Azure Cloud Advocates bei Microsoft freuen sich, einen 10-wöchigen, 20-teiligen Lehrplan rund um Datenwissenschaft anzubieten. Jede Lektion enthält Vor- und Nachtests, schriftliche Anleitungen zur Durchführung der Lektion, eine Lösung und eine Aufgabe. Unsere projektbasierte Pädagogik ermöglicht es Ihnen, durch praktisches Arbeiten zu lernen – eine bewährte Methode, um neue Fähigkeiten nachhaltig zu erlernen.
Azure Cloud Advocates bei Microsoft freuen sich, einen 10-wöchigen, 20-Lektionen umfassenden Lehrplan rund um Datenwissenschaft anzubieten. Jede Lektion enthält Quizfragen vor und nach der Lektion, schriftliche Anleitungen zur Durchführung der Lektion, eine Lösung und eine Aufgabe. Unsere projektbasierte Pädagogik ermöglicht es Ihnen, durch praktisches Arbeiten zu lernen – eine bewährte Methode, um neue Fähigkeiten nachhaltig zu erlernen.
| ](./sketchnotes/00-Title.png)|
||
|:---:|
| Datenwissenschaft für Anfänger -_Sketchnote von [@nitya](https://twitter.com/nitya)_ |
| Datenwissenschaft für Anfänger –_Sketchnote von [@nitya](https://twitter.com/nitya)_ |
## Ankündigung - Neuer Lehrplan zu Generativer KI veröffentlicht!
### 🌐 Mehrsprachige Unterstützung
Wir haben gerade einen 12-teiligen Lehrplan zur Generativen KI veröffentlicht. Lernen Sie Themen wie:
#### Unterstützt durch GitHub Action (Automatisiert & Immer aktuell)
Wie gewohnt gibt es Lektionen, Aufgaben, Wissensüberprüfungen und Herausforderungen.
**Falls Sie zusätzliche Übersetzungen wünschen, finden Sie die unterstützten Sprachen [hier](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Schauen Sie es sich an:
#### Treten Sie unserer Community bei
[](https://discord.gg/kzRShWzttr)
> https://aka.ms/genai-beginners
# Sind Sie ein Student?
# Sind Sie ein*e Schüler*in oder Student*in?
Starten Sie mit den folgenden Ressourcen:
- [Student HubSeite](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Auf dieser Seite finden Sie Ressourcen für Anfänger, Student Packs und sogar Möglichkeiten, einen kostenlosen Zertifizierungsgutschein zu erhalten. Diese Seite sollten Sie sich als Lesezeichen speichern und regelmäßig besuchen, da wir den Inhalt mindestens monatlich aktualisieren.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Treten Sie einer globalen Gemeinschaft von Studentenbotschaftern bei – dies könnte Ihr Einstieg bei Microsoft sein.
- [Student Hub-Seite](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Auf dieser Seite finden Sie Ressourcen für Anfänger*innen, Student*innenpakete und sogar Möglichkeiten, einen kostenlosen Zertifizierungsgutschein zu erhalten. Diese Seite sollten Sie sich als Lesezeichen speichern und regelmäßig besuchen, da wir den Inhalt mindestens monatlich aktualisieren.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Treten Sie einer globalen Community von Student*innenbotschafter*innen bei – dies könnte Ihr Einstieg bei Microsoft sein.
# Erste Schritte
> **Lehrer**: Wir haben [einige Vorschläge](for-teachers.md) hinzugefügt, wie Sie diesen Lehrplan nutzen können. Wir freuen uns über Ihr Feedback [in unserem Diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Lehrer*innen**: Wir haben [einige Vorschläge](for-teachers.md) hinzugefügt, wie Sie diesen Lehrplan nutzen können. Wir freuen uns über Ihr Feedback [in unserem Diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenten](https://aka.ms/student-page)**: Um diesen Lehrplan eigenständig zu nutzen, forken Sie das gesamte Repository und bearbeiten Sie die Übungen selbstständig, beginnend mit einem Quiz vor der Vorlesung. Lesen Sie dann die Vorlesung und führen Sie die restlichen Aktivitäten durch. Versuchen Sie, die Projekte zu erstellen, indem Sie die Lektionen verstehen, anstatt den Lösungscode zu kopieren; dieser ist jedoch in den /solutions-Ordnern jeder projektorientierten Lektion verfügbar. Eine weitere Idee wäre, eine Lerngruppe mit Freunden zu bilden und den Inhalt gemeinsam durchzugehen. Für weiterführende Studien empfehlen wir [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Schüler*innen/Student*innen](https://aka.ms/student-page)**: Um diesen Lehrplan eigenständig zu nutzen, forken Sie das gesamte Repository und bearbeiten Sie die Übungen selbstständig, beginnend mit einem Quiz vor der Lektion. Lesen Sie dann die Lektion und führen Sie die restlichen Aktivitäten durch. Versuchen Sie, die Projekte zu erstellen, indem Sie die Lektionen verstehen, anstatt den Lösungscode zu kopieren; dieser ist jedoch in den /solutions-Ordnern jeder projektorientierten Lektion verfügbar. Eine weitere Idee wäre, eine Lerngruppe mit Freund*innen zu bilden und den Inhalt gemeinsam durchzugehen. Für weiterführendes Lernen empfehlen wir [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Lernen Sie das Team kennen
@ -52,59 +49,57 @@ Starten Sie mit den folgenden Ressourcen:
> 🎥 Klicken Sie auf das Bild oben, um ein Video über das Projekt und die Personen dahinter anzusehen!
> 🎥 Klicken Sie auf das Bild oben, um ein Video über das Projekt und die Personen, die es erstellt haben, anzusehen!
## Pädagogik
Wir haben zwei pädagogische Grundsätze bei der Erstellung dieses Lehrplans gewählt: sicherzustellen, dass er projektbasiert ist, und häufige Quizfragen einzubauen. Am Ende dieser Serie werden die Studenten grundlegende Prinzipien der Datenwissenschaft gelernt haben, einschließlich ethischer Konzepte, Datenaufbereitung, verschiedener Arbeitsweisen mit Daten, Datenvisualisierung, Datenanalyse, realer Anwendungsfälle der Datenwissenschaft und mehr.
Darüber hinaus setzt ein niedrigschwelliges Quiz vor einer Klasse die Absicht des Studenten, ein Thema zu lernen, während ein zweites Quiz nach der Klasse die weitere Beibehaltung sicherstellt. Dieser Lehrplan wurde so gestaltet, dass er flexibel und unterhaltsam ist und ganz oder teilweise absolviert werden kann. Die Projekte beginnen klein und werden im Laufe des 10-wöchigen Zyklus zunehmend komplexer.
Wir haben zwei pädagogische Grundsätze bei der Erstellung dieses Lehrplans gewählt: sicherzustellen, dass er projektbasiert ist, und häufige Quizfragen einzubinden. Am Ende dieser Serie werden die Schüler*innen grundlegende Prinzipien der Datenwissenschaft gelernt haben, einschließlich ethischer Konzepte, Datenvorbereitung, verschiedener Arbeitsweisen mit Daten, Datenvisualisierung, Datenanalyse, realer Anwendungsfälle der Datenwissenschaft und mehr.
Darüber hinaus setzt ein niedrigschwelliges Quiz vor einer Lektion die Intention der Schüler*innen, ein Thema zu lernen, während ein zweites Quiz nach der Lektion das Gelernte weiter festigt. Dieser Lehrplan wurde so gestaltet, dass er flexibel und unterhaltsam ist und ganz oder teilweise genutzt werden kann. Die Projekte beginnen klein und werden im Laufe des 10-wöchigen Zyklus zunehmend komplexer.
> Finden Sie unseren [Verhaltenskodex](CODE_OF_CONDUCT.md), [Beitragsrichtlinien](CONTRIBUTING.md), [Übersetzungsrichtlinien](TRANSLATIONS.md). Wir freuen uns über Ihr konstruktives Feedback!
## Jede Lektion enthält:
## Jede Lektion beinhaltet:
- Optionale Sketchnote
- Optionales ergänzendes Video
- Warm-up-Quiz vor der Lektion
- Schriftliche Lektion
- Geschriebene Lektion
- Für projektbasierte Lektionen: Schritt-für-Schritt-Anleitungen zum Erstellen des Projekts
- Wissensüberprüfungen
- Eine Herausforderung
- Ergänzende Lektüre
- Aufgabe
- Quiz nach der Lektion
- [Quiz nach der Lektion](https://ff-quizzes.netlify.app/en/)
> **Eine Anmerkung zu den Quizfragen**: Alle Quizfragen befinden sich im Quiz-App-Ordner, insgesamt 40 Quizfragen mit jeweils drei Fragen. Sie sind innerhalb der Lektionen verlinkt, aber die Quiz-App kann lokal ausgeführt oder in Azure bereitgestellt werden; folgen Sie den Anweisungen im `quiz-app`-Ordner. Sie werden schrittweise lokalisiert.
> **Eine Anmerkung zu den Quizfragen**: Alle Quizfragen befinden sich im Ordner Quiz-App, insgesamt 40 Quizfragen mit jeweils drei Fragen. Sie sind in den Lektionen verlinkt, aber die Quiz-App kann lokal oder auf Azure ausgeführt werden; folgen Sie den Anweisungen im `quiz-app`-Ordner. Sie werden nach und nach lokalisiert.
## Lektionen
| ](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| Datenwissenschaft für Anfänger: Roadmap - _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
| Data Science für Anfänger: Roadmap - _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
| Lektion Nummer | Thema | Lektionseinheit | Lernziele | Verlinkte Lektion | Autor |
| Lektion Nummer | Thema | Lektion Gruppierung | Lernziele | Verlinkte Lektion | Autor |
| 01 | Definition von Datenwissenschaft | [Einführung](1-Introduction/README.md) | Lernen Sie die grundlegenden Konzepte der Datenwissenschaft und wie sie mit künstlicher Intelligenz, maschinellem Lernen und Big Data zusammenhängt. | [Lektion](1-Introduction/01-defining-data-science/README.md) [Video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ethik in der Datenwissenschaft | [Einführung](1-Introduction/README.md) | Konzepte, Herausforderungen und Rahmenbedingungen der Datenethik. | [Lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | Definition von Data Science | [Einführung](1-Introduction/README.md) | Lernen Sie die grundlegenden Konzepte der Data Science und wie sie mit künstlicher Intelligenz, maschinellem Lernen und Big Data zusammenhängt. | [Lektion](1-Introduction/01-defining-data-science/README.md) [Video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ethik in der Data Science | [Einführung](1-Introduction/README.md) | Konzepte, Herausforderungen und Rahmenbedingungen der Datenethik. | [Lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definition von Daten | [Einführung](1-Introduction/README.md) | Wie Daten klassifiziert werden und ihre häufigsten Quellen. | [Lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Einführung in Statistik & Wahrscheinlichkeit | [Einführung](1-Introduction/README.md) | Die mathematischen Techniken der Wahrscheinlichkeit und Statistik, um Daten zu verstehen. | [Lektion](1-Introduction/04-stats-and-probability/README.md) [Video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbeiten mit relationalen Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in relationale Daten und die Grundlagen der Erkundung und Analyse relationaler Daten mit der Structured Query Language, auch bekannt als SQL (ausgesprochen „see-quell“). | [Lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeiten mit NoSQL-Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in nicht-relationale Daten, ihre verschiedenen Typen und die Grundlagen der Erkundung und Analyse von Dokumentdatenbanken. | [Lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbeiten mit Python | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Grundlagen der Nutzung von Python zur Datenexploration mit Bibliotheken wie Pandas. Grundlegendes Verständnis der Python-Programmierung wird empfohlen. | [Lektion](2-Working-With-Data/07-python/README.md) [Video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Datenvorbereitung | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Themen zu Techniken der Datenbereinigung und -transformation, um Herausforderungen wie fehlende, ungenaue oder unvollständige Daten zu bewältigen. | [Lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Mengen visualisieren | [Datenvisualisierung](3-Data-Visualization/README.md) | Lernen Sie, wie Sie mit Matplotlib Vogeldaten 🦆 visualisieren können. | [Lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Verteilungen von Daten visualisieren | [Datenvisualisierung](3-Data-Visualization/README.md) | Beobachtungen und Trends innerhalb eines Intervalls visualisieren. | [Lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Beziehungen visualisieren | [Datenvisualisierung](3-Data-Visualization/README.md) | Verbindungen und Korrelationen zwischen Datensätzen und ihren Variablen visualisieren. | [Lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Sinnvolle Visualisierungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Techniken und Anleitungen, um Ihre Visualisierungen wertvoll für effektive Problemlösungen und Erkenntnisse zu machen. | [Lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Einführung in den Lebenszyklus der Datenwissenschaft | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Einführung in den Lebenszyklus der Datenwissenschaft und den ersten Schritt der Datenbeschaffung und -extraktion. | [Lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analysieren | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Lebenszyklus der Datenwissenschaft konzentriert sich auf Techniken zur Datenanalyse. | [Lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikation | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Lebenszyklus der Datenwissenschaft konzentriert sich darauf, die Erkenntnisse aus den Daten so zu präsentieren, dass Entscheidungsträger sie leichter verstehen können. | [Lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Datenwissenschaft in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Diese Serie von Lektionen führt in die Datenwissenschaft in der Cloud und ihre Vorteile ein. | [Lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 18 | Datenwissenschaft in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Low-Code-Tools trainieren. |[Lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 19 | Datenwissenschaft in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Azure Machine Learning Studio bereitstellen. | [Lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 20 | Datenwissenschaft in der Praxis | [In der Praxis](6-Data-Science-In-Wild/README.md) | Datenwissenschaftsprojekte in der realen Welt. | [Lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 04 | Einführung in Statistik und Wahrscheinlichkeit | [Einführung](1-Introduction/README.md) | Die mathematischen Techniken der Wahrscheinlichkeit und Statistik, um Daten zu verstehen. | [Lektion](1-Introduction/04-stats-and-probability/README.md) [Video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbeiten mit relationalen Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in relationale Daten und die Grundlagen der Exploration und Analyse relationaler Daten mit der Structured Query Language, auch bekannt als SQL (ausgesprochen „see-quell“). | [Lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeiten mit NoSQL-Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in nicht-relationale Daten, ihre verschiedenen Typen und die Grundlagen der Exploration und Analyse von Dokumentdatenbanken. | [Lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Arbeiten mit Python | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Grundlagen der Verwendung von Python zur Datenexploration mit Bibliotheken wie Pandas. Grundlegendes Verständnis der Python-Programmierung wird empfohlen. | [Lektion](2-Working-With-Data/07-python/README.md) [Video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Datenvorbereitung | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Themen zu Datentechniken für das Bereinigen und Transformieren von Daten, um Herausforderungen wie fehlende, ungenaue oder unvollständige Daten zu bewältigen. | [Lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisierung von Mengen | [Datenvisualisierung](3-Data-Visualization/README.md) | Lernen Sie, wie Sie Matplotlib verwenden, um Vogeldaten 🦆 zu visualisieren. | [Lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisierung von Datenverteilungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Beobachtungen und Trends innerhalb eines Intervalls visualisieren. | [Lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisierung von Proportionen | [Datenvisualisierung](3-Data-Visualization/README.md) | Diskrete und gruppierte Prozentsätze visualisieren. | [Lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisierung von Beziehungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Verbindungen und Korrelationen zwischen Datensätzen und ihren Variablen visualisieren. | [Lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Sinnvolle Visualisierungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Techniken und Leitlinien, um Ihre Visualisierungen wertvoll für effektive Problemlösungen und Erkenntnisse zu machen. | [Lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Einführung in den Data Science-Lebenszyklus | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Einführung in den Data Science-Lebenszyklus und seinen ersten Schritt: Daten erfassen und extrahieren. | [Lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyse | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Data Science-Lebenszyklus konzentriert sich auf Techniken zur Datenanalyse. | [Lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Kommunikation | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Data Science-Lebenszyklus konzentriert sich darauf, die Erkenntnisse aus den Daten so zu präsentieren, dass Entscheidungsträger sie leichter verstehen können. | [Lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Diese Serie von Lektionen führt in Data Science in der Cloud und ihre Vorteile ein. | [Lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Low-Code-Tools trainieren. |[Lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Azure Machine Learning Studio bereitstellen. | [Lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science in der Praxis | [In der Praxis](6-Data-Science-In-Wild/README.md) | Datenwissenschaftlich getriebene Projekte in der realen Welt. | [Lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
@ -116,7 +111,7 @@ Weitere Informationen finden Sie in der [GitHub-Dokumentation](https://docs.gith
## VSCode Remote - Containers
Folgen Sie diesen Schritten, um dieses Repository in einem Container mit Ihrer lokalen Maschine und VSCode mithilfe der VS Code Remote - Containers-Erweiterung zu öffnen:
1. Wenn Sie zum ersten Mal einen Entwicklungscontainer verwenden, stellen Sie bitte sicher, dass Ihr System die Voraussetzungen erfüllt (z. B. Docker installiert ist), wie in der [Einführungsdokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) beschrieben.
1. Wenn Sie zum ersten Mal einen Entwicklungscontainer verwenden, stellen Sie sicher, dass Ihr System die Voraussetzungen erfüllt (z. B. Docker installiert ist), wie in der [Einführungsdokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) beschrieben.
Um dieses Repository zu verwenden, können Sie entweder das Repository in einem isolierten Docker-Volume öffnen:
@ -126,28 +121,24 @@ Oder öffnen Sie eine lokal geklonte oder heruntergeladene Version des Repositor
- Klonen Sie dieses Repository auf Ihr lokales Dateisystem.
- Drücken Sie F1 und wählen Sie den Befehl **Remote-Containers: Ordner im Container öffnen...**.
- Wählen Sie die geklonte Kopie dieses Ordners aus, warten Sie, bis der Container gestartet ist, und probieren Sie es aus.
- Wählen Sie die geklonte Kopie dieses Ordners, warten Sie, bis der Container gestartet ist, und probieren Sie es aus.
## Offline-Zugriff
Sie können diese Dokumentation offline mit [Docsify](https://docsify.js.org/#/) ausführen. Forken Sie dieses Repository, [installieren Sie Docsify](https://docsify.js.org/#/quickstart) auf Ihrem lokalen Rechner, und geben Sie dann im Stammordner dieses Repositorys `docsify serve` ein. Die Website wird auf Port 3000 auf Ihrem localhost bereitgestellt: `localhost:3000`.
Sie können diese Dokumentation offline ausführen, indem Sie [Docsify](https://docsify.js.org/#/) verwenden. Forken Sie dieses Repository, [installieren Sie Docsify](https://docsify.js.org/#/quickstart) auf Ihrer lokalen Maschine, und geben Sie dann im Stammordner dieses Repositorys `docsify serve` ein. Die Website wird auf Port 3000 auf Ihrem localhost bereitgestellt: `localhost:3000`.
> Hinweis: Notebooks werden nicht über Docsify gerendert. Wenn Sie ein Notebook ausführen müssen, tun Sie dies separat in VS Code mit einem Python-Kernel.
> Hinweis: Notebooks werden nicht über Docsify gerendert, daher sollten Sie ein Notebook separat in VS Code mit einem Python-Kernel ausführen.
