From 3c6589623bb6c99f887ea37ed9e6aaa89ae06360 Mon Sep 17 00:00:00 2001 From: Nitya Narasimhan Date: Mon, 6 Sep 2021 19:10:42 -0400 Subject: [PATCH] Data Ethics lesson cleaned up, finalized. Also removed unused resources. --- 1-Introduction/02-ethics/README.md | 277 +++++++++++------- .../02-ethics/megan-smith-algorithms.png | Bin 75127 -> 0 bytes 1-Introduction/02-ethics/resources.md | 3 - 3 files changed, 176 insertions(+), 104 deletions(-) delete mode 100644 1-Introduction/02-ethics/megan-smith-algorithms.png delete mode 100644 1-Introduction/02-ethics/resources.md diff --git a/1-Introduction/02-ethics/README.md b/1-Introduction/02-ethics/README.md index a2eda93..350c1c2 100644 --- a/1-Introduction/02-ethics/README.md +++ b/1-Introduction/02-ethics/README.md @@ -1,4 +1,17 @@ -# Data Ethics +# Introduction to Data Ethics + +We are all data citizens living in a datafied world. + +Market trends tell us that by 2022, 1-in-3 large organizations will buy and sell their data through online [Marketplaces and Exchanges](https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/). As **App Developers**, we'll find it easier and cheaper to integrate data-driven insights and algorithm-driven automation into daily user experiences. But as AI becomes pervasive, we'll also need to understand the potential harms caused by the [weaponization](https://www.youtube.com/watch?v=TQHs8SA1qpk) of such algorithms at scale. + +Trends also indicate that we will create and consume over [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) of data by 2025. As **Data Scientists**, this gives us unprecedented levels of access to personal data. This means we can build behavioral profiles of users and influence decision-making in ways that create an [illusion of free choice](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) while potentially nudging users towards outcomes we prefer. It also raises broader questions on data privacy and user protections. + +Data ethics are now _necessary guardrails_ for data science and engineering, helping us minimize potential harms and unintended consequences from our data-driven actions. The [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifies relevant trends in digital ethics, responsibile AI and AI governances as key drivers for larger megatrends around _democratization_ and _industrialization_ of AI. + +![Gartner's Hype Cycle for AI - 2020](https://images-cdn.newscred.com/Zz1mOWJhNzlkNDA2ZTMxMWViYjRiOGFiM2IyMjQ1YmMwZQ==) + +In this lesson, we'll explore the fascinating area of data ethics - from core concepts and challenges, to case studies and applied AI concepts like governance - that help establish an ethics culture in teams and organizations that work with data and AI. + ## Pre-Lecture Quiz 🎯 @@ -9,122 +22,186 @@ > A Visual Guide to Data Ethics by [Nitya Narasimhan](https://twitter.com/nitya) / [(@sketchthedocs)](https://sketchthedocs.dev) -## 1. Introduction +--- + +## Basic Definitions + +Let's start by understanding the basic terminology. + +The word "ethics" comes from the [Greek word "ethikos"](https://en.wikipedia.org/wiki/Ethics) (and its root "ethos") meaning _character or moral nature_. + +**Ethics** is about the shared values and moral principles that govern our behavior in society. Ethics is based not on laws but on +widely-accepted norms of what is "right vs. wrong". However, ethical considerations can influence corporate governance initiatives and government regulations that create more incentives for compliance. + +**Data Ethics** is a [new branch of ethics](https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0360#sec-1) that "studies and evaluates moral problems related to _data, algorithms and corresponding practices_". Here, **"data"** focuses on actions related to generation, recording, curation, processing dissemination, sharing and usage, **"algorithms"** focuses on AI, agents, machine learning and robots, and **"practices"** focuses on topics like responsible innovation, programming, hacking and ethics codes. + +**Applied Ethics** is the [practical application of moral considerations](https://en.wikipedia.org/wiki/Applied_ethics). It's the process of actively investigating ethics issues in the context of _real-world actions, products and processes_, and taking corrective measures to make that these remain aligned with our defined ethical values. + +**Ethics Culture** is about [_operationalizing_ applied ethics](https://hbr.org/2019/05/how-to-design-an-ethical-organization) to make sure that our ethical principles and practices are adopted in a consistent and scalable manner across the entire organization. Successful ethics cultures define organization-wide ethical principles, provide meaningful incentives for compliance, and reinforce ethics norms by encouraging and amplifying desired behaviors at every level of the organization. + + +## Ethics Concepts + +In this section we'll discuss concepts like **shared values** (principles) and **ethical challenges** (problems) for data ethics - and explore **case studies** that help you understand these concepts in real-world contexts. + +### 1. Ethics Principles -This lesson will look at the field of _data ethics_ - from core concepts (ethical challenges & societal consequences) to applied ethics (ethical principles, practices and culture). Let's start with the basics: definitions and motivations. +Every data ethics strategy begins by defining _ethical principles_ - the "shared values" that describe acceptable behaviors, and guide compliant actions, in our data & AI projects. You can define these at an individual or team level. However, most large organizations outlines these in an _ethical AI_ mission statement or framework that is defined at corporate levels and enforced consistently across all teams. -### 1.1 Definitions +**Example:** Microsoft's [Responsible AI](https://www.microsoft.com/en-us/ai/responsible-ai) mission statement reads: _"We are committed to the advancement of AI driven by ethical principles that put people first"_ - identifying 6 ethical principles in the framework below: -**Ethics** [comes from the Greek word "ethikos" and its root "ethos"](https://en.wikipedia.org/wiki/Ethics). It refers to the set of _shared values and moral principles_ that govern our behavior in society and is based on widely-accepted ideas of _right vs. wrong_. Ethics are not laws! They can't be legally enforced but they can influence corporate initiatives and government regulations that help with compliance and governance. +![Responsible AI at Microsoft](https://docs.microsoft.com/en-gb/azure/cognitive-services/personalizer/media/ethics-and-responsible-use/ai-values-future-computed.png) -**Data Ethics** is [defined as a new branch of ethics](https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0360#sec-1) that "studies and evaluates moral problems related to _data, algorithms and corresponding practices_ .. to formulate and support morally good solutions" where: - * `data` = generation, recording, curation, dissemination, sharing and usage - * `algorithms` = AI, machine learning, bots - * `practices` = responsible innovation, ethical hacking, codes of conduct +Let's briefly explore these principles. _Transparency_ and _accountability_ are foundational values that other principles built upon - so let's begin there: -**Applied Ethics** is the [_practical application of moral considerations_](https://en.wikipedia.org/wiki/Applied_ethics). If focuses on understanding how ethical issues impact real-world actions, products and processes, by asking moral questions - like _"is this fair?"_ and _"how can this harm individuals or society as a whole?"_ when working with big data and AI algorithms. Applied ethics practices can then focus on taking corrective measures - like employing checklists (_"did we test data model accruacy with diverse groups, for fairness?"_) - to minimize or prevent any unintended consequences. +* [**Accountability**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) makes practioners _responsible_ for their data & AI operations, and for compliance with these ethical principles. +* [**Transparency**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) ensures that data and AI actions are _understandable_ (interpretable) to users, explaining the what and why behind decisions. +* [**Fairness**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6) - focuses on ensuring AI treats _all people_ fairly, addressing any systemic or implicit socio-technical biases in data and systems. +* [**Reliability & Safety**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - ensures that AI behaves _consistently_ with defined values, minimizing potential harms or unintended consequences. +* [**Privacy & Security**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - is about understanding data lineage, and providing _data privacy and related protections_ to users. +* [**Inclusiveness**](https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6) - is about designing AI solutions with intention, adapting them to meet a _broad range of human needs_ & capabilities. -**Ethics Culture**: Applied ethics focuses on identifying moral questions and adopting ethically-motivated actions with respect to real-world scenarios and projects. Ethics culture is about _operationalizing_ these practices, collaboratively and at scale, to ensure governances at the scale of organizations and industries. [Establishing an ethics culture](https://hbr.org/2019/05/how-to-design-an-ethical-organization) requires identifying and addressing _systemic_ issues (historical or ingrained) and creating norms & incentives htat keep members accountable for adherence to ethical principles. +> 🚨 Think about what your data ethics mission statement could be. Explore ethical AI frameworks from other organizations - here are examples from [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles) and [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/). What shared values do they have in common? How do these principles relate to the AI product or industry they operate in? +### 2. Ethics Challenges -### 1.2 Motivation +Once we have ethics principles defined, the next step is to evaluate our data and AI actions to see if they align with those shared values. Think about your actions in two categories: _data collection_ and _algorithm design_. -Let's look at some emerging trends in big data and AI: +With data collection, actions will likely involve **personal data** or personally identifiable information (PII) for identifiable living individuals. This includes [diverse items of non-personal data](https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en) that _collectively_ identify an individual. Ethical challenges can relate to _data privacy_, _data ownership_, and related topics like _informed consent_ and _intellectual property rights_ for users. - * [By 2022](https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/) one-in-three large organizations will buy and sell data via online Marketplaces and Exchanges. - * [By 2025](https://www.statista.com/statistics/871513/worldwide-data-created/) we'll be creating and consuming over 180 zettabytes of data. +With algorithm design, actions will involve collecting & curating **datasets**, then using them to train & deploy **data models** that predict outcomes or automate decisions in real-world contexts. Ethical challenges can arise from _dataset bias_, _data quality_ issues, _unfairness_ and _misrepresentation_ in algorithms - including some issues that are systemic in nature. -**Data scientists** will have unimaginable levels of access to personal and behavioral data, helping them develop the algorithms to fuel an AI-driven economy. This raises data ethics issues around _protection of data privacy_ with implications for individual rights around personal data collection and usage. +In both cases, ethics challenges highlight areas where our actions may encounter conflict with our shared values. To detect, mitigate, minimize, or eliminate, these concerns - we need to ask moral "yes/no" questions related to our actions, then take corrective actions as needed. Let's take a look at some ethical challenges and the moral questions they raise: -**App developers** will find it easier and cheaper to integrate AI into everday consumer experiences, thanks to the economies of scale and efficiencies of distribution in centralized exchanges. This raises ethical issues around the [_weaponization of AI_](https://www.youtube.com/watch?v=TQHs8SA1qpk) with implications for societal harms caused by unfairness, misrepresentation and systemic biases. -**Democratization and Industrialization of AI** are seen as the two megatrends in Gartner's 2020 [Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/), shown below. The first positions developers to be a major force in driving increased AI adoption, while the second makes