDp8oAZoSuzw2AEAcBEwmk6hWq8UPP/zQZfvKlSvFc845x+19WltbRaPRqPwUFxeLAESjdMp6//P++20Hff99adv8+a4PFhvr2zEBUXz22bb7b94sbRs3zvW448b5fNyn5lwjpt33uZh23+fi+Tc8J4qAWBUcoWxLu+9zcVvKBJ+P+8aUi5T7T7nrbWW783E/z5rj83E/z5rjcgx5+5S73la2vTHlIp+Puy1lgstxq4IjRBEQz7/hOWXbU3Ou8fm4eTGpLsfNi0kVRUC8+po1yrb/veA2n4/r6T26/dL7lW23X3q/7+eZh/fofy+4Tdl29TVrunVcd++Ru/PP1x9375Gn88+XH3fvkfP5N/ZP/+nWcd29Rwczp4j3vJ8rPvvtcfGrg6WiLab/XCPEBx5ou//Bg9K22FjX486f7/txV6xou39FRdt2Z1de6ftxr7zS9Rjy9oqKtm0rVvh+XE/X8YMH27Y98IDvx/X0Hm3e3Lbt2Wd9P66n98jd3yhff0RR/M+BEjHtvs/FHycvEEVI14gteY7XWD7/fP1x9x65O/98/XH3Hnk6/3z5cfMefZ41R/z2SHnb9u4c14vPEbWhBp+Pu/muP4tp930u3vN+rt+vEeboGDHtvs/Fc/76rev558uP4z1qbLWIZ696V9neZLKIL205KU575OtufY7gNcLx47hG1DaZXD/rvf++aLLYxFF/+KLbnyNcyNdxd3+jfP0JwDWivsUsTl0pfY4wAiIA0Wg0ip0ZFJmpqqoq2Gw2JCQkuGxPSEhAWVmZ2/usXbsWDz30UF8Mr1/JSgzHpZOlb4gSi6VoXqdRKdsAIOZT911OOpMRG6IcI7S+7Zsa5+Mmfed9jbhyn8hgl2PIFk9IRFOElMLO2OP7fI+YMJ3LceXa3XPHxGNcirR9zAnvSlicRQRrcPmUZAhO/waAeaPikDQ+GQAwuSLS5+PqNGr8YupwANKXNHGfSe/RrBHRCJkmbT/LHO3x/p25avpw5f9Ttkjv0bTUKJgda5WMCHb/O9SVK6YkockgjSlzn/RN2IRkA645Wyq7jS/qxjfvAH4xdTjqRoyEVi0guyQG+EnqwHP3BaMhAtDX1gDP+H7cF5ZNQ/PseTBZbAh55SiwCcgeEYOP75iDlCjHnIhHfD/uny4ehxsvmA2tWoWRW+qBT6SyoMd/OaltJ/Z+oH5O7ujXaGr79t6bTn6DldlqgzxLanxy52VDvUHTjdKqSMciwqdrWwA/z++XSz+TDL7/nW/vu7xKWJzacIdoNbj5nBFYNisNpd88BeT1+CGGtMgQLWLDtC7bTlQ0wmITERzEEspwfRBGxna+5EN7giiKop/G02dKSkqQnJyMrVu3Ijs7W9n+6KOP4s0338TRo0c73MdkMsHkVO5QX1+PlJQUGEtKEBHhw4WxH5T5+YQlPJJ+mp7vlB9LeBSdpOd9NsBLeGA2ez7/fMFrhITXCMkAvUa0mG0Y++eN0FnNUNnt0Ifqsefhn0nzDL24Rtz9/j58eaAU9ywajRvlSewD+Bqx+3g5lr3wI2INwfjhgZ+17eM4Tz7YVYw/f3IIczNj8fKvpgMA9p+uw9XrcpAQocN3v1vYdh8vrhGvfXUAj391TPn3mzeejenpnX+BtvNMI3752i6kRofg+7vP8es1Yt2Wk1j7fTGumJqMJ6+aDLS0oKnFjOl/+S8AIOf358EQ0kV7dMd7tPLdvfg09wzunDkM91w4psM14g8f5OKjvWewZEIinrx6ctfjHULXiHd3FOHhzw5j9sgYvHr9jI7HdryWV6/bhtxjpfjrFRNw6cwR+CC3FL/7137MTovAO7+a2uFuOSer8Ov1u5AQocPmexZ0nF/sxeeI9388jgc+OYQ5mbF4xfE7ceULW3GopB7PXjMF541zTYgA6LVrhHz9+e0FmbjlnJFdXiN+/+99+PinE7h2Wiz+tGwBjEZjp7HBoMhMxcbGQq1Wd8hCVVRUdMhWyXQ6HXQ6NxmY0FDXk8IXGk3bBbH9MXtCrXZ/jBDfMzIuVCr3xw3u4TdLguD+uM4Xs+5yd1ydru2PZG8eV6tt+4XtLnfvUVBQ2wWmu9y9R57OP1+4e488nX++cPceeTr/fOHuPfJ0/vnC03vU0+PyGiHhNaLNALlGBGvVSDLo4Wj4hXFJUW0fqLy4RiQPj0VLXi2ON4nev0f9+BpxoKIZLVo9Rqe1S/k4jjt8eBxatHqccHq+RSYjWrR6xCZEeX58D+9R5ohEtGiLAEiVFBOzkoAu2p0nx0sfFkuNLbAJKqj9eI0oNkvngpKZCg5GaHAwwmIMUke/VmBSXNevuclqw7dHKwBBwLnTR3R8nfR6LDtvHN45VI1PThjxO6tKaXjhtUF6jTh4xohnt5eiRavHhNFJnZ7jo+LDsD1fh2ONdmW+FACMGR7j9n6Txuhh0R9CQauI02ZV5+tCefgccdhoQ4tWj/SUOOUxkpJjsavKjBPNIs7r6neyB9eI3Bqz9Ps6IrHj/m7eoylp0Xh3px67K7wLhAdFPk+r1WLatGnYtGmTy/ZNmzZh9uzZARoVERHR4CGX+gHA6ATfymBGyO3RB0lHvwNnpA+fzutLOZPXmiquaYbVUbLWnbbosrFO7Zw7W1/KWUKEHhqVAItNREVDN6oLfNC2xpTrc8twtIkvqPbufd96shqNJiviw3WY7GFNo3FJEZg1Iho2u4h/bivs/qD7kV0FNbj4mR+w7WR1t+7//s5iXPHCVpypa0FqdAiWzuy8i7XchEJujy538mvfmVIWrFVj4nDpXN+RX9OtMR6vcLRFT2wrD+6LTp/NZqty3emqk59sqmPx3oOlRq/2HxTBFACsXr0ar7zyCl577TUcOXIEv/3tb1FUVITbbrst0EMjIiIa8JyDqUwv26LLBlt79EOOFJ2nYCoxQg+tRgWrXUSpUQo0utMWXRYbpkNcuDxX1rt2zWqVgGGRUpbgjJ/bo8trTMmPJ0uPlZ6rt+3RvzooVRhdOD6x0xbcN8zJACCVtbWYfSwN7ofe2FaIg2fqcf+H+13mi3Wl1WLD/f/ej3v/vR9mqx3njYnHZ3fOdbu+lDO5PfqJikaIoogjXrQNl1ukdzeYyitra4suGxHn/y9Z8soaIIrS71B8uHfVDyNiwxCh18Bk8e69GDTB1NVXX42nn34aDz/8MCZPnozvv/8eX375JdLS0gI9NCIiogFvhFMwlZXoYzDl+NBU2WBCQ6uPc0j6mVaLDccd3+hP9BBMqVQCUh2lUHJWpieZKQD42YREBAep8bOJXrZrhrSgsPNj+4scMCa3y0yl+ZCZstlFbDpcDkBqMtWZ88YmICU6GHXNFny090x3htyv7CmsBQAUVjdjw44ir+5TXNOMK1/cig07iyEIwD2LRuPlX03vem4a2oKpwupmnKpqQoPJCq1a5bImWntnO+bo7SjwPZiqaTKjyrEOWabTY6TH+P9LFmWxXi+zUoD0+zsl1f06Xe4MijlTshUrVmDFihWBHgYREdGgI3/wAdC2xpSXIvRBiA3ToarRhIKqZqVkaCA6UloPm11EbJgWCRGe59mkx4TgREUjCqqbMS+zLaDpdL5JJx68ZDz+eNE4aDXefw8uZcFqcKbOf8FUk8kKY4sUIA8zuH7zL2ckvQmmdhXUoLrJDENwkJIF8UStEnD97Aw88vlhvP5TPq45O8Xjouv9XamxxeX9+fs3x3H51OEI62RB9p0FNbj5n7tQ12xBVEgQ/nHNFMzL9L5l4zCDXllY+j8HSgEAoxPDOl27a3paNARBCnzu/dc+hOmCEKJVI1irRqhWjYy4MMwf7X4Mx8qlEr/hUcEuC83L2W75S5ZwfQ/nirqhLNY7zLeum1NSI7H5gHdlpIMqmCIiIiL/yEoMhyAACeF6xIX5Pll/RGwoqhpNOFXV2G+DKVEUcbq2BftPG3HgjBEnKhohCIBWrYJGLSBIrVJK5sYnGTr9AC9nZYqqmxzHlcv8upeZEgQBWo1vAUNbZqob3Qu9VGqUXo9wnabDh2E5AC/wIvPw1SEpK3X+2ASvFuT95fThePLrPByvaMSPJ6p8Cib6k92OrFRWQjhMVhsKqpvxyg+nsOr80W73LzO24rY3d6Ou2YJJww14ftm0DhnBrgiCgJHxYdh/2ohP95UAAMYP6/x30hAShLOSDdh32oj3d512u8+GW2a5LUM97gimstotp2AIDkJsmBZVjWa/fcnSncwUAGnxXi8xmCIiIqIupUSH4PXrZyA+XN+tLEBGbCh2FNT0u3lTxhYLXv3hFPYU1eFgiRF1zd6VIU5xTFL3RG5CUVDdjKpGM1otdggCfO8+1wNy4OZNmd+pykbUNJm7bLne3hkPzSeAttegttkCY7PFYwmaKIr46pA8X8p9F+b2IvRB+OX0FKzfWoDXfswf8MHUzBHRmJkRgzve2YOXvz+Fa2emKfPkZBabHXe9uwfVTWaMHRaB927Nhj6o62Yk7oyMk4KpY+VSyao3wcazS6di0+FyNJmsaLbY0Gyyotlsw8GSehwprcc/txW4DabyHMFUppu16TJiQ1HVaO70S5YPdhWjxWLDr7LTfXiGUuno0VLpsX3NTE1OjcTwqGAUe7EvgykiIiLyyoKs+G7fV5431d+Cqdd/ysc/vj2h/DtILWBMYgQmJBswdlg4NCoVrHY7zFY7LDYRVpsduiAV/ufszjumtWWmmpXMkNyYoq8kO4KprhpQiKKIX722A6drW7Bu+TRcON77eVmlHppPAECoToP4cB0qGkwoqG7CpJBIt8c4VFKPM3UtCA5S4xwPpWLuXD87HW9sK8DmvEqcqmzEiDjfyk/7A3m+1LS0KPxsYiImpURiX3Ednvn2OB6+dILLvk98nYedBbUI02nw/LVTux1IAegwP8qbYColOgQ3zM3osP1oWT0WP/0Dvj5UjvL61g4NMOSALSux4/uTERuKnQW1Hq8LpcYW/O5f+wEAs0fGdjqvq72C6ia0WGzQB6mUklNvReiDsHHVOTA80PW+DKaIiIjI7/prR7+DjjbnV09PwbJZaRidGOZV6/GupDuyMoU1TSiq6VmJX3elODoHnqlrgSiKHjOKVY1mJXt177/2Y2KywW2myZ0So+fMFCCV+inBVEqk2302Orr4LciK8ylASI8NxXlj4vHfIxVYv7WgQ/ARKC1mG97KKcSlU5I67SDXYrYpbcmnpUlrt92/eAyueTkH72wvwg1zMpR5RZsOl2PdllMAgMevPMvn4KC9ke0Cz7E+Zm6cjUmMwPS0KOwqrMWGHcX4zfmZym2iKCpzptx1Ac2Ilcbh6brw5YG2NWS3HKv0KZiS50uNSYyAupPukD01aLr5ERERUf8ldwPMr5TmEPUXeeXSB67LpiRj4nBDrwRSgBRcqFUCWi127C2qA9C9tug9kWjQQyUAJqsdlY5uau7Ic1oAqexx1Xu5sNm9e4/ktuhJBvdBg9wevbMgeqOjxK+rLn7uyG3S/7X7tNIIA5A+xFc1mnDgtLHP26e//MMpPPrlETz06eFO99t3ug5Wu4iECJ0y7yl7ZAwWZMXBahfxxNd5AKTOfXe/nwsA+PWcdCyZOKzHYxzl0lUvpNOGF95Yni11z353R5GythoAVDaaUNdsgUromA0Duv6S5UtHgwxACqZ80d35Ur5iZoqIiIj8LjUmBIIANJisqGo0d5gPEghNJiuKa6RgwNd2710JUqswPCoYhdXN+OlEFQAgpY8zU0FqFRIj9CgxtuJMbYvHLImcOZiQHIH8yibsyK/Bs9+ecMkweCI3oPCYmXJ8WC6sdt8E40RFI05UNCJILWDhGN/LSLNHxiArIRx55Q1Y/V4u9Fo1CqubUFjVjAaTFQBwwbgEvPyr6T4fu7t+PC69398erUCrxeYx2ybPl5I65bVlTu5bPAZbjlXi8/2luH52DR7+/DDqW62YnBKJ3y8Z2ytjTIsJgUYlwGoXMT6p540fFk9IREyoFmX1rfjmaIVSKnrMsb5UWkyo29dhhFP5b/vsaamxRXmNAGD7qepOX8/2utvJz1fMTBEREZHf6TRqpcytN0r9Ttc24+p125TWzt0hBxFx4TpEh2p7PKb25LWm5HWp+jozBbTNm+qsCUWeY07L/NFx+MvlUqnc37855tUCrSWOBhSeGmt0tZaQ3Hhi9shYRHSjNbYgCLhhbjoA4JujFfhifykOnqlXAikA2FtU6+Heva/FbMPeYunxWiw2/OAIrNyRA4Wpaa6d48YOi8DlU5IBAMtf3YH9p42IDAnCc9dO7bU5d0FqldIgpDcyNzqNGr+cngIAeCunraW4/Ds22sNyCqnRji9ZWq2objK73PYfR4nfjPQoDDPoYbLasd2HRYP7KjPFYIqIiIj6RNv8iMYeH2v9TwXYnl+DF7ec7PYx8sqkD3pjejkrJXNemwvo+zlT0mO2zZvy5LjygTccl08ZjiumJsMuAqs27EVds9nj/URRbCvzc9OAAmh7DQo9rDX1tdLFz/cSP9kVU4fjlnNG4NqZqfjfi8bi5V9Nx6bfnoMdfzwPgDQnrNls7eIokqNl9WgyebevO7sLa2GxtZVIyvPB2rPbRewpams+0d7di7Kg1ajQYpFKFJ+8apLPLdC78rOJw6DTqHDBOO86KHbl2pmpEATgh+NVSvB8zOncckcfpFaeV/uA+wvHFyU/mzhMWcNqS553pX4VDa2obDBBEPz3+y1jMEVERER9Qp43daqyZ5kpURTxH8eH1COlDTBb7V3cw728Lj7o9ZT8zb8sIJmpLtaacm4QIL8Oj1w6ARmxoSgxtuK+f+/3OMetpskMk+O1T/QwZ6p9e3RnXx4oxb7TRggCevSBPkitwh9+NhaPXj4RN80bgQvGJSAzIRzx4XqE66UZLd60h9+RX4PFT/+AP350oNtjyTlVDaDteX9ztNxlDpHsVFUT6pot0AepMN5N5iQ5Mhi3zBsBALjr3FE4d0zvBDzO7l6UhaOPLO618z8lOgQLHEHPO9ul7FRXwRTgNG/K6brgXOK3ZIJTMHWswquxHHG0RM+IDUWI1r+zmhhMERERUZ+QPzSd6mGZn9xKGwDMNjuOltV36zhyZqq350vJ0pwyUyrBc8DhT121R69oMKG+1Qq1SlDmr4TqNHjmmikIUgv46lA53tpe5Pa+pY5OfrFhOo+NO+T26ACQ75Sd+v5YJX6zYS8A4LrsdL/NoZM7GnqzcPGuQqmE7JsjFV434GhvmyOYum3+SESFBKGu2eK2XHK347HOGh7pcZHi1ReMxpbfLcDdi7K6NRZvdGfNuM4smyU1onh/12m0mG047igh7SyYGuHmuuBc4pdo0GP2qFioVQJOVjahuKbr97Kv5ksBDKaIiIioj/RWe/T/HHSdJ7XvtLFbx5G/NfdfmV9bJqqv15iSdbVwrxxQpsWEuAREE5INuN/R7OAvnx9GRX1rh/vKJX7JHkr8ZG1NKKT3fXdhLW59czcsNhEXnzUMf7p4nC9PySfy85cbjXRG/pDeYLJ2K0BvMlmxr7gOADB3VCzOHytlk+R5Yc52F3ou8ZOpVIJLQD4QLMiKR3JkMIwtFrzywyk0mKzQqIROW7m3XRfayn+/dCrxAwBDcBCmOhbK/v5416V+fTVfCmAwRURERH0kw+lDdftv/g+VGPHr13fgo72nuzyOPA9F/kZb/gDri6pGE6oazRAE9+vf9IaU6LZgKhAlfkBbmZ+81lR7ShmWm9fghjnpmJIaCZPVjg07izvcLgdTnppPyOSgMr+qCUfL6vHr13egxWLD/NFxePKqyX5dA0h+D7zJTDl3HPSm+UZ7uwprYbWLSI4MRkp0iDIP7OvD5R1e+7ZOfp6DqYFIrRKwdKa0oPXz30nzGTNiQzv9IiEjznWtqVJjC3Y5lfjJfJk3dbhE+oKFmSkiIiIaNJIig6HVqGCxiS5lZxsPluLKF7Zhc14l/vejg6hvtXg8xvHyBpysbIJWrcJd540CAOw/XefzWJSMTHQIgrW9s7ZUe/ogNYY5SvuGR/d98wmgrWV5s9mGuuaOr6tShuUmOycIAq7LTgfQcf0goK3Mb5iXmamtJ6ux/NUdqG+1YlpaFF5Y1nvd6TxJ8SEz5RxM7SzwPZjadlIq8cseGQMAmJsZixCtGqXGVux3yp7WNplx0jE/aErq4AqmAODqGSkIUgtK8wx355Yz+UuRgupm2OyiUuI3PS3KpTR2/mipdf7Wk9WdzpNsNluVkkFmpoiIiGjQUKsEZMTI8yMaIYoi/vHNcdz21h60WGxQCUCT2Yb33WRBZHJWas6oGMwZGQtAWqvI1w5scjDlr+YTMrkRQaAyU/ogtTIfyV2p37GKzltXL5mYiOhQLUqNrfj2qOvk/zNKmV/ngaL8nu/Ir0FlgwljEsPx2nUz/N4YAGh73Yu7yEyZrXZlzSxAGquvi0vLzSeyR0jBlD5IjQVZUjbFudRP7uI3Ii7ULy35Ay02TIfFThkld1lPZ0mRwdCqVTBb7Sipa1FK/C46y3Vx4vFJEYgJ1aLRZFVeQ3fyyhogitI4PK2t1psYTBEREVGfkUv9DpfW46539+LJTccAAL+ek45HLpPWOHr9pwK3HdAAKF38lkwYhvgIPYYZ9LCLwMEzvs2b8ndbdNn80fFQqwTMGhHt18fpjDxv6Eyda0AhimKXDQKk9YOGA0CHRhRKZqqLMj/neT9pMSH45w1nwxDi+5pS3dFW5td5Zup0bTPsIqAPUkGrUaGq0ezT3L5GkxUHHOfgLEdmCmhr+e4cTA3WEj9nyxylfgCQleg+UJepVYLypcO2U9VuS/wAaQ7ZOUpXP8+lfn05XwpgMEVERER9KMPRMe6Jr/Lw+f5SaFQC1l4xEQ/8fDx+MXU4YkK1OFPXgq8OlXe4b1F1Mw6X1kOtEnC+o5X2WcMNAOBSRuWNo+VyJz//fuC6fcFIHHzwQsx2ZNECoa09umtAUWJsRaOjQUD7NbGcXXt2GgRB6sDnvF5UaRdrTMlGxIVimEGPJIMeb904E/ERfdfVUA4kjS2WTstHixzNJ9KiQzF5eCQA3+ZN7cyvgc0uIjU6xCVTt3BMPILUUhe6E47Fm3d50XxioDs7Ixpnp0cjXKfpsCixO3IpqLxuXPsSP9k5o6Xfo87mTfVlJz+AwRQRERH1ITkzZReB6FAt3r5pJq45W/oWWx+kxrWO1sqv/Hiqw303HpLKf2ZmRCvlUWc5Pvju82HelN0uKgvVdvWteW/w15wsbw2Pcp+dkZtPdNUgIDUmBOdkyusHSdkpq82OMkeHv6Quyvz0QWpsvmcBvr1ngUtTjr4QqtMo58rpTuZNycFUakwIzs6Qsog7fJg3ta1diZ8sQh+kBNJfHSqDxWZXGqYM5mBKEAT888azsfX353pVatd+DTq5i1978xzn4eHSercdJuXbAGamiIiIaBCakR6NILWAMYnh+OSOOZjZ7sPn8llp0KpV2FtU12FeRFuJX6KybVI3gqnTtS1oNtug1ag6zcgMFske2qPLAWVXDQIA5/WDitFqsaGiwQS7CGhUAmLDul4jSh+khj4oMEGl0oSik3lTcvOJtOgQzHAEU740oWjffMKZ0tXvUBkOl9TDZLUjMiQII2L9H8gHkj5IjXC9d+Wc7VunL5mY6Ha/2DAdJiZL2ejvj1d1uL2+1YKjjgV7mZkiIiKiQScjNhQ7/3g+vlg5z22WIi5ch0snJwEAXv0xX9leZmzF3qI6AMCi8W0ftCY6yvyKa1pQ02T2agx5jiBiVFwYNB4WTB1M2uZMtc9MOeZLedEa/twx8Ugy6FHbbMGXB0qVtuiJBr1fW5v3BqUJRSeLvSrBVEwIpqVFQSVI55RzUwpPjC0WHHK04nYXTF0wLgGCIK2H9vn+EgDA1NQoqPr569aXnIOp6WlRnc7Dm+9h3lR5fSuuenEbWiw2JEToOl3bqjcN/isIERER9SuRIdpOP4DfOC8DAPCfA6XK+kDyBP5paVFIcJpzYwgOUkqEvG2RnudYkDXLz80n+ovhypwp12BCWWPKQyc/Z2qVoJRjvpVTiBJH84mkLppP9AdyW/rOmlAU1UjlZSnRIQjTaTA+SQrSvZk3tTO/BnZRKlVLcDMfLC5ch2mOFuhvbCsEMLhL/LpDnksJeC7xk813dEj84Xilsl7dycpGXPH8Vhwta0BcuA6vXT+jz4J8BlNERETUr4xJjMDcUbGwi8AbWwsAtLVEXzy+Y/mPr00ojpbJ86WGRjAll/k1tFphbJGaMEjzxqTMVKaX7eGvPjsFGpWAPUV1+OaI1CCkq+YT/UFKVOcL94qi2NaAwlH2qcyb8iKYkudLzXKTlZLJpX7y+kgMplzFhemQFhOCUK26y2BqSkokwvUa1DVbsP90HXKL63DlC1txpq4FGbGh+PD22Uow3BcYTBEREVG/c+NcKTu1YUcxiqqbsT1f+sC6eIK7YCoSgPeZqWPlQyuYCtG2NWGQF0s+U9eCFosNWrUK6THeNYWID9crQcGn+6RytWFdNJ/oD4Z3sXBvZYMJrRY7VEJb58MZ6d7Pm1LmS43oOpgCpCyfPNePJIIg4P1bs/Hlb+a57eLnTKNWYe4oqanH3785jmteykFtswVnDTfgX7dl93mTEwZTRERE1O/MHx2HkXGhaDBZccc7e2AXpUU73X1QmpQifQudW2zscqFVs9WudAzL8vOCvf1J+3lTckA5Ii7Up3lj186SSv3kl7mrTn79QdtaU81uz49CR1YqKTJY6Wo4I13KHB0rb0RtJ3Px6prNOOIoG53ZyVpiqTEhyppm45MiAt7hsT9KiNC7rEnWGXne1Hd5lWix2DAvMxbv3jwLMV40Q+ltDKaIiIio31GpBNzgyE7Ji6EucZOVAoBxwwxQqwRUNZqUhWQ9OVnZCKtdRLheg2FdfAM+mCS3mzeVp8yX8i2gzB4Rg5FO81uSBsBrKD/3JrMNtc0d15pybj4hiwnTYVS8NJess+xUzqkaiCIwKj6syxbgl09JBgAscAQC1H3nOL2Gl01OwqvXzUCoThOQsTCYIiIion7piinDERXS1lp58QT3cymCtWolKOiq1E8p8UsIhyAMnW5qckAhl/nJ86W8aT7hTBAEpU06gE67rvUX+iA14sOljIW7eVNFjoWIU9tlPb0p9cvxsL6UOzfPG4F3b56FO84d5d3AyaOkyGCsvWIi/nzxODx51eRO10nzNwZTRERE1C8Fa9W4dqb0wX1UfJiSKXBnkqMJxb4umlAMteYTsuHt1pqSg0pvm084u2LqcEToNQjXaZDq5XyrQJNL/dzNm1IW7I12LTGb6UUTCiWY6qT5hEylEpA9MgY6DUv8esM1Z6fihrkZAW8xH5h8GBEREZEXbp0/Ao0mq8cSP9mklEhs2FncdWbKEUyNGWLBVLKjo92ZuhbY7CJOVMiZKd9fB0NwED69cy6sdjvCAlRa5avhUcHYXVjrduHewpqOZX4AlMV7D5bUo8lk7VBGVt1oUoLzWV5kpmhwGhi/AURERDQkheuD8OAl47vcz7k9ut0uevy2Wv7w250gYiBzbkBRVNMMk9UOnUbVobTNW+l9tCBqb+msPXpRtZyZcn0tkiODkRwZjDN1LdhTVIt5ma5znT7aewaAFJjL3RJp6GGZHxEREQ14oxPCodOo0NBqRYFjDkx7Da0WpZvdmMSIvhxewMlrTdU0mbGvuA6AVDrZVwubBpqn9uiNJiuqHd363JUsyutN7WxX6vfqj/n4yxdHAACXTE7q9fHSwMFgioiIiAa8ILUK45OkAGmfh1K/Y46mC4kRehicGlsMBRH6IETopYKkzXkVAIZWds65PbqzQkfgHRUShAh9x3NCDqa2O4IpURTx5Nd5eOTzwwCAm+Zm4Pb5I/02bur/GEwRERHRoCAv3ruv2H0Tijy5xG+IzZeSyfOmthyrBABk+tjJbyBrK/NrcVlrqlhuPuFhfSO5o19ucR1aLTY88Okh/OPbEwCA312YhT9eNHZIdYWkjhhMERER0aAgL97rqQlFnmNx1aHWfEIml7rVOdZaGkqLFg+L1EMlACarHZUNJmW7ssaUh7ljI+NCEROqhclqxzUv5+Cf2wohCMAjl03AHQtHMZAiBlNEREQ0OExyZKYOldTDYrN3uL27C9UOFvJaU7Kh9DoEqVXKmljFtW3zpjx18pMJgqBkp/YW1UGjEvD01ZOx3GmtLRraGEwRERHRoJAeE4pwvQYmq11ZR0kmiqJS5jfUM1MAEByk7hBcDXZta221zZuSO/mldNLVcNYIKZjSaVR4+VfTcenkZD+OkgYatkYnIiKiQUGlEnDWcAN+OlGNPUV1GJ9kUG6rbDShttkClYBOF/8dzJyDqcyEsIAvdtrXhkeFYHt+jbJwMQAU1kgNKDyV+QHAVTNSUNNkxvnjEpR5eUQyBlNEREQ0aJw1PBI/najGnz4+iKc2HUNaTAjSY0KhcsxtSY8JhT5IHeBRBsbwqLaAITN+6GXnUqLl9uhSNspis6OkrhUAkOahAQUAhGg1WL0oy/8DpAGJwRQRERENGpdOTsJn+0pwurYFNU1m1DSZsbeoTrk9a4iW+AGuc6ayEodedk4OJosdZX4ldS2w2UXoNCrEh+sCOTQawBhMERER0aAxJjECP953LhpNVhRWN6GwuhkF1U0orGpGdZMZtw3hNYEiQ4IQqlWjyWxD5hBqPiFLUeZMSWV+cie/1OiQIVfySL2HwRQRERENOmE6DcYnGVzmTQ11giDgymnDsT2/RulQN5TITSbkjJTcyS+1k/lSRF1hMEVEREQ0RDx06YRADyFgEiL0CFILsNhElNW3oqhaaj6R6qEtOpE32BqdiIiIiAY9tUpAkmPe2OmaZhTVdL5gL5E3/BpMPfroo5g9ezZCQkIQGRnpdp+ioiL8/Oc/R2hoKGJjY7Fy5UqYzWaXfQ4cOID58+cjODgYycnJePjhhyGKoss+W7ZswbRp06DX6zFixAi8+OKL/npaRERERDQApShNKFqUOVOddfIj6opfy/zMZjN++ctfIjs7G6+++mqH2202Gy666CLExcXhxx9/RHV1Na677jqIoohnnnkGAFBfX48LLrgACxcuxM6dO3Hs2DFcf/31CA0Nxd133w0AyM/Px89+9jPcfPPNeOutt/DTTz9hxYoViIuLwy9+8Qt/PkUiIiIiGiDktbaKnTJTLPOjnvBrMPXQQw8BANavX+/29q+//hqHDx9GcXExkpKSAAB/+9vfcP311+PRRx9FREQE3n77bbS2tmL9+vXQ6XSYMGECjh07hieffBKrV6+GIAh48cUXkZqaiqeffhoAMHbsWOzatQtPPPEEgykiIiIiAtDWhGLf6To0m20QBNfFjIl8FdA5U9u2bcOECROUQAoALrzwQphMJuzevVvZZ/78+dDpdC77lJSUoKCgQNln0aJFLse+8MILsWvXLlgsFrePbTKZUF9f7/JDRERERIOXHDhtP1UDABgWoYdOMzQXcabeEdBgqqysDAkJCS7boqKioNVqUVZW5nEf+d9d7WO1WlFVVeX2sdeuXQuDwaD8pKSk9MpzIiIiIqL+SV64t8ViA8ASP+o5n4OpBx98EIIgdPqza9cur48nCB0XSRNF0WV7+33k5hO+7uPs97//PYxGo/JTXFzs9ZiJiIiIaOBJiXYt6UuLZvMJ6hmf50zdeeed+J//+Z9O90lPT/fqWImJidi+fbvLttraWlgsFiXTlJiYqGSgZBUVFQDQ5T4ajQYxMTFuH1un07mUDhIRERHR4BYXpoNOo4LJagfAzBT1nM/BVGxsLGJjY3vlwbOzs/Hoo4+itLQUw4YNAyA1pdDpdJg2bZqyzx/+8AeYzWZotVpln6SkJCVoy87OxmeffeZy7K+//hrTp09HUFBQr4yViIiIiAY2QRAwPCoYJysdC/ZyjSnqIb/OmSoqKkJubi6Kiopgs9mQm5uL3NxcNDY2AgAWLVqEcePGYfny5di7dy+++eYb3HPPPbj55psREREBAFi6dCl0Oh2uv/56HDx4EB999BHWrFmjdPIDgNtuuw2FhYVYvXo1jhw5gtdeew2vvvoq7rnnHn8+PSIiIiIaYOR5UwCQxswU9ZBfW6P/+c9/xhtvvKH8e8qUKQCAzZs3Y8GCBVCr1fjiiy+wYsUKzJkzB8HBwVi6dCmeeOIJ5T4GgwGbNm3CHXfcgenTpyMqKgqrV6/G6tWrlX0yMjLw5Zdf4re//S2ee+45JCUl4R//+AfbohMRERGRC+d5U5wzRT0liHKnhiGuvr4eBoMBRqNRyYoRERER0eCybstJrP3PURiCg7DvgUVd34GGJG9jg4C2RiciIiIi6kvpsVI2KiOWWSnqOb+W+RERERER9ScLs+Kx8txRWDAmPtBDoUGAwRQRERERDRlajQqrF2UFehg0SLDMj4iIiIiIqBsYTBEREREREXUDgykiIiIiIqJuYDBFRERERETUDQymiIiIiIiIuoHBFBERERERUTcwmCIiIiIiIuoGrjPlIIoiAKC+vj7AIyEiIiIiokCSYwI5RvCEwZRDdXU1ACAlJSXAIyEiIiIiov6guroaBoPB4+0Mphyio6MBAEVFRZ2+YP4wY8YM7Ny5s88er76+HikpKSguLkZERIRX9+nrMXYXx9m7+ss4Oztn+8sYu8Jx9q6BME5fxtid63JvGQivJTAwxjkQxgj4d5y9eS7z9ew9A2GMQP8ap9FoRGpqqhIjeMJgykGlkqaPGQyGPv9Dplar+/wxASAiIsLrxw3UGH3Fcfau/jZOd+dsfxujJxxn7xoI4+zOGH25LveWgfBaAgNjnANhjEDfjLM3zmW+nr1nIIwR6J/jlGMEj7f30TioE3fccUegh9ClgTBGgOPsbQNhnANhjADH2dsGwjgHwhgBjrM3DYQxAhxnbxsI4xwIYwQGzjidCWJXs6qGiPr6ehgMBhiNxn4XEfe2ofRcaXDgOUuDHc9xGix4LtNg4e25zMyUg06nwwMPPACdThfoofjdUHquNDjwnKXBjuc4DRY8l2mw8PZcZmaKiIiIiIioG5iZIiIiIiIi6gYGU0RERERERN3AYIqIiIiIiKgbGEwRERERERF1A4MpUgiCgI8//jjQwyAiIiIiGhAYTA0y119/PQRB6PBz4sSJQA+NqAP5fL3ttts63LZixQoIgoDrr7++7wdG1Mu2bt0KtVqNxYsXB3ooRD7hdZqocwymBqHFixejtLTU5ScjIyPQwyJyKyUlBRs2bEBLS4uyrbW1Fe+++y5SU1N7dGyLxdLT4RH1itdeew133XUXfvzxRxQVFfXoWDabDXa7vZdGRtQ1f16niQY6BlODkE6nQ2JiosuPWq3GZ599hmnTpkGv12PEiBF46KGHYLVaXe5bWlqKJUuWIDg4GBkZGfjggw8C9CxoqJg6dSpSU1Px4YcfKts+/PBDpKSkYMqUKcq2jRs3Yu7cuYiMjERMTAwuvvhinDx5Urm9oKAAgiDg/fffx4IFC6DX6/HWW2/16XMhcqepqQnvv/8+br/9dlx88cVYv369ctt3330HQRDwxRdfYNKkSdDr9Zg5cyYOHDig7LN+/XpERkbi888/x7hx46DT6VBYWBiAZ0JDVW9dp88991zceeedLseurq6GTqfDt99+6/8nQuQHDKaGiK+++grLli3DypUrcfjwYaxbtw7r16/Ho48+6rLfn/70J/ziF7/Avn37sGzZMlxzzTU4cuRIgEZNQ8Wvf/1rvP7668q/X3vtNdxwww0u+zQ1NWH16tXYuXMnvvnmG6hUKlx++eUdvqG/7777sHLlShw5cgQXXnhhn4yfqDPvvfcesrKykJWVhWXLluH111+HKIou+/zud7/DE088gZ07dyI+Ph6XXHKJS2a1ubkZa9euxSuvvIJDhw4hPj6+r58GDXG9cZ2+6aab8M4778BkMin3efvtt5GUlISFCxf2zRMh6m0iDSrXXXedqFarxdDQUOXnyiuvFOfNmyeuWbPGZd8333xTHDZsmPJvAOJtt93mss/MmTPF22+/vU/GTkPPddddJ1566aViZWWlqNPpxPz8fLGgoEDU6/ViZWWleOmll4rXXXed2/tWVFSIAMQDBw6IoiiK+fn5IgDx6aef7sNnQNS12bNnK+elxWIRY2NjxU2bNomiKIqbN28WAYgbNmxQ9q+urhaDg4PF9957TxRFUXz99ddFAGJubm7fD56GvN68Tre2torR0dHKuS2Kojh58mTxwQcf7IunQuQXmkAGcuQfCxcuxAsvvKD8OzQ0FKNGjcLOnTtdMlE2mw2tra1obm5GSEgIACA7O9vlWNnZ2cjNze2TcdPQFRsbi4suughvvPEGRFHERRddhNjYWJd9Tp48iT/96U/IyclBVVWV8k1nUVERJkyYoOw3ffr0Ph07UWfy8vKwY8cOpTxKo9Hg6quvxmuvvYbzzz9f2c/52hsdHY2srCyXqgCtVouzzjqr7wZO1E5vXKd1Oh2WLVuG1157DVdddRVyc3Oxb98+dhKmAY3B1CAkB0/O7HY7HnroIVxxxRUd9tfr9Z0eTxCEXh0fkTs33HCDUkv/3HPPdbj95z//OVJSUvDyyy8jKSkJdrsdEyZMgNlsdtkvNDS0T8ZL5I1XX30VVqsVycnJyjZRFBEUFITa2tpO7+t87Q0ODua1mAKuN67TN910EyZPnozTp0/jtddew3nnnYe0tLQ+ew5EvY3B1BAxdepU5OXldQiy2svJycGvfvUrl387Ty4l8pfFixcrf3Dbz3Wqrq7GkSNHsG7dOsybNw8A8OOPP/b5GIl8YbVa8c9//hN/+9vfsGjRIpfbfvGLX+Dtt99Wsqo5OTlKV7Ta2locO3YMY8aM6fMxE3WmN67TEydOxPTp0/Hyyy/jnXfewTPPPOP/gRP5EYOpIeLPf/4zLr74YqSkpOCXv/wlVCoV9u/fjwMHDuAvf/mLst8HH3yA6dOnY+7cuXj77bexY8cOvPrqqwEcOQ0VarVaKWtSq9Uut0VFRSEmJgYvvfQShg0bhqKiItx///2BGCaR1z7//HPU1tbixhtvhMFgcLntyiuvxKuvvoqnnnoKAPDwww8jJiYGCQkJ+OMf/4jY2FhcdtllARg1kWe9dZ2+6aabcOeddyIkJASXX36538dN5E/s5jdEXHjhhfj888+xadMmzJgxA7NmzcKTTz7ZIbX+0EMPYcOGDTjrrLPwxhtv4O2338a4ceMCNGoaaiIiIhAREdFhu0qlwoYNG7B7925MmDABv/3tb/H4448HYIRE3nv11Vdx/vnndwikACkzlZubiz179gAA/u///g+/+c1vMG3aNJSWluLTTz+FVqvt6yETdak3rtPXXHMNNBoNli5d2uVUA6L+ThDFdv1ZiYiIqE989913WLhwIWpraxEZGRno4RD1ieLiYqSnp2Pnzp2YOnVqoIdD1CMs8yMiIiIiv7NYLCgtLcX999+PWbNmMZCiQYFlfkRERETkdz/99BPS0tKwe/duvPjii4EeDlGvYJkfERERERFRNzAzRURERERE1A0MpoiIiIiIiLqBwdQAtXbtWsyYMQPh4eGIj4/HZZddhry8PJd9RFHEgw8+iKSkJAQHB2PBggU4dOiQcntNTQ3uuusuZGVlISQkBKmpqVi5ciWMRqPLcWpra7F8+XIYDAYYDAYsX74cdXV1ffE0iYiIiIj6LQZTA9SWLVtwxx13ICcnB5s2bYLVasWiRYvQ1NSk7PPXv/4VTz75JJ599lns3LkTiYmJuOCCC9DQ0AAAKCkpQUlJCZ544gkcOHAA69evx8aNG3HjjTe6PNbSpUuRm5uLjRs3YuPGjcjNzcXy5cv79PkSEREREfU3bEAxSFRWViI+Ph5btmzBOeecA1EUkZSUhFWrVuG+++4DAJhMJiQkJOCxxx7Drbfe6vY4H3zwAZYtW4ampiZoNBocOXIE48aNQ05ODmbOnAkAyMnJQXZ2No4ePYqsrKw+e45ERERERP0JM1ODhFyaFx0dDQDIz89HWVkZFi1apOyj0+kwf/58bN26tdPjREREQKORliDbtm0bDAaDEkgBwKxZs2AwGDo9DhERERHRYMdgahAQRRGrV6/G3LlzMWHCBABAWVkZACAhIcFl34SEBOW29qqrq/HII4+4ZK3KysoQHx/fYd/4+HiPxyEiIiIiGgo0gR4A9dydd96J/fv348cff+xwmyAILv8WRbHDNgCor6/HRRddhHHjxuGBBx7o9BidHYeIiIiIaKhgZmqAu+uuu/Dpp59i8+bNGD58uLI9MTERADpkjyoqKjpkqxoaGrB48WKEhYXho48+QlBQkMtxysvLOzxuZWVlh+MQEREREQ0lDKYGKFEUceedd+LDDz/Et99+i4yMDJfbMzIykJiYiE2bNinbzGYztmzZgtmzZyvb6uvrsWjRImi1Wnz66afQ6/Uux8nOzobRaMSOHTuUbdu3b4fRaHQ5DhERERHRUMNufgPUihUr8M477+CTTz5x6ahnMBgQHBwMAHjsscewdu1avP7668jMzMSaNWvw3XffIS8vD+Hh4WhoaMAFF1yA5uZmfPTRRwgNDVWOExcXB7VaDQBYsmQJSkpKsG7dOgDALbfcgrS0NHz22Wd9+IyJiIiIiPoXBlMDlKf5Sq+//jquv/56AFL26qGHHsK6detQW1uLmTNn4rnnnlOaVHz33XdYuHCh2+Pk5+cjPT0dgLS478qVK/Hpp58CAC655BI8++yziIyM7NXnREREREQ0kDCYIiIiIiIi6gbOmSIiIiIiIuoGBlNERERERETdwGCKiIiIiIioGxhMERERERERdQODKSIiIiIiom5gMEVERERERNQNDKaIiIiIiIi6gcEUERERERFRNzCYIiIiIiIi6gYGU0RERERERN3AYIqIiIiIiKgb/h9ixQUqKENZGgAAAABJRU5ErkJggg==", + "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-30T11:19:23.000659\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.2, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax=df[df.index<\"2020-06-01\"]['ninfected'].diff().rolling(7).mean().plot()\n", "ax.axhline(0,linestyle='-.',color='red')\n", @@ -440,7 +2442,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" - } + }, + "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 From ebf274d3c4abe68d5ef2f921dfc4b6555e607964 Mon Sep 17 00:00:00 2001 From: wangamber8-collab Date: Fri, 2 Jan 2026 13:37:51 -0500 Subject: [PATCH 3/3] Delete 2-Working-With-Data/07-python/notebook.ipynb --- 2-Working-With-Data/07-python/notebook.ipynb | 390 ------------------- 1 file changed, 390 deletions(-) delete mode 100644 2-Working-With-Data/07-python/notebook.ipynb diff --git a/2-Working-With-Data/07-python/notebook.ipynb b/2-Working-With-Data/07-python/notebook.ipynb deleted file mode 100644 index b1a2b46e..00000000 --- a/2-Working-With-Data/07-python/notebook.ipynb +++ /dev/null @@ -1,390 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Basic Pandas Examples\n", - "\n", - "This notebook will walk you through some very basic Pandas concepts. We will start with importing typical data science libraries:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Series\n", - "\n", - "Series is like a list or 1D-array, but with index. All operations are index-aligned." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = pd.Series(range(1,10))\n", - "b = pd.Series([\"I\",\"like\",\"to\",\"use\",\"Python\",\"and\",\"Pandas\",\"very\",\"much\"],index=range(0,9))\n", - "print(a,b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One of the frequent usage of series is **time series**. In time series, index has a special structure - typically a range of dates or datetimes. We can create such an index with `pd.date_range`.\n", - "\n", - "Suppose we have a series that shows the amount of product bought every day, and we know that every sunday we also need to take one item for ourselves. Here is how to model that using series:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "start_date = \"Jan 1, 2020\"\n", - "end_date = \"Dec 31, 2020\"\n", - "idx = pd.date_range(start_date,end_date)\n", - "print(f\"Length of index is {len(idx)}\")\n", - "items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)\n", - "items_sold.plot(figsize=(10,3))\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,freq=\"W\"))\n", - "print(f\"Additional items (10 item each week):\\n{additional_items}\")\n", - "total_items = items_sold+additional_items\n", - "print(f\"Total items (sum of two series):\\n{total_items}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As you can see, we are having problems here, because in the weekly series non-mentioned days are considered to be missing (`NaN`), and adding `NaN` to a number gives us `NaN`. In order to get correct result, we need to specify `fill_value` when adding series:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "total_items = items_sold.add(additional_items,fill_value=0)\n", - "print(total_items)\n", - "total_items.plot(figsize=(10,3))\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "monthly = total_items.resample(\"1M\").mean()\n", - "ax = monthly.plot(kind='bar',figsize=(10,3))\n", - "ax.set_xticklabels([x.strftime(\"%b-%Y\") for x in monthly.index], rotation=45)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## DataFrame\n", - "\n", - "A dataframe is essentially a collection of series with the same index. We can combine several series together into a dataframe. Given `a` and `b` series defined above:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.DataFrame([a,b])\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also use Series as columns, and specify column names using dictionary:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.DataFrame({ 'A' : a, 'B' : b })\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The same result can be achieved by transposing (and then renaming columns, to match the previous example):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pd.DataFrame([a,b]).T.rename(columns={ 0 : 'A', 1 : 'B' })" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Selecting columns** from DataFrame can be done like this:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"Column A (series):\\n{df['A']}\")\n", - "print(f\"Columns B and A (DataFrame):\\n{df[['B','A']]}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Selecting rows** based on filter expression:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df[df['A']<5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The way it works is that expression `df['A']<5` returns a boolean series, which indicates whether expression is `True` or `False` for each elements of the series. When series is used as an index, it returns subset of rows in the DataFrame. Thus it is not possible to use arbitrary Python boolean expression, for example, writing `df[df['A']>5 and df['A']<7]` would be wrong. Instead, you should use special `&` operation on boolean series:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df[(df['A']>5) & (df['A']<7)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Creating new computable columns**. We can easily create new computable columns for our DataFrame by using intuitive expressions. The code below calculates divergence of A from its mean value." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['DivA'] = df['A']-df['A'].mean()\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What actually happens is we are computing a series, and then assigning this series to the left-hand-side, creating another column." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# WRONG: df['ADescr'] = \"Low\" if df['A'] < 5 else \"Hi\"\n", - "df['LenB'] = len(df['B']) # Wrong result" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['LenB'] = df['B'].apply(lambda x: len(x))\n", - "# or\n", - "df['LenB'] = df['B'].apply(len)\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Selecting rows based on numbers** can be done using `iloc` construct. For example, to select first 5 rows from the DataFrame:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df.iloc[:5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Grouping** is often used to get a result similar to *pivot tables* in Excel. Suppose that we want to compute mean value of column `A` for each given number of `LenB`. Then we can group our DataFrame by `LenB`, and call `mean`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df.groupby(by='LenB').mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we need to compute mean and the number of elements in the group, then we can use more complex `aggregate` function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df.groupby(by='LenB') \\\n", - " .aggregate({ 'DivA' : len, 'A' : lambda x: x.mean() }) \\\n", - " .rename(columns={ 'DivA' : 'Count', 'A' : 'Mean'})" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Printing and Plotting\n", - "\n", - "Data Scientist often has to explore the data, thus it is important to be able to visualize it. When DataFrame is big, many times we want just to make sure we are doing everything correctly by printing out the first few rows. This can be done by calling `df.head()`. If you are running it from Jupyter Notebook, it will print out the DataFrame in a nice tabular form." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have also seen the usage of `plot` function to visualize some columns. While `plot` is very useful for many tasks, and supports many different graph types via `kind=` parameter, you can always use raw `matplotlib` library to plot something more complex. We will cover data visualization in detail in separate course lessons.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['A'].plot()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['A'].plot(kind='bar')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "This overview covers most important concepts of Pandas, however, the library is very rich, and there is no limit to what you can do with it! Let's now apply this knowledge for solving specific problem." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "interpreter": { - "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" - }, - "kernelspec": { - "display_name": "Python 3.8.8 64-bit (conda)", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}