## Hilfe gesucht!
## Weitere Lehrpläne
Wenn Sie das gesamte Curriculum oder Teile davon übersetzen möchten, folgen Sie bitte unserem [Übersetzungsleitfaden](TRANSLATIONS.md).
## Weitere Curricula
Unser Team erstellt weitere Curricula! Schauen Sie sich an:
Unser Team erstellt weitere Lehrpläne! Schauen Sie sich an:
- [Generative KI für Anfänger](https://aka.ms/genai-beginners)
- [Generative KI für Anfänger .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative KI mit JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative KI mit Java](https://aka.ms/genaijava)
- [KI für Anfänger](https://aka.ms/ai-beginners)
- [Datenwissenschaft für Anfänger](https://aka.ms/datascience-beginners)
- [Data Science für Anfänger](https://aka.ms/datascience-beginners)
- [ML für Anfänger](https://aka.ms/ml-beginners)
- [Cybersicherheit für Anfänger](https://github.com/microsoft/Security-101)
- [Webentwicklung für Anfänger](https://aka.ms/webdev-beginners)
@ -157,5 +148,7 @@ Unser Team erstellt weitere Curricula! Schauen Sie sich an:
- [GitHub Copilot für C#/.NET-Entwickler meistern](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Wählen Sie Ihr eigenes Copilot-Abenteuer](https://github.com/microsoft/CopilotAdventures)
---
**Haftungsausschluss**:
Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.
Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.
# Ciencia de Datos para Principiantes - Un Currículo
Azure Cloud Advocates en Microsoft se complacen en ofrecer un currículo de 10 semanas y 20 lecciones sobre Ciencia de Datos. Cada lección incluye cuestionarios antes y después de la lección, instrucciones escritas para completar la lección, una solución y una tarea. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma comprobada de que las nuevas habilidades se consoliden.
Azure Cloud Advocates en Microsoft se complacen en ofrecer un currículo de 10 semanas y 20 lecciones sobre Ciencia de Datos. Cada lección incluye cuestionarios antes y después de la lección, instrucciones escritas para completar la lección, una solución y una tarea. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma comprobada de hacer que las nuevas habilidades se queden contigo.
| ](./sketchnotes/00-Title.png)|
||
|:---:|
| Ciencia de Datos para Principiantes - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
## Anuncio - ¡Nuevo Currículo sobre IA Generativa recién lanzado!
### 🌐 Soporte Multilingüe
Acabamos de lanzar un currículo de 12 lecciones sobre IA generativa. Aprende temas como:
#### Soporte a través de GitHub Action (Automatizado y Siempre Actualizado)
Como siempre, hay una lección, tareas para completar, evaluaciones de conocimiento y desafíos.
**Si deseas que se admitan idiomas adicionales, los idiomas disponibles están listados [aquí](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Descúbrelo:
> https://aka.ms/genai-beginners
#### Únete a Nuestra Comunidad
[](https://discord.gg/kzRShWzttr)
# ¿Eres estudiante?
Comienza con los siguientes recursos:
- [Página del Hub para Estudiantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) En esta página encontrarás recursos para principiantes, paquetes para estudiantes e incluso formas de obtener un voucher gratuito para certificación. Es una página que querrás marcar y revisar de vez en cuando, ya que cambiamos el contenido al menos mensualmente.
- [Página del Hub para Estudiantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) En esta página, encontrarás recursos para principiantes, paquetes para estudiantes e incluso formas de obtener un voucher gratuito para certificación. Es una página que querrás marcar y revisar de vez en cuando, ya que cambiamos el contenido al menos mensualmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Únete a una comunidad global de embajadores estudiantiles, esta podría ser tu puerta de entrada a Microsoft.
# Comenzando
> **Profesores**: hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este currículo. Nos encantaría recibir tus comentarios [en nuestro foro de discusión](https://github.com/microsoft/Data-Science-For-Beginners/discussions).
> **Profesores**: hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este currículo. Nos encantaría recibir tus comentarios [en nuestro foro de discusión](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Estudiantes](https://aka.ms/student-page)**: para usar este currículo por tu cuenta, haz un fork del repositorio completo y completa los ejercicios por tu cuenta, comenzando con un cuestionario previo a la lección. Luego, lee la lección y completa el resto de las actividades. Intenta crear los proyectos comprendiendo las lecciones en lugar de copiar el código de solución; sin embargo, ese código está disponible en las carpetas /solutions en cada lección orientada a proyectos. Otra idea sería formar un grupo de estudio con amigos y revisar el contenido juntos. Para un estudio más profundo, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
@ -59,10 +56,8 @@ Comienza con los siguientes recursos:
Hemos elegido dos principios pedagógicos al construir este currículo: asegurarnos de que sea basado en proyectos y que incluya cuestionarios frecuentes. Al final de esta serie, los estudiantes habrán aprendido los principios básicos de la ciencia de datos, incluyendo conceptos éticos, preparación de datos, diferentes formas de trabajar con datos, visualización de datos, análisis de datos, casos de uso reales de la ciencia de datos y más.
Además, un cuestionario de bajo riesgo antes de una clase establece la intención del estudiante hacia el aprendizaje de un tema, mientras que un segundo cuestionario después de la clase asegura una mayor retención. Este currículo fue diseñado para ser flexible y divertido y puede tomarse en su totalidad o en parte. Los proyectos comienzan pequeños y se vuelven cada vez más complejos al final del ciclo de 10 semanas.
> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), [Contribuciones](CONTRIBUTING.md), [Guías de Traducción](TRANSLATIONS.md). ¡Agradecemos tus comentarios constructivos!
Además, un cuestionario de bajo riesgo antes de la clase establece la intención del estudiante hacia el aprendizaje de un tema, mientras que un segundo cuestionario después de la clase asegura una mayor retención. Este currículo fue diseñado para ser flexible y divertido, y puede tomarse en su totalidad o en parte. Los proyectos comienzan pequeños y se vuelven cada vez más complejos al final del ciclo de 10 semanas.
> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), [Contribuciones](CONTRIBUTING.md), [Traducción](TRANSLATIONS.md). ¡Agradecemos tus comentarios constructivos!
## Cada lección incluye:
- Sketchnote opcional
@ -70,74 +65,70 @@ Además, un cuestionario de bajo riesgo antes de una clase establece la intenci
- Cuestionario de calentamiento previo a la lección
- Lección escrita
- Para lecciones basadas en proyectos, guías paso a paso sobre cómo construir el proyecto
- Evaluaciones de conocimiento
- Verificaciones de conocimiento
- Un desafío
- Lectura complementaria
- Tarea
- Cuestionario posterior a la lección
- [Cuestionario posterior a la lección](https://ff-quizzes.netlify.app/en/)
> **Una nota sobre los cuestionarios**: Todos los cuestionarios están contenidos en la carpeta Quiz-App, para un total de 40 cuestionarios de tres preguntas cada uno. Están vinculados desde las lecciones, pero la aplicación de cuestionarios puede ejecutarse localmente o desplegarse en Azure; sigue las instrucciones en la carpeta `quiz-app`. Se están localizando gradualmente.
> **Una nota sobre los cuestionarios**: Todos los cuestionarios están contenidos en la carpeta Quiz-App, con un total de 40 cuestionarios de tres preguntas cada uno. Están vinculados desde las lecciones, pero la aplicación de cuestionarios se puede ejecutar localmente o desplegar en Azure; sigue las instrucciones en la carpeta `quiz-app`. Se están localizando gradualmente.
## Lecciones
| ](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| Ciencia de Datos para Principiantes: Hoja de Ruta - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
| Número de Lección | Tema | Agrupación de Lecciones | Objetivos de Aprendizaje | Lección Vinculada | Autor |
| 01 | Definiendo la Ciencia de Datos | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos detrás de la ciencia de datos y cómo está relacionada con la inteligencia artificial, el aprendizaje automático y los grandes datos. | [lección](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definiendo la Ciencia de Datos | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos detrás de la ciencia de datos y cómo se relaciona con la inteligencia artificial, el aprendizaje automático y los grandes datos. | [lección](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética en la Ciencia de Datos | [Introducción](1-Introduction/README.md) | Conceptos, desafíos y marcos de ética en los datos. | [lección](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiendo los Datos | [Introducción](1-Introduction/README.md) | Cómo se clasifican los datos y sus fuentes comunes. | [lección](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introducción a Estadística y Probabilidad | [Introducción](1-Introduction/README.md) | Las técnicas matemáticas de probabilidad y estadística para entender los datos. | [lección](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabajando con Datos Relacionales | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a los datos relacionales y los conceptos básicos de exploración y análisis de datos relacionales con el Lenguaje de Consulta Estructurado, también conocido como SQL (pronunciado “see-quell”). | [lección](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabajando con Datos NoSQL | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a los datos no relacionales, sus diversos tipos y los conceptos básicos de exploración y análisis de bases de datos de documentos. | [lección](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabajando con Python | [Trabajando con Datos](2-Working-With-Data/README.md) | Conceptos básicos de uso de Python para la exploración de datos con bibliotecas como Pandas. Se recomienda una comprensión fundamental de la programación en Python. | [lección](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparación de Datos | [Trabajando con Datos](2-Working-With-Data/README.md) | Temas sobre técnicas de datos para limpiar y transformar los datos, abordando desafíos como datos faltantes, inexactos o incompletos. | [lección](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualización de Cantidades | [Visualización de Datos](3-Data-Visualization/README.md) | Aprende a usar Matplotlib para visualizar datos de aves 🦆 | [lección](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualización de Distribuciones de Datos | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de observaciones y tendencias dentro de un intervalo. | [lección](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualización de Proporciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de porcentajes discretos y agrupados. | [lección](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualización de Relaciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de conexiones y correlaciones entre conjuntos de datos y sus variables. | [lección](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 08 | Preparación de Datos | [Trabajando con Datos](2-Working-With-Data/README.md) | Temas sobre técnicas de datos para limpiar y transformar los datos para manejar desafíos de datos faltantes, inexactos o incompletos. | [lección](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizando Cantidades | [Visualización de Datos](3-Data-Visualization/README.md) | Aprende cómo usar Matplotlib para visualizar datos de aves 🦆 | [lección](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizando Distribuciones de Datos | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando observaciones y tendencias dentro de un intervalo. | [lección](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizando Proporciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando porcentajes discretos y agrupados. | [lección](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizando Relaciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando conexiones y correlaciones entre conjuntos de datos y sus variables. | [lección](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizaciones Significativas | [Visualización de Datos](3-Data-Visualization/README.md) | Técnicas y orientación para hacer que tus visualizaciones sean valiosas para resolver problemas de manera efectiva y obtener ideas. | [lección](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introducción al ciclo de vida de la Ciencia de Datos | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introducción al ciclo de vida de la ciencia de datos y su primer paso: adquirir y extraer datos. | [lección](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Análisis | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en técnicas para analizar datos. | [lección](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicación | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en presentar los hallazgos de los datos de manera que sea más fácil para los responsables de tomar decisiones entenderlos. | [lección](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 14 | Introducción al Ciclo de Vida de la Ciencia de Datos | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introducción al ciclo de vida de la ciencia de datos y su primer paso de adquisición y extracción de datos. | [lección](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analizando | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en técnicas para analizar datos. | [lección](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicación | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se centra en presentar los hallazgos de los datos de manera que sea más fácil para los tomadores de decisiones entender. | [lección](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Esta serie de lecciones introduce la ciencia de datos en la nube y sus beneficios. | [lección](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 18 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Entrenamiento de modelos usando herramientas de bajo código. |[lección](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 19 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Despliegue de modelos con Azure Machine Learning Studio. | [lección](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 18 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Entrenamiento de modelos usando herramientas de bajo código. |[lección](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 19 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Despliegue de modelos con Azure Machine Learning Studio. | [lección](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 20 | Ciencia de Datos en el Mundo Real | [En el Mundo Real](6-Data-Science-In-Wild/README.md) | Proyectos impulsados por la ciencia de datos en el mundo real. | [lección](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sigue estos pasos para abrir este ejemplo en un Codespace:
1. Haz clic en el menú desplegable de Código y selecciona la opción Abrir con Codespaces.
2. Selecciona + Nuevo codespace en la parte inferior del panel.
1. Haz clic en el menú desplegable Code y selecciona la opción Open with Codespaces.
2. Selecciona + New codespace en la parte inferior del panel.
Para más información, consulta la [documentación de GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sigue estos pasos para abrir este repositorio en un contenedor usando tu máquina local y VSCode con la extensión VS Code Remote - Containers:
1. Si es la primera vez que usas un contenedor de desarrollo, asegúrate de que tu sistema cumpla con los requisitos previos (por ejemplo, tener Docker instalado) en [la documentación de introducción](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Si es la primera vez que usas un contenedor de desarrollo, asegúrate de que tu sistema cumpla con los requisitos previos (es decir, tener Docker instalado) en [la documentación de introducción](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Para usar este repositorio, puedes abrirlo en un volumen aislado de Docker:
**Nota**: En segundo plano, esto usará el comando Remote-Containers: **Clone Repository in Container Volume...** para clonar el código fuente en un volumen de Docker en lugar del sistema de archivos local. [Los volúmenes](https://docs.docker.com/storage/volumes/) son el mecanismo preferido para persistir datos de contenedores.
**Nota**: En segundo plano, esto usará el comando Remote-Containers: **Clone Repository in Container Volume...** para clonar el código fuente en un volumen de Docker en lugar del sistema de archivos local. [Volúmenes](https://docs.docker.com/storage/volumes/) son el mecanismo preferido para persistir datos de contenedores.
O abrir una versión clonada o descargada localmente del repositorio:
- Clona este repositorio en tu sistema de archivos local.
- Presiona F1 y selecciona el comando **Remote-Containers: Open Folder in Container...**.
- Selecciona la copia clonada de esta carpeta, espera a que el contenedor se inicie y prueba las funcionalidades.
- Selecciona la copia clonada de esta carpeta, espera a que el contenedor se inicie y prueba las cosas.
## Acceso sin conexión
Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsify.js.org/#/). Haz un fork de este repositorio, [instala Docsify](https://docsify.js.org/#/quickstart) en tu máquina local, luego en la carpeta raíz de este repositorio, escribe `docsify serve`. El sitio web se servirá en el puerto 3000 de tu localhost: `localhost:3000`.
> Nota: Los notebooks no se renderizarán a través de Docsify, así que cuando necesites ejecutar un notebook, hazlo por separado en VS Code ejecutando un kernel de Python.
## ¡Se busca ayuda!
Si deseas traducir todo o parte del currículo, sigue nuestra guía de [Traducciones](TRANSLATIONS.md).
> Nota, los notebooks no se renderizarán a través de Docsify, así que cuando necesites ejecutar un notebook, hazlo por separado en VS Code ejecutando un kernel de Python.
## Otros Currículos
@ -158,5 +149,7 @@ Si deseas traducir todo o parte del currículo, sigue nuestra guía de [Traducci
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**Descargo de responsabilidad**:
Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.
Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.
Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه آموزشی ۱۰ هفتهای و ۲۰ درس درباره علوم داده ارائه میدهند. هر درس شامل آزمونهای پیش از درس و پس از درس، دستورالعملهای نوشتاری برای تکمیل درس، راهحل و تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما امکان میدهد در حین ساختن یاد بگیرید، روشی اثباتشده برای تثبیت مهارتهای جدید.
Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه درسی ۱۰ هفتهای و ۲۰ درس درباره علم داده ارائه میدهند. هر درس شامل آزمونهای قبل و بعد از درس، دستورالعملهای نوشتاری برای تکمیل درس، یک راهحل و یک تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما این امکان را میدهد که در حین ساختن یاد بگیرید، روشی اثباتشده برای تثبیت مهارتهای جدید.
|](./sketchnotes/00-Title.png)|
||
|:---:|
| علوم داده برای مبتدیان - _اسکچنوت توسط [@نیتیا](https://twitter.com/nitya)_ |
| علم داده برای مبتدیان - _طرحواره توسط [@nitya](https://twitter.com/nitya)_ |
## اطلاعیه - برنامه آموزشی جدید درباره هوش مصنوعی مولد منتشر شد!
### 🌐 پشتیبانی چندزبانه
ما بهتازگی یک برنامه آموزشی ۱۲ درس درباره هوش مصنوعی مولد منتشر کردهایم. بیایید چیزهایی مانند:
#### پشتیبانیشده از طریق GitHub Action (خودکار و همیشه بهروز)
را یاد بگیرید. همانند همیشه، هر درس شامل تکالیف، بررسی دانش و چالشها است.
**اگر میخواهید زبانهای ترجمه بیشتری پشتیبانی شوند، لیست زبانهای موجود [اینجا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) قرار دارد.**
مشاهده کنید:
#### به جامعه ما بپیوندید
[](https://discord.gg/kzRShWzttr)
> https://aka.ms/genai-beginners
# آیا شما دانشجو هستید؟
# آیا دانشجو هستید؟
با منابع زیر شروع کنید:
- [صفحه مرکز دانشجویی](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) در این صفحه، منابع مبتدی، بستههای دانشجویی و حتی راههایی برای دریافت یک کوپن گواهی رایگان را خواهید یافت. این صفحهای است که باید نشانکگذاری کنید و هر از گاهی بررسی کنید، زیرا ما حداقل ماهانه محتوا را تغییر میدهیم.
- [سفیران دانشجویی مایکروسافت](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این میتواند راه شما به مایکروسافت باشد.
- [صفحه مرکز دانشجویی](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) در این صفحه، منابع مبتدی، بستههای دانشجویی و حتی راههایی برای دریافت یک کوپن گواهینامه رایگان پیدا خواهید کرد. این صفحهای است که میخواهید آن را نشانکگذاری کنید و هر از گاهی بررسی کنید، زیرا ما حداقل ماهانه محتوا را تغییر میدهیم.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این میتواند راه شما به مایکروسافت باشد.
# شروع به کار
> **معلمان**: ما [برخی پیشنهادات](for-teachers.md) درباره نحوه استفاده از این برنامه آموزشی را درج کردهایم. ما مشتاقانه منتظر بازخورد شما [در انجمن بحث ما](https://github.com/microsoft/Data-Science-For-Beginners/discussions) هستیم!
> **معلمان**: ما [برخی پیشنهادات](for-teachers.md) در مورد نحوه استفاده از این برنامه درسی را گنجاندهایم. ما مشتاقانه منتظر بازخورد شما [در انجمن بحث ما](https://github.com/microsoft/Data-Science-For-Beginners/discussions) هستیم!
> **[دانشجویان](https://aka.ms/student-page)**: برای استفاده از این برنامه آموزشی بهصورت مستقل، کل مخزن را فورک کنید و تمرینها را بهصورت مستقل انجام دهید، با آزمون پیش از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیتها را تکمیل کنید. سعی کنید پروژهها را با درک درسها ایجاد کنید، نه با کپی کردن کد راهحل؛ با این حال، آن کد در پوشههای /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که یک گروه مطالعه با دوستان تشکیل دهید و محتوا را با هم مرور کنید. برای مطالعه بیشتر، ما [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) را توصیه میکنیم.