responsible AI and governance a priority for industries. +#### 2.1 Data Ownership +Data collection often involves personal data that can identify the data subjects. [Data ownership](https://permission.io/blog/data-ownership) is about _control_ and [_user rights_](https://permission.io/blog/data-ownership) related to the creation, processing and dissemination of data. -![](https://images-cdn.newscred.com/Zz1mOWJhNzlkNDA2ZTMxMWViYjRiOGFiM2IyMjQ1YmMwZQ==) +The moral questions we need to ask are: + * Who owns the data? (user or organization) + * What rights do data subjects have? (ex: access, erasure, portability) + * What rights do organizations have? (ex: rectify malicious user reviews) -Data ethics are now **necessary guardrails** ensuring developers ask the right moral questions and adopt the right practices (to uphold ethical values). And they influence the regulations and frameworks defined (for governance) by governments and organizations. +#### 2.2 Informed Consent +[Informed consent](https://legaldictionary.net/informed-consent/) defines the act of users agreeing to an action (like data collection) with a _full understanding_ of relevant facts including the purpose, potential risks and alternatives. -## 2. Core Concepts +Questions to explore here are: + * Did user (data subject) give permission for data capture and usage? + * Did user understand the purpose for which that data was captured? + * Did user understand the potential risks from their participation? -A data ethics culture requires an understanding of three things: the _shared values_ we embrace as a society, the _moral questions_ we ask (to ensure adherence to those values), and the potential _harms & consequences_ (of non-adherence). +#### 2.3 Intellectual Property -### 2.1 Ethical AI Values +[Intellectual property](https://en.wikipedia.org/wiki/Intellectual_property) refers to intangible creations resulting from human initiative, that may _have economic value_ to individuals or businesses. -Our shared values reflect our ideas of wrong-vs-right when it comes to big data and AI. Different organizations have their own views of what responsible AI and ethical AI principles look like. +Questions to explore here are: + * Did the collected data have economic value to a user or business? + * Does the **user** have intellectual property here? + * Does the **organization** have intellectual property here? + * If these rights exist, how are we protecting them? -Here is an example - the [Responsible AI Framework](https://docs.microsoft.com/en-gb/azure/cognitive-services/personalizer/media/ethics-and-responsible-use/ai-values-future-computed.png) from Microsoft defines 6 core ethics principles for all products and processes to follow, when implementing AI solutions: +#### 2.4 Data Privacy - * **Accountability**: ensure AI designers & developers take _responsibility_ for its operation. - * **Transparency**: make AI operations and decisions _understandable_ to users. - * **Fairness**: understand biases and ensure AI _behaves comparably_ across target groups. - * **Reliability & Safety**: make sure AI behaves consistently, and _without malicious intent_. - * **Security & Privacy**: get _informed consent_ for data collection, provide data privacy controls. - * **Inclusiveness**: adapt AI behaviors to _broad range of human needs_ and capabilities. +[Data privacy](https://www.northeastern.edu/graduate/blog/what-is-data-privacy/) or information privacy refers to preservation of user privacy and protection of user identity with respect to personally-identifiable information. -![Elements of an Responsible AI Framework at Microsoft](https://docs.microsoft.com/en-gb/azure/cognitive-services/personalizer/media/ethics-and-responsible-use/ai-values-future-computed.png) +Questions to explore here are: + * Is users' personal data secured against hacks and leaks? + * Is users' data accessible only to authorized users and contexts? + * Is users' anonymity preserved when data is shared or disseminated? + * Can a user be de-identified from anonymized datasets? -Note that accountability and transparency are _cross-cutting_ concerns that are foundational to the top 4 values, and can be explored in their contexts. In the next section we'll look at the ethical challenges (moral questions) raised in two core contexts: - * Data Privacy - focused on **personal data** collection & use, with consequences to individuals. - * Fairness - focused on **algorithm** design & use, with consequences to society at large. +#### 2.5 Right To Be Forgotten -### 2.2 Ethics of Personal Data +The [Right To Be Forgotten](https://en.wikipedia.org/wiki/Right_to_be_forgotten) or [Right to Erasure](https://www.gdpreu.org/right-to-be-forgotten/) provides additional personal data protections to users. Specifically, it gives users the right to request deletion or removal of their personal data from Internet searches and other locations, _under specific circumstances_ - allowing them a fresh start online without past actions being held against them. -[Personal data](https://en.wikipedia.org/wiki/Personal_data) or personally-identifiable information (PII) is _any data that relates to an identified or identifiable living individual_. It can also [extend to diverse pieces of non-personal data](https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en) that collectively can lead to the identification of a specific individual. Examples include: participant data from research studies, social media interactions, mobile & web app data, online commerce transactions and more. +Questions to explore here are: + * Does the system allow data subjects to request erasure? + * Should the withdrawal of user consent trigger automated erasure? + * Was data collected without consent or by unlawful means? + * Are we compliant with government regulations for data privacy? -Here are _some_ ethical concepts and moral questions to explore in context: -* **Data Ownership**. Who owns the data - user or organization? How does this impact users' rights? -* **Informed Consent**. Did users give permissions for data capture? Did they understand purpose? -* **Intellectual Property**. Does data have economic value? What are the users' rights & controls? -* **Data Privacy**. Is data secured from hacks/leaks? Is anonymity preserved on data use or sharing? -* **Right to be Forgotten**. Can user request their data be deleted or removed to reclaim privacy? +#### 2.6 Dataset Bias -### 2.3 Ethics of Algorithms +Dataset or [Collection Bias](http://researcharticles.com/index.php/bias-in-data-collection-in-research/) is about selecting a _non-representative_ subset of data for algorithm development, creating potential unfairness in result outcomes for diverse groups. Types of bias include selection or sampling bias, volunteer bias, and instrument bias. -Algorithm design begins with collecting & curating datasets relevant to a specific AI problem or domain, then processing & analyzing it to create models that can help predict outcomes or automate decisions in real-world applications. Moral questions can now arise in various contexts, at any one of these stages. +Questions to explore here are: + * Did we recruit a representative set of data subjects? + * Did we test our collected or curated dataset for various biases? + * Can we mitigate or remove any discovered biases? -Here are _some_ ethical concepts and moral questions to explore in context: +#### 2.7 Data Quality -* **Dataset Bias** - Is data representative of target audience? Have we checked for different [data biases](https://towardsdatascience.com/survey-d4f168791e57)? -* **Data Quality** - Does dataset and feature selection provide the required [data quality assurance](https://lakefs.io/data-quality-testing/)? -* **Algorithm Fairness** - Does the data model [systematically discriminate](https://towardsdatascience.com/what-is-algorithm-fairness-3182e161cf9f) against some subgroups? -* **Misrepresentation** - Are we [communicating honestly reported data in a deceptive manner?](https://www.sciencedirect.com/topics/computer-science/misrepresentation) -* **Explainable AI** - Are the results of AI [understandable by humans](https://en.wikipedia.org/wiki/Explainable_artificial_intelligence)? White-box (vs. black-box) models. -* **Free Choice** - Did user exercise free will or did algorithm nudge them towards a desired outcome? +[Data Quality](https://lakefs.io/data-quality-testing/) looks at the validity of the curated dataset used to develop our algorithms, checking to see if features and records meet requirements for the level of accuracy and consistency needed for our AI purpose. -### 2.3 Case Studies +Questions to explore here are: + * Did we capture valid _features_ for our use case? + * Was data captured _consistently_ across diverse data sources? + * Is the dataset _complete_ for diverse conditions or scenarios? + * Is information captured _accurate_ in reflecting reality? -The above are a subset of the core ethical challenges posed for big data and AI. More organizations are defining and adopting _responsible AI_ or _ethical AI_ frameworks that may identify additional shared values and related ethical challenges for specific domains or needs. +#### 2.8 Algorithm Fairness -To understand the potential _harms and consequences_ of neglecting or violating these data ethics principles, it helps to explore this in a real-world context. Here are some famous case studies and recent examples to get you started: +[Algorithm Fairness](https://towardsdatascience.com/what-is-algorithm-fairness-3182e161cf9f) checks to see if the algorithm design systematically discriminates against specific subgroups of data subjects leading to [potential harms](https://docs.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml) in _allocation_ (where resources are denied or withheld from that group) and _quality of service_ (where AI is not as accurate for some subgroups as it is for others). +Questions to explore here are: + * Did we evaluate model accuracy for diverse subgroups and conditions? + * Did we scrutinize system for potential harms (e.g., stereotyping)? + * Can we revise data or retrain models to mitigate identified harms? -* `1972`: The [Tuskegee Syphillis Study](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) is a landmark case study for **informed consent** in data science. African American men who participated in the study were promised free medical care _but deceived_ by researchers who failed to inform subjects of their diagnosis or about availability of treatment. Many subjects died; some partners or children were affected by complications. The study lasted 40 years. -* `2007`: The Netflix data prize provided researchers with [_10M anonymized movie rankings from 50K customers_](https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/) to help improve recommendation algorithms. This became a landmark case study in **de-identification (data privacy)** where researchers were able to correlate the anonymized data with _other datasets_ (e.g., IMDb) that had personally identifiable information - helping them "de-anonymize" users. -* `2013`: The City of Boston [developed Street Bump](https://www.boston.gov/transportation/street-bump), an app that let citizens report potholes, giving the city better roadway data to find and fix issues. This became a case study for **collection bias** where [people in lower income groups had less access to cars and phones](https://hbr.org/2013/04/the-hidden-biases-in-big-data), making their roadway issues invisible in this app. Developers worked with academics to _equitable access and digital divides_ issues for fairness. -* `2018`: The MIT [Gender Shades Study](http://gendershades.org/overview.html) evaluated the accuracy of gender classification AI products, exposing gaps in accuracy for women and persons of color. A [2019 Apple Card](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) seemed to offer less credit to women than men. Both these illustrated issues in **algorithmic fairness** and discrimination. -* `2020`: The [Georgia Department of Public Health released COVID-19 charts](https://www.vox.com/covid-19-coronavirus-us-response-trump/2020/5/18/21262265/georgia-covid-19-cases-declining-reopening) that appeared to mislead citizens about trends in confirmed cases with non-chronological ordering on the x-axis. This illustrates **data misrepresentation** where honest data is presented dishonestly to support a desired narrative. -* `2020`: Learning app [ABCmouse paid $10M to settle an FTC complaint](https://www.washingtonpost.com/business/2020/09/04/abcmouse-10-million-ftc-settlement/) where parents were trapped into paying for subscriptions they couldn't cancel. This highlights the **illusion of free choice** in algorithmic decision-making, and potential harms from dark patterns that exploit user insights. -* `2021`: Facebook [Data