Update previous lesson link

pull/164/head
INDRASHIS PAUL 4 years ago committed by GitHub
parent 6d054af466
commit 1ac3f9c104
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -31,7 +31,7 @@ Depending on its source, raw data may contain some inconsistencies that will cau
## Exploring DataFrame information
> **Learning goal:** By the end of this subsection, you should be comfortable finding general information about the data stored in pandas DataFrames.
Once you have loaded your data into pandas, it will more likely than not be in a DataFrame(refer to the previous [lesson](https://github.com/IndraP24/Data-Science-For-Beginners/tree/main/2-Working-With-Data/07-python#dataframe) for detailed overview). However, if the data set in your DataFrame has 60,000 rows and 400 columns, how do you even begin to get a sense of what you're working with? Fortunately, [pandas](https://pandas.pydata.org/) provides some convenient tools to quickly look at overall information about a DataFrame in addition to the first few and last few rows.
Once you have loaded your data into pandas, it will more likely than not be in a DataFrame(refer to the previous [lesson](https://github.com/microsoft/Data-Science-For-Beginners/tree/main/2-Working-With-Data/07-python#dataframe) for detailed overview). However, if the data set in your DataFrame has 60,000 rows and 400 columns, how do you even begin to get a sense of what you're working with? Fortunately, [pandas](https://pandas.pydata.org/) provides some convenient tools to quickly look at overall information about a DataFrame in addition to the first few and last few rows.
In order to explore this functionality, we will import the Python scikit-learn library and use an iconic dataset: the **Iris data set**.

Loading…
Cancel
Save