> **[دانشجویان](https://aka.ms/student-page)**: برای استفاده از این برنامه درسی بهصورت مستقل، کل مخزن را فورک کنید و تمرینها را بهصورت مستقل تکمیل کنید، با یک آزمون پیشدرس شروع کنید. سپس درس را بخوانید و بقیه فعالیتها را تکمیل کنید. سعی کنید پروژهها را با درک درسها ایجاد کنید، نه با کپی کردن کد راهحل؛ با این حال، آن کد در پوشههای /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که با دوستان خود یک گروه مطالعه تشکیل دهید و با هم محتوا را مرور کنید. برای مطالعه بیشتر، ما [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) را توصیه میکنیم.
> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره پروژه و افرادی که آن را ایجاد کردهاند مشاهده کنید!
> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره پروژه و افرادی که آن را ایجاد کردهاند ببینید!
## روش آموزشی
ما دو اصل آموزشی را هنگام ساخت این برنامه آموزشی انتخاب کردهایم: اطمینان از اینکه مبتنی بر پروژه است و شامل آزمونهای مکرر میشود. تا پایان این سری، دانشجویان اصول اولیه علوم داده را یاد خواهند گرفت، از جمله مفاهیم اخلاقی، آمادهسازی دادهها، روشهای مختلف کار با دادهها، مصورسازی دادهها، تحلیل دادهها، موارد استفاده واقعی از علوم داده و موارد دیگر.
علاوه بر این، یک آزمون کمفشار قبل از کلاس، قصد دانشجو را برای یادگیری یک موضوع تعیین میکند، در حالی که یک آزمون دوم پس از کلاس، حفظ بیشتر را تضمین میکند. این برنامه آموزشی بهگونهای طراحی شده است که انعطافپذیر و سرگرمکننده باشد و میتوان آن را بهصورت کامل یا جزئی گذراند. پروژهها کوچک شروع میشوند و تا پایان چرخه ۱۰ هفتهای بهتدریج پیچیدهتر میشوند.
> [قوانین رفتاری](CODE_OF_CONDUCT.md)، [مشارکت](CONTRIBUTING.md)، [راهنمای ترجمه](TRANSLATIONS.md) ما را پیدا کنید. ما از بازخورد سازنده شما استقبال میکنیم!
ما هنگام ساخت این برنامه درسی دو اصل آموزشی را انتخاب کردهایم: اطمینان از اینکه این برنامه مبتنی بر پروژه است و شامل آزمونهای مکرر میشود. تا پایان این سری، دانشجویان اصول اولیه علم داده را یاد خواهند گرفت، از جمله مفاهیم اخلاقی، آمادهسازی دادهها، روشهای مختلف کار با دادهها، مصورسازی دادهها، تحلیل دادهها، موارد استفاده واقعی از علم داده و موارد دیگر.
علاوه بر این، یک آزمون کمفشار قبل از کلاس، نیت دانشجو را به سمت یادگیری یک موضوع هدایت میکند، در حالی که یک آزمون دوم بعد از کلاس، حفظ بیشتر را تضمین میکند. این برنامه درسی به گونهای طراحی شده است که انعطافپذیر و سرگرمکننده باشد و میتوان آن را بهطور کامل یا جزئی گذراند. پروژهها کوچک شروع میشوند و تا پایان چرخه ۱۰ هفتهای بهتدریج پیچیدهتر میشوند.
راهنمای [قوانین رفتاری](CODE_OF_CONDUCT.md)، [مشارکت](CONTRIBUTING.md)، [ترجمه](TRANSLATIONS.md) ما را پیدا کنید. ما از بازخورد سازنده شما استقبال میکنیم!
## هر درس شامل موارد زیر است:
- اسکچنوت اختیاری
- یادداشت تصویری اختیاری
- ویدئوی تکمیلی اختیاری
- آزمون گرمآپ پیش از درس
- آزمون گرمآپ قبل از درس
- درس نوشتاری
- برای درسهای مبتنی بر پروژه، راهنمای گامبهگام برای ساخت پروژه
- برای درسهای پروژهمحور، راهنمای گامبهگام برای ساخت پروژه
- بررسی دانش
- یک چالش
- مطالعه تکمیلی
- تکلیف
- آزمون پس از درس
- [آزمون پس از درس](https://ff-quizzes.netlify.app/en/)
> **نکتهای درباره آزمونها**: تمام آزمونها در پوشه Quiz-App قرار دارند، برای مجموع ۴۰ آزمون هر کدام شامل سه سؤال. آنها از داخل درسها لینک شدهاند، اما اپلیکیشن آزمون میتواند بهصورت محلی اجرا شود یا در Azure مستقر شود؛ دستورالعملها را در پوشه `quiz-app` دنبال کنید. آنها بهتدریج در حال بومیسازی هستند.
> **نکتهای درباره آزمونها**: تمام آزمونها در پوشه Quiz-App قرار دارند و شامل ۴۰ آزمون با سه سؤال در هر آزمون هستند. این آزمونها از داخل درسها لینک شدهاند، اما اپلیکیشن آزمون را میتوان به صورت محلی اجرا کرد یا در Azure مستقر کرد؛ دستورالعملهای موجود در پوشه `quiz-app` را دنبال کنید. این آزمونها به تدریج بومیسازی میشوند.
## درسها
|](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| علوم داده برای مبتدیان: نقشه راه - _اسکچنوت توسط [@نیتیا](https://twitter.com/nitya)_ |
| علم داده برای مبتدیان: نقشه راه - _یادداشت تصویری توسط [@nitya](https://twitter.com/nitya)_ |
| شماره درس | موضوع | گروهبندی درس | اهداف یادگیری | درس مرتبط | نویسنده |
| 01 | تعریف علوم داده | [مقدمه](1-Introduction/README.md) | یادگیری مفاهیم پایهای علوم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و دادههای کلان. | [درس](1-Introduction/01-defining-data-science/README.md) [ویدئو](https://youtu.be/beZ7Mb_oz9I) | [دمیتری](http://soshnikov.com) |
| 02 | اخلاق در علوم داده | [مقدمه](1-Introduction/README.md) | مفاهیم اخلاق داده، چالشها و چارچوبها. | [درس](1-Introduction/02-ethics/README.md) | [نیتیا](https://twitter.com/nitya) |
| 03 | تعریف داده | [مقدمه](1-Introduction/README.md) | نحوه طبقهبندی دادهها و منابع رایج آنها. | [درس](1-Introduction/03-defining-data/README.md) | [جاسمین](https://www.twitter.com/paladique) |
| 04 | مقدمهای بر آمار و احتمال | [مقدمه](1-Introduction/README.md) | تکنیکهای ریاضی احتمال و آمار برای درک دادهها. | [درس](1-Introduction/04-stats-and-probability/README.md) [ویدئو](https://youtu.be/Z5Zy85g4Yjw) | [دمیتری](http://soshnikov.com) |
| 05 | کار با دادههای رابطهای | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای رابطهای و اصول کاوش و تحلیل دادههای رابطهای با زبان Structured Query Language، معروف به SQL (تلفظ "سیکوئل"). | [درس](2-Working-With-Data/05-relational-databases/README.md) | [کریستوفر](https://www.twitter.com/geektrainer) | | |
| 06 | کار با دادههای NoSQL | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای غیررابطهای، انواع مختلف آن و اصول کاوش و تحلیل پایگاههای داده سندی. | [درس](2-Working-With-Data/06-non-relational/README.md) | [جاسمین](https://twitter.com/paladique)|
| 07 | کار با پایتون | [کار با دادهها](2-Working-With-Data/README.md) | اصول استفاده از پایتون برای کاوش دادهها با کتابخانههایی مانند Pandas. درک پایهای از برنامهنویسی پایتون توصیه میشود. | [درس](2-Working-With-Data/07-python/README.md) [ویدئو](https://youtu.be/dZjWOGbsN4Y) | [دمیتری](http://soshnikov.com) |
| 08 | آمادهسازی داده | [کار با داده](2-Working-With-Data/README.md) | موضوعاتی درباره تکنیکهای پاکسازی و تبدیل داده برای مقابله با چالشهای دادههای ناقص، نادرست یا ناکامل. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [جاسمین](https://www.twitter.com/paladique) |
| 09 | مصورسازی مقادیر | [مصورسازی داده](3-Data-Visualization/README.md) | یادگیری نحوه استفاده از Matplotlib برای مصورسازی دادههای پرندگان 🦆 | [درس](3-Data-Visualization/09-visualization-quantities/README.md) | [جن](https://twitter.com/jenlooper) |
| 10 | مصورسازی توزیع دادهها | [مصورسازی داده](3-Data-Visualization/README.md) | مصورسازی مشاهدات و روندها در یک بازه. | [درس](3-Data-Visualization/10-visualization-distributions/README.md) | [جن](https://twitter.com/jenlooper) |
| 12 | مصورسازی روابط | [مصورسازی داده](3-Data-Visualization/README.md) | مصورسازی ارتباطات و همبستگیها بین مجموعههای داده و متغیرهای آنها. | [درس](3-Data-Visualization/12-visualization-relationships/README.md) | [جن](https://twitter.com/jenlooper) |
| 13 | مصورسازیهای معنادار | [مصورسازی داده](3-Data-Visualization/README.md) | تکنیکها و راهنماییهایی برای ارزشمند کردن مصورسازیها جهت حل مؤثر مسائل و کسب بینش. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جن](https://twitter.com/jenlooper) |
| 14 | مقدمهای بر چرخه عمر علم داده | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | مقدمهای بر چرخه عمر علم داده و اولین گام آن یعنی جمعآوری و استخراج داده. | [درس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [جاسمین](https://twitter.com/paladique) |
| 15 | تحلیل | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر تکنیکهای تحلیل داده تمرکز دارد. | [درس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [جاسمین](https://twitter.com/paladique) | | |
| 16 | ارتباط | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر ارائه بینشهای حاصل از داده به گونهای که تصمیمگیرندگان به راحتی آن را درک کنند، تمرکز دارد. | [درس](4-Data-Science-Lifecycle/16-communication/README.md) | [جیلن](https://twitter.com/JalenMcG) | | |
| 17 | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | این مجموعه درسها علم داده در فضای ابری و مزایای آن را معرفی میکند. | [درس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [مود](https://twitter.com/maudstweets) |
| 18 | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | آموزش مدلها با استفاده از ابزارهای کمکد. | [درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [مود](https://twitter.com/maudstweets) |
| 19 | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | استقرار مدلها با استفاده از Azure Machine Learning Studio. | [درس](5-Data-Science-In-Cloud/19-Azure/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [مود](https://twitter.com/maudstweets) |
| 20 | علم داده در دنیای واقعی | [در دنیای واقعی](6-Data-Science-In-Wild/README.md) | پروژههای مبتنی بر علم داده در دنیای واقعی. | [درس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نیتیا](https://twitter.com/nitya) |
| 01 | تعریف علم داده | [مقدمه](1-Introduction/README.md) | یادگیری مفاهیم پایه علم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و دادههای کلان. | [درس](1-Introduction/01-defining-data-science/README.md) [ویدئو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | اخلاق علم داده | [مقدمه](1-Introduction/README.md) | مفاهیم اخلاق داده، چالشها و چارچوبها. | [درس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | تعریف داده | [مقدمه](1-Introduction/README.md) | نحوه طبقهبندی دادهها و منابع رایج آنها. | [درس](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | مقدمهای بر آمار و احتمال | [مقدمه](1-Introduction/README.md) | تکنیکهای ریاضی احتمال و آمار برای درک دادهها. | [درس](1-Introduction/04-stats-and-probability/README.md) [ویدئو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | کار با دادههای رابطهای | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای رابطهای و اصول بررسی و تحلیل دادههای رابطهای با زبان Structured Query Language که به SQL معروف است. | [درس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | کار با دادههای NoSQL | [کار با دادهها](2-Working-With-Data/README.md) | مقدمهای بر دادههای غیررابطهای، انواع مختلف آن و اصول بررسی و تحلیل پایگاههای داده سندی. | [درس](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | کار با پایتون | [کار با دادهها](2-Working-With-Data/README.md) | اصول استفاده از پایتون برای بررسی دادهها با کتابخانههایی مانند Pandas. توصیه میشود که درک پایهای از برنامهنویسی پایتون داشته باشید. | [درس](2-Working-With-Data/07-python/README.md) [ویدئو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | آمادهسازی دادهها | [کار با دادهها](2-Working-With-Data/README.md) | موضوعاتی درباره تکنیکهای پاکسازی و تبدیل دادهها برای مقابله با چالشهای دادههای ناقص، نادرست یا ناکامل. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | مصورسازی مقادیر | [مصورسازی دادهها](3-Data-Visualization/README.md) | یادگیری نحوه استفاده از Matplotlib برای مصورسازی دادههای پرندگان 🦆 | [درس](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | مصورسازی توزیع دادهها | [مصورسازی دادهها](3-Data-Visualization/README.md) | مصورسازی مشاهدات و روندها در یک بازه. | [درس](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | مصورسازی روابط | [مصورسازی دادهها](3-Data-Visualization/README.md) | مصورسازی ارتباطات و همبستگیها بین مجموعههای داده و متغیرهای آنها. | [درس](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | مصورسازیهای معنادار | [مصورسازی دادهها](3-Data-Visualization/README.md) | تکنیکها و راهنماییهایی برای ارزشمند کردن مصورسازیها جهت حل مؤثر مسائل و کسب بینش. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | مقدمهای بر چرخه عمر علم داده | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | مقدمهای بر چرخه عمر علم داده و اولین مرحله آن یعنی جمعآوری و استخراج دادهها. | [درس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | تحلیل | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر تکنیکهای تحلیل دادهها تمرکز دارد. | [درس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | ارتباط | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر ارائه بینشهای حاصل از دادهها به گونهای که تصمیمگیرندگان بتوانند آن را بهتر درک کنند، تمرکز دارد. | [درس](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | این مجموعه درسها علم داده در فضای ابری و مزایای آن را معرفی میکند. | [درس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 18 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | آموزش مدلها با ابزارهای Low Code. |[درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 19 | علم داده در فضای ابری | [دادههای ابری](5-Data-Science-In-Cloud/README.md) | استقرار مدلها با Azure Machine Learning Studio. | [درس](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
| 20 | علم داده در دنیای واقعی | [در دنیای واقعی](6-Data-Science-In-Wild/README.md) | پروژههای مبتنی بر علم داده در دنیای واقعی. | [درس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
این مراحل را دنبال کنید تا این نمونه را در یک Codespace باز کنید:
برای باز کردن این نمونه در یک Codespace مراحل زیر را دنبال کنید:
1. روی منوی کشویی Code کلیک کنید و گزینه Open with Codespaces را انتخاب کنید.
2. در پایین پنل، گزینه + New codespace را انتخاب کنید.
2. در پایین پنل، گزینه + New codespace را انتخاب کنید.
برای اطلاعات بیشتر، به [مستندات GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) مراجعه کنید.
## VSCode Remote - Containers
برای باز کردن این مخزن در یک کانتینر با استفاده از ماشین محلی و VSCode با استفاده از افزونه VS Code Remote - Containers مراحل زیر را دنبال کنید:
این مراحل را دنبال کنید تا این مخزن را با استفاده از ماشین محلی خود و VSCode در یک کانتینر باز کنید، با استفاده از افزونه VS Code Remote - Containers:
1. اگر این اولین بار است که از کانتینر توسعه استفاده میکنید، لطفاً مطمئن شوید که سیستم شما پیشنیازها را برآورده میکند (مانند نصب Docker) در [مستندات شروع به کار](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. اگر این اولین بار است که از یک کانتینر توسعه استفاده میکنید، لطفاً مطمئن شوید که سیستم شما پیشنیازها (مانند نصب Docker) را دارد. [مستندات شروع به کار](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) را بررسی کنید.
برای استفاده از این مخزن، میتوانید مخزن را در یک حجم ایزوله Docker باز کنید:
برای استفاده از این مخزن، میتوانید آن را در یک حجم ایزوله Docker باز کنید:
**توجه**: در پشت صحنه، این کار از دستور Remote-Containers: **Clone Repository in Container Volume...** برای کلون کردن کد منبع در یک حجم Docker به جای سیستم فایل محلی استفاده میکند. [Volumes](https://docs.docker.com/storage/volumes/) مکانیزم ترجیحی برای حفظ دادههای کانتینر هستند.
**توجه**: در پشت صحنه، این کار از دستور Remote-Containers: **Clone Repository in Container Volume...** برای کلون کردن کد منبع در یک حجم Docker به جای سیستم فایل محلی استفاده میکند. [Volumes](https://docs.docker.com/storage/volumes/) مکانیزم ترجیحی برای نگهداری دادههای کانتینر هستند.
یا نسخهای که به صورت محلی کلون یا دانلود شده است را باز کنید:
یا یک نسخه کلونشده یا دانلودشده محلی از مخزن را باز کنید:
- این مخزن را به سیستم فایل محلی خود کلون کنید.
- کلید F1 را فشار دهید و دستور **Remote-Containers: Open Folder in Container...** را انتخاب کنید.
@ -131,32 +125,30 @@ Azure Cloud Advocates در مایکروسافت با افتخار یک برنا
## دسترسی آفلاین
میتوانید این مستندات را به صورت آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را فورک کنید، [Docsify را نصب کنید](https://docsify.js.org/#/quickstart) روی ماشین محلی خود، سپس در پوشه اصلی این مخزن، دستور `docsify serve` را تایپ کنید. وبسایت روی پورت 3000 در localhost شما ارائه خواهد شد: `localhost:3000`.
میتوانید این مستندات را به صورت آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را Fork کنید، [Docsify را نصب کنید](https://docsify.js.org/#/quickstart) روی ماشین محلی خود، سپس در پوشه ریشه این مخزن، دستور `docsify serve` را تایپ کنید. وبسایت روی پورت 3000 در localhost شما اجرا خواهد شد: `localhost:3000`.
> توجه داشته باشید، نوتبوکها از طریق Docsify رندر نمیشوند، بنابراین زمانی که نیاز به اجرای یک نوتبوک دارید، آن را جداگانه در VS Code با اجرای یک کرنل پایتون انجام دهید.
## نیاز به کمک!
اگر مایل به ترجمه تمام یا بخشی از این برنامه درسی هستید، لطفاً راهنمای [ترجمهها](TRANSLATIONS.md) ما را دنبال کنید.