Breach](https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users) exposed data from 530M users, resulting in a $5B settlement to the FTC. It however refused to notify users of the breach - raising issues like **data privacy**, **data security** and **accountability**, including user rights to redress for those affected. +Explore resources like [AI Fairness checklists](https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4t6dA) to learn more. -Want to explore more case studies on your own? Check out these resources: +#### 2.9 Misrepresentation - * [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - ethics dilemmas across diverse industries. - * [Data Science Ethics course](https://www.coursera.org/learn/data-science-ethics#syllabus) - landmark case studies in data ethics. - * [Where things have gone wrong](https://deon.drivendata.org/examples/) - deon checklist examples of ethical issues +[Data Misrepresentation](https://www.sciencedirect.com/topics/computer-science/misrepresentation) is about asking whether we are communicating insights from honestly-reported data in a deceptive manner to support a desired narrative. -## 3. Applied Ethics +Questions to explore here are: + * Are we reporting incomplete or inaccurate data? + * Are we visualizing data in a manner that drives misleading conclusions? + * Are we using selective statistical techniques to manipulate outcomes? + * Are there alternative explanations that may offer a different conclusion? -We've learned about data ethics values, and the ethical challenges (+ moral questions) associated with adherence to these values. But how do we _implement_ these ideas in real-world contexts? Here are some tools & practices that can help. +#### 2.10 Free Choice +The [Illusion of Free Choice](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) occurs when system "choice architectures" use decision-making algorithms to nudge people towards taking a preferred outcome, while seeming to give them options and control. These [dark patterns](https://www.darkpatterns.org/) can cause social and economic harms to users. Because user decisions impact behavior profiles, these actions potentially drive future choices that can amplify or extend the impact of these harms. -### 3.1 Have Professional Codes +Questions to explore here are: + * Did the user understand the implications of making that choice? + * Was user aware of alternative choices and the pros & cons of each? + * Can the user reverse an automated or influenced choice later? -Professional codes are _moral guidelines_ for professional behavior, helping employees or members _make decisions that align with organizational principles_. Codes may not be legally enforceable, making them only as good as the willing compliance of members. An organization may inspire adherence by imposing incentives & penalties accordingly. +### 3. Case Studies -Professional _codes of conduct_ are prescriptive rules and responsibilities that members must follow to remain in good standing with an organization. A professional *code of ethics* is more [_aspirational_](https://keydifferences.com/difference-between-code-of-ethics-and-code-of-conduct.html), defining the shared values and ideas of the organization. The terms are sometimes used interchangeably. +To put these ethical challenges in real-world contexts, it helps to look at case studies that highlight the potential harms and consequences to individuals and society, when such ethics violations are overlooked. + +Here are a few examples: + +| Ethics Challenge | Case Study | +|--- |--- | +| **Informed Consent** | 1972 - [Tuskegee Syphillis Study](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) - African American men who participated in the study were promised free medical care _but deceived_ by researchers who failed to inform subjects of their diagnosis or about availability of treatment. Many subjects died & partners or children were affected; the study lasted 40 years. | +| **Data Privacy** | 2007 - The [Netflix data prize](https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/) provided researchers with _10M anonymized movie rankings from 50K customers_ to help improve recommendation algorithms. However, researchers were able to correlate anonymized data with personally-identifiable data in _external datasets_ (e.g., IMDb comments) - effectively "de-anonymizing" some Netflix subscribers.| +| **Collection Bias** | 2013 - The City of Boston [developed Street Bump](https://www.boston.gov/transportation/street-bump), an app that let citizens report potholes, giving the city better roadway data to find and fix issues. However, [people in lower income groups had less access to cars and phones](https://hbr.org/2013/04/the-hidden-biases-in-big-data), making their roadway issues invisible in this app. Developers worked with academics to _equitable access and digital divides_ issues for fairness. | +| **Algorithmic Fairness** | 2018 - The MIT [Gender Shades Study](http://gendershades.org/overview.html) evaluated the accuracy of gender classification AI products, exposing gaps in accuracy for women and persons of color. A [2019 Apple Card](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) seemed to offer less credit to women than men. Both illustrated issues in algorithmic bias leading to socio-economic harms.| +| **Data Misrepresentation** | 2020 - The [Georgia Department of Public Health released COVID-19 charts](https://www.vox.com/covid-19-coronavirus-us-response-trump/2020/5/18/21262265/georgia-covid-19-cases-declining-reopening) that appeared to mislead citizens about trends in confirmed cases with non-chronological ordering on the x-axis. This illustrates misrepresentation through visualization tricks. | +| **Illusion of free choice** | 2020 - Learning app [ABCmouse paid $10M to settle an FTC complaint](https://www.washingtonpost.com/business/2020/09/04/abcmouse-10-million-ftc-settlement/) where parents were trapped into paying for subscriptions they couldn't cancel. This illustrates dark patterns in choice architectures, where users were nudged towards potentially harmful choices. | +| **Data Privacy & User Rights** | 2021 - Facebook [Data Breach](https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users) exposed data from 530M users, resulting in a $5B settlement to the FTC. It however refused to notify users of the breach violating user rights around data transparency and access. | + +Want to explore more case studies? Check out these resources: +* [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - ethics dilemmas across diverse industries. +* [Data Science Ethics course](https://www.coursera.org/learn/data-science-ethics#syllabus) - landmark case studies explored. +* [Where things have gone wrong](https://deon.drivendata.org/examples/) - deon checklist with examples + +> 🚨 Think about the case studies you've seen - have you experienced, or been affected by, a similar ethical challenge in your life? Can you think of at least one other case study that illustrates one of the ethical challenges we've discussed in this section? + +## Applied Ethics + +We've talked about ethics concepts, challenges and case studies in real-world contexts. But how do we get started _applying_ ethical principles and practices in our own projects? And how do we _operationalize_ these practices for better governance? Let's explore some real-world solutions: + +### 1. Professional Codes + +Professional Codes offer one option for organizations to "incentivize" members to support their ethical principles and mission statement. Codes are _moral guidelines_ for professional behavior, helping employees or members make decisions that align with their organization's principles. They are only as good as the voluntary compliance from members; however, many organizations offer additional rewards and penalties to motivate compliance from members. Examples include: @@ -132,48 +209,43 @@ Examples include: * [Data Science Association](http://datascienceassn.org/code-of-conduct.html) Code of Conduct (created 2013) * [ACM Code of Ethics and Professional Conduct](https://www.acm.org/code-of-ethics) (since 1993) +> 🚨 Do you belong to a professional engineering or data science organization? Explore their site to see if they define a professional code of ethics. What does this say about their ethical principles? How are they "incentivizing" members to follow the code? -### 3.2 Ask Moral Questions - -Assuming you've already identified your shared values or ethical principles at a team or organization level, the next step is to identify the moral questions relevant to your specific use case and operational workflow. - -Here are [6 basic questions about data ethics](https://halpert3.medium.com/six-questions-about-data-science-ethics-252b5ae31fec) that you can build on: +### 2. Ethics Checklists -* Is the data you're collecting fair and unbiased? -* Is the data being used ethically and fairly? -* Is user privacy being protected? -* To whom does data belong - the company or the user? -* What effects do the data and algorithms have on society (individual and collective)? -* Is the data manipulated or deceptive? +While professional codes define required _ethical behavior_ from practitioners, they [have known limitations](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md) in enforcement, particularly in large-scale projects. Instead, many data Science experts [advocate for checklists](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md), that can **connect principles to practices** in more deterministic and actionable ways. -For larger team or project scope, you can choose to expand on questions that reflect a specific stage of the workflow. For example here are [22 questions on ethics in data and AI](https://medium.com/the-organization/22-questions-for-ethics-in-data-and-ai-efb68fd19429) that were grouped into _design_, _implementation & management_, _systems & organization_ categories for convenience. +Checklists convert questions into "yes/no" tasks that can be operationalized, allowing them to be tracked as part of standard product release workflows. -### 3.3 Adopt Ethics Checklists - -While professional codes define required _ethical behavior_ from practitioners, they [have known limitations](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md) for implementation, particularly in large-scale projects. In [Ethics and Data Science](https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md)), experts instead advocate for ethics checklists that can **connect principles to practices** in more deterministic and actionable ways. +Examples include: + * [Deon](https://deon.drivendata.org/) - a general-purpose data ethics checklist created from [industry recommendations](https://deon.drivendata.org/#checklist-citations) with a command-line tool for easy integration. + * [Privacy Audit Checklist](https://cyber.harvard.edu/ecommerce/privacyaudit.html) - provides general guidance for information handling practices from legal and social exposure perspectives. + * [AI Fairness Checklist](https://www.microsoft.com/en-us/research/project/ai-fairness-checklist/) - created by AI practitioners to support adoption and integration of fairness checks into AI development cycles. + * [22 questions for ethics in data and AI](https://medium.com/the-organization/22-questions-for-ethics-in-data-and-ai-efb68fd19429) - more open-ended framework, structured for initial exploration of ethics issues in design, implementation, and organizational, contexts. -Checklists convert questions into "yes/no" tasks that can be tracked and validated before product release. Tools like [deon](https://deon.drivendata.org/) make this frictionless, creating default checklists aligned to [industry recommendations](https://deon.drivendata.org/#checklist-citations) and enabling users to customize and integrate them into workflows using a command-line tool. Deon also provides [real-world examples](ttps://deon.drivendata.org/examples/) of ethical challenges to provide context for these decisions. +### 3. Ethics Regulations -### 3.4 Track Ethics Compliance +Ethics is about defining shared values and doing the right thing _voluntarily_. **Compliance** is about _following the law_ if and where defined. **Governance** broadly covers all the ways in which organizations operate to enforce ethical principles and comply with established laws. -**Ethics** is about doing the right thing, even if there are no laws to enforce it. **Compliance** is about following the law, when defined and where applicable. -**Governance** is the broader umbrella that covers all the ways in which an organization (company or government) operates to enforce ethical principles & comply with laws. +Today, governance takes two forms within organizations. First, it's about defining **ethical AI** principles and establishing practices to operationalize adoption across all AI-related projects