diff --git a/5-Data-Science-In-Cloud/18-tbd/README.md b/5-Data-Science-In-Cloud/18-tbd/README.md index 70b5f3a..abf837a 100644 --- a/5-Data-Science-In-Cloud/18-tbd/README.md +++ b/5-Data-Science-In-Cloud/18-tbd/README.md @@ -1,9 +1,42 @@ -# Data Science in the Cloud: TBD - +# Low code/No code Data Science in the Cloud + +Table of contents: + +- [Low code/No code Data Science in the Cloud](#low-codeno-code-data-science-in-the-cloud) + - [Pre-Lecture Quiz](#pre-lecture-quiz) + - [1. Introduction](#1-introduction) + - [1.1 The Heart Failure Prediction Project](#11-the-heart-failure-prediction-project) + - [1.2 The Heart Failure Dataset](#12-the-heart-failure-dataset) + - [2. Low code/No code training of a model in Azure ML Studio](#2-low-codeno-code-training-of-a-model-in-azure-ml-studio) + - [2.1 Create an Azure ML workspace](#21-create-an-azure-ml-workspace) + - [2.2 Compute Resources](#22-compute-resources) + - [2.2.1 Choosing the right options for your compute resources](#221-choosing-the-right-options-for-your-compute-resources) + - [2.2.2 Creating a compute cluster](#222-creating-a-compute-cluster) + - [2.3 Loading the Dataset](#23-loading-the-dataset) + - [2.4 Low code/No Code training with AutoML](#24-low-codeno-code-training-with-automl) + - [3. Low code/No Code model deployment and endpoint consumption](#3-low-codeno-code-model-deployment-and-endpoint-consumption) + - [3.1 Model deployment](#31-model-deployment) + - [3.2 Endpoint consumption](#32-endpoint-consumption) + - [🚀 Challenge](#-challenge) + - [Post-Lecture Quiz](#post-lecture-quiz) + - [Review & Self Study](#review--self-study) + - [Assignment](#assignment) ## Pre-Lecture Quiz [Pre-lecture quiz]() - +## 1. Introduction +### 1.1 The Heart Failure Prediction Project +### 1.2 The Heart Failure Dataset +## 2. Low code/No code training of a model in Azure ML Studio +### 2.1 Create an Azure ML workspace +### 2.2 Compute Resources +#### 2.2.1 Choosing the right options for your compute resources +#### 2.2.2 Creating a compute cluster +### 2.3 Loading the Dataset +### 2.4 Low code/No Code training with AutoML +## 3. Low code/No Code model deployment and endpoint consumption +### 3.1 Model deployment +### 3.2 Endpoint consumption ## 🚀 Challenge diff --git a/5-Data-Science-In-Cloud/README.md b/5-Data-Science-In-Cloud/README.md index 92cfb83..9198d9f 100644 --- a/5-Data-Science-In-Cloud/README.md +++ b/5-Data-Science-In-Cloud/README.md @@ -5,7 +5,7 @@ Now we will see why and how you can use Cloud services for Data Science. ### Topics 1. [Why do Data Science in the Cloud?](17-tbd/README.md) -2. [Optimizing a Data Science Pipeline in Azure](18-tbd/README.md) +2. [Low code/No code Data Science in the cloud](18-tbd/README.md) 3. [Machine Learning Operations in the Cloud (MLOps)](19-tbd/README.md) ### Credits