## سایر برنامههای درسی
تیم ما برنامههای درسی دیگری نیز تولید میکند! بررسی کنید:
- [هوش مصنوعی مولد برای مبتدیان](https://aka.ms/genai-beginners)
- [هوش مصنوعی مولد برای مبتدیان .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [هوش مصنوعی مولد با جاوااسکریپت](https://github.com/microsoft/generative-ai-with-javascript)
- [هوش مصنوعی مولد با جاوا](https://aka.ms/genaijava)
- [هوش مصنوعی برای مبتدیان](https://aka.ms/ai-beginners)
- [علم داده برای مبتدیان](https://aka.ms/datascience-beginners)
- [یادگیری ماشین برای مبتدیان](https://aka.ms/ml-beginners)
- [امنیت سایبری برای مبتدیان](https://github.com/microsoft/Security-101)
- [توسعه وب برای مبتدیان](https://aka.ms/webdev-beginners)
- [اینترنت اشیا برای مبتدیان](https://aka.ms/iot-beginners)
- [توسعه XR برای مبتدیان](https://github.com/microsoft/xr-development-for-beginners)
- [تسلط بر GitHub Copilot برای برنامهنویسی جفتی](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [تسلط بر GitHub Copilot برای توسعهدهندگان C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [ماجراجویی خود را با Copilot انتخاب کنید](https://github.com/microsoft/CopilotAdventures)
تیم ما برنامههای درسی دیگری تولید میکند! بررسی کنید:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**سلب مسئولیت**:
این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش میکنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمههای خودکار ممکن است حاوی خطاها یا نادرستیهایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفهای انسانی توصیه میشود. ما هیچ مسئولیتی در قبال سوءتفاهمها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.
این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش میکنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمههای خودکار ممکن است شامل خطاها یا نادرستیها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه میشود از ترجمه حرفهای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهمها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.
# Science des Données pour Débutants - Un Programme
Azure Cloud Advocates chez Microsoft sont ravis de proposer un programme de 10 semaines et 20 leçons dédié à la science des données. Chaque leçon comprend des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution et un devoir. Notre pédagogie basée sur les projets vous permet d'apprendre tout en construisant, une méthode éprouvée pour ancrer de nouvelles compétences.
Azure Cloud Advocates chez Microsoft sont ravis de proposer un programme de 10 semaines et 20 leçons entièrement dédié à la science des données. Chaque leçon comprend des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution et un devoir. Notre pédagogie basée sur les projets vous permet d'apprendre tout en construisant, une méthode éprouvée pour ancrer de nouvelles compétences.
**Un grand merci à nos auteurs :** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
| ](./sketchnotes/00-Title.png)|
||
|:---:|
| Science des Données pour Débutants - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
## Annonce - Nouveau programme sur l'IA générative !
### 🌐 Support Multilingue
Nous venons de publier un programme de 12 leçons sur l'IA générative. Venez apprendre des concepts tels que :
#### Supporté via GitHub Action (Automatisé et Toujours à Jour)
- la création de prompts et l'ingénierie de prompts
- la génération d'applications de texte et d'images
Comme d'habitude, chaque leçon comprend des devoirs, des vérifications de connaissances et des défis.
**Si vous souhaitez ajouter des langues supplémentaires, les langues supportées sont listées [ici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Découvrez-le ici :
> https://aka.ms/genai-beginners
#### Rejoignez Notre Communauté
[](https://discord.gg/kzRShWzttr)
# Êtes-vous étudiant ?
Commencez avec les ressources suivantes :
- [Page Hub Étudiant](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sur cette page, vous trouverez des ressources pour débutants, des packs étudiants et même des moyens d'obtenir un bon pour une certification gratuite. C'est une page à mettre en favori et à consulter régulièrement, car nous mettons à jour le contenu au moins une fois par mois.
- [Page Hub Étudiant](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sur cette page, vous trouverez des ressources pour débutants, des packs étudiants et même des moyens d'obtenir un bon pour une certification gratuite. C'est une page à mettre en favori et à consulter régulièrement, car nous changeons le contenu au moins une fois par mois.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Rejoignez une communauté mondiale d'ambassadeurs étudiants, cela pourrait être votre porte d'entrée chez Microsoft.
# Pour Commencer
# Démarrage
> **Enseignants** : nous avons [inclus quelques suggestions](for-teachers.md) sur la façon d'utiliser ce programme. Nous serions ravis de recevoir vos retours [dans notre forum de discussion](https://github.com/microsoft/Data-Science-For-Beginners/discussions) !
> **[Étudiants](https://aka.ms/student-page)** : pour utiliser ce programme de manière autonome, clonez le dépôt entier et complétez les exercices par vous-même, en commençant par un quiz pré-lecture. Ensuite, lisez la leçon et complétez les autres activités. Essayez de créer les projets en comprenant les leçons plutôt qu'en copiant le code des solutions ; cependant, ce code est disponible dans les dossiers /solutions de chaque leçon orientée projet. Une autre idée serait de former un groupe d'étude avec des amis et de parcourir le contenu ensemble. Pour aller plus loin, nous recommandons [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Étudiants](https://aka.ms/student-page)** : pour utiliser ce programme par vous-même, forkez le dépôt entier et complétez les exercices par vous-même, en commençant par un quiz pré-lecture. Ensuite, lisez le cours et complétez le reste des activités. Essayez de créer les projets en comprenant les leçons plutôt qu'en copiant le code de solution ; cependant, ce code est disponible dans les dossiers /solutions de chaque leçon orientée projet. Une autre idée serait de former un groupe d'étude avec des amis et de parcourir le contenu ensemble. Pour aller plus loin, nous recommandons [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Rencontrez l'Équipe
@ -56,61 +53,59 @@ Commencez avec les ressources suivantes :
## Pédagogie
Nous avons choisi deux principes pédagogiques pour construire ce programme : s'assurer qu'il est basé sur des projets et qu'il inclut des quiz fréquents. À la fin de cette série, les étudiants auront appris les principes de base de la science des données, y compris les concepts éthiques, la préparation des données, les différentes façons de travailler avec les données, la visualisation des données, l'analyse des données, des cas d'utilisation réels de la science des données, et plus encore.
De plus, un quiz à faible enjeu avant une classe oriente l'intention de l'étudiant vers l'apprentissage d'un sujet, tandis qu'un second quiz après la classe assure une meilleure rétention. Ce programme a été conçu pour être flexible et amusant et peut être suivi en totalité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 10 semaines.
> Retrouvez notre [Code de Conduite](CODE_OF_CONDUCT.md), nos [Directives de Contribution](CONTRIBUTING.md), et nos [Directives de Traduction](TRANSLATIONS.md). Nous accueillons vos retours constructifs !
Nous avons choisi deux principes pédagogiques lors de la création de ce programme : s'assurer qu'il est basé sur des projets et qu'il inclut des quiz fréquents. À la fin de cette série, les étudiants auront appris les principes de base de la science des données, y compris les concepts éthiques, la préparation des données, différentes façons de travailler avec les données, la visualisation des données, l'analyse des données, des cas d'utilisation réels de la science des données, et plus encore.
En outre, un quiz à faible enjeu avant un cours fixe l'intention de l'étudiant d'apprendre un sujet, tandis qu'un second quiz après le cours garantit une meilleure rétention. Ce programme a été conçu pour être flexible et amusant et peut être suivi en totalité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 10 semaines.
> Retrouvez notre [Code de Conduite](CODE_OF_CONDUCT.md), nos directives pour [Contribuer](CONTRIBUTING.md) et pour la [Traduction](TRANSLATIONS.md). Nous apprécions vos retours constructifs !
## Chaque leçon comprend :
- Un sketchnote optionnel
- Une vidéo complémentaire optionnelle
- Un quiz d'échauffement avant la leçon
- Une leçon écrite
- Pour les leçons basées sur des projets, des guides pas à pas pour construire le projet
- Des vérifications de connaissances
- Sketchnote optionnel
- Vidéo complémentaire optionnelle
- Quiz d'échauffement avant la leçon
- Leçon écrite
- Pour les leçons basées sur des projets, guides étape par étape pour construire le projet
- Vérifications des connaissances
- Un défi
- Des lectures complémentaires
- Un devoir
- Un quiz après la leçon
- Lecture complémentaire
- Devoir
- [Quiz après la leçon](https://ff-quizzes.netlify.app/en/)
> **Une note sur les quiz** : Tous les quiz sont contenus dans le dossier Quiz-App, pour un total de 40 quiz de trois questions chacun. Ils sont liés dans les leçons, mais l'application de quiz peut être exécutée localement ou déployée sur Azure ; suivez les instructions dans le dossier `quiz-app`. Ils sont progressivement localisés.
## Leçons
| ](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| Science des Données pour Débutants : Feuille de Route - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
| Data Science pour les débutants : Plan - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
| Numéro de Leçon | Sujet | Regroupement des Leçons | Objectifs d'Apprentissage | Leçon Liée | Auteur |
| Numéro de leçon | Sujet | Regroupement de leçons | Objectifs d'apprentissage | Leçon liée | Auteur |
| 01 | Définir la Science des Données | [Introduction](1-Introduction/README.md) | Apprenez les concepts de base de la science des données et comment elle est liée à l'intelligence artificielle, l'apprentissage automatique et les big data. | [leçon](1-Introduction/01-defining-data-science/README.md) [vidéo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Éthique de la Science des Données | [Introduction](1-Introduction/README.md) | Concepts, défis et cadres éthiques des données. | [leçon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Définir les Données | [Introduction](1-Introduction/README.md) | Comment les données sont classifiées et leurs sources courantes. | [leçon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduction aux Statistiques & Probabilités | [Introduction](1-Introduction/README.md) | Les techniques mathématiques de probabilité et de statistiques pour comprendre les données. | [leçon](1-Introduction/04-stats-and-probability/README.md) [vidéo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Travailler avec des Données Relationnelles | [Travailler avec les Données](2-Working-With-Data/README.md) | Introduction aux données relationnelles et aux bases de l'exploration et de l'analyse des données relationnelles avec le langage SQL (prononcé "see-quell"). | [leçon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Travailler avec des Données NoSQL | [Travailler avec les Données](2-Working-With-Data/README.md) | Introduction aux données non relationnelles, leurs différents types et les bases de l'exploration et de l'analyse des bases de données documentaires. | [leçon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Travailler avec Python | [Travailler avec les Données](2-Working-With-Data/README.md) | Bases de l'utilisation de Python pour l'exploration des données avec des bibliothèques comme Pandas. Une compréhension de base de la programmation Python est recommandée. | [leçon](2-Working-With-Data/07-python/README.md) [vidéo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Préparation des données | [Travailler avec les données](2-Working-With-Data/README.md) | Techniques pour nettoyer et transformer les données afin de gérer les défis liés aux données manquantes, inexactes ou incomplètes. | [leçon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualiser des quantités | [Visualisation des données](3-Data-Visualization/README.md) | Apprenez à utiliser Matplotlib pour visualiser des données sur les oiseaux 🦆 | [leçon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualiser les distributions de données | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des observations et des tendances dans un intervalle. | [leçon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualiser les proportions | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des pourcentages discrets et groupés. | [leçon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualiser les relations | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser les connexions et corrélations entre des ensembles de données et leurs variables. | [leçon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisations significatives | [Visualisation des données](3-Data-Visualization/README.md) | Techniques et conseils pour rendre vos visualisations utiles pour résoudre des problèmes et obtenir des insights. | [leçon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 01 | Définir la science des données | [Introduction](1-Introduction/README.md) | Apprenez les concepts de base de la science des données et comment elle est liée à l'intelligence artificielle, au machine learning et aux big data. | [leçon](1-Introduction/01-defining-data-science/README.md) [vidéo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Éthique de la science des données | [Introduction](1-Introduction/README.md) | Concepts, défis et cadres de l'éthique des données. | [leçon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Définir les données | [Introduction](1-Introduction/README.md) | Comment les données sont classifiées et leurs sources courantes. | [leçon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduction aux statistiques et probabilités | [Introduction](1-Introduction/README.md) | Les techniques mathématiques de probabilité et de statistiques pour comprendre les données. | [leçon](1-Introduction/04-stats-and-probability/README.md) [vidéo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Travailler avec des données relationnelles | [Travailler avec les données](2-Working-With-Data/README.md) | Introduction aux données relationnelles et aux bases de l'exploration et de l'analyse des données relationnelles avec le langage SQL, également connu sous le nom de "see-quell". | [leçon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Travailler avec des données NoSQL | [Travailler avec les données](2-Working-With-Data/README.md) | Introduction aux données non relationnelles, leurs différents types et les bases de l'exploration et de l'analyse des bases de données documentaires. | [leçon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Travailler avec Python | [Travailler avec les données](2-Working-With-Data/README.md) | Bases de l'utilisation de Python pour l'exploration des données avec des bibliothèques comme Pandas. Une compréhension fondamentale de la programmation Python est recommandée. | [leçon](2-Working-With-Data/07-python/README.md) [vidéo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Préparation des données | [Travailler avec les données](2-Working-With-Data/README.md) | Techniques de nettoyage et de transformation des données pour gérer les défis liés aux données manquantes, inexactes ou incomplètes. | [leçon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualiser des quantités | [Visualisation des données](3-Data-Visualization/README.md) | Apprenez à utiliser Matplotlib pour visualiser des données d'oiseaux 🦆 | [leçon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualiser des distributions de données | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des observations et des tendances dans un intervalle. | [leçon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualiser des proportions | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des pourcentages discrets et groupés. | [leçon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualiser des relations | [Visualisation des données](3-Data-Visualization/README.md) | Visualiser des connexions et des corrélations entre des ensembles de données et leurs variables. | [leçon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisations significatives | [Visualisation des données](3-Data-Visualization/README.md) | Techniques et conseils pour rendre vos visualisations utiles pour résoudre des problèmes efficacement et obtenir des insights. | [leçon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introduction au cycle de vie de la science des données | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Introduction au cycle de vie de la science des données et à sa première étape : l'acquisition et l'extraction des données. | [leçon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analyse | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données se concentre sur les techniques d'analyse des données. | [leçon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 15 | Analyser | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données se concentre sur les techniques d'analyse des données. | [leçon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Communication | [Cycle de vie](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données se concentre sur la présentation des insights issus des données de manière compréhensible pour les décideurs. | [leçon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Science des données dans le cloud | [Données dans le cloud](5-Data-Science-In-Cloud/README.md) | Cette série de leçons introduit la science des données dans le cloud et ses avantages. | [leçon](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 18 | Science des données dans le cloud | [Données dans le cloud](5-Data-Science-In-Cloud/README.md) | Entraîner des modèles en utilisant des outils Low Code. |[leçon](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 19 | Science des données dans le cloud | [Données dans le cloud](5-Data-Science-In-Cloud/README.md) | Déployer des modèles avec Azure Machine Learning Studio. | [leçon](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 20 | Science des données dans la nature | [Dans la nature](6-Data-Science-In-Wild/README.md) | Projets de science des données appliqués au monde réel. | [leçon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 18 | Science des données dans le cloud | [Données dans le cloud](5-Data-Science-In-Cloud/README.md) | Entraîner des modèles en utilisant des outils Low Code. |[leçon](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 19 | Science des données dans le cloud | [Données dans le cloud](5-Data-Science-In-Cloud/README.md) | Déployer des modèles avec Azure Machine Learning Studio. | [leçon](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 20 | Science des données dans la nature | [Dans la nature](6-Data-Science-In-Wild/README.md) | Projets basés sur la science des données dans le monde réel. | [leçon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Suivez ces étapes pour ouvrir cet exemple dans un Codespace :
1. Cliquez sur le menu déroulant Code et sélectionnez l'option Open with Codespaces.
2. Sélectionnez + New codespace en bas du panneau.
1. Cliquez sur le menu déroulant Code et sélectionnez l'option Ouvrir avec Codespaces.
2. Sélectionnez + Nouveau codespace en bas du volet.
Pour plus d'informations, consultez la [documentation GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
@ -120,9 +115,9 @@ Suivez ces étapes pour ouvrir ce dépôt dans un conteneur en utilisant votre m
Pour utiliser ce dépôt, vous pouvez soit ouvrir le dépôt dans un volume Docker isolé :
**Remarque** : En arrière-plan, cela utilisera la commande Remote-Containers : **Clone Repository in Container Volume...** pour cloner le code source dans un volume Docker au lieu du système de fichiers local. Les [volumes](https://docs.docker.com/storage/volumes/) sont le mécanisme préféré pour la persistance des données des conteneurs.
**Note** : En coulisses, cela utilisera la commande Remote-Containers : **Clone Repository in Container Volume...** pour cloner le code source dans un volume Docker au lieu du système de fichiers local. Les [volumes](https://docs.docker.com/storage/volumes/) sont le mécanisme préféré pour persister les données des conteneurs.
Ou ouvrez une version clonée ou téléchargée localement du dépôt :
Ou ouvrir une version localement clonée ou téléchargée du dépôt :
- Clonez ce dépôt sur votre système de fichiers local.
- Appuyez sur F1 et sélectionnez la commande **Remote-Containers: Open Folder in Container...**.
@ -130,32 +125,30 @@ Ou ouvrez une version clonée ou téléchargée localement du dépôt :
## Accès hors ligne
Vous pouvez exécuter cette documentation hors ligne en utilisant [Docsify](https://docsify.js.org/#/). Forkez ce dépôt, [installez Docsify](https://docsify.js.org/#/quickstart) sur votre machine locale, puis dans le dossier racine de ce dépôt, tapez `docsify serve`. Le site sera servi sur le port 3000 de votre localhost : `localhost:3000`.
Vous pouvez exécuter cette documentation hors ligne en utilisant [Docsify](https://docsify.js.org/#/). Forkez ce dépôt, [installez Docsify](https://docsify.js.org/#/quickstart) sur votre machine locale, puis dans le dossier racine de ce dépôt, tapez `docsify serve`. Le site web sera servi sur le port 3000 de votre localhost : `localhost:3000`.
> Remarque, les notebooks ne seront pas rendus via Docsify, donc lorsque vous devez exécuter un notebook, faites-le séparément dans VS Code en utilisant un kernel Python.
## Besoin d'aide !
Si vous souhaitez traduire tout ou une partie du programme, veuillez suivre notre guide [Traductions](TRANSLATIONS.md).
> Notez que les notebooks ne seront pas rendus via Docsify, donc lorsque vous devez exécuter un notebook, faites-le séparément dans VS Code en utilisant un kernel Python.
## Autres programmes
Notre équipe produit d'autres programmes ! Découvrez :
- [IA générative pour les débutants](https://aka.ms/genai-beginners)
- [IA générative pour les débutants .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [IA générative avec JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [IA générative avec Java](https://aka.ms/genaijava)
- [IA pour les débutants](https://aka.ms/ai-beginners)
- [Generative AI pour les débutants](https://aka.ms/genai-beginners)
- [Generative AI pour les débutants .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI avec JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI avec Java](https://aka.ms/genaijava)
- [AI pour les débutants](https://aka.ms/ai-beginners)
- [Science des données pour les débutants](https://aka.ms/datascience-beginners)
- [ML pour les débutants](https://aka.ms/ml-beginners)
- [Cybersécurité pour les débutants](https://github.com/microsoft/Security-101)
- [Développement Web pour les débutants](https://aka.ms/webdev-beginners)
- [Développement web pour les débutants](https://aka.ms/webdev-beginners)
- [IoT pour les débutants](https://aka.ms/iot-beginners)
- [Développement XR pour les débutants](https://github.com/microsoft/xr-development-for-beginners)
- [Maîtriser GitHub Copilot pour la programmation en binôme](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Maîtriser GitHub Copilot pour les développeurs C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choisissez votre propre aventure avec Copilot](https://github.com/microsoft/CopilotAdventures)
Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.
Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous ne sommes pas responsables des malentendus ou des interprétations erronées résultant de l'utilisation de cette traduction.