in the organization. Second, it's about complying with all government-mandated **data protection regulations** for regions it operates in. -Companies are creating their own ethics frameworks (e.g., [Microsoft](https://www.microsoft.com/en-us/ai/responsible-ai), [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles), [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/), [Accenture](https://www.accenture.com/_acnmedia/PDF-149/Accenture-Responsible-AI-Final.pdf#zoom=50)) for governances, while state and national governments tend to focus on regulations that protect the data privacy and rights of their citizens. +Examples of data protection and privacy regulations: -Here are some landmark data privacy regulations to know: * `1974`, [US Privacy Act](https://www.justice.gov/opcl/privacy-act-1974) - regulates _federal govt._ collection, use and disclosure of personal information. * `1996`, [US Health Insurance Portability & Accountability Act (HIPAA)](https://www.cdc.gov/phlp/publications/topic/hipaa.html) - protects personal health data. * `1998`, [US Children's Online Privacy Protection Act (COPPA)](https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule) - protects data privacy of children under 13. * `2018`, [General Data Protection Regulation (GDPR)](https://gdpr-info.eu/) - provides user rights, data protection and privacy. * `2018`, [California Consumer Privacy Act (CCPA)](https://www.oag.ca.gov/privacy/ccpa) gives consumers more _rights_ over their personal data. + * `2021`, China's [Personal Information Protection Law](https://www.reuters.com/world/china/china-passes-new-personal-data-privacy-law-take-effect-nov-1-2021-08-20/) just passed, creating one of the strongest online data privacy regulations worldwide. + +> 🚨 The European Union defined GDPR (General Data Protection Regulation) remains one of the most influential data privacy regulations today. Did you know it also defines [8 user rights](https://www.freeprivacypolicy.com/blog/8-user-rights-gdpr) to protect citizens' digital privacy and personal data? Learn about what these are, and why they matter. -In Aug 2021, China passed the [Personal Information Protection Law](https://www.reuters.com/world/china/china-passes-new-personal-data-privacy-law-take-effect-nov-1-2021-08-20/) (to go into effect Nov 1) which, with its Data Security Law, will create one of the strongest online data privacy regulations in the world. +### 4. Ethics Culture -### 3.5 Establish Ethics Culture +Note that there remains an intangible gap beween _compliance_ (doing enough to meet "the letter of the law") and addressing [systemic issues](https://www.coursera.org/learn/data-science-ethics/home/week/4) (like ossification, information asymmetry and distributional unfairness) that can speed up the weaponization of AI. -There remains an intangible gap between compliance ("doing enough to meet the letter of the law") and addressing systemic issues ([like ossification, information asymmetry and distributional unfairness](https://www.coursera.org/learn/data-science-ethics/home/week/4)) that can create self-fulfilling feedback loops to weaponizes AI further. This is motivating calls for [formalizing data ethics cultures](https://www.codeforamerica.org/news/formalizing-an-ethical-data-culture/) in organizations, where everyone is empowered to [pull the Andon cord](https://en.wikipedia.org/wiki/Andon_(manufacturing) to raise ethics concerns early. And exploring [collaborative approaches to defining this culture](https://towardsdatascience.com/why-ai-ethics-requires-a-culture-driven-approach-26f451afa29f) that build emotional connections and consistent beliefs across organizations and industries. +The latter requires [collaborative approaches to defining ethics cultures](https://towardsdatascience.com/why-ai-ethics-requires-a-culture-driven-approach-26f451afa29f) that build emotional connections and consistent shared values _across organizations_ in the industry. This calls for more [formalized data ethics cultures](https://www.codeforamerica.org/news/formalizing-an-ethical-data-culture/) in organizations - allowing _anyone_ to [pull the Andon cord](https://en.wikipedia.org/wiki/Andon_(manufacturing) (to raise ethics concerns early in the process) and making _ethical assessments_ (e.g., in hiring) a core criteria team formation in AI projects. --- @@ -187,14 +259,17 @@ There remains an intangible gap between compliance ("doing enough to meet the le ## Review & Self Study +Courses and books help with understanding core ethics concepts and challengs, while case studies and tools help with applied ethics practices in real-world contexts. Here are a few resources to start with. ---- -# Assignment +* [Machine Learning For Beginners](https://github.com/microsoft/ML-For-Beginners/blob/main/1-Introduction/3-fairness/README.md) - lesson on Fairness, from Microsoft. +* [Principles of Responsible AI](https://docs.microsoft.com/en-us/learn/modules/responsible-ai-principles/) - free learning path from Microsoft Learn. +* [Ethics and Data Science](https://resources.oreilly.com/examples/0636920203964) - O'Reilly EBook (M. Loukides, H. Mason et. al) +* [Data Science Ethics](https://www.coursera.org/learn/data-science-ethics#syllabus) - online course from University of Michigan. +* [Ethics Unwrapped](https://ethicsunwrapped.utexas.edu/case-studies) - case studies from University of Texas. + -[Assignment Title](assignment.md) --- +# Assignment -# Resources - -[Related Resources](resources.md) \ No newline at end of file +[Assignment Title](assignment.md) diff --git a/1-Introduction/02-ethics/megan-smith-algorithms.png b/1-Introduction/02-ethics/megan-smith-algorithms.png deleted file mode 100644 index 8cc7348982944b4aae3ad5684c0c9d4274b42a4e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 75127 zcmXtfbzD_l^Y5m+8$`N6T9EFR?i3KDyBkFm>23i5=}tkqrMtTkknXtad4Hd~|IkC7 zz1Nyq^NpDkrm8H9fl7)BK@f(#oRm5Q!Gf1C9LWFur~K786M~3IttBN@tLu9c3U_Fg4aEG!u{IBZ-}a%=nS;iJ8+p-3_$ zY)VOygrLwZ0)lc2Yirb}zIv{&Ry0TXH%S%GdjFmmt$zFe_zeZI;vDXiZxei6Lxjdk zjn`wxp?7!KZ%ho`ZU~JfIQ(fPup!oY!mGuOLxVY2Bt`qbbNYWNb%`J@*f9KkB*=MC z)U!01V&e;O)WvwH4^jwqF$uEv^%;XVT>C=s-XRJK%3>!PGU3$&mT16pw906kh&*ju zo7V@{#YiPSN@k&ygpL&f^v!oPVNU`(fo|01r49V&G+qOI>Z?AoNS2skcigXZJHu;-gGoBl#-Hj# z1?wwwRT6UdDI8WrntTLbymQP_Z8jR=h%;K4X|7LQ??`ICJ0Zz>2lqGAJG4T&XW^mB zA19J_ZbYbkGnm$Vko@UH!K*g^2$PS8GzFGC8?8|s-Nox82R1US&u;o|tcjrTT@XBV zFvSVXMsu7fA?BiRPX9b2?Z;8%GZ?kNquK^ve=%0-)f<-OH{o!rM=Nvo;glR!=b%H%LpRl`uju)Z%U4I^+_`Z#ihep z6<+yM&6-dneECPRY?9hwq%|Bb)Vp@b>&sRz0|ydeJF4y{N@OH82{&xCZUhuDvl#R| z_##Q47^e3aZ^U25P~fBXh~4M7F%mHcDN7QlVz`kvAqWRGuxt{mIFLXgzz3Nv(J^^ z`WM_f5zXQ&Wh=Mmd=CBXL_J`eBf8dgoy_=oGZ3Oe!h0C!*A$YM{KPSD_rGX%kyfc*=OdyCwaO$R488 zwYULyT6CjvBjCpnK>VEf@#Dv2iPX+-)IrprH}HFSzxCmpIID^ z-Z9<^cB_WEI;y&jx`2j^#>?E&96z}?61VYkvI&%=I4xlV-Rfp|rwFHL1aA_dM8ZTe zEov>!>9@tZn&(qnQy-@Urf3g7P32ED6n-g8w%)VKvu3rDu!J~0v*)(=dv9X@)tLK)|Bt>2v~jX=q>0@Lll*`AChxK>V$3T)eEq;^ z(b&cD2bmj{i4C7JzHG~!ryLiHEos|{u%Dl%+hna3%g=FW4kwYd~+++xpUI2ouDh?q81FuY~4XU(KvW`2AtquHzYQ*$SgHNUjguG%jA@JB{UM)VTNuh}!VGt09t+l$+L z`1l0W1PAz*__qYY_=EUg67~{V6QdY~wR;(DSr}Lvm@0}H3#CeyRBwx!%SrR}O9WbU ztSUxV(0m!Dyr$)B2yAi>mJVJX>`uw@dhy7SCX#NZ`K7I-X{BlCQ|kxo>(sVdDO$_g z@Yy_%sg1wMb~PcI;T;+u9*}pqo6m8y5Fn`70f|7%zO zU}3LShwk`IknIr84OcYPqOz1E8w7Dl^WJWf>EgSw;R&W3PNKnwUnYh`*m)Te6p7fpqvk4OcGdC(O z3h70bK$QRje;xm3#!+TTMzYa`;WtB(Uw@h{n=p^@7Kqv^79*$G=8mES69oqzez;NXTBFNre*Ub^-l7B<+bmXd69NLbMflp`>EPF(@E-?);Zfr=9R{|;5y%C#k$F% zC`C4&lfXO9F^&_vwP?!l?1Sv#cVE`-u&c47V+?X?bHsDVO*2eSO&{0I)>GGWahP$W zanNGvW3|*&r&tbDfA3K(SgcT|UTOMUFD4@dd$8`DpDPIFF$QGTGzqiBTPg%QP% z$s5Zb-FsgZ98(BpyJv4ux{aN`^W`#ekvS{C|CFFubTgGb^}$-*8o^p|A9KHqXVGd+Ogd-Va{ffV@=^V_4rW~)67xeRMg*6*sNQAb145XkP@F;prlfl zaFYCjT~G8V&?j57xwbW;g|+!m_Lt{vICt8IgAtdEVd49~hV8#*2@nb1CVoup*{#|& zA5}4~Y#Vb|+c$elV5{XYE#q!=xkvX`k(~D%FK^vpop-WYviYk~L+6$W!24_zGrf$Y zh0Xnsd7apH77pE`|9;|Aa;RO^Y|@*h98;Z`c z?iV9{qwAL?!VZ76_ggQe_T|qtJ{PB88O5 zR5WwM3dtn-Uy=rrK)!We&TGzt&AWmK`9A|2Oyxys)~WmTB#)`Bddc%DuIsM0=c!rN zBFX+ZPZK9v=eDCCH#-Y@`g?{QWm{|fDvaX{Y)tA6U+SUg>D|Yk$8YcEYvoUun_#y6 zoY|Oh{#)=`>a~7g`oqf=^!X)p2I;tZ3WRrCVz+m&CuO9N0t2)cBY>&0RMh4{hHjro z4$VpWFtX{Q3`caB4>+m6SKivc@r7rl3!77lEI|3`FTp;l+6$lZN!Mo{e=gc}$l2Ou z_w?d?{WcLH1O8KpM2L}et@IlyqMnyWOgLC^s_}UV50qN$nbhWVgEaSg$4L)V2rSYb zJt_+Be@>b8i@m0keFvw0PhS@XPFl?@Rpghw9ec`l)oIYKFce)~%cdHT>q?pT8qe#i z9VuP<-T7nKrIXaW%WTj_)*frILa_7=%m){uA1vD<7p)cz&etN*_j&2xwT$Uj-iV;I z1_abUEx@=0{}31IV5QQ`aoSU#^YSw3KI%tP>-!OJ&Sg%vIgTO{c76Q`?jw>`T%@|8 zy7@#@K9L12d7L0mY^vuRmm&aaq^%!OV=o9qet!QDutc@`tNk{_JjXxQzG@m|2t6HQ zL7n3CV8Woq=+`U)VFoQz_0)iXiyvy!i3h(()AWM}Cv-F`4rWrP1r1%>jss~PEDgIl zdTW154(qY~YBt{Z?dU_UNShph!Nt zgS*RkaTmvb_ipufo)_JlY;G%_ylega$aaH`#c9vUu8LJr;y2G!{!@-a4oiNWhq*lr z;qseI+txq#$5S)(e$9{nQalgK!f1=}FS@lkaW`9kFni!@_(!N{IT*}xB#QNHvof~4 zv=rIK6A}7hEH?$^5SB!#Jm|WBktPCHx@e=2V!V2cZmi8L!BoLKV3c_@X<(&q;Lmn{ z=ICUv;84R*8#M>Zjndw4r@XICjH!DpRW-h_J=;Bjib8Qh^xKrfbi#BR3}h??^jHI) z%v+55jN?og%*lm~g)W7dG10hu>v0w8Uzgu0W#LXc&S8Oui?%?TMYrI$! zV$2xI{P^}ZW+5dh`DN<5NB^tIQztQP9}n-5>7`zpx3XkWMx)I>zv-XNI)35hf0mZ^ z?wMzpRHjP^$-H90U{qvk^VHs2%2&uaM<6mbHY}qzHY-~%A&@>3J1zFfbZD99E%@8P z$L09lv2k&3m1ja|`K*PYb$E*2L-w+KN4V!+2ul^Kcd_~9YY$D&BoToX_dRDb&#m~q zf_Y*4mWWZTistfJVN$NzQ)3avssUF?00y0^NQ|`N4JZN1XRG zQHvP_hNnvlOKo1SPSQ?BPAyK+P8-k~QA$w>QRPvDajx(>!ZgE4zbS`V9OJA^G9A;w z(Eg#jR%lK7CjQ;wz(UF5r^Vzp|F-^C+4e30CX)-(YZ?`{$v*?k5zNV2b($uJmkamO zZ1Us<#>G?xoQ0`{Jw?+$>~kJv`b<7(G^mfNXBj@{bOcDg>C($pFxSDej2EAz<|cDx zK6eOrQ`8!yEAjbDNk)|(T~FX~f2en8@@DG|sepq3uK-f>N%L<{wv`X9jy+{#M(r&f zl7pLUOe^uT=e*U?H}}Lh%y&%pWC$^^k{{(dNU5f%x^jrRBs#adW@%o^>`3X!a7(p? zzajfe&OppZ5=bx3ZpzQeA11QD{j`X5{PIvPAjO5Hj=qdvSeWK8M)Bv0={T#>Ovz!~ zi(SK~r8=5i*(~zrM9<@!4!>mBM7&Z4Z8W5C2mCA{?+ZcY}Pnhna;we4#%%uuA412gNh{vr>nOV z4ke}p5P$49&B9b@&KinY4W3GclUoi$YLCN(3@n0hFAx|du!1yupH@UEw;Vnp;0Gac zz`de`&kI6TCo_OPtc6c?7g1tmz__oy^1|$G$5nq*EjbYbvxV6semh36$H^1c`6EQ_ zXCb5J8}(g#YIh@6KeVUF*J4>>(dO?t^-{2O3G7fjFp4U_$1ufd#n;5{ZZe(B<9mJE zgx8kf&3|D*rWQG;kT2z)z7TUq{+5T0_ee{?s42k5;4T0WEtDwYI6^d4A!Ry6Ru{9f zx~jhVS5X8%jToYV0)p{;xE+*Rs_^9}J3BMEHYUOFBUg1vDPAT&C)JEBO{`H%tnf$=< zj`Ka=24504CtoCopv8*m>F~GFg^ryR`()t-@mbEvqQ1}L)2=3Ei?Ud(VZC^Ne;r;9 z_|AQpiT<-no6YFN?BytDx|i&<`E`L&!cA&uk^k`~N$NDO7;XtkQG;0HeDai}=t~k7 zlI8IB)=QK(Gbt*rAL~wBorjsOCnNIxw`E63GYrayn#BS+OKi5)Rfih}`zj8mCk+jL zbIx-t^UQKh3yjx$MehfXNH!=(ze;zAEQlMG`p$CkrS;)WNPwb<-xb{Q+_Fmd{-djY z*59^re+}IUla6QpyYqpAiwYH6#~HHMQO{RP2@5Nt^&8P}@M37X5EeE0p1Woa~IK?cP*>{ zoNy3MN1j<|>|F8&G(y2A_EUC7;+4E{I8ld5PE2m2Y$dIdYA@bEn6##l=4{N}CHdPI zY&7=VnZnB-?%>e9LNy{bB2-d3Q&Lm@)xcLy)U13!GvEC{vBS9Twq>^C(`7WWIn2_7 zbYpyKLfDV(Mi3`y^Gh%G<#>9(5vz)jky+dO+JxlVpXlO0bzaMkNPU+NP+N~QOID9} z$^U~h-Q7}UGk?HFDq8!#uEpKOz2qY8!jWw0^>6bjdm+njTzI?<4gBxt?RXu#9RE7# zIEZfa|Ha>1+WNM*yXLXbGMSq-b*#6UxJ|xheq_71yOl-gB>I(WjysPnf>(%h!#}~p z?JcX8q1VHt)c3r(M}MU4c=o*Nd;-fgEINyk53$vKu6WT3+c{Bf?2X362CSZE1_PH9 zDK3fJZ6jJ*e=^wHIJD?Aj{^7g*(SHEOKjY;DiW7eTjv+$Z1io5?CNabJZ+9sS4`|g z7uRp)wmC=fE+#*Wnq`^ayBK2|YhyNIrM931=sX74B-k#UnICK|ll=U(X#!95-Jjj? zO|?xeeNBMn=H|bi<(piXH`y}UqFC5)sA5REuza*vNHK{fFr@9~93M-4VQG=ACGN9n z3-O!aB6Ip<3*%L#3q?|3u7dw%&yO?h=|$k}kZ2?MA{B)CidiaLeHTJi`P?RBsuF}U zoPZ-`y`fU9e1Mxqtj{1o<71A;IKApI~=;iV&V~%nT#dZU>?l$I4+-?;Y!IP4P zeLb=+Mh(rE-_b9-uNAI39?{qfknX;mts=Lu1zz8`tjLXgDKOXE^uXH{8BtPDL3o>$ z?kyxJ7=1hRBz;hF{IQFAKmFQskZvV^dpnoqkflyEAu!{q>TYuV!zA;j&6dsN!2{r{@whXg(GXpccvzxOO6{B`1cKr7Ec0%)WH*AlK_tyifDuK@{2`d-#LUr>s z1ka2ndZ|Z?NK#{n5O?*jTO(}95C$Tdj)e3D5@30ytL*c}-+wCei9v$y9}tqv=-ZXhuX*!@d^tAh#R{pu;j=M#1j6Ls}Y=NAz2X9;rh%(h$wn+N-tf%ob~3D{?0zOvM@ zjQFS!HZpuuQ&ZMq3q{noZ{N<&T%fV3sj0ECLMj72Jrd);dwa;A1KnHw=o#7A=t90q z{UB|9%<`=W4Goo}y^DF^kI_w*IVTGCqe4PV>;594hGj zhYzFaqO1M=a&>-1nhVW373*DJM$?21WMyTGzM+2ZY*Z%K(b0h#1D~I&%=`Ey0&Z`2 zEr-*_g=l0WCnhFbjB4n)xm{PE9<^R^_Vo0$J)I3s7O43DTbZ7iSg7%Bm{@+}x_hvH zfEz@<*l=DT?&Wp!b2T7-;QbfOms7K|6*))H+V)_w!P3&7KYx@nh2&)oWMq1)Ee83c zTs=G-mYaA*+q$~Le0+Q+&d!F@`Oe99!M}>hucl{bk?b%ef=tmd&{^5o7?e`P6j$o~ zeKp_biBZ1OwH!SbzBuKzoylwShJ)M>rkssxLQRP!`oYbN3=OHNsX3xcO8#cNaqTv9 zPNb-I|2vbHM;k2GuCm2HGB-EZ(_`^>rfi&(vz9ajo7~Zx&PIM_UsnDZz|WXuC7e{ zFB5Gfnee|+^hH-_G{26LU)Y!Yf@web6Jz+b#ewGAw{P=j=tG=dG`RL*3e-qQNc{f& z+v9K!23l@Cdj0+c8wm-?jt)9GKNs}ci;<&UsCQ>kZuu+WU2mh`--s`8O`CdJ6qLmvp@9gY&JU{tAEVlSwONSF;kZ^@qo?KoEJD<@~b#Kp_ zu(7go#BMfnn)lh**p%zFEG#V<7U68U+%{4K@^Es-D&+g$UyyKHqW@H+jRO(-yT6~P zm=D)RcGHEmdY;wfeZKR{bvMXV2Ax90>*U>2*?)=A+jDt1-qq0oqw!~O(8$Qh_56&B zo4dhoWvSMB@-H}wf}YA6lIGXP%Mv+G_fg~(#x3fM_{|>2d3J_2HU|?HgKqBb4UUU4 zMD5_1VqrzI8Pu<>a+>!lWr?)tR2Ua$-Ye@cnGUD%YVBn3J5vwi;o_PqC zolU7UIyk6d|AG!49{!zWs*(&IXcBOYudZfg-QJ$>UgU$@Zm%jRE0-U$93CEmlgqIf zLBeh2qo9CFe`Zi^JL~YG4@Y9A+{nPfdfI>L=5(`UXf<0LPU35BuDScP@68Dn8!a&K zn(V-8JB1n#siP=Fm9w@dBN`hUNf-Qjz7g;+V7~qahlB}@^CM6{3>a|E# zF>Y*b-o6QZy8Ymz*#4Bm9n zENgfH2dtO;surPpdsahEmj_x(OpJ__AwvFl2|Jv;y!o@&|5p1R{?1nPB{0h(w6!I% zn<$@W2>TM^9UUE6Qy(Q?zy2uBCYkoM(Sw%O>U-^wU$9qJ?%|;z>D>Jl=j51?RM3Of z@(P^g1Q3^ZsO8KxmcyNGzE_7iDxjR2nyIPb{2ZHBM`6(}RegN*jrj_S!Fa)ArK+i^ z395mc8&5fXUlcj`eG(`kA;Ir_m=98ID3`agvXYmV4+wYyYdbx)p8N?TmMP#)O+%BL zn+x(|kNM$Ze-f0r!otELje-deQP&+MLqkIztg5OiukdPu-4Sn%PURd`MiAZ~;L6R7 zkBeKVw}*phWFq90lp>;{q9P*f=Bw$LsWq#dCuMy6pB}uQ*zP8a%GQ4{Aik_bS)vJ-^Wpe1@@p1n`?B#E*5^YFqKuJah5vp}u#e`~WYl%bURa9hW zZk`_Rxl&6@OCzFYb7iBo^|bH@c1N>7a#G;oN#4UIlllEq5q%8tG&eV=5Dkc!CKmGI z$fR9v_UsG4zy3!