From 1fda03516f4fcc1f594a3e516fc6260546d88ae0 Mon Sep 17 00:00:00 2001 From: extremq <45830561+extremq@users.noreply.github.com> Date: Thu, 13 Apr 2023 12:06:50 +0300 Subject: [PATCH] Fix typos in course. --- 2-Working-With-Data/07-python/README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/2-Working-With-Data/07-python/README.md b/2-Working-With-Data/07-python/README.md index 119b53c..e7ab2e2 100644 --- a/2-Working-With-Data/07-python/README.md +++ b/2-Working-With-Data/07-python/README.md @@ -97,6 +97,7 @@ b = pd.Series(["I","like","to","play","games","and","will","not","change"],index df = pd.DataFrame([a,b]) ``` This will create a horizontal table like this: + | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | --- | --- | ---- | --- | --- | ------ | --- | ------ | ---- | ---- | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | @@ -122,7 +123,7 @@ This will give us a table like this: **Note** that we can also get this table layout by transposing the previous table, eg. by writing ```python -df = pd.DataFrame([a,b]).T..rename(columns={ 0 : 'A', 1 : 'B' }) +df = pd.DataFrame([a,b]).T.rename(columns={ 0 : 'A', 1 : 'B' }) ``` Here `.T` means the operation of transposing the DataFrame, i.e. changing rows and columns, and `rename` operation allows us to rename columns to match the previous example.