Azure Cloud Advocates, Microsoft में, डेटा साइंस पर आधारित 10 सप्ताह, 20 पाठों का पाठ्यक्रम प्रस्तुत करने पर गर्व महसूस कर रहे हैं। प्रत्येक पाठ में प्री-लेसन और पोस्ट-लेसन क्विज़, लिखित निर्देश, समाधान और असाइनमेंट शामिल हैं। हमारा प्रोजेक्ट-आधारित शिक्षण दृष्टिकोण आपको सीखने के साथ-साथ निर्माण करने की अनुमति देता है, जो नई कौशल को लंबे समय तक बनाए रखने का एक सिद्ध तरीका है।
Azure Cloud Advocates ने Microsoft में 10 सप्ताह का, 20 पाठों वाला पाठ्यक्रम तैयार किया है, जो पूरी तरह से डेटा साइंस पर आधारित है। हर पाठ में प्री-लेसन और पोस्ट-लेसन क्विज़, पाठ को पूरा करने के लिए लिखित निर्देश, समाधान और एक असाइनमेंट शामिल है। हमारा प्रोजेक्ट-आधारित शिक्षण दृष्टिकोण आपको सीखने के साथ-साथ निर्माण करने का मौका देता है, जो नई स्किल्स को लंबे समय तक याद रखने का एक सिद्ध तरीका है।
| द्वारा ](./sketchnotes/00-Title.png)|
||
|:---:|
| शुरुआती के लिए डेटा साइंस - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
| शुरुआती लोगों के लिए डेटा साइंस - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
## घोषणा - जनरेटिव AI पर नया पाठ्यक्रम जारी किया गया!
### 🌐 बहुभाषी समर्थन
हमने जनरेटिव AI पर आधारित 12 पाठों का पाठ्यक्रम जारी किया है। इसमें आप निम्नलिखित चीजें सीख सकते हैं:
#### GitHub Action के माध्यम से समर्थित (स्वचालित और हमेशा अद्यतन)
जैसा कि हमेशा होता है, इसमें पाठ, असाइनमेंट, ज्ञान जांच और चुनौतियां शामिल हैं।
**यदि आप अतिरिक्त अनुवाद चाहते हैं, तो समर्थित भाषाओं की सूची [यहां](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) देखें।**
देखें:
#### हमारे समुदाय से जुड़ें
[](https://discord.gg/kzRShWzttr)
> https://aka.ms/genai-beginners
# क्या आप छात्र हैं?
# क्या आप एक छात्र हैं?
निम्नलिखित संसाधनों से शुरुआत करें:
- [स्टूडेंट हब पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) इस पेज पर आपको शुरुआती संसाधन, स्टूडेंट पैक्स और यहां तक कि मुफ्त प्रमाणपत्र वाउचर प्राप्त करने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर जांचना चाहेंगे क्योंकि हम कम से कम मासिक रूप से सामग्री बदलते हैं।
- [स्टूडेंट हब पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) इस पेज पर आपको शुरुआती संसाधन, स्टूडेंट पैक्स और यहां तक कि मुफ्त प्रमाणपत्र वाउचर प्राप्त करने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर जांचना चाहेंगे क्योंकि हम कम से कम मासिक रूप से सामग्री बदलते रहते हैं।
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) एक वैश्विक छात्र एंबेसडर समुदाय में शामिल हों, यह Microsoft में आपका प्रवेश द्वार हो सकता है।
# शुरुआत करना
# शुरुआत कैसे करें
> **शिक्षक**: हमने इस पाठ्यक्रम का उपयोग करने के लिए [कुछ सुझाव शामिल किए हैं](for-teachers.md)। हमें आपके फीडबैक की आवश्यकता है [हमारे चर्चा मंच में](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **शिक्षकों के लिए**: हमने इस पाठ्यक्रम का उपयोग करने के लिए [कुछ सुझाव शामिल किए हैं](for-teachers.md)। हमें आपके फीडबैक की आवश्यकता है [हमारे चर्चा मंच में](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[छात्र](https://aka.ms/student-page)**: इस पाठ्यक्रम का उपयोग अपने आप करने के लिए, पूरे रिपॉजिटरी को फोर्क करें और अपने आप अभ्यास करें, प्री-लेक्चर क्विज़ से शुरुआत करें। फिर लेक्चर पढ़ें और बाकी गतिविधियों को पूरा करें। पाठों को समझकर प्रोजेक्ट बनाने की कोशिश करें बजाय समाधान कोड की नकल करने के; हालांकि, वह कोड प्रत्येक प्रोजेक्ट-उन्मुख पाठ में /solutions फोल्डर में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ एक अध्ययन समूह बनाएं और सामग्री को एक साथ पढ़ें। आगे की पढ़ाई के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सिफारिश करते हैं।
> **[छात्रों](https://aka.ms/student-page)**: इस पाठ्यक्रम का उपयोग अपने दम पर करने के लिए, पूरे रिपॉजिटरी को फोर्क करें और अपने दम पर अभ्यास पूरा करें, एक प्री-लेक्चर क्विज़ से शुरुआत करें। फिर लेक्चर पढ़ें और बाकी गतिविधियों को पूरा करें। पाठों को समझकर प्रोजेक्ट बनाने का प्रयास करें, समाधान कोड की नकल करने के बजाय; हालांकि, वह कोड प्रत्येक प्रोजेक्ट-उन्मुख पाठ के /solutions फ़ोल्डरों में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ एक अध्ययन समूह बनाएं और सामग्री को एक साथ पढ़ें। आगे की पढ़ाई के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सिफारिश करते हैं।
## टीम से मिलें
@ -56,107 +53,102 @@ Azure Cloud Advocates, Microsoft में, डेटा साइंस पर
## शिक्षण दृष्टिकोण
हमने इस पाठ्यक्रम को बनाते समय दो शिक्षण दृष्टिकोण चुने हैं: यह सुनिश्चित करना कि यह प्रोजेक्ट-आधारित है और इसमें बार-बार क्विज़ शामिल हैं। इस श्रृंखला के अंत तक, छात्र डेटा साइंस के बुनियादी सिद्धांतों को सीख चुके होंगे, जिसमें नैतिक अवधारणाएं, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विज़ुअलाइज़ेशन, डेटा विश्लेषण, डेटा साइंस के वास्तविक जीवन उपयोग के मामले और अधिक शामिल हैं।
इसके अलावा, कक्षा से पहले एक कम दबाव वाला क्विज़ छात्र को विषय सीखने की ओर प्रेरित करता है, जबकि कक्षा के बाद दूसरा क्विज़ आगे की अवधारणाओं को बनाए रखने में मदद करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरे या आंशिक रूप से लिया जा सकता है। प्रोजेक्ट छोटे से शुरू होते हैं और 10 सप्ताह के चक्र के अंत तक धीरे-धीरे जटिल हो जाते हैं।
> हमारा [आचार संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपके रचनात्मक फीडबैक का स्वागत करते हैं!
हमने इस पाठ्यक्रम को बनाते समय दो शिक्षण सिद्धांतों को अपनाया है: यह सुनिश्चित करना कि यह प्रोजेक्ट-आधारित है और इसमें बार-बार क्विज़ शामिल हैं। इस श्रृंखला के अंत तक, छात्र डेटा साइंस के बुनियादी सिद्धांतों को सीख लेंगे, जिनमें नैतिक अवधारणाएं, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विज़ुअलाइज़ेशन, डेटा विश्लेषण, डेटा साइंस के वास्तविक जीवन के उपयोग के मामले और अधिक शामिल हैं।
इसके अलावा, कक्षा से पहले एक लो-स्टेक्स क्विज़ छात्र को विषय सीखने के लिए प्रेरित करता है, जबकि कक्षा के बाद का दूसरा क्विज़ आगे की अवधारणाओं को बनाए रखने में मदद करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरे या आंशिक रूप से लिया जा सकता है। प्रोजेक्ट छोटे से शुरू होते हैं और 10 सप्ताह के चक्र के अंत तक धीरे-धीरे जटिल हो जाते हैं।
हमारे [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपके रचनात्मक सुझावों का स्वागत करते हैं!
## प्रत्येक पाठ में शामिल हैं:
- वैकल्पिक स्केच नोट
- वैकल्पिक पूरक वीडियो
- प्री-लेसन वार्मअप क्विज़
- पाठ से पहले वार्मअप क्विज़
- लिखित पाठ
- प्रोजेक्ट-आधारित पाठों के लिए, प्रोजेक्ट बनाने के लिए चरण-दर-चरण गाइड
- प्रोजेक्ट-आधारित पाठों के लिए, प्रोजेक्ट बनाने के चरण-दर-चरण निर्देश
- ज्ञान जांच
- एक चुनौती
- पूरक पढ़ाई
- असाइनमेंट
- पोस्ट-लेसन क्विज़
- [पाठ के बाद क्विज़](https://ff-quizzes.netlify.app/en/)
> **क्विज़ के बारे में एक नोट**: सभी क्विज़ Quiz-App फोल्डर में हैं, कुल 40 क्विज़, प्रत्येक में तीन प्रश्न। वे पाठों के भीतर से लिंक किए गए हैं, लेकिन Quiz-App को स्थानीय रूप से चलाया जा सकता है या Azure पर तैनात किया जा सकता है; `quiz-app` फोल्डर में निर्देशों का पालन करें। वे धीरे-धीरे स्थानीयकृत किए जा रहे हैं।
> **क्विज़ के बारे में एक नोट**: सभी क्विज़ `Quiz-App` फ़ोल्डर में संग्रहीत हैं, कुल 40 क्विज़, प्रत्येक में तीन प्रश्न। ये पाठों के भीतर से लिंक किए गए हैं, लेकिन क्विज़ ऐप को स्थानीय रूप से चलाया जा सकता है या Azure पर डिप्लॉय किया जा सकता है; `quiz-app` फ़ोल्डर में दिए गए निर्देशों का पालन करें। इन्हें धीरे-धीरे स्थानीयकृत किया जा रहा है।
## पाठ
| द्वारा ](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| शुरुआती के लिए डेटा साइंस: रोडमैप - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ |
| 01 | डेटा साइंस को परिभाषित करना | [परिचय](1-Introduction/README.md) | डेटा साइंस के पीछे के बुनियादी अवधारणाओं को सीखें और यह कृत्रिम बुद्धिमत्ता, मशीन लर्निंग और बिग डेटा से कैसे संबंधित है। | [पाठ](1-Introduction/01-defining-data-science/README.md) [वीडियो](https://youtu.be/beZ7Mb_oz9I) | [दिमित्री](http://soshnikov.com) |
| 03 | डेटा को परिभाषित करना | [परिचय](1-Introduction/README.md) | डेटा कैसे वर्गीकृत किया जाता है और इसके सामान्य स्रोत। | [पाठ](1-Introduction/03-defining-data/README.md) | [जैस्मिन](https://www.twitter.com/paladique) |
| 04 | सांख्यिकी और संभावना का परिचय | [परिचय](1-Introduction/README.md) | डेटा को समझने के लिए संभावना और सांख्यिकी की गणितीय तकनीकें। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [वीडियो](https://youtu.be/Z5Zy85g4Yjw) | [दिमित्री](http://soshnikov.com) |
| 05 | संबंधपरक डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | संबंधपरक डेटा का परिचय और SQL (Structured Query Language) के साथ संबंधपरक डेटा का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [क्रिस्टोफर](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गैर-संबंधपरक डेटा का परिचय, इसके विभिन्न प्रकार और डॉक्यूमेंट डेटाबेस का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [जैस्मिन](https://twitter.com/paladique)|
| 07 | पायथन के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | Pandas जैसी लाइब्रेरी के साथ डेटा अन्वेषण के लिए पायथन का उपयोग करने की मूल बातें। पायथन प्रोग्रामिंग की बुनियादी समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [दिमित्री](http://soshnikov.com) |
| 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा को साफ़ और बदलने की तकनीकों पर चर्चा, ताकि गायब, गलत या अधूरी जानकारी की चुनौतियों को संभाला जा सके। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [जैस्मिन](https://www.twitter.com/paladique) |
| 09 | मात्राओं का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | सीखें कि कैसे Matplotlib का उपयोग करके पक्षियों के डेटा को विज़ुअलाइज़ करें 🦆 | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
| 10 | डेटा वितरण का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | एक अंतराल के भीतर अवलोकन और रुझानों को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
| 11 | अनुपात का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | अलग-अलग और समूहित प्रतिशतों को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
| 12 | संबंधों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | डेटा सेट और उनके वेरिएबल्स के बीच कनेक्शन और सहसंबंध को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
| 13 | सार्थक विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | आपकी विज़ुअलाइज़ेशन को प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए मूल्यवान बनाने के लिए तकनीक और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
| 14 | डेटा साइंस जीवनचक्र का परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र और डेटा को प्राप्त करने और निकालने के पहले चरण का परिचय। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जैस्मिन](https://twitter.com/paladique) |
| 15 | विश्लेषण करना | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का यह चरण डेटा का विश्लेषण करने की तकनीकों पर केंद्रित है। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जैस्मिन](https://twitter.com/paladique) |
| 16 | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा से प्राप्त अंतर्दृष्टि को इस तरह प्रस्तुत करना कि निर्णय लेने वालों के लिए इसे समझना आसान हो। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [जेलन](https://twitter.com/JalenMcG) |
| 17 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउड में डेटा साइंस और इसके लाभों का परिचय। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मॉड](https://twitter.com/maudstweets) |
| 18 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स का उपयोग करके मॉडल को प्रशिक्षित करना। | [पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मॉड](https://twitter.com/maudstweets) |
| 19 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio का उपयोग करके मॉडल को तैनात करना। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मॉड](https://twitter.com/maudstweets) |
| 20 | वास्तविक दुनिया में डेटा साइंस | [वाइल्ड में](6-Data-Science-In-Wild/README.md) | वास्तविक दुनिया में डेटा साइंस संचालित परियोजनाएं। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्या](https://twitter.com/nitya) |
| 01 | डेटा साइंस को परिभाषित करना | [परिचय](1-Introduction/README.md) | डेटा साइंस के पीछे के बुनियादी अवधारणाओं को समझें और यह कृत्रिम बुद्धिमत्ता, मशीन लर्निंग, और बिग डेटा से कैसे संबंधित है। | [पाठ](1-Introduction/01-defining-data-science/README.md) [वीडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 03 | डेटा को परिभाषित करना | [परिचय](1-Introduction/README.md) | डेटा को कैसे वर्गीकृत किया जाता है और इसके सामान्य स्रोत। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | सांख्यिकी और संभावना का परिचय | [परिचय](1-Introduction/README.md) | डेटा को समझने के लिए संभावना और सांख्यिकी की गणितीय तकनीकें। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [वीडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | संबंधपरक डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | संबंधपरक डेटा का परिचय और SQL (जिसे "सी-क्वेल" कहा जाता है) के साथ संबंधपरक डेटा का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गैर-संबंधपरक डेटा का परिचय, इसके विभिन्न प्रकार और डॉक्यूमेंट डेटाबेस का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | Pandas जैसी लाइब्रेरी के साथ डेटा अन्वेषण के लिए Python का उपयोग करने की मूल बातें। Python प्रोग्रामिंग की बुनियादी समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा को साफ करने और बदलने के लिए तकनीकों पर चर्चा, ताकि गायब, गलत, या अधूरी जानकारी की चुनौतियों को संभाला जा सके। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | मात्राओं का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | Matplotlib का उपयोग करके पक्षी डेटा 🦆 को विज़ुअलाइज़ करना सीखें। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | डेटा वितरण का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | अंतराल के भीतर अवलोकन और रुझानों को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | अनुपात का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | अलग-अलग और समूहित प्रतिशत को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | संबंधों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | डेटा सेट और उनके वेरिएबल्स के बीच कनेक्शन और सहसंबंध को विज़ुअलाइज़ करना। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | सार्थक विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए आपके विज़ुअलाइज़ेशन को मूल्यवान बनाने के लिए तकनीक और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | डेटा साइंस जीवनचक्र का परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र और डेटा को प्राप्त करने और निकालने के पहले चरण का परिचय। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | विश्लेषण करना | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का यह चरण डेटा का विश्लेषण करने की तकनीकों पर केंद्रित है। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का यह चरण डेटा से अंतर्दृष्टि को इस तरह प्रस्तुत करने पर केंद्रित है कि निर्णय लेने वालों के लिए इसे समझना आसान हो। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउड में डेटा साइंस और इसके लाभों का परिचय। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) |
| 18 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स का उपयोग करके मॉडल को प्रशिक्षित करना। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) |
| 19 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio के साथ मॉडल को डिप्लॉय करना। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) |
| 20 | वास्तविक दुनिया में डेटा साइंस | [वाइल्ड में](6-Data-Science-In-Wild/README.md) | वास्तविक दुनिया में डेटा साइंस संचालित परियोजनाएं। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Codespace में इस सैंपल को खोलने के लिए निम्न चरणों का पालन करें:
Codespace में इस सैंपल को खोलने के लिए इन चरणों का पालन करें:
1. Code ड्रॉप-डाउन मेनू पर क्लिक करें और Open with Codespaces विकल्प चुनें।
2. पैन के नीचे + New codespace चुनें।
अधिक जानकारी के लिए, [GitHub दस्तावेज़](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) देखें।
## VSCode Remote - Containers
अपने स्थानीय मशीन और VSCode का उपयोग करके इस रिपॉजिटरी को कंटेनर में खोलने के लिए इन चरणों का पालन करें:
अपने स्थानीय मशीन और VSCode का उपयोग करके इस रिपॉजिटरी को कंटेनर में खोलने के लिए निम्न चरणों का पालन करें:
1. यदि यह पहली बार है जब आप डेवलपमेंट कंटेनर का उपयोग कर रहे हैं, तो कृपया सुनिश्चित करें कि आपका सिस्टम प्री-रिक्वायरमेंट्स को पूरा करता है (जैसे कि Docker इंस्टॉल हो) [शुरुआती दस्तावेज़](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) में।
1. यदि यह पहली बार है जब आप डेवलपमेंट कंटेनर का उपयोग कर रहे हैं, तो कृपया सुनिश्चित करें कि आपका सिस्टम प्री-रिक्वायरमेंट्स (जैसे Docker इंस्टॉल हो) को पूरा करता है। [शुरुआत दस्तावेज़](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) में देखें।
इस रिपॉजिटरी का उपयोग करने के लिए, आप या तो रिपॉजिटरी को एक अलग Docker वॉल्यूम में खोल सकते हैं:
इस रिपॉजिटरी का उपयोग करने के लिए, आप या तो इसे एक अलग Docker वॉल्यूम में खोल सकते हैं:
**नोट**: अंदर से, यह Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करेगा ताकि स्रोत कोड को स्थानीय फाइल सिस्टम के बजाय Docker वॉल्यूम में क्लोन किया जा सके। [Volumes](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को बनाए रखने के लिए पसंदीदा तंत्र हैं।
**नोट**: अंदर ही अंदर, यह Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करेगा ताकि स्रोत कोड को स्थानीय फाइल सिस्टम के बजाय Docker वॉल्यूम में क्लोन किया जा सके। [वॉल्यूम](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को बनाए रखने के लिए पसंदीदा तरीका है।
या स्थानीय रूप से क्लोन की गई या डाउनलोड की गई रिपॉजिटरी खोलें:
या रिपॉजिटरी के स्थानीय रूप से क्लोन किए गए या डाउनलोड किए गए संस्करण को खोलें:
- इस रिपॉजिटरी को अपने स्थानीय फाइल सिस्टम पर क्लोन करें।
- F1 दबाएं और **Remote-Containers: Open Folder in Container...** कमांड चुनें।
- इस फोल्डर की क्लोन की गई कॉपी चुनें, कंटेनर शुरू होने की प्रतीक्षा करें, और चीजों को आज़माएं।
- इस फ़ोल्डर की क्लोन की गई कॉपी चुनें, कंटेनर के शुरू होने की प्रतीक्षा करें, और चीजों को आज़माएं।
## ऑफलाइन एक्सेस
आप इस दस्तावेज़ को ऑफलाइन [Docsify](https://docsify.js.org/#/) का उपयोग करके चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart) अपने स्थानीय मशीन पर, फिर इस रिपॉजिटरी के रूट फोल्डर में `docsify serve` टाइप करें। वेबसाइट आपके localhost पर पोर्ट 3000 पर सर्व की जाएगी: `localhost:3000`।
> नोट, नोटबुक्स Docsify के माध्यम से रेंडर नहीं होंगे, इसलिए जब आपको नोटबुक चलाने की आवश्यकता हो, तो इसे अलग से VS Code में Python कर्नेल चलाकर करें।