=NJvOTgoKD_rVviZR@rx|cshS_;-nu8?#OFz<6vg?@kq@m9wgHV z3BE!Z4(p&9jpp^uM82ZAnHjVOimSJ`H*Od$HT4gT0%d3{#~ew3-f^k%muVLw%3coe`4 z5b)pAIiY}u{@j_SGU|oueDj1VO}j!ZhfA4z6hiCa*x0D4%{oI+pfRxGl#~>3Zb6|l z(AR?zE72}1{2BgH8)Q&8z;FOOroU zkb-g~zx4F>wgx=joo@D7UjBs>14k{Ni==P}Kf(RKlc}nDa(DTc&v9iaoe#@)#1RkG z#KhzU0f1Kj$Gf_`+6z#;z!wM*!2boNS|%Z3;m60vlKU0raj?kFA0Ib1%pUF!rdgoM zswx;L$-jWh%^DE`s{xhhDnIitA5G)+r(cxjjLD5B(>&{TeK>0V2cYtWX zwP%Ze!o$NG{PU-}x>`s`2zm#~7@xyR;Z>KWHEjJ8C>++PMl!;}!YEWa<%T(B?SV0W zY@MsB9xm`0l;8Qt%cHy<8XWBEURzr`D4Yb?eyf#Vi~ro}b^0;um*VUzXl-w=@QzI( zOa7M2r{Twsk1PIXTPXB9ySq9%oTyFh1KTcXa`{<7K~S397tHNpZf@>FI=58u^lxE< z06J=Vd){5_^T*wUxfv4>5#fFJ+uYpLu)q`cItiL7b6jm*^}i<9JmXJIO@%nDC-MM8 zfDnKXXZ+RfuaadB}3s0atKOG`^9;)cp zvlTqQnhT$>5imkT#mmH@v(?JUY7isFWc9>h#iw%yB_V&YpA;pUiECe*jOLT}q z%(tgtdjXH#P{1c3V6q^4<3g+8H|<>E$TEcU)NBK})B&`0b8+cR2=ZikV2DXi2j}L$ zOH(r;E2|&;(FCs$C9!JGmC4_GsSAKi@`S}5?(W=l)lM@r)g-~D#ibx^A9uXi=+8!)ZIZQhbrb}QT0yB!n{cqt0y1K+qmuF`Sm8PGH zOPS&aDl?HVNJFTRP3#q^@KHhgLDk0l;f6ErTUr(1@Ww4Z_DhYiGcX+-O5nj-FS7sC zZ;$87qEIzBu9lb2*`SD7TU+bv>&wW<=qi>=3U1}1n@4Rj~95Fylx_d;MN4;J!VyN z?d@xSE84V&gC>UJ=oD+~>YS4;cOp`Y=Z{z00va-rXk|IEZNo=-DjaBvaSEHiOe%pTtnBBF$0F;OV zJoI93+`JbMFH0rB0dD=oG&QHdp9k!M%<(*aA?$;1;(W3uZf|c7wU?&~c~=+jBb){K zjRTHF+z<$uKu#P4_IIi>JV<5zl^LiBWIT33VOSI*rMJ0^F+=F2JYSXL00Hmr?%w*} z1zvP^NXST8XhhyEj^ejIuD-aF3h9QEJO$b zH5G{BlMkE@HRIRJM-^P?leN|wpx7?d*`80LP@#9R8eDNhH#ax`u^u20L5SuX94P`H zPQ;mB@$zIB>QuZmrX<>d6tZ1d0>AU=nO5wnHCe(Xwb->R8&S{&ee>1eza%v9Hi+5~6pzbiie z^hc9f$>Ys`g0#Y9b!w^>0B)mXVNp@AyEJC<@tOuO1(Zsa&!2)-)q~|}ajSGA{G<}& z*K=c1QoJ7T+za1p#*!@6d{A+4I5uIb2V4S3mmXtT&WvbKnE-o}q?j2Ob)rz2n)|Kz@Gy$jAs_K0VF- z4BE`6t1!o#YGE*tnYp<^trZMZs1R^>VGS}&i^z~pwdIJ9TmTtCVu|l(D9JyB;wKP7 zNrq7ny5ZqrkmpN{&gQPJ=c|FwnOP>&h)O2UWsJQA;bgDv_JAm91Gl~Y7d>$Y4ro#R zol5)A&`@tLz*&G8wYNLzj>St8a>~lRh*Ar;TLbZ}{`Y6siiu)ONySx@eH(CW{A#cA zSpI#%BZdG4tjx-y;59itIZ5HQO#a$It+IZ@!30M`d06G%i16*)x3$vI9 zNev1rb-3&K&TvEodJ|z-&jtXF+nbw+s}v&&hN^DjKG7Ttgy1G2O@G=%Qib5mWx zJVyPug^`{8-_o!1u^h=yS@8FFck1WNp{9i-$oW5|rKR5j-9M2hzu6lJQiJyw{lRRZ zT5d(_-JgX8AFw+wzhHg%u)8)SE^vNxYM%d~UWD)25JUGMw$v7A!kn0-EkPa2@zbC?5VN(l6&eG%Dj^35vynk!J)S6GPEHO$WZ$QUTVS{(&fu&uQCwVJ za&vJNqAO4D;oHuZ3;W%Sb$mi=LS9Z_2OB5s=c_*- z8*c~@;N#~BOjQmi+I<8SbFt3$-@yTMqC)hGH)bC`T(88VHnJS^d%GxmcvxD}Z&%{t z;n@aY2S*Z8P^iqSYiLXYOKBwI4c^~STf)rq;)8^X3%B2EH38rxgFy0ooveWc#*l(7 z4Lg{5hF@AN+?9fP=FoJYNia%>$QcJ_2|KalxMNrmP6T1*b>NfM?W)J zu#xGNGxqlO_+7U8)56P=AW+ijxwyEfsMZ0S2RNQ_xF>gyJG%j#5+?sZ8yn^T28V5b zN`NlBJUq25IX+wv6>gYn?(UXmkKc{cT7adOmlyDKz*Qve>Q3lFf!z8l17g`s75_j2gH^YkT|_AT!Z+Mu7@MhX4%a%d>!jl6`e~DVVKtx`$RFk}Gh*U@0U;<WWA@&e^d0RT;az^$9f zx|3TG|L42VA-n@})}@G_H> zTXHt28Mt9LHN-_lKY!9&B4c1|6U8Mb^MRO%e?nrBPet#_KAqd_i>AYs2fhiQ-NOEN zZla>1Q>AyeE$064Lc-Ap$}f4f)Tc46t*j^;j%!bjzQ3T7($VpJxH$!~9(aN?At-q0 z=;(!e*{Y1Kx4nq}$>H1|Kfp5c%gV}Xp&zld&`_FiGe|}tnWtXs$fI2hvbO=P{>1^w z0~nG5%bB=98f%y8#>T`{x=btR+xtH@kc$hdnV3B9jpu?hDzoj4QJ4fF!^5(%v4IR& z_>BJv5u+3Bi3z<(^IQ5$RqNcVV6kbKK=Y=i$R!W~|L4c+*>a=jlg`AGvu(xS#G(NY zz?%9A_SAlX=OF`t!MJd&Rsi|pyHNcUuK$nIvmOd1|=`L8rUBm6+kS7P3DB1H$oa3uIp@PZ;;p$#fGupL^ZqZPkcrrf`S4M zq2jC_Krp7VlL9e!=Bmtr2y1hGY?}BE-^GFY`3C_1`uci5SA!hYl(;ieh?GxTqyz*s z680DouSmUG*T!iQYLuFtxUg;aagSUPBO@+k|lYy zI1!l&{16a7C@7Id2NC|kbR{i5ezL8NYc@Z`CR)LqU3)+tq@W$xZ-6VtmG8vmO=*9KR^9?E4A%UyzF0r z?i2+_RZ0r}WzE`$pE3ww>j2{bvKi1Uqb4^L2>qpyuKW4UC``Wjf-{JSNWeqmr%zp= z00aDxjUWcJAG~2@TRmX(e?I3B-dpGrL%Mo;)0JH+$l|?|^YbJ`_)=hP|0!tW)`+k$ zYqj|ZuuvB#r}oXUn^HMi0hg_>RaFB3e*UYx+wL3lHM`s&My4hweJ}QK(iG3DoYp0H zglej*_3Lc3KqUp<(21LXrunS6shL?^Qqony{O4%cmj&&JJbZjQ8}Aa{IXXuF)BwEO zxW+OvENlQ!`fJetf`IxeJO0WKHU9bqMX#q78y$w=S_%ZX^gy7jtt^ZPx(o!nFfJl{kYMwTX^_0T3==tvwjvdWAs)@U%U+ zQim27n=3gepw`FwbQ=u7&BEyu*-8yc4S!8^c2d87om4D5K9;LcYS3`p8+l;ArNul0 zyjbvofrX>3-Q7*><=@`it2ViSdjcl$47_0NGJR=xH@A8q180VZ?SbC|%$HOCjdlKC z3wX)+bvDzTVZAEAY@Yb-eGbz;QvMhCA_jFfiSh9o+eu+unrxD4k)Lrb+-GuKe)-*g z+b+)6vc~k=JE8g=-uHmb>)2$u`#xTwdHFvouV_&H9%aY-?xF}c90>vtx6MG!@+C{Y zK|xdHcz=I?!j8AU6KF35EcI>jrX}$)VNaojFTbb3(MtH9DH zz77l)EaM-Sr+_UY|HB4$Ub6i5n|4rP%_~~GP9@ws$boz6{)H?QlN=QSh;5tb8T;y$ zUUf*8oStt$>OGdGsU7d znZbk5==Zkmd*fEW0hPXPV0)b5F|~BGF}~d}vH3EY`vFS=S<4%EP|Wz>5HU!hcCby> zYFZA^Ni^!YTIPZE)#3aDobWU+|B3QJA*o<{^RE6WE1G5$U6|CzVtu-?nrg;xFpjqh za&ncm>aU$_mKsr>gZT8hJr1VAo>Qm(7#Fc8kiv|jOr9Tjy@2681YkxJqT0(ND41>n zyNuBUJWDG0?RP{(L{BV*7ZG26U~0b1=yioa0|%-EAUv%P^G{P2P|;OsBx+h(_-(r< zaXJy==~qg?9F?P`j{RC(Tp|fP17MW+_y`PE15XwlbFE?`VDkatM;r<$GRksfQDGrC zrm9>w;@A>^HdEtn^|OR2ICJ~UadEgynZT0UBzPuL z#3WGeoW=Qgd8fz6!@|SO^|V)a=9{tGUYH`gP*qlrQf0JRxG0Mla$W+*XLDl%FgGA%07`52 zAxW#N$0^ZIj*qL+kxefT4-QJIp!fFnK47c>)e#sNXvj#$V>Jg%a?RFrg9uaNDM~t8 z+Wze`PL$~svXP&2*xKO za(yvdX(|~j7eY4m-`@~6H*rP?3Me4_%*#tiPDX==%|HMbC||6D8$|1sd>n;Z4aXE1 zbAa;!2>qR3P|)XjNs~PIA7l{|GsX|3y|%Y8pKKNX6k0rt0ENVW=1D$x13*xPdKpem zPOaDcea@Db!xwI=0hvnlz%kGRi6Sli84&o$NQ~7z7T|cjkpR%xB-P#114I>Y4i5JA zfZ+ma{&xX`!br6LKMT;(!HX)G`E0F{C4zy10z}OCZH5CV1=w!jB#J?4HSzX-uuYhI(Bq=^V9;D1*HPD_~HZg^Tj7b)CwY4C9 zfK{NYrj}DuGWhJrN@$@C{D+|-r7b(qa!#}q_7B-vZy=`1t9H!?0CoWQS8Obf!|(>| zkA=5d*bwiOsw4*Q6Pjut+-O!XH02Dv;>@_aoKKbC@m;*hF3Y zKiXni0$dvZ{l4m^Nn}>Qo%}SaoF1&$-{jg_o+OLu`!1Wp(`|7Ljhb+y+S z6OEWO0xMm|#NWcvu>xO9;lB`;s8*v&JmVIxxJ}=s75bWb*RyuUC7xQ6+A5GDiELOEoUb zVR5|l3$y@&6{3TQlQE!-%uH+Lh#O=GczCplBmZVf^|(Q)?FlD(PK;9h6s>L20Q>#Z z?@?@ktH2Ni7)iJ~{m#;I2WTX~xI3;>Q<9Uxl7$1hZ!0S~0w{f>HbF*x7xD(yP<(cF zHt0b6um}p0p$+x-gAteD;9wOmWOVc`{#RUFxSNik?e;^F{~I7ZIgVL<(G;6B(V(v@ zFMrEGy2VbtCqMQP0Znsq8h$McLFS1z1b8i}>FJ9Lz~u)9B8~)590(970(+B3z`_i{ zPE`tRb#;a}51OBtP&bTqyj$uvizXLDgg{A<6B?V}0zLrnIgHfQ#F0C|93&Zm|D=Xa z@?Mb_a20NdBz-p($Ez5r;Je)Zb5}0IIZFK;99}(vlp@N4SWQ}ggZSslMB11+C{w@$ z0q%t(0nmYr*Mn!3F3yrXflNzbW|R zi?RfA?>8`fkT3Fx1I9US6YMX83!|XIYe<9~_=>>La^jzBNna>6(I{Y{EmvmkrZ zJwzg>ozj+}McM2d*f_wxK>1317y$?7-B(Uq+rJ>SOuzvJRZ1bb1RsP43JP$*(%c^U zrO@5i$3RaHYPu@L2&Ag5y>oET zIIsx!0ng7xk1Q~_{a^?-bg6uqLL9|8N)?fjlM@E&?Cb>NEJA<)S66dMe66T(EQlhP z&-Yu(cl|H~`r1n55b(Cpm}xrUpeF2pK>a0AU}FbG`^6AFjUw8>p6mkw-EHK)PA0CoG?&1K2{`%sKm7N`Es=(VbI?+9;#CC|OxI@l5)vF4~Qw9bG zKqdh70?VSIq1lvd%{T9h0s|tEq`dmg9&B&B`M+igx=TFoc>a5GKH2Jzr8!z`;N#-D z17)j7!yT#w#ma0Jq3aXq_Ww6wwYQdx4G4_tF$wS@#VA!#iwk;_zk$*R*A9|iH_1Zp z>I+2x2M^Cuqct87`MhZ7@AxM`_f3p<9ftf6cygy!%_{ASi z0h2+3aMsruU0V50xI&S}$Hv-oJTSc#XjD2R--qe=aUA zfG5JzgHS{Q+Cjr*>A5X39v=0hZ?iy3jyD6{(UurBNC{}PTg6?xOi z6x}m|A>d@J1L&Gp#!bW!N9}j@M9uL^U`Aa2O;1Y$PA?fmoCHRifCb{E=Bx&^6fiMB zih;h8G>tc}&6E|;Uf=@yxo6D+`Iq4nkV~+T%v@znjRtCMS#B=3%~athBrNa=YPIP= z_mCiPhiY=3hYN zn=}9xcoUGIs;V(InyI5CHr!)@gbFn1&)~^DhEg~`jAR5Wu&_cW*VoAj3SiQz)#viy zzn1RtvcbMHIXO9c4>~keh7_pa^g>5f)d>I|_&hL}rV;YJn_69^=!#KJ;~D7b$p==1 zwzl>n80-joWduI!4Rkwbf{>Ats;j9{;iGukt*##)W`JJqA|hDwTV>@}EG)piC&ozZ zaSk!z^a=KPkj0`fT`LB0CS=oJYV{}6@p!)ydr)f9_WhuOKZ^VH>zB`)H+T#x{Orc1 zxw)SNSc1i3GBOVT*H5Cw4dY-n!&pC@zKL_%-vIih(?ouFXy|uK3*Z&sP}P4K2JBDd zgHefbbOkaa)g~?YXjtR|Q$US_*$cyMn0H|7 z2b0;e_?>^0mD#JSs{?Bc2tvTVUl}%5I+TGV7@L^DMGff+#X<@KE~=!YWT+|d`L=;z z00T(@wayV)N}u5bkYHg!oL*Sj+m``{KPSi3-X0|WKLB$$5=u%3KV%dc@xKfBGxPKF zzj;GK(e3hrUI1z@jHSs@m+Yyw1MWQrIy&GU3q=|X;6MO|KlMAktT!13%+Ek6qK?L( zy!!b)fP@FF0*=OO&};>bSYXBzy`f42FF`MeORLfy5}WfkE))^Ji%(sXQ?8 z@)b;a{TUka1AQwGkJr#p#v3%~r%F0dcS#u;zXP9PiV;2^5Zr-gD7lE=4N$_Mh~ES9 za_$H~(c=Ak@E%XinqnZEp9#ly)=fgr{&zilvbFN~?O0|vN`_m3iO*i)>l6MVlg2T- zH0-mJb;$r9&^<8W0`Vj$zbOu1`E|Z~8wMCm-URB`HjXHA!KCNwr8ka4V!2hK{&!I% zd!X|w@|MLPznB|ND+Q}g}1cVbVOf(!r6_I}BJ+x(h6t4)&;KdVetOItfBHMIyl z9zY$sHGt5Ehjy`Yw1naNp&WhAppIOKgYyJt;5_5N1n$gCk{m4$To*^7ENl>Xc+da{ zH3h?#Qq(x~VC;ySwM3^Vh?$M8tgtZKz@g9zu*erM ztLy5@xZa15nh;A-j{~*^G+AHd{VACGK@1H=?*fC(va)^ukEXMZs^a_F_*_C7>5`O2 zN|5eOX#}K^_=-w*cS)yoceiwhv;xu%QqtY;@we9NA1-xyxifR;?6ddte4e>rOg}fs z@ApQ~#D(?}6eHNk$1_Eo9UTv5Dp%a22ue@-j3%v9!CVgrBohXL4`HH|MP^3qpohP| z_juI7;%fg~MD6!5h)nwIX2PWBL zM`>|?VW)*9{67Z!9v5^`K%)vQXyBfI!h;meDPvz5%HRb;o$P>~7I69tHm1Uoi#!rT z@+o@XX_bwRf0Ym{eF=311ziO+2o)lL&8es{s6`uovlD82e@2`w3?F1-Yh;v_ke~@_ za6-bgh-w@#fxs#Rx3L3oOF;Ad-wv1=NU^X0WXK7$I!rSDhV~aT@{o93LMOvKdq{zrqOxmO_wN1TqycU6|O| z8f$AeQvZ3Ffa(Uti&*HzGepFt4)08}IZ)@bzxIzK%cpizIASrseqEiF1!aasMQyKy zg@!V+vi>QQl$H(({`afH<0jTEjy^z^CKf0MA|f5Ft%6=&f#TRCBwzxUR|hrVx{LIB zaA*h>4Gr!2b7cjE4XyU9ET4CZba6spQUG=?7})PECMPE;KpnWf_;jC|oJ0Z2e2)N8Tx*? z07@Phyo(h}&ZmJG_|K}m5Tl_3v?&)0O9X{n?lS}=B=~WiLy>@x5ad1CbgbC4G{5?U zAEw}@iyhuNe`jh+L#_ha`yLoB0YN{7KF~8tF#P;wm=dG`f)p6|54Y4q5ax~i3X~)? zw6Bqof3Cy<6RE8|3*_=^@DL(^-w|m9KL=NWjO+l^MH%1Y6M!CrjnTLg*nbJ}@xA^1 zr-o#Ngjayu<{$hAlg&s;x0AsGRx65J7#$Py56|F=A26T6tO4`!Dt`~|GL~wh-gPeN zAjv@-s)?1?@IqK$FM3Uyc>rxX-O)%F5Dg4R=s%#Bxm~;5o-s-AXX^XW=@3V5o+j$YNVt{-F>|!IZTGo3} zZe?w3sv;srfuHi9yopIpeZ6DCV=5TfYfSo3t*x!W9GqyjTYL!gZlI$;qM!%{1@!~% zAE*OGKdp3h=70|YaF`3=FHuPZtuD_1a9>YfAJoJDK7amOH;7^g+Vr*+uR9Fr6zvq0 zM&L>IT+wdAnf`69o$6%^D++)IKh?@(Jay13F}D z%MrvU!07->2AmP7L-CthU@lX_b>X^1)?0pQC%5GF73U`g^Z86xSp8 z*OTF(X-y)Fu8AH=K0Byij0!khrMri3Cu>qU{m~n6(ph16EEJE_{~DBuESLx_BcmK87H9}AzySc!19Ytb$l&$7tpgAn zKx37_R1b_v00D!07<@46)L=_x9*Rbib1wLiqv>?BlGyVl#3U~#JF$jC-SK}W=RP=nRd-ugNm1W3_Nyt)s011;C0zW&XeU4rL|q&1RYxq>T* zc2N*n`LFx<`t|F8GEs-+bP3pQJbIUxg()d1g&z-6oWSWHg63-1q_DUc1|1$A0{7wK z@>1COP!IGsYBiubT=fz_Udi|!ia@=s<52yn3g-Wc8Y{4!cXf5SMD(B~p97(TMelnwmfgv^6fk*4 zM3<<55<$wy2j`CpW>3^lk&nYbasf5HQqQ2-fsyK8++=8I4_L0-GQ-W@Pr}lV-PTPu zYkpt9qIuOPfUP8lN${Jax>Dypvj{-E|(?CcXDBmqnVCL84_|kUv*wF?5*FQfjZ~rl2PZt&H>o~BrXNX^*b6NE2Z*erJ+c^ zI9P+q0+_B~3NXlWrcBn5Mh28W1OZca8Z~R98ypho1I;WfKK#c%KMcqou);_4-@oREA70HxokN)zzYMd%x09zVcU;dgG(Z}&i?LU>RE(AMeGzRO1KS7b12aeG`J zgE#u+@5DT;7NKikunY#iLd9e?Z57$Rz!cv&TnKdNU=rQm+Wpb-$<(wCU>4}!A-#e; zJTueNj==kQqYNhR6F)4tcs8uo1xfVHKb!ml0vlmb08dXA_H;|A$NAa^@(fN+P9^5t zU;+S6-8yjeuURj4gBfnxEr>v7YjR;Bl}QL@1cbd$zstm~#-J+CJ15Z1dCx49QRP`@ zwu7rt_Uk;lNIQ3_-P3)$LVqQSsCu{Y?KFM}At=q}$(F%9B_^+!n69_=dre*+uhV{S zX?Z%IRNnBuKUuu7|K`_Q11iV0mW)hr2B6rBfM8g%{t@h_U{C@+uCF&27uQeS5+)$C zy8y6}SuC{e!9FA^>Ik^8z*crRKQHQfKEU2(w;R2_=gG)vr1d^Sg|&EG6bALM2br9J zc^AxT9>5jv=zIUS1-3G3SY-q*4KOi4F@$_P=)F5&$_t4}NgKxnUkqp`_^g0sr!wzF zdVVcY^0UL+8?fgfMbJL&uB0>uNUwh-9bBhdb917Tc$0}NG4vi%0jH6b6+KrTBLWyH$OP%NxoPeu z0(&PtT_0Qte?LEV7lly(ZK%t4&4y{90rjWBer60P@Lfm&aL4yAre#;oz9S_5fh4BxarFiI2t!)|&S%#cI?N7CQSiJ}=(F~-gEUGdc?9e9Fa6mq=9I2Psr^X)MbtSWPA2)#P1!}mBRR4bqM}fdD&~R{YP(=4m z7(gZ#&t?}E_5!8{A*){J?9@NV94y2*GoAKrizdCuu>~;B1BfCWU|-?k930E(1T`LN;Jg6~?!SQ5y*)Qj@vpq%Ez_%Y ziVoH2;@+n6e*u{*Vq#*hUb~xf%7CJv>nzcNQ?NUNwo$WL6ZFBrqKnQnWQu`AL4yvO z>hOpNox~-u&q~8<`Pq_v09OFa3Zb|MK)=!8{07uCP+RGFoB>*@!uUF*ZyoIEWo68J zq5|xcP|Gw3zjo&^TGDLVHLX&=c$ck$8~``%kgUjU(i;L)(XkAn7iMq(kM{O{0$mqi zDUuE;?ok4Qg23l$8@7SRLPlnKKMbM55;^oj@~UDK={{tM7sqzSYZ)ZLGk}FC5qNK^ z`Uq3OgW*9T0l;JG0jC1&hNIbP{|;?$=Bm+u?*AgCCkUgBp)C%IQL28PuVZw(0B+6K zR<&NOSTvB7dim0TOvr5tNH_3Gf0tSsi;9r91JyJjVSq5F00&9uJ-6jl2%Slx^WM~t z?rxK)76FZCqtfBzLi3Z8aT~mg*pie_769(u+;kXQaQ}Bts%t7J{OcjSyu7p*qAW|j zNisDMr$EyKtgR0LSa^1}aRdGR=Ait5Wr~j+0D<}Qf_LW!NDKjA8L+=-5K-Sj&&j_T zBkl(1&_GAm10gxk&-wja)xf6%dlhioC4$ibRPoW#eGD)d;O&4^3o?OV-PMAbJ~`)G za&oz0$G?OP21)CMAXwz(0B8mk5D@xC;BEv(MoZI~LF^+B4y1CySn+0dl~+kYVIQm` zP?s_jM8tu9e(1Dx^D`8z;skT^e{)uBY!M z(1gY6lo{ObeEC=kG zTCoE-7p}8b&6k3L9%E@uD}WaVPCZ7S3BcnZ1}K_i1mop`wnkC@s=V)Xd~G`4>L(&L z2BI&K3GngorR7Fm)acQT9Nl%@IrOJ?`p-}y~X{4z14S^wa45Fvg9De09r~g zh$O_z1Cg=Dz6RzqPe=uBkOB}+G9M*rMj5ds9j*cIE-^3#CJ9vrJPsY=;ToVsVPfKf zh7kn%j$aA$a87hYKn&Gs0a%*z!&gG3rKO<+q+u1-zqt^JZ##8b6|f;hK&?tyqHwXS!H@V0k%1$pz{Z5`B;Hh62>K z{JnkN$Wr~5OP~pY_(mNlSYU*)OtL<8s(bst;bJ$5&CrA>2n)pULA<>Vcn^S62Z#fR zU;t^kM4^Z|58P8M@9RXX;j4kVNi7q_RDZwP<@L&O@c&r=|F*Vq;DKz`;=loFXBlYG zl?w9m02#0Xxup2*zdF`>JB-&P7J=fg0doKbAE2ZFQiqiLzmL+ZQT<7;HWTvG`$mOm zHFhE5AFZHH1LY`R?IT#dfD{AV3gD&ztqJ%J;EQOze?Jcr4>fiu)0;!4HCOWIMXy9} zec5tSSiRozMyjj9|L$yNq5@6Zz<>o<2Zr7c^(}YgK*th^yoL)mrOa==Zdq@1>*j%= zMRm*?S4&D_EJ{hSEI1;FVKd5%fImL5Ee4O(?7O%R9E1@wsKRWH;78$g-Sz9&DR84o zhJK{{td)rZVhb4STtGzRUsoz*{^p;yZ3VOgK%fEdroOH1VJP9%a|*8)kP!f1>6O#@ zo&IVAwK^D`oCBmpd_}WXmm?!UI`Ur(2BZK0C<1tu-Kk<+NUz<4SjgvJas|{6&=qWR zp2~muN(T0=pMrIuE9Rf)zrDS6w44FUEjcMk3(z>PutaIMzVSOUL5p_} z&(_w;$i%`PE+APa9Zm$23P3BcW_AKSD^MHi8XLW@cc>D5F1^7l-y`$@+G-QrvoA$4 za%@aY-L!UKyY30X_yn@$EA3vu)&MpYQErp_75UWXd(dgFtLGxQ~5&e5^Yj5?5kD`mFF$wrFwyxhMcDeCsP6f^2_y z#Qu8XE{T?w<$DO4I;LP@1~>l=Rr>YEF&K!W)mK^lJXo*-EiM9NiGQ}*f*u+ftD)k27vw6G90Y?bprSI_s=j%LuMHMz(I$&CLJSbT(!WA z{3libL$`K&gf0LC+gky4`2E5W{0j+5ZB`aIEF?e&&NX~_Vfahxg||etwjuMgYNGJo z8H|gGs$h~EJ)HJ@{&qMRcH3LQAMBm%YA`%B#7=frxI|tDP*tA=Me`sI5yT# z3qUC|4Y-3Futxtw^%8uz`!o8&OXknk7N}Y>l9H=F;5C(o9q&p+<>lq2q!0&e>!Lx{ zz$*i!nH0xIN4E+UXmBho6EiZ%0iU_g1uX5sk&*C_kgPeNyA)$*DAM)Vivor4KdllK zhMiK7loS${M$VoF+2($ACA+43V7$M9AFu@y3IKwus#HFngGU4aUMD5OuuOw#ix5z- zz-9rDoruTG1ts|8U*5RBT2 ziu3b>%a?xj>ecYzAY}kB&Wx18Uy5_)fgke%7M!S79?uWtTuKpEv9Z+~)h6 z=_qxH<=dToC@-J7J~z^7DEnJJssw}B!!adpZHyG~8cV4txV8bB(O246 z@HFfY^at94qZ-_*Mqj{uTwNo6<^y55So3`|RPU!TXeeBU6)8v)*XIcV8Kwk7M=KLu+IWIvhl?d=^>#yk(+3@G-#$T9 zGrkA1y!uASK3wccD6>y(wWNq4r``N*=|r~hl)%u}@iCq)3m~G@L^cJk(YqoTdaeP+ z<13@7S5F;C=snXV@Q|piaE})+jKLgXCd7ng7#RgdiOGD&Igo&=o!$|p%!XCf2@Q&6 zX(1uJRIz^PMQ)@`5YWv;@5*HnI3;wI>DS!&q-j*wS5|?d5l;`h^CfYI291!RL1Mai zc1Q&i0s7_JDikH-V+;{Ne?Fjk7QV+~!-BNBNO<7hdUD-85oh0C=#k;50fJAHG64Id z1lcFwoO9mc*73>(ijY-gs7%df#b%L*v@wMm!pb(%K)a5+gG1;hezr*)KF6anZTpE! zSi(bk8E)$O>tOt#*w}P&K9v!Wa=*UviEgfc!