Merge pull request #279 from ChungZH/patch-2

improve zh-cn translations
pull/286/head
Jasmine Greenaway 3 years ago committed by GitHub
commit 5127907e90
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,17 +1,17 @@
# 处理数据
![data love](images/data-love.jpg)
> 摄影者 <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn</a> on <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
![data love](../images/data-love.jpg)
> 摄影者 <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn</a> <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
在这些课程中, 你将学习一些数据管理, 数据操作, 和应用中使用的方式. 你将学习关系和非关系数据库, 和数据如何存储在他们中. 你将学习Python的基础, 并且你将发现一些你可以使用Python的方式来管理和挖掘数据.
在这些课程中, 你将学习到一些关于数据管理、数据操作和应用的方式。你将学习关系和非关系数据库,以及数据如何存储在他们中。你将学习 Python 语言的基础知识,同时还会发现一些使用 Python 来管理和挖掘数据的方式。
### 话题
1. [关系数据库](../05-relational-databases/README.md)
2. [非关系数据库](../06-non-relational/README.md)
3. [使用Python](../07-python/README.md)
3. [使用 Python](../07-python/README.md)
4. [准备数据](../08-data-preparation/README.md)
### 学分
### 致谢
这些课程由 ❤️ [Christopher Harrison](https://twitter.com/geektrainer), [Dmitry Soshnikov](https://twitter.com/shwars) and [Jasmine Greenaway](https://twitter.com/paladique)
这些课程由 [Christopher Harrison](https://twitter.com/geektrainer) [Dmitry Soshnikov](https://twitter.com/shwars) 和 [Jasmine Greenaway](https://twitter.com/paladique) 用 ❤️ 编写

@ -3,7 +3,7 @@
![a bee on a lavender flower](../images/bee.jpg)
> 拍摄者 <a href="https://unsplash.com/@jenna2980?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Jenna Lee</a> 上传于 <a href="https://unsplash.com/s/photos/bees-in-a-meadow?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
数据可视化是数据科学家最重要的任务之一。一张图片有时胜过千言万语,同时可视化还可以帮助你指出你的数据中包含的各种有趣的特征,例如峰值、异常值、分组、趋势等等,这可以帮助你更好的了解你的数据。
数据可视化是数据科学家最重要的任务之一。在有的时候,一图可以胜千言。除此之外,可视化还可以帮助你指出你的数据中包含的各种有趣的特征,例如峰值、异常值、分组、趋势等等,这可以帮助你更好的了解你的数据。
在这五节课当中,你将接触到来源于大自然的数据,并使用各种不同的技术来完成有趣且漂亮的可视化。
@ -19,10 +19,10 @@
这些可视化课程是由 [Jen Looper](https://twitter.com/jenlooper) 用 🌸 编写的
🍯 US Honey Production 所使用的数据来自 Jessica Li 在 [Kaggle](https://www.kaggle.com/jessicali9530/honey-production) 上的项目. 实际上,该 [数据集](https://usda.library.cornell.edu/concern/publications/rn301137d) 来自 [美国农业部](https://www.nass.usda.gov/About_NASS/index.php).
🍯 US Honey Production 所使用的数据来自 Jessica Li 在 [Kaggle](https://www.kaggle.com/jessicali9530/honey-production) 上的项目。事实上,该 [数据集](https://usda.library.cornell.edu/concern/publications/rn301137d) 来自 [美国农业部](https://www.nass.usda.gov/About_NASS/index.php)
🍄 mushrooms 所使用的数据集也是来自于 [Kaggle](https://www.kaggle.com/hatterasdunton/mushroom-classification-updated-dataset) ,该数据集经历过 Hatteras Dunton 的一些小修订. 该数据集包括对与姬松茸和环柄菇属中 23 种金针菇相对应的假设样本的描述。 蘑菇取自于奥杜邦协会北美蘑菇野外指南 (1981)。 该数据集于 1987 年捐赠给了 UCI ML(机器学习数据集仓库) 27
🍄 mushrooms 所使用的数据集也是来自于 [Kaggle](https://www.kaggle.com/hatterasdunton/mushroom-classification-updated-dataset),该数据集经历过 Hatteras Dunton 的一些小修订. 该数据集包括对与姬松茸和环柄菇属中 23 种金针菇相对应的假设样本的描述。蘑菇取自于奥杜邦协会北美蘑菇野外指南 (1981)。该数据集于 1987 年捐赠给了 UCI ML 27 (机器学习数据集仓库)
🦆 Minnesota Birds 的数据也来自于 [Kaggle](https://www.kaggle.com/hannahcollins/minnesota-birds) ,是由 Hannah Collins 从 [Wikipedia](https://en.wikipedia.org/wiki/List_of_birds_of_Minnesota) 中获取的.
🦆 Minnesota Birds 的数据也来自于 [Kaggle](https://www.kaggle.com/hannahcollins/minnesota-birds),是由 Hannah Collins 从 [Wikipedia](https://en.wikipedia.org/wiki/List_of_birds_of_Minnesota) 中获取的
以上这些数据集都遵循 [CC0: Creative Commons](https://creativecommons.org/publicdomain/zero/1.0/) 条款.
以上这些数据集都遵循 [CC0: Creative Commons](https://creativecommons.org/publicdomain/zero/1.0/) 条款

Loading…
Cancel
Save