## मदद चाहिए!
आप इस दस्तावेज़ को ऑफलाइन [Docsify](https://docsify.js.org/#/) का उपयोग करके चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart) अपने स्थानीय मशीन पर, फिर इस रिपॉजिटरी के रूट फ़ोल्डर में `docsify serve` टाइप करें। वेबसाइट आपके localhost पर पोर्ट 3000 पर सर्व की जाएगी: `localhost:3000`।
यदि आप पाठ्यक्रम के सभी या किसी हिस्से का अनुवाद करना चाहते हैं, तो कृपया हमारे [अनुवाद](TRANSLATIONS.md) गाइड का पालन करें।
> नोट, नोटबुक्स Docsify के माध्यम से रेंडर नहीं किए जाएंगे, इसलिए जब आपको नोटबुक चलाने की आवश्यकता हो, तो इसे अलग से VS Code में Python कर्नेल चलाकर करें।
## अन्य पाठ्यक्रम
हमारी टीम अन्य पाठ्यक्रम भी तैयार करती है! देखें:
- [शुरुआती के लिए जनरेटिव AI](https://aka.ms/genai-beginners)
- [शुरुआती के लिए जनरेटिव AI .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [JavaScript के साथ जनरेटिव AI](https://github.com/microsoft/generative-ai-with-javascript)
- [Java के साथ जनरेटिव AI](https://aka.ms/genaijava)
- [शुरुआती के लिए AI](https://aka.ms/ai-beginners)
- [शुरुआती के लिए डेटा साइंस](https://aka.ms/datascience-beginners)
- [शुरुआती के लिए ML](https://aka.ms/ml-beginners)
- [शुरुआती के लिए साइबर सुरक्षा](https://github.com/microsoft/Security-101)
- [शुरुआती के लिए वेब डेवलपमेंट](https://aka.ms/webdev-beginners)
- [शुरुआती के लिए IoT](https://aka.ms/iot-beginners)
- [शुरुआती के लिए XR डेवलपमेंट](https://github.com/microsoft/xr-development-for-beginners)
- [पेयर्ड प्रोग्रामिंग के लिए GitHub Copilot मास्टर करना](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [C#/.NET डेवलपर्स के लिए GitHub Copilot मास्टर करना](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [अपना खुद का Copilot एडवेंचर चुनें](https://github.com/microsoft/CopilotAdventures)
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**अस्वीकरण**:
यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।
यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।
[](https://aka.ms/foundry/forum)
Microsoft 的 Azure Cloud Advocates 團隊很高興為大家提供一個為期 10 週、共 20 節課的數據科學課程。每節課都包含課前和課後測驗、完成課程的書面指導、解決方案以及作業。我們的項目式教學法讓您在實踐中學習,這是一種能讓新技能更牢固掌握的有效方法。
Azure Cloud Advocates at Microsoftは、データサイエンスに関する10週間、20レッスンのカリキュラムを提供します。各レッスンには、事前・事後のクイズ、レッスンを完了するための手順書、解答例、課題が含まれています。このプロジェクトベースの学習方法により、新しいスキルを実践的に学ぶことができます。
Azure Cloud Advocates at Microsoftは、データサイエンスに関する10週間、20レッスンのカリキュラムを提供しています。各レッスンには、事前・事後のクイズ、レッスンを完了するための手順書、解答例、課題が含まれています。このプロジェクトベースの教育法により、学びながら構築することで、新しいスキルを効果的に身につけることができます。
||
Azure Cloud Advocates는 데이터 과학에 관한 10주, 20강의 커리큘럼을 제공합니다. 각 강의는 사전 및 사후 퀴즈, 강의 내용을 완성하기 위한 작성 지침, 솔루션, 과제를 포함합니다. 프로젝트 기반 학습 방식은 새로운 기술을 효과적으로 익히는 검증된 방법입니다.
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](https://aka.ms/foundry/forum)
Microsoft의 Azure Cloud Advocates는 데이터 과학에 관한 10주, 20강의 커리큘럼을 제공합니다. 각 강의는 사전 및 사후 퀴즈, 강의를 완료하기 위한 서면 지침, 솔루션, 과제를 포함하고 있습니다. 프로젝트 기반 학습법을 통해 배우면서 실제로 만들어보는 방식은 새로운 기술을 효과적으로 익히는 검증된 방법입니다.
||
|:---:|
| 초보자를 위한 데이터 과학 - _스케치노트: [@nitya](https://twitter.com/nitya)_ |
12강으로 구성된 생성형 AI 커리큘럼이 새롭게 출시되었습니다. 다음과 같은 내용을 배울 수 있습니다:
**추가 번역 언어를 원하시면 [여기](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)에서 확인하세요.**
> https://aka.ms/genai-beginners
#### 커뮤니티에 참여하세요
[](https://discord.gg/kzRShWzttr)
# 학생이신가요?
다음 리소스를 통해 시작해보세요:
- [Student Hub 페이지](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 이 페이지에서는 초보자를 위한 리소스, 학생 팩, 무료 인증서 바우처를 얻는 방법 등을 찾을 수 있습니다. 이 페이지를 즐겨찾기에 추가하고 정기적으로 확인하세요. 콘텐츠는 최소 월별로 업데이트됩니다.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 글로벌 학생 대사 커뮤니티에 가입하세요. Microsoft로의 첫걸음이 될 수 있습니다.
- [학생 허브 페이지](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 이 페이지에서는 초보자를 위한 리소스, 학생 팩, 무료 인증 바우처를 얻는 방법 등을 찾을 수 있습니다. 이 페이지는 즐겨찾기에 추가하고 정기적으로 확인하세요. 콘텐츠는 최소 월 1회 변경됩니다.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 글로벌 학생 앰배서더 커뮤니티에 참여하세요. Microsoft에 참여할 수 있는 기회가 될 수 있습니다.
# 시작하기
> **교사들**: 이 커리큘럼을 활용하는 방법에 대한 [제안](for-teachers.md)을 포함했습니다. [토론 포럼](https://github.com/microsoft/Data-Science-For-Beginners/discussions)에서 피드백을 공유해주세요!
> **교사**: 이 커리큘럼을 사용하는 방법에 대한 [몇 가지 제안](for-teachers.md)을 포함했습니다. [토론 포럼](https://github.com/microsoft/Data-Science-For-Beginners/discussions)에서 피드백을 주시면 감사하겠습니다!
> **[학생들](https://aka.ms/student-page)**: 이 커리큘럼을 독학으로 사용하려면 전체 저장소를 포크하고 사전 강의 퀴즈부터 시작하여 스스로 연습 문제를 완료하세요. 강의를 읽고 나머지 활동을 완료하세요. 솔루션 코드를 복사하기보다는 강의를 이해하며 프로젝트를 만들어보세요. 하지만 솔루션 코드는 각 프로젝트 기반 강의의 /solutions 폴더에 있습니다. 또 다른 방법은 친구들과 스터디 그룹을 만들어 함께 콘텐츠를 학습하는 것입니다. 추가 학습을 위해 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)을 추천합니다.
> **[학생](https://aka.ms/student-page)**: 이 커리큘럼을 스스로 사용하려면, 전체 저장소를 포크하고 사전 강의 퀴즈부터 시작하여 스스로 연습 문제를 완료하세요. 강의를 읽고 나머지 활동을 완료하세요. 솔루션 코드를 복사하기보다는 강의를 이해하며 프로젝트를 만들어보세요. 하지만 솔루션 코드는 각 프로젝트 기반 강의의 /solutions 폴더에 제공됩니다. 또 다른 방법으로는 친구들과 스터디 그룹을 만들어 함께 콘텐츠를 학습하는 것도 좋습니다. 추가 학습을 위해 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)을 추천합니다.
이 커리큘럼을 설계할 때 두 가지 교육 원칙을 따랐습니다: 프로젝트 기반 학습과 빈번한 퀴즈 포함. 이 시리즈가 끝날 때 학생들은 데이터 과학의 기본 원칙, 윤리적 개념, 데이터 준비, 데이터 작업 방식, 데이터 시각화, 데이터 분석, 데이터 과학의 실제 사례 등을 배우게 됩니다.
또한, 수업 전에 간단한 퀴즈를 통해 학생들이 주제에 집중할 수 있도록 하고, 수업 후 퀴즈를 통해 학습 내용을 더 잘 기억할 수 있도록 합니다. 이 커리큘럼은 유연하고 재미있게 설계되었으며 전체 또는 일부만 학습할 수 있습니다. 프로젝트는 작게 시작하여 10주 과정이 끝날 때 점점 복잡해집니다.
이 커리큘럼을 설계할 때 두 가지 교육 원칙을 채택했습니다: 프로젝트 기반 학습과 빈번한 퀴즈 포함. 이 시리즈가 끝날 때쯤 학생들은 데이터 과학의 기본 원칙, 윤리적 개념, 데이터 준비, 데이터 작업 방법, 데이터 시각화, 데이터 분석, 데이터 과학의 실제 사례 등을 배우게 됩니다.
또한, 수업 전 간단한 퀴즈는 학생이 주제에 집중하도록 도와주며, 수업 후 퀴즈는 학습 내용을 더 잘 기억하도록 돕습니다. 이 커리큘럼은 유연하고 재미있게 설계되었으며, 전체 또는 일부만 학습할 수 있습니다. 프로젝트는 작게 시작하여 10주 과정이 끝날 때쯤 점점 더 복잡해집니다.
> **퀴즈에 대한 참고 사항**: 모든 퀴즈는 Quiz-App 폴더에 포함되어 있으며, 총 40개의 퀴즈가 각 3문제로 구성되어 있습니다. 강의 내에서 링크로 연결되어 있지만, 퀴즈 앱은 로컬에서 실행하거나 Azure에 배포할 수 있습니다. `quiz-app` 폴더의 지침을 따르세요. 퀴즈는 점차적으로 현지화되고 있습니다.
> **퀴즈에 대한 참고 사항**: 모든 퀴즈는 Quiz-App 폴더에 포함되어 있으며, 총 40개의 퀴즈가 각 3개의 질문으로 구성되어 있습니다. 퀴즈는 강의 내에서 링크로 연결되어 있지만, 퀴즈 앱은 로컬에서 실행하거나 Azure에 배포할 수 있습니다. `quiz-app` 폴더의 지침을 따르세요. 퀴즈는 점진적으로 현지화되고 있습니다.
## 강의 목록
| ](./sketchnotes/00-Roadmap.png)|
| 01 | 데이터 과학 정의 | [소개](1-Introduction/README.md) | 데이터 과학의 기본 개념과 인공지능, 머신러닝, 빅데이터와의 관계를 배웁니다. | [강의](1-Introduction/01-defining-data-science/README.md) [비디오](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | 데이터 과학 윤리 | [소개](1-Introduction/README.md) | 데이터 윤리 개념, 과제 및 프레임워크. | [강의](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | 데이터 정의 | [소개](1-Introduction/README.md) | 데이터가 어떻게 분류되고 일반적인 출처는 무엇인지 배웁니다. | [강의](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | 통계 및 확률 소개 | [소개](1-Introduction/README.md) | 데이터를 이해하기 위한 확률 및 통계의 수학적 기법. | [강의](1-Introduction/04-stats-and-probability/README.md) [비디오](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | 관계형 데이터 작업 | [데이터 작업](2-Working-With-Data/README.md) | 관계형 데이터 소개 및 SQL(Structured Query Language)을 사용하여 관계형 데이터를 탐색하고 분석하는 기본 사항. | [강의](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL 데이터 작업 | [데이터 작업](2-Working-With-Data/README.md) | 비관계형 데이터 소개, 다양한 유형 및 문서 데이터베이스를 탐색하고 분석하는 기본 사항. | [강의](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python 작업 | [데이터 작업](2-Working-With-Data/README.md) | Pandas와 같은 라이브러리를 사용하여 데이터를 탐색하는 Python 사용 기본 사항. Python 프로그래밍에 대한 기초 이해가 권장됩니다. | [강의](2-Working-With-Data/07-python/README.md) [비디오](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | 데이터 준비 | [데이터 작업하기](2-Working-With-Data/README.md) | 누락되거나 부정확하거나 불완전한 데이터를 처리하기 위한 데이터 정리 및 변환 기술에 대한 주제. | [수업](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | 수량 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | Matplotlib을 사용하여 새 데이터 🦆를 시각화하는 방법 배우기 | [수업](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | 데이터 분포 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 특정 구간 내 관찰 및 추세를 시각화하기. | [수업](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | 비율 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 개별 및 그룹화된 비율을 시각화하기. | [수업](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | 관계 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 데이터 세트와 변수 간의 연결 및 상관관계를 시각화하기. | [수업](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | 의미 있는 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 효과적인 문제 해결과 통찰력을 위한 시각화를 가치 있게 만드는 기술과 가이드. | [수업](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | 데이터 과학 생애주기 소개 | [생애주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 생애주기와 데이터 획득 및 추출의 첫 번째 단계 소개. | [수업](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | 분석하기 | [생애주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 생애주기의 이 단계는 데이터 분석 기술에 중점을 둡니다. | [수업](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | 커뮤니케이션 | [생애주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 생애주기의 이 단계는 데이터에서 얻은 통찰력을 의사 결정자가 쉽게 이해할 수 있도록 제시하는 데 중점을 둡니다. | [수업](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 클라우드에서의 데이터 과학과 그 이점을 소개하는 일련의 수업. | [수업](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 18 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 로우 코드 도구를 사용하여 모델 훈련하기. | [수업](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 19 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio를 사용하여 모델 배포하기. | [수업](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 20 | 실제 환경에서의 데이터 과학 | [실제 환경](6-Data-Science-In-Wild/README.md) | 실제 세계에서 데이터 과학 기반 프로젝트. | [수업](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 01 | 데이터 과학 정의 | [소개](1-Introduction/README.md) | 데이터 과학의 기본 개념과 인공지능, 머신러닝, 빅데이터와의 관계를 학습합니다. | [강의](1-Introduction/01-defining-data-science/README.md) [영상](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | 데이터 과학 윤리 | [소개](1-Introduction/README.md) | 데이터 윤리 개념, 도전 과제 및 프레임워크를 학습합니다. | [강의](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | 데이터 정의 | [소개](1-Introduction/README.md) | 데이터가 어떻게 분류되는지와 일반적인 출처를 학습합니다. | [강의](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | 통계 및 확률 소개 | [소개](1-Introduction/README.md) | 데이터를 이해하기 위한 확률 및 통계의 수학적 기법을 학습합니다. | [강의](1-Introduction/04-stats-and-probability/README.md) [영상](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | 관계형 데이터 작업 | [데이터 작업](2-Working-With-Data/README.md) | 관계형 데이터 소개 및 SQL(“씨퀄”로 발음됨)을 사용하여 관계형 데이터를 탐색하고 분석하는 기본 사항을 학습합니다. | [강의](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL 데이터 작업 | [데이터 작업](2-Working-With-Data/README.md) | 비관계형 데이터의 다양한 유형과 문서 데이터베이스를 탐색하고 분석하는 기본 사항을 학습합니다. | [강의](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python 작업 | [데이터 작업](2-Working-With-Data/README.md) | Pandas와 같은 라이브러리를 사용하여 데이터를 탐색하는 Python 사용의 기본 사항을 학습합니다. Python 프로그래밍에 대한 기초 이해가 권장됩니다. | [강의](2-Working-With-Data/07-python/README.md) [영상](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | 데이터 준비 | [데이터 작업](2-Working-With-Data/README.md) | 누락되거나 부정확하거나 불완전한 데이터를 처리하기 위한 데이터 정리 및 변환 기술에 대해 학습합니다. | [강의](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | 수량 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | Matplotlib을 사용하여 새 데이터 🦆를 시각화하는 방법을 학습합니다. | [강의](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | 데이터 분포 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 구간 내 관찰 및 추세를 시각화합니다. | [강의](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | 비율 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 개별 및 그룹화된 백분율을 시각화합니다. | [강의](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | 관계 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 데이터 세트와 변수 간의 연결 및 상관관계를 시각화합니다. | [강의](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | 의미 있는 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 효과적인 문제 해결 및 통찰력을 위한 시각화를 가치 있게 만드는 기술과 지침을 학습합니다. | [강의](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | 데이터 과학 라이프사이클 소개 | [라이프사이클](4-Data-Science-Lifecycle/README.md) | 데이터 과학 라이프사이클과 데이터 획득 및 추출의 첫 번째 단계에 대해 학습합니다. | [강의](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | 분석 | [라이프사이클](4-Data-Science-Lifecycle/README.md) | 데이터 과학 라이프사이클의 이 단계에서는 데이터를 분석하는 기술에 초점을 맞춥니다. | [강의](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | 커뮤니케이션 | [라이프사이클](4-Data-Science-Lifecycle/README.md) | 데이터 과학 라이프사이클의 이 단계에서는 데이터에서 얻은 통찰력을 의사 결정자가 이해하기 쉽게 제시하는 데 초점을 맞춥니다. | [강의](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 클라우드에서의 데이터 과학과 그 이점을 소개하는 강의 시리즈입니다. | [강의](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 18 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 로우 코드 도구를 사용하여 모델을 훈련합니다. |[강의](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 19 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio를 사용하여 모델을 배포합니다. | [강의](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 및 [Maud](https://twitter.com/maudstweets) |
| 20 | 실제 환경에서의 데이터 과학 | [실제 환경](6-Data-Science-In-Wild/README.md) | 실제 세계에서 데이터 과학 기반 프로젝트를 학습합니다. | [강의](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Codespace에서 이 샘플을 열려면 다음 단계를 따르세요:
1. Code 드롭다운 메뉴를 클릭하고 Codespaces로 열기 옵션을 선택하세요.
2. 창 하단에서 + New codespace를 선택하세요.