|{rjp&0U1)u&3;sqi_K*UWkb>^uh3 ztN`lR9MlP%sc9Tjd3==u2&17Q5(^sQRnwq>7Xtqs4MLzSRm4<7)WE{x$f7PQy~!p= zo4Q`;L`85czrdlu3;X845@VM9SK{~IBt86;b|W9-Z~fE=31tFk0T6qq2Ns)Q5tX1A zQ8xN4KY=BFcLyT)NCGLfgP)^W@~Qc93y-Dkl0e&%tf-$anSx% zS*dMMTWGL(V+I4}V?!fMdsi4YE-EuIDS4F?s87+MXyCGlZOT-srJ+tn zaUBc=>C0t$CZD#E=s%DEF_keNp9DHGr+Qa9ZEu3H4rM3SGYEN#ZdK_!cn}dH+E~)XWh1IG%bLu7QmjNmS0K48N*pOOKU(a0ebf zz#jbT3%Igl&IKT^Fj=~72*{TL^xm&twpsx zVatltRI@OA%k#R_ewa;s*8b~URa=giE)Q9|zV^#$vuOhfVLs%6-;F;@RrIK793@x|iLuLsM0(pHRfkSZ2P_#^_A_%y!leVvLO+ptEqcTADS}D_spB74=e8o+_?y z%2VVvn&T=ehpAyA>p0yLfBSD5zho{%8B<(af)j((Ap1v4Lg8GQZ*d$3z{7rGiAWjF5XEDpAOR&*a)bKoyS7p~(r{ww_7nQGlI8=k2!mx>a9FA2kC>~jXT+yl3d zf1VNo&0F+^utd%713$jXbiYcKq4UH?mtiBge+&H;j4tdo)lp5d5{%4jI>8dZ-aX~g z#cWA$SZLu1$+V}-8$_+ujZnE!b_dMel9M;(rczy=_JtVBrzr|Jiz!VJvC4)1S=RK! z?Jm+E@sTDBYaJZ@D;wyY&?-;A|L13ItDPSHhaWVnd4C1;qQ8ad>HLSf%H)UDf4$Nn za(N%t6DK@Z$+VY0(zstx@$qr>vmBm5`s{PBo0k&Ys#k+`^)=mAWZ;2wRGXWxI~tjz zV`6RgC-^DK1a0s1hwaAVMbU`w;n&i>;rs`l^V{C&7?i1CO=dB!7MoXdk(ETg+pEmr zv+pILgpA2gtg*HojA_ICYZn`XXz$9mXeI}>lKBmy&4nn0HH+al%Fs<0D}UE9LUZ~!ZH`rN8OEdCp`&Kef!2bS~_oBt?J*M~Uzlt*-z*op{QWFTyT#e2& zPYpZ3u=!#Ud2LNBT4#rf}f z97AN$ViAPW^Iu^--l@$~TIA%vOSk+RFBBCTCqeW!OT2 z@Cvax^!VYW680|zGe*?O;xc0DbUqzvrZV44BV`TFrvoE{;|6qRdk%b;)DMD%{DJkV zv-Sakv}u*5yzfZDL$1j#D(KxxxhY!Lzq?4WU%ge&(nM(ab&MxNWgo0tS%~0MNC`(d z_k{tK@pwq~R}+R`;hQkz+GY$oUzcvwR#axVaJVoNcJ)U6?UR124=6v}$Y`I^)#@y=Z@E>V#zIu`e?ZIEUl+n4Kg#KT(`>IGBTbGy_W+4uK)QKkhhjDAVo6lTkrKbNVwldVx#vBtauO4! z4M`~`yBZN^*>q31nj##BLpU`_qJDA8(YP7Rc8cBn0`pHr@+Wp7{5ZDulb#q$$QEga zC&5=4qSEm#4CPfTEG4^pTkH#^1sbgit`Vv|99w#OON-*jsE9kby{?UDxb+USvqi+3 z72Nk;d=3=8r{~WgOvjp^Z!{k-rbM9}EPl=gQ8{9(uhRwIc%yVBD1HCF-+Lge(ZVFvQ?yRDu{&rDc~XkY*J3z+HDJGKOHMO&f0P)o$@|}%dv%P3 z$=c%5cDjek|LS-ljEGXWv24!J(V+bv-{n}mtPZuJLdJZ^>Hdxr3XDaf70P+-8RvUl zU;3ZkpZ|WWva$_nkeADsORVBBZZNzfLXPdTcf2H0$z!*n3Duwsu|3q}h2)J0WfxzI zjC?oTI)N`)^-CVb#KV(bF{|d_P(dC{QAH#9xPIYCnpOq9YUQEG8^Q_u z4C`EwJYIo@0_h)u;t|(kyF+G7ydh>WN~m?ubv+1+=4;BU-6JIRk9PX@>4!hnKN)f^ zWU^g7bXUVO1j|dmZa2*Oy>i&oQ`Kp8!@X|LO(y@h7}a?=tbVVQ#z}F9)Z(70%XS2xYLV`ktX$coH8jaKap!L?k5#IgvlnT zXBra_^ETEwG*J|#qPGgvIb=f28MB}+ra^C)!s|@Tr(sou{e7*DO^=&Jq5Ll|LMWpiR z!-iyLQwo~aPUIq<_de#0n4g~;Z3R6%7-%0VO%dLFI6FLYQt#k~g1l;P{%pUiyta`X z_{)EyPISCRxPRp7`5;0M#Ixd`>T!e}=RIp;YeakgKvX`SqAF7aY;)Y#A-zGJ>yUZkbWPcJOo- z`(g9O1HxE)y2G8TTmXN2jmv2?`N0dg9qyA{iqi+j^gnasm`~TG5$0{YIo=Cs?T&XX zg$HL+W%F-VulzVooaD<7y9;*7SRy&38eR?MM}Fzl5$)!{AIG`nmHAUS{b&}yn9oC{ zZN78DOVd^WRltD_t*Nt%3P(z{P1Wq&KC|Vso6eTV)-Cx@IS94QS82}CXgZKM*zjPc zNlsOVea`rID4fO^FVgW;JZ)FVeI*jo3TMu6o4s?dDPn?SI}{-Q60HE;N{#-@kG-YL zirMu4xLO|vqZg2zuf5#I0zT?m?adT;ew`2HVt(%UqbB9t(5n$Q{&l~+XSQU^$3-6k z1p}QeF4X7F!*<#j8Ncj;r@t|)vT}~ut~;E3P;Zy3+rdldaZ!rza5b#_{o&6b3LWUa zwzt15HPiF-vv2))5w%6odim2*4kz-u-p{0iM-kt$PFB%c^ZoaIzPN+8-g9iEpZ*Xj z-Pq*Z-x@$Y%&A+cvdOi(7jLK};vTh-=IM^jf^$j~Rs{Jz92Dy;jJ>QN^4St0uS&u2 zK2n`I`YL4mL84{)yVWq&YOBM@!0B*-;zGyK4l(3U!dq(L8cQ5JI@|EEe36q@BICXA z)AuWX4A)Apdm$eIBva}##V0#|h6y>I22!r9FEj*DqmqnsNzU` z{5+DyEwy}_>nasL;nK%|6_9(Hv&+Z%J0qp(ftf}g86_Ym*d9%nYmCTU|6uVOst*<^ z18PV6?)lWH1$f@lX`QC)(O;(MkW1u89!j;ZFUa^OO*QpR8}6HJo-mO9z9t^9nYNO{ z-glg_d(`9lFZbxw&z_g;kH@%#)YpDCw=%+3eAV>KN&y6;!TPthG#(OB=3zrxR)TI_ zO&r*_hK8la?@%|in@>Jp#75_%zL@04@BG;+J}cQ6+5M7ij0Mi9QP&tJ!^OL0hJyTO z$J=+{xvdnJc!YtJSWtYlW-6u*`mZI4Ju0!4I)jLamPq@H#orVkTD=NhJ?$8V5iDKJ zd8V($!9sG_cWW^q^0xX{ehCU#@w1M2{IHX zvh_aRg|b)fZ+IVfT& z#h2N8$g$R&&kVC99jyC{O}(2b3~|V%#qs ze4pbWiZZ4*uv$D--%C5H(L0RYdmcsiTl*FJwY2BYVIU`PO{8|K_4(t$o!GC&F<>`=R@;hEQien4C+nGF?^JCwC zo+7J-X);8%c9#gW`Y7e&P5vB12&iLXM8;myk=V^awR)@S@(^ZF$HIYqw^=AgCGKP` zSI2lM`j=-mb7IJ14fsl&iqACo$6nB`CD+rxRBdwXIaf3M?|1)Xj%aB*9F$qfcRf^+ z>r~NPZY%N}?WXEymV#VO`H}|$OCIW7bqz-rrOH%&=f@ybr2K9{2ifz~^o+MH%BBUh zkA&8V{cK%gh}C^6!ONFa>IEq*tFn1zl9XJ06(7nfhGI==N=CA45EA$_Gx~JAD;#L9 zztwy{H#DklEkeLa$LN)A<63yylTe3}aKmxs<4DchAF+jxgoTgV+c9uA0*NK%ZAv^= zetJMJoXKP)v*Y2i;1GQ&ks(EX>}Oq~uk!3YBDUvR?haktNBWDM!&~VN*y0jz{bP`< zcE>tAUFP;1lhJ=oDbJMgzTYEYgdzKiQikD$6h;Kogyv9Esy6S(m7ib=i+I1lp%Kf9 zl|{j-q+4Vd9@P>V*EulLlWZa_qpiu}@$C|(`%uP2l=>|BW%V?QAx z4`heL(Pxp8Rd)#ejBqdcn11TNT%tmCcifDZ&4r6WvVB4GHk6B3!xY-zq{zh|_E@Wq5P7&}MKBe!cc!!OTe zth8HVLo2FL!FyJhcN=BD@A??iv`K0GLk!51PZmls0>anM3$GZ{LLAh=mR% ze6#$GLf|V&%=Wb;N67}YmztAd@gr8RrO5l_q1@N++8ARfyT7ybXK|>QOrTs^mI^V+ z*lHls9uB2jC~F`VyX=ORKzjVXST3f|66p64;qdyW>}&ix%LxTh{fG43s2&me?#!pv zacLo58DmLb(b9^XlMWvhE@uUYfe|~2Zkd1x#Rg=WSA zwY0K>#`hKP&F;Mk_^w2ve4fgBEH_)J$31g*nm*~<;72@RANGrPv-e?T05-SV(& z)LB$Q=mu}=6Z?aELBc10(W3Q|O#^J#T!dOs-`C7riYvgLYKA8=7 zd7AqCiRz^2Z!pogM{k@rJSrFwB8=jeAE?S1pS!x!h$=dnRQYqV%Ipu12A=K7Fr}ewF5Z8I zf89@Pltp9Eqg(!`Ndcv)Go8&K8ZF#Ec2mJrcSAJZ7N7msnUWUY%d~yuyv)%j)@#`{ zN?t;a5m>T4s@l?X%|CiHgvqk+JQ3m4gm%8~wZlZs)J0nOvLIT*<=|_w(q-{h+rYCD zZ`K{@X-4cZ#Li>-5&2OfB9?R%6E@&`;D1FrB4sR6=Ga57%7gfmTsowxYrp zhA^_LHOhWSbH|5dapY_@0zruvf+07mU+182bC|M!6@{ZTT9m{#*)FW2f!0)rP0E@U zJh)3-RuIuP=}WQc>C%)~WQXm>9^O_a zT$E~*?azb>)ZM%gSvk885teXAJ0mT-8qS9_joM5N%;dB0U$Bk!UT!mI5N*7qiWl7q zv9-#h8Q~Rpa>ha-GAjF*DD$s$p^3*%+NA!ucUwmCdu= zW8r#kq4S2v`(U!pYxJ+o9~X(!Wkfn`GrpVMm==fRB>tyVwzbzg2R@>i*MSNqaE@GFzcUXtL62l8jQxEJh zxVF@bx@|OE!G@?L@peuf-KAU4{1;xrj!RpcmX1dic&2SM5zxaI?1~0z4O?)}HCOnD zzGudyTVq;lHwMw5-jG`t%4`!1OobTgJly*bL~wi|P-n;Ea}eyfdNuqIW?7K;o%wP% z;M1++N6Xrj?wFm}Bj=^dajwFSWEH*l84rWotY0;VqD7i&HztJ3hx}tmHZ0@=+|4d+ z3P%X((9_yXC$ISy77Og7bc|IV|5FU!cdw@jVDFc2-KreXTk{hCERg* zUmELKx+AUyDT6rgAMUV>Dmd|@L8UqO1`qd&aZfMB@AM@(G{3Vy#xCUOwhqG!*{0HB z;xP#hTfI>MU#`KYN>E}TJ4VfkC!NA$_gnc5>#RC*m1$}uTn16;7W+Jn8%h=Bbt#iTaY;ZeX19-+kozs$)=v()Oq5o^ zsiAps9{*eZO-cALDIOLhUJ!1(%9pQHB{io-%-A`0J5nj;zqW3>Rr@2%C2VzOvkTqi zO~UEFT|5>smnyO$?-DF!{8AALR?X5dPJ`jVXeCXVvrad*u)(qqe-%41SR$fEa!cme z3Cg7CmK>%+>{5V_pQ7&j8nVtM9!IjLA5McMlg3W8?^}({4)xQU8_GK@C%cw{&yXBH z%`TO}-pvTK|N}VLv~L^3LBN&ndSeXxM9By}@gLEwX&?vaR5UGhUmao^hib zyX;I|30js}Ps$9pf`R+*=gIknbo|WEg8PoUg!J!(&M_A6rQs%y808CzxC?(!I-SV-Ac32^U8DU>lxZRvCy6}o)iV727 zlZ#RMmOF3DgK1TfWy}W4#DX{t;_UW%g;|bL&y$Hgt{$KSsyEqRIB zy|$>f6EO0|f`N3Ydi$Faj`F6vFD+UjaX)jMpKoU`~{Qn6co&;+Uq&BdXEFEbWsrp_z9Y-S*!PR z&Pi?Umk6eyCb078&-_+bdo->&$iGSwYP(+j;JMe%ZfgXd-;`#g^Dz17#a0=XA`s?WnmQ@D$ zzT9HGt9{M%>g?^UjskbY<0?JTj{gBCosjSpMR+oXS}2>%Q|Z_3qmx$QoIYyj^V47x zg53C2L;mYIM46%7>MX(Cg2d;GZeQ4OCKXH+-;rmwoNVBGV?fd(rjIANZ5KYec>$_a+f#M-ml=GScxUN4(y3Cj{^P3{ z6BKW|@zBXW$HR=RI=SWbo!>mt<$8@4-6LNrmws7p`ZVlbdDfhaF1&RM#Sv$W!KVvz zcr00(asHGdeCh9#^K3jo+3U5{_?o)J@^w4M!p2c2*nWEXl2H8ZA#nFiRjl1#CbxS^ zd;cJ|NTVJ~nUaGYFR!PgC1rY?#~s-08E2)P?BO=J2&7RPq`$uU{DTEoD=R3}+J(8a z01fpjFu_@-9>(rG*PvVRiL=5wj_ar*Dzk{gK!apwp-HZG{>3GM43={GyO$y&4W%>_ zJR&nZ$7K>eA(`5eJ5c-H5{_B_Aq?-S&#lA zroEo<;0pckvLIGulY46f9twv-g>j&SQJQ^!muguRD~n#STtifn6&YvImk!p5r`tIz z?Y?Wzwj#-hm7LT+pL@y{S?+M=xqtjkw`9bS=Cc{vXltJlujA~Z>!xAvhozmyoAH#n zDnId4+(-BDT4>H~`8={!cF#fKaBAULDBH*J*DcTA`xHnMF)+LJ^KFnmbMUkxRtjoh zAx$^piSo2K=%UV_d85#v6V7KLPwr+ZWVvgcWmUNLa%q~E0<#xVrEKN!RWVj1TVdQN zZn+b_8>=A{SwsmU9yh$3myqBlPsa39gOD;62i6=_T45^nT(f(E%e!K zu=v?eM5T%EpxeITMz1#WD~u>s_^zd%J@4bG2t=vJ4zKC~%UF$mvc&D5Q>|OIx&?y# zE{_;T$!~83m37RAUhI4xP4%8>rAOjw`|_u@k=uLck{s92;ChTOnDPuU?zZEu@r4M* zMI;Ya%{TP@MvAtEr9z@zOwTt~KY9=SpQ=wI5ZOL_V7Qvq*jDd8Q&>#@#ExzT#sTPVQv zXE(n6T`Sf8;;zo^?C1U!*|7ET?6xciKI61Tg6gdEIXdi}VzcMiS(_0Kw(5&%TX^l- zE#$rAB`2~yk}L8N#ORFmo#{?QqpL?!ny-flZ3|}MQd?)IQb?Nv!3_w7|e&yet#@g z^61!Itr9L@jeAuy;Z&6qc@kIID1cj5rI2PXkJ7ATjGI`#l6mNqB}y!m_Yih*x2)qj zvecO}+v~RRsuaF!FttZFTW>85Ek3IjdqKfYi7=m5hf2-4fOv@|K&_1?C%I355?!3P zBue%;thsmsJE!PxZY6ibi=T-3s4mm=_+OE;dNq3j=m`9k^5Sz^=JbcdO&??oA9?Gn zU;GUXr&zYVdG3xK_R#JQrNHq%PZy;d*O5UHPMwfQ#D^H^Y!?9*?$wqI58uL*)bWkC zECV-Y$Sk7dMncMSG3@F+SBa~`e7b~N-L=%||5+5Ls@`!1vL zz5A*366O#CRTT5Qdr9ZQ>lURat6hASz2YA8NJjKDG|Em_wMK<~H_#V6-;0T`Y}y#| zsGjrQjZOKy4IwS-R>{erJehPyDW5Z*YQ`rj*6dbzn@#hG{Kb`8ON1T3p&iZ85-*{= zgKlW?%_ym`tSM1DO@8rIBqL`PF^3GPx^)#0=d>!M-VP|^XJj~9_T75sh#v0FVXYZn zy`)&I-CE6HL6o=5qp2IL8Vcte(+~aq!mW{Hin>LAGDS1uuV7lohNwaAeDM`V>9}^n z@fvjN{E>fW{;!vQ%F7Xmz5i1)*(dsljH~<6xPhxOrlK2r1Rs)*cfrC!UL_1m>Bo!L z`wd<;_O>cN9Xh?m1I+Sh5BMBVQTTf)G|2cew6t4->^I!T=SPFL?>7>yGg>NQ-j18$ zhc*+R%{)I^ak?UOMz2T@sj@pvl$quyuAm+mr_?b#iKgAXA|F*&Xz=&9-;rEvAScG1 z&x^87{uA?Rz$korOjg*T1~Ss zu~k|cirv>WumvsMO6(Wf7hPiChhniiohsTcr6@@fZ3}jpr?6LbE%Mx&6|@wv&iZ+K zV@qT0JRE&yeI7(8H1ops=Zc+ttg45{A-T1V(GS1b3W zE2peXFb|h8TrJv`;HtDZUb(ToN_1uq|JSZrVNCxLttXRpdVDH z2GQ;Aw@B!coGn1(bru4gcAqaBYbEEUe>&3H$g__pLi%>7tHJW9EN5W5?YQ^j&i>cOiyzH~W4vE-H}gc)oTmnypFXs+VSSvW zvDaIuGm$#;d%99>nk!Pr-_o<>lh3J^44s^GW5bx_H z4*b4F@?1Sql&^L2<9#H|1WToV<>pop^JN{3^u4esAGbH$(baO?%5>GxY)ne~)lpE{ z+^(fiS9P{hwMK*0`LgxyCd$7VJX_5xs^g8xO``sQhbe%(1I7504zIE{b z*!rrdwz{s}9W;1=qQzZ`7AWox#ih80;_hz6wMcQd;_lXBg%)>rC=SK_1e5BLeJ)~b;xu{6rKhMviNiLkTNY4!TEC{8bA&LF+vo1`>z9?hsSwkZZ zr|lP8Zo@p2Tp|NlBuyKx*L+55D-ncHM*WjXd{yX+)tu)kkp0vQF{Er@#UdT zLLex?6G|z&V_Uaw(L$li7$ISuebxW99?+merRiBPDx6;aPAyXD^(b>%p3M@J`WRw0 z>>kQA9#tRH*l$`x4woOw9_K^P(sA_VeoUam#eTP&}r>>aPkzxw5zoJ^EAkDxjJZXi50w!cOI$yM;o~`ws)U9Wh%jF3#Da*W+ z07Ef53L6`rFYge%XdaguzTbY`(eLiovyIO!Y`#`Bf#cezlGM|GX!SsU{7rW9`3iq) zKMj~pvAp=x2iLXEcQB~T@T^>HS^)6vEr0z#T3cke9Od9vA^EQy=P2u;r#YQVc2Cy;OfLo*Z&*4+Zl^o&yS??|ORO$FAM8FpH(dkmQzt2!hT=733)`DDg=>p;JXj`=&v?7y+`dde5X%enkH zn&Wj#_GEhXsJsf^NZRcXx!dcX^W$rpPV!Ya72$VrHJ` zFYtPVB6WG{*R3p}TwEQ+*6-lG8MYlg)O9gotOGq`S<+g6hn=T-GP7+nwEu_1=Wmx@ zK2`NcMoPy+^6X|h)_cStIGPvL)8s_@&+$S+kJUZ5)$wIaY7xOe(#9NGBo!zKvYuQa znU{>CA`Vf1*E*U%5Hpp9)4tD=s)4fU3>1026uvD&$bh77 z9hp7OhhyHg?@%F{Ou+$cWhVr=K_$CGHp31qca#e&qtqWMwvGbhUOas??+gRV{8?@T z-M^D5FQ^lLp+P@L>~f!`{3Hd$Tnzkn!QV}#Jw$9#ifF-&Wkl27_xCFi9Ddg>iP}*6 zD0*7E#noga=guPoQBtW*D13v_|KI{h!c1`|K^E|++Xj=25PL{<*j7-OYT zDbhbGG9&a-YP-x?{v;!G32w@y%7BOG6d`_|I=$HA565&kfOpg#!yQ}E{{5vl2piz9 ze-yPB%O{ZImrU^sS0)wo$M*)|KYU~SZA9c@XJW;N@btV2-L7^xs?}54^Aa}bzHB;+ zYa@Bk)+Uec$6w>fOBuBv9=?31-*9$jM9#&3Rr;H%19R_Gz?s+rJI1fuR^fNp0ZVo3}T@r;`{1s1%a3B;SR|M@=89-m9sb2N}xyuexAu>8Y z`Ht1Icx@LqZvJ)7jxX7g8zL?WiDiQP`jJ%-GW73KKDfYeA#FdC^XSn(`>k)w0r-$` z&Yq9SaS#L-Q2>eS7yY%jN{=f4#EuFeK-inj*5v{ya0n3CQD6^zxZZb=fP=Vy-XCUe z*Ztkh-Hr+TJ77V;X)r$2arH~kEHOb4kZk-M(q&dp75S51p#{s^!C(^EO@1$az4a(< z(fsdP^NaTSS;ph`!8dywJ}2|}rc5l913;mm^=5@mF5+^!5b;&>B;SA)gB2<*kin8~5D7zfM)(TMr-g+5PCSyNa}9jY zn!D&vwA8=NUGMpJdHE?3(J-NEKp4P5LDipnUiX4dF2>KcmjOI-5b%!fBGGF(>}o`~ z`*6+R(dBSP-s+P;)tLl&ADtWm94&>T>{Y|Z``a_VN!X#p*G)E01M;Ojg(_(3aJPH> z`hH97`PGP375lh^F(Ay`k%ZxDD9_QOz;Ks=HTLJb{z7e3yg@%s$*;E4c*9I1c?HLbr~ zg)RQ43Vw(x7h!0`2XA|+fog%8i8Lc50PZh?Vu4-}s*Ie@8%=>=I60*Wf?=ko`m{U` zRD?kKB8sy9o_hL93YAgR1_imVD*E_eWGgz0h-6fC-Xv>$x$_R@EckOeLBx>ACm-TG zpw%Gxk!Se9hppBy2O`FF_vFN|`?|=!FKQxd;OIc#AO;u20B+De&34NJQ@Z`DV$qvX zzz8dF(I(I6xYtlC$mcB(oNp1kopU2JgI#v-d1*x$s`_!&Mw0 z#rtMVA*x_J-g2%@=c5#qnTI^L^H}!l?@yKW9I*xly5=$2O~nuJ=7oIkS|tTM0m^%h0uaL-?)1;B)i8>pJwXiND57e147ikYU<&)0-@@|BXC-JeNGLx@O9f}$bXJ#r7 zgu8zqG4J6#3u65~eDl+E{hTNhlu9#YDvlp};@KB2LaWY@<)itIC}6ZQsuk5q~T-DlNvl|eWXO=mAIEL1pKFN=7H!G{j=p&F~bX#Cr$4E}qjR{~)# zhP|{iR*S>1sw5W|*UKla-%5p1FgDmuevPGqC=AL>D+xg(5Jnz&mGO|=j^E!x4Lpnq z2>WOZ!v;`>zIge)a!|G$o!JrdbSf(jFzsWQ4BDO}Usy4V!9}d5ZW+*Gh@r zrcCl?5gf8_BKcbk&+kkl$|6}MlBqx8Aa2V}4284_b`xsAP_opgO{7{X)f(mwJZcMW zrwScMFvBB#VN3Yykv?3_+ykAnt6(4U<4?bF)rBZ`pA)N;Mtg4OkmSg|csaZN?8}AQEq{;A+vWr}=rmbj?F)y`SnXs;1*d z$+nHIWluXha=V-3hHzgVhW%wM)()VShwP{R4m0`j((BpThmqgOjBE#{=j~`xGjaY8 z3*cwgTFO=K{Km^{{MM%REJRhxNJOR8bt_e_&*7K+xg{SrH&-Q|y8dr7D{lm95TAG{>=w zf#=X-X33YXXPLCN%(c&am^Z0LI4aM*87i1OJ$ai)p~XhsX84i*bEjKLp;uQUQqziZ z>`^Qykyx=9i}v=Cedvs-!_^V}qo9w&t1kCfr9J$eTo$XfyuAhw*Q#GvdHMNHUWG6O zRbqcdiWC%Ymy=3SRRf6OfN_AZ4S+@xk?mepHn>CWnj7+|hTY%}f%Ur$&L&+BseT(% zK=lj8h!QU1zvq$=iATRL)v3vEs8{$?>JG#4l9NBfWW(4C78}m&w28EdWIlB@D9;7j zkB+@bEsoC!N`pgcjfH=I9JbzJ3lp{+41k9L^AM*?oF0le?2LL!4XovBEDxzu=`rYNlOSz0W^VMf98=!TM*)tvQ;0hrV%$>D%`5#3H| z=ul7Rc^j6N8eEdt6N}U)Y-xRQ{BKD15rq_pYB9j*1;2j24|3G7nxr7*$u4CNE)42G zZUkzNCahYE|NVmmzQn4F-t9My5=kvugOZY8s!yB}S>W-qu?ls@1!LD1(!Rqt564+Dva!dH1Eavr4Oe zcUNN}(94_?p*+2YQGs|}!w)mA0+=Ks(a-+6Z5R+`R4K+F^$)&F@j=z2e~=>8P@~Vc zzJ^HnaE;q*G~7KR-;ncVCmTyi4NJp%ff=x?Gz^O1>S^s1gs?KA1>?wa_53adb`@D8s zNs;#a>@-+3W_Kt4AAb@nL1GPl#zIYV9uY%vjfGu zkMY?-I*xRIb(OL{z|v`(Dn(L#8CJtL&qMz{vn?B_2CKqQX#e(<4RHRA4B)D&(oyFZ zI2X~EQRGpm?x!*!qlTb9aguo7nN1`jbSTMG%!a&+{!uL>8ivsE@pE2(A$#(m@hoMD zI21p8OfhnZKq8s%>ot@~#tNNh*bbsXB!Vtf6@jqFfI7mUZ9Few62agodvRwT`#b6N zvz%-!b6h|NRoWmlZkd8&H!Hy{Q!0(wUtaBAZ8uLEzU^0}bV>;EwI+F+6zVszU5c>s zFXS4tlWx%ntbJ|xF;wNV6@?dSGWc@46nQfxLaMM>gib(SEeYYC-jLrXpt+C|c?giV z|9Ec12w@7eROiCjQ0r^9>?0BVO;nxlgeT7MMgK%AB zQJy%#vx4ogRaQ8H0-x2}umYtrNMRm<$I1s5v$Sb-KN`m}HDe74h^?`U>iLc)mE)@%dBo>CNTJu)aI~x z(wlh7^H4lV4MKz#)k4Xbh%NHi+3tye3suK!9m1-CVqMisPr_E zEv&XXavH;vVqszKIY?sJ4NB{yu}CYHioX`|EZFGgTh^zmV=rL!Ei0vo3NbV|Xg+}H z5)er9oUJt*7WDa2)i|EdG${$mYY2BLZG}(^AotZhuIZ^m65*Lrg%-yxlL@zBwVDV9 z)O9;Sk~pS5Z|;Dj%iKLOMrp~DGuYIg)(o*_Nny|y`>bv& zk1->HlP_YeRf#rFv7~Eh*L~Vv!XJ@gL0SvOsH`6x_uQA@_`${ zN(ytcGSJr2Frru~QaWS`nK>HRRk^>*KjCjG!`KMg{!E_Mg6sX=ph2-gtaM%>G(lDa zAJO?xkpnvvbF^X3PMFJMd2#4*K4AC94`2-czS83JqeYXqyS4u3<00^O>c+)zs-D+f#rI!$`=YDE3=`qBqwn-;bT^Pvx^$pp>3T!+!HL9ZN z;dfNuSw9~z0&+AeRjiN`Im$dij?cBz5NMK)V*InA#9h!O^#&2paTlup16vzX3AdXX zl1}jZ#-90%?0HYBKTEM}%S7{lEN2-=i&1I&^|ZQQ7t-fGa>}5O@R!EIwxq1@|BE?! zoNGl&)@wtz{Vs}#a>t$Vc2oH)rhwa2cAY}X7L&>MY6O6O{2{Lp(5G@!c(eP@ z?zzD%>S3hZ?6NI@^69=4&lnWx4qxRjRwYQMWddv0iH}mF-%eV$Z_9R zq~2){SG3;*HByzZEo^w<3GBgulS%k>&W{C{aabM-zkq0RjH(r?