이 샘플을 Codespace에서 열려면 다음 단계를 따르세요:
1. 코드 드롭다운 메뉴를 클릭하고 Codespaces로 열기 옵션을 선택합니다.
2. 창 하단에서 + 새 Codespace를 선택합니다.
자세한 내용은 [GitHub 문서](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)를 확인하세요.
## VSCode Remote - Containers
로컬 머신과 VSCode를 사용하여 VS Code Remote - Containers 확장을 통해 이 저장소를 컨테이너에서 열려면 다음 단계를 따르세요:
1. 개발 컨테이너를 처음 사용하는 경우, 시스템이 사전 요구 사항을 충족하는지 확인하세요(예: Docker 설치). [시작 문서](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)를 참조하세요.
1. 개발 컨테이너를 처음 사용하는 경우, 시스템이 사전 요구 사항을 충족하는지 확인하세요(예: Docker 설치). [시작 문서](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)를 참조하세요.
이 저장소를 사용하려면 다음 중 하나를 선택하세요:
- 저장소를 격리된 Docker 볼륨에서 열기:
**참고**: 내부적으로 Remote-Containers: **Clone Repository in Container Volume...** 명령을 사용하여 소스 코드를 로컬 파일 시스템 대신 Docker 볼륨에 복제합니다. [볼륨](https://docs.docker.com/storage/volumes/)은 컨테이너 데이터를 지속적으로 저장하는 데 선호되는 메커니즘입니다.
**참고**: 내부적으로, 이는 Remote-Containers: **Clone Repository in Container Volume...** 명령을 사용하여 소스 코드를 로컬 파일 시스템 대신 Docker 볼륨에 복제합니다. [볼륨](https://docs.docker.com/storage/volumes/)은 컨테이너 데이터를 지속적으로 저장하는 데 선호되는 메커니즘입니다.
- 로컬 파일 시스템에 복제하거나 다운로드한 버전을 열기:
또는 로컬에 복제하거나 다운로드한 저장소를 엽니다:
- 이 저장소를 로컬 파일 시스템에 복제하세요.
- F1을 누르고 **Remote-Containers: Open Folder in Container...** 명령을 선택하세요.
- 이 폴더의 복제본을 선택하고 컨테이너가 시작될 때까지 기다린 후 테스트를 진행하세요.
- 이 저장소를 로컬 파일 시스템에 복제합니다.
- F1을 누르고 **Remote-Containers: Open Folder in Container...** 명령을 선택합니다.
- 복제된 폴더를 선택하고 컨테이너가 시작될 때까지 기다린 후 테스트를 진행합니다.
## 오프라인 액세스
[Docsify](https://docsify.js.org/#/)를 사용하여 이 문서를 오프라인으로 실행할 수 있습니다. 이 저장소를 포크하고, 로컬 머신에 [Docsify 설치](https://docsify.js.org/#/quickstart)를 한 다음, 이 저장소의 루트 폴더에서 `docsify serve`를 입력하세요. 웹사이트는 localhost의 포트 3000에서 제공됩니다: `localhost:3000`.
[Docsify](https://docsify.js.org/#/)를 사용하여 이 문서를 오프라인으로 실행할 수 있습니다. 이 저장소를 포크하고, 로컬 머신에 [Docsify를 설치](https://docsify.js.org/#/quickstart)한 다음, 이 저장소의 루트 폴더에서 `docsify serve`를 입력하세요. 웹사이트는 localhost의 포트 3000에서 제공됩니다: `localhost:3000`.
> 참고: Docsify를 통해 노트북은 렌더링되지 않으므로 노트북을 실행해야 할 때는 Python 커널을 실행하는 VS Code에서 별도로 실행하세요.
## 도움 요청!
커리큘럼의 전체 또는 일부를 번역하고 싶다면 [번역 가이드](TRANSLATIONS.md)를 따라주세요.
> 참고, 노트북은 Docsify를 통해 렌더링되지 않으므로 노트북을 실행해야 할 때는 Python 커널을 실행하는 VS Code에서 별도로 실행하세요.
## 기타 커리큘럼
@ -159,5 +165,7 @@ Codespace에서 이 샘플을 열려면 다음 단계를 따르세요:
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**면책 조항**:
이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.
이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.
# Data Science dla Początkujących - Program Nauczania
Azure Cloud Advocates w Microsoft z przyjemnością oferują 10-tygodniowy, 20-lekcyjny program nauczania dotyczący Data Science. Każda lekcja zawiera quizy przed i po lekcji, pisemne instrukcje do wykonania lekcji, rozwiązanie oraz zadanie. Nasze podejście oparte na projektach pozwala uczyć się poprzez tworzenie, co jest sprawdzonym sposobem na trwałe przyswojenie nowych umiejętności.
Azure Cloud Advocates w Microsoft z przyjemnością oferują 10-tygodniowy, 20-lekcyjny program nauczania dotyczący Data Science. Każda lekcja zawiera quizy przed i po lekcji, pisemne instrukcje do realizacji lekcji, rozwiązanie oraz zadanie. Nasze podejście oparte na projektach pozwala uczyć się poprzez tworzenie, co jest sprawdzonym sposobem na trwałe przyswajanie nowych umiejętności.
| ](./sketchnotes/00-Title.png)|
||
|:---:|
| Data Science dla Początkujących - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
## Ogłoszenie - Nowy Program Nauczania o Generatywnej AI właśnie został wydany!
### 🌐 Wsparcie Wielojęzyczne
Właśnie opublikowaliśmy 12-lekcyjny program nauczania dotyczący generatywnej AI. Dowiedz się więcej o:
#### Obsługiwane przez GitHub Action (Automatyczne i Zawsze Aktualne)
Jak zawsze, każda lekcja zawiera zadania do wykonania, testy wiedzy i wyzwania.
**Jeśli chcesz, aby obsługiwane były dodatkowe języki, lista dostępnych znajduje się [tutaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Sprawdź tutaj:
> https://aka.ms/genai-beginners
#### Dołącz do naszej społeczności
[](https://discord.gg/kzRShWzttr)
# Jesteś studentem?
Rozpocznij od następujących zasobów:
- [Strona Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej stronie znajdziesz zasoby dla początkujących, pakiety dla studentów, a nawet sposoby na zdobycie darmowego vouchera certyfikacyjnego. To strona, którą warto dodać do zakładek i sprawdzać co jakiś czas, ponieważ treści są zmieniane co najmniej raz w miesiącu.
- [Strona Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej stronie znajdziesz zasoby dla początkujących, pakiety dla studentów, a nawet sposoby na zdobycie darmowego vouchera certyfikacyjnego. To strona, którą warto dodać do zakładek i sprawdzać co jakiś czas, ponieważ zmieniamy treści przynajmniej raz w miesiącu.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Dołącz do globalnej społeczności ambasadorów studentów, to może być Twoja droga do Microsoft.
# Rozpoczęcie
> **Nauczyciele**: [dołączyliśmy kilka sugestii](for-teachers.md) dotyczących korzystania z tego programu nauczania. Chętnie poznamy Wasze opinie [na naszym forum dyskusyjnym](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Nauczyciele**: [zamieściliśmy kilka sugestii](for-teachers.md) dotyczących korzystania z tego programu nauczania. Chętnie poznamy Wasze opinie [na naszym forum dyskusyjnym](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studenci](https://aka.ms/student-page)**: aby korzystać z tego programu nauczania samodzielnie, zrób fork całego repozytorium i wykonaj ćwiczenia samodzielnie, zaczynając od quizu przed lekcją. Następnie przeczytaj lekcję i wykonaj pozostałe aktywności. Spróbuj tworzyć projekty, rozumiejąc lekcje, zamiast kopiować kod rozwiązania; jednak ten kod jest dostępny w folderach /solutions w każdej lekcji projektowej. Innym pomysłem może być utworzenie grupy naukowej z przyjaciółmi i wspólne przechodzenie przez treści. Do dalszej nauki polecamy [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Studenci](https://aka.ms/student-page)**: aby korzystać z tego programu samodzielnie, zrób fork całego repozytorium i wykonaj ćwiczenia samodzielnie, zaczynając od quizu przed lekcją. Następnie przeczytaj lekcję i wykonaj resztę aktywności. Spróbuj tworzyć projekty, rozumiejąc lekcje, zamiast kopiować kod rozwiązania; jednak ten kod jest dostępny w folderach /solutions w każdej lekcji projektowej. Innym pomysłem może być utworzenie grupy naukowej z przyjaciółmi i wspólne przechodzenie przez treści. Do dalszej nauki polecamy [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Poznaj Zespół
@ -53,91 +50,86 @@ Rozpocznij od następujących zasobów:
> 🎥 Kliknij obrazek powyżej, aby obejrzeć wideo o projekcie i ludziach, którzy go stworzyli!
> 🎥 Kliknij obrazek powyżej, aby obejrzeć wideo o projekcie i osobach, które go stworzyły!
## Pedagogika
Podczas tworzenia tego programu nauczania wybraliśmy dwa główne założenia pedagogiczne: zapewnienie, że jest on oparty na projektach oraz że zawiera częste quizy. Pod koniec tej serii studenci poznają podstawowe zasady data science, w tym koncepcje etyczne, przygotowanie danych, różne sposoby pracy z danymi, wizualizację danych, analizę danych, rzeczywiste przypadki użycia data science i wiele więcej.
Dodatkowo, quiz o niskim poziomie trudności przed zajęciami ustawia intencję studenta na naukę danego tematu, a drugi quiz po zajęciach zapewnia dalsze utrwalenie wiedzy. Ten program nauczania został zaprojektowany tak, aby był elastyczny i przyjemny, i można go realizować w całości lub częściowo. Projekty zaczynają się od prostych i stają się coraz bardziej złożone pod koniec 10-tygodniowego cyklu.
Podczas tworzenia tego programu nauczania przyjęliśmy dwie zasady pedagogiczne: zapewnienie, że jest on oparty na projektach oraz że zawiera częste quizy. Pod koniec tej serii studenci poznają podstawowe zasady data science, w tym koncepcje etyczne, przygotowanie danych, różne sposoby pracy z danymi, wizualizację danych, analizę danych, rzeczywiste przypadki użycia data science i wiele więcej.
Dodatkowo, quiz o niskiej stawce przed zajęciami ustawia intencję studenta na naukę danego tematu, podczas gdy drugi quiz po zajęciach zapewnia dalsze utrwalenie wiedzy. Ten program nauczania został zaprojektowany tak, aby był elastyczny i przyjemny, i można go realizować w całości lub częściowo. Projekty zaczynają się od prostych i stają się coraz bardziej złożone pod koniec 10-tygodniowego cyklu.
Znajdź nasze [Kodeks Postępowania](CODE_OF_CONDUCT.md), [Wskazówki dotyczące współpracy](CONTRIBUTING.md), [Wskazówki dotyczące tłumaczeń](TRANSLATIONS.md). Czekamy na Twoje konstruktywne uwagi!
## Każda lekcja zawiera:
- Opcjonalny sketchnote
- Opcjonalne dodatkowe wideo
- Opcjonalną notatkę wizualną
- Opcjonalny dodatkowy film
- Quiz rozgrzewkowy przed lekcją
- Pisemną lekcję
- Lekcję w formie pisemnej
- W przypadku lekcji projektowych, przewodniki krok po kroku dotyczące budowy projektu
- Sprawdzanie wiedzy
- Wyzwanie
- Dodatkowe materiały do czytania
- Zadanie
- Quiz po lekcji
- [Quiz po lekcji](https://ff-quizzes.netlify.app/en/)
> **Uwaga dotycząca quizów**: Wszystkie quizy znajdują się w folderze Quiz-App, w sumie 40 quizów po trzy pytania każdy. Są one powiązane z lekcjami, ale aplikację quizową można uruchomić lokalnie lub wdrożyć na Azure; postępuj zgodnie z instrukcjami w folderze `quiz-app`. Quizy są stopniowo lokalizowane.
> **Uwaga dotycząca quizów**: Wszystkie quizy znajdują się w folderze Quiz-App, łącznie 40 quizów, każdy z trzema pytaniami. Są one podlinkowane w lekcjach, ale aplikację quizową można uruchomić lokalnie lub wdrożyć na platformie Azure; postępuj zgodnie z instrukcjami w folderze `quiz-app`. Quizy są stopniowo lokalizowane.
## Lekcje
| ](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| Data Science dla Początkujących: Plan - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Data Science dla początkujących: Mapa drogowa - _Notatka wizualna autorstwa [@nitya](https://twitter.com/nitya)_ |
| Numer Lekcji | Temat | Grupa Lekcji | Cele Nauczania | Powiązana Lekcja | Autor |
| Numer lekcji | Temat | Grupa lekcji | Cele nauki | Podlinkowana lekcja | Autor |
| 01 | Definiowanie Data Science | [Wprowadzenie](1-Introduction/README.md) | Poznaj podstawowe pojęcia związane z data science i jak jest ono powiązane ze sztuczną inteligencją, uczeniem maszynowym i big data. | [lekcja](1-Introduction/01-defining-data-science/README.md) [wideo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etyka w Data Science | [Wprowadzenie](1-Introduction/README.md) | Koncepcje etyki danych, wyzwania i ramy. | [lekcja](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiowanie Danych | [Wprowadzenie](1-Introduction/README.md) | Jak klasyfikowane są dane i ich typowe źródła. | [lekcja](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Wprowadzenie do Statystyki i Prawdopodobieństwa | [Wprowadzenie](1-Introduction/README.md) | Matematyczne techniki prawdopodobieństwa i statystyki do analizy danych. | [lekcja](1-Introduction/04-stats-and-probability/README.md) [wideo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Praca z Danymi Relacyjnymi | [Praca z Danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych relacyjnych oraz podstawy eksploracji i analizy danych relacyjnych za pomocą języka SQL (wymawiane „si-kłel”). | [lekcja](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Praca z Danymi NoSQL | [Praca z Danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych nierelacyjnych, ich różnych typów oraz podstawy eksploracji i analizy baz dokumentów. | [lekcja](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Praca z Pythonem | [Praca z Danymi](2-Working-With-Data/README.md) | Podstawy używania Pythona do eksploracji danych z bibliotekami takimi jak Pandas. Zalecane jest podstawowe zrozumienie programowania w Pythonie. | [lekcja](2-Working-With-Data/07-python/README.md) [wideo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 01 | Definicja Data Science | [Wprowadzenie](1-Introduction/README.md) | Poznaj podstawowe pojęcia związane z data science oraz jego powiązania ze sztuczną inteligencją, uczeniem maszynowym i big data. | [lekcja](1-Introduction/01-defining-data-science/README.md) [film](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etyka w Data Science | [Wprowadzenie](1-Introduction/README.md) | Koncepcje etyki danych, wyzwania i ramy działania. | [lekcja](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definicja danych | [Wprowadzenie](1-Introduction/README.md) | Jak klasyfikowane są dane i jakie są ich najczęstsze źródła. | [lekcja](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Wprowadzenie do statystyki i prawdopodobieństwa | [Wprowadzenie](1-Introduction/README.md) | Matematyczne techniki statystyki i prawdopodobieństwa w celu zrozumienia danych. | [lekcja](1-Introduction/04-stats-and-probability/README.md) [film](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Praca z danymi relacyjnymi | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych relacyjnych oraz podstawy eksploracji i analizy danych relacyjnych za pomocą języka SQL (wymawiane „si-kłel”). | [lekcja](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Praca z danymi NoSQL | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych nierelacyjnych, ich różnych typów oraz podstawy eksploracji i analizy baz danych dokumentów. | [lekcja](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Praca z Pythonem | [Praca z danymi](2-Working-With-Data/README.md) | Podstawy korzystania z Pythona do eksploracji danych z wykorzystaniem bibliotek takich jak Pandas. Zalecana jest podstawowa znajomość programowania w Pythonie. | [lekcja](2-Working-With-Data/07-python/README.md) [film](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Przygotowanie danych | [Praca z danymi](2-Working-With-Data/README.md) | Tematy dotyczące technik czyszczenia i transformacji danych w celu radzenia sobie z brakującymi, niedokładnymi lub niekompletnymi danymi. | [lekcja](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Wizualizacja ilości | [Wizualizacja danych](3-Data-Visualization/README.md) | Naucz się używać Matplotlib do wizualizacji danych o ptakach 🦆 | [lekcja](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Wizualizacja rozkładów danych | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja obserwacji i trendów w określonym przedziale. | [lekcja](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Wizualizacja relacji | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja połączeń i korelacji między zestawami danych i ich zmiennymi. | [lekcja](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Znaczące wizualizacje | [Wizualizacja danych](3-Data-Visualization/README.md) | Techniki i wskazówki, jak sprawić, by wizualizacje były wartościowe dla skutecznego rozwiązywania problemów i uzyskiwania wniosków. | [lekcja](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Wprowadzenie do cyklu życia Data Science | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Wprowadzenie do cyklu życia Data Science i jego pierwszego etapu, czyli pozyskiwania i ekstrakcji danych. | [lekcja](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ta faza cyklu życia Data Science koncentruje się na technikach analizy danych. | [lekcja](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacja | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ta faza cyklu życia Data Science skupia się na prezentowaniu wniosków z danych w sposób ułatwiający ich zrozumienie decydentom. | [lekcja](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Seria lekcji wprowadzających do Data Science w chmurze i jej korzyści. | [lekcja](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Trenowanie modeli za pomocą narzędzi Low Code. |[lekcja](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Wdrażanie modeli za pomocą Azure Machine Learning Studio. | [lekcja](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science w praktyce | [W praktyce](6-Data-Science-In-Wild/README.md) | Projekty oparte na Data Science w rzeczywistym świecie. | [lekcja](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 09 | Wizualizacja ilości | [Wizualizacja danych](3-Data-Visualization/README.md) | Naucz się korzystać z Matplotlib do wizualizacji danych o ptakach 🦆 | [lekcja](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Wizualizacja rozkładów danych | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja obserwacji i trendów w przedziale. | [lekcja](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Wizualizacja relacji | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja połączeń i korelacji między zbiorami danych i ich zmiennymi. | [lekcja](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Znaczące wizualizacje | [Wizualizacja danych](3-Data-Visualization/README.md) | Techniki i wskazówki dotyczące tworzenia wartościowych wizualizacji dla efektywnego rozwiązywania problemów i uzyskiwania wglądów. | [lekcja](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Wprowadzenie do cyklu życia Data Science | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Wprowadzenie do cyklu życia data science i jego pierwszego etapu, jakim jest pozyskiwanie i ekstrakcja danych. | [lekcja](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ten etap cyklu życia data science koncentruje się na technikach analizy danych. | [lekcja](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacja | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ten etap cyklu życia data science koncentruje się na prezentowaniu wniosków z danych w sposób ułatwiający ich zrozumienie decydentom. | [lekcja](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Ten cykl lekcji wprowadza data science w chmurze i jego korzyści. | [lekcja](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Trenowanie modeli za pomocą narzędzi Low Code. |[lekcja](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Wdrażanie modeli za pomocą Azure Machine Learning Studio. | [lekcja](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science w praktyce | [W praktyce](6-Data-Science-In-Wild/README.md) | Projekty oparte na data science w rzeczywistym świecie. | [lekcja](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Wykonaj poniższe kroki, aby otworzyć ten przykład w Codespace:
Wykonaj następujące kroki, aby otworzyć ten przykład w Codespace:
1. Kliknij menu rozwijane Code i wybierz opcję Open with Codespaces.
2. Wybierz + New codespace na dole panelu.
Więcej informacji znajdziesz w [dokumentacji GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Wykonaj poniższe kroki, aby otworzyć to repozytorium w kontenerze za pomocą lokalnego komputera i VSCode z rozszerzeniem VS Code Remote - Containers:
1. Jeśli po raz pierwszy korzystasz z kontenera deweloperskiego, upewnij się, że Twój system spełnia wymagania wstępne (np. zainstalowany Docker) opisane w [dokumentacji wprowadzającej](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Wykonaj następujące kroki, aby otworzyć to repozytorium w kontenerze za pomocą swojego lokalnego komputera i VSCode, korzystając z rozszerzenia VS Code Remote - Containers:
1. Jeśli korzystasz z kontenerów deweloperskich po raz pierwszy, upewnij się, że Twój system spełnia wymagania wstępne (np. zainstalowany Docker) opisane w [dokumentacji wprowadzającej](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Aby użyć tego repozytorium, możesz otworzyć je w izolowanym woluminie Dockera:
**Uwaga**: W tle zostanie użyte polecenie Remote-Containers: **Clone Repository in Container Volume...**, aby sklonować kod źródłowy do woluminu Dockera zamiast lokalnego systemu plików. [Woluminy](https://docs.docker.com/storage/volumes/) są preferowanym mechanizmem do przechowywania danych kontenera.