-yxF3MIuBzdR|7g z$K#;}eRbqQ>NQE;!Ubc75+PGpWzPJ22(DS1n6Y{f_jj=lo6aFns$JtVSge~3z1Mn1 ztjh8?0}22a1W`l)Xw4@p!m;9SxhitIuO}AQ@7@0c0xMa*4`c@5V04=&DKGLTS8um! z@)UvZKgxo?GEi0Og-Zke3+Wwo`j}EXt{!mz%m%s%ZTT|?b{H=TgOWW;5Jb;xh^g6j zE{0GQ3V7u1_CJ24O{7~G#af-Tnc2XMxmY@o%hqd;Vrxo9P?6s|eg{kx8DfOC4UtPI zIl`DW013Y;AOqdkef#=w+5*_0W`PQGzf@4PLQ4TK8&s04p(KmXa7=kxj9@Yn;|E=z0jhO4Go0Ah17a}{*fv~zsx-j zCt9`#l;=Aw=8pobHs}b5lmp}uMYPL9D-#E>pO?n4MHXXVL4zaowY$tACBBDCoEOn? zTUB6A!nvl)oVm^4L>5dee2A!7I6>B%a1;{~q(JEoFb`4iJs9Ic zWp3>hu><`Aq+){%Lis`bUJRI6I0hkMn-BxFvdOa@K_E#hYR{&Yi%d}=oPW;SA|g0A zW<~8GFLuTh#t|QK2ndN}DO8s2e5pZZtvPTJ$*3qGgPt>4kVK;@QeKRclQcrFD`0T! zC(irFls7l!TAK)~%hvxarS#?w}z=%Ro^ag-^aJ9dLm_mjq zuA&V}aN0~c#SSjo(#(?8h48-&?jbp}>v(q^) z+tJwEYJfQhJ*+kR8d!6l#wGz?01$l?S;emYm-z+o1oDXp3=a%Jf;TU`MXi)tu-54~ z3i_YCGS)&4 zmcPt!f0T3QM~$4}Xo9Xt2-(A1JT?BApVEuF;e2|=SJ z7ZtvzWqSH4%0}TRu`lYjek#~Xz6u8ga_s%%jni}}vtKrWczZ#Q@chm=4*!U}>Etw< zKnqORVn(HuWarbZYwGlBDTmk4@Q*J;%^T`H&Iv}QKZ`+;LjqK9ZemC4ymSjfz9N?@ zp3AcWG>%J?>GPfK-b&FfuMt-^;vXjqU>0q0=iy^dmQ!E$N|cI3gE(S-rBxnbzOmDH zw+xb8c2T24AQo@V@n>!sFS>NLYv4}dv7^gl0`OAS$q$J|v3@Xn=%-)kD#|*0^$jEU zpc|bR?=2hDa4(k=vIC#G_g9xirb(ICX&u{-LysgE#fk8s!rKEOy#54gRg!q|+6ka%>d;C@9cQN7-9o|f3we|9Mt|PEXOfNIc`{%$)ThSMr zBFSDf!M{xIeFTLOK@Pomg1bsbh4t*qEy&pT=O^X;#CWh{o`rZV529Hx5F@Ub;GVVg zP*L{euUZ=DjTA%wAZif7;KOnQSIoU%Ygp2)9#k{d=H@&$N@pOeI+`efXLP}v3fhi1 zpK;Rz^&Zp-y;PwXx8o3jwrcYi{lh@q$f3jK#d%TkSW>W7!_&OSf^td+iz?b5iUUB5 zo9^+aB^$*D$i$ED8P5O^h)t0$zkcE^QL=$;$In`7#X27C<-9fR zW0r>;P9ngwVA6RrJi2A)CY_gRH{J$yj~WOb{yT%rn1Zs0sa>fVhNk)hMH~7=%|S)Y zZIQRS+TFdu$3igq(I5Ohjz&|%{|q)v!+T9u55nARu=}!1f?CiF2cYN$QzCr2|6cG9Eno49O&&xMM+j5o8=*;WCz3@tczP>OSjg$}dnP2Y z*QBc62OFR{6b}T?F^NF;qyR#c?%Wyb_gDb6>~?$~jGayJgZOn&8ZnU{0>QKai6)=; zdl9nB3vs$oZ}3)Ley(~G#2MMwUVY$-okIU98hf7Bh#rdbgCEo8O*}fM+we?m;>P&t zRPfj(l4+AJJUl!BYkHCUnSZ<|v_f5wu#6NP(DINAq*F*fp{klmFwY@`?zu&lf;o@w zJi}X7s0kh&xU8f>6cwKZ016JL!}SvZYk^7 zB=JTM(^#x%@188Eei9tOgx6!ZpfsTt516HL`nXF28JH=qcM=70ynMg0akCe;&l?hWqC>I)?Nc&5Rag03b zZybG>oPYy|eS^an_(22{-)?)A`;$W2AYGGA&U7=L9RL_YJfis27A4l_0-xLi?~>|LQQH)s|))%yIuJ^SHj1m{I*JEtfD+YhE`9+e9>8^L6KZ zZuctVgU#LZbrl|KyqV-fayI?^v&y-??L_S|{nP4++iZ)Lc|TS*&raNUi=a=5S7~3S zh|i96aHvOj3zx34*G|dgfy-(^mH9kU=)wx+nFW13QwRA0yf+ zTtdz#6EolGnQvQo(PG7!fSG0o<|+Xmii;=%C>AB4`W2NKOYu+VNne#qqrR*2LZz|# z!mW(3BKXWhixY|L{wi;$&gLcnPLUn83zS!W0y)q(Zq1``ju2+1VmSRxs*GqoghON5 z_G^@0WK4-H3F2#3*o00gSiJ7DET03B#Rpo8-D`Go(!7SYgpN2+OBG*ODnYI_fc^8b zap){|AS|kdI^JD=yNM?7gHWh53i+R-y*~tRM%l#sw%v{}TxO1vendbN+xK@fW_U-j z#@v==iVKGcu)~P#edwQx7*7<@C_=Nyj&jsR6iIy_bN&ta(TW?-q(@m}q4s}R9!{FT zw=px-$T)WK_+`g?aY{YijWR*Eu!2`OWyn-1*aQ76+83JysMz^XhF@nhdaOUd17>Qi zjA8|b9i?RO$N<=hWy~yjghTB4R=cyQ<9x*C-zjkpkK1DRJd>Wg3C+9p%bV*$vIAVb zCXUyN>|zJP(93;eHepz&-U(Bd!>OnqBsvOWyE;Yy9%@0uz7%IS*zJl(~^ID*?)f2YPkwy;x369XYk zw)&^slSZ~pcG_!n)Z1V{oE{9<7*f9?zU9+ZH6T?7grhjdW4D8ykGd?$7MC<`y0dZ_BBRO}`o;mHVK$ z==seeTIA|8#}}8a-lHA?&$qp_TEHQzG7KRZjR4P7&zacly-OGDiab^c;a#oFs#$f8 zRVa@G%Z?wonQ1=8kIuF0cqw~Y6-vC@YArW zAAyTpRd3|yb~nyF=ToX%q1Do#+<%sJskxR}pGbI9e2p(V(_McChw%d!8J3QlA$EYPcBg}d29%T8M%smF^x{oX`o}OCAhBwjdNEMXYDYKO@XyI1_Zf@n$m` zL2wDpaNxEG0y$L|J%29nDJ?(%X7RUi4S^&-fi{SEf6sn# z1KEZkN4rIl1|pP7TDQ;b3~t23+s2 z72i?8A9S9(AntY8zFr7TT%sNkNR*Jp@CJW54b{FE$-m1PQ6#)+sig~rP_7`0u-5X% z`E@<-E>e>bCUed)d%NoP#fNwAIR4rqRbJ=68Q9+^ap$#@_7nB9xz_d}o4l;kivMDa zNf`s6(D=><1*~}wxWuUDgzjnw;CYmvktP||@sSN7TxMC^uX$9S>c)7+fMs}NT%dcJNRMDvqW5sNLGIIL>^qYQ@!0LaBi zPHkS=x6du6F{=fa zW|rG3IKe_b*nZ)?K+N1W8SE|l;MaD7NE&c353ml!8lw}!5fdjM0AG*o-QRfiW0I0r zHP&L6XvFW>ddyMfnUuWQ<${JfHgt)Xn0^xdS|cV?HmZ7*NRmJ38D|;9Au5}!Ulm7; z;lO@WNCXs{+6@V#OJfiyro)bNHeN|M>LsSpUGl>Pt2(>**(7rubW#X6R&E*~_y)=_ zjwLAz%fGyMcnit}Ia)GJ1%eRSx*v<~9_rCuUyU&UiNJ!y;6cN-koCBjX1GDrM3HnQkHf)%?c z2YKTx13}`y_UxU!s$NRcITmSWZSH$_YA^VIxRzKcM;FSD55Wa$+n4^ydBZ~~OQ1ek zUo-5kKQzQ>En0-BY9I4HJ`(j6LRv(AOVPytUD|vP*e5Nt`s@-hEr>C z$EAdYF&s53I2I&?#1ID;?)k>EH?8MmYdE{LJd(MUyyE#3I=rh%R{w_uu%%~ABJ?a! z41squ8NIQNeg=obb8K}w`$SN(FtHCD)M+=`_sI^WRc?lCjlvU!95zd^*2U5fMyuby zT2L?SmH{hjmu?}3gj2hY73C!b&__cnr{oI+k@q&yt9E`nnR)3U-Ca~R%_3tXey?vL zUJic*oQK;A)|;QD$LD6WEs}4gWP1eIds=uq*;+=4I4)o8ijV~8Y=riVuB~duly<-U z!16epwZjZ-WS^Z?pYh`3r9FQeK06j@nmn-UD0sEy{q{L^m$lQrg~5m1=&R+Fxxm1o zp0w{$%{&C~gw9^OE8{}fV$v#V$nXFD*c$zfDKzEgH_W25x6_@PEjUMB-(wibwBHqLEL}#rnOy|p=d5#8QEggTfs*`Y5r(Y9(A!n=3kW5!f?kqTl0$?y; zE7D!CqV@~-qug|AXHgqadv+Bz-GuB}@ZDaZWH$t~q1ZP}9`9eic||sCvLli5VPkq! z8B&xkaG1!E{=PZKo19XvL@m5wH#3{f>K=&nHZY~0U!+hX^PKO3yeGwl#(Uf7OGgBRTPCYZ#(|7!aPUsG5ezxA|(^m=N5W=Yt&)@SGYGNc3A5 zlkk(Z|7cLWo^6whj35_}&ECyc0B0U>uKqGli-Bx`;m5#DC&27J7};K2u!BdN$bkjt z4kKH-20OuaI-lPm`V~0CU0KBa1@b!c&%+B}ryRZG&9S&+NRs&aPOV?}!ZGtQCTIDHTFG8jdF65sGcM>dv^Pvf9IYpz~Z)YBHwtC39Z zo$s)5#cjQ{7waWnvNg5ppi{Z4<76gnq5t0FZkw%URQ>C!pS7RrNzl$OP$6e^m&;Uz zGVAdBx8D0jF*SC4m-jcw1@Op&2&Mn-rp_h~yeK4-9S(yXk457D+EP%2hN6X=z_810 z8}!Hot@L8xN149;CyZZb2n4xir;+U+k$vN8$3CDxd#ScvTF_xr?NBv8_Jsac2i;j7 zGcemNd6zvfvh*-BJ9*k~jUqF@xEW@(H*fWEqajXZ_6gfS6=bgS4@%*csj|zd_ z-8%9rpH&7)D_OSSlpM|q%SA1lRRMlKcX9KKxDOpg(g+mtIn-_rh}H$3B)b9F%*1Fu zGSHjI*2#kt049+)Yv5a-KUS#>v@TQgqa7M?gZU7S+K**jucN!Q=n1t?0v!J3iCifY zx9u(DqKgl{w)`5M%Lthrht9{ISTFes~{voyCqwYNNI?Zu*H*i3!7f8?dIBhB!Q zR$|9bJ~PyFlnAuY@H)Z=@GH*{0i~LcjNI{Na7`BoxcxS~mCRPU`jhn^hr*d7J$IW` zt*|J2MM$5$jRt)9Ssyat9cZPsq%*d0#jCNQ0s!v{DROx(H>w;lPH{{$^zZDyX;i!XhAh%4}m`rFuuFEYSG za&K*P-@(t?UVBlsllG6nMLf-^d1BYtbT322# zTM7(@zUzN;{qIl4mwA#7&TXf7{e1HazZYbH-S6BeYt4cdfikBLDHx&H=f^fL=280% zd#CeJUJ(jVn}42@Q8JYfSmt@jmG1TWDm4gk=w_u9!~o>HV(3qMgk^b`{G?5I!`+BY_v+-@mIOw$4}YLsW{@H)Ym(#eu1ZXIxB9G< zKqQQM)@4SrHcLDKUY*B~oOt?A6}$C^x+4I^N?N&waVXzuNhi09i-;`hTUvEC;MX5q z8ztmG_1SRts4ga#%}$ft6)xX{B7e4yqUpUrm2|ml(l5j~e@wal_C&^rR~% z&?q(BT+5xk9ChM>Cx-W~B$KY$g&MN4q~Kmi0_- zm)v;g;2!7jpo6016qF7i`U+3^GZ4Fy5c7V%F;OjP1mO)3iZ~dGBuzzO7dKd6VuyeLFgX&dl$cq4)c<5H zsgfl}VC~Y(#s??3*-@SFh+8yM2=+BGOwM^V_ruD@z4AS~{jlb&IY;f~S3{D(#mUon zYjaeCC#!;Ghzu(fwN}aiFthA}J|8YxCIY~EIZF2P?cDhMvQhiv`_pbVF1xY!BSoX- z&*ZDuj2^E9dr_%EBjpw!T@IG@oP}5T8~W>0HXxx8z{fPw>Le&0&UJ6Gt;X9Nja@WQ zAdAJpp6qF|IsNfB!R11WY{l+F72g#mpr6Ps!`HLBPOWy-+j_*Y^|i1;xF>s*%t-_= z@81VGyW>Zz?j2Ygq5$$P?ycs_u%%nL$Mmq>Z2W+4J$cfjW6jfQw+XNus~v(`Tswg1 z!MZ2cKmuXTE`9}J67Avn$jQiTMr!?-n!}F>_zj+1@9lgCI9OrCOAT)G(o?{78=vOYc}~q4p3Ql5>KZQGOW9e&vm@@qqG%z&Jk4v0uznvwBSTd&56a& zf9xHRKk+M;d{u-7=k-mFnEWV;O-K)iC0R!GVC{K zK-0;W>}C?t^m#^2+As_taPNj6A*;WC_8#r*Rn4+N4^~{-97K16*>>M#T1vI)Z8 z&VxRDjM}Z8H(k)&3tq_B$(@x~p^ku{tiW8)O3|jPg@Iw7d)ezbs<>=kvvwd)Slsq=&%Vx0Y&_az2tWtiFg|osP;= zpFCC+XK!V5(GO(Lhv9v>HA3fg#a(p22vgq(svq2=c0x>LF*y275cUrNhO#C1TGK=s z*Q2|JeP63DflG0kpNW+akR?l`4Cz&Ksj$Jq`rVj7Sdr35Tn}#Td*+*rVI5@#+*^c4 z`PjNQ*0NpguSsyQc|fB87<;ssQUJY4dBGzm0K3&j)h5WVv(ef6)uAvL_fYqD#d3g} zEhTs_#O*n_QJbMk1b|cusJ1lrO=gj-2560C0CwgvR)jZ1ff6ROARtZX3MFWt$n_7| zQ?n|8hDx2@(7>LyEm9!LvjZ4Q7FXw_@sAX&;L^kbt*RD^(g6=Lh`tr(-%Y%L-v@ec z5d+3!x}9uuMW}cB!RAcxfqk$+Cyk1ik~6r=hq%+A(gQt48#&X`+ivkO%umLS+XmMt z>KKRqXp!ijhnO8>T@)8`-TIli7`Ao8!Ad1&iMVr^GY zBc~tc*7)kzuM(eq@rwtVWR$t9C!7<3UX$m#jGAfra9H-;%kj{ZR=lIo>LPCF%D28A zEXI1S91mcdKiD4OwisS)MO=NSo+@S9WSy+u^|oX7hgoP^oRw9Ue!jDHw9y+$CHLeP z{p(ZkazqU^Yw(G`-k-I0(64{=3hHMRp~uJ)vD)wjYCD#-PkhEtzrVNq1IwY^+kLtv zu&ebdXKPEshvlt$VJ9#I(>1S$qrqnDku;h54~q)pTs5;!D1sbnhdNznX5TE)rZ7iq zRyO|eDzG4@NNn@kGE^?gL3wprz6`;fMIu~V-&NfBm${l@8@HIF&0;NiUR4-NG%7S6 zv_`O$3ZFPOa=B*ZE8ebFw>0?%ZV?-l7^X)(MrqG;5#Ux1MR-J#lG}UIjAc0$*oTCr zVgKau*v@#)ZR9&_(&vJcBxWKW<^2D?U;pCZ&Tu;Wg-Z_?9|+@ zb@l9&hfV|$8%~>7@##ND22yj=6y;eI(!c`|^%cX0T8r(75`kh70vc^)qdJ)+!Vw^r zh8+Suts}4N{eMBV>MFaUNOBIvLl7^&T zQ!z$pBKdi3{~l6{6}i6_VTgzJA*Hu7MhNmSNgyQhgXbVLvNOX^>Q7*o1<`cb@8R^) z079?%Uds3IKJQm)yvQYv^X$^h2XpFA%){<6P5wqr=w%Gc>^R^#+4}8c8voB~0L6Q@ zV*5D4_9atwI{BFavyggSW>sXkev_^qoOVeU&O8LGy0fPoJ|c_iM}# z6Vo$6w6YYRO8?Zc=M~t}e{#vEZSAq-bW`7h`3qf;%y}q{u}8KuUIKtLF{Vw&PT5RR zCTKu*qjs$aL#7~ZEPTw2#`RRwg7aGT4jAUh~?Q`6fXJ6Ksvx*O zH7?|eZu~d7N^jE#lO#Sxc^TS6BJ6_KOV~z|bE@66(B|r@@A_f$KP(AT4=2ol+niwH z8EpI`7!mwE{AWekl_>k*?(VK(%?G~47I4i}!wQEgLH#S8rZA#|M6r@G)&V*CC> z?RcY;9IS0LJWjy;+stA#^(bKLKC*aORn^DT-Gqb$1(xWMfk23wib~$3>%N`TDoW*l z5TEUPEO)q`geC23Y}h;MO^E-CYrf|5AGWvbd0z|ESIM|%yWj{RBn7N+|G|GeV`2fV zz?VJa%IX^fB;(N5z=@L6|FAaZgEP0{QpGaC0^{nb>CT)D@>t;@m2`I>Ic|8(|NVtF z5@m$Ps$RmTr39^LuAh8A$k<%?(-|m3$c`EV{p2$ushXBxBA&*;l$9Uj0_mSqQGOO4 z#5*&0xskpsRyz4#WkdX=6h%dS`u0ZXp|z7h_9dX0oHiX9i$t+wi%Q0Z$qom&wTq^L zDEpmcsTmftlZb(-Bgl|y2Pp$Q04w2R2SO4U-FU~aF)909{+x(`q$R-s`?pN5u7x+i zVP|O6h!hN7@(nx)5j`fiKjk$r7jd2`g(pmk%ijS4<@putmlMjW>8J+>!4g7Z>xDSG?7#wy5{jLT0BU<;8aFYupeExf4}? zyuhtmuaZ>V1Yj!7n2O3~$#4LL`Mn7|I}(^fb*lIZlPuY8u~Ev}4pBU9$c&hCVWI*? zskxrnM#&V6Bt(xHIhBrf8)Dt?+=yW1W2`k2889U@S#iHgd(=?vkFkLaf#8&F^oDK> zW=0EkZ@*&145u`uS9BlxU7H7REe9jJk7Y17xuwguY!cX5fnP*Mv)DLM}R%4%2$;J9l+W6rMh;tLf%sU4k$$;-Yp7eb2vX zn(h|N6n;zy>bR(RWz|rfIT2mAdbE`t2tJkC{d?D|Lu$fEc>p4zAy>tvcZ4qK; z;@aB`o+u6Yr;xTa5M4>eYyDbf@aw3XM%Nb|SLONdXMUy~U-c>2-V=>30a%ITlRyxd zwg-mv_vJ0}?~{-JhRAkykjZ@{YlI#?+?YS5Ou?`H@OIPHT{l?=ejdB68bKRHcN@O< z&CkaO*g=Y)}#7vetxn-oV0hkTb0OtJ8`(0%uDw)25 z#{(p|d+RB$t2lJaQKBommZxIEr{%?SK?v|-&#|zkmn|$ishu~e0$kfKk2g`NE4uDl zwzlM*Ud8*4HmwdK1UOrFTbE}I4g1~x_01C7ug*fS{&M|#HTt>B&l<|j{6*ni$-fk7 z(6n4zZh2-v`V;9S+V7PZcZ)VyL<*dP3HIGLd{wDErVOB4qs6L7EUG;v86v3a(vKCYDl z&PGVImkwRNCM-@Qz(dU4?)u#*gpahESFTraEZr#e=Cg1%tUq16X#dNGbn`PEmrm$ z)Evd+y$um-RIwi!2)xmAK^z!_d>#8EmB8K8e((pBS*d9u9+g1q4J{as= zWIx{GMs`V}01)N$ggmZPqnx0m`gr577@U`qEWk=Fe_`MG2v+X)jfPOt+ zh3VQD_3arhFcpwD7xSko?D6EXuJJaNN0oqBtHqV9w)OdN;=jX%w*>BPObkmLjOFZ2 z52hI)bn;}$@@>B#@QA#>*K#`R@_fa4-MvJcoX^Xf`J5D@X!h0ij2z< z&f_&2z;2o_9B3jJ((HB`)8Xx}stW05Qv<-wT3VL3r;Vgc?0tP`LQSikja4UIekIu) zXXC4OyKVcE`6nb$)&>7_ zmjoj2ySKV-xUyH}65RN2%h1qj)HDjUJi%fYW}mN zA4TiXe0VAVtF9&Ho)0maJey3g&2)hkAbhws^mfbIoeq!mK2;9ryZjxY^&g^_wFGaH4vy;I zIh>fL`usi{K1`hT=2&_l0!3afY-og})3hF^)OF!R)oG6sQ1w~~aa#*=TSEfAySQw! zxb?Ak)lG~Nd7F*{z;Eu?tW!A_8(L0MK*sv(Ij&OL)^@I=(_rQIQd+fIBk8H9djtfN z4@6!w3OXC$L=!+JO;pt8#S2)>o_Sa{2}oIZ1H=jlsFtAvFazSh7)S$v8Z>|g-@77D zxz76Aj?gI_&_f7c{H^NuYlhn=%rP$c%qsJXtvJro8~q9793qS953yyxP|n&rHU1P6>ggFn#hVoX)mIM zqQ0>S*KlZlPSM~-BmNy3ZUb!!4BZmA5v>^w3?@Q0fzO9vvCmh#w6eBW^1ds$E>zfX zOdE*o7i0nc@TS=uVxJ&yQgYB<<52ne7p z-pKXKDNv(KM?Ad#DD<=#U1Xq(kh)LUAicF?&Ef2iM_P`W54wAV-BN2QNZ;k;%g>m9 zZ;A%}u?4@`m+W+V>iV2CU;Y=A&0`P+P2DGdec59V?%m@A0nS=|4!_+c&)fm3ygABO zB8&u;U|dOT1Q5xUNFjzTrc(<*V?4=(%dl7I%UfKF@jhi?q%B7@)+xqh*YR;a09zdC z1Fn>>@%#ZQ9Q!A&$O*gv+K&tO-WeDU0n0}+xgX&$!?;kC1(|AlQ3$CrD#8;Y1k+_U zVt+Th5Wq`;W=mm|t<80M$VnmOC?_Q5AH&mv^uFUKO!zNH`~nzH@w9RwKh@u8u>g=+ z3vUVVUAa}uz}1Y63fTXX6L0M0{txRI+AQ4Ez3xg=V^p8lpJ87+RM@fT^g`lj-um*>wZ$o) z;`}f73X|<{O``(hx;(^pmvpN8DZ zhL`^^aMv^H=ef2BkNsaz(IEQk>wwwqWae!=D4rGw;>W;(LyCB?*8ieG@FBwG10~{p z#&3>+1pmfym+%2v6yq@W@nmJUMkdw*5LVB=nYWk9up|mty-d-MdFw#Xu#MvY1Am-g6v-*rM zkV4BKo%q}u1`E6e2wX~DlRq+iN&ySU8}Hg1DkGF;xN3qRL!1MIAk|r*ekmW`lN;Nh zrB8R-&wG@KGcB?=MIr@=$2dwnBmn`0@M)1W0TLk+A-zpA$?uKS)3Dyk2=c8n`fa`V zi`!RGF~Ms=i^nh${KkB4T*XrsKHIp`F^HSocX3#}Rx5hj<2SGUBvq6!6{T8a&R~Tf z=-S4HgHNGnRN%vvS~Ewe1SfE&W%LF}r2L6%^2M}i{KnSsM*X!S@`V8iRI7-f&nd(@Jx@4^sJH2?%R(!P(`x6AHpI=B@`ki zaT`r1d+loXHXDNj0=f>Jlgczbc8AQ&jjoGu-~Wt@!x{jSpUWM-_0Aszy1()zCC_2jTUQyEzaN_I-D{S_O7?QA0ip_Er*6t`a{u1x<00e_bB{Btgz;&j-K zPQrbEgHGI!e!#}Zo!{}Ky}Z)=h|gMArnM(D1c(W`8{So~W?NVs@9cbkyuuDbizi_o zViS(%bt)J%h4MN@%^LKx?x`W8hG~@X*KcsB8-@B_-bX-fanX?U%MSX6R-chE*J^nj zy8z#Qa$-;YiJ?nO`<;J+lNPe(XZiG-{r_2m3W6$N z$IV%)N`e!?0|Whyww&tzXaOH7igeKvqP;x|O828#b05PZ*KKf^IY?v@h4`nB?n65DsyeP=Yt{xt-va1KHX zZ<4YHqEfW`4YX9T=gi@===|6nq=-~j_E7rJ-?gl((@PXNH6bif?z%ipEZ~A_#?DPH zQWhEYPEf~6cIW_aBwW3`;_2W$S{F$~mqUm>1bFjPpPSPj0Gd9euK{4}$obCf2-&!I zY)s5dZ@?Ud1xTyTTuz>v!4ee2VLZe-=H~O^zPQok;$09d#mZ!>aoV;=xf}0WDoBo6 zsT|+a+gT=Ew>kHWC3)wTIG4jP^-4yq`jTfEk!cIxm+q1$41);X`YZ3pdfEDVjk!6K zr$g`N8YIGa#iW51r@j50oT2M$qt9}NFIUpdWpYFea*wxzYo50$TX93^=)F+ z2h0T>oBs6^{L}OD%QK;#h}W<_NPK#o+D=} z%a^ODOwDzV0#IBggrmj6$VJcqMhb1L+Y2VSlfk{QZJ_CH4QyY?hwWQZX5}ru5CJlm zQ0-aQ10XqcpC8ujC60Jz-YnQ%^e574sH%=u85A6v{mJ*QT6j_r%00UeTnykNHEW@zGBssF}jRm z#mA?1kp*41t8UgK#K%x@-(P6i9Id*kw_OOLVCK6d76c$LgUiNHKR9Fkjsjjj%O!ig z0f>B?=1w~xAcS{xL*&sWOQ=3ySd-HskF+Xjs?EfUr5crkSs_{Mkt?>D*UjVC`R?>fdtT3{G5A@2LQy~4Q`$0wSfhNdO8{l zhjX2^yIQ|ref_&)tP1ivZnWGxed2mgnE98kj!NT3@RAax#5OL2f@$CLW$<@*?G1A= z+L^B9cW4#c z=AcXk1qoVO9gDtnVGiwbs!}Z;l@dWd3N`GWEXFn)(j7OiHjdz{LrLSNDz8UVmo;>4 zA0Ar0jovvOw4)fnt^~q&%c63&9mOVdzh*9XGqmf9PSclU3g;rnkGZVo{RniKGx;Vi zt{V}ZY(?A$S7~`ehd6W5fTC4$pKa}_9mdD=L0#PU(-($%pAu^H&LUy-E4(h>(9$WD zW|Qy%YekPovi@*ROjss>F-%3re?7d$m$Q1kym7bv?k6w1{q0X=o%i7|m~9Y0tC!g8 z8R*%6X4*UvarvK75PJQ>Ja4(4Mu#gp(5IM%6sP^T7=CZpv2(l+K3(^H8s3?5TUG4N zrzMHaAQSoREA!*wo{d4ejm`{!a1ndIB%#C}M;-gNwU^h;V&U=ZZw5QMog@&K2-@lI zJypu5aUuZ{upaTA-EdO}D_*P2?E5Ca(SxJGpK|ZBJ*f*6KoLv};NKh@eH0T zltn)2kit8GB0U&B;tBGx{;>1C7R$O&w^u(QQ1ru+O4OJTgF7|>;gh|_XWsj((6t3! z)mAg51EEtSx_88tX&&q+fn^gPMrli5!dCgAdCPVhtB@-#W!9LK)6_?ld#qH$Y|* z{=C3cFhX~#UKIlG|F7WorXQ2Y;xzb9dC8!FAZ-92wv8yx=hl657yADLa`{W^Bh4^+H)(RW# zO*}}fK#ZY&S#z(Nm!v0tAx$2tqS{Oa|AIO3ZKn~8!8zA{{SwQ!CjX27{NJ-D&dWoH z`$bB%QVFvxwKK7?k+@JK>5tK{I7y0TTrV; zf>n>g@)kixz6Ja1IUg$z4CjD1Js-O-LUY>-ln@~WxPdo8NLDWOt>t5cxJFHmj{CDi zzh>9s@>`rwt|tYa%ez4K1MH-vlF)KFaJ-4SUiQRE)^*o2@TJ2GQC0~VcqbR+;|)I; z`4OnEY%{F9z7B_8M8k<4H96GfXbO5T+YX=s=As_cuioy%Oc>E5$TjJlE{yXiGKDsG zgX_gmvP3R=%P+2~n+y{b$37A?@?g-$PwMUyplNcGUIN%~{`k4P5{}Tn0mEJ}yP4Ot z5B%@E?kxe7gjg#qEQPioo#KRIiL!kDV&IS^Fwg)V8J13u={6}X+4BGS;Byh`wU1TH zEj`xxkuW9qD`qnBh+igxG)M5|>r0cGk5!Cr_1x=|ex$DNLu>x?>4WNG`>g;|DLWOZ zGb^)lYRVWSrnY2xW-S{9?Wvi}-cea?TAG668^+j(g2$~6EWgy#{E-}!7Ww7^xZKrlB=0s=pr2i zF|JpEfN2U(Nu(}>OQhbWf|Af{It_Jv#Ia5RUN)sVEjP@e)np;V)5&bQ5e-0Wde!%z z+pUg}88BX^9SCCY2J932IkUHB^QPmo`SdE=Zi;Ko^yZcY4R#zQjExUk zT+rD%ert+xma%3GnPujc9}~*ENJkM;(_l|%*sXqwn*l&QFjRYiLTgE} z#a3$1%FbtF;OTW)==6?0>he{Tt92nQPiRi{R0oa<1tCROo^9Z*#!t_FI)|esx@xk* zroPoEPh{)!Wp}F7trm z7wo>p(E|qRLS;X*B=r}DbKM?q501Ti-CYQW{$mw&;(R(^XZq>?I5MpG_HFubnv1aL z`pPu5N~wfxr+=2N*xLdem4CWE{Tig;-w*xC5R;ik>u=V)%q6TN-e--@zoYm(Phxul zdv(I0B;vd}L*Hy(r`)7A_JS==KN(_wU}$ul`BXVpkik25wM39o0DrPJ?0kb0z3}}T zeuHuKf~Cpu;U^MeNP)|DTm9wMP-rg(amp|J^`iG9k)K#nM3-l96Ot(s;(MF4Yr4d) zFYt`Lyb-8&L0gU)on|`(epP~7dOuO4j)Z@_H7DjqwelPkQ%fvwhaWPDA@#jDUzaY| zHR0D0f1l@wfHA6r^$K0T8yv)j3@C{n`~E|8Kl1rzUQ}M3I{xS6`3$%7ukpk_J^JLs zn5~N(Cl-M4R)LFk&)({AGL>sDcSeOuR%*8Z|L#R?P@6)l@krU!TYKj zmR>(t%)5aP^kHBC05JOidG65E>Rn;CHHwJ(IHe02IWW8p^BsYBg zG>23zcf$H&>3_#^HEZ5O4_pa5Q3-5bW1~{ zmNHUyEiA<921YcKuCD2<+aE_OG9WQu%Q2d6wB(AW04u7(AWPD|`S0~X}_rs;Ohfn}mK|2q~&3?Loe1E?|xu{vaL!{1ES8AMal#!Zi z8=2fZYFJPESZB1m>B5@$#o>3Pg@d?n#=*T+b1X8Iy*|VZ^=XS}U}Juk*md6PjQy0H znk|q)Lk6lhevA5sDMWWzJ;%tLIomlnLHqO9mo36<}A?M~^EY z2BZe@rfA{@;!?-R534uc$@dm>XnQjyCT`WH)-E--;HM`6%p)$CQx*FRiL_H;*G^9rkkUt^5Wbe?U^{!PM=pYy%0MN`$wX%A9VASSK_SKO1 zW&uV+>T$hs3?i4SFe3ZJC_rX4yNwMtfVqN@OlxtgT48*kr$qFb43i~r$_#_r~OrU)>kNj z6*7$nQ01IW)@oqq7*ZFdfGH7j`%WdrLZZTdHqlceC^3U_E}Z~iDDN(PnF6R{g{XMIQD3S!p3V>LMNnHj&o_4&IJiz3NkY4F zdc0rmaAy)Q$)rTXZY5Ok6ArckGxH1X#{EZGnJ6$W0Q;gCzoUZ>G{6KK=XdEcTAtlztn6K0`1tu^jRN#b6}AwazNXkX_%Zs7<; zw{OyC-m#{%hKrEXStH2Z2XK#s3^wEEujuDdy)B4mx($J67SnIwzTwq zfbz5YB_~qq2H6}@Mi~HN|MVF}P(#hfP0bE1JFQ~C3}5?f@pcs80w5;s`DXU!2zcbf z+%7R3G=O*=>U(K}KvJ;5FTp?icTKEt0vX9Z>S9v|h9#vSFz`vvmyz|S9>D|#x>JVP zZR^a^643Qk{mW3XX09pvr;1!yyJuyCZa{3swxH(ccxC`CPJ?gA;Q?u9@=BIsIC2C^ zZTX06?FIo|kha!~HVv@Si6e_Jj8e86Oo>K~aT@lhSN6 zj65A&x%aSJOR<1{tKfR)u=b5q?L;Dwew9O2FNJxtLvx|D*fML{M0OsQK8{cMbkTNc z?7w8QV&%e(hKD<#H!7I@Z{ohBbnejuTY}yBvzoC;V8|RJtTvD*C zd(F7-dCTO7to<-sc3E(Q{oVmgC9ljHfB!{(Whbax)%X5#|3#v2M|~_s(Bzc0SS6HU zScFsMW$^t#RMual$aq&TthjhpuRWccUq804gKV`ZJo}fomu8B~^1?L*f5HfmFzup$ zyM1oD^Gaidk~w~1!^=A(ju>Qdmh}N9C{$o0N#$NOHF(ckvyMmnO@1-3YC?5IhrxEx zQTyZD?vG%jq;m`n^+wS%Fe(aKlb6BPquph@u)MNFetx;q3u34wwXec_CfTnudw}rZ z$olRXH*-8QCaog+`#oro-D?aa1oT_d3Odt+br{@T8*oemuQWB=PPZ z1Q*>qRc+Ji@tDlt#kLn7P5bf!lkSoPyFG+O$`HV^k%c36CuM(c*WZzX5XNI;8yeRd zG8o>I+dWZ`qm2I9paAG_<~q)(2OYmr_)a#v=`DD7hWqX%#tg+r*1ISytbH=+E50Z& z_Idg^w*D$|F_p~l>fS9XfCByq_8^NIMkY5z`y|-K=Cr`ud1f#6XL?TUHTZq|F7}!G zRpSbwfF~~qEssNU?sh57ZSMY)6l^-lB+X znEkXdPjf!AlA{%@I&)P1YP`4;9-1uRy0=<3l2~Qpbe6!dZo4Lqj3kIj5w2Amq{7%` zc$S2=`xY-yDMRa`uuxhtqab1UjwKD=bes@ct&@*wq%;1vwDQFJ&cMM31hAK*Go}!K%;Z`Y3q%R*0R1wAU_X>;kfnqaRWLA zqN#BJ!P^9B>09CRg%ANJ@Zi$JBeoQF5~8b@G^<$yf?@`7O5zS7v7vD0@1vt40VfQ* zHA9bE8}E;PdfMsrl`xoAEI3?p`p+aJ;q7NnX%c=KwpMvu5|Wfu3q}^6j!uORUTR7@ zDQs*3Yc9#rR2EDO*Qf|UTsJM!{X@yYeXX9a4Yi*0>`Jq8t?BXirbUk?c3L(*cA=4F zXt;%-`E*{2fRpQBA&f+n*Z7j@IHwk1Qts~$3JtwidfDs})qRu2kzwDrydKODRt*j9 zEgl;~$rL66xTmI&bv2M5+zorut zh&a6i5NO|>JX~gh`dUUKV#=7cSXKM`s%#rq)+w+YwU|>1=$3&klK>t}QQSU*1VjXW zG$gZcD2I-X3$sSPk*(z!Hpd2hHXEAr-u9wG7N|trxZ+?cQu}47ZFKsF$1|PD$q|{jvoU|g|=;LLt`5)Q!cOTYcdqC#M%2! z?of%ecT=@6^WoSZapD6>%{95I0XEP?@@rtGdTE7jho2wDk(>fT|J1TOz3tELeIwq;>sSW}!2CP=HR9e5Tvztp zUGCBna&pC)7PEAGT*vvX9kh`Gkb8Yfw&VUaEEVoMC`$4~i!HRdSn5zW;O$-MfViVJ7So!Ci{->ZKDl5E=hL?l+88`!k*AV_huhnw^4 zxzGs$BqfoF-$@jUbAG8=h|{rC*O#3W2N5}g49<`UDDu24Z;y>t$nwPi3_i2&y<=uZ z!(68z@8IKKeA?lAYIX@Q0ztO#tuV1NN?l zM)lUCC3E6LU(WT7|8`VW4ID%La;7PK6H-G|E*7`f1A;J;k__k#`(C|?s4(li?% z&ju8bdwXvchRc84<1xPTgN<;me{aj)kb2MlqSk5P!qGwuvW~~ZUl{H}NMkliXk$x- zJ1BR#H%t~Lv&Ut)TuUKKCl)ejn2i^fce`fPEuooYPwGEuo9~#cE;PS1)S?}DZqce% z^3u3INId6z;nJG-J8pWpe8o3T`nW% zv#EObvIK&HsOQUfkb*%p>wfiMsyr31JsAp^+-={ynu5nRkCC_cDa_DYfN{$=o==#h zBR3s)Jut=e(T8hm8#4WfzOD0hyiYQ$myu={?^i8za*-y|v4aPxtHH8;+(nV-=$796 zFm0CRD31y%`D{~-PU%P8UL=3EBpBIQ=)}S0b)#V zxAM3dUA^iQiO9*lMr^uoSD1!nNV86)W#E2m*CTz-ub5KSJ1C*1`DxeAvVT(kRgzG~ z7&Ih%^YY>+`t&i5Pl3}y4#sh&*0mE8rv^ga?}SlbL9lY@IUxL?n*7w-g#sU$)ChyOqjBf^(SaXCixr8c^|Oi#5#KCIoR+!TxAuc*`>`d9$} z!-QoX!kVYv+3NRtzBT7HPNaYsPiO0*vQbeHs;en!0k+GGzgRK_dhasg*fQfVf#rm^ zgB$wmxzTbL1+wpUTszL+?VTgg(%xnI%M>R__sMem0QxMI;Py*iv7+0%^J+3E-96%O zb#$9Yv{E%OFkNDRcBjC9W3j4)glb>4p>VTl{_ zC%`u|Xl-Z9=bk63fq^U{=QjU>E4hwWMR76#dU*H@8XCebRYylz&zZQJBoi75<<3W* zSKco;vfCuDAt@Xgicu1E zV;E`FuQ!cdv$HcAI!wbu@IXWMyB|9jFrX)v*rm{E;I1Mz-TMoh0*X-vdMTVxs4>z| zQ!OZe_Ruvv0X3zn&2mYlS)Jr^dSt~ncq3v1whsHUs*FCjA>R63q9P|X1TP}jvldlC zK9Z~)K4ZVWRdxt(FPS9>#1H);#G+O&PL7Ubxw~*G9Qt~**GY+W8BF+Ir`dL%iEYB` zMZmu43xt>Ac!rOFvP|h}+9qVieRG5Ah{^P&FX@)n+l=5dGN1wwtW@>1 zmltF%5hw=mAuurED>7-}?4eob^KOJ$mh9v8v$fi#N3qG850rDzyw8M72$Sqz^PaM0 zj$-=x=(?%M>&mFv>+bU!XunQV`?4<{i18RHA1&&4%fJ$s&A-GvX??nzB7%xy`;!9N z^R@Se$iak--*K=u;z?NVX5vS*4xhKTiA5e3Yc82gjA?&)qB*_fIe@WQvC(vwU`WvLzZ{0DzxN>A!oQ362GNax65gQ*rJ&~up zNG3UnamG?jqx>Nj3IeJ~E$n`IE$Hx^w)GOqhZLan$`mMK%70c34v=SJ4AcH0kW&<+ zr=#?#Tr>_1nYR+k^5zYEX-22GHBxg{=c+!TT@fV$;6mY@UVZ;#>-(v*GBzp9I&i{u zY{&vF1WYDG4v9$Kj7@}lp79;UoCo(T_}*=<<&R*Nt($*P`w7Pl!8&xT_qxVAbe+Ko zZEwK1M?8z1`Q^5@+G^eJ$Hcc-V%3gB158p+xmP=p=Fcb_RzsaPLn$Sd*KVRJa;O3G zmy6GDi4j8JRxAwv6#P6DfiQ-2}rt{16&llYH z5s{I=Mztn?Pgel_ba$l2ap%^sKWt-!$qKWf>T^HLB|jG`F^Nm`m`;c+aQD=}e0V)f zEXez+2$>WR3zurM>2gR={~X?DTf4L%cFHWwJ-?0#7C=JgfGivUK(&_CC~hZx5C{mU zt}isZjrfKeVtOW{iQ`z<5(X~VtoimQBJ=97 z3=b3W>CslSKERItu@%mlMSfQkMFloQgGL3R2iDdimi&;TnB> zb93>q(g^BvbVXyQdYrJeHMO?3OJWP8Ch+`fHchWYg)X zpM5?19sq_k7c+SM@Ee@$#YjtuB6kp%o6I}%+wSl9k%Ss**}kJYuoL#JBjR!DrOy}1 z0EZBk($3!Dyba0T?sybN>a8oxQvcT*(jT_}CWIIc;$}Tsy+?wELy9Y9fB=*Ys(K&S zkNb6}uRjSsPX#MYqz|$2Tt!6*xSr;Sh2a`DpL{%BOnLY2lb}t|;a?(*mDtLTpngLq zC$6LeR(BfG0yp9yP}kB-`0Q|Kse4n)!x!}=LP(fwUYt?a0bBroQZ)q=jvrz1(|$tJ zWgM}f>hd)dnU#W*wn7KW@rv%b33_QUdd0TQqwph^Lh@M$h`+k{-din39dnE%J+M+E zq%T12M^;CR&=DWbm%d6%$?lE2k&E>+}gLGdyojteT!PO^y|o8dsM+ zUcHlM=&CGK7warsq6~H;lI`*PFB0WFktzE)%G&Qzz{A4aYEILt|&~Ai1nM|5o2QaBMvmn00uEIyyRG_>h0PincGTKF7Dzu{>2USKtoT* zf(r=Uw%dfJ_g8Ks^cQ8TeKpL*U?t@zh6xBYp!0ESA|p|wq5}G7e;G*eWzcpVjweIs zk@fz;qPN6WH&yD`{QCOG1}F^NZ-gy&3*R}^aT#@XFf#(#%?+4H-D&jX!w((3zSjBP z*l@BIU*pibvMS^m7EULp)_3#``0{v``&I7fu0bqd(v1(9S~n>?#~U923Z!r#4%Gxn zG=v}sET&nie-kbl5c8lX3U*w&6K3xL#6tVQzaP&w|DqpmH?FDax>!Cuve`)YS)?n%?VNdEt;MEz?+G) z@FtkDez|moNZY@*@(MPdpcC_VoE&O{UE3>Gbwf@H0 zb=t>wh!L@J0`pU{R^0T$_<+4}RdaJ_+|U*PblFFI{lecTg zR308-b5=U59};}`?G+;HbK#5sLa<^(kV~!7{rx3r$xBLSc6TGgZ$r(UzBP{+9y~mK zc5uarlPMBA{?p+Puc2E!I$TA{G?1MmS1bwoSey_q%rNwjhI0!9N*wMs4Fk-bm0Am1H18bQt z-C<#W1f1BVI26sUNnZC~d)N168Ol~S>z5%|^P332#JO!wkM!GhJNqPG{~Ajwt7KHb zcNsOp4;lbvZ|p?vDGhdp&pKa*rbN4b2!n=(mS?|8DpNP-e6O%tcIGmwrL$?`v>n2M z73qS4rjg07v<9kFJ`x5wwFvX3d5(s~n6B^__gRs_0|U0mzmOtA2Dj^%gkew#Tm}7z zkP#ya(ggGRsc?J{fHe&cph3VA$EkL+Mgs_g{lkb+}NXx~eVI++rLM2)8i z9cAe0r5wEs{VvqYmQCX*Q^~$%(LwbKo%@>@jf1V-pF@sM@97p zR}06u2ofcaSTz~|kCQQiyu60<%wi!pq4Icm4LY8L$umZ^x%#4ChM6)wMQ%6O1;$M0 zxqtRiBP5Ji=HsDm-GD_l_K->wB(l7C&-N)$+_8_9@(0hEma62IUe|)XC)(wu4nP31 zC6vN9t_o(v2*B0fw=*Zty%X)SZKeni7+;2x439+F?UGC;x5pB1T(Lygm*qm^5>?73 z`U42~qoB_$oP{C>*ffUw!*@@26D|NC~D1d*%12?Ad~3CD%R zN*<9_CseM;3?O0aza^8-?}HOh5XpOqDwiqV&>)?>N95612e|w9o~fzne}VvjO5O+t zrp8zLbyPy%uZ;5b&z(CMDk}41*}?K%CwgM-QfdpMo^Zshvn{czBMxA$t5{T;jOM!i z*O@ZFqC|*9g-EinAD-$cCid7emNt)*<(d@8_<*QTMg%K=u&{xOlSIs%DEX`np=m{R z%s$eG?u5-zuA6>;SBm!(aaj{R;rB2u+2) z)1olQe}+dEGuxvKMF19~$PM?iIp5QyCe#WwEz9Mh7N~4Pc2Y`Aw|G8J*RIs7@$-gG zBc><6QC1YGhAs_gi9Dtcjn?z#RGBkUNBCmUbBBe^a=DbJkJyMiV^*Z_TYq;7T@y#l;o<92iU4JbKP7>n9 z>L4{G<=Ls&KIka|D+n|LUOZwqH5nmEotX;|jgP~!=f@to7pZ}lu$E;gR|%`rs^~~0 z;{^eHhM-n|tK%)DacXk5iyxuAo45*eNy?~3hD1B18e7hOy(sFBccN)zu-f7|9B5wO z`17z7F*-|P4c%P&-0o)sZS*frv90c@K8JiOxVKfv!mw9gRH`L<_q_6z;yVaDJ zWnqaA_5ZoJoJ1k;QC>`J;}tRqf7eXO%oI1Wi-!lBbHukGA`9CJpEI{iSm~UP`#wDS z+QTDwzQPGJZSmsbu5m5oTZeqb6lEAJYpMWkbX#%#K8;L4Tc&-$ofciW{)az3Y_x7f z_eZtIddEC6dA7JetT0xXDMFTzX=`gG#9_vPIvb?hYH=~&Do~khqzQvf5c8k(`D3Q) zdDHFgB;!^ziJzP*Y0lent9PE|oYz){^b1-%K4v#JgN?*Pddm{&BjpRB z$q7RiJSFKv$?XppU!$tqf}ZU0tctTeH{E_7C`H?$vD zi>h?{t;NO9FfqYz;mSv%zc*to;KE({D6ys58U4KhCRqU_yObToEB(mw(M@r-=z=HZclxt?4_L=9AE4*^BFMv{z)F!a@ZwRFlaROZCcr>8z2AAKjRN{tSChqFA{ z1a0z^SgI^FKqVo^_T z;p@&s3DHbbEXc&YNi+9=mGK`N%XN5U#!DZr%;AEb7NbgWoSw&;&i6#eL7N2m`DRbd zC@|<{L%2CzosrImn9~rkGFhFmT9SI+yla!1Jlb*R-|ta*Eh^0MA#5{RoFFO*8q{{( zGWFXm!6m1Q08U!t;pf{@4YqE%Ktaa1q!BnSPG^nsJ!@WDWA3MHPoAkMm@+;Y?l$O; z*I|9vXhcP>bg8aq#^sNG11eGKX-e2mRK+Iknm`!@b!lp7^yf%P6&KgrwJXTxA4I=I zWndX?3hRy~9_A7-S7D-^%vf3_vsLQV7O=CPK&3vL$6WU8VE9wHPEju%HMiAlyGzE? zU4_-df?D@W1t6s3#?r7x^YidPUXk-9gO${V=HH@b%!8M~o(P&z4V?Sxje%3f8DG7)T22(VyxE^-@k&$*G!wHA= z-q~0W*Z_Q7u?D#R=K(`-_bPRaqzVPzefm_9MQ|MA~=% zwOYZld^$7g;y;F2SS*SHYg9}{Qiwq9x7PN90g`XYOok86rcDI0ea^aqqD8@2IiR9C z&AAeuI(gpZr5)xEQhR1$@AqzOAJKpW!3?{MO4HrC{b2HGy7#!13(Be!9*Ye+t&(yk zFJ@5C@AG3fd$|D*+^Xfje^>mGolr6RbvxX97^Bdf56t9mHJQiKPGNc2K9gh)Z?X>h z;k%}@*2bV+MG)}WgRXLF_($77OUvX?JW5kyGTV80_@Ssr93L7y+QJ;DtBh~`&swwU zTP!)kk8_`4YZ1Buyr@zlKm-a^bG~MN7>h9Y3(^AYqoQ!e<8B`ZVJwN+I?-2#+rT{{ zKv$(;yTkLy-#@n2j46kD&?s`5ZpQ3kaL^5p0165!Da{wmI0+&No$*-v5Sko2FbIN} zS)-ksM6#c|17fuCvFAcvSA4oz4}arHdr6nw@dnwQwX~lHBFknDC@4gyr#a8AvN|e% zm4eYDQ+SxRYEoP3>drlhSi)R1N@%DBqe-jdsyBl^F$tT zq?hgzk?s^}5JeXRq@-&p0dWPS1%#zjx?zED{NC%mu6O=gV&{2g&N=tF&&-)K@3-cA z`Q>q-TUyNy`WNq7VINMH(HY0S-*w+y$JFJ6EFw*5H|Y8ftn%B|hx?>eYAbcduhd-u zQYCaj@9!i%gnC^Xs@&!+p}EW*ZeIj;jTurx?cMI=gW6N7KIgdJ2!200il(7{tgQ{* zYxMbVdf0RJRf^J*lfwt?a++zzOdgt9q?`DnXW>^uH4^ zG)QE9v(&s}?KnumLk?1Uq?kp6^XWRja{DRidu|so;68J8ud2WcUfvH$lEevauu;7f zcKN!E4fs2Ebx@%Dey!;`$kDYzSb}ay=w2rz_w${);rL@qM%qnEu+a0X#gzL4>?H4U zT1jr&XX|jvDQIY@DaRG$e;pcR6iJ+dlN}H8chg#HTMDc}R;uqs`oeqb{`G^t-}8R2Nn;xIsa zHoUy3YC+;rBa%f;gR7&X7w~H0Ll-KC1iCg7OjZ9_^o?YxkAO$v3@SarPf_B3ThyDE* z^xOI5L*#BgpeGJ~=r*GNwY~ic)MpUrDf?Pe%ON9!t!Q;IMQAehJluNf2Jt1fZIKVy zE{=SFn(p2``_?Rlh2dJnc0O3XmATi6p`e+veJnBL*_r+0caQtD1Y}6-?zQUE2I$l(Aq0I|q=+`M@ zsSDbeZYCrt^zh-Awl6;)TS|9;>KwNmUS1u>S6A?Yp7HZsye!%)J?*9?h!;-TxeKE> zOIzrZCInP$)Et6V%@7vvl|C|Z$JGQe6B71(l2i0e(ySzak`4dqQ2z> zb+$R9m%MFB_BptnH;LhG__zCl;Ww^*MLTmj@Z4~twcTL&zfNs+pZv?DLV6yYn%}4r z|Gna}n~4Ll7=ta2zE8P`a7X8l2Og(nqE0)|`sVxLY8)IBU1g*VBW75wG@-1bP)9ID ztTgB_?$lzlI)aP?(q{rjC%vS9y==DG2kv1>w#b<%FRs((ZnJ zlw)y`=YDWuh)ve;2s=wGKCz9;rn?%9Xc&i4P5Bo7sCE@7{Z{7_f|f--`j;IGR}7Ya z_+eN#S?0&dJts`tzj!jCAZt0RByx}gaiI0Y`|FU9TGJdCguG%sIhz}3CvV9?rGLn{gN{&{#( zc{h*?dE-U~dnoQb&>G}OX#eLwV&|Znpz&zm#QXOMw-_c-=zoHv4xE1pn5G3VBGAMC z?P7E>Nh%0LXboOq?^H7I)JyfqaWY3SU87d~w?zBg^QI?Zi$IOa}xlcTMtOexde`H1j3tsHo0(vk#d?^9DLQJ3%F@s;a78w@YGH zzlCox(b2G|E=JOrsp)B)XKblveAbGJy;*{GVq#*(CMN1^spb{e*EPGQqKV@E`%B>9 zV{?;u*U>yt)Z*IEM>8|Cyu3VTXXllal*-D=p`jsAOe;MjgC;?t)%;ra*8HB|@%BvV z#Adf8KjhbHE)zZDva_)<>`*J^qJTgkEG+KHzktB?Ex+uAm{QjMK)p!}N%8SsVtK1( zQW;H6VztKVn(TW=M@MAjCNp>uVgiCwNg_hRt*KhaXDa zeft2@n+JbwW}@45ZKk8+aejzMzZ8Ml1)Z-KrLt+7R|h=qbyrNJz5HMS#tH5A(6~bF z?d`!M>(~#;VA?`LLUaq&`uh5mRa6#uuRg_J!=~$9b&K^J$G^OLBe>kS`Ysi{?C|m;_qB<-Ln|++! z+;$)32NvjYI2%l#A8nq+ny{tT*4IyrjXBS@WVv=TNCgERZH#fI;X?*x#*YOoUl<*a zXiBF1um+?iQ_>uUpltuM4jPbd-zYQFY0eUAY z6W`S(^2e>KFZGeLu!)Dq{?+Bhlf>#tCmLa=IT{=9BSJ7sjEsy>a#mLH$U5}Csi_HM zm2SE78aF7F8RUz3I}8=bgPXx-W@b`SQh=UtqlbmS4|(t2Ns5a4VNc!DZFt+T`*U-1 z&eL^$)&dn1&6a2TyeO>4Vo!ob(LpJ1+n)x+{p18V0CJ@xNSvLba^np&@N8EeHye4ddtMr(C?cy28Z+_c9i#=cFemYw78Y zPEJx$QnHiBQ1BT0&CTHy&AgzZGi$Qu=n??xgJgdyDtcN9ch*+>yq(!^i*IGjk}dhF zY0SY}l$IfIS6WLedB{FKCT4wYEjlsLywair%!;R{XH--a7Z;a}z+?)uB7}pkoG|t5 z_wP=)w}0@jElP>~J=T=E)I%Dem-m4R80hJF`FPo5u`Hy0yStU3%lLSqoPJqZ+2`R?gKnq0$1rJY8GW=VNpBfr| zZ}}WJ$8~&QtnTyLs+}m&E9nfwQ@0iDbq7{4-wcPIjl8WWl^dy1VmZei45o38&9y(X zxBuN4ao1;Ow$*9!>-P3GnBIXr@zqpKNs<^jU}gs^{WLT*7pIF!K=c>q=e7g6eUBE7 z0*oT%VahCTK)t?d?w3p7Q-EZamX??mWB(~y4Bp1#DzW^kM7=<0%=sanl>(^Q^+G1S)A2ZsCDah$t; zy5HSYQ*#i6$xhXil>Evk=GsF{TwBv#WKx*>&1XB7&x^V&|46$XCe4&4K(M&y2ONZs zPVe+7H=3M`Y{q{z589n_tiX7n`(t8a0=EWbN4(V3;)m=3m{U<@sV5{nkaxzQF2Un_ zDckmXXdG&%?1fxrTm1d}8a{u9K}?;@IyySwqGAUJNASTuyJ;boYh!bBddgT(Q1Hy! zwQ0Rj;^lE>|H}LK?<4+gSM>M+U;$?AP#bWCJ=;ND@Gx3CIdQYGu?YwWh>Ks07VECB zuLCfDdHfgnULpd5r}Yhp?Ad1Ding}4-bJGpKX-Tcz1TD^Z!xnMFJ8dm4Ct>f0$v3L zUCp+>e59WJfQ;;DR992t@RzKFghWC@0uV1_2jkh<8Sv0HHa6kOyV22q{+MFozFk<+ z&$1p2Vtm(*+S?(F(L9i}a8AN?b4$xpjwesJxJnxv8*6I3fD>X%jj7-vkrA{TSQ6D> zOD!JT0LoVL|J$0ESoj`5Q4?e1Lgla&+re=JIODnhqch^5x2I>+ z!COYA^Pl2x|7iquFF}n-I&q&&wL;k_A~Vna$M_KoTlJV@`RAo$aTL5)b791kk;-an zx!|c_T7X+OGd4c{sppECs;a7nh6XTpFRw$c3Q!uptloq6x>y{o7LVsmTMcCU%^K!SE4-zk2=p3J%h-9gul7MLb(Fd9D}*4R_cjc((^=5VB`C@OFRBs$s86}O4lo5Vdf4Ta{y=pH4F_4GfJ4kU6s$%fBihUWaj3@xIaV1Og1RnT-pzji@Dm;#K^E1M?4a6A|L!gyR8v>i zDJK=2wCN`LR)rP)b)-lW(1((KTN+AA3rgFrNJ438X#fez%F2&4-&q@tPrNueIoa9X zUJ-S1aw1@q8xg{^?gI7;%+$svt=|@KIr^mMOlb~6*}1v7>mxfE_MM&9clE`Gr`c!|ll zaXsWv-DqkT7qbYsxk;6Ryu7!U7xc`^iWy#YsM~8-n0^l$#1HW!=2J!9fKpt>cb!h$$0^yRFn7D!wf-g{7 z0ja)}0O{Dhk>TN=^-8D&ZRO7Q)-)9yi}S;E;P(Cs=kzWXmzSGYS$4l+Rpl(@oR@)>2H)hN#*dIG9ixBhS6N)l z!NbGD#TBHKuqw{XN zVG~a^iUdIfS7rcY?NDo6G(tj8|1R^bp`qXB#$v>ew;bS4JQ*43>6~dQaoqwSv>PZd zA5TvQq$IWP0Vy>TX-tiA*~BIiF*Tv8q^>UEw`=k0RV(29HTERxBUqLHGSJ8&`z4Pj zubGQRsL047_=TwxKq#z&1mgnQou@G|I}5Vl0&xX+GSGvAgR8$678YXT;&QUH0WV@= zW(KeWZ_p^xEge%~A&u%H0rmFy2ti#4t+`?eGZ} zse>>wqRQ_DGYv2!7=###ii(;UZ$;@6K|pa4_zVhgQ z7o(@&_GkoOAj6k8Gn>Jl9cbo>>Fes=Cm|sLbcKcnut$=hT)wAIbK%1u^*E6_%AnYt ztZbMX8yI&+pEY0#z{tzW%IN6mQnXWWFL43wU`thIAqRWkll87};D4p1LsXCg)Cou= z5>V-CyMELhHKR0%+OxSfSo6%)UM~a2Z!zJzM`*_71oi5|pxo3*TRY_5kAZ*b|6Rwp aVu*~UGXIEIUJi0IA!T_DxpEnc(EkU9G5=ct diff --git a/1-Introduction/02-ethics/resources.md b/1-Introduction/02-ethics/resources.md deleted file mode 100644 index 0b4e221..0000000 --- a/1-Introduction/02-ethics/resources.md +++ /dev/null @@ -1,3 +0,0 @@ -## Courses - -## Articles \ No newline at end of file