**Uwaga**: W tle zostanie użyte polecenie Remote-Containers: **Clone Repository in Container Volume...**, aby sklonować kod źródłowy w woluminie Dockera zamiast w lokalnym systemie plików. [Woluminy](https://docs.docker.com/storage/volumes/) są preferowanym mechanizmem przechowywania danych kontenera.
Lub otwórz lokalnie sklonowaną lub pobraną wersję repozytorium:
- Sklonuj to repozytorium na swój lokalny system plików.
- Naciśnij F1 i wybierz polecenie **Remote-Containers: Open Folder in Container...**.
- Wybierz sklonowaną kopię tego folderu, poczekaj na uruchomienie kontenera i wypróbuj różne funkcje.
- Wybierz sklonowaną kopię tego folderu, poczekaj na uruchomienie kontenera i przetestuj.
## Dostęp offline
Możesz uruchomić tę dokumentację offline, korzystając z [Docsify](https://docsify.js.org/#/). Sforkuj to repozytorium, [zainstaluj Docsify](https://docsify.js.org/#/quickstart) na swoim lokalnym komputerze, a następnie w katalogu głównym tego repozytorium wpisz `docsify serve`. Strona internetowa zostanie uruchomiona na porcie 3000 na Twoim localhost: `localhost:3000`.
Możesz uruchomić tę dokumentację offline, korzystając z [Docsify](https://docsify.js.org/#/). Sforkuj to repozytorium, [zainstaluj Docsify](https://docsify.js.org/#/quickstart) na swoim lokalnym komputerze, a następnie w głównym folderze tego repozytorium wpisz `docsify serve`. Strona internetowa zostanie uruchomiona na porcie 3000 na Twoim localhost: `localhost:3000`.
> Uwaga, notatniki nie będą renderowane za pomocą Docsify, więc jeśli musisz uruchomić notatnik, zrób to osobno w VS Code, korzystając z jądra Pythona.
## Poszukiwani pomocnicy!
Jeśli chciałbyś przetłumaczyć całość lub część tego programu nauczania, zapoznaj się z naszym przewodnikiem [Translations](TRANSLATIONS.md).
> Uwaga, notatniki nie będą renderowane za pomocą Docsify, więc jeśli potrzebujesz uruchomić notatnik, zrób to osobno w VS Code, korzystając z jądra Pythona.
## Inne programy nauczania
@ -158,5 +150,7 @@ Nasz zespół tworzy inne programy nauczania! Sprawdź:
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**Zastrzeżenie**:
Ten dokument został przetłumaczony za pomocą usługi tłumaczenia AI [Co-op Translator](https://github.com/Azure/co-op-translator). Chociaż staramy się zapewnić dokładność, prosimy mieć na uwadze, że automatyczne tłumaczenia mogą zawierać błędy lub nieścisłości. Oryginalny dokument w jego rodzimym języku powinien być uznawany za wiarygodne źródło. W przypadku informacji krytycznych zaleca się skorzystanie z profesjonalnego tłumaczenia przez człowieka. Nie ponosimy odpowiedzialności za jakiekolwiek nieporozumienia lub błędne interpretacje wynikające z użycia tego tłumaczenia.
Ten dokument został przetłumaczony za pomocą usługi tłumaczenia AI [Co-op Translator](https://github.com/Azure/co-op-translator). Chociaż dokładamy wszelkich starań, aby tłumaczenie było precyzyjne, prosimy pamiętać, że automatyczne tłumaczenia mogą zawierać błędy lub nieścisłości. Oryginalny dokument w jego języku źródłowym powinien być uznawany za autorytatywne źródło. W przypadku informacji krytycznych zaleca się skorzystanie z profesjonalnego tłumaczenia przez człowieka. Nie ponosimy odpowiedzialności za jakiekolwiek nieporozumienia lub błędne interpretacje wynikające z użycia tego tłumaczenia.
Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições sobre Ciência de Dados. Cada lição inclui questionários antes e depois da aula, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa abordagem baseada em projetos permite que você aprenda enquanto constrói, uma maneira comprovada de fixar novas habilidades.
Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições sobre Ciência de Dados. Cada lição inclui questionários antes e depois da aula, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa abordagem pedagógica baseada em projetos permite que você aprenda enquanto constrói, uma maneira comprovada de fazer com que novas habilidades "fiquem".
| ](./sketchnotes/00-Title.png)|
||
|:---:|
| Ciência de Dados para Iniciantes - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
## Anúncio - Novo Currículo sobre IA Generativa foi lançado!
### 🌐 Suporte Multilíngue
Acabamos de lançar um currículo de 12 lições sobre IA generativa. Venha aprender tópicos como:
#### Suportado via GitHub Action (Automatizado e Sempre Atualizado)
Como de costume, há uma lição, tarefas para completar, verificações de conhecimento e desafios.
**Se desejar adicionar traduções adicionais, os idiomas suportados estão listados [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
Confira:
> https://aka.ms/genai-beginners
#### Junte-se à Nossa Comunidade
[](https://discord.gg/kzRShWzttr)
# És estudante?
Começa com os seguintes recursos:
- [Página do Hub de Estudantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, encontrarás recursos para iniciantes, pacotes para estudantes e até formas de obter um voucher gratuito para certificação. Esta é uma página que deves marcar e verificar de tempos em tempos, pois atualizamos o conteúdo pelo menos mensalmente.
- [Página do Hub para Estudantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, encontrarás recursos para iniciantes, pacotes para estudantes e até formas de obter um voucher gratuito para certificação. Esta é uma página que deves marcar como favorita e verificar de tempos em tempos, pois atualizamos o conteúdo pelo menos mensalmente.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junta-te a uma comunidade global de embaixadores estudantis, esta pode ser a tua porta de entrada para a Microsoft.
# Começando
> **Professores**: incluímos [algumas sugestões](for-teachers.md) sobre como usar este currículo. Adoraríamos receber o vosso feedback [no nosso fórum de discussão](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faz um fork do repositório inteiro e completa os exercícios por conta própria, começando com um questionário pré-aula. Depois, lê a aula e completa o restante das atividades. Tenta criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudo adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faz um fork do repositório inteiro e completa os exercícios por conta própria, começando com um questionário pré-aula. Depois, lê a aula e completa o restante das atividades. Tenta criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudos adicionais, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
> 🎥 Clica na imagem acima para ver um vídeo sobre o projeto e as pessoas que o criaram!
> 🎥 Clica na imagem acima para assistir a um vídeo sobre o projeto e as pessoas que o criaram!
## Pedagogia
Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que seja baseado em projetos e que inclua questionários frequentes. Ao final desta série, os estudantes terão aprendido os princípios básicos da ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes formas de trabalhar com dados, visualização de dados, análise de dados, casos de uso reais de ciência de dados e muito mais.
Além disso, um questionário de baixo risco antes da aula define a intenção do estudante em aprender um tópico, enquanto um segundo questionário após a aula garante maior retenção. Este currículo foi projetado para ser flexível e divertido e pode ser realizado na íntegra ou em partes. Os projetos começam pequenos e tornam-se progressivamente mais complexos ao final do ciclo de 10 semanas.
> Encontra o nosso [Código de Conduta](CODE_OF_CONDUCT.md), [Contribuições](CONTRIBUTING.md), [Diretrizes de Tradução](TRANSLATIONS.md). Agradecemos o vosso feedback construtivo!
Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que ele seja baseado em projetos e que inclua questionários frequentes. Ao final desta série, os estudantes terão aprendido os princípios básicos da ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes formas de trabalhar com dados, visualização de dados, análise de dados, casos de uso reais de ciência de dados e muito mais.
Além disso, um questionário de baixo risco antes da aula define a intenção do estudante em relação ao aprendizado de um tópico, enquanto um segundo questionário após a aula garante maior retenção. Este currículo foi projetado para ser flexível e divertido e pode ser realizado na íntegra ou em partes. Os projetos começam pequenos e tornam-se progressivamente mais complexos ao longo do ciclo de 10 semanas.
> Encontra o nosso [Código de Conduta](CODE_OF_CONDUCT.md), as [Diretrizes de Contribuição](CONTRIBUTING.md) e as [Diretrizes de Tradução](TRANSLATIONS.md). Agradecemos o teu feedback construtivo!
## Cada lição inclui:
- Sketchnote opcional
- Vídeo suplementar opcional
- Questionário de aquecimento antes da aula
- Questionário de aquecimento antes da lição
- Lição escrita
- Para lições baseadas em projetos, guias passo a passo sobre como construir o projeto
> **Uma nota sobre os questionários**: Todos os questionários estão contidos na pasta Quiz-App, totalizando 40 questionários de três perguntas cada. Eles estão vinculados dentro das lições, mas a aplicação de questionários pode ser executada localmente ou implantada no Azure; segue as instruções na pasta `quiz-app`. Eles estão sendo gradualmente localizados.
> **Uma nota sobre os questionários**: Todos os questionários estão contidos na pasta Quiz-App, totalizando 40 questionários com três perguntas cada. Eles estão vinculados dentro das lições, mas o aplicativo de questionários pode ser executado localmente ou implantado no Azure; siga as instruções na pasta `quiz-app`. Eles estão sendo gradualmente localizados.
## Lições
| ](./sketchnotes/00-Roadmap.png)|
||
|:---:|
| Ciência de Dados para Iniciantes: Roteiro - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
| Número da Lição | Tópico | Agrupamento de Lições | Objetivos de Aprendizagem | Lição Vinculada | Autor |
| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprende os conceitos básicos por trás da ciência de dados e como ela está relacionada à inteligência artificial, aprendizado de máquina e big data. | [lição](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprenda os conceitos básicos por trás da ciência de dados e como ela está relacionada à inteligência artificial, aprendizado de máquina e big data. | [lição](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética na Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e frameworks de ética em dados. | [lição](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definindo Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [lição](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introdução à Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | As técnicas matemáticas de probabilidade e estatística para entender dados. | [lição](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 04 | Introdução à Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | As técnicas matemáticas de probabilidade e estatística para entender os dados. | [lição](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e os fundamentos de exploração e análise de dados relacionais com a Structured Query Language, também conhecida como SQL (pronunciado “sequel”). | [lição](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabalhando com Dados NoSQL | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus vários tipos e os fundamentos de exploração e análise de bases de dados de documentos. | [lição](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Fundamentos de uso do Python para exploração de dados com bibliotecas como Pandas. Recomenda-se uma compreensão básica de programação em Python. | [lição](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparação de Dados | [Trabalhar com Dados](2-Working-With-Data/README.md) | Tópicos sobre técnicas de dados para limpar e transformar os dados, lidando com desafios como dados ausentes, imprecisos ou incompletos. | [lição](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizar Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda a usar o Matplotlib para visualizar dados de aves 🦆 | [lição](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizar Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizar observações e tendências dentro de um intervalo. | [lição](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizar Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizar percentagens discretas e agrupadas. | [lição](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizar Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizar conexões e correlações entre conjuntos de dados e suas variáveis. | [lição](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar as suas visualizações valiosas para resolver problemas de forma eficaz e obter insights. | [lição](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introdução ao Ciclo de Vida da Ciência de Dados | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e ao seu primeiro passo: adquirir e extrair dados. | [lição](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Análise | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca-se em técnicas para analisar dados. | [lição](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca-se em apresentar os insights dos dados de forma a facilitar a compreensão pelos decisores. | [lição](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Esta série de lições introduz a ciência de dados na nuvem e os seus benefícios. | [lição](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 18 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Treinar modelos usando ferramentas de baixo código. | [lição](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 19 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Implementar modelos com o Azure Machine Learning Studio. | [lição](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 20 | Ciência de Dados no Mundo Real | [No Mundo Real](6-Data-Science-In-Wild/README.md) | Projetos orientados por ciência de dados no mundo real. | [lição](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 06 | Trabalhando com Dados NoSQL | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus vários tipos e os fundamentos de exploração e análise de bancos de dados de documentos. | [lição](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Fundamentos do uso de Python para exploração de dados com bibliotecas como Pandas. É recomendável ter uma compreensão básica de programação em Python. | [lição](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparação de Dados | [Trabalhando com Dados](2-Working-With-Data/README.md) | Técnicas de dados para limpeza e transformação de dados para lidar com desafios de dados ausentes, imprecisos ou incompletos. | [lição](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizando Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda a usar Matplotlib para visualizar dados de aves 🦆 | [lição](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizando Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando observações e tendências dentro de um intervalo. | [lição](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizando Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando porcentagens discretas e agrupadas. | [lição](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizando Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando conexões e correlações entre conjuntos de dados e suas variáveis. | [lição](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar suas visualizações valiosas para resolução eficaz de problemas e obtenção de insights. | [lição](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introdução ao Ciclo de Vida da Ciência de Dados | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e sua primeira etapa de aquisição e extração de dados. | [lição](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Análise | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em técnicas para analisar dados. | [lição](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em apresentar os insights dos dados de forma que facilite a compreensão pelos tomadores de decisão. | [lição](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Esta série de lições introduz a ciência de dados na nuvem e seus benefícios. | [lição](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 18 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Treinamento de modelos usando ferramentas de baixo código. |[lição](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 19 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Implantação de modelos com o Azure Machine Learning Studio. | [lição](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 20 | Ciência de Dados no Mundo Real | [No Mundo Real](6-Data-Science-In-Wild/README.md) | Projetos impulsionados pela ciência de dados no mundo real. | [lição](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Siga estes passos para abrir este exemplo num Codespace:
Siga estes passos para abrir este exemplo em um Codespace:
1. Clique no menu suspenso Code e selecione a opção Open with Codespaces.
2. Selecione + New codespace na parte inferior do painel.
Para mais informações, consulte a [documentação do GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Siga estes passos para abrir este repositório num contentor usando a sua máquina local e o VSCode com a extensão VS Code Remote - Containers:
Siga estes passos para abrir este repositório em um container usando sua máquina local e o VSCode com a extensão VS Code Remote - Containers:
1. Se for a sua primeira vez a usar um contentor de desenvolvimento, certifique-se de que o seu sistema cumpre os pré-requisitos (por exemplo, ter o Docker instalado) na [documentação de introdução](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Se esta for sua primeira vez usando um container de desenvolvimento, certifique-se de que seu sistema atende aos pré-requisitos (ou seja, ter o Docker instalado) na [documentação de introdução](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Para usar este repositório, pode abri-lo num volume Docker isolado:
Para usar este repositório, você pode abrir o repositório em um volume isolado do Docker:
**Nota**: Internamente, isto usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte num volume Docker em vez do sistema de ficheiros local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de contentores.
**Nota**: Por trás dos panos, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume do Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de containers.
Ou abra uma versão clonada ou descarregada localmente do repositório:
Ou abrir uma versão clonada ou baixada localmente do repositório:
- Clone este repositório para o seu sistema de ficheiros local.
- Clone este repositório para o sistema de arquivos local.
- Pressione F1 e selecione o comando **Remote-Containers: Open Folder in Container...**.
- Selecione a cópia clonada desta pasta, aguarde o arranque do contentor e experimente.
- Selecione a cópia clonada desta pasta, aguarde o container iniciar e experimente.
## Acesso Offline
## Acesso offline
Pode executar esta documentação offline usando o [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local, e depois, na pasta raiz deste repositório, escreva`docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
Você pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local, e então, na pasta raiz deste repositório, digite`docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
> Nota: os notebooks não serão renderizados via Docsify, por isso, quando precisar de executar um notebook, faça-o separadamente no VS Code com um kernel Python.
## Ajuda Necessária!
Se gostaria de traduzir todo ou parte do currículo, siga o nosso guia de [Traduções](TRANSLATIONS.md).
> Nota, os notebooks não serão renderizados via Docsify, então, quando precisar executar um notebook, faça isso separadamente no VS Code executando um kernel Python.
## Outros Currículos
A nossa equipa produz outros currículos! Veja:
Nossa equipe produz outros currículos! Confira:
- [IA Generativa para Iniciantes](https://aka.ms/genai-beginners)
- [IA Generativa para Iniciantes .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
@ -148,14 +140,16 @@ A nossa equipa produz outros currículos! Veja:
- [IA Generativa com Java](https://aka.ms/genaijava)
- [IA para Iniciantes](https://aka.ms/ai-beginners)
- [Ciência de Dados para Iniciantes](https://aka.ms/datascience-beginners)
- [ML para Iniciantes](https://aka.ms/ml-beginners)
- [Aprendizado de Máquina para Iniciantes](https://aka.ms/ml-beginners)
- [Cibersegurança para Iniciantes](https://github.com/microsoft/Security-101)
- [Desenvolvimento Web para Iniciantes](https://aka.ms/webdev-beginners)
- [IoT para Iniciantes](https://aka.ms/iot-beginners)
- [Desenvolvimento XR para Iniciantes](https://github.com/microsoft/xr-development-for-beginners)
- [Dominar o GitHub Copilot para Programação em Par](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Dominar o GitHub Copilot para Programadores C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Escolha a Sua Própria Aventura com o Copilot](https://github.com/microsoft/CopilotAdventures)
- [Dominando o GitHub Copilot para Programação em Parceria](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Dominando o GitHub Copilot para Desenvolvedores C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Escolha Sua Própria Aventura com Copilot](https://github.com/microsoft/CopilotAdventures)
---
**Aviso Legal**:
Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução.
Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução.